
Dynamic Element Specifications

3

Dynamic Element Specifications Introduction

Introduction

Dynamic elements serve as the basic building blocks of WebObjects applications by linking an application’s scripted
or compiled behavior to an HTML page. The linkage can be two-way, in that a dynamic element:

• Initially sets its attributes to values specified by scripted or compiled variables or methods.

• Represents itself as HTML when called upon to do so.

• Synchronizes the values of its attributes to those entered by the user, and passes these values back to your script or
compiled code.

With WebObjects, most pages sent to the user’s browser are composed of HTML from a static template combined
with HTML that’s dynamically generated by dynamic elements embedded (directly, or in the case of reusable
components, indirectly) in that template.

Here are the dynamic elements that are defined in WebObjects Release 3.0:

WOActiveImage
WOApplet
WOBrowser
WOCheckBox
WOConditional
WOEmbeddedObject
WOForm
WOFrame
WOGenericContainer
WOGenericElement
WOHiddenField
WOHyperlink
WOImage
WOJavaScript
WOPasswordField
WOPopUpButton
WORadioButton
WORepetition
WOResetButton
WOStateStorage
WOString
WOSubmitButton
WOText
WOTextField
WOVBScript

See the WebObjects Developer’s Guide for a more complete introduction to Dynamic Elements.

How to Use These Specifications

Each dynamic element specification that follows is divided into two sections: a synopsis and a description. The
synopsis is designed to give you ready reference to the element’s attributes, showing which ones are mandatory and
which ones optional. The description explains the purpose of the element and each of its attributes.

4

Dynamic Element Specifications Introduction

The element synopses use several conventions that you should be aware of, for example:

WOSubmitButton { action=submitForm; value=aString; [disabled=YES|NO;] [name=aName;] ... };

• Bold denotes words or characters that are to be taken literally (typed as they appear). For example, the action and
value attributes are to be take literally in the synopsis above.

• Italic denotes words that represent something else or that can be varied. For example, submitForm represents a
method in your script—the exact name of the method is your choice.

• Square brackets ([]) mean that the enclosed attribute or attributes are optional. The name attribute and its value are
optional in the synopsis above.

• A vertical bar (|) separates two options that are mutually exclusive, as in “disabled=YES|NO” where the attribute’s
value must be either YES or NO.

• Ellipsis (...) represents additional attributes and values that you might add but that aren’t part of the element’s
specification. When a dynamic element is asked to produce its HTML representation, these additional attributes
and values are simply copied into the HTML stream. The values for these additional attributes can be derived
dynamically, just as with the built-in attributes.

Another point to note concerns the capitalization of attribute names (action, value, disabled above). In the specifications
that follow, compound attribute names are shown with the first letter of each embedded word capitalized. For
example, WOActiveImage has an imageMapFile attribute. You can capitalize attributes exactly as shown in these
specifications, or you can use all lowercase letters (imagemapfile). No other capitalization is allowed.

5

Dynamic Element Specifications WOActiveImage

WOActiveImage

Synopsis

WOActiveImage { src=aPath | value=aMethod; action=aMethod | href=aURL; [imageMapFile=aString;] [name=aString;]
[x=aNumber; y=aNumber;] [target=frameName;] [disabled=YES|NO;] ... };

Description

A WOActiveImage displays an image within the HTML page. If the WOActiveImage is disabled, it simply displays
its image as a passive element in the page. If enabled, the image is active, that is, clicking the image generates a
request.

If located outside an HTML form, a WOActiveImage functions as a mapped, active image. When the user clicks such
a WOActiveImage, the coordinates of the click are sent back to the server. Depending on where the user clicks,
different actions can be invoked. An image map file associates actions with each of the defined areas of the image.

Within an HTML form, a WOActiveImage functions as a graphical submit button. You typically use
WOActiveImages when you need more than one submit button within a form.

src
Path to the file containing the image data. src can be statically specified in the declarations file, an object that
responds to a description message by returning an NSString, or a method that returns an NSString.

value
Image data in the form of a WOElement object. This data can come from a database, a file, or memory.

action
Method to invoke when this element is clicked. If imageMapFile is specified, action is only invoked if the click
is outside any mapped area. In other words, action defines the default action of the active image.

href
URL to direct the browser to as a default when the image is clicked and no hot zones are hit.

imageMapFile
Name of the image map file.

name
If name is specified then the hit point is specified as name.x=value; name.y=value; in the form. This is useful
when you need to use this element to submit a form to an external URL that expects the hit point to be
expressed in a certain format.

x, y
If specified, returns the coordinates of the user’s click within the image.

target
Frame in a frameset that will receive the page returned as a result of the user’s click.

disabled
If YES, a regular image element () is generated rather than an active image.

6

Dynamic Element Specifications WOActiveImage

The Image Map File

If imageMapFile is specified, WebObjects searches for the file within the component bundle (Component.wo/). If it isn’t
found there, WebObjects searches the application directory (MyApplication.woa/).

Each line in the image map file has this format:

shape action coordinate-list

shape
Either ‘rect’ or ‘circle’ (polygon not yet supported). For ‘rect’ shape, the coordinates x1,y1 specify the upper-
left corner of the hot zone, and x2,y2 specify lower right corner. For ‘circle’ shape, the x1,y1 is the origin, and
x2,y2 is a point on the circle.

action
Name of the method to invoke.

coordinate-list
x1, y1 x2, y2 ...

Here’s an example of an image map file:

rect home 0,0 135,56

rect buy 135,0 270,56

7

Dynamic Element Specifications Java Support: WOApplet and WOParam

Java Support: WOApplet and WOParam

Synopsis

WOApplet { code=javaClassName; width=aWidth; height=aHeight; [associationClass=className;] [codeBase=aPath;] ... };

WOParam { name=aString; value=aString | action=aMethod; ... };

Description

WOApplet is a dynamic element that generates HTML to specify a Java applet. The applet’s parameters are passed
by one or more WOParam elements.

WOApplet:
code

Name of the Java class.

width
Width, in pixels, of the area to allocate for the applet.

height
Height, in pixels, of the area to allocate for the applet.

associationClass
Name of Java class that aids in communication between client applet and the server.

codeBase
Directory that contains the applet code. If this attribute is omitted, the applet code is assumed to be in the
same directory as the template HTML file.

WOParam:
name

Symbolic name associated with this element's value.

value
Value of this parameter.

action
Method that the applet will invoke.

8

Dynamic Element Specifications WOBrowser

WOBrowser

Synopsis

WOBrowser { list=anArray; [item=anItem; value=displayedValue;] [selections=objectArray;] [name=fieldName;]
[disabled=YES|NO;] ... };

Description

WOBrowser displays itself as a selection list that allows the user to select multiple items at a time. The related
element WOPopUpButton is similar to WOBrowser except that it restricts the user to selecting only one item at a
time.

list
Array of objects from which the browser derives its values. For example, colleges could name the list contain-
ing objects that represent individual schools.

item
Identifier for the elements of the list. For example, aCollege could represent an object in the colleges array.

value
Value to display in the selection list; for example, aCollege.name for each college object in the list.

selections
Array of objects that the user chose from list. For the college example, selections would hold college objects.

name
Name that uniquely identifies this element within the form. You can specify a name or let WebObjects auto-
matically assign one at runtime.

disabled
If disabled evaluates to YES, this element appears in the page but is not active.

9

Dynamic Element Specifications WOCheckBox

WOCheckBox

Synopsis

WOCheckBox {[value=defaultValue; [selection=selectedValue;]] [name=fieldName;] [disabled=YES|NO;] ... };

WOCheckBox {[checked=YES|NO;] [name=fieldName;] [disabled=YES|NO;] ... };

Description

A WOCheckBox object displays itself in the HTML page as its namesake, a check box user interface control. It
corresponds to the HTML element <INPUT TYPE="CHECKBOX"...>.

value
Value of this input element. If not specified, WebObjects provides a default value.

selection
If selection and value are equal when the page is generated, the check box is checked. When the page is sub-
mitted, selection is assigned the value of the check box.

checked
During page generation, if checked evaluates to YES, the check box appears in the checked state. During
request handling, checked reflects the state the user left the check box in: YES if checked; NO if not.

name
Name that uniquely identifies this element within the form. You may specify a name or let WebObjects auto-
matically assign one at runtime.

disabled
If disabled evaluates to YES, this element appears in the page but is not active.

10

Dynamic Element Specifications WOConditional

WOConditional

Synopsis

WOConditional { condition=YES|NO; [negate=YES|NO;] ... };

Description

A WOConditional object controls whether a portion of the HTML page will be generated, based on the evaluation of
its assigned condition.

condition
Expression to evaluate. If the expression evaluates to YES (assuming negate is NO), the HTML code con-
trolled by the WOConditional object is emitted; otherwise it is not.

negate
Inverts the sense of the condition. By default, negate is assumed to be NO.

 The negate attribute lets you use the same test to display mutually exclusive information; for example:

HTML file

<HTML>
<WEBOBJECTS NAME="PAYING_CUSTOMER">Thank you for your order!</WEBOBJECTS>
<WEBOBJECTS NAME="WINDOW_SHOPPER">Thanks for visiting!</WEBOBJECTS>
</HTML>

Declarations File

PAYING_CUSTOMER: WOConditional {condition=payingCustomer;};
WINDOW_SHOPPER: WOConditional {condition=payingCustomer; negate=YES;};

Script File

- payingCustomer {
if (/* ordered something */) {

return YES;
}
return NO;

}

11

Dynamic Element Specifications WOEmbeddedObject

WOEmbeddedObject

Synopsis

WOEmbeddedObject {value=aMethod; | src=aURL; ... };

Description

A WOEmbeddedObject provides support for Netscape plug-ins. It corresponds to the HTML element <EMBED
SRC = >. If the embedded object’s content comes from outside the WebObjects application, use the src attribute. If
the embedded object’s content is returned by a method within the WebObjects application, use the value attribute.

value
Method that will supply the content for this embedded object.

src
External source that will supply the content for this embedded object.

12

Dynamic Element Specifications WOForm

WOForm

Synopsis

WOForm { [action=aMethod; | href=aURL;] [multipleSubmit=YES|NO;] ... };

Description

A WOForm is a container element that generates a fill-in form. It gathers the input from the input elements it contains
and sends it to the server for processing. WOForm corresponds to the HTML element <FORM ... > ... </FORM>.

href
URL specifying where the form will be submitted.

action
Action method that’s invoked when the form is submitted. If the form contains a dynamic element that has its
own action (such as a WOSubmitButton or a WOActiveImage), that action is invoked instead of the
WOForm’s.

multipleSubmit
If multipleSubmit evaluates to YES, the form can have more than one WOSubmitButton, each with its own
action. By default, WOForm supports only a single WOSubmitButton. Note: Some older browsers support only
a single submit button in a form.

13

Dynamic Element Specifications WOFrame

WOFrame

Synopsis

WOFrame { value=aMethod; | src=aURL; | pageName=aString; ... };

Description

WOFrame represents itself as a dynamically generated Netscape Frame element.

value
Method that will supply the content for this frame.

pageName
Name of WebObjects page that will supply the content for this frame.

src
External source that will supply the content for this frame.

14

Dynamic Element Specifications WOGenericContainer

WOGenericContainer

Synopsis

WOGenericContainer { elementName = aConstantString; ... };

Description

WOGenericContainer provides a way for WebObjects to accommodate custom HTML container elements, that is,
elements that affect a range of text. Since the HTML language is evolving rapidly, it’s convenient to have a way to
dynamically generate elements which are not explicitly supported by WebObjects.

In HTML, a container element (for example, <A ... > ...) has opening and closing tags that delimit the text or
graphic affected by the element. In contrast, an empty element (for example <HR> or
) is represented by a
single tag and so can’t enclose any text or graphics. (See the related element WOGenericElement for information
about the support of empty elements.)

elementName
Name of the HTML element to generate. This name (for example “TEXTAREA”) will be used to generate
the container’s opening and closing tags (<TEXTAREA>...</TEXTAREA>).

elementName must be statically defined, that is, it must be a constant. It can’t be something returned by a script method,
for example. Please note that for elements with URL attributes, the URLs specified will appear as is in the HTML
document.

This approach works for many elements, but has one limitation. Some HTML elements have an href attribute that
associates the element with a URL. In WebObjects, the corresponding dynamic element generally has two mutually
exclusive attributes, href and action, which make use of the HTML element’s href attribute. (See WOHyperlink for an
element that can have either an href or an action attribute.) The dynamic element’s href attribute simply returns a URL,
but action invokes a WebObjects method, which returns a URL. This overloading of the HTML href attribute is not
supported by WOGenericContainer. If your custom element requires this functionality, you will have to create your
own subclass of WODynamicElement.

15

Dynamic Element Specifications WOGenericElement

WOGenericElement

Synopsis

WOGenericElement { elementName = aConstantString; ... };

Description

WOGenericElement provides a way for WebObjects to accommodate custom HTML elements that are empty, that
is, that don’t affect a range of text. Since the HTML language is evolving rapidly, it’s convenient to have a way to
dynamically generate elements which are not explicitly supported by WebObjects.

In HTML, an empty element (for example <HR> or
) is represented by a single tag and so can’t enclose any
text or graphics. In contrast, a container element (for example, <A ... > ...) has opening and closing tags that
delimit the text or graphic affected by the element. (See the related element WOGenericContainer for information
about the support of container elements.)

elementName
Name of the HTML element to generate. This name (for example “HR”) will be used to generate the ele-
ment’s tag (<HR>).

elementName must be statically defined, that is, it must be a constant. It can’t be something returned by a script
method, for example. Please note that for elements with URL attributes, the URLs specified will appear as is in the
HTML document.

This approach works for many elements, but has one limitation. Some HTML elements have an href attribute that
associates the element with a URL. In WebObjects, the corresponding dynamic element generally has two mutually
exclusive attributes, href and action, which make use of the HTML element’s href attribute. (See WOHyperlink for an
element that can have either an href or an action attribute.) The dynamic element’s href attribute simply returns a
URL, but action invokes a WebObjects method, which returns a URL. This overloading of the HTML href attribute is
not supported by WOGenericElement. If your custom element requires this functionality, you will have to create your
own subclass of WODynamicElement.

16

Dynamic Element Specifications WOHiddenField

WOHiddenField

Synopsis

WOHiddenField { value=defaultValue; [name=fieldName;] [disabled=YES|NO;] ... };

Description

A WOHiddenField adds hidden text to the HTML page. It corresponds to the HTML element <INPUT
TYPE="HIDDEN"...>. Hidden fields are sometimes used to store application state data in the HTML page. In
WebObjects, the WOStateStorage element is designed expressly for this purpose.

value
Value for the hidden text field.

name
Name that uniquely identifies this element within the form. You may specify a name or let WebObjects auto-
matically assign one at runtime.

disabled
If disabled evaluates to YES, the element appears in the page but is not active.

17

Dynamic Element Specifications WOHyperlink

WOHyperlink

Synopsis

WOHyperlink { action=aMethod | href=aURL | pageName=aString; [fragmentIdentifier=anchorFragment;] [string=aString;]
[target=frameName;] [disabled=YES|NO;] ... };

Description

WOHyperlink generates a hypertext link in an HTML document.

action
Action method to invoke when this element is activated. The method must return a WOElement.

href
URL to direct the browser to when the image is clicked.

pageName
Name of WebObjects page to display when the link is clicked.

fragmentIdentifier
Named location to display in the destination page.

string
Text displayed to the user as the link. If you include any text between the <WEBOBJECTS ...> and </
WEBOBJECT> tags for this element, the contents of string is appended to that text.

target
Frame in a frameset that will receive the page returned as a result of the user’s click.

disabled
If evaluates to YES, the content string is displayed, but the hyperlink is not active.

18

Dynamic Element Specifications WOImage

WOImage

Synopsis

WOImage { src=aPath | value=imageData; ... };

Description

A WOImage displays an image in the HTML. It corresponds to the HTML element .

src
Path to the file containing the image data. The source can be statically specified in the declaration file or it can
be an NSString, an object that responds to a description message by returning an NSString, or a method that
returns an NSString.

value
Image data in the form of a WOElement object. This data can come from a database, a file, or memory.

19

Dynamic Element Specifications WOJavaScript

WOJavaScript

Synopsis

WOJavaScript { scriptFile=aPath | scriptString=aString | scriptSource=aURL; [hideInComment=aBOOL;] ... };

Description

WOJavaScript lets you embed a script written in JavaScript in a dynamically generated page.

scriptFile
Path to the file containing the script. The path can be statically specified in the declaration file or it can be an
NSString, an object that responds to a description message by returning an NSString, or a method that returns
an NSString.

scriptString
String containing the script. Typically, scriptString is an NSString object, an object that responds to a description
message by returning an NSString, or a method that returns an NSString.

scriptSource
URL specifying the location of the script.

hideInComment
If hideInComment evaluates to YES, the script will be enclosed in an HTML comment (<!-- script //-->). Since
scripts can generate errors in some older browsers that weren’t designed to execute them, you may want to
enclose your script in an HTML comment. Browsers designed to run these scripts will still be able to execute
them despite the surrounding comment tags.

20

Dynamic Element Specifications WOPasswordField

WOPasswordField

Synopsis

WOPasswordField { value=defaultValue; [name=fieldName;] [disabled =YES|NO;] ... };

Description

A WOPasswordField represents itself as a text field that doesn’t echo the characters that a user enters. It corresponds
to the HTML element <INPUT TYPE="PASSWORD"...>.

value
During page generation, value sets the default value of the text field. This value is not displayed to the user.
During request handling, value holds the value the user entered into the field, or the default value if the user
left the field untouched.

name
Name that uniquely identifies this element within the form. You may specify a name or let WebObjects auto-
matically assign one at runtime.

disabled
If disabled evaluates to YES, the element appears in the page but is not active.

21

Dynamic Element Specifications WOPopUpButton

WOPopUpButton

Synopsis

WOPopUpButton { list=anArray; [item=anItem; value=displayedValue;] [selection=objectArray;] [name=fieldName;]
[disabled=YES|NO;] ... };

Description

WOPopUpButton displays itself as a selection list that allows the user to select only one item at a time. The related
element WOBrowser is similar to WOPopUpButton except that it allows the user to select more than one item at a
time.

list
Array of objects from which the WOPopUpButton derives its values. For example, colleges could name the
array containing objects that represent individual schools.

item
Identifier for the elements of the list. For example, aCollege could represent an object in the colleges array.

value
Value to display in the selection list; for example, aCollege.name for each college object in the list.

selection
Array of objects that the user chose from the selection list. For the college example, selection would hold col-
lege objects. Since a WOPopUpButton lets the user select only one item at a time, this array holds no more
than one item.

name
Name that uniquely identifies this element within the form. You can specify a name or let WebObjects auto-
matically assign one at runtime.

disabled
If disabled evaluates to YES, this element appears in the page but is not active.

22

Dynamic Element Specifications WORadioButton

WORadioButton

Synopsis

WORadioButton {[value=defaultValue; [selection=selectedValue]]; [name=fieldName;] [disabled=YES|NO;] ... };

WORadioButton {[checked=YES|NO;] [name=fieldName;] [disabled=YES|NO;] ... };

Description

WORadioButton represents itself as an on-off switch. Radio buttons are normally grouped, since the most important
aspect of their behavior is that they allow the user to select no more than one of several choices. If the user selects one
button, the previously selected button (if any) becomes deselected.

Since radio buttons normally appear as a group, WORadioButton is commonly found within a WORepetition.

checked
During page generation, if checked evaluates to YES, the radio button appears in the selected state. During
request handling, checked reflects the state the user left the radio button in: YES if checked; NO if not.

value
Value of this input element. If not specified, WebObjects provides a default value.

selection
If selection and value are equal when the page is generated, the radio button is selected. When the page is sub-
mitted, selection is assigned the value of the radio button.

name
Name that identifies the radio button’s group. Only one radio button at a time can be selected within a group.

disabled
If disabled evaluates to YES, this element appears in the page but is not active.

Note that either checked or value is required in a WORadioButton declaration, but that they are mutually exclusive.

23

Dynamic Element Specifications WORepetition

WORepetition

Synopsis

WORepetition {list=anObjectList; item=anIteratedObject; [index=aNumber;] [identifier=aString;] ... };

WORepetition {count=aNumber; [index=aNumber;] ... };

Description

A WORepetition is a container element that repeats its contents (that is, everything between the <WEBOBJECT...>
and </WEBOBJECT...> tags in the template file) a given number of times. You can use a WORepetition to create
dynamically generated ordered and unordered lists or banks of check boxes or radio buttons.

list
Array of objects that the WORepetition will iterate through.

item
Current item in the list array.

index
Index of the current iteration of the WORepetition.

identifier
Value used to uniquely identify this item in the list array. Typically it is the primary key of an enterprise
object.

count
Number of times this element will repeat its contents.

24

Dynamic Element Specifications WOResetButton

WOResetButton

Synopsis

WOResetButton { value=aString; ... };

Description

A WOResetButton element generates a reset button in an HTML page. This element is used within HTML forms.

value
Title of the button.

25

Dynamic Element Specifications WOStateStorage

WOStateStorage

Synopsis

WOStateStorage { [size=numBytes;] ... };

Description

A WOStateStorage element provides a simple mechanism for storing application state in an HTML page. If you
include a WOStateStorage element in a form, any session and persistent data will be stored in the page rather than on
the server.(For a detailed discussion of state management in WebObjects applications, see the chapter “Managing
State” in the WebObjects Developer’s Guide).

WOStateStorage uses HTML hidden fields (<INPUT TYPE="HIDDEN"...>) to store state data. It will use as many
hidden field as needed to store the data, but no field will be larger than the size specified by the size attribute. The
default size setting is designed to work with most browsers.

size
Maximum size for each of the hidden fields used to store the state data. This attribute is optional; if size is not
specified, the maximum size for hidden fields will be 1000 bytes.

Since WOStateStorage elements are implemented using hidden fields–which in HTML must be located within a
form–they too must be located within a form. If a page has more than one form, you must declare a WOStateStorage
element within each form.

26

Dynamic Element Specifications WOString

WOString

Synopsis

WOString { value=aString; [escapeHTML=YES|NO;] [dateformat=dateFormatString;] [numberformat=numberFormatString;] ... };

Description

A WOString represents itself in the HTML page as a dynamically generated string.

value
Text to display in the HTML page. value is typically assigned an NSString object, an object that responds to a
description message by returning an NSString, or a method that returns an NSString.

The NSString’s contents are substituted into the HTML in the place occupied by this dynamic element.

dateformat
A format string that specifies how value should be formatted as a date. If a date format is used, value must be
assigned an NSCalendarDate object. If value can’t be interpreted according to the format you specify, value is
set to nil. See the NSCalendarDate class specification for a description of the date format syntax.

numberformat
A format string that specifies how value should be formatted as a number. If a number format is used, value
must be assigned an NSDecimalNumber object. If the element’s value can’t be interpreted according to the
format you specify, value is set to nil. See the NSNumberFormatter class specification for a description of the
number format syntax.

escapeHTML
If escapeHTML is YES, HTML tags in WOString’s contents are protected from being interpreted by the
browser; otherwise, they are not.

By default, WebObjects tries to ensure that the contents of a WOString appears in the client browser just as it
appears in the WebObjects application source code. Thus, if a WOString’s value is “a bold idea” (and
escapeHTML is YES or not specified), the string will be passed to the browser as “a bold idea</
B>” and it will appear in the browser as “a bold idea”. If escapeHTML is NO, WebObjects simply
passes the string to the browser without protecting HTML tags from being interpreted as commands. In this
case, the string will appear in the browser as “a bold idea”.

27

Dynamic Element Specifications WOSubmitButton

WOSubmitButton

Synopsis

WOSubmitButton { action=submitForm; value=aString; [disabled=YES|NO;] [name=aName;] ... };

Description

A WOSubmitButton element generates a submit button in an HTML page. This element is used within HTML
forms.

action
Action method to invoke when the form is submitted.

value
Title of the button.

disabled
If disabled evaluates to YES, the element appears in the page but is not active.

name
Name that uniquely identifies this element within the form. You may specify a name or let WebObjects auto-
matically assigns one at runtime.

28

Dynamic Element Specifications WOText

WOText

Synopsis

WOText { value=defaultValue; [name=fieldName;] [disabled=YES|NO;] ... };

Description

WOText generates a multi-line field for text input and display. It corresponds to the HTML element <TEXTAREA>.

value
During page generation, value specifies the text that is displayed in the text field. During request handling,
value contains the text as the user left it.

name
Name that uniquely identifies this element within the form. You may specify a name or let WebObjects auto-
matically assigns one at runtime.

disabled
If disabled evaluates to YES, the text area appears in the page but no input is allowed.

29

Dynamic Element Specifications WOTextField

WOTextField

Synopsis

WOTextField { value=aValue; [dateformat=dateFormatString;] [numberformat=numberFormatString;] [name=fieldName;]
[disabled=YES|NO;] ... };

Description

A WOTextField represents itself as a text input field. It corresponds to the HTML element <INPUT
TYPE="TEXT"...>.

value
During page generation, value sets the default value displayed in the single-line text field. During request
handling, it holds the value the user entered into the field, or the default value if the user left the field
untouched.

dateformat
A format string that specifies how value should be formatted as a date. If a date format is used, value must be
assigned an NSCalendarDate object. If value can’t be interpreted according to the format you specify, value is
set to nil. See the NSCalendarDate class specification for a description of the date format syntax.

numberformat
A format string that specifies how value should be formatted as a number. If a number format is used, value
must be assigned an NSDecimalNumber object. If the element’s value can’t be interpreted according to the
format you specify, value is set to nil. See the NSNumberFormatter class specification for a description of the
number format syntax.

name
Name that uniquely identifies this element within the form. You may specify a name or let WebObjects auto-
matically assign one at runtime.

disabled
If disabled evaluates to YES, the element appears in the page but is not active.

30

Dynamic Element Specifications WOVBScript

WOVBScript

Synopsis

WOVBScript { scriptFile=aPath | scriptString=aString | scriptSource=aURL; [hideInComment=aBOOL;] ... };

Description

WOVBScript lets you embed a script written in Visual Basic in a dynamically generated page.

scriptFile
Path to the file containing the script. The path can be statically specified in the declaration file or it can be an
NSString, an object that responds to a description message by returning an NSString, or a method that returns
an NSString.

scriptString
String containing the script. Typically, scriptString is an NSString object, an object that responds to a description
message by returning an NSString, or a method that returns an NSString.

scriptSource
URL specifying the location of the script.

hideInComment
If hideInComment evaluates to YES, the script will be enclosed in an HTML comment (<!-- script -->). Since
scripts can generate errors in some older browsers that weren’t designed to execute them, you may want to
enclose your script in an HTML comment. Browsers designed to run these scripts will still be able to execute
them despite the surrounding comment tags.]

