
Compiling and Debugging a
WebObjects Application

131

This chapter describes how to use compiled code in WebObjects applications.
It includes the following topics:

• When do you use compiled code?
• Creating and building a project
• Where to install the application
• Accessing compiled code from scripts
• Accessing scripts from compiled code
• Using C and C++ in WebObjects applications
• Debugging WebScript
• Debugging a compiled WebObjects application

This chapter uses a small sample application, “Registration,” to illustrate how to
integrate compiled code into a WebObjects application.

When Do You Use Compiled Code?

There are two primary reasons you use compiled code in WebObjects: to boost
performance and to provide your own custom classes.

Providing your own custom business classes is one common use of compiled
Objective-C. Another is to subclass the WebObjects classes that are the building
blocks of a WebObjects application:

• WOComponent (see the HelloWorldObjC sample application for an
example)

• WOApplication (see “Managing State” for an example)

• WOSession

• WODynamicElement

Note: If you subclass WOApplication or WOSession, name the subclass
Application and Session respectively. If you follow this naming convention, you
are able to add further functionality to your object in Application.wos or
Session.wos. If you name your subclass something else, you shouldn’t use
Application.wos or Session.wos.

Creating a script file is the same as subclassing. For example, writing methods
in Application.wos is the same as subclassing WOApplication. Creating a
component is the same as subclassing WOComponent. Usually, the only reason
you might want to create a subclass in Objective-C is to improve performance.

Compiling and Debugging Creating Compiled Code

132

Many applications use some combination of compiled code and scripts. For
example, it’s common to write your business logic as compiled Objective-C code
and to then use WebScript to provide your interface logic. “Interface logic”
refers to activities such as page navigation, capturing the data entered in forms,
and managing the appearance of the user interface. Business logic, on the other
hand, refers to the behavior associated with custom objects. For example, you
could have an OrderProcessing object that validates orders to ensure that their
data is correct and then checks them against available inventory.

Creating Compiled Code

To create the compiled code that will eventually be integrated into your
application, you need to follow these basic steps:

1. Use your development environment to create a project.

2. Implement a main() function.

3. Add to your project the frameworks to which your application needs to link.

4. Create your classes and add them to your project.

5. Compile and link your code.

Once you’ve created and built your project, you can write your application’s
scripts, HTML templates, and declarations files. While you can choose to
provide all of your application’s behavior in compiled code, it’s common to use
some combination of compiled code and WebScript.

These steps are described in more detail in the following sections.

Creating a Project
The first step in writing compiled code that can be integrated into a WebObjects
application is to use your development environment to create a project.

On Windows NT and Mach platforms, you can use the Project Builder
application to create the project. Set the project’s type to be
“WebObjectsApplication” in the New Project Panel.

133

Compiling and Debugging Creating Compiled Code

Figure 1. Creating a Project

Setting a project’s type to “WebObjectsApplication” does much of the
remaining work for you. It creates the following:

• the main() function (under Other Sources)
• an empty application script (under Other Resources)
• an empty session script (under Other Resources)
• an empty Main component (under Interfaces)

In addition, it sets up the makefiles and adds the appropriate frameworks to the
project so that they are linked in when the executable is built.

Implementing a main() Function
When you use compiled code in a WebObjects application, you have to
implement your own main() function. This function creates the autorelease pool
and application objects used in your application. (If you’re using Project Builder,
it creates the main() function for you.)

To implement a main() function:

1. Using any text editor, open a new text file and give it a name that has the
extension .m (for example, main.m).

For the Registration project, for example, create a file called Registration.m.

2. Add the following text to the file:

#import <WebObjects/WebObjects.h>

#import <Foundation/Foundation.h>

void main (int argc, const char *argv[])

{

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 WOApplication *application = [[[WOApplication alloc] init] autorelease];

Compiling and Debugging Creating Compiled Code

134

 [application run];

 [pool release];

 exit(0);

}

#ifdef WIN32

#import <EOAccess/EOAccess.h>

void _referenceEOFrameworks()

{

 static id a;

 a = [EOEntity new]; // EOAccess

}

#endif

The main() function begins by creating an autorelease pool that’s used for the
automatic deallocation of objects that receive the autorelease message. Next,
it creates the WebObjects application object and runs it. The run method
starts the request-response loop. The last statement releases the autorelease
pool, which sends a release message to any object that has been added to the
pool since the application began.

If you intend to run the application on the Windows NT platform, you must
include the _referenceEOFrameworks() function as well. This function makes
sure the Enterprise Objects DLLs are loaded at the appropriate time.

3. Add the file to your project.

Adding Frameworks
The next step is to add to your project the frameworks to which your application
needs to link. If you’re using Project Builder, the frameworks are included for
you. The table below lists frameworks Project Builder includes in a
WebObjectsApplication project.

135

Compiling and Debugging Creating Compiled Code

Framework Contains

WebObjects The WebObjects classes such as WOComponent, WOApplication and
WOSession.

Foundation Contains the root class, NSObject, plus other basic object classes
(such as NSString, NSDictionary, and NSNumber) that most
applications use.

EOAccess Contains the Enterprise Objects Access Layer. You need this
framework only if you are writing a database application or if you are
writing any WebObjects application that runs on Windows NT.

EOControl Contains the Enterprise Objects Control Layer, which is the bridge
between the database access layer and the interface layer. You need
this framework only if you are writing a database application.

Frameworks are installed in NeXT_Root/NextLibrary/Frameworks (where NeXT_Root is
defined at installation time). Link against a framework using the -framework
option of the gcc compiler. For example:

/bin/cc -o executableName -L objectFiles -framework WebObjects -framework
Foundation

Be sure to link to the WebObjects framework before the Foundation
framework.

On the Solaris platform, you also need to link to the framework
NextLibrary/PrivateFrameworks/MultiScript.framework. If you use the provided
makefiles, this is set up for you.

Creating Your Classes and Adding Them to Your Project
Once you set up your project, you’re ready to create the classes you’ll compile
and use in your WebObjects application. A project and its classes can go
anywhere in your application directory.

Creating Your Components
You can create the scripted components in WebObjects Builder as you normally
would. There’s no need to add these to the project, as they don’t get built with
the compiled code. If you’re using Project Builder, the Main.wo component is
added anyway under Interfaces.

Compiling and Debugging Deploying an Application With Compiled Code

136

Building Your Code
Once you’ve created your .h and .m files and added them to your project, you’re
ready to build and link your code. Just use the process you normally would in
your development environment.

If you’re creating your application on NT, you need to make a copy of your
application after you build it that doesn’t have the extension .exe. This is
required so that your application can be autostarted. You should also maintain a
copy of your application that has the extension .exe, though, since this is the
version you use to run the application from a command prompt.

Deploying an Application With Compiled Code

When your application is ready to be deployed, install it in
NeXT_Root/NextLibrary/WOApps.

If the application’s executable is in WOApps, you can also place the application’s
.woa directory in WOApps. This is one way to ensure the .woa directory’s privacy;
if you place the .woa under the document root and outside users have read access
on .wos and .wod files, they have access to the application’s source.

If the application imports any images or sounds, you must leave a “sparse” copy
of the application in the document root so that the client’s browser can find
these resources. In this case “sparse” means that the application’s directory
structure is reproduced in the document root, but the only files it contains are
the static resources that the server must dispense to a client’s browser.

Note: You can’t autostart an application installed in WOApps. It must be started
from the command line as described in “Launching From the Command Line.”

The Registration Application

This section uses the Registration application to describe how you integrate
compiled Objective-C code into a WebObjects application.

The Registration application takes information about a user as input, validates
it, and writes it out to a file. Figure 2 shows the first page of the application.

137

Compiling and Debugging The Registration Application

Figure 2. The Registration Application

The following table lists the major files in the Registration application:

File Description

Registration.m Defines the main() function, which creates autorelease pool
and application objects.

Person.[hm] A custom Objective-C class whose primary function is to validate
data entered by users.

RegistrationManager.[hm] A custom Objective-C class whose primary functions are to register
new users by writing their data to the People.array file and to return an
array of all registrants.

People.array A file that contains data about registrants in a property list format.

Application.wos The application script. It creates and maintains a RegistrationManager
object.

Main.wos The script for the application’s first page. Main.wos has an associated
declarations file (Main.wod) and HTML template (Main.html).

Registrants.wos The script for the application’s Registrants page, which lists all of the
registered people. Registrants.wos has an associated
declarations file (Registrants.wod) and HTML template
(Registrants.html).

Compiling and Debugging The Registration Application

138

The scripted components Main and Registrants contain the application’s
interface logic. Main.wos includes methods for capturing user input and clearing
the forms on the first page. Registrants.wos has just an awake method in which it
retrieves data for display. The Person and RegistrationManager classes, on the
other hand, contain the application’s business logic. They validate user input
and manage the application’s data.

Objective-C Classes in the Registration Application
The Registration application includes the Person and RegistrationManager
classes.

Person Class
When users enter data in the Main page of the Registration application, the data
is stored in an NSDictionary that’s used to initialize an instance of the Person
class. The Person class includes a validate method that’s used to check whether
the data entered by the user includes values for a name and address. The validate
method returns an NSDictionary. This dictionary contains a status message and
a validation flag that indicates whether the registration should be allowed to
proceed. If the user failed to enter a name or address, the validation flag value is
“No,” which disallows the registration. The status message then prompts the
user to supply the missing information.

The Person class also includes the name and personAsDictionary methods. The name
method is simply used to return the Person’s name, while the method
personAsDictionary returns a dictionary representation of the Person. The
dictionary representation is used when the Person’s data is written out to a file
in a property list format (this is described in more detail in the section on the
RegistrationManager class).

The header (.h) and implementation (.m) files for the Person class are listed
below.

Person.h
// Person.h
#import <WebObjects/WebObjects.h>
#import <Foundation/Foundation.h>

@interface Person : NSObject
{
 NSDictionary *personRecord;
}
+ personWithDictionary:(NSDictionary *)personDict;
- initWithDictionary:(NSDictionary *)personDict;
- (NSDictionary *)validate;

139

Compiling and Debugging The Registration Application

- (NSString *)name;
- (NSDictionary *)personAsDictionary;

@end

Person.m
// Person.m
#import "Person.h"

@implementation Person

+ personWithDictionary:(NSDictionary *)personDict;
{
 return [[[[self class] alloc]
 initWithDictionary:personDict]
 autorelease];
}

- initWithDictionary:(NSDictionary *)personDict
{
 [super init];
 personRecord = [personDict copy];
 return self;
}

- (void)dealloc
{
 [personRecord release];
 [super dealloc];
}

- (NSDictionary *)validate
{
 NSMutableDictionary *isValid = [NSMutableDictionary dictionary];

 if (![[personRecord objectForKey:@"address"] length] &&
 ![[personRecord objectForKey:@"name"] length]) {
 [isValid setObject:@"You must supply a name and address."

forKey:@"failureReason"];
 [isValid setObject:@"No" forKey:@"isValid"];
 } else if (![[personRecord objectForKey:@"name"] length]) {
 [isValid setObject:@"You must supply a name." forKey:@"failureReason"];

[isValid setObject:@"No" forKey:@"isValid"];
 } else if (![[personRecord objectForKey:@"address"] length]) {
 [isValid setObject:@"You must supply an address." forKey:@"failureReason"];
 [isValid setObject:@"No" forKey:@"isValid"];
 } else {
 [isValid setObject:@"Yes" forKey:@"isValid"];
 }
 return isValid;
}

- (NSString *)name

Compiling and Debugging The Registration Application

140

{
 return [personRecord objectForKey:@"name"];
}

- (NSDictionary *)personAsDictionary
{
 return personRecord;
}

@end

RegistrationManager Class
The RegistrationManager class has two primary functions: it registers a new
Person (which entails writing the Person’s data out to the People.array file), and it
returns an array containing all of the registrants.

The header (.h) and implementation (.m) files for the RegistrationManager class
are listed below.

RegistrationManager.h
// RegistrationManager.h
#import <WebObjects/WebObjects.h>
#import <Foundation/Foundation.h>

@class Person;

@interface RegistrationManager : NSObject
{
 NSMutableArray *registrants;
}

+ manager;
- init;
- (NSDictionary *)registerPerson:(Person *)newPerson;
- (NSArray *)registrants;

@end

RegistrationManager.m
// RegistrationManager.h
#import "RegistrationManager.h"
#import "Person.h"

@implementation RegistrationManager

+ manager
{
 return [[[[self class] alloc] init] autorelease];
}

141

Compiling and Debugging The Registration Application

- init
{
 NSString *path = [[WOApplication application] pathForResourceNamed:@"People"

ofType:@"array"];
 [super init];
 registrants = [[NSMutableArray arrayWithContentsOfFile:path] retain];
 if (!registrants)
 registrants = [[NSMutableArray alloc] init];
 return self;
}

- (void)dealloc {
 [registrants release];
 [super dealloc];
}

- (NSDictionary *)registerPerson:(Person *)newPerson
{
 int i;
 NSDictionary *results;
 NSString *currentName, *newPersonName = [newPerson name];
 NSString *path = [[WOApplication application] pathForResourceNamed:@"People"

ofType:@"array"];

 results = [newPerson validate];
 if ([[results objectForKey:@"isValid"] isEqual:@"No"])
 return results;
 for (i = [registrants count] -1; i >=0; i--) {
 currentName = [[registrants objectAtIndex:i] objectForKey:@"name"];
 if ([currentName isEqual:newPersonName]) {
 [registrants removeObjectAtIndex:i];
 break;
 }
 }
 [registrants addObject:[newPerson personAsDictionary]];
 [registrants writeToFile:path atomically:YES];
 return results;
}

- (NSArray *)registrants
{
 return registrants;
}

@end

RegistrationManager’s init and registerPerson: methods use the WOApplication
method pathForResourceNamed:ofType: to load the file People.array into the
application. This method takes a path and the file’s extension as arguments:

NSString *path = [[WOApplication application] pathForResourceNamed:@"People"
ofType:@"array"];

Compiling and Debugging The Registration Application

142

You can use this method to load different kinds of resources into your
application—for example, images, sound files, data files, and so on.

Another noteworthy feature of RegistrationManager is its use of an NSArray
data source. The reason that the instance variable registrants can be initialized
from the file People.array is because the file contains data in a property list format.
A property list is a compound data type that consists of NSStrings, NSArrays,
NSDictionaries, and NSDatas. Property lists can be represented in an ASCII
format, and property list objects such as NSDictionaries and NSArrays can
consequently be initialized from ASCII files that use this format. The file
People.array contains an NSArray of NSDictionaries.

Scripts in the Registration Application
The Registration application includes the scripts Application.wos, Main.wos, and
Registrants.wos. The contents of these scripts are listed below.

Application.wos

The application script Application.wos creates a RegistrationManager object
manager that’s used by the Main.wos and Registrants.wos component scripts to
register new users and return a list of all registrants.

id manager;

- init
{
 [super init];
 manager = [[RegistrationManager manager] retain];
 return self;
}

- dealloc
{
 [manager release];
 [super dealloc];
}

143

Compiling and Debugging The Registration Application

Main.wo

Figure 3 shows the Main.wo component as it appears in WebObjects Builder.

Figure 3. Main.wo component

The Main.wos script includes methods for registering a new user, clearing the
forms on the page, and returning a page that lists all of the people who have
registered.

id newPerson;
id message;

Compiling and Debugging The Registration Application

144

- init {
 [super init];
 if (!newPerson) {
 newPerson = [NSMutableDictionary dictionary];
 }
 message = @"";
 return self;
}

- dealloc {
 [newPerson release];
 [message release];
 [super dealloc];
 }

/*
 * Ask the RegistrationManager to write the user's data
 * to a file. Set the value of the message string based on the results
 * of the attempted registration.
 */
- register
{
 id aPerson, results;
 aPerson = [Person personWithDictionary:newPerson];
 results = [self.application.manager registerPerson:aPerson];

// Set message from the validation dictionary.
if ([[results objectForKey:@"isValid"] isEqual:@"No"])

 message = [results objectForKey:@"failureReason"];
 else
 message = @"You have been successfully registered.";
}
/*
 * Clear all of the forms on the page.
 */
- clear
{

[newPerson setObject:@"" forKey:@"name"];
[newPerson setObject:@"" forKey:@"email"];
[newPerson setObject:@"" forKey:@"address"];
message = @"";

}
/*
 * Return a page listing all of the people who have registered.
 */
- showRegistrants
{

id registrants = [self.application pageWithName:@"Registrants"];
return registrants;

145

Compiling and Debugging The Registration Application

}

Registrants.wo

Figure 4 shows the Registrants.wo component as it appears in WebObjects
Builder.

Figure 4. Registrants.wo component

The Registrants.wos script accesses the list of all registered people through the
application’s manager object.

id currentItem;
id myNamesArray;

- awake {
myNamesArray = [self.application.manager registrants];

}

Accessing Compiled Code From a Script
Application.wos, Main.wos, and Registrants.wos all send messages to compiled code.
Accessing compiled code from a script is simply a matter of getting an object of

Compiling and Debugging The Registration Application

146

the compiled class and sending it a message. For example, the Main.wos script
includes these statements:

// Return a Person object by invoking Person’s personWithDictionary: method
aPerson = [Person personWithDictionary:newPerson];

// Register aPerson by invoking RegistrationManager’s registerPerson: method
results = [self.application.manager registerPerson:aPerson];

Accessing Script Methods from Compiled Code
To access a scripted object’s methods from compiled code, you simply get the
object that implements the method and send it a message. If you’re accessing a
method in the application or session script, you can use WOApplication
methods to access the object:

[[WOApplication application] applicationScriptMethod];

[[[WOApplication application] session] sessionScriptMethod];

To access a component’s methods, you must store the component in the session
and then access it through the session.

For example, suppose you wanted to rewrite the Registration application so that
Person’s validate method directly sets the value of the message variable in
Main.wos. You’d add the following statement to the init method Main.wos:

// Store the component in the session.
[self.session setObject:self forKey:@"Main"];

and then you can access it in Person’s validate method this way:

// Get the component from the session:
WOComponent *mainPage = [[[WOApplication application] session]

objectForKey:@"Main"];

// Send it a message
[mainPage setMessage:@"You must supply a name and address"];

(Main.wo implicitly implements the setMessage: method because it declares a
variable named message.)

To avoid compiler warnings, you should declare the scripted method you want
to invoke in your code. This is because scripted objects don’t declare methods—
their methods are parsed from the script at run time. If you don’t declare their
methods in your code, the compiler issues a warning that the methods aren’t part
of the receiver’s interface.

Note: This step isn’t strictly required—your code will still build, you’ll just get
warnings.

147

Compiling and Debugging Using C and C++ in WebObjects Applications

For the example above, you’d add the following declaration to the Person.m file:

@interface WOComponent (RegistrationMainComponent)

- (void)setMessage:(NSString *)aMessage;

@end

While it’s certainly straightforward to access a scripted object’s methods from
compiled code, you may not want to have that degree of interdependence
between your scripts and your compiled code. You may want to minimize the
interdependence to facilitate reusability.

Using C and C++ in WebObjects Applications

In addition to using compiled Objective-C in WebObjects applications, you can
also use compiled C or C++. The interface you provide to WebObjects must be
in Objective-C because WebObjects can’t invoke C or C++ functions. However,
you can directly invoke C and C++ functions from Objective-C.

Some of the options for integrating C or C++ code into your application are as
follows:

• Putting the C or C++ functions into the same file as your Objective-C code

• Putting the C or C++ functions in separate files and importing their headers
into your Objective-C code

• Adding a third-party library to your project and importing its headers into your
Objective-C code

Debugging WebScript

WebScript provides methods that are useful for debugging: logWithFormat:: and
several trace methods. Using these methods in conjunction with launching your
application from a command shell provides you with a fairly complete picture of
your running application.

Launching From the Command Line
To debug your application, you should launch it from the command line so that
you have better control over the executable and so that you’ll be able to see
messages written to standard output or standard error.

Compiling and Debugging Debugging WebScript

148

To start a WebObjects application from the command line:

1. Locate the application executable.

If you don’t have compiled code and haven’t built a custom executable, use
the WODefaultApp executable located in NeXT_Root/NextLibrary/Executables.

2. Change directories to the directory in which the application executable is
located.

3. Start the application by invoking the executable as follows:

ApplicationExecutable -d DocumentRoot RelativeApplicationDirectory

You must provide a minimum of two arguments to the executable: the
HTTP server’s document root and the application directory relative to
<DocumentRoot>/WebObjects. For example, the resources for HelloWorld are
located in <DocumentRoot>/WebObjects/Examples/HelloWorld.woa, so HelloWorld’s
relative application directory is Examples/HelloWorld. (You must leave off the
.woa extension.) You’d use the following command to start HelloWorld:

WODefaultApp.exe -d c:/netscape/ns-home/docs Examples/HelloWorld

To start a compiled application such as Registration, you’d use the
command:

Registration.exe -d c:/netscape/ns-home/docs MyApplications/Registration

assuming you’ve placed Registration in a directory called MyApplications.

Note: If you’re using Windows NT, be sure to use forward slashes in the
arguments to the application executable, even if you’re running the
application from the DOS Command Prompt.

4. In your browser, open the URL you’d normally use to launch your
application:

http://localhost/cgi-bin/WebObjects/MyApplications/Registration

As your application runs, the output from logWithFormat: and other information
about your application is displayed in the command shell window.

logWithFormat:
The WebScript method logWithFormat: writes a formatted string to stderr. Like the
printf() function in C, this method takes a format string and optionally, a variable
number of additional arguments. For example, the following code excerpt prints
the string: “The value of myString is Elvis”:

149

Compiling and Debugging Debugging WebScript

myString = @”Elvis”;
[self logWithFormat:@”The value of myString is %@”, myString];

When this code is parsed, the value of myString is substituted for the conversion
specification %@. The conversion character @ indicates that the data type of the
variable being substituted is an object (that is, of the id data type).

Because WebScript only supports the data type id, the conversion specification
you use must always be %@. Unlike printf(), you can’t supply conversion
specifications for primitive C data types such as %d, %s, %f, and so on.

Perhaps the most effective debugging technique you can use in WebScript is to
use logWithFormat: to print the contents of self. This causes WebScript to output
the values of all of your variables. For example, putting the statement:

[self logWithFormat:@"The contents of self in register are %@", self];

at the end of the register method in the Registration application’s Main.wos script
produces output that resembles the following:

The contents of self in register are <WOWebScriptComponentController 0xafe04
 message = You have been successfully registered.
 newPerson = {

 address = "Graceland\015\nNashville, TN";
 email = "elvis@graceland.com";
 name = Elvis;
}>

Trace Methods
WOApplication provides trace methods that log different kinds of information
about your running application. These methods are useful if you want to see the
call stack. The trace methods are described in the following table:

Method Description

trace: Enables all tracing.

traceAssignments: Logs information about all assignment statements.

traceStatements: Logs information about all statements.

traceScriptedMessages: Logs information when an application enters and exits a scripted
method.

traceObjectiveCMessages: Logs information about all Objective-C method invocations.

Compiling and Debugging Debugging a Compiled Application

150

To use any of the trace methods, you must run your application from a command
shell.

You use the trace methods wherever you want to turn on tracing. Usually, this is
in the init method of a component or the application:

- init {
[self.application traceAssignments:YES];
[self.application traceScriptedMessages:YES];

}

Debugging a Compiled Application

If you have an application that contains both compiled code and WebScript, do
the following:

1. Launch your debugger.

2. Set breakpoints in the compiled code.

3. Launch the application’s executable in the debugger.

For example, if you are using gdb, you would type the following:

(gdb) run -d /NextLibrary/WebServer/htdocs MyApplications/Registration

4. In your browser, open the URL you’d normally use to launch your
application. For example:

http://localhost/cgi-bin/WebObjects/MyApplications/Registration

To debug the WebScript portion of the application, you still use logWithFormat:
and trace statements as described in “Debugging WebScript.” The output from
these messages is displayed wherever your debugger displays standard error
messages.

Summary

When Do I Use Compiled Code?
The primary reason for using compiled code is to boost performance.

151

Compiling and Debugging Summary

You use compiled code when you want to subclass WOComponent,
WOApplication, WOSession, or WODynamicElement. You also use compiled
code to provide your own custom business classes.

How Should I Partition My Application?
There are no hard and fast rules about how you organize a WebObjects
application. However, it’s common to implement your interface logic in
WebScript and your business logic in compiled code.

What Do I Need to Do to Produce Compiled Code that Can Be Used
in a WebObjects Application?
To create compiled code that can be integrated into a WebObjects application,
you need to follow these basic steps:

1. Use your development environment to create a project.

2. Implement a main() function.

3. Add to your project the libraries to which your application needs to link.

4. Create your classes and add them to your project.

5. Compile and link your code.

If you use Project Builder, steps 2 and 3 are done for you.

How Do I Deploy a Compiled Application
Install a compiled application in NeXT_Root/NextLibrary/WOApps. You may store
both the executable and the scripted part of the application in WOApps or just
the executable. Image files and other resources must be installed in directories
relative to the document root. (That is, the application’s directory structure must
be mirrored in the document root and must contain the resource files in the
appropriate places.)

How Do I Access Compiled Code from Scripts?
You access compiled code from a script by getting an object of the class and
sending it a message. For example:

// Return a Person object by invoking Person’s personWithDictionary: method
aPerson = [Person personWithDictionary:newPerson];

// Send the object a message
[Person validate];

Compiling and Debugging Summary

152

How Do I Access Scripts from Compiled Code?
To access a scripted object’s methods from compiled code, you store the object
in the session, get the object from the session, and then send it a message. Add
this statement to the component’s script file:

// Store the component in the session.
[self.session setObject:self forKey:@"Main"];

and then you can access it in the code this way:

// Get the component from the session
id mainPage = [[[WOApplication application] session] objectForKey:@"Main"];

// Send it a message
[mainPage setMessage:@"You have won a trip to Hawaii!!"];

To avoid compiler warnings, you can declare the scripted methods you invoke
in your compiled code.

Can I Use C and C++ In a WebObjects Application?
Yes, but the interface you present to WebObjects must be Objective-C. You can
integrate compiled C and C++ into your application in any of the following ways:

• Put the C or C++ functions into the same file as your Objective-C code

• Put the C or C++ functions in separate files and importing their headers into
your Objective-C code

• Add a third-party library to your project and importing its headers into your
Objective-C code

What Is the Most Efficient Way to Debug My Application?
You debug your compiled code using the tools provided in your development
environment. To debug the scripted portion of your application, the best
technique is to use the logWithFormat: method. It’s especially effective to use
logWithFormat: to print the contents of self—this outputs all of the variables’
values.

To see the output from logWithFormat:, you must run your application from the
command line.

If you want to trace the program flow, you can use the trace methods provided
in WOApplication.

