INSIDE MACINTOSH

Text

[Apple Computer, Inc.

© 1993 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleShare, ImageWriter,
LaserWriter, Macintosh, MPW, and
SANE are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Apple Desktop Bus, Balloon Help,
Chicago, Finder, Geneva, KanjiTalk,
Monaco, New York, PowerBook,
QuickDraw, ResEdit, System 7,
TrueType, and WorldScript are
trademarks of Apple Computer, Inc.
Adobe, Illustrator, and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.

America Online is a service mark of
Quantum Computer Services, Inc.
CompusServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

SuperPaint is a registered trademark of
Aldus Corporation.

The world map in Plate 1 is reprinted
from Writing Systems of the World by
Akira Nakanishi, with the permission of
the Charles E Tuttle Publishing Co.,
Tokyo, Japan.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS 1S,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Preface

Contents

Figures, Tables, and Listings xxi

About This Book XXXi

Chapter 1

What to Read Xxxi
Format of a Typical Chapter XXxii
Conventions Used in This Book xxxiii
Special Fonts xxxiii
Types of Notes xxxiii
Development Environment XXX1V

Introduction to Text on the Macintosh

1-1

Macintosh Text Overview 1-3

Separation of Tasks 1-4

Text Is Graphics 1-5

Characters, Glyphs, Character Codes, and Bytes

Text Storage 1-9

Keyboards and Input Methods 1-11

Writing Systems and Script Systems 1-14

Macintosh Text Utilities 1-16

TextEdit, a Text-Processing Service 1-16

Planning Your Text Handling Capabilities 1-18
Rudimentary Text Handling 1-18
Moderate Text Handling 1-19
Sophisticated Text Handling 1-20

Writing Systems and Script Systems 1-21

Features of the World’s Writing Systems 1-21
Character Representation 1-22
Line Direction and Alignment 1-23
Contextual Forms and Character Reordering
Diacritical Marks 1-29
Uppercase and Lowercase Characters 1-30
Word Demarcation 1-30
Styles 1-31
Numbers, Currencies, and Dates 1-32
Character Order and Text Sorting 1-34

1-26

Variations Among Languages and Regions 1-34

iii

iv

Components of the Macintosh Script Management System
The Macintosh Text Managers 1-36
The WorldScript Extensions 1-39

Components of a Script System 1-40

International Resources 1-41
Keyboard Resources 1-42
Fonts 1-44

How Script Systems Are Classified 1-45
Types of Script Systems ~ 1-46
Script Codes, Language Codes, and Region Codes 1-48
The System Script and Auxiliary Scripts 1-51
Font Script and Keyboard Script 1-51
How Script Systems Work 1-52
Character Encoding 1-52
The Standard Roman Character Set 1-54
Other 1-Byte Character Encodings 1-56
2-Byte Character Encodings 1-57
Font Handling 1-60
Font Availability and Selection 1-61
System Font and Application Font 1-61
Roman Characters and Associated Fonts 1-62
Other Font Issues 1-63
Character Rendering and Text Display 1-64
Storage Order and Display Order 1-65
Line Direction and Alignment 1-67
Style Runs, Font Runs, Script Runs, Direction Runs 1-70
Text Layout 1-71
Caret Handling 1-74
Highlighting 1-80
Converting Screen Position to Text Offset 1-82
Printing 1-85
Text Input 1-87
Keyboards and Key Translation 1-87
Input Methods 1-91
Text Manipulation 1-94
Sorting Strings 1-94
Formatting Dates, Times, Numbers, and Symbols 1-96
Analyzing Characters 1-98
Searching, Modifying, and Converting Text 1-98
Finding Word Boundaries and Line Breaks 1-99
Script Systems in Use 1-100
Installing and Enabling Script Systems 1-100
Components of the System Script 1-101
Components of Auxiliary Scripts 1-102
Installing Modifications to a Script System 1-103
How the User Switches Among Script Systems 1-104
User Control of Script Settings 1-107

1-35

Chapter 2 TextEdit 21

About TextEdit 2-6
TextEdit and Standard Macintosh Features 2-6
Multistyled and Monostyled Text 2-7
Font and Keyboard Script Synchronization 2-8
Cutting, Copying, and Pasting Text 2-9
The TextEdit User Interface 2-10
The Selection Range, the Insertion Point, and Highlighting
in TextEdit 2-10
Caret Position and Movement 2-11
Text Alignment 2-13
Line Measurement 2-14
Text Buffering 2-14
The TextEdit Private, Null, and Style Scraps 2-15
An Overview of the TextEdit Data Structures 2-16
An Overview of the Edit Record 2-16
Related Data Structures 2-17
Using TextEdit ~ 2-21
Getting Started With TextEdit 2-22
Preparing to Use TextEdit 2-22
Displaying Static Text 2-24
Creating an Edit Record 2-24
Specifying the Destination and View Rectangles 2-28
Setting the Text of an Edit Record 2-29
Setting the Selection Range or the Insertion Point 2-30
Scrolling Text 2-31
Disposing of an Edit Record =~ 2-32
Responding to Events Using TextEdit 2-32
Handling a Null Event ~ 2-32
Activating an Edit Record 2-33
Handling Mouse-Down Events 2-34
Responding to an Update Event ~ 2-36
Accepting Text Input Through Key-Down Events ~ 2-36
Moving Text In and Out of Edit Records 2-38
Using TextEdit to Cut, Copy, and Paste Text ~ 2-39
Inserting and Deleting Text 2-43
Text Attributes 2-43
Checking the Text Attributes Across a Selection Range ~ 2-44
Toggling an Attribute 2-46
Handling a Font Menu 2-47
Handling a Font Size Menu 2-48
Handling a Style Menu 2-48
Changing the Text Alignment 2-50
Saving and Restoring a TextEdit Document, and
Implementing Undo 2-51
Saving a TextEdit Document 2-51

Restoring an Existing TextEdit Document 2-53
Handling Undo 2-55
Customizing TextEdit ~ 2-56
Replacing the End-of-Line Routine 2-57
Replacing the Drawing Routine 2-58
Replacing the Width-Measuring Routines ~ 2-58
Replacing the Hit Test Routine 2-60
Customizing Word Selection 2-60
Customizing Automatic Scrolling 2-61
Determining the Line Length 2-62
Advanced Customization — 2-63
TextEdit Reference 2-64
Data Structures 2-64
The Edit Record 2-67
The High Hook and Caret Hook Fields 2-70
The Style Record 2-71
The Style Table ~ 2-72
The Line Height Table =~ 2-73
The Null Style Record 2-74
The Style Scrap Record 2-74
The Scrap Style Table 2-75
Text Style Record 2-76
Routines 2-76
Initializing TextEdit, Creating an Edit Record, and Disposing of an
Edit Record 2-77
Activating and Deactivating an Edit Record 2-80
Setting and Getting an Edit Record’s Text and Character Attribute
Information 2-81
Setting the Caret and Selection Range ~ 2-84
Displaying and Scrolling Text 2-86
Modifying the Text of an Edit Record 2-93
Managing the TextEdit Private Scrap 2-98
Checking, Setting, and Replacing Styles 2-99
Using Byte Offsets and Corresponding Points 2-105
Additional TextEdit Features 2-107
Customizing TextEdit 2-110
Summary of TextEdit 2-118
Pascal Summary 2-118
Constants 2-118
Data Types 2-120
Routines 2-123
C Summary 2-125
Constants 2-125
Types 2-127
Routines 2-130

Chapter 3

Assembly-Language Summary 2-132
Trap Macros 2-132
Global Variables 2-133

QuickDraw Text 3-1

About QuickDraw Text 3-4

Graphics Ports and Text Drawing ~ 3-4
Font, Font Style, and Font Size 3-5
Transfer Modes 3-8
QuickDraw Text, Script Systems, and Other Managers
Text Formatting and Justification 3-13
Scaling 3-15
Carets and Highlighting ~ 3-16

Using QuickDraw Text ~ 3-17

Preparing to Use QuickDraw 3-17
Determining the Version and Initializing QuickDraw
Setting Up the Text-Drawing Environment ~ 3-19
Specifying Text Characteristics 3-19
Setting the Font ~ 3-20
Modifying the Text Style 3-21
Changing the Font Size 3-22
Changing the Width of Characters 3-22
Using Fractional Glyph Widths 3-23
Specifying the Transfer Mode 3-24
Basic Transfer Mode Operations ~ 3-24
Arithmetic Transfer Mode Operations 3-25
The grayishTextOr Transfer Mode 3-26
Text Mask Mode 3-26
Transparent Transfer Mode 3-27
Transfer Modes and Multibit Fonts 3-27
Measuring and Drawing Single Segments of Text 3-27
Individual Glyphs 3-28
Pascal Strings 3-28
Text Segments 3-29
Measuring and Drawing Lines of Text 3-29
Determining Where to Break the Line 3-30
Determining the Display Order for Style Runs ~ 3-33
Eliminating Trailing Spaces (for Justified Text) 3-36
Calculating the Slop Value (for Justified Text) 3-39
Allocating the Slop to Each Style Run (for Justified Text)
Drawing the Line of Text ~ 3-42
Using Scaled Text 3-44
Drawing Carets and Highlighting 3-47
Converting an Onscreen Pixel Location to a Byte Offset
Finding a Caret Position and Drawing a Caret 3-49

3-10

3-18

3-39

3-49

vii

Synchronizing the Caret With the Keyboard Script ~ 3-59
Highlighting a Text Selection ~ 3-60
Customizing QuickDraw’s Text Handling 3-62
Text in QuickDraw Pictures 3-63
Fonts 3-63
Text With Multiple Style Runs ~ 3-65
QuickDraw Text Reference 3-65
Data Structures 3-66
The Font Information Record ~ 3-66
The Style Data Type 3-66
Routines 3-67
Setting Text Characteristics 3-68
Drawing Text 3-76
Measuring Text 3-81
Laying Out a Line of Text 3-87
Determining the Caret Position, and Selecting and Highlighting
Text 3-91
Low-Level QuickDraw Text Routines 3-98
Application-Supplied Routine 3-100
Summary of QuickDraw Text 3-102
Pascal Summary 3-102
Constants 3-102
Data Types 3-102
Routines 3-103
C Summary 3-105
Constants 3-105
Types 3-105
Routines 3-106
Assembly-Language Summary 3-107
Trap Macros 3-107
Global Variables 3-108

Chapter 4 Font Manager 41

About Fonts 4-6
Characters, Character Codes, and Glyphs 4-6
Kinds of Fonts 4-7
Identifying Fonts 4-8
Font Measurements 4-8

About Font Resources 4-12
Font Resource Types 4-13
A Brief History of Font Resource Use =~ 4-13
Font Family IDs 4-14
Restrictions on the Use of 'FONT' Resources 4-15
Font Resource Tables 4-16

viii

About the Font Manager 4-16
How QuickDraw Requests a Font 4-16
How the Font Manager Responds to a Font Request
How the Font Manager Scales Fonts 4-19
The Scaling Process for a Bitmapped Font ~ 4-22
The Scaling Process for an Outline Font ~ 4-23
How the Font Manager Calculates Glyph Widths
Synthetic Fonts 4-25

4-17

4-23

How the Font Manager Renders Outline Fonts 4-25

Using the Font Manager 4-31
Adding Font Sizes and Names to the Menu ~ 4-32
Storing a Font Name in a Document 4-33
Getting Font Measurement Information 4-34
Favoring Outline or Bitmapped Fonts 4-35
Preserving the Shapes of Glyphs ~ 4-35
Using Width Tables 4-36
Getting the System or Application FontID 4-38
Using Fractional Glyph Widths and Font Scaling
Font Manager Reference 4-39
Data Structures 4-39
The Font Input Record 4-40
The Font Output Record 4-41
The Global Width Table ~ 4-43
The Font Record ~ 4-46
The Font Family Record 4-47
The Font Association Table Record 4-47
The Family Glyph-Width Table Record ~ 4-48
The Style-Mapping Table Record 4-49
The Font Family Kerning Table Record ~ 4-49
Routines 4-50
Initializing the Font Manager =~ 4-50
Getting Font Information ~ 4-51
Using the Current, System, and Application Fonts
Getting the Characteristics of a Font 4-54
Enabling Fractional Glyph Widths 4-58
Disabling Font Scaling ~ 4-59
Favoring Outline Fonts Over Bitmapped Fonts
Scaling Outline Fonts 4-62
Accessing Information About a Font 4-64
Handling Fonts in Memory 4-65
The Bitmapped Font (NFNT') Resource ~ 4-66
The Font Type Element 4-70
The Offset to the Width/Offset Table 4-71
The Outline Font ('sfnt’) Resource 4-72
The Font Directory 4-74
The Character-Code Mapping Table 4-76

4-38

4-53

4-60

ix

Chapter 5

The Control-Value Table 4-77
The Font Program Table 4-77
The Glyph Data Table 4-77
The Horizontal Device Metrics Table 4-78
The Font Header Table 4-79
The Horizontal Header Table 4-83
The Horizontal Metrics Table 4-83
The Kerning Table 4-84
The Location Table 4-84
The Maximum Profile Table 4-84
The Font Naming Table 4-85
The PostScript Table 4-89
The Preprogram Table 4-89
The Font Family (FOND') Resource 4-90
The Font Style Code 4-94
The Font Association Table 4-95
The Offset Table 4-96
The Bounding-Box Table 4-97
The Family Glyph-Width Table 4-98
The Style-Mapping Table 4-99
The Font Family Kerning Table ~ 4-106
Summary of the Font Manager ~ 4-108
Pascal Summary 4-108
Constants 4-108
Data Types 4-108
Routines 4-112
CSummary 4-113
Constants 4-113
Data Types 4-114
Routines 4-118
Assembly-Language Summary 4-119
Trap Macros 4-119
Global Variables 4-120

Text Utilities 51

About the Text Utilities 5-3
The Text Utilities and the International Resources
Obtaining Resource Information 5-4
Pascal Strings and Text Strings 5-6
Using the Text Utilities 5-7
Defining Strings 5-8
Working With String Handles 5-8
Working With String Resources 5-9

Sorting Strings in Different Languages 5-9
Sorting Strings in the Same Language 5-12
Primary and Secondary Sorting Order 5-12
Expansion and Contraction of Characters 5-14
Ignorable Characters 5-14
Converting and Stripping Characters 5-14
Special Cases for Sorting 5-14
Variations in Sorting Behavior 5-15
Choosing a Comparison Routine 5-15
Testing Two Strings for Equality 5-17
Comparing Two Strings for Ordering 5-18
Modifying Text 5-18
Converting Characters and Stripping Marks in Strings 5-19
Fitting a String Into a Screen Area 5-19
Replacing a Portion of a String 5-21
Finding Word, Line, and Script Run Boundaries 5-23
Finding Word Boundaries ~ 5-23
Finding Line Breaks 5-24
Finding Subscripts Within a Script Run ~ 5-28
Working With Date and Time Strings 5-29
Converting Formatted Date and Time Strings
Into Internal Numeric Representations 5-31
Date and Time Value Representations 5-34
Converting Standard Date and Time Values Into Strings ~ 5-34
Working With Numeric Strings 5-35
Converting Between Integers and Numeric Strings 5-38
Using Number Format Specification Strings 5-39
Converting Number Format Specification Strings Into Internal
Numeric Representations 5-43
Converting Between Floating-Point Numbers and Numeric
Strings 5-43
Text Utilities Reference ~ 5-44
Data Structures 5-44
Routines 5-47
Defining and Specifying Strings 5-47
Comparing Strings for Equality 5-50
Determining Sorting Order for Strings in Different Languages 5-54
Determining Sorting Order for Strings in the Same Language 5-59
Modifying Characters and Diacritical Marks 5-64
Truncating Strings 5-71
Searching for and Replacing Strings ~ 5-74
Working With Word, Script, and Line Boundaries 5-77
Converting Date and Time Strings Into Numeric Representations 5-82
Converting Numeric Representations Into Date and Time Strings 5-86
Converting Long Date and Time Values Into Strings 5-89
Converting Between Integers and Strings 5-91

xi

Using Number Format Specification Strings for International Number
Formatting 5-94
Converting Between Strings and Floating-Point Numbers 5-98
Summary of Text Utilities 5-102
Pascal Summary 5-102
Constants 5-102
Data Types 5-103
Routines 5-104
C Summary 5-107
Constants ~ 5-107
Types 5-109
Routines 5-110
Assembly-Language Summary 5-113
Trap Macros 5-113

Chapter 6 Script Manager 61

About the Script Manager 6-3
The Script Manager and the Script Management System 6-4
The Script Manager and Applications 6-4
Evolution of the Script Manager 6-6
Using the Script Manager 6-7
Testing for the Script Manager and Script Systems 6-8
Controlling Settings 6-10
Checking and Setting the System Direction 6-10
Checking and Setting Script Manager Variables 6-11
Checking and Setting Script Variables 6-13
Making Keyboard Settings 6-17
Synchronizing the Font Script and Keyboard Script 6-19
Obtaining Information =~ 6-21
Determining Script Codes From Font Information 6-21
Analyzing Characters 6-26
Directly Accessing International Resources 6-31
Using Currency, Number, and Date Formats 6-33
Using Number Parts 6-34
Retrieving Text From Tokens 6-35
Using Word-Break Tables 6-37
Using Whitespace Information 6-37
Converting Text 6-37
Tokenization 6-38
Transliteration = 6-43
Modifying Script Systems ~ 6-48
Replacing a Script System’s Default International Resources 6-48
Replacing a Script System’s Default Routines ~ 6-50

xii

Chapter 7

Script Manager Reference 6-52

Constants 6-52
Script Codes 6-52
Language Codes 6-54
Region Codes 6-57
Token Codes 6-58
Selectors for Script Manager Variables 6-61
Selectors for Script Variables 6-65

Data Structures 6-73
Token Block Record 6-74
Token Record 6-74

Routines 6-75
Checking and Setting the System Direction 6-76
Checking and Setting Script Manager Variables 6-77
Checking and Setting Script Variables 6-78
Making Keyboard Settings 6-80

Determining Script Codes From Font Information 6-81
Analyzing Characters 6-84
Directly Accessing International Resources 6-89

Tokenization 6-92

Transliteration 6-98

Replacing a Script System’s Default Routines 6-101

Summary of the Script Manager 6-107

Pascal Summary 6-107

Constants 6-107

Data Types 6-121

Routines 6-122
C Summary 6-124

Constants 6-124

Data Types 6-124

Routines 6-125
Assembly-Language Summary 6-127

Trap Macros 6-127

Global Variables 6-127

Text Services Manager 7-1

About Text Services 7-6
About Input Methods 7-6
About the Text Services Manager 7-9
The Text Services Environment 7-9
The Text Services Manager and Input Methods 7-11
Inline Input 7-11
Floating Input Windows 7-13
Floating Utility Windows 7-14
About Text Service Components 7-14

xiii

Using the Text Services Manager (for Client Applications)
Testing for the Availability of the Text Services Manager
Calling the Text Services Manager 7-17

Initializing as a TSM-Aware Application 7-18
Creating a TSM Document 7-18
Making Text Services Available to the User 7-20

Activating and Deactivating a TSM Document 7-20

Passing Events, Menu Selections, and Cursor Setting

7-17
7-17

7-21

Confirming Active Text Within a TSM Document 7-23

Deleting a TSM Document 7-24
Closing Down as a TSM-Aware Application =~ 7-24
Requesting a Floating Input Window for Text Entry

Associating Input Methods With Scripts and Languages

Handling Text Service Apple Events 7-25
Receiving Text and Updating the Active Input Area
Converting Screen Position to Text Offset 7-29
Converting Text Offset to Screen Position 7-32
Showing or Hiding the Input Window 7-36

Direct Access to Text Service Components 7-36
Calling the Component Manager 7-36
Calling Text Service Components 7-37

7-24
7-25

7-26

Using the Text Services Manager (for Text Service Components) 7-37

Providing Menus and Icons 7-38
Providing a Text Service Component Menu 7-38

Providing Input Method Icons for the Keyboard Menu

Responding to Calls 7-40
Initiating a Text Service 7-41

Activating Text Service Component Windows 7-41

7-39

Responding to Events and Updating the Cursor and Menu 7-41

Confirming Active Text Input 7-42
Closing a Text Service 7-42

Identifying the Supported Scripts and Languages 7-42

Making Calls 7-44
Sending Apple Events to Client Applications 7-44
Opening Floating Utility Windows 7-48

Text Services Manager Reference 7-48

Text Services Manager Routines for Client Applications
Initializing and Closing as a TSM-Aware Application
Creating and Activating TSM Documents 7-50
Passing Events to Text Service Components 7-54
Passing Menu Selections and Cursor Setting ~ 7-55
Confirming Active Input in a TSM Document 7-56
Making Text Services Available to the User 7-57
Requesting a Floating Input Window 7-61
Associating Scripts and Languages With Components

7-48
7-49

7-62

Chapter 8

Apple Event Handlers Supplied by Client Applications 7-65
Creating and Updating an Active Input Area 7-68
Converting Global Coordinates to Text Offsets 7-72
Converting Text Offsets to Global Coordinates 7-74
Showing or Hiding the Floating Input Window 7-76

Text Services Manager Routines for Components 7-77
Sending Apple Events to a Client Application 7-77
Opening Floating Utility Windows 7-79

Text Service Component Routines 7-84
Providing a Text Service 7-84
Responding to Events and Updating the Cursor and Menu 7-87
Confirming Active Input in a TSM Document 7-89
Identifying the Supported Scripts and Languages 7-90

Summary of the Text Services Manager 7-92

Pascal Summary 7-92
Constants 792
Data Types 7-94
Text Services Manager Routines for Client Applications 7-95
Text Services Manager Routines for Components 7-97
Text Service Component Routines 7-97

C Summary 7-98
Constants 7-98
Data Types 7-101
Text Services Manager Routines for Client Applications 7-102
Text Services Manager Routines for Components 7-104
Text Service Component Routines 7-104

Assembly-Language Summary 7-105
Trap Macros 7-105

Result Codes 7-107

Dictionary Manager s-1

About Dictionaries for Input Methods 8-3
About the Dictionary Manager 8-4
The Structure of a Dictionary 8-5
Garbage Data 8-8
Dictionary Manager Limitations 8-10
Using the Dictionary Manager ~ 8-11
Testing for the Presence of the Dictionary Manager ~ 8-11
Making a Dictionary 8-11
Creating the File 8-12
Constructing the Dictionary 8-13
Accessing a Dictionary 8-13
Opening and Closing the Dictionary 8-13
Obtaining Information About the Dictionary ~ 8-14

XV

Locating Records in a Dictionary 8-15
Locating Records by Key 8-15
Locating Records by Index 8-17

Modifying a Dictionary 8-18

Compacting a Dictionary 8-20

Dictionary Manager Reference 8-20

Data Structures 8-20

Routines 8-20
Making a Dictionary 8-20
Accessing a Dictionary 8-22
Locating Records in a Dictionary ~ 8-26
Modifying a Dictionary 8-30
Compacting a Dictionary 8-33

Summary of the Dictionary Manager 8-34

Pascal Summary 8-34
Constants 8-34
Data Types 8-34
Routines 8-35

C Summary 8-36
Constants 8-36
Data Types 8-37
Routines 8-37

Assembly-Language Summary 8-39
Trap Macros 8-39

Result Codes 8-39

Appendix A Built-in Script Support a1

The Roman Script System A-4
The Standard Roman Character Set A-4
Nonprinting Characters A-6
Printing Characters A-8
Variations in the Character Set ~ A-16
The U.S. Keyboard-Layout (KCHR') Resource A-19
Standard Sorting Routines A-20
Diacritical Stripping and Case Conversion ~ A-23
U.S. International Resources and Keyboard Resources A-23
WorldScript 1 A-25
About WorldScript I A-25
Shared Script Utilities and QuickDraw Patches A-25
Table-Based Script Behavior A-27
Contextual Formatting Routines A-27
Flexible Dispatching Method A-28
Initialization Sequence A-28
How Calls Are Dispatched A-29

xvi

Appendix B

Saving User Preferences A-31
Replacing a Script Utility or QuickDraw Patch A-32
Patching Script Utilities A-33
Patching QuickDraw Routines A-34
Issues in Designing a Script Utility or QuickDraw Patch
WorldScript II A-36
About WorldScript II A-36
Shared Script Utilities A-37
Table-Based Script Behavior A-38
Initialization Sequence A-38
How Calls Are Dispatched A-39

International Resources B-1

A-35

About the International Resources B-4
What the International Resources Are B-4
Script Codes and Resource ID Ranges B-6
Using the International Resources B-8
International Configuration Resource (Type 'itlc') B-9
The ItlcRecord Data Type B-10
Script-Sorting Resource (Type 'itlm') B-12
International Bundle Resource (Type 'itlb') B-17
The ItlbRecord Data Type B-18
The ItlbExtRecord Data Type B-20
Numeric-Format Resource (Type 'itl0") B-22
The IntlORec Data Type B-23
Long-Date-Format Resource (Type 'itl1") B-28
The Intl1Rec Data Type B-28
The Itl1ExtRec Data Type B-31
String-Manipulation Resource (Type 'itl2’) B-34
Resource Header =~ B-35
The 'it]2' Sorting Hooks B-37
The 'it]2' Tables B-39
Script Run Table Format B-40
Supplying Custom Sorting Routines B-43
Supplying Custom Word-Break Tables B-44
NBreakTable Format B-44
How FindWordBreaks Uses the Break Table B-49
Tokens Resource (Type 'itl4') B-50
The NItl4Rec Data Type B-51
The Token Table B-53
The Extension-Fetching Routine B-54
The Token-String Copy Routine B-54
The Untoken Table B-54
The Number Parts Table B-55
The Whitespace Table B-58

xvii

Encoding/Rendering Resource (Type 'itl5'") B-58
Resource Header B-59
Tables for 1-Byte Script Systems B-60
Script Configuration Table B-60
Line-Layout Metamorphosis Table =~ B-63
Line-Layout Glyph-Properties Table B-64
Character Expansion Table B-64
Glyph-to-Character Table B-65
Break-Table Directory B-66
Script Run Tables B-67
Kashida Preferences Table B-68
Feature List Table B-68
Reordering Table B-68
Tables for 2-Byte Script Systems B-68
Byte-Type Table B-69
Character-Type Table B-69
Transliteration Resource (Type 'trsl’) B-70
Resource Header B-71
Rule-Based Format ~ B-72
Table-Based Format B-73
Summary of the International Resources B-74
Pascal Summary B-74
Constants B-74
Data Types B-75
C Summary B-80
Constants B-80
Data Types B-82

Appendix C Keyboard Resources c1

About Keyboards C4
About the Keyboard Resources C-6
What the Keyboard Resources Are C-7
Key Translation =~ C-8
Using the Keyboard Resources C-10
Key-Map Resource (Type 'KMAP") c1n
Apple Extended Keyboard C-13
Reassigning Right-Hand Key Codes C-14
Other Hardware Dependencies C-14
Virtual Key Codes for Non-ADB Keyboards C-15
Key-Remap Resource (Type 'itlk’) C-16
Keyboard-Layout Resource (Type ' KCHR') ~ C-18
Resource Format C-18
The KeyTranslate Function and the Keyboard-Layout Resource C-19

Xviii

Appendix D

Special Uses for the KeyTranslate Function C-22
Installing a Custom Keyboard-Layout Resource

Using KeyTranslate for Command-Key Equivalents
Keyboard Icon Family (Types 'kes#', 'kes4', 'kes8') C-25

Keyboard-Swap Resource (Type 'KSWP') C-26
Key-Caps Resource (Type 'KCAP') C-28
Resource Format C-28
Key Caps Desk Accessory C-32
Summary of the Keyboard Resources ~ C-35
Assembly-Language Summary C-35
Global Variables C-35

Renamed and Relocated Text Routines

C-22

C-23

D-1

Glossary GL1

Index IN-1

xix

Chapter 1

Figures, Tables, and Listings

Introduction to Text on the Macintosh 1-1

Figure 1-1

Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8

Figure 1-9
Figure 1-10

Figure 1-11
Figure 1-12

Figure 1-13
Figure 1-14
Figure 1-15
Figure 1-16

Figure 1-17
Figure 1-18
Figure 1-19
Figure 1-20
Figure 1-21
Figure 1-22
Figure 1-23
Figure 1-24

Figure 1-25
Figure 1-26
Figure 1-27
Figure 1-28

Separation of input, storage, and display in Macintosh
text handling 1-4

How QuickDraw draws text 1-6

Bytes, character codes, characters, and glyphs 1-8
Four bytes displayed in Japanese and in English 1-9
Storage order and display order 1-10

Style runs in text 1-11

Key translation (simplified) 1-12

Key Caps display of Thai keyboard layout (no modifier
keys pressed) 1-13

Key Caps display of Cyrillic keyboard layout (Caps Lock
key pressed) 1-13

TextEdit edits and displays mixed-directional text in a
dialog box 1-17

Writing-system examples 1-22

Words with alphabetic, syllabic, and ideographic
characters 1-22

Thai character cluster 1-23
Line directions in text 1-24
Text alignment 1-25

Justification through interword (Hebrew) and intercharacter

(Japanese) spacing 1-25

Justification with Arabic extension bar characters 1-26
Contextual forms in cursive English 1-26

Standalone and contextual forms in Arabic 1-27

A ligature in Roman text 1-27

A ligature in Arabic text 1-27

A complex ligature in Arabic text 1-28

Character reordering in the Devanagari writing system

Arabic text with diacritical mark to specify extra emphasis
on a consonant 1-29

Vowel marks in Hebrew text 1-29

Word demarcation in the Roman writing system 1-30
Line breaking in a bidirectional writing system 1-31
Word demarcation in Japanese 1-31

xxi

Figure 1-29 Selected valid styles in various writing systems 1-32

Figure 1-30 Standard international formats 1-33
Figure 1-31 Components of the script management system for
text display 1-36
Figure 1-32 Types of script systems 1-47
Figure 1-33 How the script management system handles different types
of scripts 1-48
Figure 1-34 The script, language, and region hierarchy 1-49
Figure 1-35 Distinguishing scripts by resource ID range (for script
codes 0-32) 1-50
Figure 1-36 The Standard Roman character set 1-55
Figure 1-37 Character encodings for 1-byte script systems 1-57
Figure 1-38 Character encoding for a 2-byte script system (Japanese) 1-59
Figure 1-39 Constructing blocks (Hangul) from elements (Jamo)
in Korean 1-60
Figure 1-40 Storage order and display order 1-66
Figure 1-41 How primary line direction affects display order 1-67
Figure 1-42 Dialog items truncated at dialog-box boundary 1-69
Figure 1-43 Style runs, font runs, script runs, and direction runs in text 1-71
Figure 1-44 Caret position and insertion point 1-75
Figure 1-45 Caret positions at direction bondaries 1-76
Figure 1-46 Dual caret at direction boundaries in
mixed-directional text 1-78
Figure 1-47 Single carets at direction boundaries in
mixed-directional text 1-79
Figure 1-48 Highlighting a selection range in unidirectional text 1-80
Figure 1-49 Highlighting a selection range in mixed-directional text 1-81
Figure 1-50 Interpreting caret position from a mouse-down event 1-83
Figure 1-51 Mouse-down regions and caret positions in
mixed-directional text 1-84
Figure 1-52 Apple Keyboard Il (domestic layout) 1-87
Figure 1-53 Key translation 1-89
Figure 1-54 Font script and keyboard script synchronization 1-90
Figure 1-55 Bottomline input window for Japanese input method 1-92
Figure 1-56 Active input area (underlined) for inline input 1-92
Figure 1-57 Bottomline input in Korean 1-93
Figure 1-58 Filenames and dates in Arabic and U.S. formats
(Arabic system script) 1-96
Figure 1-59 System-script components in the System Folder 1-102
Figure 1-60 Menu bar with keyboard icon 1-105
Figure 1-61 Keyboard icons and input-method icons 1-105
Figure 1-62 Keyboard menu 1-106
Figure 1-63 Arabic Key Caps 1-107
Figure 1-64 Text control panel 1-108
Figure 1-65 Numbers control panel 1-109
Figure 1-66 Date & Time control panel 1-110
Figure 1-67 Date Formats dialog box (from Date & Time
control panel) 1-110
Figure 1-68 Time Formats dialog box (from Date & Time

control panel) 1-111

xxii

Chapter 2

Chapter 3

Table 1-1

The international resources 1-41

Table 1-2 The keyboard resources 1-43

TextEdit 2-1

Figure 2-1 Style runs in a line of text 2-8

Figure 2-2 Mixed-directional text display 2-8

Figure 2-3 Discontinuous highlighting display 2-10

Figure 2-4 Outline highlighted text selection in background window 2-11

Figure 2-5 Caret movement across a direction boundary 2-12

Figure 2-6 Destination and view rectangles 2-16

Figure 2-7 Relationship between the TextEdit data structures for
monostyled text 2-19

Figure 2-8 Relationships among the TextEdit data structures for
multistyled text 2-20

Figure 2-9 Cutting text from a multistyled edit record 2-40

Figure 2-10 Continuous attributes over a selection range 2-44

Figure 2-11 An initial selection before TESetStyle is called 2-46

Figure 2-12 The result of calling TESetStyle to toggle to bold 2-46

Figure 2-13 The result of calling TESetStyle to toggle italics 2-47

Figure 2-14 Determining when to use WIDTHHook and nWIDTHHook 2-59

Figure 2-15 The TextEdit data structures and fields 2-66

Listing 2-1 Using TETextBox to draw static text 2-24

Listing 2-2 A sample document record 2-25

Listing 2-3 Creating a multistyled edit record 2-28

Listing 2-4 An idle-processing procedure 2-33

Listing 2-5 Passing a mouse-down event to TextEdit 2-35

Listing 2-6 Inserting text in a document 2-37

Listing 2-7 Getting the selection range length 2-38

Listing 2-8 Handling Cut, Copy, and Paste commands on an
Edit menu 2-41

Listing 2-9 Determining the font, style, size, and color of the current
selection range 2-45

Listing 2-10 Handling the Font menu 2-47

Listing 2-11 Handling the Size menu 2-48

Listing 2-12 Handling a Style menu 2-48

Listing 2-13 Checking the style and marking Style menu items to reflect
the current selection range 2-50

Listing 2-14 Saving a multistyled text edit record to disk 2-52

Listing 2-15 Restoring a document that uses multistyled TextEdit 2-54

Listing 2-16 Checking for 2-byte characters when backspacing 2-56

QuickDraw Text 3-1

Figure 3-1 Stylistic variations 3-7

Figure 3-2 Effect of the basic transfer modes for
black-and-white images 3-9

Figure 3-3 Multiple style runs on a single line 3-11

xxiii

Chapter 4

XXiv

Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15

Table 3-1
Table 3-2

Listing 3-1
Listing 3-2
Listing 3-3
Listing 3-4
Listing 3-5
Listing 3-6
Listing 3-7
Listing 3-8
Listing 3-9

Listing 3-10
Listing 3-11

Font Manager

Justification of Roman text 3-14
Calling visibleLength for a Roman style run 3-37
Calling visibleLength for a Hebrew style run 3-38

Calling visibleLength for Hebrew text with Roman
space characters 3-38

What pixel position means for CharToPixel and
PixelToChar 3-48

Caret position for a leading-edge mouse-down event 3-50
Caret position for a trailing-edge mouse-down event 3-51

Caret position for a leading-edge mouse-down event at a direction
boundary 3-52

Caret position for a trailing-edge mouse-down event at a
direction boundary 3-53

Caret position for a trailing-edge mouse-down event at a
direction boundary 3-54

Caret position for a mouse-down event beyond the last glyph of
the text segment 3-55

Highlighting mixed-directional text 3-60

Effects of the basic transfer modes 3-71
Transfer mode constants and selectors 3-73

Using QuickDraw to set the graphics port
text-related fields 3-20

Calling styledLineBreak to identify where to break the
text line 3-31

An application-defined run direction function called by
GetFormatOrder 3-35

Determining the style run display order and drawing
the line 3-36

Distributing slop value among style runs 3-41
Calling GetFontInfo to determine the line height 3-43

Turning off reordering of right-to-left text before calling
PixelToChar for line-breaking 3-45

Using stdTxMeas to get the font metrics for determining the line
height of scaled text 3-46

Drawing the caret and highlighting a selection range 3-55
Generating a picture file with font information 3-64
A picture file with font information 3-64

4-1

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9

Terms for font measurements 4-9

The ascent line and maximum y-value 4-11

Unkerned text (top) and kerned text (bottom) 4-12

A comparison of scaled bitmapped and outline fonts 4-19
A glyph stretched horizontally 4-20

A glyph stretched vertically 4-21

A glyph condensed horizontally 4-21

The effect of an off-curve point on two Bézier curves 4-26
An outline with points on and off the curve 4-27

Chapter 5

Figure 4-10

A curve with consecutive off-curve points 4-28

Figure 4-11 A glyph from an outline font 4-29

Figure 4-12 An unmodified glyph from an outline font at a small
point size 4-30

Figure 4-13 An instructed glyph from an outline font 4-31

Figure 4-14 A sample Size menu and font size dialog box 4-32

Figure 4-15 The difference between a scaled glyph and a
preserved glyph 4-36

Figure 4-16 The bitmapped font (' NFNT') resource 4-67

Figure 4-17 The font directory 4-74

Figure 4-18 A glyph description 4-78

Figure 4-19 The font header table 4-79

Figure 4-20 The horizontal metrics table 4-83

Figure 4-21 The naming table 4-85

Figure 4-22 The font family ('FOND') resource 4-91

Figure 4-23 Style codes 4-95

Figure 4-24 The font association table 4-95

Figure 4-25 The offset table 4-96

Figure 4-26 The bounding-box table 4-97

Figure 4-27 The font family glyph-width table 4-98

Figure 4-28 The style-mapping table 4-100

Figure 4-29 The font family kerning table 4-106

Figure 4-30 A kerning pair entry 4-107

Table 4-1 Subdivisions of Roman font family IDs 4-14

Table 4-2 Platform identifiers 4-86

Table 4-3 ISO platform-specific identifiers 4-87

Table 4-4 ISO language codes 4-87

Table 4-5 Font name identifiers 4-88

Listing 4-1 Checking a font name against the system font name 4-33

Listing 4-2 Calculating the checksum of a given table 4-76

Listing 4-3 Calculating the checksum of a font 4-81

Listing 4-4 Using the style-mapping table to build a PostScript
font name 4-103

Text Utilities 5-1

Figure 5-1 Determining the current script 5-5

Figure 5-2 A string containing 1-byte and 2-byte characters 5-7

Figure 5-3 Strings in different languages in one list 5-11

Figure 5-4 Strings in different languages sorted by script 5-11

Figure 5-5 Strings in different languages sorted by language
within script 5-12

Figure 5-6 Choosing a string comparison routine 5-16

Figure 5-7 Truncating a pathname in its middle 5-20

Figure 5-8 Replacing a portion of a string with 1-byte and 2-byte
characters 5-21

Figure 5-9 Finding line breaks in multiscript text 5-25

Figure 5-10 Relationships of the parameters of StyledLineBreak 5-26

XXV

Figure 5-11
Figure 5-12

Table 5-1

Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6

Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13

Listing 5-1
Listing 5-2
Listing 5-3
Listing 5-4
Listing 5-5
Listing 5-6

Chapter 6 Script Manager

Extracting blocks of Roman text 5-28
Using the number formatting routines 5-37

Excerpt from the Standard Roman script system
sorting order 5-13

Sorting features of the Macintosh file system 5-17
Variations in time and short date formats 5-29

Variations in long and abbreviated date formats 5-30
StringToDateStatus values and their meanings 5-33

FormatResultType values for numeric conversion
functions 5-38

Numeric string formats 5-39

Examples of number format specification strings 5-40
Literals in number format strings 5-41

Filling digits in 5-42

Quoting mechanisms in number format strings 5-42
Symbols in number format strings 5-43

Implicit language codes 5-55

Using the NewString and SetString routines 5-8
Truncating a pathname 5-20

Substituting and truncating text 5-22

Using the styledLineBreak function 5-27

Using StringToDate and StringToTime 5-31
Converting a long integer into a numeric string 5-39

6-1

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7

Table 6-1
Table 6-2

Table 6-3

Table 6-4

Table 6-5

Listing 6-1
Listing 6-2

XXVi

Determining script code from font family ID 6-23
Fields in the CharacterType return value 6-28
The action of Int1Tokenize 6-39
Int1lTokenize data structures (simplified) 6-40
The effects of transliteration 6-45

Dispatch table entry for script utilities and QuickDraw
patches 6-51

Style code format 6-73

Evolution of the Script Manager 6-6

Version numbers for the Script Manager and Roman
script system 6-9

Script Manager variables accessed through
GetScriptManagerVariable/
SetScriptManagerVariable 6-11

Script variables accessed through
GetScriptVariable/SetScriptVariable 6-14

Constants for the code parameter in the KeyScript
procedure 6-18

Specifyingadual caretwithSet ScriptManagervVariable
Representing font names correctly in the script for that font

6-13
6-16

Listing 6-3 Setting the size of the Balloon Help font 6-16

Listing 6-4 Setting the keyboard script from the font script 6-20
Listing 6-5 Setting the font (script) from the keyboard script 6-21
Listing 6-6 Handling 2-byte characters in a search procedure 6-27
Listing 6-7 Determining the number separators for the current script 6-33
Listing 6-8 Getting number parts from a script system’s number
parts table 6-34
Listing 6-9 Getting a token string from the untoken table 6-36
Chapter 7 Text Services Manager 7-1
Figure 7-1 Bottomline input with a floating input window 7-7
Figure 7-2 Inline input 7-7
Figure 7-3 Displaying conversion options for bottomline input 7-8
Figure 7-4 How a TSM-aware client application uses the Text
Services Manager 7-10
Figure 7-5 Entering, converting, and confirming text in an active
input area 7-12
Figure 7-6 How a non-TSM-aware application uses the Text
Services Manager 7-13
Figure 7-7 Floating window service layer 7-14
Figure 7-8 The format of the componentFlags field of the component
description record 7-16
Figure 7-9 Drawing a window with conversion options next to the active
input area 7-33
Figure 7-10 Input method icons in the Keyboard menu and menu bar 7-40
Figure 7-11 Updating text in an active input area 7-69
Table 7-1 Apple event ID constants 7-66
Table 7-2 Apple event keyword constants 7-66
Table 7-3 Apple event descriptor types 7-67
Table 7-4 Apple event descriptor type constants for the Apple event

region class 7-67

Listing 7-1 Initializing as a TSM-aware application 7-18
Listing 7-2 Creating a new TSM document and associating it with
a window 7-19
Listing 7-3 Activating and deactivating a TSM document 7-21
Listing 7-4 Passing events to a text service component 7-22
Listing 7-5 Confirming text in an active input area 7-23
Listing 7-6 Closing a TSM-aware application 7-24
Listing 7-7 A sample handler for the Update Active Input Area
Apple event 7-26
Listing 7-8 A sample handler for the Position To Offset Apple event 7-30
Listing 7-9 A sample handler for the Offset To Position Apple event 7-33
Listing 7-10 Determining the script and language for a text service
component 7-43
Listing 7-11 Constructing and sending an Update Active Input Area

Apple event 7-45

xxvii

Chapter 8

Appendix A

Xxviii

Dictionary Manager 8-1

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7

Table 8-1
Table 8-2

Listing 8-1
Listing 8-2
Listing 8-3
Listing 8-4
Listing 8-5

General format of a dictionary record 8-5

Format of data associated with a key 8-6

Format of an entry in the data associated with a key 8-7
A simple dictionary with no garbage data 8-8

Creating garbage data in a dictionary 8-9

Deleting garbage data from a dictionary 8-10

The requested attributes table 8-16

Sample data returned by FindRecordInDictionary 8-16
Defined attribute types for dictionary entries 8-27

Creating a dictionary file 8-12

Opening and closing a dictionary file 8-13
Obtaining information about a dictionary 8-15
Displaying all records in a dictionary by index 8-17
Inserting a record into a dictionary 8-19

Built-in Script Support A-1

Figure A-1
Figure A-2

Figure A-3
Figure A-4

Table A-1

Table A-2
Table A-3
Table A-4

Table A-5

Table A-6
Table A-7

Table A-8

Table A-9

Table A-10
Table A-11
Table A-12
Table A-13
Table A-14
Table A-15

The Standard Roman character set A-5

Dispatch table entry for script utilities and QuickDraw
patches A-29

How calls are dispatched to the 1-byte script utilities A-30
How calls are dispatched to the 1-byte QuickDraw patches A-31

Nonprinting characters in the Standard Roman character
set A-6

Low-ASCII characters to avoid as delimiters A-7
Printing characters in the Standard Roman character set A-9

Croatian variations from the Standard Roman
character set A-16

Romanian variations from the Standard Roman
character set A-17

Turkish variations from the Standard Roman character set A-18

Icelandic and Faroese variations from the Standard Roman
character set A-18

Standard sorting order (for Standard Roman
character set) A-20

International resources in U.S. system software A-23
Keyboard resources in U.S. system software A-24

Script utilities supported by WorldScript | A-26

QuickDraw patches supported by WorldScript | A-27
Classification of 1-byte script utilities by function A-33
Classification of 1-byte QuickDraw patches by function A-35
Script utilities supported by WorldScript Il A-37

Appendix B International Resources B-1

Figure B-1 Format of the script-sorting resource header B-13

Figure B-2 Script, language, and region data tables in the script-sorting
resource B-14

Figure B-3 Examples of long date formatting B-31

Figure B-4 Format of the string-manipulation resource header B-36

Figure B-5 Format of the script run table header (new format) B-41

Figure B-6 Script run table state table B-42

Figure B-7 Format of a script run table action code B-43

Figure B-8 Format of the script run table return table B-43

Figure B-9 NBreakTable state table B-47

Figure B-10 Format of an NBreakTable action code B-47

Figure B-11 Forward operation of the state machine for word selection B-50

Figure B-12 Format of the token table B-53

Figure B-13 Format of the whitespace table B-58

Figure B-14 Format of the script configuration table B-61

Figure B-15 Format of the character expansion table B-64

Figure B-16 Format of the glyph-to-character table B-65

Figure B-17 Format of the break-table directory B-66

Figure B-18 Format of the transliteration resource header B-71

Figure B-19 Format of a transliteration rule B-72

Table B-1 The international resources B-4

Table B-2 Resource ID ranges for each script system B-6

Table B-3 Sorted scripts, languages, and regions from a script-sorting
resource B-15

Table B-4 Constants for specifying numeric separators B-23

Table B-5 Separator positions in long date format B-31

Table B-6 Example of classes for an NBreakTable state table B-48

Table B-7 Example of states for an NBreakTable state table B-48

Table B-8 A script configuration table for a Hebrew encoding/rendering
resource B-62

Table B-9 Sample encoding/rendering resource for a 2-byte

script system B-68

Appendix C Keyboard Resources C-1
Figure C-1 Apple Keyboard Il (domestic layout) C-5
Figure C-2 Apple Extended Keyboard Il (domestic layout) C-5
Figure C-3 The key translation process C-10
Figure C-4 Format of the key-map resource C-12
Figure C-5 Format of an entry in the key-remap resource C-17
Figure C-6 Format of the keyboard-layout resource C-19
Figure C-7 Inside the keyboard-layout resource C-21
Figure C-8 Sample keyboard icons C-26
Figure C-9 Format of entries in the keyboard-swap resource C-26
Figure C-10 Format of the key-caps resource C-29
Figure C-11 Shape array and resulting region for the Return key C-32
Figure C-12 Key Caps display with key origins C-33

xxix

Appendix D

XXX

Figure C-13
Figure C-14

Table C-1
Table C-2
Table C-3
Table C-4

Table C-5
Table C-6
Table C-7

Table C-8

Listing C-1
Listing C-2
Listing C-3
Listing C-4

Key Caps display of dead keys with Option key pressed C-33

Key Caps display of completer keys after circumflex dead key has
been pressed C-34

The keyboard types C-4
The keyboard modifier bits in an event record C-6
The keyboard resources C-7

Key-map resource assignment of raw key codes to virtual
key codes C-13

Reassigning right key codes for Shift, Option, and
Control keys C-14

ADB and non-ADB virtual key codes for cursor keys and
keypad keys C-15

Virtual key codes for the international Macintosh Plus
keyboard C-16

Keyboard color icon types and standard icon equivalents C-25

Loading a non-system keyboard-layout resource C-22
Regenerating a character code with KeyTranslate C-24
A hypothetical keyboard-swap resource Cc-27

Sample key-caps resource data in Rez format C-31

Renamed and Relocated Text Routines D-1

Table D-1

Renamed, relocated, and obsolete text and international
routines D-4

P REFAUCE

About This Book

What to Read

Among personal computers, the Macintosh computer is foremost in the areas
of desktop publishing, page layout, high-end graphical word processing, and
international text presentation. The Macintosh computer’s capabilities in these
areas is due in large part to its unique and powerful support for text handling.
Inside Macintosh: Text describes how you can use that support to put superior
text capabilities into your software.

This book documents the parts of Macintosh system software that allow you
to generate and manipulate text, including text in multiple languages. It
includes introductory material on the Macintosh approach to text handling, as
well as a complete technical reference to each of the text-handling managers in
the system software.

Whatever your text needs are, you should first read the chapter “Introduction
to Text on the Macintosh.” It describes Macintosh text concepts, outlines the
kinds of text features addressed by the system software, and describes the
organization and workings of script systems—collections of resources that
give the Macintosh its multiple-language text capabilities.

If your text-handling needs are minor, the only other chapter you may need to
read is “TextEdit,” which describes a simple, multiple-language
text-processing service provided by Macintosh system software. TextEdit is
used by the system software to present text and accept user input in

dialog boxes and alerts, and its capabilities are available for your application
to use as well.

If you are planning a text-handling application with capabilities beyond those
of TextEdit, read the remaining chapters of this book in any order.
“QuickDraw Text” describes how to lay out and draw text to the screen or
printer. “Font Manager” describes how to access Macintosh fonts and specify
text characteristics. “Text Utilities” describes a collection of text-handling
routines that allow you to specify, sort, format, search, and otherwise
manipulate text strings. “Script Manager” describes how to access and
manipulate script systems.

If you want your application to work efficiently with Japanese, Korean, or
Chinese text input, or if you are designing an input method for those
languages, read the chapter “Text Services Manager.” It describes how to make
your application work with multiple input methods in multiple languages,
and how to create an input method that provides multiple-language input for

xxxi

P REFAUCE

any application. If you are creating an input method, read also the chapter
“Dictionary Manager” to find out how to

create and use input dictionaries that are portable across input methods
and applications.

If you are planning to add specific language capabilities to an application, or
need to modify the system software’s text-handling for a given language, read
the chapter “Script Manager” and the appendixes “Built-in Script Support,”
“International Resources,” and “Keyboard Resources.” They describe the
organization of script systems on the Macintosh, and show you how to modify
parts of a script system in order to obtain the exact text-handling
characteristics you need.

If you are designing a font or a font editor, read the parts of the chapter “Font
Manager” that describe the data structures and tables that make up Macintosh
fonts. In addition, you will need information contained in the TrueType Font
Format Specification, available from APDA.

If you are already familiar with Macintosh system software and with previous
versions of Inside Macintosh, you may notice that in this book the organization
of some managers and the names of some routines have changed. You can
refer to the appendix “Renamed and Relocated Text Routines” for information
on how the new organization and terminology relate to previous
presentations.

Format of a Typical Chapter

xxxii

Most chapters in this book follow a standard structure. For example, the
chapter “TextEdit” contains these sections:

m “About TextEdit.” This section provides an overview of the features
provided by TextEdit.

m “Using TextEdit.” This section describes the tasks you can accomplish using
TextEdit. It describes how to use the most common routines, gives related
user interface information, provides code samples, and supplies additional
information.

m “TextEdit Reference.” This section provides a complete reference to TextEdit
by describing the constants, data structures, and routines that it uses. Each
routine description also follows a standard format, which gives the routine
declaration and description of every parameter of the routine. Some routine
descriptions also give additional descriptive information, such as
assembly-language information or result codes.

m “Summary of TextEdit.” This section provides the Pascal interface and the C
interface to TextEdit, defining the constants, data structures, routines, and
result codes associated with TextEdit. It also includes relevant
assembly-language interface information.

P REFAUCE

Some chapters contain additional main sections that provide more detailed
discussions of certain topics. For example, in the chapter “Font Manager,” the
sections “About Fonts” and “About Font Resources” describe the capabilities
and structure of the fonts that the Font Manager supports.

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as parameter blocks, use special formats so that you can
scan them quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (this
is Courier).

Words that appear in boldface are key terms or concepts and are defined in
the Glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears
onpage1-5.) &

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 2-63.) A

A WARNING
Warnings like this indicate potential severe problems that you should be
aware of as you design your application. Failure to heed these warnings
could result in system crashes and loss of data. (An example appears on
page 4-17.) A

xxxiii

P REFAUCE

Development Environment

XXXiv

The system software routines described in this book are available using Pascal,
C, or assembly-language interfaces. How you access these routines depends
on the development environment you are using. This book shows system
software routines in their Pascal interface, C interface, or assembly language
using the Macintosh Programmer’s Workshop (MPW).

Code listings in this book are shown in MPW Pascal or MPW C or MPW
Assembler. They suggest methods of using various routines and illustrate
techniques for accomplishing particular tasks. Most code listings have been
compiled and tested, although in some cases only fragments of the full listings
are shown. However, Apple Computer does not intend that you use exactly
these code samples in your application.

CHAPTER 1

Introduction to
Text on the Macintosh

Contents

Macintosh Text Overview 1-3
Separation of Tasks 1-4
Text Is Graphics 1-5
Characters, Glyphs, Character Codes, and Bytes 1-8
Text Storage 1-9
Keyboards and Input Methods 1-11
Writing Systems and Script Systems 1-14
Macintosh Text Utilities 1-16
TextEdit, a Text-Processing Service 1-16
Planning Your Text Handling Capabilities 1-18
Rudimentary Text Handling ~ 1-18
Moderate Text Handling 1-19
Sophisticated Text Handling 1-20
Writing Systems and Script Systems 1-21
Features of the World’s Writing Systems 1-21
Character Representation 1-22
Line Direction and Alignment 1-23

Contextual Forms and Character Reordering 1-26
Diacritical Marks 1-29

Uppercase and Lowercase Characters 1-30

Word Demarcation 1-30

Styles 1-31

Numbers, Currencies, and Dates 1-32

Character Order and Text Sorting 1-34

Variations Among Languages and Regions 1-34

Components of the Macintosh Script Management System
The Macintosh Text Managers 1-36

Contents

1-35

1-1

1-2

CHAPTER 1

The WorldScript Extensions 1-39
Components of a Script System 1-40
International Resources 1-41
Keyboard Resources 1-42
Fonts 1-44
How Script Systems Are Classified 1-45
Types of Script Systems 1-46
Script Codes, Language Codes, and Region Codes 1-48
The System Script and Auxiliary Scripts 1-51
Font Script and Keyboard Script 1-51
How Script Systems Work 1-52
Character Encoding ~ 1-52
The Standard Roman Character Set 1-54
Other 1-Byte Character Encodings 1-56
2-Byte Character Encodings 1-57
Font Handling 1-60
Font Availability and Selection 1-61
System Font and Application Font 1-61
Roman Characters and Associated Fonts 1-62
Other Font Issues 1-63
Character Rendering and Text Display 1-64
Storage Order and Display Order 1-65
Line Direction and Alignment 1-67
Style Runs, Font Runs, Script Runs, Direction Runs 1-70
Text Layout 1-71
Caret Handling 1-74
Highlighting 1-80
Converting Screen Position to Text Offset 1-82
Printing 1-85
Text Input 1-87
Keyboards and Key Translation 1-87
Input Methods 191
Text Manipulation 1-94
Sorting Strings 1-94
Formatting Dates, Times, Numbers, and Symbols 1-96
Analyzing Characters 1-98
Searching, Modifying, and Converting Text 1-98
Finding Word Boundaries and Line Breaks 1-99
Script Systems in Use 1-100
Installing and Enabling Script Systems 1-100
Components of the System Script 1-101
Components of Auxiliary Scripts 1-102
Installing Modifications to a Script System 1-103
How the User Switches Among Script Systems 1-104
User Control of Script Settings 1-107

Contents

CHAPTER 1

Introduction to Text on the Macintosh

This chapter is an overview of Macintosh text handling. It is meant to help you
get started by introducing the concepts described in detail throughout the rest of
Inside Macintosh: Text.

The chapter contains four major sections. The first presents high-level concepts, and the
following three develop those concepts further and give important programming
suggestions and hints:

m “Macintosh Text Overview” summarizes what text means for Macintosh
programmers, including how to support text in multiple languages. It concludes with
suggestions for planning your application’s level of text handling.

m “Writing Systems and Script Systems” surveys the issues that must be addressed by
any computer-based text-handling system, and then describes the organization of the
Macintosh script management system, the set of software managers and resources that
help you support text-handling capabilities across many languages.

m “How Script Systems Work” describes the approach taken by the script management
system to provide multi-language capabilities in areas such as text display, text input,
and string manipulation.

m “Script Systems in Use” describes how the computer user interacts with script
systems, including installing script systems, switching text input and display from one
language to another, and controlling script-system configuration.

If you are developing a text-handling application, read this chapter’s first section,
“Macintosh Text Overview,” before reading any other parts of this book. You can then
either read the remainder of this chapter before going on, or start immediately on the
other chapters, returning to this chapter as needed for further explanation of
script-system concepts and for specific programming suggestions. The chapters that are
most important for general application development are “TextEdit,” “QuickDraw Text,”
“Font Manager,” “Text Utilities,” and “Script Manager.” The chapters that are most
important for applications that use input methods, or for developers of input methods,
are “Text Services Manager” and “Dictionary Manager.”

If you are developing or modifying a script system, read this chapter completely before
turning to other chapters and appendixes. Those that are most important for
understanding script-system design are “Script Manager,” “Built-in Script Support,”
“International Resources,” and “Keyboard Resources.”

Valuable information related to the topics discussed in this chapter can be found in
Guide to Macintosh Software Localization. That book discusses features of individual script
systems and gives specific techniques for software localization.

Macintosh Text Overview

Text handling on the Macintosh is fundamentally different from the way it is approached
on some common text-based computer systems. There is no hardware-based character
generator to put text on the screen; there is no standard input/output window (and no
Writeline command) for easy generation of text messages.

Macintosh Text Overview 1-3

CHAPTER 1

Introduction to Text on the Macintosh

To draw any text, you first must create a window to draw in. In that window, you can
then draw shapes, including the shapes of letters. See the Window Manager chapter in
Inside Macintosh: Macintosh Toolbox Essentials for a discussion of how to create a window.

In accepting text input and storing text in memory, you cannot assume any particular
hardware (keyboard) configuration, you should not assume a particular language

for input, you should not assume that characters are always represented by ASCII
codes, and you should not even assume that a single character is always represented
by 1 byte of storage.

This section paints a broad picture of how text processing works on the Macintosh, and
presents some fundamental terminology. It also introduces script systems and briefly
discusses two components of system software of special interest for text processing.
The section concludes with suggestions on how to give your application the level of
text-handling sophistication it requires.

Separation of Tasks

The Macintosh approach separates text handling tasks into three fundamental categories,
each relatively independent of the others:

m Text input
m Text storage and manipulation
m Text display

See Figure 1-1. In the discussions in this chapter and elsewhere in this book, keep in mind
which category of task is under discussion, to avoid misunderstanding.

Figure 1-1 Separation of input, storage, and display in Macintosh text handling

=

[

I
>

]
El
]
]

Input Display

Macintosh Text Overview

CHAPTER 1

Introduction to Text on the Macintosh

Through text input, your application obtains representations of text characters. It starts
with the user pressing keys on a keyboard. Text input is aided by specialized parts of
system software that allow input of text in many languages. Text input is completely
independent of text display.

Your application stores character representations in memory, as numeric codes. The main
focus of your application is on storing, tracking the characteristics of, and manipulating
these codes in memory. How those codes got into memory, and how you will display or
print them, are mostly separate issues. For much of your processing, you will be
concerned with codes in a memory buffer, rather than keypresses on a keyboard or pixel
locations on a screen. The system software has many routines that aid in manipulating
text of many languages in memory.

Note

In Figure 1-1 and throughout this book, text in computer memory is

drawn as a vertical table of codes, representing sequential (downward)

storage of text characters in a buffer. Some diagrams also include

byte offsets in the buffer, and even miniature representations of

the characters themselves in a given language. See, for example,

Figure 1-3 on page 1-8. &

Though text display, your application makes visible the characters it has stored and
manipulated in memory. The end result of the display process is a sequence of text
shapes drawn on a display device. As is shown later in this chapter, the displayed form of
text often has a complex relationship to the way it is stored. In most cases you can
consider text display as an independent task, handled in large part by system software,
that you call after you have finished receiving, storing, or otherwise processing characters
in memory. It is only during display, for example, that the concept of a font has meaning.
(Preparation for text display, such as width measurement and line-breaking, falls on the
boundary between storage and display, and is in general a cooperative effort between
your application and system software.)

If your application is a word processor that is drawing characters to the screen as the user
enters them, all three of these tasks are closely coupled in time. Nevertheless, they are
still independent of each other and can be understood best as separate processes.

Text Is Graphics

Your application draws graphic shapes on the Macintosh screen by making calls to
QuickDraw, the graphics manager of Macintosh system software. The graphics
components of QuickDraw are described in the chapter “QuickDraw,” in Inside
Macintosh: Imaging.

Drawing text is fundamentally the same as drawing graphics. The application makes
QuickDraw calls to write text to the screen or to a printer. Those parts of QuickDraw that
are concerned specifically with drawing text are documented in the chapter “QuickDraw
Text” in this book.

Macintosh Text Overview 1-5

CHAPTER 1

Introduction to Text on the Macintosh

When QuickDraw draws text, it places bitmapped shapes on a display device. Those
shapes are the forms of individual letters in a particular font. A font is a resource that
contains a complete set of character representations in a particular typeface, such as
Times® or Geneva. Without a font, QuickDraw cannot draw text.

When you ask QuickDraw to draw text, it draws it according to the settings of the
window (specifically, of the current graphics port record) that you are drawing into. The
text’s screen location, font, size, color, and style are all implied by the current state of the
graphics port; they are not explicit parameters of your text-drawing call.

For example, when QuickDraw draws a character, it draws it at the current pen position,
the screen position at which drawing occurs, in the current window. The character’s
origin (usually its left edge) is placed with respect to that location, with the rest of the
character extending to the right of the origin. After drawing, QuickDraw automatically
updates the pen location by the width of the character, so that the next character drawn
will be automatically placed the correct distance to the right of the first. See Figure 1-2.

Likewise, when QuickDraw draws a string of text, it keeps advancing the pen location as
it draws, so that the current location ends up at the right end of the string. This
left-to-right orientation of QuickDraw is fundamental, and applies whether or not

the text being drawn is meant to be read left-to-right (such as English) or right-to-left
(such as Arabic).

Figure 1-2 How QuickDraw draws text

1-6

Font request
Font A . >
Manager :AJ:> QuickDraw . E
Bitmap B\
Pen location Pen location
before drawing after drawing

QuickDraw’s text-measuring capabilities are as important as its drawing capabilities. In
many cases, before you draw a line of text, you first need to know its length in pixels,
so that you can correctly place it on the screen and be assured that it does not overrun
its allotted space. Pixels are screen dots, and are nominally equal to one point, or
approximately 1/72 inch, in size. You often make two sets of QuickDraw calls when
drawing a string; the first to measure it, and the second to actually draw it.

The Font Manager supports QuickDraw by providing the character bitmaps

that QuickDraw needs, in the typefaces, sizes, and styles (such as bold or italic) that
QuickDraw requests. The Font Manager keeps track of all fonts available to an
application. If QuickDraw requests a typeface that is not represented in the available

Macintosh Text Overview

CHAPTER 1

Introduction to Text on the Macintosh

fonts, the Font Manager substitutes one that is; if QuickDraw requests a size that is

not available, the Font Manager scales an available size and returns the bitmaps to
QuickDraw; if QuickDraw requests a style that is not available, the Font Manager returns
an unstyled set of bitmaps and QuickDraw applies a style to them (by slanting for italic,
or darkening extra pixels for boldface, and so on). In general, the Font Manager does the
calculations and creates the bitmaps; QuickDraw transfers those bitmaps

to the screen.

Fonts are strongly language-dependent. A font is the manifestation of the character
set—the body of meaningful characters—of a language or group of languages, called a
writing system. Fonts also implement additional symbols and forms, such as ligatures,
needed by that writing system. The Font Manager provides for fonts in many writing
systems; fonts are identified by a numbering scheme with which the writing system of a
font can be determined from its number.

Macintosh fonts come in two basic kinds: bitmapped and outline (such as TrueType).
Each bitmapped font is a set of character bitmaps of a given typeface in a single size; each
outline font is a set of templates from which bitmaps of any size can be generated. All
Macintosh text-handling routines work with both types of fonts.

Fonts can also be classified by the sizes of the character sets they implement. The typical
Macintosh fonts, suitable for most languages of the world, are called 1-byte fonts; each
contains fewer than 256 characters. Fonts for some East Asian languages, however, need
thousands of characters; they are called 2-byte fonts. The Macintosh text-handling
routines can work with both 1-byte and 2-byte fonts, although special techniques

may be required for character handling with 2-byte fonts. Bitmapped and outline

fonts are described in the chapter “Font Manager” in this book and in TrueType Font
Format Specification, available from APDA. For more information on how fonts are

used on the Macintosh, see “Fonts” beginning on page 1-44, and “Font Handling”
beginning on page 1-60.

The text measuring and drawing routines in QuickDraw and the Text Ultilities operate
under certain assumptions, based principally on the fact that Macintosh system software
was originally developed for the left-to-right Roman writing system of the English
language, and that the system software provides line-layout, but not page-layout,
capabilities. Remember these points:

m QuickDraw draws all text from left to right. Whether your text has a left-to-right or
right-to-left line direction—the direction in which the text is read—QuickDraw places
its left edge at the current location in your window and draws its characters in order
from the leftmost to the rightmost character. QuickDraw and the Text Utilities provide
routines that allow you to order and draw your text properly regardless of its line
direction or directions.

m On a line of text, screen position is in terms of pixel offset from the left edge of the
text-drawing area, regardless of the line direction of the text being drawn.

m The text-measuring routines in this book help you calculate and lay out individual
lines; it is up to you to track where a line starts, both in terms of vertical screen
position and in terms of offset in your text run.

Macintosh Text Overview 1-7

CHAPTER 1

Introduction to Text on the Macintosh

Characters, Glyphs, Character Codes, and Bytes

In memory, applications store text as numerical representations of characters. On the
screen, QuickDraw draws text as bitmapped representations of those characters,
generated from a particular font. To clarify how numbers in memory are converted to
letters on the screen, keep the following terms in mind. See also Figure 1-3.

A writing system’s alphabet, numbers, punctuation, and other writing marks consist of
characters. A character is a symbolic representation of an element of a writing system; it
is the concept of, for example, “lowercase a” or “the number 3”. It is an abstract object,
defined by custom in its own language.

As soon as you write a character, however, it is no longer abstract but concrete. The exact
shape by which a character is represented is called a glyph. A font, then, is a collection of
glyphs, all of similar design, that constitute one way to represent the characters of the
language. The “characters” that QuickDraw places on the screen are really glyphs.

In memory, text is stored as character codes, where each code is a number that defines a
particular (abstract) character. The “characters” that an application reads into or out of a
bulffer, sorts, and searches for are really numeric codes. One purpose of a Macintosh font
is to provide glyphs that the system software can associate with character codes; different
fonts for the same language will typically have different glyphs, all representing the same
character, for a specific character code. Thus no matter which font you use, an English
“C” is always a “C” (character code $43), though it may be Garamond or Chicago font,
italic or bold style, and 7 points or 72 points in size. (Note that fonts in certain languages
may have more than one glyph per character, and may have special glyphs for various
combinations of characters.)

1-8

Figure 1-3 Bytes, character codes, characters, and glyphs
Character
Byte codes
offsets Characters
0| 841 A B =
E

1 $42 B [
N ABCX3H [[] /KK
3| s |X =
4| 87 |3
5| ¢$88 |U
6

$A473 | LI
7
8

$A4F4 | 7K
9
A $A4EC | R o
B &m [5[E

Macintosh Text Overview

CHAPTER 1

Introduction to Text on the Macintosh

In computer memory, 1 byte (8 bits) is commonly used to store a single character code.
For most languages that is sufficient: the standard ASCII character set (also called low
ASCII) requires only 7 bits per character code, and the Apple Standard Roman character
set (an extended ASCII character set derived from the original Macintosh character set)
requires only 1 byte per character code. In many other languages, such as Russian,
Arabic, and Thai, each character code is also 1 byte in size. But in some East Asian
languages such as Japanese, Chinese, and Korean, the character set is so large that most
character codes must be 2 bytes long. Macintosh system software provides routines to
help you recognize and manipulate 2-byte characters; if your application is to be useful
throughout the world, you must be prepared to deal with 2-byte characters.

The left side of Figure 1-3 shows a portion of a text buffer in memory. Byte offsets into the
buffer are shown down the left side of the column. The character codes the buffer
contains are shown within the column; note that some codes are a single byte, whereas
others are 2 bytes in size. (For clarity, miniature representations of the characters defined
by those character codes are shown down the right side of the column.)

The right side of Figure 1-3 shows what happens when QuickDraw draws the contents of
the buffer. The character codes define which glyphs are placed on the screen, and in what
order. The character codes do not define the style or size of the glyphs, however.

Character codes are only numbers; the meaning of each character code is different in
different writing systems. In Figure 1-4, for example, the same four bytes are interpreted
very differently if they are considered to be two Japanese character codes than if they are
considered to be four English (= Roman writing system) character codes.

Figure 1-4 Four bytes displayed in Japanese and in English

Character

Byte codes

offsets .
0 $92 In Japanese In English
1 $A9 P ~ e
2| il H 101
3_8rA $02A9 $93FA $02 $A9 $93 $FA

Text Storage

In considering how to store text in buffers, strings, and files, it may be clearer if you
understand the assumptions that the Macintosh text managers make about your
text-storage method. The discussions throughout this book assume that your text is
stored and accessed acording to these conventions:

m Your program stores text as a simple sequence of character codes. The character
codes may be 1-byte or 2-byte codes, but there is nothing else in the text stream
except for those codes. Using font information that your program stores separately,

Macintosh Text Overview 1-9

CHAPTER 1

Introduction to Text on the Macintosh

Script Manager routines can help you determine whether a character is 1 or 2 bytes,
and other managers allow you to work with either character size.

Character location within a text sequence in memory is in terms of byte offset (not
character offset) from the beginning of the text. Offset is zero-based; the first byte in
the sequence has an offset of 0.

The storage order of your text—the sequence in memory in which the character codes
occur—is the same as its logical order. It is the order in which the characters would be
read or pronounced in the language of the text. Because text of different languages
may be read either left-to-right or right-to-left, storage order is not always the same as
the left-to-right display order of the text when it is drawn. In Figure 1-5, for example,
note that the Hebrew characters are displayed in reverse order from the order in which
they are stored.

Figure 1-5 Storage order and display order

1-10

Character
Byte codes
offsets Characters ‘ ‘
0 $41 A (Y1
1 $ B =
42
e e ABC)1 N [lAK
3| $E0 | N - =
4| $E1 1 Display order
5| $E2 3 Storage
6 order
$A473 | L
7
8
$A4Fa | 7K
9
A $A4EC | R v 5
B [< i [2]F

m All writing-system, font, size, color, and style information about each part of your text

is stored separately from the text, and it is your application’s responsibility to maintain
that information. The text stream itself carries no information about what writing
system or font it was created with or is meant to be drawn with; you need to keep
track of and supply that information before making a drawing or measuring call.

Text is divided into runs. There are text runs, direction runs, script runs, font runs, and
style runs. A style run is a continuous sequence of text that is all of the same writing
system, font, size, color, style, and scaling factors (if the text is scaled).

Figure 1-6 shows four style runs on a single line. Because of the way many drawing
and measuring routines work, it is important to track all the individual style runs in

Macintosh Text Overview

CHAPTER 1

Introduction to Text on the Macintosh

your text. Runs are described in more detail under “Style Runs, Font Runs, Script
Runs, Direction Runs” beginning on page 1-70.

Figure 1-6 Style runs in text

Character
Byte codes
offsets Characters

0 $41 |A) E I=
e ABC)2 NABCabc
L N ¢)

$43
Style Style runs

w
\

L

$EO
$E1
$E2
$41
$42
$43
$61
$62
$63

runs

L

N

o o O W > Y U ZO

W > © o N o o~ W N

o
L
H<¢]

[<a]im [

m Drawing involves converting character codes in memory to glyphs on the screen.
When drawn, some characters in some writing systems change their shape, size, or
position depending on their contextual position, that is, on what other characters
surround them. See “Contextual Forms and Character Reordering” beginning on
page 1-26. Using information in a set of international resources, the Macintosh
text-measuring and drawing routines can automatically perform these contextual
transformations for you.

m For text that is contextual, you do not store the transformed, ready-to-draw version;
what you store in memory are the codes for the fundamental characters that make up
the text. That makes searching, sorting and other manipulation more straightforward.
Each time the text is drawn it is re-transformed as appropriate.

Keyboards and Input Methods

By means of keyboard input, the user can create text that your application stores as
character codes and displays as glyphs. At first glance this may seem a difficult task: your
application should be able to handle input from at least 13 different hardware types of
Apple keyboards, as listed in the appendix “Keyboard Resources” in this book.
Furthermore, it must be able to derive the proper character codes for any writing system
from each of the keyboards and recognize the states of the modifier keys (Shift, Caps
Lock, Command, Option, and Control).

Macintosh Text Overview 1-11

CHAPTER 1

Introduction to Text on the Macintosh

The system software and the keyboard resources make this relatively easy for

you. The Event Manager uses the keyboard resources to convert keypresses into the
correct character codes for the current writing system, for whatever keyboard is used.
Your application receives the codes directly and needn’t keep track of the specific
keyboard in use.

Figure 1-7 is a simplified view of key translation, the process by which character codes
are generated. Each keyboard has a particular physical arrangement of keys, and each
keypress generates a value called a raw key code, which indicates which key was
pressed. The keyboard driver that handles the keypress uses the key-map resource to
map these raw key codes to keyboard-independent virtual key codes. It then uses the
Event Manager and the keyboard-layout resource to convert a virtual key code into a
character code, and passes it to your application in the event record generated by the
keypress. See “Keyboards and Key Translation” beginning on page 1-87 for a more
complete description of key translation; see the Event Manager chapter in Inside
Macintosh: Macintosh Toolbox Essentials for a description of events and event records.

Figure 1-7 Key translation (simplified)

1-12

Raw key
code
Key-map Virtual key code Keyboard-layout Character code

resource resource

Keyboard layout can be considered the overall relationship between the physical
arrangement of keys on a keyboard and the glyphs produced when those keys are
pressed. It is what the Key Caps desk accessory shows; see Figure 1-8.

Macintosh Text Overview

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-8 Key Caps display of Thai keyboard layout (no modifier keys pressed)

Changing the physical keyboard, changing the keyboard-layout resource, pressing
modifier keys, and changing the font can all change the relationship between keypresses
and glyphs. Figure 1-9 is a Key Caps display for the same physical keyboard as that

in Figure 1-8, but the writing system has been changed from Thai to Cyrillic. For

the purposes of this book, however, the keyboard-layout resource is the critical

item in determining keyboard layout; changing the keyboard layout means changing

the keyboard-layout resource. Because keyboard layouts are independent of the

physical keyboard attached to the computer, your application has the flexibility

of changing text input from one writing system to another by simply using a different
keyboard-layout resource.

Figure 1-9 Key Caps display of Cyrillic keyboard layout (Caps Lock key pressed)

Macintosh Text Overview 1-13

1-14

CHAPTER 1

Introduction to Text on the Macintosh

For languages with large character sets, it is impractical to manufacture keyboards with
keys for every possible character. In such a case, it is usually the job of an input method,
working in conjunction with a keyboard, to handle text input. An input method is a
software module, often independent of the application it serves, that converts character
codes that can be entered from the keyboard into character codes that cannot. Japanese
and Chinese input methods commonly display a small window, into which the user
types a sequence of phonetic characters; the input method converts them into one or
more ideographic character codes and sends them to the application. A more
sophisticated input method is inline input, in which entry and conversion of text occur
directly in the window of the text document being edited. See “Input Methods”
beginning on page 1-91 and the chapter “Text Services Manager” in this book for more
information on input methods and inline input.

In most cases, your application does not need to do anything special related to keyboard
input. You can use the character codes returned by the Event Manager function
WaitNextEvent—whether generated directly from keypresses or through an input
method—and handle the text appropriately for the language being used for input.
Remember, however, that keyboard input is independent of text display; it is your
responsibility to keep the two synchronized when necessary. If the user switches
language for text input, you must switch the language for text display accordingly. The
Font Manager and Script Manager provide routines that help you with that; see “Font
and Keyboard Synchronization” beginning on page 1-90, and further discussion in the
chapter “Script Manager” in this book.

Writing Systems and Script Systems

Localization is the process of adapting software to local use. When a version of
Macintosh system software is created for a particular country or region, its text strings
usually must be translated and it must support the writing system of that region. To
facilitate the localization of Macintosh system software around the world, much of
Macintosh text-handling is concerned with proper presentation in multiple languages.
Macintosh computers are sold worldwide, and Macintosh system software is currently
available in over 30 localized versions, allowing computer users in many parts of the
world to use the Macintosh in their native languages. Macintosh system software
likewise provides your application with the capability of simultaneously supporting
multiple writing systems.

IMPORTANT

Even if you do not plan to localize your application, it should still
support multiple writing systems. Users in your own target region may
have capability for more than one writing system on their computers,
and may want your application to support that capability. a

In this book, a writing system denotes a method used to depict words visually. It consists
of a character set and a set of rules for displaying, ordering, and formatting those
characters. Writing systems can differ in line direction, the direction in which their
characters are read; the size of the character set used to represent the writing system; and
whether or not they are contextual—whether a character changes its form depending on

Macintosh Text Overview

CHAPTER 1

Introduction to Text on the Macintosh

its position relative to other characters. Writing systems have specific requirements for
text display, text editing, character set, and fonts. A writing system, of which one
example is Roman, can serve more than one language, of which two examples are French
and Spanish. A single language such as French can have regional variations with slightly
different requirements, such as Swiss French and Canadian French. Writing systems

and their features are described under “Features of the World’s Writing Systems”
beginning on page 1-21.

On the Macintosh computer, a script system (or script for short) is a collection of
resources that provides for the representation of a particular writing system. A script’s
keyboard resources define the character codes and keyboard layout for the writing
system, and its international resources provide a host of formatting and ordering rules
for the writing system. A script system requires one or more fonts designed specifically
for the writing system. The script system is accessed through the Script Manager, the Text
Utilities, the script extensions WorldScript I and WorldScript II, and the other text-related
software managers described in this book. Together, these software components make up
the Macintosh script management system. The files, managers, and resources that make
up the script management system are described under “Components of the Macintosh
Script Management System” beginning on page 1-35.

A script system on the Macintosh is identified primarily by number, its script code. And
just as writing systems can serve several languages, script systems can have variations
for different languages, specified by language code. Each language code “belongs” to a
particular script code. Regional variations can also be reflected in script systems, by
region code. Each region code “belongs” to a particular language code. See, for example,
Figure 1-34 on page 1-49.

More than one script system may be enabled, or present and available, on the Macintosh.
Script systems may be installed either as auxiliary scripts, which just provide
writing-system support, or as the system script, which affects system defaults such as the
default font, keyboard layout, line direction, and so forth, and is typically the writing
system used for localized dialog boxes, menus, and alerts. All other scripts are secondary
to the system script. The font script, also called the current script, is the script system
currently being used to draw text. The keyboard script is the script system currently
being used for text input.

The Roman script system is always available, either as the system script or as an auxiliary
script. Furthermore, the low-ASCII Roman characters are always available in any script
system; they are a standard part of every script system’s character set.

Macintosh system software routines that take into account the script system of the text
they manipulate are called script-aware routines. Likewise, applications that use those
routines to properly handle text according to its script system are also called script-aware.
Your applications should be script-aware.

More details about script systems and how they work are found under “Components of a
Script System” beginning on page 1-40, “How Script Systems Are Classified” beginning
on page 1-45, and “How Script Systems Work” beginning on page 1-52.

Macintosh Text Overview 1-15

1-16

CHAPTER 1

Introduction to Text on the Macintosh

Macintosh Text Utilities

The Text Utilities are a broad collection of text-manipulation routines provided by
Macintosh system software. With Text Utilities calls, you can

specify strings for various purposes

m sort strings, including strings in any writing system and combinations of strings in
different writing systems

m convert case or strip diacritical marks from text for sorting purposes
m format numbers and currency

m format dates and times

m search and replace text

m find word boundaries and line breaks when laying out lines of text

Some Text Utilities routines function with the Roman script system only, but many are
script-aware and work properly with all script systems. Script-aware Text Utilities
routines rely on a script system’s international resources to define the specific behavior in
that script system.

The Text Utilities are described in the chapter “Text Utilities” in this book.

TextEdit, a Text-Processing Service

Macintosh system software provides a simple text-processing service, used by the Dialog
Manager and other parts of system software, and available for your use also. TextEdit
handles certain basic text-handling tasks for small (less than 32 KB) amounts of text.

TextEdit maintains a text buffer, provides line breaks, tracks the selection range

and insertion point for text, handles insertions and deletions from the buffer, and tracks
style information for all its text. TextEdit formats and draws text properly in multiple
styles and different script systems—even multiple scripts on a single line. TextEdit
handles mixed-directional text, synchronizes fonts and keyboards, handles 2-byte
characters, determines word boundaries, and matches text alignment with line direction.
TextEdit even allows you to customize several of its features, such as word selection and
text measurement.

If you want multiscript text handling, and you do not need to manipulate large files and
do not need formatting other than font styles, TextEdit is a convenient alternative to
writing your own text processor. You can use TextEdit at different levels of complexity:

m For the very simplest text handling (in dialog boxes), you needn’t even call
TextEdit directly. Use the Dialog Manager, which in turn uses TextEdit, to correctly
edit and display text in either the system script or Roman script. For example,
the Save As dialog box shown in Figure 1-10 handles mixed-directional text (in this
case, Arabic) correctly. The Dialog Manager is described in Inside Macintosh: Macintosh
Toolbox Essentials.

Macintosh Text Overview

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-10 TextEdit edits and displays mixed-directional text in a dialog box

R

Extensions OO |{¢
Preferences OO @
susiem 3] | £t

< esis [

__

$ave document as: [M]
MuyFilewal | Cancel |
SuperPaint 3.0 Save as: (®| PICT

— Emily&Kelly
9.603K available

m If you simply want to display one or more lines of static (non-editable) text, you can
call the TextEdit TETextBox procedure. TETextBox draws your text at the location
you specify with the alignment you specify. You need not make any other TextEdit
calls or allocate any data structures if you use TETextBox.

m Other than dialog boxes and static text display, if your application requires very basic
text handling, in which neither styled text nor multiple fonts are needed (as in many
desk accessories), you may need only monostyled TextEdit. You can use monostyled
TextEdit with the application font (if you don’t allow the user to select a font) or with
any single available font (if you do allow user selection) in any version of Roman or
non-Roman Macintosh system software.

m If your application requires a somewhat higher level of text handling (allowing the
user to set the font, size, and style of text, for example), you can use multistyled
TextEdit. You can use multistyled TextEdit with any combination of available fonts, in
any version of Roman or non-Roman Macintosh system software.

TextEdit does have limitations; it is not powerful or efficient enough for use as a general
text editor. For example, TextEdit

m can only handle up to 32 KB of text
m is not highly optimized for speed

m contains data structures that can be inefficiently large for multistyled text

Nevertheless, TextEdit’s convenience and multiscript capabilities make it an attractive
alternative to writing your own text processor. TextEdit is described in the chapter
“TextEdit” in this book.

Macintosh Text Overview 1-17

1-18

CHAPTER 1

Introduction to Text on the Macintosh

Planning Your Text Handling Capabilities

The Macintosh system of text handling—with its graphic approach to text drawing,
separation of text storage from text rendering, ability to handle many writing systems,
event-controlled text input, large library of utility routines, and availability of a simple
text-handling service—is general and powerful. But you may not need all of its power,
and the simpler your needs are the less you will have to do to meet them.

It may appear difficult at the outset to generalize your text-handling capabilities so that
they can work across all script systems around the world. You may instead wish to
customize your application to work with a specific regional variation or script system in a
target market that interests you. Either approach is possible; you can use the Macintosh
script management system to build in language-independence or language
customization, as you wish. There are three general approaches you can take:

m Globalization is the preparation of a culturally neutral application that provides the
technical underpinnings for script-specific, linguistic, and regional variations, and that
is capable of running with any script system. Globalization involves careful design
and writing of the application and its textual and graphic resources.

m Localization is the adaptation of an application to a particular language or region, to
achieve proper formats for dates, times, currency, measurement, calendars, and
numbers, proper text sorting, and acceptable forms of other culturally specific
material. Localization involves translation of textual resources, modification of graphic
resources such as icons, and possibly creation of a customized set of script-system
resources. The better globalized an application is, the easier it is
to localize.

m Customization is the inclusion of script-specific, linguistic, or regional capabilities
supporting features that are not otherwise supported by Macintosh system software
(for instance, vertical text direction or special underlining modes for the Japanese
writing system).

This book supports and describes the process of globalization; it helps you prepare your

application to support all writing systems and regions. The process of localization is

discussed in Guide to Macintosh Software Localization. This book does not discuss
customization, beyond the few suggestions presented at the end of this section.

To achieve globalization, localization, or customization, the level of work required is
related to the level of text-handling sophistication you need. There are three general
levels to consider—rudimentary, moderate, and highly sophisticated.

Rudimentary Text Handling

Rudimentary text handling means that the user either cannot set fonts at all (the lowest
level of sophistication) or that the user can set fonts and styles but not alignment (a
slightly higher level). In either case large amounts of text and sophisticated formatting
are not required.

Macintosh Text Overview

CHAPTER 1

Introduction to Text on the Macintosh

If your application requires only rudimentary handling, use TextEdit—either directly or
through the Dialog Manager—to handle user input and editing. TextEdit exhibits the
correct behavior for editing and displaying text in multiple styles and different

script systems.

In addition, at an absolute minimum, design your application so that it can display its
own Roman text properly when operating with a non-Roman script system. For text in
dialog boxes, menus, alert boxes, and so on, if you do not plan to translate the text for
localization use only the low-ASCII character codes that are the same on all script
systems. High-ASCII character codes may map to incomprehensible characters in another
script. The ellipsis in menu items, for example, maps to other characters when displayed
in other system scripts. Instead of using the ellipsis, a high-ASCII character code, you can
use three periods, a low-ASCII string; the ellipsis is displayed regardless of the system
script. (A better approach, however, is to use the script management system to retrieve
the appropriate form of the ellipsis character for whatever script system you are running
under. See the discussion of retrieving text from tokens in the chapter “Script Manager”
in this book.)

Moderate Text Handling

Moderate text-handling sophistication means an application allows users to set font,
style, alignment, tabs, writing direction, keyboard, input method, and so forth, across
script systems. It handles large amounts of text and offers greater formatting
sophistication than TextEdit provides.

The Macintosh script management system and all the text managers documented in this
book are designed to support this level of sophistication. You can use these managers and
the rest of Macintosh system software to include basic word-processing capabilities in
your application, capabilities that work across the entire range of worldwide writing
systems supported by Macintosh system software.

Within the range of moderate text handling, the level of complexity is largely a function
of the number and types of script systems that are currently enabled. You may wish to
structure your application’s text-handling algorithms to allow for categories of increasing
complexity, based on conditions such as the following four. (The item in parentheses
following each condition is a selector or flag that tests for that condition. See the
discussion of selectors for Script Manager variables and script variables in the chapter
“Script Manager” in this book.)

m Only one script system is present (smEnabled = 1). If there is only one script system,
it is Roman; you can assume all text-handling follows the built-in Roman rules, and
you do not need to account for or test for the script system of any text.

m More than one script system is present (smEnabled > 1). You need to track the script
system associated with each run of text. You need to use script-aware routines for text
handling. You need to synchronize the font script with the keyboard script.

Macintosh Text Overview 1-19

1-20

CHAPTER 1

Introduction to Text on the Macintosh

m Abidirectional script system is present (smBidirect = TRUE). You need to allow for
the possibility of right-to-left text, right alignment of text, discontinuous highlighting,
and a display order for style runs that is different from storage order. You need to
allow for contextual behavior in drawing; you cannot use font width tables for
measuring text.

m A 2-byte script system is present (smDoubleByte = TRUE). You need to allow for
the presence of 2-byte character codes in searching, drawing, and line-breaking.
You should also support inline input of text whenever the keyboard script is a 2-byte
script system.

These probably represent the major divisions in text-handling complexity that you
address, although you may want to account for others. For example, you may want to
test each individual script system to see if it is contextual (smsfContext set), 1-byte
(smsfSingByte set), or bidirectional (smScriptRight = TRUE) before deciding how to
handle its text.

With the moderate level of text-handling supported by the Macintosh script management
system as documented in this book, your application can be powerful enough and
general enough for worldwide acceptance.

Sophisticated Text Handling

Highly sophisticated text processing might be employed by a very powerful word
processor that works across many script systems. If you write such a program, you
will probably need to go beyond the capabilities provided by the Macintosh script
management system.

Areas that may need special attention include specialization or customization of
delimiters, higher-level grammatical structures, word selection, sorting, arrow keys,
and line direction. All of these issues are addressed by the current Macintosh script
management sytem, but if your needs go beyond what the system is now capable of,
you may need to write your own code to accomplish them. Here are a few examples:

m Your application may require the implementation of functions not supported by the
Macintosh script management system but needed by certain languages—for example,
text with a vertical line direction.

m Your application may mark text by language, and allow users to limit searching,
sorting, or spell-checking to specific languages.

m Your application may want to display characters in a more sophisticated manner than
is supported—such as furigana, also called rubi, a Japanese text display in which small
Kana characters are placed adjacent to a Kanji character to indicate its pronunciation
or to explain it if it is rare.

Macintosh Text Overview

CHAPTER 1

Introduction to Text on the Macintosh

If you do write your own code to replace one or more of the Macintosh script
management capabilities, make sure you do it in a modular fashion, so that you can work
with current Macintosh text managers and also be prepared to take advantage of possible
future enhancements to system software.

Writing Systems and Script Systems

The first section of this chapter, “Macintosh Text Overview,” has given an overview to all
of Macintosh text handling. This section and the rest of the chapter develop many of
those concepts in more detail, to give you the background necessary to work with the
routines documented throughout the remainder of this book.

This section presents the language features that must be addressed by system software if
it is to properly handle the world’s writing systems. It also describes the organization of
the Macintosh script management system and the structure and classification of the
Macintosh script systems that implement that international text handling.

Features of the World’s Writing Systems

In order to understand the structure and workings of Macintosh text handling, it is useful
to first consider the range of text features that need to be represented on the computer.
This section presents the principal text-related features, taken from writing systems
around the world, that the Macintosh addresses.

A writing system is a set of characters and the basic rules for their use in creating

a visual depiction of language. There are more than 30 active writing systems in

the world today, used to represent the official written languages of one or more regions
and countries. Examples of writing systems are Roman, Chinese, Japanese, Hebrew,
and Arabic. Color Plate 1 shows the world distribution of some of the principal
writing systems.

Each writing system has distinct attributes. Simple systems such as Roman, Greek, and
Cyrillic usually have fewer than 200 characters; Japanese, a complex writing system,
theoretically contains more than 40,000. Printed Roman characters are relatively
independent of each other; Arabic characters change shape depending on the characters
that surround them. Some writing systems use spaces to separate words; others do not
separate words at all. Some writing systems, such as Japanese, actually include multiple
subsystems, each with its own set of characters and rules for how they are combined.

Writing Systems and Script Systems 1-21

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-11 shows the names of various languages and regions, written in the appropriate
writing system for each language.

Figure 1-11 Writing-system examples

= == D9y
BYa
AT

(sl it

Rimski EAAAX

ral

The variety of writing-system attributes presents difficult, though not insurmountable,
challenges to their representation on the Macintosh computer. This section discusses the
principal attributes that the Macintosh script management system addresses.

Character Representation

Writing systems differ in the kind and number of characters required to create words as
the basic components of language. Some writing systems, such as Roman and Cyrillic,
are basically alphabetic: the characters in the writing system symbolize, more or less, the
discrete phonemic elements in the languages represented by that writing system. Other
writing systems, such as Japanese Kana, are syllabic: the characters stand for syllables in
the language.

Some writing systems—namely, Japanese Kanji, Chinese Hanzi, and Korean Hanja—
include ideographic characters. These characters do not represent pronunciation alone,
but are also related to the component meanings of words. A typical character set for
ideographic writing systems is quite large, ranging from 7,000 to 30,000 characters.

Figure 1-12 shows examples of alphabetic, syllabic, and ideographic representations
of characters.

Figure 1-12 Words with alphabetic, syllabic, and ideographic characters

1-22

Rimski (2T A = ;F'Z

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Several writing systems, including Hebrew, Thai, and Korean, contain character clusters.
A character cluster is a collection of alphabetic characters.

In some systems, character clusters consist of a principal character plus attachments in
memory. For example, in Hebrew, a cluster may be composed of a consonant, a vowel,
a dot to soften the pronunciation of the consonant, and a cantillation mark.

In other systems, character clusters occur as alphabetic blocks made of 2 to 5
component parts. For example, in Korean, consonant and vowel components called
Jamo are combined into blocks called Hangul. See Figure 1-39 on page 1-60 for an
example. In Thai (as shown in Figure 1-13), consonants are combined with vowel
marks and tone marks to make clusters.

On the computer, character clusters pose difficulties in the treatment of word
demarcation, the movement of the caret, deletion, and highlighting.

Figure 1-13 Thai character cluster

tone 1=y
; NN e
consonant —— ————consonant + vowel + tone
tone 1y
; NI ol o
consonant —— ———consonant + vowel + tone
tone 1 1
+
consonant ——— ﬂﬂ’]
I
tone 9 tone + vowel + tone
vowel U‘l
(e Vg
=R
consonant . vowel + consonant

Line Direction and Alignment

Writing systems also vary in the direction in which characters are written:

In Roman writing systems, characters are written from left to right, with horizontal
lines of text filling the page from top to bottom.

Arabic and Hebrew writing systems have most characters written from right to left,
with horizontal lines of text filling the page from top to bottom.

In Japanese and Chinese, characters are traditionally written from top to bottom, with
vertical lines (columns) of characters filling the page from right to left. There are no
spaces between words. In modern China and Japan, technical documents and
academic journals are written in standard left-to-right horizontal lines, while text for
newspapers and magazines is written mostly in vertical columns.

In Mongolian, the characters are written in a vertical column, with spaces between
words, and the lines fill the page from left to right.

Writing Systems and Script Systems 1-23

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-14 shows several text directions. These three writing directions—Ileft-right
top-bottom, right-left top-bottom, and top-bottom right-left—are the most common of the
eight possible combinations of line direction and fill direction.

Figure 1-14 Line directions in text

1-24

—_— B ——

Peace on Earth, @ [’M|

Goodwill
towards Men u‘p)‘y |

$ | ol

pode A0
W T o
GRS

More than one line direction can exist within a single writing system. For example,
numbers in Arabic and Hebrew are commonly written left to right, even though
nonnumeric text is written from right to left. Furthermore, commonly interspersed
foreign words from the Roman writing system are also written from left to right. Thus the
Hebrew and Arabic writing systems are actually bidirectional, even though their
primary line direction is right-to-left.

The Macintosh script management system supports the ability to write text from left to
right and from right to left, and to mix text with different directions within lines and
blocks of text. Your application can add the ability to handle vertical text, if desired.

Alignment is the horizontal placement of lines of text with respect to the left and right
edges of the text area. Alignment can be left-aligned (also called flush left or ragged right),
right-aligned (also called flush right or ragged left), centered, or justified (that is, aligned to
both left and right edges of the text area). See Figure 1-15.

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-15 Text alignment

Left-aligned

Right-aligned

Centered

Justified

This is a figure illustrating
the concept of text alignment
and text justification. This
text is an important part of
this figure.

When using text, it is very
important to decide the type
of alignment and justification
to use.

This is a figure illustrating
the concept of text alignment
and text justification. This
text is an important part of
this figure.

When using text, it is very
important to decide the type
of alignment and justification
to use.

this figure.

to use.

This is a figure illustrating
the concept of text alignment
and text justification. This
text is an important part of

When using text, it is very
important to decide the type
of alignment and justification

This is a figure illustrating
the concept of text alignment
and text justification. This
text is an important part of
this figure.

When using text, it is very
important to decide the type
of alignment and justification
to use.

Note

Although the term justified is sometimes used as a synonym for aligned,
as in “left-justified” or “right-justified” text, this book considers justified
to be equivalent only to fully justified, and uses aligned exclusively when
referring to text that is left-aligned, right-aligned, or centered. &

Alignment is related to line direction in that text with a left-to-right line direction is
usually left-aligned, whereas text with a right-to-left line direction is usually
right-aligned.

Justification is achieved by spreading or compressing printed text to fit a given line
width. It can be performed in Roman text by altering the widths of interword spaces
alone, or by altering both interword and intercharacter spaces. Writing systems that don’t
use interword spaces typically justify text by modifying the intercharacter spacing alone.
See Figure 1-16.

Figure 1-16 Justification through interword (Hebrew) and intercharacter (Japanese) spacing

19012 TN VI PNT

Right-aligned

B NP

Left-aligned

H & # W

Justified

19001 TN YLYPHN

Justified

Writing Systems and Script Systems 1-25

CHAPTER 1

Introduction to Text on the Macintosh

Arabic text, however, is justified by extending characters themselves. Printed or
displayed text is justified by inserting extension bar characters (kashida) between joined
characters, and by widening blank characters to fill any remaining gaps. See Figure 1-17.

Figure 1-17 Justification with Arabic extension bar characters

SsiS Ls

Right-aligned
Y . g | |

Justified

The Macintosh script management system can take all of these justification methods into
account when drawing, measuring, or selecting text.

Contextual Forms and Character Reordering

In writing systems, contextuality or context dependence means that character forms may be
modified by the values of preceding and following characters in the input stream. In
Arabic, the displayed form of many characters changes depending on their position in a
word or on what other characters are nearby.

The displayed form that represents a character in printed English does not usually
depend on bordering characters. This is not the case for many writing systems. Even in
cursive English, for example, when one letter is joined to the preceding letter, the
connecting line varies according to which letters are being joined. Characters may also
have considerably different shapes depending on where they occur within a word, for
example, at the beginning (initial form) or elsewhere in the word (noninitial form). Figure
1-18 illustrates two of these variations in cursive English, which are called contextual
forms.

Figure 1-18 Contextual forms in cursive English

1-26

Initial form Noninitial form

e e

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

The ability to represent contextual forms is required for the proper display of Arabic text.
Figure 1-19 shows standalone and contextual forms in Arabic.

Figure 1-19 Standalone and contextual forms in Arabic

Independent Final Medial Initial

b A 4 B

Furthermore, certain character forms may be combined into a new form when they occur
together. Figure 1-20 provides an example of how characters combine to form ligatures
or conjunct characters in Roman text.

Figure 1-20 A ligature in Roman text

f+1 -fi ~fi

The composition rules for Arabic text, for example, are very complex. The use of ligatures
can be highly developed, and some ligatures are required for proper display. Each
character can have up to four contextual forms, and the precise form depends upon a
varying number of characters that precede and follow it. Figure 1-21 shows an example
of a simple ligature in Arabic text.

Figure 1-21 A ligature in Arabic text

N e)1+

Writing Systems and Script Systems 1-27

CHAPTER 1

Introduction to Text on the Macintosh

Dozens of Arabic characters form ligatures. As Figure 1-22 illustrates, in some cases, more
than two characters can join together into a completely different form, although usually
there are only two characters per ligature.

Figure 1-22 A complex ligature in Arabic text

1-28

G+

Character reordering is another form of contextuality. Principles of text ordering differ
according to the type of writing system under consideration. In most writing systems
(including Roman, Greek, Cyrillic, Arabic, and Hebrew), phonetic and writing order
are synonymous except for vowel signs and other marks. With certain South Asian
writing systems, however, there may be significant differences between phonetic

and writing order.

Figure 1-23 shows an example of the reordering of vowels for the word hindi in the
Devanagari writing system. The left side of the figure shows, in order, the characters that
make up the word; the right side shows how the word is actually written. Where there is
no explicit vowel sign, consonants take a default vowel sound “a”. To cancel the default
vowel, you add a vowel marker (virama). Some vowel markers are written to the right of
the consonant they modify; others are written to the left, above, or below. In this example,
the consonant “h” is followed by a vowel sign, which appears on the left when displayed.
The consonant “n” is followed by a virama; together they make a small contextual form
when displayed. The consonant “d” is followed by a vowel sign, which appears in
normal order (on the right).

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-23 Character reordering in the Devanagari writing system

ol s 4 Ha

Diacritical Marks

Many writing systems use diacritical marks, signs that modify the implicit sound or
value of the characters with which they are associated. Some diacritical marks are often
referred to as accents in Roman writing systems: the acute accent in “é”, for instance.
Others, such as certain Vietnamese diacritical marks, may indicate pitch, while certain
Arabic diacritical marks, such as shadda (shown in Figure 1-24), specify extra emphasis on
a consonant sound.

Figure 1-24 Arabic text with diacritical mark to specify extra emphasis on a consonant

o

(IS

Hebrew text can contain optional vowel and cantillation marks. Vowel marks are shown
in Figure 1-25.

Figure 1-25 Vowel marks in Hebrew text

TIP°1 OY N°72Y3 A°N3

Writing Systems and Script Systems 1-29

CHAPTER 1

Introduction to Text on the Macintosh

Uppercase and Lowercase Characters

English speakers are familiar with uppercase and lowercase characters in the Roman
writing system; however, the majority of the world’s writing systems do not have
separate uppercase and lowercase forms. The implications for computer applications
are primarily in the areas of searching, sorting, and proofreading (for example,
spell-checking).

Note

In the Roman writing system, different languages (and even different
regions or countries that use the same language) can have different
conventions for the treatment of accents and diacritical marks on
uppercase characters. These differences are accounted for in individual
localized versions of the Roman script system.

Word Demarcation

Words in Roman writing systems are generally delimited by spaces and punctuation
marks as shown in Figure 1-26. Note also that word demarcation for word selection may
follow different rules from word demarcation for line breaking.

Figure 1-26 Word demarcation in the Roman writing system

1-30

cat (green-eyed) dog

o N\

N R

Word breaks for word selection

cat A(green—ﬂeyed) flo%

I | .

Word breaks for line breaking

Bidirectional writing systems provide extra challenges to word selection and line breaks.
Figure 1-27 shows a single English phrase (“Writing systems including bidirectional”)
embedded within Hebrew text. The first line breaks within the English text. Note that the
line break itself occurs, not at the right or left edge of the first line, but in its interior; and
the continuation of the English phrase occurs in the interior of the following line.

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-27 Line breaking in a bidirectional writing system

Primary line direction

-~

Writing systems aona 1on vioypnn

nmo moew including bidirectional

NVNO NHYNONI DNNPYY P SYNd

In contrast, many Asian writing systems (such as Japanese and Thai) typically have no
word delimiters, so the Macintosh script management system provides a more
sophisticated method of finding word boundaries. Figure 1-28 shows word demarcation
in Japanese.

Figure 1-28 Word demarcation in Japanese

EENATE R RN
I I

The definition of a word can be an extremely complex issue. Word boundaries are not
always well-defined, and native writers of a language may not agree on where particular
word boundaries occur.

Styles

Style for a writing system means the systematic alteration of a set of glyphs of a given
typeface, to uniformly change their appearance while preserving the overall sense of the
typeface. Boldfacing, italicizing, underlining, lining-through, and outlining are possible
styles that can be applied to text. Not all styles are appropriate or conventional for

all writing systems; for example, underlining may not be meaningful for text that is
written in vertical columns, and italicizing may not be appropriate for text that should
not be slanted.

Writing Systems and Script Systems 1-31

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-29 provides some examples of the application of styles to several

writing systems.

Figure 1-29 Selected valid styles in various writing systems
Roman Japanese Arabic Hebrew
Plain WorldScript H ZF:EJII&L X U:“ =S o \’)103"‘7’3
Bold WorldScript ‘_,.‘3‘,&‘5& V)“DJ’PD
Italic WorldScript H /TF E_rré I:ri
Underline WorldScript H ¢:I_;J‘E. 'Fi W1DJ’P D
Outline WorldSeript H ﬁ% I'i gﬁgﬁk@ Wﬂ@i?@@
HAERRE 2250 wioypn
sDt(r)iLIiglfhrough :E:ﬁ#

1-32

Numbers, Currencies, and Dates

Each language—or in many cases each regional variation of a language—includes a set
of conventions for presentation of numbers. For example, in many European countries
the decimal character is a comma (,), and the thousands separator is a period (.). In some

other areas, western numbers (1...9, 0) are not even used.

Each nation has its own currency format, including the symbol used to denote money.

The symbol may be one or more characters, and may precede or follow the numeric
amount. Negative monetary values are shown differently in different countries.

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Date and time formats vary with language and region. The order in which days, months,
and years are written, the words and common abbreviations for days and months, and
the separators used in writing dates and times can all differ from region to region.

Figure 1-30 shows some common differences in number, currency, and date formats
among the United States, European countries, and Japan.

Figure 1-30 Standard international formats

Numbers Currency Time Short date Long date (unabbreviated)
List separators Long date (abbreviated)
United States 1,234.56 $0.23 9:05 AM 12/22/85 Wednesday, February 1, 1985
; ($0.45) 11:20 PM 2/1/85 Wed., Feb 1, 1985
$345.00 11:20:09 PM
Great Britain 1,234.56 £0.23 09:05 22/12/1985 Wednesday, February 1, 1985
, (£ 0.45) 23:20 1/02/1985 Wed., Feb 1, 1985
£ 345 23:20:09
Germany 1.234,56 0,23 DM 09:05 Uhr 22.12.1985 Mittwoch, 1. Februar 1985
; -0,45 DM 23:20 Uhr 1.02.1985 Mit, 1. Feb 1985

345 DM 23:20:09 Uhr

France 1234.56 0,23 F 09:05 22.12.1985 Mercredi 1 Février 1985
; -0,45F 23:20 1.02.1985 Mer 1 fev 1985

345 F 23:20:09
Greece 1234.56 *0,23 09:05 22-12-85 Tetdptn 1 Pepouapiou 1985
, (0.45) 23:20 1-02-85 Tetd 1 depo 1985

*345 23:20:09
Japan 1234.56 ¥0.23 09:05 AM 85.12.22 198542 H1 H/kHER
; (¥0.45) 11:20 PM 85.2.1 19854£2 41 H (k)

¥345.00 11:20:09 PM

Even the calendar itself is not the same around the world. The standard Gregorian
calendar used in Europe and the Americas is not universally accepted:

m In Japan, the Emperor’s year is sometimes used instead of the standard Gregorian
calendar. The rest of the Japanese calendar system is similar to the Gregorian calendar.

m The Arabic calendar is used extensively throughout the Middle East. It is lunar rather
than solar. The months are alternately 29 and 30 days long, so the Arabic calendar year
is about 11 days shorter than the Gregorian year. The months have no fixed relation to
the sun, so they slowly rotate through all of the seasons of the year (that is, every three
years the months shift forward by one Gregorian calendar month).

Writing Systems and Script Systems 1-33

1-34

CHAPTER 1

Introduction to Text on the Macintosh

There are actually two Arabic calendars in common use: the astronomical lunar
calendar, based on the moon’s phases as actually observed at each location around the
world; and the civil lunar calendar, a statutory version of the astronomical calendar. To
compute a date correctly for the astronomical lunar calendar requires calculating not
only the orbits of the sun and moon, but also knowing the exact latitude, longitude,
and time difference from Greenwich mean time.

m Other calendars in common use include the Coptic, Jewish, and Persian calendars.

Character Order and Text Sorting

In most writing systems a need exists for ordering lists of characters, words, or lines of
text—such as for writing an alphabet or arranging a dictionary, encyclopedia, or
telephone book. Each writing system has its own rules and conventions for sorting text
into a meaningful order.

In Roman writing systems, sorting is usually based on alphabetic order, which is fairly
simple. However, complications arise when sorting text that includes mixed uppercase
and lowercase letters, letters with diacritical marks, ligatures, abbreviations, characters
that should be grouped, and characters that should be ignored for sorting purposes.

One important concept for Roman systems is the distinction between primary sorting
order and secondary sorting order. Text items that are equivalent in terms of primary
sorting characteristics are first grouped, and then differentiated according to secondary
sorting characteristics. This allows all variations of a character (uppercase and lowercase,
with or without diacritical marks, and so on) to be grouped together in sorted lists.

Nonalphabetic writing systems, such as Chinese or Japanese, can have more complex and
less standardized sorting conventions than Roman. Some sorting algorithms for
ideographic characters are based on the number of strokes per character. Others are based
on radicals, standard character subcomponents with a defined sorting order. Others
consider the phonetic spelling of the character with Roman or other types of characters
(such as Kana), and sort according to Roman alphabetic order or standard Kana order.

Macintosh support for sorting of text is fully described in the chapter “Text Utilities” and
the appendixes “International Resources” and “Built-in Script Support” in this book.
Tables of specific sorting orders for individual script systems are given in Guide to
Macintosh Software Localization.

Variations Among Languages and Regions

A writing system by itself may not be enough to define how a language is written. For
example, the Roman writing system is used for both the English and French languages. A
written language refers to the whole body of written words and of methods of combining
words, including their meanings, used by a particular group of people.

A single writing system may be used by multiple languages. Languages within

a writing system can modify the sorting order and word boundaries defined by the
writing system, and can define minor modifications to its character set.

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Conversely, some languages are written in more than one writing system. The official
language of Malaysia, for example, may be written in either the Roman or the Arabic
writing system, but the spoken language is called Malay in either case. Romanian and
Moldovan are essentially the same spoken language; however, in Romania this language
is written in the Roman writing system, whereas in the adjacent republic of Moldova,

it is written in the Cyrillic writing system.

Alanguage in itself may not be enough to define all the conventions for written
communication in a particular region. A region is a linguistic or cultural entity, not
necessarily a nation or geographic area, whose written language or other text features are
unique enough to be treated separately from other regions. A single language, such as
French, may have several regional versions. For example, the French language is used in
France, in parts of Belgium, Switzerland, and Canada, and in other countries such as
Luxembourg, Haiti, Mali, Zaire, Tahiti, and Vanuatu. Such different areas that use the
same language may have different conventions for time, date, and number formats, as
well as rules for case conversion or placement of diacritical marks. Some differences may
also occur in the behavior of the written language. For example, in France, accents on
most characters are generally omitted if the character is written in uppercase; in Québec,
the accents are usually preserved.

The Macintosh script management system can account for multiple languages and
regional variations within script systems. See “Script Codes, Language Codes, and
Region Codes” beginning on page 1-48.

Components of the Macintosh Script Management System

This section describes the organization of the Macintosh script management system,
those parts of the system software that provide support for the writing-system features
described in the previous section, “Features of the World’s Writing Systems.”

The Macintosh script management system makes it possible to represent many writing
systems and languages on the Macintosh computer. With the Macintosh script
management system, your application’s text-manipulation capabilities can extend far
beyond the Roman writing system and its languages. If you use its features your
application can have a much wider market worldwide. You can implement text-handling
capabilities that work properly with any supported writing system, or you can tailor
your application to work correctly with any specific writing system or any regional
variation of a writing system.

The script management system supplies much of the same basic capability for entering
and displaying text as does a multi-language word processor—but on a system level.
Since the capability is built into the system, you do not have to duplicate the code
necessary to support each writing system; instead, you can devote your efforts to the
primary functions of your application.

As Figure 1-31 shows, the script management system consists of
m routines in various components (managers) of system software

m two WorldScript extensions (optional)

Writing Systems and Script Systems 1-35

CHAPTER 1

Introduction to Text on the Macintosh

m one or more script systems
m one or more fonts

The text managers and the script extensions are mostly code; they execute the
script-aware calls your application makes when handling text. The script systems and
fonts are mostly data; they consist largely of tables of script-specific information used by
the text routines, and glyph descriptions.

Figure 1-31 Components of the script management system for text display

Code
Text
A managers
ez -+ ABC AN
s :> I:> extensions ‘:>
o]
N
2
b
Data
Script
systems
H
Fonts

1-36

The Macintosh Text Managers

Several parts of Macintosh system software work together to provide specific
text-handling services to your application. These text-related managers include the Script
Manager, the text-handling components of QuickDraw, the Font Manager, the Text
Utilities, the Text Services Manager, and the Dictionary Manager.

The Script Manager

The Script Manager is at the center of the Macintosh script management system. It
initializes script systems and makes them available to applications; it maintains
important data structures and provides a standard application interface to script systems;
it supports switching text input among different script systems; and it provides several
text-manipulation services.

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

The Script Manager works closely with the Text Utilities and with QuickDraw. Your
program typically makes calls to all three managers in the course of text-handling, and in
many cases a call to one of these managers results in internal calls among them. TextEdit
also relies on the Script Manager, Text Utilities, and QuickDraw to make sure that it
handles text correctly in any script system.

The Script Manager provides routines with which you can

m control the values of many script-related settings, including the system direction and the
keyboard script

m get information about script systems, such as script codes, character-type information,
and direct access to a script’s international resources

m modify text through lexical conversion to tokens or phonetic conversion within a
script system

m modify script systems by replacing international resources or routines

In particular, the Script Manager gives you access to Script Manager variables, which
control many overall settings of the text environment, and script variables, which control
settings specific to each enabled script system.

QuickDraw

QuickDraw is the graphics manager of Macintosh system software. The graphics
components of QuickDraw are described in the QuickDraw chapters in Inside Macintosh:
Imaging; the text-handling components of QuickDraw are described in the chapter
“QuickDraw Text” in this book.

Your application makes QuickDraw calls to write text to the screen or to a printer. When
QuickDraw draws text, it places bitmapped shapes on the display device that represent
the characters it is drawing. The characters are drawn according to the settings of the
currrent window’s graphics port record, which includes the location at which to draw
and a specification of the font and character attributes with which to draw.

For text in various script systems, the QuickDraw text routines allow you to
m set the characteristics of the drawing environment

m draw text

m measure the width of text

m lay out lines of text

m determine caret positions and highlight text

Font Manager

QuickDraw cannot draw text without a font. The Font Manager supports QuickDraw by
providing the character bitmaps that QuickDraw needs, in the typefaces, sizes, and styles
that QuickDraw requests. The Font Manager keeps track of all fonts available to an
application. The Font Manager supports fonts in many languages, for both bitmapped
and outline fonts, and for both 1-byte and 2-byte fonts.

Writing Systems and Script Systems 1-37

1-38

CHAPTER 1

Introduction to Text on the Macintosh

Besides providing QuickDraw with the bitmaps it needs, the Font Manager provides
routines with which you can

m determine the characteristics of a font
m change certain font settings, such as fractional widths or scaling
m favor outline fonts over bitmapped fonts

m manipulate fonts in memory

Text Utilities

The Text Utilities are an integrated collection of routines for performing a variety of
operations on text, ranging from sorting strings to formatting dates and times to finding
word boundaries. The Text Utilities work in conjunction with the Macintosh script
management system and can take into account the differences in text-handling among
script systems. If you use these routines you can handle text operations in a manner that
is transportable to different parts of the world.

Many of the Text Utilities routines are script-aware; they work in conjunction with the
Script Manager and with QuickDraw to determine the script-system characteristics of
text and to prepare the text for drawing to the screen or printing.

The Text Utilities provide routines that, for text in any script system, allow you to
m define strings in various ways
m compare and sort strings

m modify the contents of strings by truncation, stripping of diacritical marks, case
conversion, or replacement

m find boundaries of words, lines, and runs of Roman characters
m convert and format date and time strings

m convert and format numeric strings

Text Services Manager

The Text Services Manager is the part of Macintosh system software that provides an
environment for applications to use text services such as input methods. The Text
Services Manager handles communication between client applications and text service
components. Text service components are specialized software modules for entry,
processing, or formatting of text.

Client applications can use the Text Services Manager to
m make text services available to the user
m search for and communicate with text service components

B accept text input or other information from text service components

ask for a special floating input window service

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Text service components can use the Text Services Manager to
m make their text service available to an application
m act on events involving their windows, menus, or cursor

m pass text input or other information to an application

display floating utility windows

Dictionary Manager

The Dictionary Manager is the part of Macintosh system software that allows you to
create dictionaries for input methods and other text services that let the user enter,
format, and process text. A dictionary is a data file with information essential to the
conversion of text from one form to another. Most input methods provide both a main
dictionary, which contains standard information for conversion between forms, and a
user dictionary, which allows users to add custom information.

The Dictionary Manager defines a uniform and public dictionary format that you can
apply to your text service’s dictionaries. The Dictionary Manager provides routines with
which you can

m create and access a dictionary
m locate, insert, or delete records in a dictionary

m compact data in a dictionary

The WorldScript Extensions

The Roman script system, always available on every Macintosh, needs only the
previously mentioned managers to function correctly. Several other similar script systems
also need no other software. However, for those 1-byte script systems that have
contextual characters or right-to-left line direction, additional code is needed so that the
Script Manager, Text Utilities, and QuickDraw routines can work properly. Likewise,
2-byte script systems need code extensions in order to properly handle the thousands of
characters they use.

Although each writing system has unique requirements and procedures for presenting,
sorting, and formatting text, in many cases separate script systems can use similar
algorithms. Therefore, to avoid inconsistencies and unnecessary duplication of code, the
script management system supplies two system extension files—WorldScript I and
WorldScript II—that support 1-byte complex script systems and 2-byte script systems,
respectively (see “Types of Script Systems” on page 1-46). They contain code that
implements many script-aware text-manipulation routines, eliminating the need for each
script system to maintain its own code extensions. Script-specific behavior is encoded in
resource-based tables accessed by the extensions.

WorldScript I and WorldScript II are described in the appendix “Built-in Script Support”
in this book.

Writing Systems and Script Systems 1-39

1-40

CHAPTER 1

Introduction to Text on the Macintosh

WorldScript |

WorldScript I is the script extension that implements table-driven text measuring and
drawing behavior for all 1-byte complex script systems (such as Hebrew, Arabic, Thai,
and Devanagari). Using tables in each script system’s international resources,
WorldScript I performs text manipulation properly for all supported scripts. WorldScript
Iis a single file located in the Extensions folder within the System Folder on the user’s
Macintosh. It installs all compatible 1-byte script systems that are present in the System
file, and provides them with a standard set of script-aware text-manipulation routines.

WorldScript I implements script utilities, the low-level routines through which an
individual script system implements script-aware Text Utilities, QuickDraw, and Script
Manager routines. WorldScript I also implements patches to certain QuickDraw and Font
Manager text-handling routines.

The Script Manager provides routines that allow you to modify or replace a 1-byte
complex script system’s script utilities and QuickDraw patches. See the chapter “Script
Manager” in this book.

WorldScript I

WorldScript II is the script extension that implements table-driven text measuring and
drawing behavior for all 2-byte (Chinese, Japanese, Korean) script systems. Using tables
in each script system’s international resources, WorldScript II performs text manipulation
properly for all supported scripts. WorldScript Il is a single file located in the Extensions
folder within the System Folder on the user’s Macintosh. It installs all compatible 2-byte
script systems that are present in the System file, and provides them with a standard set
of script-aware text-manipulation routines.

Like WorldScript I, WorldScript Il implements script utilities that implement script-aware
Text Utilities, QuickDraw, and Script Manager routines. Unlike WorldScript I,
WorldScript I does not support the Script Manager routines that allow replacement of
script utilities.

Components of a Script System

The Macintosh script management system, as described in the previous section, is
designed to manipulate text according to information contained in script systems. This
section describes how script systems are organized.

A Macintosh script system is a collection of resources, mostly tables of data, that defines
the behavior of a particular writing system. The script system specifies the character set,
sorting orders, date and number formats, line direction, character reordering, accent
placement, and other writing-system-specific features. Your application uses the
information in a script system when it makes a script-aware text-handling call, and it can
also access the resources of a script system directly, to inspect or modify its behavior.

Each Macintosh script system consists of a set of international resources and a set of
keyboard resources. In addition, a script system requires one or more fonts in order to
display its text. A script system may also have a control panel device through which the
user can configure the individual characteristics of the script at any time.

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Resources in general are described in the chapter “Resource Manager,” in Inside
Macintosh: More Macintosh Toolbox.

International Resources

The international resources are a set of Macintosh resources that specify text handling
and display information for a particular writing system, language, or region. Such
information includes number and currency formats, long and short date formats,
preferred sorting order, character type, case conversion, and word-boundary information.

Table 1-1 lists the international resources, shows their resource types, and summarizes
their contents.

Table 1-1 The international resources

Name Resource type Content

International configuration 'itle! Configuration of the system script,
plus Script Manager flags, and the
region code for the system script

Script sorting "itlm! Tables showing sorting order and
mapping among script systems,
languages, and regions

International bundle 'itlb!' IDs of all required resources for a
script system, plus bit flags, default
language, and other settings

Numeric format 'itlo’ Number and currency formats, short
date and time formats, unit of
measurement for a script system, plus
a region code

Long-date format 'itll! Long date and time formats, names of
days and months for a script system,
plus a region code

String manipulation ritl2! Sorting routines, tables for character
type, case conversion, and word
boundaries for a script system

Tokens 'itl4! Tables and code for converting
characters to tokens and back in a
script system, and for formatting
numbers

Encoding/rendering 'itls! Tables for character rendering (for
1-byte script systems); tables for
character encoding (for 2-byte script
systems)

Transliteration 'trsl! Tables for phonetic conversion among
subscripts of a 2-byte script system

Writing Systems and Script Systems 1-41

1-42

CHAPTER 1

Introduction to Text on the Macintosh

International resources reside in the resource fork of the Macintosh System file. However,
not every installed script system requires a complete set of them:

m There is only one international configuration resource for each Macintosh System file,
and its resource ID is 0. It configures the system and defines the system script.

m There is only one script-sorting resource for each Macintosh System file, and its
resource ID is 0. It does not belong to any script system.

m Each installed script has one international bundle resource. Its resource ID is the script
code of the script system it implements.

m Each installed script system has one or more numeric-format, long-date-format,
string-manipulation, and tokens resources. Their resource IDs are in a range that
defines the script system they belong to; see Figure 1-35 on page 1-50.

m A script system may have one or more optional encoding/rendering and
transliteration resources.Their resource IDs are also in a range that defines the script
system they belong to.

A single script system may have multiple localized versions of its 'it10', 'it11",
'itl2', 'itl4', 'itl5', and 'trsl' resources, in order to represent different
languages or regional variations of the script. You can manipulate text in different
formats within that script system by switching among the multiple versions of the
resources. See “Installing Modifications to a Script System” beginning on page 1-103.

See the appendix “International Resources” in this book for more information on
international resources.

Keyboard Resources

The keyboard resources are a set of Macintosh resources that specify how keyboard input
is converted to text for a particular writing system, language, or region. The Event
Manager, the Script Manager, and the Menu Manager use the information in these
resources to convert keypresses to character codes, to switch input among different script
systems, and to display the icon of the current keyboard in the Keyboard menu. The
Resource Manager, the Event Manager and the Menu Manager are described in Inside
Macintosh: Macintosh Toolbox Essentials; the Resource Manager is described

in Inside Macintosh: More Macintosh Toolbox.

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Table 1-2 lists the keyboard resources, shows their resource types, and summarizes

their purpose.

Table 1-2 The keyboard resources
Name Resource type Content
Key map "KMAP' Maps hardware-dependent raw key codes to
hardware-independent virtual key codes
Key remap "itlk! Remaps some virtual key codes from certain
keyboards for use by some keyboard-layout
resources
Keyboard layout "KCHR' Maps virtual key codes to character codes;
represents the character set for a script system
Keyboard icons 'kcs#! Keyboard icon list for black-and-white icon
display in the Keyboard menu
'kcs4! Keyboard icon list for 4-bit color/gray-scale icon
display in the Keyboard menu
'kess8! Keyboard icon list for 8-bit color/gray-scale icon
display in the Keyboard menu
Keyboard swap "KSWP' Specifies modifier-plus-key combinations to let
the user change keyboard layout, keyboard script,
or input method
Key caps "KCAP' Determines keyboard display for a given physical

keyboard (in Key Caps desk accessory)

Keyboard resources reside in the resource fork of the Macintosh System file. Some are
script-related, but others are hardware-related and script-independent:

m There is only one keyboard-swap resource per Macintosh System file. Because it
specifies how to switch among script systems, it does not belong to any script system.

Its resource ID is 0.

m There is one key-map resource that supports most types of physical keyboards. Some
keyboards need their own key-map resource, in which case the key-map resource ID is
equal to the ID number of the keyboard it is associated with.

m There is one key-caps resource for each type of physical keyboard available. It is
independent of any script system. Its resource ID is equal to the ID number of the

keyboard it is associated with.

Writing Systems and Script Systems

1-43

1-44

CHAPTER 1

Introduction to Text on the Macintosh

m There are one or more keyboard-layout resources per script system. There are one or
more families of keyboard icon resources per script system (one per keyboard layout
resource or input method). The resource ID for each keyboard-layout resource is in a
range that defines the script system it belongs to; see Figure 1-35 on page 1-50. The
resource ID for each keyboard icon family is equal to the ID of its associated
keyboard-layout resource.

m There is one key-remap resource for each keyboard-layout resource that needs one. Its
resource ID is equal to the ID number of its associated keyboard-layout resource.

See the appendix “Keyboard Resources” in this book for more information.

Fonts

A font is not technically part of a script system. The script’s international bundle resource
does not have to specify any particular font resource IDs, and even if it does, their
presence is not guaranteed. Nevertheless, no script system can be used unless one or
more fonts accompany it.

A Macintosh font implements the character set and other written forms such as ligatures
for a given script system. Each font contains a particular set of glyphs that share certain
design characteristics. Those glyphs constitute a typeface, and the typeface has a name,
such as Times, Helvetica®, or Kyoto. A font may be a plain implementation of a typeface,
or it may be styled—such as bold or italic. (QuickDraw can also produce styled versions of
the characters of a typeface from a plain font.)

Glyphs in a font represent each of the characters of a character set. Additional glyphs
may be present to represent ligatures, and other contextual forms. In some fonts there
may be more contextual glyphs than character glyphs.

A font maps character codes to glyphs, and may contain tables that map special glyph
codes to the glyphs of contextual forms. When laying out and drawing text, the script
management system uses information in the font to convert character codes in memory
to a properly formatted series of glyphs on the screen or on the page.

Macintosh fonts are either bitmapped (meaning that each glyph is a single bitmap) or
outline (meaning that each glyph is a mathematical outline that is size-independent). A
bitmapped font contains a single set of glyphs at a fixed size, whereas one outline font
can produce glyphs of any size.

Fonts are either 1-byte—meaning that they have glyphs for 256 or fewer characters—or
2-byte, meaning that they can have glyphs for thousands of characters. The 1-byte fonts
represent character codes that are 1 byte long, and include all fonts of the Roman script
system. The 2-byte fonts represent character codes that are 1 byte or 2 bytes long, and
include fonts of the Chinese, Japanese, and Korean script systems. The script
management system supports 2-byte fonts, and can correctly handle mixtures of 1-byte
and 2-byte characters in text.

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Each font is a Macintosh resource. For ease of reference, fonts are grouped into font
families (resource type ' FOND'). Each family consists of all the available sizes and styled
variations of a single named typeface. For example, “Courier 10”7, “Courier 12 Italic”, and
“Courier Semibold” could be two bitmapped fonts and one outline font belonging to the
single font family “Courier”. Whenever you supply a font ID to a script management call,
itis the 'FOND' resource ID that you supply (unless you supply the special font
designators 0 or 1; see page 1-61).

As with other script-related resources, the ID numbers for fonts are in a range that
defines the script system they belong to. See, for example, Figure 1-35 on page 1-50. In
fact, the script management system relies fundamentally on font family ID to determine
the script system associated with any text that is to be manipulated or drawn.

See the section “Font Handling” beginning on page 1-60 of this chapter for more
information and programming suggestions involving fonts. See the chapter “Font
Manager” for more specific information on font structure and use. For more complete
information on both 1-byte and 2-byte TrueType fonts, see The TrueType Font Format
Specification, available from APDA.

How Script Systems Are Classified

Different kinds of script systems function differently. The previous section, “Components
of a Script System,” described the components of all script systems; this section describes
the different ways of classifying script systems. The following section, “How Script
Systems Work,” describes how to use script systems for your text handling needs.

Script systems are typed in general by the size of their character set and by their relative
similarity to Roman. The Roman script system is used widely in North America, South
America, Australia, Europe, and Africa, and in parts of Asia and Oceania. The Roman
script system is standard on all Macintosh system software versions 4.1 and higher, but
the Macintosh also supports all types of non-Roman script systems—simple or complex,
and with small or large character sets.

Script systems are individually classified by code numbers. Resources associated with a
script system have ID numbers that are related to the script’s code. Languages and
regional variations are subsets of script systems and have their own code numbers.

On an individual computer, more than one script system can be available at a time;
different scripts are classified by their function. The most important script system is the
system script; other script systems are secondary. The script system currently being used
for text display is the font script; the script currently being used for text input is the
keyboard script.

Note

Because the Roman script system is always installed, you can
always manipulate Roman text, no matter what other script
systems are present. &

Writing Systems and Script Systems 1-45

CHAPTER 1

Introduction to Text on the Macintosh

Types of Script Systems

Because of its historical support for the Roman writing system, and because Roman text
layout is fairly simple, the Macintosh computer most easily supports script systems that
are like Roman. Other script systems can add complications like right-to-left line
direction, contextual character forms, and large character sets.

As shown in Figure 1-32, script systems are divided into three groups, based on the size
of their character set and their relative complexity compared to Roman:

m The 1-byte simple script systems have character sets of 256 characters or fewer. They
are called 1-byte because their character codes are one byte long. They are called
simple because they are similar to Roman: they have a uniform left-to-right line
direction and are noncontextual. The 1-byte simple script systems support variations
within the Roman writing system and among Roman-like writing systems such as
differences of character set, keyboard layout, sorting order, word boundaries, and the
formatting of dates, times, and numbers. The 1-byte simple script systems include
Roman, Greek, and Cyrillic.

m The 1-byte complex script systems also have character sets of 256 characters or fewer.
They are complex because they may have left-to-right or right-to-left line direction,
and may be contextual. The 1-byte complex script systems support the more difficult
formatting required for bidirectional writing and the extensive use of ligatures, cursive
fonts, character reordering, and other contextual features. The 1-byte complex script
systems include Thai, Devanagari, Hebrew, and Arabic.

m The 2-byte script systems have character sets so large that most character codes
are two bytes long. The 2-byte script systems require sophisticated methods for
character input, as well as an independent font mechanism for display and printing.
The 2-byte script systems include Traditional Chinese, Simplified Chinese, Japanese,
and Korean.

1-46 Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-32 Types of script systems

Roman

/—>| Simple > Greek

Cyrillic

1-Byte | [

Hebrew

Bidirectional

Contextual

Devanagari
Bengali
Thai

@ Complex % Arabic

Japanese
2-Byte > Chinese
Korean

Figure 1-33 shows which parts of the Macintosh script management system are involved
in handling text from the different types of script systems:

m Roman text is handled with code and resources largely built into system software.

m Text of 1-byte simple script systems is handled with the same built-in Roman code and
resources, supplemented by minor additional resources such as alternate keyboard
layouts and fonts.

m Text of 1-byte complex script systems is handled by WorldScript I, which may use,
modify, or completely replace any of the built-in code. The complex 1-byte script
systems may replace much of the Roman resources with their own international and
keyboard resources and fonts.

Writing Systems and Script Systems 1-47

CHAPTER 1

Introduction to Text on the Macintosh

m Text of 2-byte script systems is handled by WorldScript II, which may use, modify, or
completely replace any of the built-in code. The 2-byte script systems may replace
much of the Roman resources with their own international and keyboard resources
and fonts; they also provide special input methods for text entry.

Figure 1-33 How the script management system handles different types of scripts

1-48

1 Roman script | 1-byte simple scripts Roman

| _routines [Greek
****** Cyrillic

Text
Managers 1-byte complex scripts Hebrew
WorldScript | Arabic
Devanagari

2-byte scripts Japanese
Chinese
Korean

WorldScript Il

Script Codes, Language Codes, and Region Codes

The Macintosh script management system accommodates the international differences
within writing systems by defining languages and regional variations for script systems,
and organizing them into a classified hierarchy. Script systems are identified by script
codes, languages by language codes, and regions by region codes. A spoken language
that may be written in more than one writing system is treated on the Macintosh
computer as several languages, each belonging to a different script system.

Three general concepts underlie the hierarchy of script, language, and region.

m A script system is often differentiated by its character encoding, the specification of the
characters that compose the writing system and their numeric representations.
Different character encodings usually have different script codes. (This is not always
true within the Roman script system; see “The Standard Roman Character Set” on
page 1-54.)

m Each language belongs to a particular script system. Every language code thus implies
a particular script code. Several languages may be associated with a single script
system; in such a case, they share the same character set.

m Aregion code designates an area that may be smaller or larger than a single country
(for example, French Swiss or Arabic), in which a specific variation of a single script
system and language is used. Each region belongs to a particular language. Several
regions may be associated with a single language. A region code typically represents a
localized version of the system software for a particular language in a particular
country or region.

Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-34 illustrates the script, language, and region hierarchy. Note, for example, that
the regions of France, Québec, and French Swiss are associated with the French language,
which is part of the Roman script system.

Figure 1-34 The script, language, and region hierarchy

Script Language Region
Russian Russia
Cyrillic
Azerbaijani Azerbaijan
Persian Iran
Arabic
Arabic Arabic world
Japanese Japanese Japan
France
French French Canada
French Swiss
Roman
United Kindom
English United States

9 { 1

You can use language codes and region codes to specify multiple subsets of the
international resources for a single script system. That way you can implement regional
variations to a writing system without having to create an entirely new script system
each time. See “Installing Modifications to a Script System” beginning on page 1-103.

See the chapter “Script Manager” in this book for a complete list of the constant names
that define the codes for all scripts, languages, and regional versions.

Script Codes and Resource ID Numbers

Each script system is assigned a unique script code. The script codes currently defined
are in the range 0-32, although the Script Manager can support 64 script systems at the
same time. All the resources related to a script system, including its fonts, have resource
ID numbers related in some way to the script ID:

m The resource ID number for a script system’s international bundle (' it1b') resource
is the same as the script code.

Writing Systems and Script Systems 1-49

CHAPTER 1

Introduction to Text on the Macintosh

m The resource ID numbers for most other resources associated with a script are in a
range specific to that script. You can use these ID ranges to determine the script system
associated with a font or other resource. Likewise, even when a font is missing, the
Font Manager can use the ID range to substitute a font of the same script.

0 For Roman (script code = 0), this range is 0-16383.

O Scripts with script codes in the range 1-32 have a range of 512 resource ID numbers
each. For example, the script code for Japanese is 1, so Japanese resources can
have any of the first 512 ID numbers beyond the Roman range, that is, 16384-16895.
The script code for Korean is 3, so Korean resources can have resource IDs in
the range 17408-17919.

Figure 1-35 illustrates the resource ID ranges for script systems with script codes between
0 and 32. The ranges for the Roman, Japanese, Chinese, Korean, and Devanagari scripts
are noted. A full table of resource ID ranges is provided in the appendix “International
Resources” in this book.

Note

The Script Manager provides routines for determining the script system
based on the value of a font family ID. &

Figure 1-35 Distinguishing scripts by resource ID range (for script codes 0-32)

Resource
ID Range Script code
0
L L} 0 (Roman)
16384
638 1 (Japanese)
16896 .
2 (Chinese)
17408 3 (Korean)
17920
20480 .
20992 9 (Devanagari)

IMPORTANT

The special font designators 0 and 1, although in the range of the Roman
script system, specify the Macintosh system font and application font,
respectively; they do not necessarily indicate a Roman font and the
Roman script system. See the section “Font Handling” beginning on
page 1-60 for more information. A

1-50 Writing Systems and Script Systems

CHAPTER 1

Introduction to Text on the Macintosh

The System Script and Auxiliary Scripts

A script system may be installed either as an auxiliary script (also called a secondary
script), which only provides support for a particular writing system, or as the system
script (also called the primary script), which is the script system associated with the
currently running version of Macintosh system software. The system script affects system
defaults such as the default font, keyboard layout, and primary line direction. The system
script defines which writing system is used for dialog boxes, menus, and alerts.
Therefore, most text displayed by the Finder and other parts of the system is in the
language of the system script.

The system script is specified in the System file’s international configuration (' itlc")
resource. All other script systems are secondary to the system script. In non-Roman
versions of system software, Roman is an auxiliary script.

Some versions of Macintosh system software, such as the Turkish or French, are

simply variations of the U.S. system software (which includes the Roman script system).
Their script system is a modified version of the standard U.S. Roman script system, and
they do not include a second script system. When a non-Roman script system is installed,
however, at least two script systems are always present. For example, the Japanese
system software is a combination of U.S. system software and the Japanese script system,
all of which are localized for Japan. Thus it contains both Roman and Japanese script
systems.

Font Script and Keyboard Script

In every version of Macintosh system software, the system script is always enabled and is
the principal script system for determining how text is presented and handled in the
Finder and other parts of system software. But if there are auxiliary scripts present, the
system script is not always the script system that controls text-handling.

The text-manipulation and drawing routines in the Macintosh script management system
work with individual character codes or strings of character codes, manipulating them or
converting them to glyphs. A character code by itself carries no identifier as to what
script system should be used to interpret it; the script management system uses other
information to decide what script system to use for presenting or processing a given run
of text.

Many of the routines use the script system associated with the font of the current
graphics port to perform their tasks. The font is specified by the txFont field of the
graphics port that is identified by the global variable thePort. The script system
associated with that font is called the font script. Therefore, to manipulate text in a given
script system, you typically first set the current port with a call to the QuickDraw
SetPort procedure, and then set the current font with a call to the QuickDraw
TextFont procedure, and then call the series of text-manipulation routines you need.
(For those routines that take a script code as an explicit parameter, you need not set the
current font before making the call.)

Writing Systems and Script Systems 1-51

CHAPTER 1

Introduction to Text on the Macintosh

Text input by the user involves the conversion of keypresses to character codes. Because
every script system has its own character set, the character codes produced depend
explicitly on the script system used for keyboard input. That script system is called the
keyboard script. It is not automatically the same as the script used for display of text;
your application must keep the keyboard script and the font script synchronized if
characters are to be displayed correctly as they are typed in. Synchronization of the font
script and keyboard script is further described on page 1-90 in this chapter and in the
chapter “Script Manager” in this book.

What is the “current” script?

As just stated, the font script is usually the script system that is used by a
script-aware text routine when the identity of the script or its resources is
not an explicit parameter of the call. However, if the font script is not
enabled, the routine uses the system script by default. Furthermore,
some script-aware routines may use the system script instead of the font
script, depending on the values of two Script Manager flags: the font
force flag and the international resources selection flag.

The font force flag, when TRUE, specifies that fonts with ID numbers in
the Roman range are to be considered as fonts of the system script rather
than Roman fonts. The international resources selection flag, when TRUE,
specifies that resources of the system script are to be used by those Text
Utilities routines that format dates, times, and numbers. The font force
flag is supported only by some non-Roman 1-byte scripts for special
purposes, and is typically FALSE. The international resources selection
flag is typically TRUE.

The font force flag and the international resources selection flag are
described in the chapter “Script Manager” in this book. &

How Script Systems Work

1-52

The previous sections, “Components of a Script System” and “How Script Systems Are
Classified,” described the organizational aspects of script systems. This section explains
how Macintosh script systems function in support of the world’s writing systems. It
discusses how script systems represent the multitude of characters in the world’s
languages, how they format and draw those characters in the context of surrounding text,
how they support user input of text, and how they handle text-manipulation such as
sorting and searching across many languages.

Character Encoding

Character encoding is the organization of the set of numeric codes that represent all the
meaningful characters of a script system in memory. Each character is stored in memory
as a number. When a user enters characters, the user’s keypresses are converted to
character codes; when the characters are displayed onscreen, the character codes are
converted to the glyphs of a font.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

There are two fundamental classes of character encodings supported by Macintosh
system software: 1-byte and 2-byte. A 1-byte encoding represents every character with a
1-byte number; a 2-byte encoding (actually a mixed encoding) represents characters with
either 1-byte or 2-byte numbers. There can be up to 256 characters in a character set that
has 1-byte encoding, whereas there can be over 28,000 characters in a character set that
has the currently supported 2-byte encoding. Roman and many other script systems use
1-byte encodings; Chinese, Korean, and Japanese script systems use 2-byte encodings.

The meaning of each character code is unique only within its script system. In an Arabic
font, the code $CC represents the character jiim, and in a standard Roman font, the code
$CC represents the character A. The traditional Chinese and simplified Chinese script
systems are two different script systems and use different character encodings; the
Chinese characters used in the Japanese and Korean script systems have still different
character encodings.

Much of a script system’s behavior, including sorting and composition rules for drawing
and measuring, is encoded in tables that rely on a particular order of character codes.
Therefore, the character encoding is fixed; it cannot be changed without significant
consequences. Ideally, each script system is consistent in its character encoding; all fonts
within a script system should have identical font layouts that reflect that encoding. This
is largely true, with the exception of some Roman fonts; Symbol font, for example, is a
Roman font but its glyphs are completely different from those of other Roman fonts.

The character set of a script system can include the characters of one or more subscripts.
A subscript is a portion of a script system that has its own character set and conventions
for use. Subscripts within the Japanese script system, for example, include the Katakana
and Hiragana syllabic characters. All non-Roman script systems include Roman as a
subscript. The parts of a script system’s character set that implement its natural writing
system are called native characters. In the Arabic script system, Arabic characters are
native and Roman characters constitute a subscript.

The Unicode standard

Unicode is an ISO standard for 16-bit universal worldwide character
encoding. It has been developed by a consortium that includes Apple
Computer, Inc. In the future, Unicode will replace individual script
systems’ character encodings with one complete 16-bit character
encoding applicable worldwide to all characters in all languages. The
script systems described in this book do not yet use Unicode encodings.

With a universal character encoding such as Unicode, the character sets
of separate writing systems do not overlap; there is no need to define
script systems, because each character code by itself determines which
writing system the character is part of. Furthermore, Unicode takes care
of the problem of conflicting character encodings within a single writing
system; for example, in Unicode, there is no overlap between Roman
character codes and the codes of the symbols in Symbol font. &

How Script Systems Work 1-53

1-54

CHAPTER 1

Introduction to Text on the Macintosh

The Standard Roman Character Set

The Apple Standard Roman character set is the 1-byte character encoding for the Roman
script system. It is the fundamental character set for the Macintosh computer, and is built
into every Macintosh throughout the world.

This character set (see Figure 1-36) uses all character codes from $00-$FF, and includes
uppercase versions of all of the lowercase accented Roman characters, a number of
symbols, and other forms. A complete set of glyphs for all characters is available in most
outline fonts, but not all characters are represented in the Apple bitmapped versions of
Chicago, Geneva, New York, and Monaco.

The Standard Roman character set is an extended version of the original Macintosh
character set, as described in Volume I of the original Inside Macintosh. It adds characters
with codes from $D9-$FF, which are empty in the original Macintosh character set. Like
the original Macintosh character set, the Standard Roman character set is an extended
version of the ASCII character set. The ASCII character set, sometimes called low ASCII,
is the traditional but limited character encoding for English-language computer systems.
It uses character codes from $00-$7F only, and includes uppercase and lowercase letters,
numerals, a few symbols, and a set of control (nonprinting) characters. The Standard
Roman character set includes all the ASCII character codes and adds the characters
(sometimes called high ASCII) with codes from $80-$FF.

The Standard Roman character set is implemented by the U.S. keyboard-layout resource
(type = 'KCHR', ID = 0) and other Roman keyboard layouts. The Standard Roman
character set and its sorting and formatting rules form a baseline which other

script systems adopt, modify, or replace as their needs align with or diverge from the
Roman conventions.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-36 The Standard Roman character set

Ox 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx
x0 |nul|de|sp|0 |@ | P plA|e |t |e|e¢|-|1|®
x1 [sohDC1l 1 11 A |Q|a|q|A|e]|°|x]|i]|— 0
x2|stxDC2| " |2 [B|R|b|r|C |1 |e¢|s|-]*" U
x3 etx[DC3| # [3 [c |Ss|c|s|E|i|g|=2]|Y y
x4 |eot(DC4| ¢ [4 D [T |d |t |N|T|§|¥|f| [%|U
x5 |eng|nak| % |5 |E |[U | e | u olil- | o= A
x6 |acklsyn| & |6 |[F |V | f|v|Uul|ln|g|la|Aa|=]|E]|"
x7 [belletb| " |7 |[G|W|g|wl|la|o|B|Z|<]|O|A]|"
x8 [bsfcan| ([8 |[H|X |h|x|a|o|® |Il|>» E |-
x9 [htfem|) l9 |1 |Y|i|y|la|o|® T VIE]| "
XA | If |sub| * JlzZ|j|lz|la|o |™/|[J |nbsp|/ |
xB|vtlesc| + | ; |K|[| k| {]|]a]|?d s |Ale [T]c
xC| ff|fs |, |<|L || 1|]a]u e A< |0 |
xDjcrjgs| - |=|M|] |m|}|gl|lul|#]|Q|]]|>]]I ”
XE | so | rs >IN | A |n|~|élu e || |0«
xF|si|us| /|2]0o| |oldel|e|i|@|o|ce|fl|O]

In Figure 1-36, note that each character code is represented by a two-digit hexadecimal

number. The first digit is determined by the column, and the second by the row. For

example, the character code for q is $A6 (from column Ax at row x6).

How Script Systems Work

1-55

1-56

CHAPTER 1

Introduction to Text on the Macintosh

Inconsistencies in Roman Character Encoding

For historical reasons, Roman character encoding has not always been consistent. The
Roman script system in particular contains many fonts with unique glyphs that are not
part of the Standard Roman character set. Since the character encoding is limited to 256
values, fonts such as Symbol, ITC Zapf Dingbats®, and other specialized fonts override
the standard Roman character encoding.

“u_ 1

For example, in the standard Roman character set $70 corresponds to lowercase “p”,

but it is the numeric symbol for pi (“n”) in the Symbol font, an outlined square (“(3”) in
ITC Zapf Dingbats, and the musical symbol pianissimo for play quietly in the Sonata font.
Hence, be aware that a Roman character code may have different interpretations in
different fonts.

Furthermore, different variations of the Roman script system can have slightly different
character encodings to allow for their slightly different character sets. This situation
occurs only in the Roman script system; other script systems have uniform character
encodings. The Roman character set and its variations are described in more detail in the
appendix “Built-in Script Support” in this book.

Other 1-Byte Character Encodings

All 1-byte simple script systems have character encodings that can be thought of as
simple substitutions for parts of the standard Roman character set. As noted previously,
some encodings, such as Croatian or Turkish, replace or relocate relatively few characters,
and are still considered Roman scripts.

Other encodings for 1-byte simple script systems, such as Central European or Cyrillic,
replace much of the high-ASCII range of the Standard Roman character set (code values
from $80 to $FF) with a different alphabet.

The 1-byte complex script systems replace the same general range of Roman characters as
do the 1-byte simple script systems, but they also define additional text forms in order to
accommodate extensive use of ligatures or other contextual variations.

For all 1-byte script systems, the character sets include the standard low-ASCII control
characters (code values from $00 to $1F) and Roman characters (code values from $20 to
$7F). This allows users to enter Roman text, including western numbers, without having
to switch script systems. It also allows applications to display low-ASCII Roman text
regardless of the font in the current graphics port. It also means that control characters
are interpreted as control characters in any script system. Figure 1-37 shows the general
scheme of character encoding for 1-byte script systems.

Those 1-byte complex script systems that need more contextual forms than can fit in the
high-ASCII range solve the problem through associated fonts and fonts with special
glyph codes, rather than by changing any of the low-ASCII character encoding. See the
discussion of associated fonts in “Font Handling” beginning on page 1-60.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-37 Character encodings for 1-byte script systems

Low ASCIl range High ASCIl range
(‘) ‘)
Ox 1x 2x 3x 4x 5x 6x 7x'"8x 9x Ax Bx Cx Dx Ex Fx
X0 |nul dle|sp 0 @ P |~ | p
x1 |soh|DC1l | |1 |A |Q | a| g
x2 |stx DC2| " |2 |B |R | b | r
x3 |etx DC3| # |3 |C | S | ¢ | s
x4 |eot DC4 ¢ ' 4 'D | T | d | t
XS | Control | * Roman Y € U Script-specific
X6 S.‘?d“ef. & chgrac?ers vy characters
X7 |bel jetb] * |7 |G W | g | w
x8 |bs can| (|8 H | X h @ x
x9 | htjem|) 9 || |Y y
XA If subf = - [y | Z j |z
xB| vt esc| + ; K || k| {
xC|ff s |, < L |\ (I
xD|c 95 - = M] m }
xE|SO S s N~ n| ~
xe|S US|, 2 o o del

2-Byte Character Encodings

Worldwide, the majority of script systems have character encodings that can fit within
the limits set by the size of a byte, which permits up to 256 distinct characters. However,
Asian scripts with ideographic characters, such as Chinese and Japanese, require
thousands to tens of thousands of characters. The Korean script system, which is not
ideographic, nevertheless requires at least 2,000 characters; furthermore, ideographic
Chinese-derived characters are often included in Korean text.

To define that many characters requires 2-byte character codes. The Macintosh script
management system is designed to handle 2-byte codes correctly. The use of script-aware
routines permits your application to handle text without having to know whether each
character code is 1 byte or 2 bytes, as long as the application allows for the possibility of
2-byte codes. Basically, that means not assuming that one byte equals one character, and
not breaking or truncating text in the middle of a 2-byte character.

How Script Systems Work 1-57

1-58

CHAPTER 1

Introduction to Text on the Macintosh

As with 1-byte script systems, the character encoding for each 2-byte script system
includes the standard ASCII control characters (code values from $00 to $1F) and the
low-ASCII Roman characters (code values from $20 to $7F) as a subscript. But in
addition, a 2-byte script system may include a second set of Roman characters with
2-byte character codes, and character encodings for several other subscripts besides that
of its native writing system. Figure 1-38 shows one example of a 2-byte encoding scheme.

IMPORTANT

2-byte scripts use a mixture of 1-byte and 2-byte encodings to represent
characters. You cannot use the terms byte and character interchangeably,
nor can you assume that every character is 2 bytes long. Obtaining
character-type information about characters is discussed in the chapter
“Script Manager” in this book. A

Japanese

Japanese is one of the most intricate writing systems in the world, containing four
individual subscripts: Romaji (alphabetic Roman letters), Katakana and Hiragana
(syllabic characters), and Kanji (ideographic characters). For example, the word Japan can
be written in these four ways, as

Romaji,
Nihon
Katakana,
oy N
Hiragana,
(i3 A
or Kanyji:

H7<

Romaji, Katakana, and Hiragana each have relatively few characters, but a minimal set of
Kanji contains over 3,000 characters.

The Japanese character encoding can be thought of as an extension of a typical

1-byte character encoding. Control codes and low-ASCII Roman characters are in

the range $00-$7F; script-specific 1-byte characters and the first bytes of 2-byte characters
are in the range $80-$FF. Additional 256-byte tables contain the second bytes of the 2-byte
characters.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-38 Character encoding for a 2-byte script system (Japanese)

x0
x1

x2
x3
x4
x5
x6
x7
x8
x9
xA
xB
xC
xD
xE

xF

First byte or single byte

Low ASCIl range High ASCII range Second byte
‘ !

(ox 1x 2x_3x_4x_5x_6x 7x8x 9x Ax Bx Cx Dx Ex Fx| Ox_1x_2x_3x 4x_5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx
x0 1
x1
x2
x3
x4

Control| 1-byte Roman 1-byte x5

codes characters Katakana "

characters
and X7
punctuation 8

x9

xA

xB

xC

xD

xE

w [

High-order byte of Low-order byte of
2-byte characters |:|

2-byte characters

In Figure 1-38, each 2-byte character code is represented by a four-digit hexadecimal
number. The first two digits (the high-order byte) come from the First byte table, and
specify which of the many Second byte tables contains the character. The second two digits
(the low-order byte) come from the appropriate Second byte table. For example, the
character code for H is $93FA (from column Fx at row xA in the Second byte table whose
location is specifed by the value at column 9x at row x3 in the First byte table).

Chinese

The Macintosh script management system supports two separate Chinese script systems:
Simplified Chinese and Traditional Chinese. Simplified Chinese consists of
approximately 8,000 ideographic characters, about 2,000 of which have been simplified
from their traditional presentation for ease of learning. Traditional Chinese consists of
approximately 13,000 of the traditional Chinese ideographic characters, called Hanzi.

Simplified Chinese and Traditional Chinese use incompatible character encodings; the
same character may have different character codes in the two scripts.

How Script Systems Work 1-59

CHAPTER 1

Introduction to Text on the Macintosh

Korean

The Korean script system is based on characters of the Hangul subscript, devised in 1443.
Chinese characters, called Hanja, are often mixed with Hangul, but their use is gradually
declining. The Korean Standard Hangul Coding Scheme for Communications (KS5601)
defines 2,350 Hangul characters for Korean writing, which form the basic character set of
the Korean script system.

Hangul characters are syllabic blocks composed of component elements called Jamo.
Jamo can be simple or double consonants and vowels. There are 24 simple Jamo elements
and 27 double elements.

The first sound in a Hangul block is a simple or double consonant, the second is a simple
or complex vowel, and the third (optional) sound is a simple, double, or complex
consonant. Figure 1-39 shows an example. Each Hangul character (on the right) can have
two or three elements (first sound and middle sound, plus optional last sound).

Figure 1-39 Constructing blocks (Hangul) from elements (Jamo) in Korean

1-60

s + F =3}
shev =g
%]‘ + ‘- => 3.b

| 54

7 + - => [}

U]-+'|_, =}

des -5
]

ol -

Font Handling

As discussed under “Fonts” on page 1-44, a Macintosh font provides a specifically
designed set of glyphs that implement the character set and other written forms that
belong to a given script system. Fonts can be classified as 1-byte and 2-byte, and as
bitmapped or outline. Some fonts provide plain (unstyled) glyphs, whereas others
provide styled variations, such as bold or italic. This section summarizes some of the
basic font issues to keep in mind when working with text, and especially multiscript text.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Font Availability and Selection

You cannot display text in a given script system without a font for that script system. A
font is available only if its file resides in the Fonts folder within the System Folder, or if its
resources are installed in the System file itself.

In terms of font availability and font selection for text, remember these points:

m The script management system uses font family ID (the ID number of the font resource
of type ' FOND') to refer to fonts. That is the ID you supply as a parameter to
text-handling calls. However, do not store font family ID numbers in your text files;
store font names instead, and redetermine the ID numbers at run time with Font
Manager calls. Font family IDs are not unique, and the system can renumber fonts
between executions of your application.

m Every font family has an ID number in a range that identifies the script system it
belongs to. Identifying the font family used to write text is equivalent to identifying
the script system of that text. See Figure 1-35 on page 1-50 for an illustration of
resource ID ranges. A text string in a font with a font family ID of 200 is interpreted as
Roman text, while the same text string in a font whose ID is 17000 is interpreted as
Chinese text and displayed accordingly. You can use the Script Manager to convert
font IDs into script codes.

m Because the script management system uses the font associated with a given range of
text to determine the script system of that text, store your text in such a way that, for
each run of text, you track the font to be used to display it.

m Because the script system can be determined from just the font family ID, the Font
Manager can use that information to substitute a font of the proper script system, even
when an entire font family is missing.

m Because the Roman script system is present in all Macintosh systems, at least two
Roman fonts are always available: 12-point Chicago and 12-point Geneva.

System Font and Application Font

Macintosh system software recognizes two special fonts that should always be present:
the system font and the application font. The system font is the font used for menus,
dialog boxes, and other messages to the user from the Finder or Operating System. The
application font is the suggested default font for use by monostyled TextEdit and by
applications that do not support user selection of fonts. In all unmodified Roman
versions of Macintosh system software, the system font is 12-point Chicago and the
application font is 12-point Geneva.

In all localized versions of Macintosh system software, whether Roman or not, the system
font has a special font designator of 0, and the application font has a special designator of 1.
These special designators are not actual font family resource ID numbers and cannot be
used as such in Resource Manager calls; however, you can use them in place of a font
family ID in the txFont field of the graphics port, and in text-related calls that take a
font family ID, such as Font ToScript. The system maps the special designators to the
actual font family IDs for the system font and application font. You can use the Font
Manager to determine the actual ID numbers of the system font and application font for
any system script.

How Script Systems Work 1-61

1-62

CHAPTER 1

Introduction to Text on the Macintosh

Remember these points about the system font and the application font, in relation to
Chicago font, Geneva font, and the special designators:

m On localized versions of system software in which the system script is Roman, Chicago
is the system font and it has a font family ID of 0. The special designator 0 also refers
to Chicago font.

m When the system script is non-Roman, Chicago has a different font family ID (usually
16383), and the special font designator 0 refers to the system font for the non-Roman
system script. On system software in which Japanese is the system script, for example,
a value of 0 in the txFont field means the Osaka font, which has a font family ID
of 16384.

m When the system script is Roman, Geneva is the application font and it has a font
family ID of 3. The special designator 1 also refers to Geneva font.

m When the system script is non-Roman, Geneva has the same font family ID of 3, but
the special font designator 1 refers to the application font for the non-Roman system
script. On system software in which Thai is the system script, for example, a value of 1
in the txFont field means the Thonburi font, which has a font family ID of 26625.

m The actual font family ID of the system font is specified in the low-memory global
variable SysFontFam; the actual font family ID of the application font is specified in
the low-memory global variable AppFont ID. You can get the actual font family ID of
the system font or the application font by making Font Manager calls; see the chapter
“Font Manager” in this book. You can also get the actual font family ID of the
preferred system font or application font for a script system by making Script Manager
calls; see the discussion of script variables in the chapter “Script Manager” in this
book.

Perhaps the most common mistake developers make in adapting their applications to
global markets is to assume that the application font is always Geneva. Do not assume that
different script systems have the same system and application fonts.

Roman Characters and Associated Fonts

All Macintosh script systems include the low-ASCII Roman characters and control
characters as part of their character sets. Most non-Roman fonts provide glyphs for those
low-ASCII Roman characters. If the font itself does not contain those characters, the script
system substitutes characters from an associated font—a Roman font that is associated
with that script system—for character codes (mostly in the low-ASCII range) that the
script system determines are Roman. Some contextual script systems must use associated
fonts because they need more glyphs than can fit into the high-ASCII range normally
available for native glyphs.

Note

A script system specifies the associated font for its system font and
application font, but may allow the user to select a single Roman font to
associate with all other fonts of the script system. &

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

In most cases your application does not have to account for associated fonts; glyphs from
the associated font are substituted automatically when you draw text that contains
Roman characters. However, keep in mind that font measurements (such as the results of
the GetFont Info and FontMetrics procedures) always account for the width and
height characteristics of both the current font and the associated font. This can sometimes
cause unexpected results, such as a line height that is greater than the current font’s
expected line height. The GetFont Info procedure is described in the chapter
“QuickDraw Text” in this book; font measurement and the FontMetrics procedure are
further described in the chapter “Font Manager” in this book.

There are several other issues to keep in mind related to Roman characters and
Roman fonts:

m Remember that the presence of Roman glyphs in displayed or printed text does not
necessarily imply that they were created with a Roman font. The Text Utilities can help
you locate Roman characters in a text buffer and explicitly change them to the Roman
script system, if you wish.

m Asnoted on page 1-56, the Roman script system does not have a consistent character
set across all fonts. For example, character codes in the Symbol font map to different
glyphs from the same character codes in the Geneva font. Conversely, identical
symbols can have different character codes in different fonts. The division sign () is
located at $D6 in the Helvetica font and $B8 in the Symbol font.

m Inconsistent character codes for symbols other than letters and numbers can also be a
problem across script systems. For instance, in the Roman script system the division
sign (+) is located at $D6 in most fonts, whereas in the Arabic script system the
division sign (=) is at $9B.

Other Font Issues

In general, when drawing text, you set the font characteristics before you make a call, and
the script management system makes sure that the font you specify is used. However,
there are some issues and complications to keep in mind:

m If a particular size or styled variation (such as bold or italic) of a font is not available
on the computer, the Font Manager can scale an existing size and QuickDraw can
apply a style to an existing plain version of a font. Certain styles may be disabled in
scripts where they are inappropriate. You can use the Script Manager to determine all
of the valid styles for a given script system.

m The setting of the font force flag is controlled by the user when a script system that
supports it is the system script. If the font force flag is TRUE, text written with a Roman
font is considered instead to be text of the system script; any character codes
corresponding to native characters of the system script are drawn in the system font
rather than in the specified Roman font. If you do not want that to happen in your
application, you must monitor the state of the font force flag and change it temporarily
whenever necessary.

m The font force flag exists to permit multiple-language support by applications that
expect a single font. It is only a partial solution to the problem. Do not hardcode your
application to require any single font.

How Script Systems Work 1-63

1-64

CHAPTER 1

Introduction to Text on the Macintosh

m If your application needs to have a font whose characters should never be interpreted
as system script characters (for example, symbol fonts used for paint program
palettes), you can assign the font an ID in the reserved range $7E00 to $7FFF
(uninterpreted symbols) rather than in the Roman range. Then, even if the font force
flag is set to TRUE, your symbols are not re-interpreted as system-script characters.

m When displaying characters as they are typed in by the user, you must make sure that
the font for text display belongs to the same script system that is used for text input.
See “Font Script and Keyboard Script” beginning on page 1-51.

m Many fonts—particularly those associated with non-Roman writing systems—do not
draw legibly unless they are at least 12 point. However, you cannot assume that the
system font size is always 12 point. Use QuickDraw, Font Manager, and Menu
Manager calls to get the default size for the system font, default size for the current
font, and required menu bar height for the system font.

m Do not assume that the application font exists in a 9-point size. Use the Script Manager
to determine the application font family and size for legible small text.

m Diacritical marks (such as the acute accent over the “E” in “Ecole”) may extend above
or below the normal limits for character height. The Font Manager allows you to either
extend the spacing between lines or shrink the marked characters to make sure that
the characters are not cut off at the top or bottom.

m If you use your own menu-definition (' MDEF ') resource to draw a Font menu in your
application, be sure it can draw all font names correctly. It should use the font itself, or
a font of the same script system, to display the font name. See the Menu Manager
chapter of Inside Macintosh: Macintosh Toolbox Essentials for more information on
creating menus.

m A 2-byte font can be very large; outline fonts for 2-byte script systems can contain
single resources over 6 MB in size. Large numbers of 2-byte fonts can be a storage
problem for the user. Furthermore, because the Resource Manager limits the size of a
file’s resource fork to 16 MB, it may be difficult to include 2-byte fonts with your
application or document files.

Character Rendering and Text Display

The process of properly preparing characters for display is called character rendering.
When QuickDraw draws a character, string, or line of text, it takes the stored character
codes you supply it and processes them if necessary to take into account line direction,
contextual substitution, or character reordering. It uses the rules of the font script (the
script system of the current font of the active graphics port) to make these calculations.
QuickDraw then gets the glyphs for the resulting characters from the Font Manager, and
draws the glyphs in order on the screen, starting at the current pen location.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

IMPORTANT

A fundamental assumption of the Macintosh script management system
is that contextual analysis, character reordering, and the formation of
ligatures should occur during the display of text, not its storage. That way
the stored version of text can be much simpler; it contains only the basic
characters of its writing system. Searching and other text-manipulation
tasks are much more straightforward that way. It is the Macintosh script
management system that has the job of handling differences between
storage order and display order, and differences between stored codes
and displayed glyphs. a

The 1-byte simple script systems and all 2-byte script systems currently have no
individual character-rendering specifications; QuickDraw’s built-in ability to draw
characters sequentially in a given font, style, and size is sufficient.

The 1-byte complex script systems carry character-rendering information in line-layout
tables in their encoding/rendering (' it15') resources. WorldScript I performs the
rendering based on specifications in those tables.

The section “Features of the World’s Writing Systems” beginning on page 1-21 shows
examples from writing systems that require the kinds of rendering abilities provided by
the Macintosh script management system. Your application should not have to explicitly
perform any of these tasks; you merely store character codes, and the script management
system renders those characters properly whenever you need to display them.

Storage Order and Display Order

QuickDraw draws glyphs and lines of text from left to right only. This left-to-right
orientation of QuickDraw is fundamental, and applies whether or not the text being
drawn is meant to be read left-to-right or right-to-left. Each character is drawn with its
origin (usually its left edge) placed at the current pen location, and after it is drawn
QuickDraw moves the pen location rightward by the width of the glyph. Likewise, when
QuickDraw draws a string of text, it keeps advancing the location as it draws, so that the
pen location ends up at the right end of the string.

Display order is this left-to-right order in which QuickDraw draws glyphs on a display
device. For example, QuickDraw draws a string of Hebrew text in reverse order from

the way the string is read: the glyph for the last (= leftmost) character in the string is
drawn first, and the glyph for the first (= rightmost) character in the string is drawn last.
Figure 1-40 is an example showing a line of mixed Arabic and Roman text. The glyphs are
drawn as shown, from left to right in the sequence labeled Display order, even though the
primary line direction is right-to-left.

How Script Systems Work 1-65

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-40 Storage order and display order

Character
codes
Byte
offsets Characters

0| $E5 |
$c7 ||
$D1
$E3
$28
$41
$72
$61
$62
$69
$63
11| $29
12 | $CF
13 | $EA
14 | $E1
15 | $D3

—_

Primary line direction = right to left

0

9 10 11 12 14 15

MJ (Arabic)u‘ Lo

Storage 14 13 12 4
order

Display
order

O O 00 N o o~ W N

(i(wxc\uvﬁ""cfﬁi"*>"\(..._k,

Storage order is the sequence of character codes in memory. The Macintosh script
management system assumes that your application stores characters in the order in
which they would be typed in—that is, with the first character code in a string at a lower
address than subsequent character codes in that string. Storage order is different from
display order for text with a right-to-left line direction.

In Figure 1-40, for example, the line of numbers labeled Storage order shows the byte
offset in the buffer of the character for each glyph. Note that the glyphs for the Hebrew
characters are drawn in reverse sequence from the order in which they are stored,
whereas the glyphs for the Roman characters are drawn in the same sequence as their
storage order.

If your application stores its text in the expected storage order, the script management
system properly orders all characters within each style run that you draw.

Storage order can differ from display order not only in the sequence of individual
characters within a run of text, but also in the order in which entire runs of text are drawn
on the screen. See Figure 1-41 on page 1-67 for an example. If multiple scripts with
different line directions occur on a single line, determining the order in which to draw the
individual runs can be complex. The Macintosh script management system helps you
with that determination; see the discussion of the Get FormatOrder procedure in the
chapter “QuickDraw Text” in this book.

1-66 How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Line Direction and Alignment

Writing systems exist with several different line directions, as shown in Figure 1-14 on
page 1-24. The Macintosh script management system supports two of them: left-to-right
(used for Roman and most other writing systems), and right-to-left (used for Arabic and
Hebrew). As noted earlier in this chapter, Arabic and Hebrew systems are considered
bidirectional rather than purely right-to-left because numbers and commonly intermixed
foreign words are written from left to right. And although Japanese and Chinese are
traditionally written vertically, the Japanese and Chinese script systems currently support
only a left-to-right line direction.

The Macintosh script management system supports multiscript text, including text with
mixed directions, in a single line. The layout, measurement, and drawing routines can
help you correctly render text—even justifed text—from multiple script systems.

Primary Line Direction

When text with different line directions is mixed on a single line, the primary line
direction is the principal, controlling direction for display of that text. The concept

of primary line direction is important because it affects the order in which text elements
are drawn. For example, suppose a block of Hebrew text follows (in storage order) a
block of Roman text. If the primary line direction is left-to-right—equivalent to

saying that the Hebrew text is embedded within a line of Roman text—the Hebrew text is
drawn after and to the right of the Roman text. If the primary line direction is
right-to-left—equivalent to saying that the Roman text is embedded within a line

of Hebrew text—the Roman text is drawn after and to the right of the Hebrew text.
Figure 1-41 illustrates the concept.

Figure 1-41 How primary line direction affects display order

Character

Byte codes

offset Characters Primary line direction
0| $41 [A
1] s |B ABC)1N
2| $43 |C
3| $E0 |N Primary line direction
MR DJANABC
5| $E2 [)

Your application controls the primary line direction of its text by specifying it in
parameters to certain text-layout calls such as the QuickDraw Get FormatOrder
procedure. You can set your primary line direction independently of any system settings,
but TextEdit and many text-processing applications tie their primary line direction to the
current value of the system direction.

How Script Systems Work 1-67

1-68

CHAPTER 1

Introduction to Text on the Macintosh

The system direction is a global setting, used by all parts of system software to control
the alignment of text elements in dialog boxes, menus, and so on. TextEdit sets the
primary line direction of its text to the system direction. Some script-aware routines
assume that the primary line direction for the text they manipulate is equal to the system
direction; see, for example, the description of the CharToPixel function in the chapter
“QuickDraw Text” in this book.

System direction is determined by the value of the low-memory system global variable
SysDirection. At startup, SysDirection is initialized to the line direction specified
by the system’s international configuration ('it1lc') resource. That value is commonly
localized to correspond to the primary line direction of the system script, but if a
bidirectional script system is enabled the user can control the system direction from the
Text control panel; see “User Control of Script Settings” beginning on page 1-107.

Your application (and other applications) can also control the system direction with
Script Manager routines. Do not simply assume a value for system direction.

The right-to-left primary line direction of bidirectional script systems has several
further implications for program design. In working with bidirectional text, remember
these points:

m Characters are read from right to left. Numerals are read from left to right. A word
processor must therefore implement two sets of tabs and two ruler directions.

m Mathematical expressions are read from left to right in Hebrew and from right to left
in Arabic. If in Hebrew one writes “6 + 4 = 10”, in Arabic the same expression in the
same order would be written “10 =4 + 6”.

m The concepts of leading edge and trailing edge of a glyph are important for
mouse-down event testing, caret positioning, and highlighting. In left-to-right text, a
glyph’s leading edge is its left edge; in right-to-left text, a glyph’s leading edge is its
right edge. See “Caret Handling” beginning on page 1-74.

m Some punctuation marks and numerals from the Standard Roman character set are
duplicated at different locations in bidirectional character sets in order to account for
this. For example, the exclamation point (!) is at $21 in the Standard Roman character
set, but Hebrew and Arabic add a second, right-to-left version of it, at $A1.

m Despite the fact that a single style run in a bidirectional script system can contain two
directions of text, your application can treat it as a unit. See the note on bidirectional
style runs on page 1-71.

Alignment

Alignment is the horizontal placement of lines of text with respect to the left and right
edges of the text area or page. Text is typically left-aligned, right-aligned, centered, or
justified—aligned to both the left and right margins. See Figure 1-15 on page 1-25.

A script system’s default text alignment usually follows its line direction. The system
global variable SysDirection, which controls line direction, also controls the default
alignment for text and other items in dialog boxes, alerts, and menus. For example, in
Arabic system software (and in applications localized to the Arabic script system) menu
items are right-aligned, and radio buttons and checkboxes are modified so that the boxes
or buttons themselves are on the right. The user controls the system alignment by

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

controlling the system direction with the Text control panel. See “User Control of Script
Settings” beginning on page 1-107.

TextEdit uses the value of SysDirection, to set the default alignment for text in
its windows.

You should anticipate that right alignment might occur in your application’s text
elements. Be sure to allow for it:

m Do not assume that, once you have measured the length of a line of text, you can
always place it at the left margin. For right-aligned text, you need to indent the pen
location from the left margin by an appropriate amount so that the right end of the text
line falls on the right margin.

m Do not allow a text item in a dialog box to extend to the right of the dialog-box
boundary; the right edge of a line of text in that item will be truncated if text is
right-aligned. See Figure 1-42 for an illustration of this.

Figure 1-42 Dialog items truncated at dialog-box boundary

Static text

Static text Dialog item should
: not extend to the

Static tent right of dialog-box
boundary

[Eancel][0K]

m When creating a column of checkboxes or radio buttons, make the text boxes all the
same length. This ensures that when the line direction and alignment are reversed, the
checkboxes or radio buttons remain correctly aligned.

If you are specifically formatting right-aligned text in a bidirectional script system,
remember these additional alignment issues:

m Text is typically right-aligned. It breaks near the left margin and continues at the right
margin of the following line. However, the “last” character on a line is not always the
leftmost; see, for example, Figure 1-27 on page 1-31.

m Headers, footers, and footnotes are typically right-aligned.
m In a table or list, the first column is the rightmost.
m Line indentation is measured from the right margin.

m Odd pages are on the left in a book, and even pages are on the right. The inside front
cover is on the right when a book is opened, and page 1 is on the left.

How Script Systems Work 1-69

1-70

CHAPTER 1

Introduction to Text on the Macintosh

Justification

Justified text, which is aligned to both the left and right margins of the text area,

is a special form of alignment that poses particular challenges to multiple-language
formatting. The Macintosh script management system provides an entire set of routines
for measuring, laying out, and drawing lines of justified text. See, for example, the
descriptions of the Port ionLine and DrawJustified routines, and the discussions
of measuring and drawing lines of justified text in the chapter “QuickDraw Text” in
this book.

Style Runs, Font Runs, Script Runs, Direction Runs

When QuickDraw draws a character or string of text, it examines the current graphics
port record to determine how the text should be drawn. The font (and therefore the script
system), the point size, and the style of the text are all determined by fields in the current
graphics port.

This feature of QuickDraw has several consequences. First, it means that you must be
sure to set the graphics port fields properly before calling QuickDraw. Second, it means
that each call to QuickDraw must be restricted to a run of text that has uniform values for
all those fields.

This finest division of the runs of text in your document is called a style run. A style run
comprises the set of contiguous characters that all share the same font, size, and style
characteristics. Because they share the same font, they naturally share the same script
system. The style run is the most important organizational unit for script-aware text handling,
and your application should always maintain style-run information for all its text. For
many script-aware calls, you first set up the graphics port record appropriately and then
make the call, passing it a single style run of text (or even less than a single style run, if
the style run spans more than one line of text).

A larger division than style run is the font run; it consists of those characters that share
the same font (and therefore the same script), but do not all share the same size or style
attributes. You need not reset the txFont field of the graphics port between calls that
involve text within a single font run.

The next larger division is the script run; it consists of all contiguous characters that
belong to a given script system, regardless of their individual fonts. Within a script run,
all the text’s formatting and text-manipulation specifications are constant; there is no
need to load different resources or validate the existence of another script system
between calls involving a single script run. If your application does not support multiple
script systems, all of your text is a single script run.

The largest division is the direction run. A direction run consists of all contiguous
characters with the same line direction, regardless of what script system they belong
to. (However, see the note on bidirectional style runs page 1-71.) Within a direction
run, the display order of characters and style runs has a very simple relation to their
storage order. If all of your text consists of a single direction run, your text-layout tasks
are simplified.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-43 shows a line of text and its separation into style runs, font runs, script runs,
and direction runs.

Figure 1-43 Style runs, font runs, script runs, and direction runs in text

text: small Large g,ad-z-” MI1Y Hebrew Nihongo kIEH

Direction run — B -
Script run Roman Arabic Hebrew Roman Japanese
) Ryobi Hon
Font run Times Baghdad | Ramat Gan Geneva New York Mincho

Style run Times Times Baghdad | Ramat Gan | Geneva 10 New York Ryobi Hon
10 14 16 16 italic 10 Mincho 10

Runs of Roman characters in text of a non-Roman script system are ot necessarily
considered separate style runs, and may be displayed (as Roman characters) in the
non-Roman font of that script system. For greater formatting control, however, you may
want to explicitly separate out those Roman characters into style runs of their own. You
can use a Text Utilities routine to do so.

Bidirectional style runs

Bidirectional script systems have a unique concept of a style run.
Numerals and Roman characters in a bidirectional style run have a
different direction from the rest of the native text, but your application
needn’t consider them as separate style runs. The script management
system handles all the special formatting, highlighting, and character
location for you in these cases, so you can treat such a mixed-direction
sequence just as you would any other single style run.

Text Layout

Laying out lines of text—calculating how many characters fit on a line, determining the
order of drawing of all the elements, performing all contextual formatting, and drawing
the text—is a standard task in word processing. It can be a challenging task in a single
language, but it is especially difficult to write a text-layout routine that is general enough
to work with text in any script system. Even more complex is the laying out of text from
several script systems in a single line. Add to that the complications of trying to draw
justified lines of multiscript text, and the task can appear daunting.

The Macintosh script management system includes several groups of routines that ease
the task by helping you write very generalized text-layout code that can handle
multiscript lines of text, and can even justify those lines appropriately for the script
systems involved. Routines from the Script Manager, the Text Utilities, and QuickDraw
cooperate to analyze, arrange, format, measure, and draw the text.

How Script Systems Work 1-71

1-72

CHAPTER 1

Introduction to Text on the Macintosh

There are two main principles that control how text layout occurs on the Macintosh:

m There is no system support for layout of more than a single line at a time. You are
responsible for knowing where in memory your line starts and where on the screen to
start drawing it.

m (Nearly) all text-layout routines operate on a single style run at a time. Therefore, to
handle text with potentially multiple styles or scripts on a single line, you may need to
call a routine repeatedly, once for each style run on the line.

Therefore, if a syle run extends beyond the boundaries of the current line, you call

the routine for only that portion of the style run that is on the line. The part of a style run
that exists on a single line is called a text segment in the chapter “QuickDraw Text” in
this book.

In general, text layout involves taking the following steps, in order, for each line you
intend to draw:

1. Starting with the buffer location of the first character on the line, and knowing the
width of your display line in pixels, calculate the byte offset of the character at which
to break the line. There are several ways to do this, using both QuickDraw and Text
Utilities routines. The routines give proper results for any script system.

2. Determine the order in which to draw the individual style runs on the line, using a
QuickDraw routine. If the line contains mixed-directional text, the left-to-right order in
which you draw style runs may not be the same as the order in which they occur in
memory. See, for example, Figure 1-41 on page 1-67.

If you are drawing justified text, take these additional steps:

0 Eliminate trailing spaces at the end of the rightmost or leftmost (depending on the
primary line direction) style run on your display line, so your justified text will line
up properly. You can use a QuickDraw routine for this purpose (remember that a
space character may not have the ASCII value $20 in a non-Roman script system).

0 Calculate the slop value, the extra amount of space that needs to be distributed
throughout your line of text. Do that by measuring the total pixel width of all the
style runs on the line and subtracting that from the display line width.

0 Calculate how to distribute that slop value among the style runs on your line, using
a QuickDraw routine.

3. Position the QuickDraw pen both vertically and horizontally. The horizontal position
must be at the left end of the text to be drawn on the line, regardless of the primary
line direction. The vertical position is your responsibility; if you are drawing multiple
lines in sequence, you can use QuickDraw or Font Manager routines to obtain
font-height information to help you position the pen.

4. Draw the text, a style run at a time, using QuickDraw calls. For justified text, pass the
amount of slop you calculated for each style run when you call the drawing routine for
that run.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

You can also use QuickDraw and Text Utilities calls to draw explicitly scaled multiscript
text, in which the character are enlarged, shrunk, or distorted from their normal shapes;
and you can even draw justified, scaled, multiscript text. For more information on text
measurement and drawing, see the chapter “QuickDraw Text” in this book. For more
information on line breaking, see the chapter “Text Utilities” in this book.

Remember these points when laying out and drawing lines of text:

There are tables available that help you measure text before drawing it. The global
width table is a table constructed in memory every time FMSwapFont is called; it can
be used to calculate the pixel width of each glyph in a font, and it is helpful in
determining line lengths. Each font family resource may have an optional width table
with normalized glyph widths. Bitmapped fonts have tables that give the actual
integer widths for their glyphs. For more information on these tables and on the
FMSwapFont call, see the chapter “Font Manager” in this book.

Don’t break text into arbitrary chunks before formatting it for display: the second byte
of a 2-byte character can be lost, or improper contextual formatting can result. If you
need to truncate the displayed text at a location that is not a style run boundary or a
valid line break or word boundary, use the QuickDraw clipping facility rather than
truncating the string.

Roman characters within style runs of a non-Roman font may display better if
converted to the Roman script system and formatted as Roman text. You can use the
Text Utilities to locate sequences of such characters.

If you are measuring the pixel width of a line of text before drawing it, keep these
cautions in mind:

Do not assume that a glyph for a given character code always has the same

width. With certain scripts, using the Font Manager global width tables may give
inaccurate results. The QuickDraw text-measuring routines return correct results for
all script systems.

Do not assume that specifying a fixed-width font in a graphics port always produces
monospaced text. For example, the printed versions of some glyphs in some
fixed-width fonts (such as “®” in Courier) have widths different from other glyphs in
the font. Furthermore, when the Script Manager font force flag is set, the user might,
for example, insert a wide Japanese character within a line of Monaco text. See the
description of the font force flag in the chapter “Script Manager” in this book.

Some characters, such as diacritical marks, may have zero width. A zero-width
character should never be divided from the previous character in the text when you
partition text. When truncating a string to fit into a horizontal space, the correct
algorithm is to truncate from the end of the string toward the beginning, one character
at a time, until the total width is small enough. This prevents cutting text before a
zero-width character. You can also call Text Utilities functions to perform the
truncation correctly.

How Script Systems Work 1-73

1-74

CHAPTER 1

Introduction to Text on the Macintosh

m Do not set the chExtra field of the graphics port to a nonzero value with text
containing connected glyphs or text that may include zero-width characters.
Diacritical marks are placed incorrectly in relation to their base characters, and
connected glyphs have white space inserted improperly, like this:

chExtra=0 chExtra honzero

s s2oall
fe= fe=zt

Caret Handling

By standard word-processing convention, the selection range is the sequence of zero or
more characters—contiguous in memory—where the next editing operation is to occur. A
selection range of zero characters is called an insertion point.

Highlighting a selection range and marking the insertion point both involve converting
offsets of characters in a text buffer into pixel positions on a display device. In multiscript
text, expecially text that has mixed line directions and contextual formatting, this can be a
complex task.

The Macintosh script management system provides a routine that helps you draw carets
properly for text in any combination of script systems. The QuickDraw function
CharToPixel returns the onscreen pixel position corresponding to a given offset in your
text buffer. The function returns the horizontal offset (in pixels) from the left margin of
the text you pass it to the proper caret position corresponding to the character at the
specified byte offset in your text buffer.

Caret and cursor

By convention in this book, the caret is defined as the blinking bar that
marks the insertion point in text. The cursor, on the other hand, is the
arrow, I-beam, spinning disk, or other small icon that marks screen
position and moves with the mouse. &

This section discusses the conventions underlying the relationship of text offset to
caret position. For more information on conversion of text offset to screen position,
see the description of the CharToPixel function in the chapter “QuickDraw Text”
in this book.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

The Caret

A caret position is a location on the screen that corresponds to an insertion point in
memory. It lets the user know where in the text file the next insertion (or deletion) will
occur. A caret position is always between glyphs on the screen, usually on the leading
edge of one glyph and the trailing edge of another. The leading edge of a glyph is the
edge that is encountered first when reading text of that glyph’s script system; the trailing
edge is opposite from the leading edge. In left-to-right text, a glyph’s leading edge is its
left edge; in right-to-left text, a glyph’s leading edge is its right edge.

In most situations for most text applications, the caret position is on the leading edge
of the glyph corresponding to the character at the insertion point in memory; see
Figure 1-44. When a new character is inserted, it displaces the character at the insertion
point, shifting it and all subsequent characters in the buffer forward by one character
position. (That shift may be one or two bytes, depending on the size of the inserted
character.)

Figure 1-44 Caret position and insertion point

Character Primary line direction = left to right
Byte codes
offsets Characters Trailing edge of C

0| $41 |A

NG
- ABC|DE
T

Leading edge of D

—_

$44 | D -«— Insertion point
(offset = 3)

A WO D

$45 |E

Caret position

The caret position is unambiguous in text with a single line direction. In such a case, the
caret position is on the trailing and leading edges of characters that are contiguous in the
text buffer; it thus corresponds directly to a single offset in the buffer. This is not always
the case in mixed-directional text, as described next.

How Script Systems Work 1-75

CHAPTER 1

Introduction to Text on the Macintosh

Caret Positions at Direction Boundaries

In determining caret position, an ambiguous case occurs at direction boundaries because
the byte offset in memory can map to two different glyph positions on the screen—one
for text in each line direction. In Figure 1-45, for example, the insertion point is at byte
offset 4 in the buffer. If the next character to be inserted is Arabic, the caret should be
drawn at caret position 4 on the screen; if the next character is English, the caret should
be drawn at caret position 12.

Figure 1-45 Caret positions at direction bondaries

Byte
offsets
0

0 N o g M~ W N =

- a4 a4 a4 a4 a4
a A W N =+ O ©

Character

codes

$E5

$C7

$D1

$E3

$28

$41

$72

$61

$62

$69

$63

$29

$CF

$EA

$E1

$D3

Characters

.
[

-+— Insertion point
(offset = 4)

Primary line direction = right to left

—
]

16 15 14 13 10 9

u*'-"-ib (Arab')"’IJLA
T |

Caret position for Caret position for
Roman text entry Arabic text entry

U'm”}f‘\(.,_\,

¢ LG

1-76

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

The Macintosh script management system codifies this relationship between text offset
and caret position as follows:

m For any given offset in memory, there are two potential caret positions:
O the leading edge of the glyph corresponding to the character at that offset
O the trailing edge of the glyph corresponding to the previous (in memory) character

(The first and last characters of a text segment are special cases; see the discussion of
the CharToPixel function in the chapter “QuickDraw Text” in this book.)

m In unidirectional text, the two caret positions coincide: the leading edge of the glyph
for one character is at the same location as the trailing edge of the glyph for the
previous character. In Figure 1-44, the offset of 3 yields caret positions on the leading
edge of “D” and the trailing edge of “C”, which are the same unambiguous location.

m Ataboundary between text of opposite directions, the two caret positions do not
coincide. Thus, in Figure 1-45, for an offset of 4 there are two caret positions: 12, on the
leading edge of “(; and 4, on the trailing edge of “&J” Likewise, an offset of 12 yields
two caret positions (also 12 and 4, but on the edges of two different glyphs).

At an ambiguous character offset, the current line direction (the presumed direction of

the next character to be inserted) determines which caret position is the correct one:

O If the current direction equals the direction of the character at that offset, the caret
position is the leading edge of that character’s glyph. In Figure 1-45, if Roman text
is to be inserted at offset 4 (occupied by a Roman character), the caret position is on
the leading edge of that character’s glyph (“(”)—that is, at caret position 12.

0 If the current direction equals the direction of the previous (in memory) character,
the screen position is on the trailing edge of the glyph corresponding to that
previous (in memory) character. In Figure 1-45, if Arabic text is to be inserted at
offset 4, the caret position is on the trailing edge of the glyph of the character at
offset 3 (“&J”)—that is, at caret position 4.

Two common approaches for drawing the caret at direction boundaries involve the use of
a dual caret and a single caret. A dual caret consists of two lines, a high caret and a low
caret, each measuring half the text height; see Figure 1-46. The high caret is displayed at
the primary caret position for the insertion point; the low caret is displayed at the
secondary caret position for that insertion point. Which position is primary, and which is
secondary, depends on the primary line direction:

m The primary caret position is the screen location associated with the glyph that has the
same direction as the primary line direction. If the current line direction corresponds to
the primary line direction, inserted text will appear at the primary caret position. A
primary caret is a caret drawn at the primary caret position.

How Script Systems Work 1-77

CHAPTER 1

Introduction to Text on the Macintosh

m The secondary caret position is the screen location associated with the glyph that has
a different direction from the primary line direction. If the current line direction is
opposite to the primary line direction, inserted text will appear at the secondary caret
position. In Figure 1-46, the display of the Roman keyboard icon shows that the
current line direction is not the same as the primary line direction, so the next
character inserted will appear at the secondary caret position. A secondary caret is a
caret drawn at the secondary caret position.

Figure 1-46 Dual caret at direction boundaries in mixed-directional text

1-78

Roman
keyboard
icon

E u-u-aJ“ JI(AI'abiuC;I:ZjJ LO %E
|

Secondary Primary
caret caret

A single caret (or moving caret) is simpler than a dual caret; see Figure 1-47. It is a single,
full-length caret that appears at the screen location where the next glyph will appear. At
direction boundaries, its position depends on the keyboard script. At a direction
boundary, the caret appears at the primary caret position if the current line direction
corresponds to the primary line direction; it appears at the secondary caret position if the
current line direction is opposite to the primary line direction. The moving caret is also
called a jumping caret because its position “jumps” between the primary and secondary
caret positions as the user switches the keyboard script between the two text directions
represented.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-47 Single carets at direction boundaries in mixed-directional text

Roman
keyboard
icon

% File Edit Font Style Format 2] &

tyled Tex

el Jl(ArabiC) J,l

Arabic
keyboard
icon

The script management system permits the user to select a preference between dual
carets and a single (moving) caret; your text application should support both. TextEdit
employs both types of carets; see the chapter “TextEdit” in this book.

Caret Movement With Arrow Keys

Most text applications allow the user to move the caret through displayed text with the
arrow keys. In general, using the Right or Left Arrow key should move the caret
uniformly right or left, regardless of the line direction of the text in which the caret
appears. To do this means that your application needs to take the current line direction
into consideration, rather than simply advancing the insertion point through the text
buffer in response to presses of, say, the Right Arrow.

When the caret moves through a direction boundary (or any style run boundary) in
response to a series of arrow keypresses, you need to set the keyboard script (and
graphics port settings) to match the characteristics of the text that the caret is in. By
convention, you should change the keyboard script and port characteristics after the caret
has passed the boundary, not when it first reaches it.

For a discussion of how TextEdit handles the complications that occur at direction
boundaries and within runs of bidirectional text, see the chapter “TextEdit” in this book.

How Script Systems Work 1-79

CHAPTER 1

Introduction to Text on the Macintosh

Highlighting

When displaying a selection range, an application typically marks it by highlighting,
drawing the glyphs in inverse video or with a colored or outlined background. As part of
its text-display tasks, your application is responsible for knowing what the selection
range is and highlighting it properly—as well as for making the necessary changes in
memory that result from any cutting, pasting, or editing operations involving the
selection range.

Discontinuous selection

A selection range as defined in this book always consists of characters
contiguous in memory. Some word processors allow for discontinuous
selection, in which the characters that constitute the selection range are
not necessarily contiguous in memory. You can think of discontinuous
selection as the simultaneous existence of several selection ranges of the
type described here. Discontinuous selection is not discussed further in
this book. In particular, keep in mind that the discontinuous highlighting
shown in this section is not an example of discontinuous selection; all
selection ranges shown here are single, contiguous ranges in memory. ¢

Unidirectional Text

In text with a single line direction, the selection range always appears on screen as a
continuous range of highlighted glyphs; see Figure 1-48.

Figure 1-48 Highlighting a selection range in unidirectional text

1-80

Character
Byte codes
offsets Characters Primary line direction = right to left

0| $E0 [N -

1 $E1 a

Selection ’) N

2| sE2) range

3| $E3 T

4| $E4 [l

The Macintosh script management system measures the limits of highlighting rectangles
in terms of caret position. Thus, in Figure 1-48, in which the selection range consists of
the characters at offsets 1 and 2 in memory, the ends of the highlighting rectangle
correspond to caret positions for offsets 1 and 3. It’s equivalent to saying that the
highlighting extends from the leading edge of the glyph for the character at offset 1 to the
leading edge of the glyph for the character at offset 3.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Highlighting for word selection

If your application supports word selection by double-clicking, it
involves three steps. First, use a QuickDraw call to locate the offset in
memory corresponding to the double-click. Second, use a Text Utilities
call to locate the offsets of the word boundaries on either side of the
double-click. Third, use QuickDraw calls to determine the boundaries of
the rectangle to highlight. &

Mixed-Directional Text

If the displayed text has mixed direction runs, the selection range may appear as
discontinuous highlighted text. This is because the characters that make up the selection
range are always contiguous in memory, but characters that are contiguous in memory
may not be contiguous on screen.

Figure 1-49 is an example of text whose selection range consists of a contiguous sequence
of characters in memory, whereas the highlighted glyphs are displayed discontinuously.

Figure 1-49 Highlighting a selection range in mixed-directional text

Character
Byte codes
offsets Characters

0| $E5 |
$c7 | |
$D1
$E3
$28
$41
$72
$61
$62
$69
$63
$29
$CF
$EA
$E1
$D3

—_

Selection)) o)
range B Primary line direction = right to left

e [abic) B

= > e

o o

O © 00 N O o b WD

—_

—_
—_

-
N

—_
w

-
~

-
(&,

¢ L6 ov

How Script Systems Work 1-81

1-82

CHAPTER 1

Introduction to Text on the Macintosh

In describing the boundaries of the highlighting rectangles in terms of caret position, note
that for Figure 1-49 it is not possible to simply say that the highlighting extends from the
caret position of offset 2 to the caret position of offset 6. Using the definitions of caret
position given earlier, however, it is possible to define it as two separate rectangles, one
extending from offset 4 to offset 2, and another extending from offset 12 to offset 6
(assuming for the ambiguous offsets—4 and 12—that the current text direction equals the
primary line direction).

The QuickDraw function HiliteText makes those kinds of calculations and is
especially useful for determining the correct caret positions when highlighting a selection
range in mixed-directional text. See the discussion of HiliteText in the chapter
“QuickDraw Text” in this book for more details.

Converting Screen Position to Text Offset

Caret handling and highlighting, as just discussed, require conversion from text offset to
screen position. But that is only half the picture; it is just as necessary to be able to
convert from screen position to text offset. For example, if the user clicks the cursor
within your displayed text, you need to be able to determine the offset in your text buffer
equivalent to that mouse-down event. You can then use that information to set the
insertion point or selection range.

The script management system does most of this work for you. It provides routines that
convert a screen position to the byte offset of a character code in memory (and vice
versa); those routines function correctly with multiscript text, even text that has been
rendered with ligatures and contextual forms.

Determining the character associated with a screen position requires first defining

the caret position associated with a given screen position. Once that is done, the
previously defined relationship between caret position and text offset can be used to find
the character.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-50 shows the cursor positioned within a line of text at the moment of a mouse
click. A mouse-down event can occur anywhere within the area of a glyph, but the caret
position that is to be derived from that event must be an infinitesimally thin line that falls
between two glyphs.

Figure 1-50 Interpreting caret position from a mouse-down event

Mouse-down region

SN PGS
i Cg X [i

Caret position

A line of displayed glyphs is divided by the script management system into a series of
mouse-down regions. A mouse-down region is the screen area within which any mouse
click will yield the same caret position. For example, a mouse click that occurs anywhere
between the leading edge of a glyph and the center of that glyph results in a caret
position at the leading edge of that glyph. For unidirectional text, mouse-down regions
extend from the center of one glyph to the center of the next glyph (except at the ends of
a line), as Figure 1-50 shows. A mouse click anywhere within the region results in a caret
position between the two glyphs.

At line ends, and at the boundaries between text of different line directions, mouse-down
regions are smaller and interpreting them is more complex. As Figure 1-51 shows, the
mouse-down regions at direction boundaries extend only from the leading

or trailing edges of the bounding glyphs to their centers. Note that the shaded part

of Figure 1-50 is a single mouse-down region, whereas each of the shaded parts of

Figure 1-51 is two mouse-down regions.

How Script Systems Work 1-83

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-51 Mouse-down regions and caret positions in mixed-directional text

Character

Byte codes
offsets Characters

0| $E5 o
$c7 | |
$D1
$E3
$28
$41
$72
$61
$62
$69
$63
$29
$CF
$EA
$E1
$D3

—_

Primary line direction = right to left

e
—

1 15 1413 12 1 10 9 8 7 6 8 4 8 21 0—Caret

s 3(Arabic)é ;b ™

16 5 T14 T13 havT12d 17 10 To Tg

6 s b4’ 3 271 To'— Mouse-down
region

O © 0O N O o~ WD

—_

Direction
boundaries

-
—_

-
n

-
w

—_
»

-
(é)]

¢ (G v =0 oy el

How do mouse-down regions relate to text offset? Referring to Figure 1-51, and
remembering that the primary line direction is right-to-left, consider the two
mouse-down regions 4a and 12a:

m A mouse click within region 4a is associated with the trailing edge of the Arabic
character “&J”. In response, your application might make the keyboard script Arabic,
draw a primary caret (or single caret) at caret position 4, and place the insertion point
at offset 4 in the buffer, to insert Arabic text following “&Jr (1 you are drawing a dual
caret, the secondary caret should be at caret position 12, which also corresponds to an
insertion point at offset 4 in the buffer.)

m A mouse click within region 12a is associated with the leading edge of the Roman
character “(”. In response, your application might make the keyboard script Roman,
draw a secondary caret (or single caret) at caret position 12, and place the insertion
point at offset 4 in the buffer, to insert Roman text preceding “(”. (If you are drawing a
dual caret, the primary caret should be at caret position 4, which also corresponds to
an insertion point at offset 4 in the buffer.)

Thus mouse clicks in two widely separated areas of the screen can lead to an identical
caret display and to a single insertion point in the text buffer. One, however permits
insertion of Roman text, and the other Arabic text, and the insertions occur at different
screen locations.

1-84 How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Mouse clicks in regions 4b and 12b in Figure 1-51 would lead to just the opposite
situation: a primary caret at caret position 12, a secondary caret at caret position 4, and
an insertion point at offset 12 in the text buffer. Either Roman text would be inserted
after the Roman character “)”, or Arabic text would be inserted before the Arabic
character “ ”.

The QuickDraw function PixelToChar helps you make these calculations; it returns the
byte offset in your text buffer corresponding to the character associated with a particular
distance (in pixels) from the left margin of the displayed text. It even handles the special
cases of pixel locations outside (to the left or right of) the margins of

the displayed text. For more information on conversion of screen position to text offset,
see the description of the PixelToChar function in the chapter “QuickDraw Text” in
this book.

Printing

At the application level, printing on the Macintosh computer is not fundamentally
different from drawing to the screen. A printer is considered a display device, and your
application prints by creating a printing graphics port (a graphics port with a few extra
fields for printing), setting the port’s fields, and drawing in the port with calls to
QuickDraw. General procedures for printing are described in the Printing Manager
chapter of Inside Macintosh: Imaging. However, printing text, and especially contextual
text, can pose extra challenges.

A very common complication results from the difference in resolution and pixel size
between screen and printer. QuickDraw measurements are theoretically in terms of
points, which are nominally equivalent to screen pixels at normal resolution.
High-resolution printers have very much smaller pixel sizes, although printer drivers are
expected to take this into account so that the same QuickDraw calls will produce text
lines of the same width on the screen and on a printer. Nevertheless, this higher
resolution, and the fact that printers can use different fonts from those used for screen
display, can result in some loss of fidelity from the screen to the printed page:

m QuickDraw places text glyphs on the screen at whole screen-pixel intervals, whereas a
high-resolution printer has much smaller pixels and can therefore provide much finer
placement on the printed page. If your application specifies the use of fractional glyph
widths, the spacing of the text on the screen can be awkward but it more accurately
reflects the optimum layout of the printed text. Alternatively, specifying integer glyph
widths gives more pleasing screen results because the characters are drawn with
regular pixel spacing, but the results on the page can be typographically unacceptable.
See the discussions of fractional glyph width in the chapters “QuickDraw Text” and
“Font Manager” in this book for more information.

m Printer drivers attempt to reproduce faithfully the text formatting as drawn by
QuickDraw on the screen, including keeping the same intended character spacing, line
breaks, and page breaks. However, because printers can have resident fonts that are
different from the fonts that QuickDraw uses, because the drivers may handle text
layout somewhat differently than QuickDraw, and because font metrics do not always
scale linearly, fidelity may not always be achieved. Typically, identical line breaks and
page breaks can be maintained, but character spacing can be noticeably different.

How Script Systems Work 1-85

1-86

CHAPTER 1

Introduction to Text on the Macintosh

Other complications result from the fact that high-resolution printers use deferred printing,
in which the document to be printed is first converted into a spool file in picture-file
format, and it is the picture file rather than the original document that is printed. This can
result in loss of certain display features that picture files do not support, such as the
following:

m The grayishTextOr transfer mode cannot be used for printing. See the discussion of
transfer modes in the chapter “QuickDraw Text” in this book.

m You cannot pass DrawText (or StdText) more than 255 bytes of text at a time when
printing. DrawText and StdText are documented in the chapter “QuickDraw Text”
in this book.

Some of the most difficult problems result from the fact that printer drivers replace the
QuickDraw bottleneck routines StdText and StdTxMeas (by changing the grafProcs
field of the printing graphics port) to allow printing to function with QuickDraw calls,
whereas certain script systems use different modifications (trap patches) to those same
routines to perform contextual formatting. Printer drivers that print from spool files can
then interact with QuickDraw in several ways that may cause complications:

m Some drivers call QuickDraw twice: once to create a spool file for printing, and once
again to unwind the spooling. If the text is contextually transformed during spooling,
the transformation must not be repeated during unwinding.

m Some drivers may not call QuickDraw at all, meaning that necessary contextual
transformations might not be made at all.

m Some drivers may call QuickDraw re-entrantly, such as when displaying a status
message during printing.

To avoid these problems, printer drivers should call the Script Manager Print Action

routine whenever they change the grafProcs field. For more information on the Print

Action routine, see the discussion on writing device drivers in Inside Macintosh: Devices.

To accommodate the special contextual formatting needs of 1-byte complex script
systems, WorldScript I patches the QuickDraw routines StdText, StdTxMeas,
MeasureText, and the Font Manager procedure FontMetrics. There are Script
Manager routines that allow you to modify or replace those patches if your text has
additional needs not met by the WorldScript I routines. To allow for the extra
complications that may occur during printing, WorldScript I allows you to define
separate entry points or even separate routines for printing as opposed to screen display.
See the discussion on replacing a script system’s default routines in the chapter “Script
Manager” in this book, and the description of WorldScript I in the appendix “Built-in
Script Support.”

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Text Input

Typically, your application accepts text input from the user through the keyboard. The
Macintosh script management system allows you to accept text input in any script
system, and to switch easily among input script systems.

Keyboard input is a complex process that involves conversion of hardware keypresses to
software raw key codes, then to virtual key codes, and finally to character codes.
Subsequent display of those input characters on the screen involves conversion of
character codes to the glyphs of a font, and the drawing of those glyphs on the screen. As
noted under “Separation of Tasks” beginning on page 1-4, text input and text display are
completely independent of each other.

The conversion of keypresses to character codes is complex because the Macintosh
computer has to support many different physical keyboards and many script systems.
The conversion of raw key codes to virtual key codes accommodates the spectrum of
keyboards; the conversion of virtual key codes to character codes accommodates the
spectrum of script systems.

For 1-byte script systems, characters are generated directly from keypresses. For 2-byte
script systems, the large number of characters makes direct keyboard input impractical;
those systems provide input methods to make text input more convenient.

Keyboards and Key Translation

Every Macintosh keyboard has a specific physical arrangement of keys. An example is
shown in Figure 1-52. The figure shows the physical arrangement of keys on the domestic
(U.S.) layout of the Apple Keyboard II. It also shows the virtual key codes produced
when each key is pressed, as well as the character generated (for U.S. system software) by
each key.

Figure 1-52 Apple Keyboard Il (domestic layout)

~
¥ - q s
a 0
@19 f1#20 s 21 %23 " 22 [1é 26 fi*x28 (25) 29 §-27 [+ 24 51 75 | 67
2 3 4 5 4 8 9 0 - = delete / *
128 13 14 15§ 17§ 16 § 32l 34§ 31 | 35 {133 W30 | | 42 20 78
Q W NE R T Y U | 0 P [] | 9 _
0 1 2 3 5) 4 ff 38 40 37 - 41 §" 39 36 88) 69
A S D F G H J K L ; i retumn 6 +
6 7 8l 9 11 || 45)| 46 <43 [47 | 744 56 85 || 76
Z WX c 4 B N M 2 : / shif 3
58 Sgg 49 55 123 [124| 1 125 § 126 65
option! esc W< | g . | enter
(& -~

How Script Systems Work 1-87

1-88

CHAPTER 1

Introduction to Text on the Macintosh

Other keyboards produce a similar set of virtual key codes, although the keys and their
codes may be arranged differently. Apple supports at least 13 separate physical
keyboards, listed in the appendix “Keyboard Resources” in this book. All can produce a
set of hardware-independent virtual key codes, which translate directly into the
characters of any script system. That process is called key translation.

As far as the application is concerned, text input for all keyboards and for all script
systems is hardware-independent. Except for a few minor hardware-specific
characteristics, the function of the keyboard is completely determined by a script
system’s keyboard-layout (' KCHR ') resources. Tables within the keyboard-layout
resource specify the characters produced by each key in combination with each modifier
key (Command, Shift, Caps Lock, Control, and Option).

Figure 1-53 illustrates the process of key translation. A keypress initially produces a raw
key code. The keyboard driver uses the hardware-dependent key-map (' KMAP ') resource
to map the raw key code into a hardware-independent virtual key code and to set bits
indicating the state (up or down) of the modifier keys. It then calls the Event Manager
KeyTranslate function.

If the optional key-remap (' it1k') resource is present, KeyTranslate uses it to remap
certain key combinations on certain keyboards before performing additional processing.
The key-remap resource transforms this information based on which keyboard is in use.
It reintroduces hardware dependence because certain writing systems, languages, and
regions need subtle differences in layout for specific keyboards. Generally, the key-remap
resource affects only a few keys.

The KeyTranslate function then uses the current script’s keyboard-layout resource to
map the virtual key code and modifier state into a character code. KeyTranslate
returns the character code, and the keyboard driver posts the key-down event into the
event queue. The application receives the original virtual key code and a character code
in the message field of the event record, and modifier-key information in the
modifiers field of the event record.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-53 Key translation

Modifier KeyTranslate function
state

New modifier
_ state

o !_ i1k _!:> .
(|f_pies_e2t)J : Character
Virtual New virtual code
key code key code
Virtual Character
> key code code

Event message

The KeyTranslate function is described in the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials. For additional information on the
KeyTranslate function and the keyboard-layout resource, see the appendix
“Keyboard Resources” in this book.

Dead keys

The keyboard-layout resource also handles dead keys, by means of
additional subtables. A dead key is a key combination that has no
immediate effect, but sets a state that affects the results of the next
keypress (typically, the generation of one or two characters). Dead keys
are commonly used to generate accents and accented characters.
Dead-key processing is discussed in more detail in the appendix
“Keyboard Resources” in this book. &

How Script Systems Work

1-89

CHAPTER 1

Introduction to Text on the Macintosh

Font and Keyboard Synchronization

Whenever your application displays text as it is being entered at the keyboard, it needs to
keep the font script coordinated with the keyboard script (see “Font Script and Keyboard
Script” beginning on page 1-51). The upper half of Figure 1-54 shows an example of font
and keyboard synchronization with the user entering the characters for Nihongo when the
font script corresponds to the keyboard script, which is Japanese. The lower half of
Figure 1-54 provides an example of the characters that are displayed when the user enters
the same characters when the font script does not match the keyboard script. If the two
scripts don’t match, the results are meaningless to the user.

Figure 1-54 Font script and keyboard script synchronization

1-90

Keyboard script |
(Japanese)

> | Input

Resulting character codes
$93 $FA $96 $7B $8C $EA

Font script (Japanese) I:> Display :> E[ZIK :‘g‘

i

Keyboard script |
(Japanese)

Input

Resulting character codes
$93 $FA $96 $7B $8C $EA

Font script (Roman) =) | Display | =)y i { Af

You use the Script Manager KeyScript procedure to set the keyboard script when, for
example, the user chooses a new font from your Fonts menu or when the user clicks in an
area of text that has a font different from the current one. The Operating System
automatically changes the keyboard script (or keyboard layout or input method) when
the user chooses a new one from the Keyboard menu (see Figure 1-62 on page 1-106).
When that happens you need to set the font script to equal the keyboard script.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

The Operating System also automatically changes the keyboard script (or keyboard
layout or input method) when the user presses certain key combinations, as specified by
the keyboard-swap (' KSWP') resource. When that happens you should set the font script
to equal the keyboard script.

You can force a particular keyboard layout to be used with your application by using
the Script Manager to define the default keyboard layout for a script system and then
calling KeyScript.

For more information on setting the font script and keyboard script, see the discussion on
making keyboard settings and the description of the KeyScript procedure in the
chapter “Script Manager” in this book. For more information on the keyboard-swap
resource, see the appendix “Keyboard Resources” in this book.

Handling Keyboard Equivalents

Many applications support keyboard commands or keyboard equivalents to menu
commands. This can be a problem in a multiscript environment. Be careful of these issues
in the keyboard equivalents that you allow:

m Avoid keyboard equivalents that use the Space bar in combination with the Command
key and other modifier keys. Command-Space bar and Command-Option-Space bar
are already commonly used for switching among script systems and keyboard layouts.
See the discussion of the KeyScript procedure in the chapter “Script Manager” and
the description of the keyboard-swap resource in the appendix “Keyboard Resources”
in this book.

m When the Command key is pressed, some characters—such as the period or question
mark—cannot be produced on certain keyboard layouts. To make Command-key
handling work in these cases, it may be necessary to use the virtual key code to
determine which character code would have been produced if the Command key had not
been pressed. For more information, see the discussion of special uses for the
KeyTranslate function in the appendix “Keyboard Resources” in this book.

m If your application extends the set of standard Macintosh modifier-plus-key
combinations for specific purposes, your keyboard equivalents might not function
properly in all script systems. Be sure to supply alternative methods—such as menu or
dialog-box items—for gaining access to such features.

Input Methods

Script systems for ideographic writing systems such as Japanese cannot simply use a
larger keyboard or multiple dead keys for effective text input. The sheer numbers of their
characters demand a more complex solution, such as providing ways to convert phonetic
text into ideographic text and vice versa. Most script systems with large character sets
provide for the complex parsing of phonetic sequences to produce ideograms and
character clusters.

How Script Systems Work 1-91

CHAPTER 1

Introduction to Text on the Macintosh

Automatic conversion of phonetic glyphs into final representations is performed by an
input method. For example, the Japanese script system supplements the keyboard by
providing software for transcribing Kana (phonetic Japanese) into ideographic Kanji.
Each Kanji character can correspond to more than one possible Kana sequence, and vice
versa. The input method must grammatically parse sentences or phrases of Kana text
(which has no word separations), and select the best combination of Kanji and Kana
characters to represent that text.

Entry and Conversion

When a user types a character, one kind of input method opens a window (called a
floating input window or bottomline input window) at the bottom of the screen for text
entry; see Figure 1-55. In Japanese, the user can type using either Roman or Kana
characters. When the converted glyphs are in the window, the user can freely cut and
paste or convert them to any of the other subscripts.

Figure 1-55 Bottomline input window for Japanese input method

H
1

S((=—————— untitled
oy SEE

o>

=

[

The Text Services Manager supplies an interface for input methods that use inline input.
In inline input, the user types directly into an active input area within a document, as
shown in Figure 1-56. Conversion then occurs within the active input area.

Figure 1-56 Active input area (underlined) for inline input

1-92

S—————-——— untitled DV0—Y————=rF|
ESE 4 SERE DK 43

I

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Input methods are often extended so that glyphs may be converted in extremely precise
ways. For example, in the Japanese script system, when the text is converted to Kanji, the
user has the option of changing any individual phrase: lengthening it, shortening it, or
selecting different possible interpretations. All of the commands that perform these
changes have both mouse and keyboard equivalents. Once the user presses the Return
key, the text is entered as if it had been typed directly from the keyboard.

Differences Among Script Systems

In Japanese and Chinese input methods, the principal conversion is from Roman or other
phonetic input to Han (Chinese) characters. In Japanese the input can be Romaji
(Roman), Hiragana (phonetic), or Katakana (phonetic); the output is Kanji (Chinese
characters). In Chinese the input can be Pinyin (Roman) or Zhuyinfuhao (phonetic; also
called Bopomofo), and the output is Hanzi (Chinese characters). Chinese and Japanese
use a semi-automatic conversion to Han characters that requires user confirmation.

The Korean script system’s input method converts from Jamo (phonetic) to Hangul
(clusters of Jamo). Transcription to Hanja (Chinese characters) is optional. Furthermore,
the Korean input method uses a completely automatic conversion from Jamo to Hangul;
user confirmation is not required.

Figure 1-57 illustrates the process of constructing Hangul from Jamo during
bottomline input. Note that an added Jamo can appear in various positions
(beside, beneath, and so on) relative to the Jamo or Hangul that it is added to.

Figure 1-57 Bottomline input in Korean

e untitled
1= R
ohw g |

\ [

To gain the greatest acceptance worldwide, your application should support text input,
and preferably inline input, in 2-byte script systems. For additional information on input
methods, inline input, and input-method dictionaries, see the chapters “Text Services
Manager” and “Dictionary Manager” in this book.

How Script Systems Work 1-93

1-94

CHAPTER 1

Introduction to Text on the Macintosh

Text Manipulation

The Macintosh Operating System and Macintosh script management system implement
certain script features transparently. For example, your application may not need to know
that its dialog boxes can accept Japanese text. However, if your application actually
manipulates the text of any language—as any word processor certainly does—it needs
access to text-handling information that varies from script system to script system.

For example, to perform word selection and line-breaking, your application may

need routines to determine word boundaries in any language. To sort text, it may need
routines that sort acording to language-specific rules, and possibly also routines that
perform case conversion or strip diacritical marks according to language-specific rules.
Do not assume that all languages or regions have the same rules or conventions; use
Text Utilities and Script Manager routines to handle different conventions.

Note that the user can affect which of the available script-system resources are used to
control text manipulation such as sorting, number formatting, and date and time
formatting. See “User Control of Script Settings” beginning on page 1-107.

This section discusses routines that perform a variety of script-aware text manipulations
including sorting strings; formatting dates, times, and numbers; analyzing characters;
searching and modifying text; and finding word boundaries and line breaks. Most of
these topics are described more fully in the chapters “Text Utilities” and “Script
Manager” in this book.

Note

The script management system does not address all possible localizable
text issues. There is other information, not covered in a script’s
international resources, that may vary from locale to locale—such as
formats for addresses, postal zone codes, and telephone numbers. You
should place all such information in resources for ease of localization. &

Sorting Strings

Comparing strings can be an intricate operation that involves subtle issues. Even for
English, determining the sorting order cannot be done by a simple table look-up or

comparison of character-code values. Furthermore, sorting rules vary not just among
script systems but among the individual languages or regions within a script system.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

Every script system—and every language-specific variation of a script system—has
information specifying how its text is to be sorted. That information is in the script’s
string-manipulation (' 1t12 ") resource. The Text Utilities provides routines for
comparing two strings for sorting purposes. Some routines work with Pascal strings,
others with generalized text strings (defined by pointer and length). Some are
script-aware, some are not. The script-aware routines take into account the sorting rules
of the current script system or any script system that you explicitly specify, and can
address these sorting factors:

m primary and secondary sorting order

m expansion and contraction of characters

m ignorable characters

m case-conversion and stripping of diacritical marks

Other special cases, such as expansion of abbreviations that requires dictionary lookup,
may be beyond the capability of the script management system.

In sorting lists of strings that may be from more than one script system, keep these points
in mind:

m If you are sorting strings from different script systems into a single list, the ordering
relationship among the scripts as well as the sorting rules within each script are
important. The script-sorting (' it1m') resource that is part of system software
contains tables that define the sorting relationship among all defined script systems.
Text Utilities functions use that information to help you create a sorted list of strings in
more than one script system.

m If you are sorting strings from different languages within a single script system, you
may or may not want to sort the strings into groups by language. If you do, you can
determine the ordering relationship between the languages from the the script-sorting
resource. Text Utilities functions use that information to help you create a sorted list of
strings in more than one language.

m If you need to sort strings in exactly the same way that the Macintosh file system does,
there are Text Ultilities routines that perform that type of sorting. The sorting order is
fixed, and it is independent of any script system or language. It should be used only
for operations internal to your application, not for user display of sorted filenames or
other text strings.

m Uppercase characters and diacritical marks affect sorting and searching, and
conventions for their handling vary among script systems and languages. Text Utilities
routines allow you to sort according to the rules of each script or language, and to take
into account or disregard case and diacritical marks.

How Script Systems Work 1-95

CHAPTER 1

Introduction to Text on the Macintosh

Formatting Dates, Times, Numbers, and Symbols

Dates, times, numbers, and symbols are common types of specialized strings whose
formats vary widely around the world. Each script system defines how its times, dates,
numbers, and other symbols are to be defined and formatted in its numeric-format
('it10"'), long-date-format (' it11'), and tokens ('it14 ') resources.

Dates and Times

Figure 1-58 shows two different Finder displays of the same filenames and modification
dates. The upper display uses Arabic date formats, Arabic month names (with

theGregorian calendar), Arabic numerals, and a right-to-left primary line direction.
The lower display is exactly the same, except with U.S. date formats, English month
names, western numerals, and a left-to-right primary line direction. (The changes

were made with control panel selections; see “User Control of Script Settings” beginning

on page 1-107.)

1-96

Figure 1-58 Filenames and dates in Arabic and U.S. formats (Arabic system script)

Sl] sl =
pal p= e e bl

0O Finder 327K e - N P LEL o TP [
a Systern 2,286K Eedia - POV VRN o TV aad
[OO i - aloa - P L A TIL LT LY PO
I O el say palic - alaa - P e UF R LN PO
- OO ol ot i - alea - PR N L JOE-R RO
> OO el ey - alaa - PO 1l
[il liade - aloa - L FAL L EY N PO
| gl ibs ale 29K ciila - o TR 1R gD 10 g

=

4] B2 [
et = £ S el

O Finder 387K ila - Fri, Jan 3, 1992 (2 54 FM |47
a Systern 2,286K A oin - wed, Oct 28, 1992 (3:38 AM
- O ctlak - alaa - wed, Dot 28, 1992 (3137 AM
- O ot g alie - alaa - Wed, Feb 19, 1992 ¢ 30 PM
[O ot el b - alaa - Wed, Feb 19, 1992 ¢ 25 PM
O el by - alaa - Wed, Feb 19, 1992 ¢1 :25 PM
I O ALl oliala - alaa - “wed, Dot 28, 1992 (8 26 AM
0O i3 g | o ala 29K irla - Fri, Oct 11, 1991 ¢12:33 AM

=

<l)

The Text Utilities include a number of routines for converting and formatting date and
time strings on the Macintosh. These routines allow you to specify each element of the
date and time formats, including the number of digits used for each numeric element

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

(for example, 3/01/90 or 3/1/90), the names of the months and the days of the week,
and other characteristics such as the order of the elements and the use of a.m. and p.m.
instead of a 24-hour clock.

Be careful about abbreviating the names of the weekdays (for instance, in English S, M, T,
W, Th, E, and S). In Hebrew, for example, the names all begin with the same character, so
the English convention would not be useful. Use instead the Text Utilities routines that
give you the abbreviated versions provided by each script system.

Multiple calendars may be available on some Macintosh systems. The time-formatting
and date-formatting routines in the Text Utilities are generalized enough that they can
handle other calendar systems. The Gregorian calendar is the standard Macintosh
calendar that is used in most of the world, but other calendars are also supported. See the
description of the long-date-format resource in the appendix “International Resources” in
this book for a list of defined calendar types.

Numbers and Symbols

Western numerals (1, 2, 3, and so forth) are not universal, and the decimal separator is
not always the period. The formats of numbers vary widely. The Japanese writing
system, for instance, uses the standard ASCII Western digits, 2-byte encodings of the
same Western digits, and 2-byte Japanese number characters in two forms.

To accommodate differences in number and currency formats around the world, the Text
Utilities provide routines that separate the presentation of numeric values from their
internal representation. They allow a script system or your application to define
separately how positive numbers, negative numbers, and zero values are presented. They
allow you to specify what separators, digits, text annotations, marks (such as +), and
literals (such as brackets or parentheses) can appear in numbers, and what kinds of
padding can be used. In addition, they allow you to define how to represent positive and
negative exponents for scientific notation. Each script system’s numeric-format ('1t10")
and tokens ('it14 ') resources contain information used for formatting numbers.

Currency formats include the specification of the currency symbol (for example, $, £, or
DM) and whether it precedes or follows the value. Each script system’s numeric-format
resource specifies formats for currency.

Use the regional forms of symbols such as the bullet (center dot, ®). Tokens that allow
you to define these symbols in a language-independent fashion are found in each script
system’s international resources; use the Script Manager to gain access to those tokens.

Note

Units of measure should be appropriate for the region you are targeting.
For example, lines per inch is meaningless in the metric world. Units of
measurement can be specified as metric or imperial (inches and miles).
Each script system’s numeric-format resource indicates the preferred
measurement unit. You can use the Operating System Utilities function
IsMetric to determine the appropriate unit of measure for the current
script system. See Inside Macintosh: Operating System Utilities. &

How Script Systems Work 1-97

1-98

CHAPTER 1

Introduction to Text on the Macintosh

Analyzing Characters

Analyzing characters is another common type of text-manipulation task. The Script
Manager provides functions that let you analyze the size and type of individual
characters. For example, with script systems that use 2-byte characters, you may need to
determine what part of a character a single byte represents. In either 1-byte or 2-byte
systems, you may need to know what type of character a particular character code
represents. Character-type information is contained in a script system'’s
string-manipulation ('1t12') or encoding/rendering (' 1t15") resource.

For example, when searching for a single 1-byte character in text that may contain 2-byte
characters, it is important not to mistake part of a 2-byte character for the character you
are seeking. You can also determine whether a particular character is a letter, number, or
punctuation mark, or whether or not it is uppercase. This information can be useful, for
example, to filter input into specialized text fields. Also, for example, because several
uppercase letters in the Cyrillic and Roman script systems are identical in appearance,
you can detect an unwanted mixture of Cyrillic and Roman characters.

The Text Utilities provide a function that locates sequences of Roman characters (or
characters of any other subscript) within non-Roman text. Use this routine when you
want to separate out Roman characters into their own style runs, so that they can be
formatted independently of the surrounding non-Roman text.

Searching, Modifying, and Converting Text

The Text Utilities provide several script-aware routines that you can use to modify the
contents of strings or convert text from one form to another. You can use these routines
on strings of any script system; the script-specific information they need is in the script’s
string-manipulation ('1t12"'), tokens ('it14 '), encoding/rendering (' 1t15"), or
transliteration ('trsl ') resource.

For modifying strings, there are routines to
m convert case and strip diacritical marks from characters (such as for sorting)
m truncate a string to make it fit into a specified area on the screen

m search for a character sequence in a string and replace it with a different sequence
(accounting for both 1-byte and 2-byte characters)

When searching, note that the text of some script systems can have accents or other
diacritical marks that are considered optional. In Hebrew, for example, you may want to
give the user the option to have search procedures ignore vowel and cantillation marks,
because they are infrequently used in everyday writing. Note, however, that your
application would have to provide this capability on its own; the Text Utilities stripping
routines do not strip vowel or cantillation marks.

Different script systems have their own rules for dictionaries and hyphenation references.
In searching text, your routines must be able to ignore text from script systems other than
those to which the dictionaries and hyphenation references apply. As usual, it is your
application’s responsibility to track the script system of the text you manipulate; the
script management system does not.

How Script Systems Work

CHAPTER 1

Introduction to Text on the Macintosh

If you need to truncate a string, use the regional form of the ellipsis to indicate the
truncation; different symbols may be expected in different languages. The Script Manager
and the Text Utilities have routines that help you truncate strings and insert the proper
symbol for an ellipsis.

Macintosh Human Interface Guidelines has guidelines for implementing intelligent
cut-and-paste in your application. If the user cuts an entire word and pastes it in another
location or document, you should make sure that the pasted word has proper word
delimiters at its new location, and that extra word delimiters are not left at the location it
was cut from. Applying intelligent cut-and-paste across all script systems requires
complete understanding of word delimiters for each one. The Macintosh script
management system does not provide support for this. However, the guidelines
presented in Macintosh Human Interface Guidelines can work for any script system that
uses spaces as word delimiters, and each script system sets a flag that you can access to
determine whether it uses spaces. See the descriptions of script-variable selectors in the
chapter “Script Manager” in this book.

Compilers, assemblers, and scripting-language interpreters usually parse sequences of
characters to tokens, abstract entities that stand for variables, symbols, and quoted
literals. Each script system provides tokenizing information in its tokens resource, for use
by the Script Manager. Using the Script Manager you can create tokens recognizable by a
parser in any script system.

The Script Manager also provides support for transliteration, the automatic conversion
of text from one phonetic form or subscript to another within a single script system. In
the Roman script system, this simply means case conversion. In Japanese, Chinese, and
Korean script systems, it means the phonetic conversion of characters from one subscript
to another. Script-specific information for transliteration is in a script’s
string-manipulation or transliteration resource. With the Script Manager you can convert,
for example, from Hiragana to Romaji and Romaji to Katakana in Japanese; from
Bopomofo to Roman in Chinese; and from Roman to Jamo, Jamo to Hangul, Hangul to
Jamo, and Jamo to Roman in Korean.

Finding Word Boundaries and Line Breaks

Finding word boundaries for word-selection and for line-breaking is a common, though
often difficult, text-manipulation task. Word-selection methods differ among script
systems. For example, the Thai script does not use spaces between words; the Thai
system must detect word boundaries by parsing. The Text Utilities provide a procedure
that you can use to determine word boundaries, in order to support double-clicking,
highlighting of search targets, and so on. You can also use the same procedure to

find word boundaries for line breaking; see “Text Layout” on page 1-71. The procedure
works for all script systems and uses information in the script’s string-manipulation
(rit12") resource.

How Script Systems Work 1-99

CHAPTER 1

Introduction to Text on the Macintosh

Script Systems in Use

1-100

When a version of Macintosh system software is created for a particular country or
region, its system script supports the writing system of that country or region. In
addition, the system software’s text strings are usually translated, and its icons and other
graphical elements may be altered to fit the cultural conventions of the region. This
process of adapting software to local use is called localization.

Localization of system software is performed by Apple Computer, Inc. In constructing a
localized system, many different combinations of script capability and text translation are
possible. For example, one localized version of Hebrew system software might use
Hebrew text strings and Israeli currency, date, and calendar formats. Another might leave
all text strings in English and use Roman formatting. In both, of course, the system script
would be Hebrew. In another example, localized system software for India might
possibly use Gurmukhi (an Indic script system) as the system script but leave all text
strings in English, using the low-ASCII characters in the Gurmukhi character set.

This final section of the chapter discusses how a localized system is presented to a user. It
shows the locations of the files and resources that make up the system script and any
auxiliary scripts. It then describes how you can modify existing script systems or make
additional auxiliary script systems available to the user. The section then summarizes
how the user can switch among the available script systems. Finally, it shows how the
user can alter the configurations of the script systems on the computer, including
possibly selecting as script-system defaults resources that you provide.

More information on localization and localized versions of system software can be found
in Guide to Macintosh Software Localization.

Installing and Enabling Script Systems

A user receives a script system in one of two forms: as a system script, already installed
in the user’s System file and System Folder; or as a secondary script consisting of a set of
files that, if not present in the System file already, need to be installed before they can be
used.

Initialization

The Operating System initializes the Script Manager at startup, and the
Script Manager, along with WorldScript I and WorldScript 11, initializes
all installed script systems. If a script system is properly installed and
successfully initialized, it becomes enabled (made available for use by
the Script Manager and applications). For more information, see the
discussion on testing for the Script Manager and script systems in the
chapter “Script Manager.”

Script Systems in Use

CHAPTER 1

Introduction to Text on the Macintosh

Components of the System Script

Because localization of system software involves more than installing script-system
resources—for example, system and Finder text strings need to be translated—the user
typically does not install a system script. However, if the user has two separate systems
with two different localized versions of system software, the user can change system
scripts by using the “Update Install” command in the installer to completely replace one
localized version’s system script (and all other localized resources) with those of the
other localized version.

Once installed, the system script and associated files and resources are organized in the
System Folder as follows (see Figure 1-59):

The essential resources that make up the system script are in the System file. This
includes the script’s 'it1b' resource and any of the following resources specified by
the 'itlb' resource: 'itl0', 'itl1l"', 'itl2', 'itl14"', 'itl5', 'trsl', 'itlk"’,
'"KCHR', 'kcs#', 'kes4',and 'kcs8'.

The System file also contains an international configuration resource ('itlc') and a
script-sorting resource ('itlm').

The Keyboard resources needed for each type of supported keyboard (' KMAP' and
'"KCAP'), though not considered part of any script system, are in the System file.

If the system script is a 1-byte complex script system or a 2-byte script system, the
Extensions folder contains a script extension: either WorldScript I or WorldScript 1II,
respectively.

If the system script is a 2-byte script system, the Extensions folder contains one or
more input-method files. The Extensions folder may also contain one or more
dictionary files needed by the input method.

Depending on its individual needs or version, the system script may also have an
extension file of its own, a file of type 'scri' in the Extensions folder.

The Fonts folder contains the fonts needed by the system script.

If the system script provides a control panel for the user, its control panel file is in the
Control Panels folder. If the control panel allows the user to save script settings, there
is a script preferences file in the Preferences folder to hold those settings. (The file is
created the first time the user changes any settings.) Note that this control panel and
preferences file are separate from the Text, Numbers, and Date & Time control panels
described under “User Control of Script Settings” beginning on page 1-107.

If the system script needs additional files, they are in the System Folder.

Script Systems in Use 1-101

CHAPTER 1

Introduction to Text on the Macintosh

Figure 1-59 System-script components in the System Folder

1-102

=0 System Folder FE
11 items T2.9 MB in disk 3.9 MB avail
i

'itlc' resource ——————————
"itlm' resource

System script’s international
and keyboard resources

g

IpF
=
I:‘L-
o

]

Systern

El e Script preferences file
Apple Menu [tems Preferences
WorldScript| ——————7— @ Fonts for system script

WorldScript Il
Input-method file
Input-method dictionaries
Script-specific extensions

Extenszions

m
-
o
=]
=
n

Scraphook File Startup Hems
Text control pangl —————
Numbers control panel Control Fanels
Date & Time control panel ||
Script-specific control panels i
<] BB

Components of Auxiliary Scripts

Auxiliary scripts consist of a set of resources and files mostly similar to those of a system
script. The essential resources that make up the auxiliary script—an international bundle
resource and any other international and keyboard resources needed by the script—may
have been installed in the System file during system localization or may be contained in a
file that is shipped separately from system software or applications. Other files are
parallel to the files associated with a system script, as shown in Figure 1-59. (The closer a
script system is to the U.S. version of the Roman script system, the fewer resources and
files it has.)

To install a separately shipped secondary script from the Finder, the user can simply drag
the contents of a folder containing the script’s resources and files to the System Folder.
The Finder automatically installs the files and resources properly, as follows:

m The Finder installs the resources from the script file into the System file. That includes
the script’s 'it1b' resource and any of the following resources specified by the
'itlb' resource: 'itl0', 'itl1"', 'itl2"', 'itl4"', 'itl5"', 'trsl', 'itlk",
'"KCHR', 'kcs#', 'kes4',and 'kcs8'.

m The Finder places all system extension files, including input-method files, dictionary
files, and files of type 'scri' , into the Extensions folder. This includes the
WorldScript I or WorldScript II script extensions, if included.

Script Systems in Use

CHAPTER 1

Introduction to Text on the Macintosh

m The Finder places all fonts for the script system into the Fonts folder.

m The Finder places any control panel documents for the script system into the Control
Panels folder. (Once the user saves any new settings, a script preferences file is created
in the Preferences folder.)

m The Finder places all other files into the System Folder.

If a script system has been installed but not yet enabled (if the computer has not been
restarted), the user can take the script system’s resources back out of the System file.
(When the System file is opened, the Finder displays any script files that can be moved
out of the System file.) Once the script system has been enabled, its resources can no
longer be removed from the System file with the Finder.

Disabling script systems at startup

Holding down the Option-Space bar key combination at startup disables
all (non-Roman) auxiliary scripts. This allows the user to remove
auxiliary scripts from the System file that would normally have been
enabled and thus impossible to remove from the Finder.

Holding down the Shift key at startup prevents system extension files

from executing—including WorldScript I and WorldScript II. If the

system script requires a script extension, system messages may not

display properly. &

Apart from installing a script system itself, users can always move fonts into and out of
the Fonts folder, and input methods into and out of the Extensions folder.

Installing Modifications to a Script System

Applications that are written to take advantage of the Macintosh script management
system function correctly regardless of the localized version of Macintosh system
software under which they run. However, it is also possible to tailor an individual
application for a specific script system or set of scripts, or for a specific regional variation
of the system script or other script.

To do so may require installing a new script system or a modified set of resources to
replace those of a currently installed script system. (This is especially true if your target
region is not already supported by a localized version of system software.) Either way
usually involves modifying the System file. The Apple Computer system software
licensing policy forbids shipping a modified System file, so you cannot install your
replacement resources in a System file and ship it with your application. However, there
are three other approaches you can take:

m If you create individual modified versions of an installed script system’s resources—in
order to implement region-specific sorting or formatting conventions—you can attach
those resources to your application and have them replace the existing script system’s
resources whenever your application is running.

Script Systems in Use 1-103

1-104

CHAPTER 1

Introduction to Text on the Macintosh

This method requires no modifications to the System file at all. For specific
instructions, see the discussion on replacing a script system’s default international
resources in the chapter “Script Manager” in this book.

m If you want individual resources permanently installed in the System file, you
can have the user run the Installer to install your resources. Contact Macintosh
Developer Technical Support for information on how to use the Installer. The user
will then be able to select or deselect your resources as defaults through the Text,
Numbers, and Date & Time control panels. See “User Control of Script Settings”
beginning on page 1-107.

m If you want to provide a complete script system with your application, you can ship it
as a separate file in a folder along with fonts and any other assocated files. The user
can then install it as an auxiliary script as described earlier, under “Components of
Auxiliary Scripts.”

Your script system must be complete or it will not be enabled at startup. What
constitutes a complete script system is described under testing for script systems in the
chapter “Script Manager” in this book. The formats of the resources you need to
include are described in the appendixes “International Resources” and “Keyboard
Resources” in this book.

In general, it is not feasible to replace a system script, except by doing an “Update
Install” from another complete localized system, as described on page 1-101. Although
the user can replace individual resources in the System file by using a resource editor
such as ResEdit, it is not possible to directly replace a system script with an auxiliary
script because a system script requires an international configuration (' it1lc') resource,
which is not part of any auxiliary script. Furthermore, replacing the system script is not
the same as localizing all of the system software. A system script should support the
system software it is shipped with, meaning that the language and icons of system
menus, dialog boxes, and messages should reflect the system script. Merely replacing the
system script does not accomplish that.

How the User Switches Among Script Systems

The script system for display of text is controlled by the application or by the system,
based on which graphics port is active, which font is the current font, and what the states
of the font force flag and international resources selection flag are.

Script Systems in Use

CHAPTER 1

Introduction to Text on the Macintosh

The script system for text input, the keyboard script, is controlled by the user, either
explicitly through a menu selection, or implicitly through choosing a font or selecting
or clicking in displayed text of a particular script system. This section summarizes how
the keyboard script is selected; for more complete information, see the discussions of
keyboard settings and synchronization in the chapter “Script Manager” in this book.

In any localized version of system software in which more than one script system is
present, a small icon called a keyboard icon appears on the right side of the menu bar.
Figure 1-60 shows the keyboard icon for the Korean script system, to the left of the
application icon and to the right of the Help menu icon.

Figure 1-60 Menu bar with keyboard icon

(B @ <& |
M

This symbol indicates which keyboard script, as represented by a keyboard layout or
input method, is currently being used for text input. For example, the Arabic keyboard is
represented by a crescent, the Hebrew keyboard by a Star of David, and common
European keyboards by flags or other appropriate symbols. The Japanese input method
is represented by an Apple icon in front of a rising sun; Chinese by a coin (Simplified) or
a pot called a Ding (Traditional); Korean by the circular yin-yang symbol. The default
Roman keyboard is represented by a blue diamond, except on versions of system
software localized for the United States, in which it is represented by a U.S. flag. Figure
1-61 gives some examples of keyboard icons and input-method icons. Color Plate 4
shows a larger set of keyboard icons in color.

Figure 1-61 Keyboard icons and input-method icons

m = O M= W @ & D

Script Systems in Use 1-105

CHAPTER 1

Introduction to Text on the Macintosh

The keyboard icon serves as the title for the Keyboard menu; the user can click

the keyboard icon to pull down the Keyboard menu. The Keyboard menu shows all
keyboard layouts and input methods for all available keyboard scripts. The user makes
a selection from the Keyboard menu in order to change the keyboard script, or to
select among different keyboard layouts or input methods within a given script.

See Figure 1-62.

Figure 1-62 Keyboard menu

1-106

g ~

About Keyboards...

v ¥ LS.
45 U.s. - System 6

== Pycckan

Cor

L PEE ATy

nan
HUWNY AWARD AT

Doezam™

A NEREN

The Operating System provides keyboard equivalents for switching among script
systems. In system software localized for the U.S., for example, if the user presses
Command-Space bar, the Operating System switches the keyboard script to the “next”
script system, meaning the default keyboard layout or input method for the next script
system listed (down) the Keyboard menu. If the user presses Command-Option-Space
bar, the Operating System switches to the next keyboard layout or input method within
the current script system.

Script Systems in Use

CHAPTER 1

Introduction to Text on the Macintosh

To see how the current keyboard layout functions, the user can select the Key Caps

desk accessory. Whenever the keyboard script or keyboard layout changes, the Key Caps
display changes to reflect the new character set and its arrangement on the keyboard.
See Figure 1-63.

Figure 1-63 Arabic Key Caps

SN=——————— Key Laps

O (il (e oy o) ey o)) o) 8 M) o)

“Jrfrlirlelalngwnls]-]-|= afojop{ol=1{+41*
osloal = | & | =2 ¢ allz =1 a || N oo 718]9] -
ll]l c5 | = [] & 4(5]6] +
Llefsfsl ol lolal. 17 1]2]s

1] O

Application-Controlled Switching

Your application must synchronize the current font with the keyboard
script whenever you are displaying characters as the user enters them. If
the user changes fonts, you need to automatically change the keyboard
script to correspond to the new font. Conversely, if the user changes
keyboard scripts, you need to change the font appropriately before
displaying the next character typed. Failure to do so can lead to incorrect
text display. See “Font and Keyboard Synchronization” on page 1-90. &

User Control of Script Settings

The script management system provides three control panels that allow the user to
change the settings of certain script-system features and to save the settings across
system restarts.

The Text control panel, shown in Figure 1-64, is available on non-U.S. versions of system
software. It allows users to set the text behavior of any enabled script system, and may
allow the user to set the system direction, the state of the font force flag, the caret style,
and the rate of caret blinking. (Some of the settings are not available unless certain script
systems are present.)

Script Systems in Use 1-107

CHAPTER 1

Introduction to Text on the Macintosh

The appearance of the dialog box varies with the version of localized system software;
Figure 1-64 represents a Text control panel for Hebrew system software localized to have
all text strings in English.

Figure 1-64 Text control panel

1-108

E[[E=E==————————— Teut

Text Behaviors Insertion Point

-
Appearance Rate of Blinking
’7@' D—‘ ’70 C] D—‘
g

Split Singl Slow Fast

Affects zort order, case
conversion, and word definitions.

[Force Hebrew font

Lrizplay a1l Hebrew text in & Hebrew

font. This is only necessary for .
applications that do not support () - Fight to left

Hebrew text, @ —= Left to right
Sample: 3190 m9) |

System Direction

m The Text Behaviors settings control which string-manipulation (' it12 ') resource
is used for sorting, case conversion, and word selection for the selected script
system (including the system script). The choices are limited to the installed
string-manipulation resources for the enabled script systems (including the
Roman string-manipulation resource, which is always present). If more than one
choice is available and the user changes this setting, the new setting is saved in
the it1bsSort field of the script’s international bundle resource.

m The System Direction setting controls the primary line direction and alignment for all
text and interface elements controlled by the system. The system direction may be set
to either left to right or right to left. The user’s selection is immediately reflected in the
alignment of elements in all system and Finder dialog boxes and in all menus.

It changes the setting of the system global variable SysDirection. The setting

is also saved in the it 1cSysF1lags field of the system’s international configuration
resource. (This control appears only if at least one bidirectional script system

is enabled.)

m The font force flag may be set to either TRUE or FALSE, which affects the setting of the
Script Manager variable accessed through the smFontForce selector for the
GetScriptManagerVariable function. The font force flag allows display of
non-Roman text in an application that normally supports Roman text only. See
the chapter “Script Manager” in this book. The setting made by the user is saved in the
itlcFontForce field of the system’s international configuration resource.
(This control appears only if the system script supports font forcing.)

Script Systems in Use

CHAPTER 1

Introduction to Text on the Macintosh

m The Insertion Point setting sets the caret style. The caret may appear either as a single
caret or as a dual (split) caret (see Figure 1-46 on page 1-78 for an example). The setting
made by the user is reflected in the value of the Script Manager general flags, accessed
through the smGenF1lags selector for the Get ScriptManagerVariable function.
See the chapter “Script Manager” in this book. The setting made by the user is saved in
the it1lcFlags field of the system’s international configuration resource. (This control
appears only if at least one bidirectional script system is installed.)

The rate of caret blinking (slow, medium, or fast) affects the insertion point in text
fields. The user’s setting is saved in parameter RAM.

The Numbers control panel, shown in Figure 1-65, allows users to specify the basic
number and currency formats for the system script. User settings made through this
control panel are saved in the system script’s numeric-format ('it10"') resource.

Figure 1-65 Numbers control panel

S=———=— Numbers %I

#; Number Format: [U.S.]

Separators —m8 ———— Currency

Decimal: Dlzl Symbol:

® Before number
Thousands:
IZ“El O ATter number

Sample
[$1,23458

m The Number Format setting controls which numeric-format (' it10"') resource is used
for default number, currency, and short-date formats. The choices are limited to the
installed numeric-format resources for the system script. If the user changes any of the
default settings, a new setting called custom is created in the Number Format popup
menu, and is saved as a new numeric-format resource for the system script;
its ID is then saved in the it 1bNumber field of the system script’s international
bundle resource.

m The Separators settings allow the user to override the default decimal separator and
thousands separator for the system script. Suggested separators are presented in the
popup menus for the settings, although the user can enter any 1-byte character for
either separator. The settings made by the user are saved in the decimalPt and
thousSep fields of the system script’s custom numeric-format resource.

m The Currency settings allow the user to specify a currency symbol of up to three 1-byte
characters or a single 2-byte character, and to choose whether the symbol precedes or
follows a currency number. The settings made by the user are saved
in the currSym1 through currSym3 fields of the system script’s custom
numeric-format resource.

Script Systems in Use 1-109

CHAPTER 1

Introduction to Text on the Macintosh

The Date & Time control panel, shown in Figure 1-66, allows users to set the current
date and time and to specify formatting preferences for both. The settings made with this
control panel affect the display of dates and times by the system and Finder and by the
Text Utilities date- and time-formatting routines, when the resources of the system script
are used (that is, as long as the international resources selection flag is TRUE).

Figure 1-66 Date & Time control panel

SO0=——— Date & Time

% Current date Current time
9/26/92 1:12:46 PM

[Date Formats...] [Time Formats...]

Format settings are made with individual Date Formats and Time Formats dialog boxes.
Custom user settings made through these dialog boxes are saved as new numeric-format
("it10') and long-date-format (' it11 ") resources for the system script.

The Date Formats dialog box sets date formats, as shown in Figure 1-67.

Figure 1-67 Date Formats dialog box (from Date & Time control panel)

1-110

By Date Formats: |_U.S. |

— Long date — Short date

Prefix: | Month/Day/Year =
Weekday v| \’—1 Separatur:

|

| Month - |

[Day -] |, [Leading zero for day

| Year "l [Leading zero for month
[Show century

[]Leading zero for day

Thursday , Januatry 2, 1992 Cancel

Thu, Jan 2, 1992

— Samples

Script Systems in Use

CHAPTER 1

Introduction to Text on the Macintosh

The Date Formats setting allows the user to select a long-date-format (' 1t11') and
numeric-format ('1t10 ') resource to be used for date formatting. The choices are
limited to the installed pairs of numeric-format and long-date-format resources for the
system script. If the user changes any of the default settings, a new setting called
“custom” is created in the Date Formats popup menu, and is saved as a new pair of
numeric-format and long-date-format resources for the system script; their IDs are
then saved in the it1bNumber field and it1bDate field of the system script’s
international bundle resource.

The Long date settings allow the user to select what elements to include in a long date,
what order they should be in, and what separators should be between them. The Long
date settings also allow the user to specify the use of a leading zero for the day number
in a long date. The settings made by the user are saved in the days, months,
suppressDay, lngDateFmt, st 0 through st4, and dayLeading0 fields of the
system script’s custom long-date-format resource.

The Short date settings allow the user to select the order of date elements in a

short date, and to specify a single (1-byte) character as separator. The Short date
settings also allow the user to specify whether to use a leading zero for day number or
month number, and whether to show the century. The settings made by the user are
saved in the dateOrder, dateSep, and shortDateFmt fields of the system script’s
custom numeric-format resource.

The Time Formats dialog box sets time formats, as shown in Figure 1-68.

Figure 1-68 Time Formats dialog box (from Date & Time control panel)

Time Format: [U.S. |

[Juse leading zero for hour

— Elock — Forrnat
0 24 hour Before noon:
@ 12 hour
Noon & midnight: After noon:
3 0:00
@ 12:00 Separator:

Samples
’7 12:34 AM 4:36 PM

m The Time Format setting allows the user to select a numeric-format (' it10') resource

to be used for time formatting. The choices are limited to the installed numeric-format
resources for the system script. If the user changes any of the default settings, a new
setting called “custom” is created in the Time Formats popup menu, and is saved as a
new pair of numeric-format and long-date-format resources for the system script; their
IDs are then saved in the it 1bNumber field and it1bDate field of the system srcipt’s
international bundle resource.

Script Systems in Use 1-111

CHAPTER 1

Introduction to Text on the Macintosh

m The Clock settings allow the user to choose a 12- or 24-hour time cycle, and to specify
whether midnight (and noon, if a 12-hour cycle) is considered to be hour 0 or hour 12.
The settings made by the user are saved in the t imeCycle field of the system script’s
custom numeric-format resource.

m The Format settings allow the user to specify a 1-byte character as separator for the
time elements, and to specify morning and evening trailing strings (such as AM and
PM) for the 12-hour cycle. The current separators and trailing strings are presented in
the fields for the settings, but the user can enter any 1-byte character for the separator
and any string of up to 4 bytes for either trailing string. The settings made by the user
are saved in the timeSep, mornStr, and eveStr fields of the system script’s custom
numeric-format resource.

Script-specific control panels

In addition to the control panels described in this section, individual
script systems may provide their own control panels for other purposes,
such as allowing a user to select a custom calendar system, an associated
font, or a set of numerals (ASCII or non-ASCII). The results of those
selections may be kept in a script preferences file. &

1-112 Script Systems in Use

CHAPTER 2

TextEdit

Contents

About TextEdit 2-6
TextEdit and Standard Macintosh Features 2-6
Multistyled and Monostyled Text 2-7
Font and Keyboard Script Synchronization 2-8
Cutting, Copying, and Pasting Text 2-9
The TextEdit User Interface 2-10

The Selection Range, the Insertion Point, and Highlighting in
TextEdit 2-10

Caret Position and Movement 2-11
Text Alignment 2-13
Line Measurement 2-14
Text Buffering 2-14
The TextEdit Private, Null, and Style Scraps 2-15
An Overview of the TextEdit Data Structures 2-16
An Overview of the Edit Record 2-16
Related Data Structures 2-17
Using TextEdit ~ 2-21
Getting Started With TextEdit 2-22
Preparing to Use TextEdit 2-22
Displaying Static Text ~ 2-24
Creating an Edit Record 2-24
Specifying the Destination and View Rectangles 2-28
Setting the Text of an Edit Record 2-29
Setting the Selection Range or the Insertion Point 2-30
Scrolling Text 2-31
Disposing of an Edit Record 2-32
Responding to Events Using TextEdit 2-32
Handling a Null Event ~ 2-32
Activating an Edit Record 2-33
Handling Mouse-Down Events ~ 2-34

Contents 2-1

CHAPTER 2

Responding to an Update Event ~ 2-36
Accepting Text Input Through Key-Down Events 2-36
Moving Text In and Out of Edit Records 2-38
Using TextEdit to Cut, Copy, and Paste Text ~ 2-39
Inserting and Deleting Text 2-43
Text Attributes 2-43
Checking the Text Attributes Across a Selection Range 2-44
Toggling an Attribute 2-46
Handling a Font Menu 2-47
Handling a Font Size Menu 2-48
Handling a Style Menu ~ 2-48
Changing the Text Alignment 2-50

Saving and Restoring a TextEdit Document, and
Implementing Undo 2-51

Saving a TextEdit Document 2-51
Restoring an Existing TextEdit Document 2-53
Handling Undo 2-55

Customizing TextEdit ~ 2-56
Replacing the End-of-Line Routine 2-57
Replacing the Drawing Routine 2-58
Replacing the Width-Measuring Routines 2-58
Replacing the Hit Test Routine 2-60
Customizing Word Selection ~ 2-60
Customizing Automatic Scrolling 2-61
Determining the Line Length 2-62
Advanced Customization 2-63

TextEdit Reference 2-64

Data Structures 2-64
The Edit Record 2-67
The High Hook and Caret Hook Fields 2-70
The Style Record 2-71
The Style Table 2-72
The Line Height Table 2-73
The Null Style Record 2-74
The Style Scrap Record ~ 2-74
The Scrap Style Table 2-75
Text Style Record 2-76

Routines 2-76

Initializing TextEdit, Creating an Edit Record, and Disposing of an Edit
Record 2-77

Activating and Deactivating an Edit Record 2-80

Setting and Getting an Edit Record’s Text and Character Attribute
Information ~ 2-81

Setting the Caret and Selection Range 2-84
Displaying and Scrolling Text ~ 2-86
Modifying the Text of an Edit Record 2-93
Managing the TextEdit Private Scrap ~ 2-98

Contents

CHAPTER 2

Checking, Setting, and Replacing Styles 2-99
Using Byte Offsets and Corresponding Points 2-105

Additional TextEdit Features

Customizing TextEdit ~ 2-110

Summary of TextEdit 2-118
Pascal Summary 2-118
Constants 2-118
Data Types 2-120
Routines 2-123
C Summary 2-125
Constants 2-125
Types 2-127
Routines 2-130
Assembly-Language Summary
Trap Macros 2-132
Global Variables 2-133

Contents

2-107

2-132

2-3

CHAPTER 2

TextEdit

TextEdit is a collection of routines and data structures that give your application

basic text formatting and editing capabilities, including text display in multiple scripts.
TextEdit manages fundamental text processing tasks on text limited to 32 KB. You can use
the TextEdit routines in many kinds of applications, such as spreadsheets, online
(data-entry) forms, online advertising programs, simple programming-language or
text-file text editors, electronic mail programs, drawing and painting programs with
simple text-editing features, and electronic note cards. However, TextEdit was not
designed to be used to implement word-processing applications with complex support
that manipulate lengthy documents.

To use TextEdit and the information provided in this chapter, you should be familiar with
the basic concepts and structures behind QuickDraw and how it handles text—
particularly points, rectangles, graphics ports, fonts, and character style—the

Event Manager, the Window Manager—particularly update and activate events—the
Font Manager, the Script Manager, and Text Utilities.

For information on non-text features of QuickDraw, see Inside Macintosh: Imaging. For
information on the Event Manager and the Window Manager, see Inside Macintosh:
Macintosh Toolbox Essentials.

This book includes chapters that cover the Font Manager, Text Utilities, the Script
Manager, and QuickDraw Text. Although these chapters pertain to TextEdit, the only
chapter in this book that you need to read as a prerequisite to TextEdit is “Introduction to
Text on the Macintosh.”

This chapter describes how to use TextEdit to perform a range of editing and formatting
capabilities including

m inserting new text
m selecting and highlighting ranges of text

m deleting selected text and possibly inserting it elsewhere, or copying text without
deleting it

m replacing selected text
m translating mouse activity into text selection

m scrolling text within a window, including automatically scrolling text that is not visible
but is affected by the editing activity

m changing the characteristics of text, including font family, style, and size

m customizing some TextEdit behavior

2-5

CHAPTER 2

TextEdit

About TextEdit

2-6

TextEdit was originally designed to handle editable text items in dialog boxes and other
parts of the system software. Although TextEdit has been enhanced to provide more
text-handling support since its inception, especially in its handling of multi-script text, it
retains some of its original limitations. TextEdit was not originally intended to
manipulate lengthy documents or text requiring more than rudimentary formatting. For
example, TextEdit does not handle tabs. (Your application can provide support for tabs to
supplement TextEdit.)

However, TextEdit handles some of the cumbersome tasks that a text processor needs to
perform, and provides you with an alternative to writing your own text processor. For
example, when you use TextEdit routines to edit text, your application does not need to
allocate memory for blocks of text that change dynamically during the editing session
because TextEdit takes care of this for you. When the user selects a range of displayed
text of a TextEdit edit record, TextEdit recognizes this and responds by highlighting

the text.

TextEdit relies on the Script Manager, QuickDraw, and Text Utilities to handle text
correctly, and eliminates the need for your application to call these routines directly.
Because TextEdit supports text from more than one script system and manages scripts
having different primary line directions, you can use its routines and features to develop
applications that support multiple languages.

TextEdit uses Text Utilities routines: the FindWordBreaks procedure for determining
word breaks and the StyledLineBreak function for determining line breaks. TextEdit
also allows you to customize how word boundaries and line breaks are defined.

TextEdit and Standard Macintosh Features

Because TextEdit routines follow the Macintosh user interface guidelines, using them
ensures the presentation of a consistent user interface in your application. Your
application can rely on TextEdit to support these standard features instead of having to
implement them directly:

m selecting text by clicking and dragging with the mouse

m double-clicking to select words, which are defined according to the rules of the script
system in which they are written

m line breaking, which prevents a word from being split inappropriately between lines
when text is drawn

About TextEdit

CHAPTER 2

TextEdit

m extending or shortening a selection range by Shift-clicking

m highlighting of the current text selection, or display of a blinking vertical bar at an
insertion point

m cutting, copying, and pasting within and between applications

m the use of more than one font, size, color, and stylistic variation from character to
character within a single block of text

m display of text in more than one language on a single line

Multistyled and Monostyled Text

Text is rendered in a certain font, style, size, and color. These aspects of text are
collectively referred to as character attributes. TextEdit supports the display of text in
various character attributes (different fonts, styles, sizes, and colors) within the context of
a single edit record.

Text that uses a variety of fonts, styles, sizes, or colors is referred to in this chapter as
multistyled text to distinguish it from text that uses a single font, style, size, and color,
which is referred to as monostyled text.

TextEdit lets you boldface, italicize, underline, outline, condense, extend, and shadow
text. Using TextEdit routines, you can change the font family and type size of the entire
text of an edit record (or a selected range of text that the user has chosen or the
application has set). You can even increase the type size incrementally across a range of
text containing various sizes, for example, so that all 10 point text is changed to 12 point
and all 12 point text is changed to 14 point. If your application uses multistyled TextEdit
and allows users to select fonts, TextEdit displays text correctly in all scripts. Apart from
the TextEdit routines that deal with multistyled text exclusively, you can use all of the
TextEdit routines to simplify and manage your application’s text editing tasks for both
multistyled and monostyled text.

Note

In the original Inside Macintosh documentation that describes TextEdit,
the term face is used to refer to the following text style attributes: bold,
italic, underline, outline, condense, extend, and shadow. The term style is
now used instead of face to refer to these attributes. &

TextEdit organizes multistyled text into style runs. The characters comprising a style run
are contiguous in memory and are all displayed in the same font, size, color, and script as
well as style. TextEdit tracks style runs in the data structures that are allocated for a
multistyled edit record and uses this information to correctly display multistyled text.

About TextEdit 2-7

CHAPTER 2

TextEdit

Figure 2-1 shows four style runs in a line of text.

Figure 2-1 Style runs in a line of text
0] 0E
DYDY peace on earth DYDY
R | S | U |
RamatGan Helvetica Helvetica RamatGan
24 plain 18 italic 18 plain 24 plain

TextEdit supports mixed-directional text: the combination of scripts with left-to-right
and right-to-left directional text within a single line. Figure 2-2 shows an example of
Hebrew and Roman text on the same line. The two runs of Hebrew text have a
right-to-left direction, and the Roman text direction is left to right.

Figure 2-2 Mixed-directional text display

2-8

-

DYDY peace on earth DOV H

e -— -

Font and Keyboard Script Synchronization

TextEdit handles synchronization of the font script, the script system that corresponds to
the font of the current graphics port, and the keyboard script, the script system used for

keyboard input, for multistyled and monostyled text.

For monostyled text, the primary script system determines whether or not TextEdit
synchronizes the font script and the keyboard script, based on the value of a flag in the
script system’s international bundle resource (' 1t1b'). TextEdit uses this flag, without

requiring any action on the part of your application.

About TextEdit

CHAPTER 2

TextEdit

For multistyled text, TextEdit always synchronizes the font script and the keyboard
script. (If the font script at the selection range or insertion point is the same as

the keyboard script, then this font is used.) The following sections explain the conditions
that determine whether TextEdit matches the keyboard script to the font script or

vice versa. TextEdit synchronizes the keyboard script with the font script under the following
conditions:

m When your application calls a TextEdit routine to change the font of a text selection or
to process a mouse-down event in text as either an insertion point or a selection. This
means, for example, that if a user types Arabic text followed by Roman text and clicks
in the Arabic text, the keyboard adjusts and changes to Arabic without the user’s
needing to change the keyboard manually. Similarly, if a user clicks in the Roman text,
the keyboard changes to Roman without the user’s altering the keyboard.

m If the selection range encompasses text—if it is not an insertion point—then TextEdit
uses the font corresponding to the first character of the selected text to determine the
keyboard script. When an insertion point falls on a script boundary, the keyboard is
synchronized to the font of the character preceding the boundary (in storage order). (A
selection range is a series of characters, selected by the user or the application, where
the next editing operation is to occur. Although the character representations are
contiguous in memory, they can be discontinuous on the display screen when the text
is bidirectional. For more information, see “The Selection Range, the Insertion Point,
and Highlighting in TextEdit” on page 2-10.)

TextEdit synchronizes the font script with the keyboard script under the following condition:

m When your application calls a TextEdit routine to input a character and if the keyboard
script is different from the font script at the selection range (or insertion point). If a
font was selected and never used, thus remaining in the scrap that TextEdit uses for
character attributes (null scrap) and if the font script coincides with the keyboard
script, then this font is used. Otherwise, TextEdit searches through the preceding fonts
in the style run table until it locates a font that corresponds to the keyboard. If one
does not exist, then it uses the application font. For more information about the null
scrap, see “The TextEdit Private, Null, and Style Scraps” on page 2-15.

Cutting, Copying, and Pasting Text

TextEdit provides routines that let you cut, copy, and paste text
m within a single edit record

m between edit records within an application

m between an application and a desk accessory

m across applications

You use the same routines to cut and copy monostyled and multistyled text. There are,
however, separate routines for pasting monostyled and multistyled text. For multistyled
text, the TextEdit routines preserve any stylistic variation along with the cut or copied
text in order to restore it when you paste the text.

About TextEdit 2-9

CHAPTER 2

TextEdit

The TextEdit User Interface

This section describes the TextEdit user interface, that is, how TextEdit displays text on
the screen and the methods it uses to communicate information about that text to an
application user. It explains some of the processes that TextEdit performs automatically
for your application, including how TextEdit uses highlighting or a caret to identify
where the next editing operation is to occur, how TextEdit handles line measurement for
your application, and how TextEdit uses buffering to handle 2-byte characters.

This section also covers some aspects of the user interface that your application can
control through TextEdit routines, such as the kind of text alignment and the use of
buffering to enhance performance.

The Selection Range, the Insertion Point, and Highlighting in TextEdit

Depending on the purpose of an application, a user might select a range of text to be
edited or the application might set the selection range. In either case, the selected text
becomes the current selection range. TextEdit uses a byte offset to identify the position of
a character in the text buffer of an edit record, and an edit record includes fields that
specify the byte offsets of the characters in the text buffer that correspond to the
beginning and the end of the current selection range in the displayed text. (See “An
Overview of the Edit Record” on page 2-16 for more about edit records.)

When the byte offset values for the beginning and the end of the selection range are the
same, the selection range is an insertion point. TextEdit marks an insertion point with a
blinking caret in the form of a vertical bar (I).

TextEdit uses highlighting to display a selection range. Because TextEdit supports
mixed-directional text, the selection range can appear as discontinuous text. Displayed
text is highlighted according to the storage order of the characters. When multiple script
systems having different line directions are installed, a continuous sequence of characters
in memory may appear as a discontinuous selection when displayed.

Figure 2-3 shows how TextEdit highlights a range of text whose displayed glyphs are not
contiguous, although their corresponding byte offsets are contiguous in memory. In this
example, the primary line direction is left to right.

Figure 2-3 Discontinuous highlighting display

2-10

(= F
DYV peace SR D&Y H

About TextEdit

CHAPTER 2

TextEdit

TextEdit provides a function that lets you to turn outline highlighting, the framing of
text in a selection range, in an inactive window, on or off. See Figure 2-4. (For more
information about outline highlighting, see “TEFeatureFlag” on page 2-107.)

Figure 2-4 Outline highlighted text selection in background window
g Active Window =—————P1I=

<ali

Here isan example of Dackgrnund outline h1ghhght1ng]

Inactive window

e of background outline highlighting
Hit document: ['This, above all: 1o
true, &nd it must follow, as the

I can not be false to any man.”

=[]

Caret Position and Movement

This section describes how TextEdit displays and moves a caret. For more information,
see the discussion of caret handling in the chapter “Introduction to Text on the
Macintosh” in this book.

TextEdit marks the position in the displayed text where the next editing operation is to
occur with a caret. When TextEdit pastes text into a record, it positions a caret after the
newly pasted text on the screen. TextEdit uses a single caret for text that does not include
mixed directions. When TextEdit displays a single caret in unidirectional text and the
user presses an arrow key to move the caret left or right across the text, TextEdit moves
the caret in the direction of the arrow key.

When the text includes mixed directions, TextEdit uses either a moving caret or a dual
caret, depending on the value of a Script Manager flag. For example, if this flag specifies a
moving caret, TextEdit displays the caret at the screen location where the next glyph is to
appear, based on the text direction of the keyboard script.

If this flag specifies a dual caret, TextEdit displays a high caret and a low caret, each
measuring half the line’s height. The high caret is displayed at the screen location
associated with the glyph that has the same direction as the primary line direction, and
the low caret is displayed at the screen location associated with the glyph that has a
different direction from the primary line direction.

When TextEdit displays a dual caret on a direction boundary, only the primary caret
moves in the direction of the arrow. Figure 2-5 shows a sequence of two Right Arrow
keypresses and their impact on caret display and movement in a line containing
mixed-directional text. In this example, the primary line direction is right to left.

About TextEdit 2-11

CHAPTER 2

2-12

TextEdit
Figure 2-5 Caret movement across a direction boundary
Original caret ,,
position
|
\
Dual caret I
positions
New caret
position

In the first instance of the text segment, the caret is positioned within the Arabic text.
When the user presses the Right Arrow key once, the insertion point is positioned on a
direction boundary and the caret splits into a dual caret. When the user presses the Right
Arrow key again, TextEdit displays a single, full caret after the parenthesis in the Roman
text. Because the caret position is again in the middle of a style run, TextEdit no longer
uses the dual caret.

Note

TextEdit currently deviates from this model for caret movement in
monostyled left-to-right text (displayed in a non-Roman font) on any
primary right-to-left script system. On the Arabic script system, for
example, it is possible to display the low-ASCII Roman characters from
an Arabic font. If a user presses the arrow keys to move through these
characters, the caret moves in the opposite direction of the arrow. &

Vertical movement of the caret is less complex. When the user presses the Up Arrow key,
the caret moves up by one line, even in lines of text containing fonts of different sizes.
When the caret is positioned on the first line of an edit record, and the user presses the
Up Arrow key, TextEdit moves the caret to the beginning of the text on that line, at
primary caret position 0. (This position corresponds to the visible right end of a line when
the primary line direction is right to left and to the left end of the line when the primary
line direction is left to right.)

About TextEdit

CHAPTER 2

TextEdit

Similarly, when the user presses the Down Arrow key, the caret moves down one line.
When the caret is positioned on the last line of an edit record, and the user presses the
Down Arrow key, TextEdit moves the caret to the end of the text on that line (that is, the
visible left end of a line when the primary line direction is right to left and to the right
end of a line when the primary line direction is left to right).

Note

TextEdit does not support the use of modifier keys, such as the Shift key
or the Option key, in conjunction with the arrow keys.

If spaces at the end of a text line extend beyond the view rectangle, TextEdit draws the
caret at the edge of the view rectangle, not beyond it. Whether TextEdit displays a caret at
the beginning or end of a line when a mouse-down event occurs at a line’s end depends
on the current caret position and the value in a field (c1ikStuf£) of the edit record.
TextEdit sets this field to reflect whether the most recent mouse-down event occurred on
the leading or trailing edge of a glyph.

For example, if the mouse-down event occurs on the leading edge of a glyph, TextEdit
displays the caret at the caret position corresponding to the leading edge of that glyph. If
the mouse-down event is on the trailing edge of a glyph, TextEdit displays the caret at the
beginning of the next line. For more information about determining a caret position, see
the sections that discuss caret handling in the chapters “Introduction to Text on the
Macintosh” and “QuickDraw Text” in this book.

Text Alignment

TextEdit allows you to specify the alignment of the lines of text, that is, their horizontal
placement with respect to the left and right edges of the text area or destination rectangle.
The different types of alignment that TextEdit supports accommodate script systems that
are read from right to left, as well as those that are read from left to right. The types of
alignment supported are

m default alignment (positions the text according to the line direction of the system
script. It can be either left or right. Line direction is the direction in which text in a
particular language is written and read. The English language has a rightward, or
left-to-right, line direction. Arabic and Hebrew have a [primarily] leftward, or
right-to-left, line direction.)

m center alignment (centers each line of text between the left and right edges of the
destination rectangle)

m right alignment (positions the text along the right edge of the destination rectangle)
m left alignment (lines up the text with the left edge of the destination rectangle)

If your application requires justified alignment, you can use the QuickDraw routines that
support full justification; TextEdit does not support justified alignment. See the chapter
“QuickDraw Text” in this book for more information.

About TextEdit 2-13

2-14

CHAPTER 2

TextEdit

Line Measurement

TextEdit measures a line of text appropriately for all script systems by removing any
trailing white space from the end of it, taking the line direction into account. It uses the
QuickDraw VisibleLength function to exclude trailing white space, based on the
script system, the text direction, and the primary line direction. For more information
about the behavior of VisibleLength for various script systems, see the chapter
“QuickDraw Text” in this book.

An anomaly exists, however, in the way TextEdit draws at the end of a line. When the
primary line direction of a script system is right to left (for instance, on a Hebrew
system), when the alignment is left or center, and when spaces are entered in a
right-to-left font, TextEdit measures spaces at the end of the line and therefore may draw
the text beyond the edge of the view rectangle. The caret, however, remains in view and
is pinned to the left edge of the view rectangle.

This anomaly also exists when the primary line direction of a script system is left to right
and the alignment is center. In this instance, TextEdit measures spaces at the end of the
line, and as more spaces are added (and, therefore, measured), the visible text in the line
is drawn out of view beyond the left edge of the view rectangle. The caret, however,
remains in view and is pinned to the right edge of the view rectangle.

Text Buffering

TextEdit uses two methods of text buffering; one method, which is automatic, is used to
handle 2-byte characters properly. The other method, which you can enable or disable,
improves performance in relation to how TextEdit handles input of 2-byte characters.

For the first method, which is automatic, TextEdit relies on the Script Manager. The Script
Manager handles 2-byte characters properly, and TextEdit takes advantage of this. If a
2-byte character, such as a Kanji character, is typed, TextEdit buffers the first byte until it
processes the second byte, at which time it displays the character. The internal buffer that
TextEdit uses for a 2-byte character is unique to each edit record. For example, TextEdit
can buffer the first byte of a 2-byte character in a record, then the application can call the
TextEdit TEKey procedure for another edit record. While TEKey processes the character
for the second edit record, the first byte of the 2-byte character remains in the first edit
record’s buffer until TextEdit processes the second byte of that 2-byte character, and then
displays the character.

The second method of text buffering enhances performance, and you can turn it on or off
through the TextEdit function, TEFeatureFlag. In this case, TextEdit uses a global
buffer—it differs from the TEKey procedure’s internal 2-byte buffer—that is used across
all active edit records. These records may be in a single application or in multiple
applications. Because of this, you should exercise care when you enable the text-buffering
capability in more than one active record; otherwise, the bytes that are buffered from one
edit record may appear in another edit record.

m Ensure that buffering is not turned off in the middle of processing a 2-byte character.
To guarantee the integrity of your record, it is important that you wait for an idle event
before you disable buffering or enable buffering in a second edit record.

About TextEdit

CHAPTER 2

TextEdit

m When text buffering is enabled, ensure that TEId1e is called before any pause of more
than a few ticks—for example, before WaitNextEvent. A possibility of a long delay
before characters appear on the screen exists—especially in non-Roman systems. If
you do not call TEId1le, the characters may end up in the edit record of another
application.

If you enable text buffering for performance enhancement on a non-Roman script system
and the keyboard has changed, TextEdit flushes the text of the current script from the
buffer before buffering characters in the new script.

The TextEdit Private, Null, and Style Scraps

There are three scrap areas that TextEdit uses exclusively: the TextEdit private scrap, the
TextEdit null scrap, and the TextEdit style scrap. The TextEdit routines use all of these
scraps to hold transient information.

TextEdit uses the private scrap for all cut, copy, and paste activity whether the text is
multistyled or monostyled. The private scrap belongs to the application. When the text is
multistyled, TextEdit also copies the text to the Scrap Manager’s desk scrap.

TextEdit uses the null scrap to store character attribute information associated with a null
selection (an insertion point) or text that is deleted when the user backspaces over it. The
null scrap belongs to the multistyled edit record. Character attribute information stored
in the null scrap is retained until it is used, for example, when applied to newly inserted
text, or until some other editing action renders it unnecessary, such as when TextEdit sets
a new selection range. A number of routines that deal with multistyled text check the null
scrap for character attribute information and, if there is any, apply it to newly inserted
text when character attributes for that text are not available.

When you cut or copy multistyled text, memory is allocated dynamically for the style
scrap and the character attribute information is copied to it. Your application can also use
the style scrap for other purposes. For example, to save and restore multistyled text both
the text and the associated character attribute information must be preserved;

you can save character attributes associated with a range of text in the style scrap. Also,
you can create a style scrap record and store character attribute information in it to

be applied to inserted text. Your application can create as many style scraps as it needs.
For more information, see the discussion of the style scrap record under “Data
Structures” on page 2-64.

As part of TextEdit initialization, TEInit creates the private scrap and allocates a handle
to it. TextEdit creates and initializes a null scrap for a multistyled edit record when an
application calls TEStyleNew to create the edit record. (The null scrap remains
throughout the life of the edit record: it is disposed of when the application calls
TEDispose to destroy the edit record and release the memory allocated for it.) TextEdit
allocates memory used for the style scrap dynamically when your application calls a
routine that uses it.

Note

Because these scraps are in RAM, they are volatile, and a power failure
can cause the data in a scrap to be lost. &

About TextEdit 2-15

CHAPTER 2

TextEdit

An Overview of the TextEdit Data Structures

To edit text on the screen, TextEdit maintains information about where the text is stored,
where to display it, and the text style. This information is contained in a record that
defines the complete editing environment. You can allocate a monostyled edit record to
contain text that is set in a single font, size, and style, or you can allocate a multistyled
edit record to contain text with attributes that can vary from character to character.

An Overview of the Edit Record

An edit record, which is the primary data structure that TextEdit uses, carries text
storage, display, and editing information. When you allocate an edit record, you specify
where the text is to be drawn and where it is to be made visible. The destination
rectangle is the area in which the text is drawn, and the view rectangle is that portion of
the window within which the text is actually displayed. (For a complete discussion of
destination and view rectangles, see the QuickDraw chapters in Inside Macintosh:
Imaging.) Figure 2-6 shows two sets of destination and view rectangles. The view
rectangles are shaded and defined by dotted lines. The text is drawn in the destination
rectangle; the part of it that is displayed is defined by the view rectangle.

Figure 2-6 Destination and view rectangles
View
rectangles‘,
| !
"What a piece of work §"What\a piece of work is a man, how
is a man, how noble in inoble in reason, how infinite in faculties,
reason, how infinite in iin form and moving, how express and
faculties, in form and iadmirable in action, how like an angel in
moving, how express :apprehension, how like aigod!, the
and admirable in action, ibeauty of the world; the paragon of
how like an angel in :animals; and yet to me whiat is this
apprehension, how like iquintessence of dust?"
a god!, the beauty of
the world; the paragon
of animals; and yet to
Tme what 18 this

quintessence of dust?"

Destination
rectangles

2-16 About TextEdit

CHAPTER 2

TextEdit

The edit record includes fields that point to these rectangles. In addition to the two
rectangles, the edit record also contains

m a handle to the text to be edited

m the current selection range that determines exactly which characters are to be affected
by the next editing operation

m the alignment of the text, as left, right, or center

m for multistyled edit records, a handle to a subsidiary record, the style record,
containing the character attributes used to portray the text. This style record, itself,
contains subsidiary data structures.

Related Data Structures

Stemming from the main TextEdit edit record, relationships exist among the rest of the
TextEdit data structures.

When TextEdit creates an edit record, the record contains a field that stores the handle to
the dispatch record. The dispatch record is an internal data structure whose fields,
referred to as hook fields or hooks, contain the addresses of routines that TextEdit uses
internally, for example, to measure and draw text, or to determine a character’s position
on a line. These routines, called hook routines, determine the way TextEdit behaves. You
can use a TextEdit customization routine to replace the address of a default hook routine
with the address of your own customized routine. For example, you can provide a
routine to be used for word selection that defines word boundaries more precisely for
any script system.

When you allocate a monostyled edit record, the edit record, a handle to the text, and a
single subsidiary internal data structure, the dispatch record, are created. However, when
you allocate a multistyled edit record, a number of additional subsidiary data structures
are created to support the text styling capabilities and the display of text in multiple
languages.

For a multistyled edit record, the edit record contains a handle to the style record. The
style record stores the character attribute information for the text, and contains a handle
to the style table, which has one entry for each distinct set of character attributes. Each
entry in the style table is a style element record. The style record also contains a style run
table, which is an array that gives the start of each style run, and an index into the style
table. The style run table array identifies the byte offset of the starting character to which
the character attributes, stored in the style table, apply.

About TextEdit 2-17

2-18

CHAPTER 2

TextEdit

The style record contains two other handles: a handle to the line-height table and a
handle to the null style record. The line-height table provides vertical spacing and line
ascent information for the text to be edited with one element for each line of an edit
record. A line number is a direct index into this array. The null style record consists of a
reserved field and a handle to the style scrap record.

The style scrap record, which is part of the null scrap, stores character attribute
information associated with a null selection to be applied to inserted text. It also holds
character attribute information associated with a selected range of multistyled text when
the character attributes are to be copied, or the text and its attributes are to be cut

or copied.

Part of the style scrap record is the scrap style table which has a separate element for each
style run in the style scrap record. The character attribute information for each of these
elements is stored in a scrap style element record.

Several TextEdit routines use a text style record to pass character attribute information
between the application and the routine.

Figure 2-7 shows the two data structures that TextEdit creates for monostyled text. Figure
2-8 shows the data structures that TextEdit creates for multistyled text and

how they are related; these data structures consist of the two records that TextEdit

also creates for monostyled text plus additional structures needed to store character
attribute information. See Figure 2-15 on page 2-66 for a version of the data structures
including fields.

About TextEdit

CHAPTER 2

TextEdit

Figure 2-7 Relationship between the TextEdit data structures for monostyled text

Edit record

Dispatch record

TEDispatchHandle
hDispatchRec]-»—

About TextEdit 2-19

CHAPTER 2

TextEdit
Figure 2-8 Relationships among the TextEdit data structures for multistyled text
Edit record Style record Style table
styleTab STHandle
LHHandle IhTab
nullStyle bnuIISTHandIe
array of
StyleRun Y
Null style record
Style run table
STScrpHandle nullScrap
Line height table Style scrap record
> »
Dispatch record
—>
Scrap style - (array of
table ScrpSTElement) ~
TEDispatchHandle
hDispatchRec > V/
(if txSize = —1)
txFont TEStyleHandle
txFace "
Scrap style
element record

2-20

About TextEdit

CHAPTER 2

TextEdit

Using TextEdit

This section describes how to initialize TextEdit and use the TextEdit routines and data
structures to display text and implement editing features in an application. It also
describes how to customize the behavior of TextEdit, for example, to better suit the
requirements of your application and the script systems it supports.

m “Getting Started With TextEdit” describes how to display static text in a box, create an
edit record for modifiable text, set the text of an edit record and scroll it, set its
insertion point, and dispose of the edit record.

m “Responding to Events Using TextEdit” describes how to handle mouse-down,
key-down, and idle events.

m “Moving Text In and Out of Edit Records” describes how to cut, copy, and paste text
and its character attributes within or across applications, or between an application
and a desk accessory.

m “Text Attributes” describes how your application can check the current attributes of a
range of text to determine which ones are consistent across the text. It also describes
how you can manipulate the font, style, size, and color of a range of text.

m “Saving and Restoring a TextEdit Document, and Implementing Undo” describes how
to save to disk the contents of a document created using TextEdit, and restore it when
the user opens the document.

m “Customizing TextEdit” describes how to replace the default end-of-line, drawing,
width-measuring, and hit test hook routines, use the multi-purpose low-memory
global variable TEDOText hook routine, customize word selection and automatic
scrolling, and determine the length of a line of text.

This section includes sample application-defined routines and code fragments that show
some of the ways you can use TextEdit. These examples are provided for illustrative
purposes only; they are not meant to be used in applications you write.

Note

For both monostyled and multistyled edit records, the text is limited to
32 KB. Whenever you insert or paste text, you need to ensure that adding
the new text does not exceed the 32 KB limit. Your application can check
for this limit before you insert or paste text. &

Using TextEdit 2-21

CHAPTER 2

TextEdit

Getting Started With TextEdit

You can use TextEdit to display static text, for example, in a dialog box; the TextEdit
procedure that you use to do this creates its own edit record. You can use TextEdit to
display and manipulate modifiable text, for which purpose you must first create an edit
record. This section discusses these two uses of TextEdit. It describes how you create an
edit record and bring existing text into its text buffer, then set the text selection range or
insertion point, scroll the text, and, finally, release the memory allocated for the edit
record when you are finished with it. The topics are described in the following order:

m preparing to use TextEdit

m displaying static text

m creating an edit record

m setting the text of an edit record

m setting the selection range or the insertion point
m scrolling text

m disposing of an edit record

Preparing to Use TextEdit

This section describes two basic tasks that your application needs to perform before using
TextEdit. It must

m determine the installed version of TextEdit

m initialize other managers and TextEdit

To determine the installed version of TextEdit, you use the Gestalt Manager, which is
fully documented in the chapter “The Gestalt Manager” in Inside Macintosh: Operating
System Ultilities.

You can get information about the current version of TextEdit using the Gestalt
function with the Gestalt selector gestaltTextEditVersion, which returns one of
the values listed and described below. In this list, a new feature is shown only when it is
first introduced in the software, although it is part of TextEdit in succeeding versions. For
system software version 6.0.4, different patches were made to TextEdit for different
hardware platforms. In these cases, unique values are returned that also identify

the hardware.

Using TextEdit

CHAPTER 2

TextEdit
Returned value New features System software/hardware
gestaltUndefSelectorErr Multistyled Systems before 6.0.4/all
TextEdit hardware
gestaltTEl System 6.0.4 Roman script
system/Ilci-family
hardware
gestaltTE2 New width System 6.0.4 non-Roman
measurement hook script system/Ilci-family
hardware
Script Manager
compatible
gestaltTE3 System 6.0.4 non-Roman
script system/all non-Ilci
family hardware
gestaltTE4 TEFeatureFlag System 6.0.5/all
hardware
gestaltTE5 Text width System 7.0/all hardware

measurement hook

You need to initialize other managers and TextEdit before your application calls any
TextEdit routines, including TEInit. First, you initialize QuickDraw, the Font Manager,
and the Window Manager, and then TextEdit, in that order. To do this, call the following
routines from an initialization procedure that is called from your application’s

main routine.

BEGIN
InitGraf (@thePort) ;
InitFonts;
InitWindows;
InitMenus;
TEInit;

In addition to initializing miscellaneous global variables, such as TEDoText and
TERecal, the TEInit procedure sets up the private scrap and allocates a handle to it.

Note

You should call TEInit even if your application doesn’t use TextEdit so
that desk accessories and dialog and alert boxes, which use TextEdit
routines, work correctly.

Using TextEdit 2-23

CHAPTER 2

TextEdit

Displaying Static Text

TextEdit provides an easy way for your application to display static text whether or

not it uses other TextEdit features to implement editing services. The TETextBox
procedure displays unchanging text that you cannot edit. You don’t create an edit record
because the TETextBox procedure creates its own edit record, which it deletes when it’s
finished with it.

The TETextBox procedure draws the text in a rectangle whose size you specify in the
local coordinates of the current graphics port. You can also specify how text is aligned in
the box. Text can be right aligned, left aligned, or centered.

You can use any of the following constants to specify how text is aligned in the box that
TETextBox creates.

Constant Description

teFlushDefault Default alignment according to the primary line direction
teCenter Center for all scripts

teFlushRight Right for all scripts

teFlushLeft Left for all scripts

Listing 2-1 shows how to use TETextBox. The first parameter is a pointer to the text to
be drawn, which is a Pascal string. Because Pascal strings start with a length byte, you
need to advance the pointer one position past the beginning of the string to point to the
start of the text.

Listing 2-1 Using TETextBox to draw static text

2-24

str := 'String in a box';

SetRect (r,100,100,200,200) ;

TETextBox (POINTER (ORD (@str) +1) , LENGTH (str) ,r, teCenter) ;
FrameRect (r) ;

Creating an Edit Record

To use all other TextEdit routines in your application except the TEText Box procedure,
first you need to create an edit record. This section discusses how to create an edit record.
It also describes

m which type of edit record to use, monostyled or multistyled, and why

m some ways to store the edit record handle that the function returns when you create an
edit record

m what to consider when you specify values for the destination and view rectangles
when you create an edit record

m how TextEdit initializes those edit record fields that are used differently for
monostyled and multistyled edit records, and those that are used the same

Using TextEdit

CHAPTER 2

TextEdit

The TEStyleNew function allocates a multistyled edit record which contains text with
character attribute information that can vary from character to character. The TENew
function allocates a monostyled edit record which contains text in a single font, face, and
size. (Before your application calls either of these functions, the window must be the
current graphics port.)

If your application supports only monostyled text, use TENew to avoid the unnecessary
allocation of additional data structures used to store character attribute information for
multistyled edit records. You can use TEStyleNew in this case also, although it is not
recommended.

Both TENew and TEStyleNew return a handle to the newly created record. Most TextEdit
routines require you to pass this handle as a parameter, so your application needs to store
it using any of the following methods:

m You can store the edit record handle in a private data structure whose handle is stored
in your application window’s refcon field.

m You can create a record in which to store information about the window, and include a
field to store the edit record handle. Listing 2-2 provides an example of this method.

m You can define a variable in your application for each edit record handle, and then use
the variable to store the handle.

Listing 2-2 shows a sample document record declaration for an application that handles
text files. The document record is an application-specific data structure that contains the
handle to the edit record, and any controls for scroll bars.

Listing 2-2 A sample document record
TYPE
MyDocRecHnd = “MyDocRecPtr;
MyDocRecPtr = “MyDocRec;
MyDocRec =
RECORD
editRec: TEHandle; {handle to TextEdit record}
vScrollBar: ControlHandle; {vertical scroll bar}
hScrollBar: ControlHandle; {horizontal scroll bar}
END;

To associate an application-defined document record with a particular window, you can
set a handle to that record as the reference constant of the window by using the Window
Manager procedure SetWRefCon. This technique is described further in the chapter
“Introduction to File Management” in Inside Macintosh: Files.

When you create an edit record, you specify the area in which the text is drawn as the
destination rectangle, and the portion of the window in which the text is actually
displayed as the view rectangle.

Using TextEdit 2-25

2-26

CHAPTER 2

TextEdit

To ensure that the first and last characters in each line are legible in a document window,
you can inset the destination rectangle at least four pixels from the left and right edges of
the graphics port (20 pixels from the right edge if the window contains a scroll bar

or size box).

The destination rectangle must always be at least as wide as the first character drawn.
The view rectangle must not be empty; for example, if you do not want any text visible,
specify a rectangle off the screen—don’t make its trailing edge less than its leading edge.

Editing operations may lengthen or shorten the text. The bottom of the destination
rectangle can extend to accommodate the end of the text. In other words, you can think of
the destination rectangle as bottomless. The sides of the destination rectangle determine
the beginning and the end of each line of text, and its top determines the position of the
first line.

Your program should not have a destination rectangle that is wider than the view
rectangle if you are displaying mixed-directional text. For example, the Dialog Manager
makes the destination rectangle extend twice as far on the right as the view rectangle, so
that horizontal scrolling can be used in normal dialog boxes. When the Arabic script
system is installed, this extension is disabled, because the text may be right aligned, and
therefore out of view. Your application can include the following code to check that the
destination and view rectangles have the same width.

IF scriptsInstalled > 1 THEN
IF GetEnvirons (smBidirect)<>0 THEN
BEGIN
{make the rectangles the same width}
END;

When you create an edit record, TextEdit initializes the record’s fields, based on values in
the current graphics port record and the kind of edit record you create. Although most
edit record fields are initialized similarly for both monostyled and multistyled edit
records, there are some fields that are used differently, and their initial values depend on
how they are used.

For a monostyled edit record that you create by calling TENew, the txSize,
lineHeight, and fontAscent fields of the edit record hold actual values reflecting the
text size, the line height, and the font ascent. Because the text is monostyled, these values
apply to all of the text of the edit record.

m The txSize field is set to the value of the current graphics port’s text size (txSize)
field, which indicates that all text is set in a single font, size, and face.

m The value of the 1ineHeight field specifies the fixed vertical distance from the ascent
line of one line of text down to the ascent line of the next. The line height corresponds
to the ascent plus descent for the font and leading to create single-spacing for the lines
in the new edit record.

Using TextEdit

CHAPTER 2

TextEdit

The value of the fontAscent field specifies how far above the base line the pen is
positioned to draw the caret or to highlight the text. For single-spaced text, this is the
ascent of the text in pixels (the height of the tallest characters in the font from the base
line). The font ascent corresponds to the ascent of the font indicated by the txFont
and txSize fields of the current graphics port.

Note
To adjust the spacing for a monostyled edit record, you can alter the
values in the fontAscent and 1ineHeight fields of the edit record. ¢

For more information, see the discussion of font measurements in the chapter “Font
Manager” in this book.

For a multistyled edit record, TEStyleNew initializes the txSize, 1ineHeight, and
fontAscent fields of the edit record to —1. A value of -1 in each of these fields means:

txSize

The edit record contains associated character attribute information and the txFont
and txFace fields combine to contain the text style record handle for the character
attribute information.

lineHeight

The vertical distance from the ascent line of one line of text down to the ascent line of
the next is calculated independently for each line, based on the maximum value for
any individual character attribute on that line. These values are stored in the line
height table (LHTable).

fontAscent

The font ascent is calculated independently for each line, based on the maximum value
for any individual character attribute on that line. These values are stored in the line
height table (LHTable).

For both multistyled and monostyled records, the following fields are initially set to the
same values:

The record initially contains no text. The text handle (hText) points to a zero-length
block in the heap, and the text length field (teLength) of the edit record is set to 0. To
furnish text to be edited, you use the TESetText procedure if you are incorporating
existing text and the TEKey procedure if the user is entering text.

The value of the just field determines the alignment of text in the edit record. The
default value is teFlushDefault, indicating that the alignment is to follow the
primary line direction. For languages that are read from left to right, the default value
is left; for languages that are read from right to left, the default value is right. To
change the alignment of text in the record, you use the TESetAlignment procedure.

The selStart and selEnd fields are initially set to 0; this places the insertion point at
the beginning of the text.

The edit record uses the drawing environment of the graphics port specified by the
destRect and viewRect parameters. These parameters contain the local coordinates
of rectangles within the current graphics port, which becomes the graphics port for the
new edit record. The text in the new edit record is to have the characteristics of the
current graphics port.

Using TextEdit 2-27

CHAPTER 2

TextEdit

Listing 2-3 shows the MyAddTE function, which is a sample application-defined function
that creates a new multistyled edit record for an existing window. The TEStyleNew
function call returns a handle to the edit record that it creates. The code stores the handle
in the docTE variable. The TEAut oView procedure call turns on automatic scrolling for
the newly created edit record. For a complete discussion of scrolling, see the chapter
“Control Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Listing 2-3 Creating a multistyled edit record

2-28

FUNCTION MyAddTE (myWindow: WindowPtr): TEHandle;

VAR
destRect, viewRect: Rect;
docTE: TEHandle;
CONST
kMaxDocWidth = 576;
BEGIN
MyGetTERect (myWindow, viewRect); {get TextEdit rectangle}
destRect := viewRect;
destRect.right := destRect.left + kMaxDocWidth;
docTE := TEStyleNew(destRect, viewRect) ;
IF docTE <> NIL THEN
BEGIN
TEAutoView (TRUE, docTE) ;
docTE*".clikLoop := @AsmClikLoop;
END;
MyAddTE := docTE;
END;

Specifying the Destination and View Rectangles

When you create an edit record, whether monostyled or multistyled, you specify the area
in which the text is drawn as the destination rectangle, and the portion of the window in
which the text is actually displayed as the view rectangle.

To ensure that the first and last glyphs in each line are legible in a document window, you
can inset the destination rectangle at least four pixels from the left and right edges of the
graphics port (20 pixels from the right edge if the window contains a scroll bar

or size box).

The destination rectangle must always be at least as wide as the first glyph drawn. The
view rectangle must not be empty; for example, if you do not want any text visible,
specify a rectangle off the screen—don’t make its trailing edge less than its leading edge.

Using TextEdit

CHAPTER 2

TextEdit

Editing operations may lengthen or shorten the text. The bottom of the destination
rectangle can extend to accommodate the end of the text. In other words, you can think of
the destination rectangle as bottomless. The sides of the destination rectangle determine
the beginning and the end of each line of text, and its top determines the position of the
first line.

Your program should not have a destination rectangle that is wider than the view
rectangle if you are displaying mixed-directional text. For example, the Dialog Manager
makes the destination rectangle extend twice as far on the right as the view rectangle, so
that horizontal scrolling can be used in normal dialog boxes. When the Arabic script
system is installed, this extension is disabled, because the text may be right aligned, and
therefore out of view. Your application can include the following code to check that the
destination and view rectangles have the same width.

IF scriptsInstalled > 1 THEN
IF GetEnvirons (smBidirect)<>0 THEN
BEGIN
{make the rectangles the same width}
END;

Setting the Text of an Edit Record

When you create an edit record, it doesn’t contain any text until either the user enters text
through the keyboard or opens an existing document. This section describes how to
specify existing text to be edited. “Accepting Text Input Through Key-Down Events” on
page 2-36 discusses how to insert text that the user enters through the keyboard.

When a user opens a document, your application can bring the document’s text into the
text buffer of an edit record by calling TESetText. If the text has associated character
attribute information, your application also needs to manage it.

There are two ways to specify existing text to be edited. The easier method is to use
TESetText, which creates a copy of the text and stores the copy in the existing handle of
the edit record’s hText field. One of the parameters that you pass to TESet Text
specifies the length of the text. The TESetText procedure resets the teLength field of
the edit record with this value and uses it to determine the end of the text; it sets the
selstart and selEnd fields to the last byte offset of the text so that the insertion point
is positioned at the end of the displayed text. The TESetText procedure calculates line
breaks, eliminating the need for your application to do this.

You can use the second method to save space if you have a lot of text. Using this method,
you can bring text into an edit record by directly changing the hText field of the edit
record, replacing the existing handle with the handle of the new text. When you do this
for a monostyled edit record, you need to modify the teLength field to specify the
length of the new text, and then call TECalText to recalculate the 1ineStarts array
and nLines values to match the new text.

Using TextEdit 2-29

2-30

CHAPTER 2

TextEdit

Using the second method is somewhat more complicated for multistyled text because
TECalText does not update the style run table (StyleRun) properly. To compensate for
this, your application needs to perform the following tasks:

m Before changing the edit record’s hText field, reduce the style run table to one entry.

Do this by setting the edit record’s selStart field to 0 and its selEnd field to 32767,
then call TESetStyle.

m Before calling TECalText, set the start character (startChar) field of the style run
table to the length of the new text plus one, that is:

TEStyleRec.runs[1] to length (hText) +1

Using the same edit record for different pieces of text

Rather than allocate a new edit record for each piece of text you want to
edit, you can use the same record to edit different pieces of text. For
example, you can create an edit record and either accept user input or
call TESetText to incorporate existing text. If you know that you'll
want to edit the text again whose handle is currently stored in the hText
field, first you need to save the text before you call TESetText, because
TESetText uses the same handle, resizing it for the new text, if
necessary. ¢

The TESetText procedure doesn’t affect the text drawn in the destination rectangle, so
call the Window Manager’s InvalRect procedure afterward, if necessary. For more
information about the InvalRect procedure, see the chapter “Window Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Setting the Selection Range or the Insertion Point

You can use the TESetSelect procedure to specify the selection range or the position of
the insertion point as determined by the application. For example, you can use
TESetSelect to highlight an initial default value in an application such as an online
data-entry form, or to position the caret at the start of the field where you want the user
to enter a value. You can also use it to implement a Select All menu command.

You can set the selection range (or insertion point) to any character positions within

the text of the edit record corresponding to byte offsets 0 through 32767. To select a range
of text, you pass TESetSelect the handle to the edit record along with the byte offsets
corresponding to the beginning and the ending characters of the text to be highlighted.
The TESetSelect procedure modifies the selStart and selEnd fields of the

edit record.

To display a caret at an insertion point, specify the same value for both the selStart
and selEnd parameters. To encompass the edit record’s entire text block as the selection
range, specify 0 as the value of selStart and 32767 as the value of selEnd. You can
implement a Select All menu command by specifying the edit record’s entire range of
text, as shown in the following code fragment, by using the teLength field.

iSelectAll:
TESetSelect (0, myTERec™”.teLength, myTERec) ;

Using TextEdit

CHAPTER 2

TextEdit

Scrolling Text

Using TextEdit routines, your application can allow the user to control text scrolling
through the scroll bars; in this case, you scroll the text by calling a TextEdit procedure. It
can also automatically scroll the text of an edit record into view when the user clicks in
the view rectangle, and then drags the mouse outside of it, if you enable automatic
scrolling through another TextEdit procedure.

To scroll the text when a mouse-down event occurs in a scroll bar, your application needs
to determine how far to scroll the text. For example, to vertically scroll the text of a
monostyled edit record, you can use the 1ineHeight field of the edit record to calculate
the number of pixels to scroll; you multiply every click in the scroll bar by the number of
pixels in the 1ineHeight field and by the number of lines displayed in the view
rectangle. For multistyled text, you need to use the value of the 1hHeight field of the
line height table for each line in the view rectangle because line height can vary from line
to line.

To scroll the text, you call either TEScroll or TEPinScroll specifying the number of
pixels to scroll. The only difference between TEScroll and TEPinScroll is that
TEPinScroll stops scrolling when the last line is scrolled into the view rectangle.

When the user clicks in the scroll arrow pointing down, you scroll the text up. When the
user clicks in the scroll arrow pointing up, you scroll the text down. Passing a positive
value to either routine moves the text right and down, passing a negative value moves
the text left and up. The destination rectangle is offset by the amount you scroll. For
example, the following call scrolls the text of a monostyled edit record up one line.

TEScroll (0, -hTE"”.lineHeight, hTE)

There are two ways to enable or disable automatic scrolling for an edit record. You can
use the TEAutoView procedure or the teFAutoScroll feature of the TEFeatureFlag
function. However, neither of these routines actually scrolls the text. To ensure that the
selection range is always visible, your application should call TESe1View. When
automatic scrolling is turned on, TESelView scrolls the selection range into view,

if necessary.

Listing 2-3 on page 2-28 creates a multistyled edit record and turns on automatic scrolling
for it. It saves the address of the default click loop procedure installed in the edit record’s
clikLoop field, then replaces it with the address of its own customized click loop
routine.

The clikLoop field of the edit record contains the address of a click loop procedure that
is called continuously as long as the mouse button is held down. When automatic
scrolling is turned on, the default click loop routine determines if the mouse has been
dragged out of the view rectangle; if it has, the default click routine scrolls the text using
TEPinScroll. For example, if the user clicks in the text and drags the mouse outside of
it to the right, the text is automatically scrolled left.

How much the text is scrolled vertically is determined by the 1ineHeight field of the
edit record for a monostyled edit record and by the 1hHeight field of the line height
table for a multistyled edit record.

Using TextEdit 2-31

2-32

CHAPTER 2

TextEdit

Scroll bars are not scrolled automatically with the text if the default click loop routine is
used. However, you can replace the default click loop routine with a routine that updates
scroll bars. For more information about customizing scrolling, see “Customizing
Automatic Scrolling” on page 2-61. For a complete discussion of scrolling, see the chapter
“Control Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Disposing of an Edit Record

When your application is completely finished with an edit record, you should release any
memory allocated for it by calling TEDispose. To continue to refer to the text once
you’'ve destroyed the edit record, use the Operating System Utilities HandToHand
function before you call TEDispose. It copies the text (whose handle is stored in the edit
record’s hText field), and returns a new handle to it. (See Inside Macintosh: Operating
System Utilities for more information.) For a multistyled edit record, you also need to save
the character attribute information. If your program retains the original handle to the text
stored in the hText field after you call TEDispose, the handle becomes invalid because
the text is removed—the memory used for it is deallocated.

Responding to Events Using TextEdit

This section discusses some of the TextEdit routines that your application can call in
response to event notification. You can use TextEdit routines to

m handle idle processing in response to null events (TEIdle)

m identify the active edit record in response to an activate event (TEActivate and
TEDeactivate)

m handle mouse-down events (TEC11ick)
m update the destination rectangle in response to an update event (TEUpdate)

m handle key-down events (TEKey)

Handling a Null Event

Your program needs to call TEId1le whenever it receives a null event. If there is more
than one edit record associated with an active window, make sure you pass TEIdle the
handle to the currently active edit record. (See “Activating an Edit Record” in the
following section for more information.)

If you have turned on text buffering through the TEFeatureFlag function, you should
call TEId1e before any pause of more than a few ticks—for example, before
WaitNextEvent. A possibility of a long delay before characters appear on the screen
exists—especially in non-Roman systems. Blinking the caret alerts the user to this delay.

To blink the caret at a constant frequency, you should call TEId1e at least once through
your main event loop—otherwise, the caret blinks irregularly. No matter how often you
call TEId1le, the time between blinks is never to be less than the minimum interval.

Using TextEdit

CHAPTER 2

TextEdit

Listing 2-4 shows a sample application-defined procedure, MyDoIdle, that calls TEIdle
to handle a null event.

Listing 2-4 An idle-processing procedure

PROCEDURE MyDoIdle (myWindow: WindowPtr) ;

VAR
myData: MyDocRecHnd ; {handle to a document record}
myTERec : TEHandle; {handle to TextEdit record}
BEGIN
myData := MyDocRecHnd (GetWRefCon (myWindow)) ;
IF myData <> NIL THEN
BEGIN
myTERec := myData™”.editRec;
IF myTERec <> NIL THEN
TEIdle (myTERec) ;
END;
END;
Note

The value stored in the low-memory global CaretTime determines the
blinking time for the caret. (The user can also set the minimum interval
through the General Controls control panel.) You can use the Event
Manager’s Get CaretTime function to retrieve this value. For more
information, see the chapter “The Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials. &

Activating an Edit Record

When a window becomes active or inactive, the Window Manager updates the frames of
the windows on the screen, and then informs the Event Manager that an activate event
has occurred. The next time WaitNextEvent is called from your main event loop, the
Event Manager notifies your application that an activate event has occurred. (An activate
event can have a flag set indicating that a window is to be deactivated.) When your
application receives this notification, it needs to call TEActivate for an activate event
and TEDeactivate for a deactivate event. When you call TEActivate, you pass it the
handle to the edit record to be activated; when you call TEDeactivate, you pass it the
handle to the currently active edit record.

An application can have more than one edit record associated with it. The active edit
record is the one where the next editing operation is to take place. The TEActivate
procedure identifies an edit record as the active one by either highlighting the selection
range or displaying a caret at the insertion point. The TEDeactivate procedure changes
an edit record’s status from active to inactive and removes the highlighting or the caret. If
outline highlighting is on, TEDeactivate frames the selection range or displays a
dimmed caret.

Using TextEdit 2-33

2-34

CHAPTER 2

TextEdit

Note

The TEActivate procedure does not set the selection range; it uses the
current values in the selStart and selEnd fields of the edit record

to highlight the specified text or display a caret at the insertion point. The
TEDeactivate procedure does not affect the current settings of these
fields. &

Before you can activate an edit record, you need to deactivate the currently active edit
record, if there is one. If your application has a routine which it calls to activate and
deactivate its own windows, you can include processing in that routine to make an edit
record the active one or make the currently active record inactive. Because deactivate
events happen before activate events, these events occur in the proper order when the
user switches from one window to another.

If there is more than one edit record associated with a window, you'll probably want to
call TEDeactivate whenever the mouse button is clicked in an edit record other than
the active one. In this case, each TEDeactivate call not associated with a window
deactivate event would be coupled with a call to TEActivate.

You can modify the text of an edit record associated with a background window;
however, to do so, you need to call TEActivate for that edit record before you call any
other TextEdit routines.

Note

When you use TEClick and TESetSelect to set the selection range or
insertion point, the selection range is not highlighted nor is a blinking
caret displayed at the insertion point until the edit record is activated
through TEActivate. However, if you had already turned on outline
highlighting (through the TEFeatureFlag function), the text of the
selection range is framed or a gray, unblinking caret is displayed at the
insertion point. &

Handling Mouse-Down Events

When your application receives notification of a mouse-down event that it determines
TextEdit should handle, it needs to pass the click on to the TEC11ick procedure. Before
calling TEC1ick, your application needs to perform the following steps:

1. Convert the mouse location that is passed in the event record from global to local
coordinates, so that it can pass those local coordinates to TEC1ick. To perform the
conversion, you can use the GlobalToLocal QuickDraw procedure. (For more
information, see Inside Macintosh: Imaging.)

2. Determine if the Shift key was held down at the time of the click to extend the
selection. The behavior of TEC11ick depends on the user’s actions.
O If the Shift key was down, TEC1ick extends the current selection range.

O If the Shift key was not held down, TEC1ick removes highlighting of the current
selection range and positions the insertion point as close as possible to the location
where the mouse click occurred.

Using TextEdit

CHAPTER 2

TextEdit

0 When the mouse is moved or dragged, TEC11ick expands or shortens the selection
range a character at a time. The TEC11ick procedure keeps control until the user
releases the mouse button.

O If the mouse button is clicked twice (a double-click), TEC1ick extends the selection
to include the entire word where the cursor is positioned.

Note

As long as the mouse button is held down, TEC11ick repeatedly calls
the click loop routine pointed to from the clikLoop field of the
edit record. &

Listing 2-5 shows an application-defined procedure, MyDoContentClick, that calls
TEClick, passing it a mouse-down event.

Listing 2-5 Passing a mouse-down event to TextEdit

PROCEDURE MyDoContentClick (myWindow: WindowPtr; event: EventRecord) ;
VAR

myData: MyDocRecHnd; {handle to a document record}
myTERec: TEHandle; {handle to TextEdit record}
mouse: Point;
BEGIN
myData := MyDocRecHnd (GetWrefCon (myWindow)); {get window’s data record}

IF myData = NIL THEN
exit (MyDoContentClick) ;
myTERec := myData™”.editRec; {get TERec}
IF myTERec = NIL THEN
exit (MyDoContentClick) ;
SetPort (myWindow) ;

mouse := event.where; {get the click position}
GlobalToLocal (mouse) ; {convert to local coordinates}
IF PtInRect (mouse, myTERec””.viewRect) THEN
BEGIN
shiftDown := BAnd (event.modifiers, shiftKey) <> 0;

{extend if Shift is down}
TEClick (mouse, shiftDown, myTERec) ;
END;
END;

When TEC1lick is called, the c1ickTime field of the edit record contains the time when
TEClick was last called. When TEC1ick returns, it sets the clickTime field, adjusting
the current tick count. The default click loop procedure uses this value.

Using TextEdit 2-35

2-36

CHAPTER 2

TextEdit

Responding to an Update Event

After changing any fields of the edit record that affect the appearance of the text or after
any editing or scrolling operation that alters the onscreen appearance of the text, you
need to call TEUpdate.

Your application needs to call TEUpdate every time the Event Manager function
WaitNextEvent reports an update event for a text editing window—after you call the
Window Manager procedure BeginUpdate, and before you call the EndUpdate
procedure. You call the following routines when an update event occurs:

BeginUpdate (myWindow) ;

EraseRect (myWindow” .portRect) ;
TEUpdate (myWindow” .portRect, hTE) ;
EndUpdate (myWindow) ;

If you don’t include the EraseRect procedure, the caret may sometimes remain visible
when the window is deactivated. For more information about responding to events, see
the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials. For more
information about the Window Manager, see the chapter “Window Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

Accepting Text Input Through Key-Down Events

When the user enters text through the keyboard, your application needs to call the TEKey
procedure to accept the keyboard input a byte at a time or to delete a character when the
user backspaces over it. Call TEKey every time the Event Manager function
WaitNextEvent reports a key-down event that your application determines TextEdit
should handle.

Because TEKey accepts every character it is passed, your application needs to first filter
out Command-key equivalents, special keys, and nonprinting characters as appropriate,
such as Enter or Tab, and only pass TEKey a text, a Return key character, an arrow key
character, or a backspace key character.

Note
If you want to display the text as multiple paragraphs, don't filter out
Return key characters. &

Listing 2-6 shows the MyHandleKeyDown procedure which calls TEKey to

accept text a character at a time. First MyHandleKeyDown filters out special characters.
For example, it treats the Tab key as a special character, and calls an application-defined
routine, MyDoTab, to handle this character appropriately for the document. Then it
checks to make sure that inserting the character won't exceed the maximum text length
allowed. It does not count the Delete or arrow keys because they are not text characters.

If the maximum text length is not exceeded, the code passes the character to TEKey.
Otherwise, it calls an application-defined routine, MyAlertUser, to notify the user that
the character is not inserted, and that inserting it would exceed the edit record text

Using TextEdit

CHAPTER 2

TextEdit

limitation. In this example listing, the maximum text length is set to the highest possible
value; you can specify a lower limit.

Listing 2-6

PROCEDURE MyHandleKeyDown (myWindow: WindowPtr;

CONST
kMaxTELength = 32767;
kTab = $09;
kDel = $08;
kRightArrow = $1D;
kLeftArrow = $1C;
kDownArrow = S1F;
kUpArrow = S1E;
VAR
myData: MyDocRecHnd ; {handle to a document record}
myTERec : TEHandle; {handle to TextEdit record}
key: CHAR;
BEGIN
myData = MyDocRecHnd (GetWRefCon (myWindow)) ;
IF myData = NIL THEN
exit (MyDoContentClick) ;
myTERec := myData™”.editRec;
IF myTERec = NIL THEN
exit (MyDoContentClick) ;
key := CHR(BAnd (event.message, charCodeMask)) ;
IF key = char (kTab) THEN {handle special characters}
MyDoTab (event)
ELSE
BEGIN
IF (key = CHR(kDel)) | (key = CHR(kRightArrow))
(key = CHR(kLeftArrow)) | (key = CHR(kUpArrow)) |
(key = CHR (kDownArrow)) |
(LongInt (myTERec™”.telLength - MyGetTESelLength (myTERec) + 1 <
kMaxTELength)
THEN
BEGIN
TEKey (key, myTERec); {insert character in document}
MyAdjustScrollbars (window, FALSE) ;
END
ELSE

Using TextEdit

Inserting text in a document

{don’t count deletes or arrow keys}

event:

EventRecord) ;

{get window’s data record}

{get TERec}

2-37

END;
END;

CHAPTER 2

TextEdit

MyAlertUser (eExceedChar) ;

Before testing to ensure that the input character does not exceed the edit record’s text
limitation, the code subtracts the length of the selection range, which the inserted
character is to replace, from the current length of the text. To get the length of the
selection range, the code calls an application-defined function, MyGet TESelLength.
Listing 2-7 shows this function. Several other sample application-defined routines in this
chapter also call this function.

Listing 2-7 Getting the selection range length

2-38

FUNCTION MyGetTESelLength (myTERec: TEHandle): Integer;
Begin
MyGetTESellLength := myTERec”
END;

A A

.selEnd - myTERec™”.selStart;

If the selection range is an insertion point and the key is not an arrow key character or a
Backspace key character, TEKey inserts the character before the insertion point. When the
character direction is right-to-left, the character is inserted to the right of the insertion
point. When the character direction is left-to-right, the character is inserted to the left of
the insertion point.

When you call TEKey and the keyboard script is different from the font script, TextEdit
changes the font script to correspond to the keyboard script. If the font at the insertion
point is the same as the keyboard script, then this font is used. If a font was written to the
TextEdit style scrap record (in the null scrap) and never used and that font script
coincides with the keyboard script, then it is used. Otherwise, TextEdit searches through
the fonts in the style table until it locates a font that corresponds to the keyboard. If one
does not exist, then it uses the application font.

When the user backspaces over characters of a multistyled edit record, TEKey deletes the
characters but it saves the character attributes associated with the last character deleted
in order to apply it to any new characters that the user might enter; the character
attributes are saved in the null scrap’s style scrap record. As soon as the user clicks in
another area of the text, TEKey clears the attributes from the null scrap.

Moving Text In and Out of Edit Records

This section describes how to cut, copy, and paste text, and insert and delete it. Because
TextEdit manages the varying character attribute information associated with multistyled
text, you use separate routines for monostyled and multistyled text

to perform some of these tasks; this section explains those differences. If your
application supports both monostyled and multistyled text, you need to handle these
cases separately.

Using TextEdit

CHAPTER 2

TextEdit

Using TextEdit to Cut, Copy, and Paste Text

You can use TextEdit to cut, copy, and paste text within a single edit record, between edit
records, or across applications, and to handle menu commands that let the user perform
these actions. You use the TECut and TECopy procedures to cut and copy both
monostyled and multistyled text. To paste monostyled text, you use the TEPaste
procedure. To paste multistyled text, you use the TEStylePaste procedure. To move
monostyled text across applications or between an application and a desk accessory, you
use the TEFromScrap and TEToScrap functions. This section describes how to use
these routines and what they do.

Note

This section and those that follow do not describe how to create menus
and their commands. For guidelines and a complete discussion of how to
create and manage the menus in your application, see the chapter “The
Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials. &

The TECut procedure removes and transfers the selected text. The TECopy procedure
copies the selected text, leaving the original text intact. To implement cut-and-paste
or copy-and-paste services, you can couple either of these calls with TEPaste or
TEStylePaste to overlay a text selection or insert the text to be pasted at an
insertion point.

To cut, copy, and paste text within the same edit record or between two edit records
within the same application, you do not need to write the text to and from the desk scrap,
although this is always done automatically for multistyled text. However, to carry text
across applications or between an application and a desk accessory, whether the text is
multistyled or monostyled, you must write it to and from the desk scrap.

For monostyled text, TECut and TECopy write the text to the private scrap only. The
TEPaste procedure pastes the monostyled text from the private scrap to the edit record.
To determine the length of the text to be pasted, you can call the TEGetScrapLength
function which returns the size in bytes of the text in the private scrap, or you can check
the value of the global variable TEScrapLength.

To move monostyled text across applications or between an application and a desk
accessory, you need to use the TEFromScrap and TEToScrap functions, which write
text to and from the desk scrap.

For multistyled text, TECut and TECopy always write both the text and its associated
character attribute information to the Scrap Manager’s desk scrap under scrap types
"TEXT' and 'styl'. For more information, see the chapter “Scrap Manager” in Inside
Macintosh: More Macintosh Toolbox.

The TEStylePaste procedure reads both the text and its attributes back from the desk
scrap and writes the multistyled text into the edit record’s text buffer at the current
selection range or insertion point.

Using TextEdit 2-39

CHAPTER 2

TextEdit

You can use these procedures to move multistyled text across two applications or
between an application and a desk accessory; you don’t need to call TEFromScrap and
TEToScrap for multistyled text. To either copy or move the text selection from the text
buffer to the desk scrap, TECut and TECopy write the text to the private scrap and to the
Scrap Manager’s desk scrap. To copy or move the attributes along with the text, TECut
and TECopy write the character attribute information stored in the style table to both the
style scrap and the Scrap Manager’s desk scrap. Figure 2-9 shows what happens when
you cut multistyled text using TECut.

Figure 2-9 Cutting text from a multistyled edit record

2-40

Before TECut | The exceptionprobes the rule;
it does not prove it.

TextEdit TextEdit
private scrap style scrap

After TECut | The exception probes the rule;
it does not prove it.

Times
Oﬁen 12 point, italic
TextEdit TextEdit
private scrap style scrap
'TEXT! 'styl!
Times
Oﬁen 12 point, italic

Scrap Manager’s desk scrap

The TEStylePaste procedure either pastes the text from the desk scrap at the insertion
point or replaces the current selection range with the text to be pasted. Along with the
text, TEStylePaste writes the character attribute information to the style record’s style
table and applies it to the inserted text.

For multistyled text, text is pasted from the desk scrap. Therefore, before you call
TEStylePaste, use the Scrap Manager’s Get Scrap procedure to check the size of the
text (' TEXT' data) to be pasted.

Using TextEdit

CHAPTER 2

TextEdit

To calculate the amount of memory required for the style scrap before you cut or copy
multistyled text, you can use the information returned by the TENumStyles function
This function returns the number of attribute changes contained in a range of text. Since
the style scrap is linear in structure, with one element for each attribute change, you can
multiply the number returned by TENumStyles by SizeOf (ScrpSTElement) and
add 2 to get the number of bytes needed.

Listing 2-8 shows a sample application-defined procedure that handles cut, copy, and
paste menu commands. Before the application pastes the multistyled text into the edit
record’s text at the current selection range, it calls the Scrap Manager’s Get Scrap
function to get the size of the text to be pasted. The code adds the returned value to

the size of the text in the edit record, subtracts the size of the selection range, then
compares the result against the maximum length of the edit record text to make sure that
pasting the text won't exceed it. (To get the selection range length, the code calls the
application-defined function MyGet TESelLength, as shown in Listing 2-7 on page 2-38.)

To avoid copying the data when you want only the length of the text returned, pass a
value of NIL for the hDest parameter to GetScrap. For more information about
GetScrap, see the chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox.

Listing 2-8 Handling Cut, Copy, and Paste commands on an Edit menu

PROCEDURE MyHandleEditMenu (myWindow: WindowPtr; menultem: Integer) ;
CONST

kMaxTELength = 32000;

kTESlop = 1024;

{kTESlop provides some extra security when preflighting edit commands.}

VAR
myData: MyDocRecHnd; {handle to a document record}
myTERec : TEHandle; {handle to TextEdit record}
myErr: OSErr;
offset: LONGINT;
aHandle: Handle;
oldSize, newSize: LONGINT;
saveErr: OSErr;
BEGIN
myData := MyDocRecHnd (GetWrefCon (myWindow)); {get window’s data record}
IF myData = NIL THEN
exit (MyDoContentClick) ;
myTERec := myData”™”.editRec; {get TERec}

IF myTERec = NIL THEN
Exit (MyDoContentClick) ;
CASE menultem OF
iCut:

Using TextEdit 2-41

CHAPTER 2

TextEdit

BEGIN
IF ZeroScrap = noErr THEN
BEGIN
PurgeSpace (total, contig);
IF MyGetTESelLength (myTERec) + kTESlop >
contig THEN
MyAlertUser (eNoSpaceCut)
ELSE
TECut (myTERec) ;
END;
END;
iCopy:
BEGIN
IF ZeroScrap = noErr THEN
TECopy (myTERec) ;
END;
iPaste:
BEGIN
IF GetScrap (NIL, 'TEXT', offset) +
(myTERec™”.teLength - MyGetTESelLength (myTERec)) >

kMaxTELength
THEN
MyAlertUser (eExceedPaste)
ELSE
BEGIN
aHandle := Handle (TEGetText (myTERec)) ;

o0ldSize := GetHandleSize (aHandle) ;
oldSize + GetScrap + kTESlop
SetHandleSize (aHandle, newSize) ;

newSize

{see if handle can be resized}
saveErr := MemError;
SetHandleSize (aHandle, oldSize) ;
IF saveErr <> noErr THEN

MyAlertUser (eNoSpacePaste)
ELSE

TEStylePaste (myTERec) ;

END;
END;
END;
END;

2-42 Using TextEdit

CHAPTER 2

TextEdit

Inserting and Deleting Text

You can use TextEdit routines to delete and insert text. You use TEInsert to insert
monostyled text into the edit record’s text buffer if the current selection range is an
insertion point. If the current selection range is a range of text, TEInsert replaces it with
the text to be inserted. You use TEStyleInsert to insert multistyled text in

the same way; however, the text and its associated character attribute information

are inserted.

To delete text, your application calls the same routine whether the text is multistyled or
monostyled. The TEDelete procedure removes the text of the current selection range.
When the text is multistyled, TEDelete saves the character attributes in the null scrap to
be applied to characters that the user might enter following the deletion. After each
editing procedure, TextEdit redraws the text if necessary from the insertion point to the
end of the text.

You can handle a Clear command using TEDelete; you call TEDelete with the handle
to the edit record containing the text you want to eliminate. The TEDelete procedure
removes the selected text without transferring it to the scrap.

iClear:
TEDelete (myTERec) ;

Text Attributes

This section describes how your application can check the current attributes of a range of
text to determine which ones are consistent across the text. It also describes how you can
manipulate the font, style, size, and color of a range of text; the text selection can consist
of a segment of text, the entire text of the edit record, a single character, or even an
insertion point.

You use the TEContinuousStyle function to determine the current attributes for a
range of text, and you use the TESetStyle procedure to change them. You can change
character attributes singly, collectively, or in any combination using TESetStyle. For
example, you can change the font style to bold or italic, and you can underline, outline,
or shadow the selected text. You can increase or decrease the type size incrementally, or
change the color in which the text is displayed. You use the TESetAlignment procedure
to change the alignment of the entire text of an edit record.

This section describes these tasks in this order:

m checking the text attributes across a selection range

toggling an attribute

handling a font menu that lets the user change the font family

handling a font size menu that lets the user change the text size

handling a style menu that lets the user change the style of the text

changing the text alignment

Using TextEdit 2-43

CHAPTER 2

TextEdit

Some general information about TESetStyle that applies to many of the tasks for which
you can use it is discussed here. If you call TESetStyle for an insertion point, TextEdit
stores the input character attribute information in the null scrap’s style scrap record. If
the user then enters text (pastes without attributes, inserts, or types it), the attributes are
written to the style record and applied to that text.

There are many ways in which you can use TESetStyle to handle menu commands
that let the user modify text attributes. If your application allows a user to change any or
all the text attributes from a single format menu before redrawing the text, you can make
one call to TESetStyle specifying the particular attributes to be changed. If your
application provides separate menus to let a user manipulate different aspects of the text,
you can make separate calls to TESetStyle specifying the discrete text attribute to be
changed.

Note

A field in the text style record is only valid if the corresponding bit is set
in the mode parameter; otherwise, the field contains invalid
information. &

The value of mode specifies which existing character attributes are to be changed to the
new character attributes specified by newStyle.

Constant Value Description

doFont 1 Sets the font family ID

doFace 2 Sets the character style

doSize 4 Sets the type size

doColor 8 Sets the color

doAll 15 Sets all attributes

addSize 16 Increases or decreases the type size
doToggle 32 Modifies the mode

Checking the Text Attributes Across a Selection Range

When a particular attribute is set for an entire selection range, that attribute is said to be
continuous over the selection. For example, in the selected text in Figure 2-10, the bold
attribute is continuous over the selection range and italic is not.

Figure 2-10 Continuous attributes over a selection range

2-44

“Take each man’s censure,
but reserve thy judgement.”

N | J
Bold, 16 point Times

Using TextEdit

CHAPTER 2

TextEdit

To determine the actual values for continuous attributes, you can use the
TEContinuousStyle function. This function takes two variable parameters: mode and
asStyle. For its input value, mode specifies the attributes to be checked; for its output
value, mode specifies those attributes that are continuous over the selection range. For the
input value of aStyle, you pass a pointer to a text style record (of type TextStyle); for
those attributes that are continuous, the text style record fields contain the actual values
when TECont inuousStyle returns.

A field in the text style record is only valid if the corresponding bit is set in the mode
parameter; otherwise, the field contains invalid information. Possible values for the
TECont inuousStyle mode parameter are defined by the following constants.

Constant Value Description

doFont 1 Specifies the font family number
doFace 2 Specifies the character style
doSize 4 Specifies the type size

doColor 8 Specifies the color

doAll 15 Specifies all the attributes

Listing 2-9 illustrates how to use the TECont inuousStyle function to determine the
font, style, size, and color of the current selection range. The code sets the mode
parameter. Then it calls TECont inuousStyle, passing it the text style record. When
TEContinuousStyle returns, it checks each bit of the mode parameter to see which
attributes are continuous across the selection.

Listing 2-9 Determining the font, style, size, and color of the current selection range

PROCEDURE MyGetCurrentSelection (VAR mode: Integer;
VAR continuous: Boolean; VAR astyle: TextStyle;
myTERec: TEHandle) ;

BEGIN
mode := doFont + doFace + doSize + doColor;
continuous := TEContinuousStyle (mode, aStyle, myTERec) ;

IF BitAnd(mode, doFont) <> 0 THEN
{font for selection = aStyle.tsFont}
ELSE
{more than one font in selection};
IF BitAnd (mode, doFace) <> 0 THEN
{astyle.tsFace contains the text faces (or plain) that }
{ are common to the selection.}
ELSE
{No text face is common to the entire selection.};
IF BitAnd(mode, doSize) <> 0 THEN
{size for selection = aStyle.tsSize}

Using TextEdit 2-45

CHAPTER 2

TextEdit

ELSE
{more than one size in selection};
IF BitAnd(mode, doColor) <> 0 THEN
{color for selection = aStyle.tsColor}
ELSE
{more than one color in selection}
END;

Toggling an Attribute

Once you know what attributes are continuous across a selection range, you can use
TESetStyle to toggle an attribute on and off. For example, if you specify a mode
parameter for TESetStyle that includes both doToggle and doFace, and an attribute
that has been set in the t sFace field of the text style record exists across the current
selection range, then TESetStyle removes that attribute. However, if the attribute isn’t
continuous over the current selection, then all of the selected text is set to include it.

For example, in the selected text shown in Figure 2-11, the bold style is continuous over
the selection range and the italic style is not.

Figure 2-11 An initial selection before TESetStyle is called

“This, above all: to thine own self be true,
And it must follow, as the night the day,
Thou can not be false to any man.”

L J \ . J J

Bold Bold Bold
italic

If you call TESetStyle with a mode of doFace + doToggle and a text style record
parameter with its t sFace field set to bold, the resulting selection is no longer bold, as
shown in Figure 2-12.

Figure 2-12 The result of calling TESetStyle to toggle to bold

2-46

“This, above all: to thine own self be true,
And it must follow, as the night the day,

Thou can not be false to any man.”

N\ . J_'_J;'_J
Plain Italic Plain

Using TextEdit

CHAPTER 2

TextEdit

On the other hand, if instead you call TESetStyle with a mode of doFace + doToggle
and a text style record with its t sFace field set to italic, the resulting selection is all
bold italic as shown in Figure 2-13.

Figure 2-13 The result of calling TESetStyle to toggle italics

“This, above all: to thine own self be true,
And it must follow, as the night the day,
Thou can not be false to any man.”

i\ . J
Bold
italic

Handling a Font Menu

You can use TESetStyle to handle a Font menu that allows the user to change the font
family for a text selection. The user might select the entire text of an edit record or a
portion of it, then choose a different font family from your menu to be used to render the
text. Listing 2-10 shows how to handle a Font menu that allows the user to do this. The
code determines which font the user has selected from the menu. Next, it calls the Font
Manager’s Get FNum procedure to get the font family ID for the font of the selected text.
Then it calls TESetStyle passing it the text style record with the t sFont field set to the
font ID. Because the redraw parameter is set to TRUE, the current selection range is
redrawn immediately in the new font.

Listing 2-10 Handling the Font menu

PROCEDURE MyHandleFontMenu (myWindow: WindowPtr; myTERec: TEHandle;
menultem: Integer) ;

VAR
txStyle: TextStyle; {holds style selected}
fontName : Str255; {name of font selected}
fontID: Integer; {ID of font selected}
BEGIN

GetItem (GetMenuHandle (mFont), menultem, fontName) ;
GetFNum (fontName, fontID);
txStyle.tsFont := fontID;
TESetStyle (doFont, txStyle, true, myTERec) ;
MyAdjustScrollBars (window, FALSE) ;

END;

Using TextEdit 2-47

CHAPTER 2

TextEdit

Handling a Font Size Menu

If your application includes a menu that allows users to change the font size of the
selected text, you can use the TESetStyle procedure to handle this modification. The
code in Listing 2-11 sets the t sSize field of the text style record to the font size that the
user selects; then it calls TESetStyle to apply the new font size immediately. The
doSize mode parameter value forces all the text to the new size.

Listing 2-11 Handling the Size menu

PROCEDURE MyHandleSizeCommand (myTERec: TEHandle; menultem: Integer);
VAR
txStyle: TextStyle;
BEGIN
MyGetSize (GetMenuHandle (mSize), menultem, gizeChosen) ;
txStyle.tsSize := sizeChosen;
TESetStyle (doSize, txStyle, TRUE, myTERec) ;
MyAdjustScrollBars (window, FALSE) ;
END;

Handling a Style Menu

Your application can also use TESetStyle to handle Style menu commands. For
example, you can set the mode parameter to doFace and set the t sFace field of the text
style record to any of the font attributes that the user selects. If your menu supports a
Plain option to remove all attributes from the text selection, you need to explicitly set
tsFace. Because of the behavior of TESetStyle, you cannot implement a Plain
selection by passing a null (empty set) text style record to remove the current attributes.
Listing 2-12 shows how to use TESetStyle to change the text attributes, including how
to render plain text.

Listing 2-12 Handling a Style menu

PROCEDURE MyHandleStyleMenu (myWindow: WindowPtr; myTERec: TEHandle;
menultem: Integer) ;

VAR

txStyle: TextStyle;

anIntPtr: Integer;
BEGIN {mStyle}

WITH txStyle DO BEGIN

CASE menultem OF
plainItem:
BEGIN
anIntPtr := @txStyle.tsFace;

2-48 Using TextEdit

CHAPTER 2

TextEdit
anIntPtr”® := 0;
tsFace := [];
END;
boldItem:
tsFace := [bold];
italicItem:
tsFace := [italic];
underlineltem:
tsFace := [underline];
outlineltem:
tsFace := [outline];
shadowItem:
tsFace := [shadow] ;

END; {case}

IF menultem <> 1 THEN
TESetStyle (doFace + doToggle, txStyle, TRUE, myTERec)
{if we don't select plain then use doToggle}
ELSE
TESetStyle (doFace, txStyle, TRUE, myTERec) ;
{TESetStyle has problems with plain and doToggle }
{ has no effect!so we need to special case it.}
MyAdjustScrollBars (window, FALSE) ;

END;

END;

If you set redraw to TRUE, TextEdit redraws the current selection with the new
attributes, recalculating line breaks, line heights, and font ascents. If you call
TESetStyle with a value of FALSE for the redraw parameter, TextEdit does not

redraw the text or recalculate line breaks, line heights, and font ascents until the next
update event occurs. Consequently, when your application calls a routine that uses any
of this information, such as TEGetHeight (which returns a total height between two
specified lines), the routine uses the old character attribute information that existed
before you called TESetStyle to change it. To be certain that the new information is
always reflected immediately, call the TESetStyle procedure with a redraw parameter
of TRUE.

Listing 2-13 shows a sample procedure that calls TECont inuousStyle to check the
character attributes of the current selection range; it determines whether the style is
plain, bold, or italic. For each style that is continuous across the text, the
MyAdjustStyleNew procedure marks the item on the style menu. In this case, if
TEContinuousStyle returns a mode parameter that contains doFace and the text
style record tsFace field is bold, it means that the selected text is all bold, but may
contain other text styles, such as italic, as well. Italic does not apply to all of the selected
text, or it would have been included in the tsFace field. If the t sFace field is an empty
set, then all of the selected text is plain.

Using TextEdit 2-49

CHAPTER 2

TextEdit

Listing 2-13 Checking the style and marking Style menu items to reflect

PROCEDURE
VAR

styleMenu:

aStyle:

mode:

BEGIN
mode

the current selection range

MyAdjustStyleNew (myTERec: TEHandle) ;

MenuHandle;
TextStyle;
Integer;

:= doFace;

styleMenu := GetMenuHandle (mStyle) ;
IF TEContinuousStyle (mode, aStyle, myTERec) THEN
BEGIN

{There is at least one style that is continuous over }

{ the selection. Note that it might be plain, which is }

{ actually the absence of all styles.}
CheckItem(styleMenu, plainItem, aStyle.tsFace = []);
CheckItem(styleMenu, boldItem, bold IN aStyle.tsFace) ;
CheckItem(styleMenu, italicItem, italic IN aStyle.tsFace);
{set other menu items appropriately.}

END
ELSE
BEGIN
{No text face is common to the entire selection.}
CheckItem(styleMenu, plainItem, FALSE) ;
CheckItem(styleMenu, boldItem, FALSE) ;
CheckItem(styleMenu, italicItem, FALSE) ;
{set other menu items appropriately.}
END;
END;
Changing the Text Alignment
Your application can change the alignment of the entire text of an edit record by calling
the TESetAlignment procedure. The default alignment used to display the text of an
edit record is based on the primary line direction of the system script. For example, when
the system script is Arabic or that of any language that is read from right to left, the
default line direction is right to left and the text is right aligned.
For a script system whose primary line direction is right to left, you can force left
alignment of the text by specifying teFlushLeft as the value of the align parameter,
as shown in the following example:
TESetAlignment (teFlushLeft, myTERec) ;
2-50 Using TextEdit

CHAPTER 2

TextEdit

You can use any of the following constants to specify how text is aligned.

Constant Description

teFlushDefault Default alignment according to the primary line direction
teCenter Center for all scripts

teFlushRight Right for all scripts

teFlushLeft Left for all scripts

Make sure that you call the Window Manager’s InvalRect procedure after you change
the alignment so the text is redrawn with the new alignment. For more information about
InvalRect, see the chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

Saving and Restoring a TextEdit Document, and
Implementing Undo

This section describes how to save to disk the contents of a document created using
TextEdit, and restore it when the user opens the document. For both monostyled and
multistyled text, you need to save and restore the text and its character attribute
information. This section also discusses how to implement an Undo feature.

Saving a TextEdit Document

To save the contents of a document created using TextEdit and a monostyled edit record,
you store the text. You can also save the text characteristics, such as the font and its size
and style, and the text margins; you can store this information in a resource. (Save the
font name, not the font number.)

To save the contents of a document created using TextEdit and a multistyled edit record,
you need to save all of the associated character attribute information in addition to the
text. Because the text format of the character attribute information in the style scrap is
easier to export than the style record itself—it uses the Desk Manager’s 'styl' format—
you should use the TextEdit routines that use the style scrap for moving character
attribute information: TEGetStyleScrapHandle and TEUseStyleScrap. For
example, you can use the following steps to save a multistyled text document to disk:

1. Create a text file, select all the text of the edit record, and save it in the text file’s
data fork.

2. Call TEGetStyleScrapHandle to get a handle to the style scrap record. This creates
the style scrap record and uses it to store the character attribute information.

3. Save the character attribute information in the resource fork of the file.

The application-defined procedure MyDoSaveAsTextEdit shown in Listing 2-14 uses
this method. Notice that this procedure avoids using TESetSelect to select all of the
edit record’s text. The TESetSelect procedure sets and highlights the selection range
that you specify. Because you are selecting the text to save it, you don’t want it to be

Using TextEdit 2-51

CHAPTER 2

TextEdit

highlighted. (Highlighting the text before saving it can mislead a user to presume that
some other action is required.)

However, if you want to use TESetSelect, you can circumvent highlighting of the
selection range if you first render the edit record inactive; before you call TESetSelect,
call TEDeactivate. Also, if you have outline highlighting turned on through the
TEFeatureFlag function’s teFOutlineHilite feature, turn it off. When the edit

record is not the active one, TESetSelect can set the selection range without causing it
to be highlighted.

Listing 2-14 Saving a multistyled text edit record to disk

PROCEDURE MyDoSaveAsTextEdit (textToSave: TEHandle) ;

CONST
kFileType = 'TEXT'; {file type of text file}
kFileCreator = 'NIIM'; {creator code of text file}
VAR
reply: StandardFileReply;
{location, name of file to save text to}
styles: StScrpHandle; {contains all character }
{ attributes in text}
datalLength: LongInt; {number of bytes of text to write}
dataRefNum: Integer; {ref number of text file's data fork}
rsrcRefNum: Integer; {ref number of text file's rsrc fork}
savedStart: Integer; {saves offset of start of selection}
savedEnd: Integer; {saves offset of end of selection}
error: OSErr; {error code from toolbox}
BEGIN
StandardPutFile('', '', reply);
IF reply.sfGood THEN
BEGIN
{save the current starting and ending offsets of selection}
savedStart := textToSave”™”.selStart;
savedEnd := textToSave””.selEnd;

{select all text; don't use TESetSelect because it }
{ draws selection}

** .selStart := 0;

.selEnd := textToSave””.teLength;

textToSave

A

textToSave”

{get a list of all the attributes in the text}
styles := TEGetStyleScrapHandle (textToSave) ;

Using TextEdit

CHAPTER 2

TextEdit

{reset the selection back to what it was}
textToSave”” .selStart := savedStart;

A

textToSave””.selEnd := savedEnd;

{create the text file if it didn't exist before}

IF NOT reply.sfReplacing THEN
BEGIN

error := FSpCreate(reply.sfFile,

kFileCreator, kFileType,
FSpCreateResFile (reply.sfFile,

kFileType, reply.sfScript);

error := ResError;
END;

{open the text file}

kFileCreator,

reply.sfScript) ;

error := FSpOpenDF (reply.sfFile, fsCurPerm, dataRefNum) ;

rsrcRefNum := FSpOpenResFile (reply.sfFile,

error := ResError;

{write the text to the file}

dataLength := textToSave””.telLength;

error := FSWrite (dataRefNum, datalength,
textToSave™” .hText”) ;

{Wwrite the attributes to the file}

AddResource (Handle (styles), 'styl', 0, '');

WriteResource (Handle (styles)) ;
ReleaseResource (Handle (styles)) ;

{close the text file}
error := FSClose (dataRefNum) ;
CloseResFile (rsrcRefNum) ;
error := ResError;
END;
END;

Restoring an Existing TextEdit Document

fsCurPerm) ;

You can restore the text of an edit record when a user opens a document that was created

using TextEdit. One way to do this is to read the text from the data fork into a handle,

then write the handle to the hText field of the edit record; call TECalText after you do
this. Before you write the new handle to the hText field, dispose of the existing handle,
if there is one. For a multistyled edit record, you need to reinstate both the text and the

character attribute information for it. (For information about how to open a file, see

Inside Macintosh: Files.)

Using TextEdit

2-53

CHAPTER 2

TextEdit

You can use a method similar to the one shown in Listing 2-14 on page 2-52 to save a
multistyled text document. However, to restore the text, you retrieve the data from the
file’s data fork and write it to a buffer, then call TESetText to make a copy of the text
and set the hText field of the edit record to point to it. The MyDoOpenTextEdit
procedure shown in Listing 2-15 shows an example of this. Before copying the text to a
buffer, the MyDoOpenTextEdit procedure checks to ensure that the text length does not
exceed the 32 KB limit; if it does, TextEdit truncates the text before it copies it.

The MyDoOpenTextEdit procedure retrieves the character attribute information from
the resource fork of the disk file and reinstates it in the edit record’s style record by
calling TEUseStyleScrap.

Listing 2-15 Restoring a document that uses multistyled TextEdit

PROCEDURE MyDoOpenTextEdit (textToOpen: TEHandle) ;

CONST
kFileType = 'TEXT'; {file type of text file}
VAR
reply: StandardFileReply; {location, name of file to get text
from}
typeList: SFTypelist; {specifies 'TEXT' files in SF dialog}

dataRefNum: Integer; {ref number of text file's data fork}
rsrcRefNum: Integer; {ref number of text file's rsrc fork}
textBuffer: Handle; {holds text from file}

textLength: LongInt; {number of bytes of text to read}

styles: StScrpHandle; {contains all character attributes in text}
error: OSErr; {error code from toolbox}

savedState: SignedByte; {saves state of 'styl' resource}

BEGIN

typelList [0] := kFileType;

StandardGetFile (NIL, 1, typelist, reply);

IF reply.sfGood THEN

BEGIN
{open the data fork of the text file}
error := FSpOpenDF (reply.sfFile, fsCurPerm, dataRefNum) ;
error := SetFPos(dataRefNum, fsFromStart, 0);
{get the number of bytes of text in the file; limit to 32KB}
error := GetEOF(dataRefNum, textLength);
IF textLength > 32767 THEN
textLength := 32767;

{allocate a buffer for the text}
textBuffer := NewHandle (textLength) ;

2-54 Using TextEdit

CHAPTER 2

TextEdit

{read the text into the buffer}

error := FSRead(dataRefNum, textLength, textBuffer”);
{put the text into the TextEdit record}

LockHHi (TextBuffer) ;

TESetText (textBuffer”, textLength, textToOpen) ;
HUnlock (textBuffer) ;

{get rid of the text buffer}

DisposeHandle (textBuffer) ;

{close the data fork of the text file}

error := FSClose (dataRefNum) ;

{open the resource fork of the text file}

rsrcRefNum := FSpOpenResFile (reply.sfFile, fsCurPerm) ;
error := ResError;

{get the style scrap}

styles := StScrpHandle (GetResource('styl', 0));
error := ResError;
IF styles <> NIL THEN
BEGIN
savedState := HGetState (Handle(styles));

{apply the character attributes to the TextEdit record}
TEUseStyleScrap (0, textLength, styles, true, textToOpen) ;
{restore state of 'styl' resource}

HSetState (Handle (styles), savedState) ;

END;
{close the forks of the text file}
error := FSClose (dataRefNum) ;

CloseResFile (rsrcRefNum) ;
error := ResError;
END;
END;

Handling Undo

Application users find Undo an especially useful feature. Users might accidently choose
Clear from the Edit menu instead of Cut, or they might backspace over more words than
intended. In these and cases like them, Undo is invaluable.

If you are implementing Undo for multistyled text, you need to save the character
attribute information along with the text. Although this section discusses one method,
there are a number of ways that you can do this. For example, when you want to save
the current attributes of the selected text to allow the user to revert to them, your
application calls the TEGet StyleScrapHandle function, which returns a handle to the
style scrap’s style record containing the attributes used for the selected text. To restore
the style later, you call the TEUseStyleScrap procedure. You also need to save the
offsets into the edit record’s text buffer of the first and last characters to which the
character attribute information is to be applied.

Using TextEdit 2-55

CHAPTER 2

TextEdit

If your application supports any 2-byte script systems, your Undo operations needs to
check for 2-byte characters. Normal cut or paste operations do not present a problem,
but be careful when undoing a backspace. When TextEdit backspaces over single
characters, it checks CharByte to determine if the character to be removed is a 2-byte
character. If it is, it removes 2 bytes. (For more information about the CharByte function,
see the chapter the “Script Manager,” in this book.) When an application program
maintains a buffer of characters that have been backspaced over in order to

support Undo, it needs to make a test similar to that in Listing 2-16.

Listing 2-16 Checking for 2-byte characters when backspacing

2-56

AA

IF myChar = BS then aTeHandle
{support backspace undo}
IF selStart <> selEnd then begin
{not an insertion point save the selection}
END
ELSE begin
i := selStart;

do begin

IF i > 0 then begin

repeat 1 := 1 -1

until CharByte (hText”, i) <= 0;
{Note: Guarantees that CharByte(x,0) <= 0}
{Also, CharByte does not touch the heap}
{Put bytes from i to selStart into buffer}
END;

END;
END;

Customizing TextEdit

This section describes how to customize TextEdit using the TECustomHook routine to
replace the end-of-line, drawing, width-measuring, and hit test default hook routines.

It also describes the multi-purpose low-memory global variable TEDoText hook routine
that displays, highlights, and hit-tests characters, and positions the pen to draw a caret.
Finally, this section discusses how to customize word selection, automatic scrolling, and
how to determine the length of a line of text in order to justify it. (For a brief discussion of
hook fields and hook routines, see “Related Data Structures” on page 2-17.)

The next four sections describe how to customize TextEdit using the TECustomHook
procedure. Information about the use of TECustomHook that is common to all four
sections is provided here.

Using TextEdit

CHAPTER 2

TextEdit

You can customize TextEdit’s behavior by replacing any of the default hook

routines with those of your own. You use the TECustomHook procedure to replace

a routine installed in a hook field of the dispatch record (TEDispatchRec). Initially, each
hook field of the dispatch record contains the address of the default hook routine that
TextEdit uses.

The TECustomHook procedure returns the address of the default routine that it replaces
so that your application-supplied routine can call the default routine, daisy-chaining it, if
you want it to. For example, your routine can add additional functionality, then call the
default routine instead of replicating all of its behavior. If you replace the address of a
default hook routine with that of your own customized version, the next time you call
TECustomHook for that hook field, TECustomHook will return the address of your
routine. (For more information, see “TECustomHook” on page 2-110.) To ensure future
compatibility, use the TextEdit customization routines to modify hooks rather than write
directly to these fields.

If you replace a default hook routine with a customized version that you write in a
high-level language, such as Pascal or C, you need to provide assembly-language glue
code that utilizes the registers for your high-level language routine. Refer to
“TECustomHook” on page 2-110 for a description of the register contents on entry and
return for each of the hook routines.

If you replace a default routine, take the following precautions:

m Before placing the address of your routine in the TextEdit dispatch record, strip the
addresses, using the Operating System Utilities St ripAddress function, to guarantee
that your application is 32-bit clean. For more information, see Inside Macintosh:
Operating System Ultilities.

m Before replacing a TextEdit routine with a customized one, determine whether more
than one script system is installed, and, if so, ensure that your customized routine
accommodates all of the installed script systems. This avoids the problem of your
customized routine producing results that are incompatible with the Script Manager.

m When you use assembly language, note that all registers must be preserved except
those specified as containing return values. Register A3 contains a pointer to the edit
record and Register A4 contains a handle to it. You can obtain line start positions from
the 1ineStarts array in the edit record. Register A5 is always valid. Refer to
TECustomHook in the TextEdit Reference section for complete coverage of the register
content requirements for all hook routines.

Replacing the End-of-Line Routine

You can replace the address of the default end-of-line hook routine with the address of
your own routine that determines an end-of-line character if you want the end-of-line to
be defined by a character other than the carriage return.

The default routine compares a given character with $0D (a carriage return) to determine
whether it is an end-of-line character, and returns with the appropriate status flags (either
TRUE or FALSE) in the status register.

Using TextEdit 2-57

CHAPTER 2

TextEdit

Replacing the Drawing Routine

TextEdit calls the draw hook routine any time the various components of a line are
drawn. The appropriate font, face, and size characteristics have already been set into the
current graphics port by the time this routine is called.

If your application uses an outline font, the default behavior of the Font Manager
ensure’s that glyphs fit within the font’s ascent and descent. Glyphs that extend beyond
the ascent or descent, such as certain accented fonts, are scaled down to fit.

If your application has set the preserveGlyph parameter of the Font Manager’s
SetPreserveGlyph procedure to TRUE to preserve the original unscaled shape of the
glyph, note that TextEdit sets it to FALSE before it calls the draw hook to perform any
drawing. This is to guarantee that the glyphs whose bounding boxes exceed the font’s
ascent or descent are scaled down to prevent them from colliding with other glyphs on
the lines above or below. TextEdit then restores the preserveGlyph parameter to its
previous value before proceeding.

Replacing the Width-Measuring Routines

A width measurement hook routine measures portions of a line of text, and TextEdit calls
one each time the width of various components of a line is calculated. There are three
width measurement hooks: the width measurement hook, the new width measurement
hook, and the text width measurement hook. Default hook routines of the same name as
the hook field are installed in each of these hooks.

The width measurement hook, which TextEdit used in the past, now exists to provide
backward compatibility for applications that have replaced the default routine with a
customized one. TextEdit uses the routine whose address is installed in this field only
when both of the following conditions exist: when only the Roman script system is
installed and the field contains the address of a customized routine.

In all other cases—when more than one script system is installed or when the width
measurement hook has not been customized—TextEdit calls the routine whose address is
installed in the new width measurement hook field to measure text.

Figure 2-14 shows a flow chart illustrating when the width measurement hook and the
new width measurement hook routines are used.

Using TextEdit

CHAPTER 2

TextEdit

Figure 2-14 Determining when to use WIDTHHook and nWIDTHHook

Determine the
width-measuring
routine to use

Is script
count number
>1?

Yes

No

Is
width hook
customized?

No

Use Use
width hook new width hook

The new width measurement hook routine is called to measure text for both Roman and
non-Roman script systems. If you replace this routine, make sure that your customized
routine is script-aware.

The default action for the new width measurement hook routine is to call the QuickDraw
Manager’s CharToPixel function or TextWidth procedure to measure for non-Roman
scripts. By default, the TextWidthHook field contains the address of the QuickDraw
TextWidth function. You can use this hook to replace TextEdit’s use of the

QuickDraw TextWidth function with your own measuring routine. If you replace

this hook routine with a customized version, when the routine whose address is installed
in the new width measurement hook field makes a call to TextWidth, your customized
routine is invoked.

Using TextEdit 2-59

2-60

CHAPTER 2

TextEdit

To test for the availability of the width-measuring hooks, you can call the Gestalt
function with the gestaltTextEditVersion selector. A result of gestaltTE2 or
greater returned in the response parameter indicates that the new width measurement
hook is available, and a result of gestaltTES or greater indicates that TextWidthHook
is available.

Replacing the Hit Test Routine

TextEdit calls the hit test hook routine to determine the glyph position in a line, given the
pixel width from the left edge of the view rectangle. For versions of software earlier than
7.0, the default action is to call the TextWidth function to determine if the pixel width of
the measured text is greater than the input width. If it is, then the hit test hook routine
calls the QuickDraw PixelToChar function and returns. For system software version 7
and later, the default action is to call the QuickDraw PixelToChar function. In addition
to the values defined by the register contents on entry, when TextEdit calls the
PixelToChar function, it passes a value of OnlyStyleRun for the
styleRunPosition parameter and scaling factors of 1/1 for the numer and demon
parameters. See “Hit Test Hook Registers” on page 2-113.

Customizing Word Selection

A word-selection break routine determines which word is highlighted when the user
double-clicks in the text. It also determines where TextEdit breaks the text at the end of a
line. You can use TESetWordBreak to replace the default routine, installed in the edit
record’s wordBreak field, that is used for word selection and line breaking under certain
circumstances. Whether or not TextEdit uses the word break hook routine installed in this
field is determined by the algorithm implemented in the default TEFindWord routine,
which is described below.

When you replace the wordBreak field hook routine, your customized word-selection
break routine is used instead of the default one. The default routine breaks words at
any character with an ASCII value of $20 or less (the space character or nonprinting
control characters).

Before non-Roman script systems were supported, TextEdit used the word-selection
break routine referenced by the wordBreak field for all word selection and line breaking.
However, in order to support both Roman and non-Roman script systems, TextEdit now
uses the routine referenced by the low-memory global variable TEFindWord. The default
TEFindWord hook routine determines which hook TextEdit should use for word
selection and line breaking—the wordBreak hook or the Text Utilities
FindWordBreaks procedure—based on what script systems are installed

and some other factors. You can replace the TEFindWord hook routine with a
customized version.

The TEFindWord hook routine is a higher level routine than wordBreak. Because of
this, when you customize the TEFindWord hook you are completely changing how
TextEdit handles word selection and line breaking. However, when you replace
wordBreak, you are only impacting those aspects of word selection and line breaking
that are normally handled by the wordBreak routine.

Using TextEdit

CHAPTER 2

TextEdit

The TEFindWord hook routine gives your application more control over the breaking
process and allows you to write more efficient routines. However, unless you include
explicit tests for scripts in your customized routine, the algorithms you provide may be
incorrect for non-Roman scripts. If you replace TEFindWord, you should understand the
behavior of the default routine.

Here’s how the default TEFindWord routine works:

m TextEdit initially determines whether a non-Roman script system is installed. If more
than the Roman script system is installed, TextEdit always uses the Text Utilities
FindWordBreaks procedure for line breaking and word selection.

m When TextEdit determines that only the Roman script system is installed and the
TEFindWord routine is being called for line breaking (not word selection), TextEdit
calls the wordBreak hook.

m If TEFindWord is called for word selection for system software with only the Roman
script system installed, TextEdit checks to see if your application has placed the
address of a customized word-selection breaks routine in the wordBreak field of the
edit record. If so, TextEdit calls your word-selection breaks routine. Otherwise, if the
wordBreak field contains the address of TextEdit’s internal word-selection breaks
routine, TextEdit uses the Text Utilities FindWordBreaks procedure to determine
word-selection breaks.

When TextEdit calls the Text Utilities FindWordBreaks procedure, it uses information in
the edit record to provide the necessary parameters. TextEdit determines the current
script boundaries from the Text Utilities FindWordBreaks procedure by using the font
run information in the style record (of type TEStyleRec). TextEdit also determines the
length of the script run and the offset within the script run from which to begin searching
for a word boundary. TextEdit uses the value in the c1ikStuff field of the edit record to
determine the leading edge flag for the FindWordBreaks procedure. You must use
similar information to replace TEFindWord correctly for non-Roman scripts.

Customizing Automatic Scrolling

Scroll bars associated with the text are not automatically scrolled with the text unless
you replace the address of the default click loop routine with that of a customized routine
that updates the scroll bars. You can write your own click loop routine that includes code
to update the scroll bars along with the text and install its address in the c1ikLoop field.
To replace the default click loop routine with your customized version, you call the
TESetClickLoop procedure.

You can write a routine that manages the scroll bars, then calls the default click loop
routine, rather than replicating its behavior in your routine. However, if your routine
scrolls the text and updates scroll bars, you should consider what the default click loop
routine does. It adjusts the value in the c1ickTime field of the edit record to allow for
slower scrolling.

When TEC1lick is called, the c1lickTime field contains the time when TEC11ick was last
called. TextEdit sets the c1ickTime field with the current tick count on exit from the
TEClick procedure and uses the new value at reentry the next time TEC1lick is called.

Using TextEdit 2-61

2-62

CHAPTER 2

TextEdit

If you code a click loop routine in Pascal, it should have no parameters and it should
return a Boolean value. You can declare a click loop routine named MyClickLoop
like this:

FUNCTION MyClickLoop: Boolean;

The function should return TRUE. Returning FALSE from your click loop routine tells the
TEClick procedure that the mouse button has been released, which aborts TEC1ick.

Installing a customized default click loop routine

If you code a click loop routine in Pascal, then call the TESetClickLoop
procedure to install the Pascal routine in the clikLoop field,
TESetClickLoop installs a glue code routine in the clikLoop field
because clikLoop expects a routine that uses assembly-language
conventions. Because of this, you must always use TESetClickLoop to
install a Pascal routine, while you must always directly install an
assembly routine in the c1ikLoop field. &

If you code a click loop routine in assembly, it should set register DO to 1 and preserve
register D2. Returning 0 in register D0 aborts TEC1ick.

You can write a routine that manages the scroll bars, then calls the default click loop
routine, rather than replicating its behavior in your routine. If your customized routine
calls the default click loop routine, it must use assembly-language calling convention.

Determining the Line Length

This section describes how to determine the length of a line. You can use this information,
for example, to justify a line of text; although TextEdit aligns text with the right or left
margins, or centers it, it does not justify it.

To determine the length of a line, you use the information contained in the edit record’s
line starts array and nLines field. The line starts array is a variable-length field in the
edit record that contains the byte offset for the first character of each line. This array has
the following boundary conditions:

m The first entry has index 0 and value 0.

m The last entry in the array has index nLines and value teLength (therefore, there are
nLines + 1 entries).

m The beginning of the first line is given by 1ineStarts[0], and the beginning of the
second line is given by 1ineStarts|1]; therefore, the length of the first line is given
by lineStarts[l] - lineStarts[0].

m The maximum number of entries is 16,000.

Using TextEdit

CHAPTER 2

TextEdit

For example, if you want to determine the length of the line n (where n = 0 for the first
line), subtract its start location (contained in the array entry with index n) from its end
location (contained in the array with index n + 1):

lengthOfLineN := myTE*".lineStarts[n+1] - myTE"".lineStarts([n];

The terminating condition for this measurement is when 7 is equal to nLines plus 1.

IMPORTANT
Do not change the information contained in the 1ineStarts array. A

Advanced Customization

The low-memory global variable TEDoText is a hook which contains the address of a
multi-purpose text editing routine that advanced programmers may find useful. It lets
you display, highlight, and hit-test characters, and position the pen to draw the caret.
Hit-testing is the process of determining where to place the insertion point when the user
clicks the mouse button; the point selected with the mouse is in the SelPoint field. The
registers contain the following values.

Registers on entry

A3 Pointer to the locked edit record

D3 Position of the first character (word)

D4 Position of the last character; used as defined below (word)

D7 Selectors for TEDoText (word)

teFind EQU 0 to hit-test the character specified in D3
teHighlight EQU 1 to highlight the text range specified in D3
and D4
teDraw EQU -1 to display the range of text specified in D3 and
D4
teCaret EQU -2 to draw the caret at the position specified
in D3
teFind EQU 0 to hit-test the character specified in D3

Registers on exit
A0 Pointer to current graphics port

DO If hit-testing, byte offset where hit, or —1 for none (word)

Note

You need to use the value stored in the edit record selPoint field
for hit-testing if you replace the routine pointed to by the global
variable TEDoText. (The assembly-language offset for this field
isnamed teSelPoint.) &

Using TextEdit 2-63

CHAPTER 2

TextEdit

TextEdit Reference

This section describes the data structures and routines that comprise TextEdit. The “Data
Structures” section shows the Pascal data structures including the edit record and
subsidiary structures that allow for text styling and customization of TextEdit. Together
with the TextEdit private scrap and the TextEdit style scrap, these data structures define
the TextEdit environment.

The “Routines” section describes the routines that provide applications with the means of
creating edit records and accessing, editing, and displaying multistyled and monostyled
text, including text highlighting and scrolling.

The constants that define values for some of the parameters used in several of these
routines are listed in the “Summary of TextEdit” on page 2-118.

Data Structures

2-64

This section describes the data structures and their contents which provide information
to the TextEdit routines. Both monostyled and multistyled edit records have a 32 KB
maximum text size.

The TextEdit data structures are defined as follows:

m The edit record, defined by the TERec data type, stores the display and editing
information for TextEdit.

m Along with various subsidiary data structures, the style record, defined by the
TEStyleRec data type, stores the character attribute information for the text of the
edit record.

m The style run table, defined by the StyleRun data type, is an array that contains the
boundaries of each style run and an index to its character attribute information in the
style element array.

m The style table, defined by the TEStyleTable data type, contains one entry for each
distinct set of character attributes used in the text of the edit record.

m The line-height table, defined by the LHTable data type, provides an array of line
heights to hold the vertical spacing information for a given edit record. It also contains
line ascent information.

TextEdit Reference

CHAPTER 2

TextEdit

m The null style record, defined by the NullStRec data type, contains the null scrap
which is used to store character attribute information for a null selection.

m The style scrap record, defined by the St ScrpRec data type, is used by routines to
store character attribute information temporarily.

m The scrap style table, defined by the scrpStyleTab data type, is contained in the
style scrap record.

m The scrap style element record, defined by the ScrpSTElement data type, contains
the character attribute information for an element in the scrap style table. One scrap
style element record exists for each sequential attribute change in the associated text.

m The TextEdit dispatch record, defined by the TEDispatchRec data type, contains the
internal addresses of the TextEdit routines for the end-of-line hook, the draw hook, the
width measurement hook, the new width measurement hook, and the text width
measurement hook, unless you replace them with the addresses of your own
customized versions of these routines.

m The text style record, defined by the TextStyle data type, is used by several routines
to pass character attribute information between the application and a routine. The
record is passed as a variable or reference parameter.

Figure 2-15 shows the TextEdit data structures and their fields to help you understand
how the TextEdit data structures are organized and related. (For a monostyled edit
record, TextEdit creates only the TERec and TEDispatchRec data structures.) To read
from and write to these data structures, use the TextEdit routines rather than modifying
these fields directly. This practice ensures future compatibility.

For most operations, you do not need to know the exact structure of an edit record;
TextEdit routines gain access to the record for you. However, when manipulating
character attribute information, you might find it helpful to understand how the data
structures used to contain and track character attribute information are organized.

Note

The space beyond the hooks in the TextEdit dispatch record is reserved
for internal use. If you attempt to use this private area, you may corrupt
TextEdit data. &

TextEdit Reference 2-65

CHAPTER 2

TextEdit
Figure 2-15 The TextEdit data structures and fields
TERec TEStyleRec) TEStyleTable
0 »| 0 nRuns ’—> 0 stCount
2 nStyles 2 stHeight
destRect 4 styleTab . STHandle 4 stAscent
6 stFont
LHHandIe: 8 IhTab STElement | 8 stFace
viewRect — é stSize
— — teRefCon stColor
10 10 nullSTHandle
— — nullStyle »> ~
selRect y 12 (0...nStyles)
One each per unique style in
array of record. stylelndex (in StyleRun
18 lineHeight runs StyleRun array elements) is an index
TA fontAscent — (0...nRuns) —— into this array.
e NullStRec
selPoint StyleRun R q
> teReserve
20 selStart g Sstt;;tliz:;
selEnd STScrpHandle_ | 4
;i Zoive 4 (0...nRuns) e < nullScrap
26 One each per style change.
wordBreak Kept in ascending order of StScrpRec
offsets into record L »[0 scrpNStyles |
2A clikLoop (sorted by startChar). >
o LHTable
clickTime —»{ 0 IhHeight
LHElement
32 clickLoc 2 IhAsqent
34 4 (0...nLines)
caretTime One each per line in record. SCrPStyleTab C__(arrayof ____
S Line number is a direct index ScrpSTElement)
38 cargt tate into this array.
3A just (Only if lineHeight = —1)
3C telLength
3E hText TEDispatchRec 16
) (Access through TECustomHook.) (0...scrpNStyles —1) -
42 hDispatchRec 'I;EDlspatchHardIe 0 ~
- L—»| end-of-line hook
46 clikStuff 0
46 crOnly (if txSize = 1) draw hook scrpStartChar
4A txFont A TEStyleHandle 3 _ 4 scrpHeight
AC txFace] width hook 6 scrpAscent
4E txMode ScrpSTElement | 8 scrpFont
50 txSize hit test hook A scrpFace
52 . C scrpSize
inPort Reserved E
scrpColor
56 highHook Reserved — P —
5A One each per sequential
caretHook 18 6w width hook style change in associated text
5E nLines C
60 array of text width hook
| .
nteger lineStarts Reserved
(0...nLines)
—»—> = handle
| one word | =16 bits
2-66 TextEdit Reference

CHAPTER 2

TextEdit

The Edit Record

The edit record contains display, storage, styling, and other information related to editing
that TextEdit requires. Although some fields are used differently for multistyled edit
records and monostyled edit records, the structure of an edit record is the same whether
the text is multistyled or monostyled.

TYPE TERec =

RECORD

destRect:
viewRect:

selRect:

lineHeight:
fontAscent:

selPoint:
selStart:
selEnd:

active:

wordBreak:
clikLoop:
clickTime:
clickLoc:
caretTime:

caretState:

just:
teLength:
hText:

hDispatchRec: Handle;

clikStuff:
crOnly:
txFont:

txFace:

txMode:

txSize:

inPort:

TextEdit Reference

Rect;
Rect;
Rect;
Integer;
Integer;

Point;

Integer;
Integer;
Integer;

ProcPtr;
ProcPtr;
LongInt;
Integer;
LongInt;
Integer;
Integer;
Integer;
Handle;

Integer;

Integer;
Integer;

Style;

Integer;
Integer;

GrafPtr;

{destination rectangle}

{view rectangle}

{the selection rectangle}

{used for vertical spacing of lines}
{used for caret/highlighting }

{ position}

{point selected with the mouse}
{start of selection range}

{end of selection range}

{set when record is activated or }

{ deactivated}

{word break hook}

{click loop hook}

{used internally}

{used internally}

{used internally}

{used internally}

{alignment of text}

{length of text}

{handle to text to be edited}
{handle to TextEdit dispatch record}
{used internally}

{if <0, new line at Return only}
{text font.Otherwise, if txSize is }
{ -1, combines with txFace to hold }
{ a handle to the style record.}
{character style; unpacked byte. }

{ otherwise, if txSize is -1, }

{ combines with txFont to hold a }

{ handle to the style record}

{pen mode}

{tells if multistyled }

{ edit record; if not, font size}

{a pointer to the graphics port }

{ for this TERec}

2-67

2-68

CHAPTER 2

TextEdit

highHook : ProcPtr; {used for text highlighting}

caretHook: ProcPtr; {used for caret appearance}

nlLines: Integer; {number of lines}
lineStarts: ARRAY[0..16000] OF Integer;

END;

TYPE TEPtr
TEHandle

Field descriptions
destRect

viewRect

selRect

lineHeight

fontAscent

selPoint

selStart

selEnd

active

TextEdit Reference

{positions of line starts}

= “TERec;
“TEPtr

The destination rectangle, in local coordinates.
The view rectangle, in local coordinates.

The selection rectangle, whose boundaries are defined in
local coordinates. This value is the current selection range or
insertion point.

The vertical spacing of lines of text. Vertical spacing may be fixed or
it may vary from line to line, depending upon specific text attributes.
If the value of 1ineHeight is greater than 0, this field specifies the
fixed vertical distance from the ascent line of one line of text down
to the ascent line of the next.

If the value of 1ineHeight is less than 1, then this field specifies the
vertical distance from the ascent line of one line of text down to the
ascent line of the next calculated independently for each line, based
on the maximum value for any individual character attribute on that
line.

The font ascent line. If the value of fontAscent is greater than 0,
this field specifies how far above the base line the pen is positioned
to begin drawing the caret or highlighting.

For single-spaced text, this is the height of the text in pixels (the
height of the tallest characters in the font from the base line). If the
value of fontAscent is less than 1, this field specifies the font
ascent calculated independently for each line, based on maximum
value for any individual character attribute on that line.

The point selected with the mouse, in the local coordinates of the
current graphics port. The assembly-language offset for this field is
named teSelPoint.

The byte offset of the beginning of a selection range. Note that byte
offset 0 refers to the first byte in the text buffer.

The byte offset of the end of a selection range. To include that byte,
this value must be 1 greater than the position of the last byte offset
of the text.

This field is used internally by TextEdit. It is set when an edit record
is activated through TEAct ivate and then reset when the edit
record is rendered inactive through TEDeactivate. To ensure
future compatibility, use TEAct ivate or TEDeactivate to access
this field.

CHAPTER 2

TextEdit

wordBreak

clikLoop

clickTime
clickLoc
caretTime
caretState
just

teLength

hText

hDispatchRec

clikStuff

crOnly

txFont

txFace

TextEdit Reference

The record’s word selection break routine. This routine determines
the word that is highlighted when the user double-clicks in the text
and the position at which text is wrapped at the end of a line.

The pointer to the click loop routine.The specified click loop routine
is called repeatedly by the TEC1ick procedure as long as the mouse
button is held down within the text.

This field is for internal use only.
This field is for internal use only.
This field is for internal use only.
This field is for internal use only.

The type of text alignment: default (according to primary line
direction), left, center, or right.

The number of bytes in the text to be edited. For two-byte systems,
potentially twice the number of characters. Initially set to zero. The
maximum length is 32767 bytes.

A handle to the text. Initially, it points to a zero-length block of text
in the heap.

The handle to the TextEdit dispatch record. This field is for internal
use only; do not moditfy this field, or copy it to another edit record.
Each edit record has its own dispatch record. Attempting to use the
dispatch record of one edit record with another edit record can cause
TextEdit to crash.

This field is for internal use only. TextEdit sets this field to reflect
whether the most recent mouse-down event occurred on the leading
or trailing edge of a glyph. TextEdit uses this value in determining a
caret position.

A value specifying whether or not text wraps at the right edge of the
destination rectangle. If crOnly is positive, text does wrap.

If cronly is negative, new lines are specified explicitly by Return
characters only; text does not wrap at the edge of the destination
rectangle. (This is useful in an application similar to a
programming-language editor, where you may not want a single
line of code to be split onto two lines.)

The font of all the text in the edit record if the txSize field of this
edit record > 0. If you change this value, the entire text of this

edit record has the new characteristic when it is redrawn; also,
remember to change the 1ineHeight and fontAscent fields

as well.

If the txSize field is —1, this field combines with txFace to hold a
handle to the associated style record.

The character attributes of all the text in an edit record if the txSize
field of this edit record > 0. If you change this value, the entire text of
this edit record has the new characteristic when it is redrawn; also,
remember to change the 1ineHeight and fontAscent fields as
well.

If the txSize field is —1, this field combines with txFont to hold a
handle to the associated style record.

2-69

CHAPTER 2

TextEdit

txMode The pen mode of all the text in the edit record. If you change this
value, the entire text of this edit record has the new characteristic
when it is redrawn; also, remember to change the 1ineHeight and
fontAscent fields as well.

txSize Depending on its value, txSize either contains the point size of all
of the text or it acts as a flag indicating whether or not there is
associated character attribute information. If txSize >0, this is a
monostyled edit record, that is, all text is set in a single font, size,
and face, and the value of txSize is the size of the text. If txSize is
-1, the edit record contains associated character attribute
information and the txFont and txFace fields combine to form a
handle to the style record.

inPort A pointer to the graphics port associated with this edit record.

highHook A pointer to the routine that deals with text highlighting. In
assembly language, the highHook field is located at the offset
teHiHook. For more information, see the following section, “The
High Hook and Caret Hook Fields.”

caretHook A pointer to the routine that controls the appearance of the caret. In
assembly language, the caretHook field is located at the offset
teCarHook. For more information, see the following section, “The
High Hook and Caret Hook Fields.”

nLines The number of lines in the text.

lineStarts An array containing the character position of the first character in
each line. It is declared to have 16001 elements to comply with
Pascal range checking. This is a dynamic data structure having only
as many elements as needed. TextEdit calculates these values
internally, so do not change the elements of the 1ineStarts array.
Because this data structure grows and shrinks, the size of the edit
record changes.

The High Hook and Caret Hook Fields

2-70

The highHook and caretHook fields—at the offsets teHiHook and teCarHook in
assembly language—contain the addresses of routines that deal with text highlighting
and the caret. These routines pass parameters in registers; if you replace these routines,
your application must save and restore the registers” contents.

If you store the address of a routine in teHiHook, that routine is used instead of the
QuickDraw procedure InvertRect, which is called by default, whenever a selection
range is to be highlighted. Your routine can destroy the contents of registers A0, A1, DO,
D1, and D2. On entry, A3 is a pointer to a locked edit record; the stack contains the
rectangle enclosing the text being highlighted. (Use of the A3 register is equivalent to the
InvertRect r parameter of type RECT. See the QuickDraw chapters in Inside Macintosh:
Imaging for more information about the InvertRect procedure.) For example, if you
store the address of the following routine in teHiHook, selection range is underlined
instead of inverted.

TextEdit Reference

CHAPTER 2

TextEdit

UnderHigh
MOVE.L 4 (SP) ,A0 ;get address of rectangle to be

;highlighted

MOVE bottom (A0) , top (A0) ;make the top coordinate equal to
SUBQ #1,top (A0) ;the bottom coordinate minus 1
_InverRect ;invert the resulting rectangle
RTS

The routine whose address is stored in teCarHook acts exactly the same way as the
teHiHook routine, but on the caret instead of the selection range, allowing you to change
the appearance of the caret. The routine is called with the stack containing the rectangle
address that encloses the caret.

The Style Record

The style record stores the character attribute information for the text of a multistyled
edit record. If an edit record has associated character attribute information, its txFont
and txFace fields combine to hold a style handle, of type TEStyleHandle, to its style
record. The text is divided into style runs, summarized in the style run table, of type
StyleRun, which is part of the style record. Each entry in the style run table gives the
starting character position of a run and an index into the style table, of type
TEStyleTable.

The style table element pointed to by the style run index describes the character
attributes for that run.

To determine the length of a run, you subtract its start position from that of the next entry
in the style run table. A dummy entry at the end of the style run table delimits the length
of the last run; its start position is equal to the overall number of characters in the text,
plus 1. The TEStyleRec data type defines the style record.

TYPE TEStyleRec =

RECORD
nRuns: Integer; {number of style runs}
nStyles: Integer; {size of style table}
styleTab: STHandle; {handle to style table}
1lhTab: LHHandle; {handle to line-height table}
teRefCon: LonglInt; {reserved for application use}

nullStyle: NullStHandle; {handle to style set at }
{ null selection}
runs: ARRAY [0..8000] OF StyleRun;
END;

TEStylePtr = “TEStyleRec;
TEStyleHandle = “TEStylePtr;

TextEdit Reference 2-71

CHAPTER 2

TextEdit

StyleRun = RECORD
startChar: Integer; {starting character position}
styleIndex: Integer; {index in style table}

END;

Field descriptions

nRuns The number of style runs in the text.

nStyles The number of distinct sets of character attributes used in the text;
this forms the size of the style table.

styleTab Ahandle to the style table.

1lhTab A handle to the line height table.

teRefCon A reference constant for use by applications. The application can use
this 32-bit field to suit its needs.

nullstyle A handle to the style scrap record used to store the character

attribute information for a null selection.
runs A table of style runs that is of indefinite length.

TEStylePtr = “TEStyleRec;
TEStyleHandle = “TEStylePtr;

StyleRun = RECORD
startChar: Integer; {starting character position}
styleIndex: Integer; {index in style table}

END;

The Style Table

The style table contains one entry for each distinct set of character attributes used in the
text of an edit record. Each entry is defined in a style element record. The size of the table
is given by the nStyles field of the style record. There is no duplication; each set of
character attributes appears exactly once in the table. A reference count tells how many
times each set of attributes is used in the table. The TEStyleTable data type defines the
style table. The STElement data type defines the style element record.

TYPE STElement =

RECORD
stCount: Integer; {number of runs in this style}
stHeight: Integer; {line height}
stAscent: Integer; {font ascent}
stFont: Integer; {font family ID}
stFace: Style; {character style}
stSize: Integer; {size in points}
stColor: RGBColor; {absolute RGB color}
END;

2-72 TextEdit Reference

CHAPTER 2

TextEdit
STHandle = “STPtr;
STPtr = "TEStyleTable;

TEStyleTable = ARRAY [0..1776] OF STElement;

Field descriptions

stCount A reference count of character runs using this set of character
attributes.

stHeight The line height for this run, in points.

stAscent The font ascent for this run, in points.

stFont The font family ID.

stFace The character style (bold, italic, and so forth). This field consists of

two bytes. The low-order byte contains the character style. TextEdit
uses the high bit (bit 15) of the high-order byte to store the style run
direction: it uses 0 for left-to-right text, and 1 for right-to-left text.

stSize The text size, in points.
stColor The RGB (red, green, blue) color.
The Line Height Table

The line height table holds vertical spacing information for the text of an edit record. This
table parallels the 1ineStarts array in the edit record itself. Its length equals the edit
record’s nLines field plus 1 for a dummy entry at the end, just as the 1ineStarts array
ends with a dummy entry that has the same value as the length of the text. The table’s
contents are recalculated whenever the line starting values are themselves recalculated
with the TECalText routine or whenever an editing action causes recalibration.

The line height table is used only if the 1ineHeight and fontAscent fields in the edit
record are negative; positive values in those fields specify fixed vertical spacing,
overriding the information in the table. The line height table is of type LHTable, which is
an array of elements of LHElement.

TYPE LHElement =

RECORD
lhHeight: Integer; {maximum height in line}
lhAscent: Integer; {maximum ascent in line}
END;

LHPtr = “LHTable;
LHHandle = “LHPtr;

LHTable = ARRAY [0..8000] OF LHElement;

TextEdit Reference 2-73

CHAPTER 2

TextEdit

Field descriptions

lhHeight The line height in points. This is the maximum value for any
individual character attribute in the line.

lhAscent The font ascent in points; this is the maximum value for any
individual character attribute in a line.

The Null Style Record

The null style record contains the null scrap, which is used to store the character attribute
information for a null selection (insertion point). A number of routines either write this
character attribute information to the null scrap or read it from this scrap (to be applied
to inserted text). The null scrap is created and initialized when an application calls
TEStyleNew to create a multistyled edit record. The null scrap is retained for the life of
the edit record; it is destroyed when TEDispose destroys the edit record and releases the
memory allocated for it.

The NullSTRec data type defines the null style record.

TYPE NullStRec =

RECORD
teReserved: LongInt; {reserved for future expansion}
nullScrap: StScrpHandle; {handle to the style scrap }
{ record}
END;

NullStPtr = “NullStRec;
NullStHandle = *NullStPtr;

Field descriptions

teReserved This field is reserved for future expansion.
nullScrap Ahandle to the style scrap record.
The Style Scrap Record

2-74

The style scrap is used for storing character attribute information associated with the
current text selection or insertion point, character attribute information to be applied to
text, or multistyled text that is cut or copied. When multistyled text is cut or copied, the
character attribute information is written to both the style scrap and the desk scrap.

In most cases, the style scrap is created dynamically as needed by routines. However, a
style scrap record can be created directly without using the TEGetStyleScrapHandle
function; the character attribute information written to it can be applied to inserted text
through TEStyleInsert or to existing text through TEUseStyleScrap.

The format of the style scrap is defined by a style scrap record of type STScrpRec.

TextEdit Reference

CHAPTER 2

TextEdit

TYPE StScrpRec =
RECORD
scrpNStyles: Integer; {number of sets of }
{ character attributes in scrap}
scrpStyleTab: ScrpSTTable; {table of attributes for }
{ scrap}
END;

StScrpPtr = “StScrpRec;
StScrpHandle = “StScrpPtr;

Field descriptions

scrpNStyles The number of style runs used in the text. This determines the size
of the style table. When character attribute information is written to
the null scrap, this field is set to 1; when the character attribute
information is removed, this field is set to 0.

scrpStyleTab The scrap style table containing an element for each style run.

The Scrap Style Table

The style scrap record contains the scrap style table. Unlike the main style table for an
edit record, the scrap style table may contain duplicate elements; the entries in the table
correspond one-to-one with the style runs in the text. The scrpStartcChar field of each
entry gives the starting position for the run.

The scrpStyleTab data type defines the scrap style table data structure, which is an
array of scrap style element records. The ScrpSTElement data type defines each scrap
style element record.

TYPE ScrpSTElement =

RECORD
scrpStartChar: LongInt; {offset to start of style}
scrpHeight: Integer; {line height}
scrpAscent: Integer; {font ascent}
scrpFont : Integer; {font family ID }
scrpFace: Style; {character style}
scrpSize: Integer; {size in points}
scrpColor: RGBColor; {absolute (RGB) color}
END;

ScrpSTTable = ARRAY[0..1600] OF ScrpSTElement;

Field descriptions
scrpStartChar The offset to the beginning of a style record in the scrap.

TextEdit Reference 2-75

CHAPTER 2

TextEdit

scrpHeight The line height. You can determine the line height and the font
ascent using the QuickDraw routine GetFont Info described in the
chapter “QuickDraw Text” in this book.

scrpAscent The font ascent. See scrpHeight.

scrpFont The font family ID.

scrpFace The style (such as plain, bold, underline).

scrpSize The size in points.

scrpColor The RGB (red, green, blue) color for the style scrap.

Text Style Record

Text style records are used for communicating character attribute information between
the application and several TextEdit routines, such as TECont inuousStyle and
TEReplaceStyle. They carry the same information as the style element records in the
style table, but without the reference count, line height, and font ascent.

The TextStyle data type defines a text style record.

TYPE TextStyle =

RECORD
tsFont: Integer; {font family number}
tsFace: Style; {character style}
tsSize: Integer; {size in points}
tsColor: RGBColor; {absolute RGB color}
END;

TextStylePtr = “TextStyle;
TextStyleHandle = “TextStylePtr;

Field descriptions

tsFont The font family number.

tsFace The character style (bold, italic, plain, and so forth).
tsSize The text size in points.

tsColor The RGB (red, green, blue) color.

Routines
This section describes the TextEdit routines that an application can call to
m initialize TextEdit and create an edit record
m activate and deactivate an edit record
m set and get the text and character attribute information of an edit record
2-76 TextEdit Reference

CHAPTER 2

TextEdit

m set the caret and selection range

m display and scroll text

m modify the text of an edit record

m manage the TextEdit private scrap

m check, set, and replace character attributes

m use byte offsets and corresponding points

m toggle automatic scrolling, outline highlighting, and text buffering on and off
m customize TextEdit

Each routine description defines a Pascal interface, provides related assembly-language
information, and lists possible result codes, if any are returned.

Initializing TextEdit, Creating an Edit Record, and Disposing of an Edit Record

TEInit

Preparation of a window for text editing involves setting up TextEdit’s internal data
structures by calling the TEInit procedure and creating an edit record for the window
with the TEStyleNew function or the TENew function.

The TEStyleNew function creates a new multistyled edit record. A multistyled edit
record contains text whose attributes, including font, size, and style, can vary from
character to character. The TENew function creates a new monostyled edit record. A
monostyled edit record contains text that is set in a single font, size, and style. Before
either of these functions is called, the window must be in the current graphics port.

The TEDispose procedure destroys an edit record and releases the memory used for it.
For a complete description of the edit record and its fields, see “An Overview of the
TextEdit Data Structures” on page 2-16 and “Data Structures” on page 2-64.

DESCRIPTION

The TEInit procedure initializes TextEdit.

PROCEDURE TEInit;

In addition to initialization of miscellaneous global variables, such as TEDoText and
TERecal, the TEInit procedure sets up the private scrap and allocates a handle to it.
Call TEInit at the beginning of your program after you initialize QuickDraw, the Font
Manager, and the Window Manager, in that order, and before you initialize the Dialog
Manager. You should call TEInit even if your application doesn’t use TextEdit, so that
desk accessories and dialog and alert boxes, which use TextEdit routines, work correctly.

TextEdit Reference 2-77

CHAPTER 2

TextEdit

TEStyleNew

DESCRIPTION

The TEStyleNew function creates a multistyled edit record and allocates a handle to it.
FUNCTION TEStyleNew (destRect: Rect; viewRect: Rect): TEHandle;

destRect The destination rectangle for the new edit record, specified in the local
coordinates of the current graphics port. This is the area in which text is
laid out.

viewRect The view rectangle for the new edit record, specified in the local
coordinates of the current graphics port. This is the area of the window in
which text is actually displayed.

Always use the TEStyleNew function to create an edit record for text that uses varying
character attributes. The TEStyleNew function sets the txSize, 1ineHeight, and
fontAscent fields of the edit record to -1, allocates a style record, and stores a handle to
the style record in the txFont and txFace fields. The TEStyleNew function creates and
initializes a null scrap that is used by TextEdit routines throughout the life of the edit
record.

Call TEStyleNew once for every edit record you want allocated. Your application needs
to store the handle to the edit record that is returned; many routines require it as an input
parameter.

If your application contains more than one window where text editing occurs, you need
to create an edit record for each window.

TENew
The TENew function creates and initializes a monostyled edit record and allocates a
handle to it.
FUNCTION TENew (destRect,viewRect: Rect): TEHandle;
destRect The destination rectangle for the new edit record, specified in the local
coordinates of the current graphics port. This is the area in which text is
laid out.
viewRect The view, or visible, rectangle for the new edit record, specified in the local
coordinates of the current graphics port. This is the area of the window in
which text is actually displayed.
2-78 TextEdit Reference

DESCRIPTION

TEDispose

CHAPTER 2

TextEdit

A monostyled edit record is one in which all text is restricted to a single font, size, and
style. Use TENew when the text is to be rendered in attributes that are consistent from
character to character. Otherwise, use TEStyleNew.

Call TENew once for every edit record you want allocated. Your application should store
the handle to the edit record that is returned; many routines require it as an input
parameter. The edit record assumes the drawing environment of the graphics port.

If your application contains more than one window where text editing occurs, you need
to create an edit record for each window.

DESCRIPTION

The TEDispose procedure removes a specified edit record and releases all memory
associated with it.

PROCEDURE TEDispose (hTE: TEHandle) ;

hTE Ahandle to the edit record for which the allocated memory should be
released.

Call the TEDispose procedure only when you're completely through with an
edit record.

Note that if your program retains a handle to text associated with the edit record that you
are destroying with TEDispose, the handle becomes invalid because the TEDispose
procedure disposes of it, as well as the dispatch record handle. If the record is
multistyled, TEDispose also disposes all of the style-related handles: STHandle,
LHHandle, STScrpHandle, nul1STHandle, and TEStyleHandle.

To continue to refer to the text after you've destroyed the edit record, you need to make a
copy of the handle in the hText field of the edit record using the Operating System
Utilities HandToHand function before you call TEDispose. (See Inside Macintosh:
Operating System Utilities for more information.)

In addition to disposing of the edit record, the edit record handle, and the dispatch record
handle, the TEDispose procedure destroys the null scrap associated with the edit record
and releases the memory used for it.

TextEdit Reference 2-79

CHAPTER 2

TextEdit

Activating and Deactivating an Edit Record

When your application receives notification of an activate event, it can call the
TEActivate procedure, which activates an edit record and highlights the selection
range or displays a caret at the insertion point. When the activate event flag is set to
deactivate the window, your application can call the TEDeactivate procedure, which
changes an edit record’s status from active to inactive and removes the selection range
highlighting or the caret. (When outline highlighting is on, TEDeactivate frames the
text or displays a dimmed caret.)

TEActivate

The TEActivate procedure activates the specified edit record.
PROCEDURE TEActivate (hTE: TEHandle) ;

hTE A handle to the specified edit record.

DESCRIPTION

When you call TEAct ivate for an edit record, the selection range is highlighted. If the
selection range is an insertion point, TEActivate displays a caret there.

Call this procedure every time the Event Manager function WaitNextEvent reports that
the window containing the edit record has become active.

If you do not call TEActivate before you call TEClick, TEIdle, or TESetSelect, the
selection range is not highlighted, or, if the selection range is set to an insertion point, a
caret is not displayed at the insertion point. However, if you have turned on outline
highlighting through the TEFeatureF1lag function for the edit record, the text of the
selection range is framed or a dimmed or an unblinking caret is displayed at the insertion
point.

SEE ALSO
For a description of the WaitNextEvent function, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

TEDeactivate

The TEDeactivate procedure deactivates an edit record.
PROCEDURE TEDeactivate (hTE: TEHandle) ;

hTE A handle to the specified edit record.

2-80 TextEdit Reference

DESCRIPTION

SEE ALSO

CHAPTER 2

TextEdit

When you call TEDeactivate for an edit record, the highlighted selection range is no
longer displayed. If the selection range is an insertion point, TEDeactivate no longer
displays the caret. However, if you turned on outline highlighting through the
TEFeatureFlag function for the edit record, the text of the selection range is framed
or a dimmed or an unblinking caret is displayed at the insertion point when the record
is deactivated.

Call this procedure every time the Event Manager function WaitNextEvent reports that
the window containing the edit record has become inactive.

For a description of the WaitNextEvent function, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Setting and Getting an Edit Record’s Text and Character Attribute Information

The TextEdit procedure TEKey allows you to handle key-down events and enter text
input through the keyboard. The procedure TESet Text lets you incorporate existing text
into the text buffer of an edit record. Once an edit record contains text, you can use the
TEGetText function to get a handle to the text itself. For a multistyled edit record, you
can get a handle to the style record by calling Get StyleHandle. You can set the handle
to the style record using the TESetStyleHandle procedure. This section describes these
routines.

TEKey
The TEKey procedure replaces the selection range in the text of the specified edit record
with the input character and positions the insertion point just past the inserted character.
PROCEDURE TEKey (key: Char; hTE: TEHandle) ;
key The input character.
hTE Ahandle to the edit record in whose text the character is to be entered.
DESCRIPTION

If the selection range is an insertion point, TEKey inserts the character. (Two-byte
characters are passed one byte at a time.) If the key parameter contains a backspace
character, the selection range or the character immediately before the insertion point is
deleted. When the primary line direction is right-to-left, the character to the right of the
insertion point is deleted. When the primary line direction is left-to-right, the character to
the left of the insertion point is deleted.

TextEdit Reference 2-81

SEE ALSO

TESetText

CHAPTER 2

TextEdit

When the user deletes text up to the beginning of a set of character attributes, TEKey
saves the attributes in the null scrap’s style scrap record. The attributes are saved
temporarily to be applied to characters inserted after the deletion. As soon as the user
clicks in another area of the text, TEKey removes the attributes. TEKey redraws the text
as necessary.

Call TEKey every time the Event Manager function WaitNextEvent reports a keyboard
event that your application determines should be handled by TextEdit.

Because TEKey inserts every character passed in the key parameter, your application
must filter all characters which aren’t actual text, such as keys typed in conjunction with
the Command key.

For a description of the WaitNextEvent function, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

DESCRIPTION

2-82

The TESetText procedure incorporates a copy of the specified text into the designated
edit record.

PROCEDURE TESetText (text: Ptr; length: LongInt; hTE: TEHandle) ;

text A pointer to the text to be copied and incorporated.
length The number of characters in the text to be incorporated.

hTE A handle to the edit record into which the text is to be copied.

The TESetText procedure copies the specified text into the existing hText handle of the
edit record, resizing the buffer, if necessary; it doesn’t bring in the original text. The
copied text is wrapped to the destination rectangle, and its 1ineStarts and nLines
fields are calculated accordingly. The selection range is set to an insertion point at the end
of the incorporated text. The TESet Text procedure does not display the copied text on
the screen. To do this, call TEUpdate.

TextEdit Reference

TEGetText

CHAPTER 2

TextEdit

DESCRIPTION

The TEGetText function returns a handle to the text of the specified edit record.
FUNCTION TEGetText (hTE: TEHandle) : CharsHandle;

hTE Ahandle to the edit record containing the text whose handle you want
returned. You pass this handle as an input parameter.

CharsHandle
A handle to the text of the edit record.

The TEGetText function doesn’t make a copy of the text. Rather, it returns the handle to
the text which is stored as a packed array of characters. (This handle belongs to TextEdit;
your application must not destroy it.) The teLength field of the edit record contains the
length of the text whose handle is returned.

The handle of type CharsHandle that is returned by TEGet Text corresponds to the
hText field of the edit record, but the data type is defined as follows:

TYPE CharsHandle = “CharsPtr;
CharsPtr “Chars;
Chars PACKED ARRAY[0..32000] OF CHAR;

TESetStyleHandle

DESCRIPTION

The TESetStyleHandle procedure sets an edit record’s style handle, which is stored in
the txFont and txFace fields.

PROCEDURE TESetStyleHandle (theHandle: TEStyleHandle;
hTE: TEHandle) ;

theHandle The style handle to be set in the combined txFont and txFace fields of
the specified edit record.

hTE A handle to the edit record.

The TESetStyleHandle procedure has no effect on monostyled edit records.

Your application should always use TESetStyleHandle rather than manipulate the
fields of the edit record directly.

TextEdit Reference 2-83

CHAPTER 2

TextEdit

TEGetStyleHandle

DESCRIPTION

The TEGetStyleHandle function returns the style handle stored in the designated
edit record’s txFont and txFace fields. The style handle points to the associated
style record.

FUNCTION TEGetStyleHandle (hTE: TEHandle): TEStyleHandle;

hTE A handle to the multistyled edit record containing the style handle to
be returned.

The TEGetStyleHandle function returns a handle to the style record (of type
TEStyleRec), not a copy of it. Because only multistyled edit records have style records,
TEGetStyleHandle returns NIL when used with a monostyled edit record. To ensure
future compatibility, your application should always use this function rather than
manipulate the fields of the edit record directly.

Setting the Caret and Selection Range

TEIdle

Your application can call TEId1le to blink a caret at an insertion point during idle
processing, the TEC11ick procedure to control the placement and highlighting of the text
selection range in response to mouse-down events generated when a user clicks the
mouse button, and the TESetSelect procedure to set the text selection range to be
edited next or denote the insertion point. This section describes these routines.

DESCRIPTION

2-84

When called repeatedly, the TEId1e procedure displays a blinking caret at the insertion
point, if any exists, in the text of the specified edit record of an active window.

PROCEDURE TEIdle (hTE: TEHandle) ;

hTE A handle to the edit record.

You need to call TEId1e only when the window containing the text is active; the caret is
blinked only then. TextEdit observes a minimum blink interval, initially set to 32 ticks.
No matter how often you call TEId1le, the time between blinks is never less than the
minimum interval. (The user can adjust the minimum interval setting with the General
Controls control panel.)

TextEdit Reference

TEClick

CHAPTER 2

TextEdit

To maintain a constant frequency of blinking, you need to call TEId1e at least once each
time through your main event loop. Call it more than once if your application does an
unusually large amount of processing each time through the loop.

Call the Event Manager’s Get CaretTime function to get the blink rate. (See the chapter
“Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.)

DESCRIPTION

SEE ALSO

The TEC1ick procedure controls placement and highlighting of the selection range as
determined by mouse events.

PROCEDURE TEClick (pt: Point; extend: Boolean; hTE: TEHandle) ;

pt The mouse location in local coordinates at the time the mouse button was
pressed, obtainable from the event record (in global coordinates).

extend A flag denoting the state of the Shift key at the time of the click as
indicated by the Event Manager. If the Shift key was held down at the
time of the click to extend the selection, pass a value of TRUE.

hTE Ahandle to the edit record whose text is displayed in the view rectangle
where the click occurred.

Call TEC1ick whenever a mouse-down event occurs in the view rectangle of the edit
record and the window associated with that edit record is active. The TEC1ick
procedure keeps control until the mouse button is released. Use the QuickDraw
procedure GlobalToLocal to convert the global coordinates of the mouse location
given in the event record to the local coordinate system for pt.

The TEC1ick procedure removes highlighting of the old selection range unless the
selection range is being extended. If the mouse moves, meaning that a drag is occurring,
TEC1lick expands or shortens the selection range accordingly a character at a time. In the
case of a double-click, the word where the cursor is positioned becomes the

selection range.

For more information about the GlobalToLocal procedure, see the QuickDraw
chapters in Inside Macintosh: Imaging.

TextEdit Reference 2-85

CHAPTER 2

TextEdit

TESetSelect

DESCRIPTION

The TESetSelect procedure sets the selection range within the text of the specified
edit record.

PROCEDURE TESetSelect (selStart, selEnd: LongInt; hTE: TEHandle) ;

selstart The byte offset at the start of the text selection range.
selEnd The byte offset at the end of the text selection range.
hTE Ahandle to the edit record.

The TESetSelect procedure removes highlighting of the old selection range and
highlights the new one. If selStart equals selEnd, the new selection range is an
insertion point, and a caret is displayed. If se1End is anywhere beyond the last character
of the text, TESetSelect uses the first position past the last character. The selEnd and
selStart fields can range from 0 to 32767.

SPECIAL CONSIDERATIONS

When only the Roman script system is used, the selection range is always displayed and
highlighted as a continuous range of text. However, when one or more script systems
requiring mixed-directional display of text are installed, a continuous sequence of
characters in memory may appear as a discontinuous selection when displayed.

Displaying and Scrolling Text

2-86

The routines that this section describes let you control how text is displayed.
TESetAlignment lets you specify whether text is to be right aligned, left aligned, or
centered. TEUpdate draws the text, updating the text editing window. TETextBox lets
you draw static text in a box, such as a dialog box, without requiring that you first create
an edit record. TECalText recalculates line breaks. TEGetHeight returns the height of
all the lines of text between two lines. TEScroll scrolls the text by the amount you
specify. TEPinScroll scrolls the text, automatically stopping when it scrolls the last line
into view. TEAutoView lets you turn automatic scrolling on or off. TESelView
automatically scrolls the text into view, if automatic scrolling is turned on through
TEAutoView.

TextEdit Reference

CHAPTER 2

TextEdit

TESetAlignment

DESCRIPTION

SEE ALSO

The TESetAlignment procedure sets the alignment of the specified text in an edit
record so that it is centered, right aligned, or left aligned, or aligned according to the
line direction.

PROCEDURE TESetAlignment (align: Integer; hTE: TEHandle) ;

align The alignment for the specified text.
hTE Ahandle to the edit record containing the text.

You can use the following constants to specify the text alignment through the
align parameter.

Constant Value Description

teFlushDefault 0 Align according to primary line direction
teCenter 1 Centered for all scripts

teFlushRight -1 Right aligned for all scripts
teFlushLeft -2 Left aligned for all scripts

For compatibility, the previous names of these constants are still supported. They are
tedJustLeft, teJustCenter, teJustRight, and teForceLeft.

The default value of the just field of the edit record is teFlushDefault. This means
that text alignment is based on the primary line direction which is set by default
according to the system script.

For languages that are read from right to left, text is right aligned by default. For
languages that are read from left to right, text is left aligned by default. If you change the
alignment, call the InvalRect procedure after TESetAlignment to redraw the text
with the new alignment.

TextEdit does not support justified alignment. To draw justified text, use the QuickDraw
Text routines.

For more information about the InvalRect procedure, see the chapter “Window
Manager” in Inside Macintosh: Macintosh Toolbox Essentials. For more information about
drawing justified text, see the chapter “QuickDraw Text” in this book.

TextEdit Reference 2-87

TEUpdate

CHAPTER 2

TextEdit

DESCRIPTION

SEE ALSO

TETextBox

The TEUpdate procedure draws the specified text within a given update rectangle.
PROCEDURE TEUpdate (rUpdate: Rect; hTE: TEHandle) ;

rUpdate The update rectangle, given in the coordinates of the current graphics
port, where the specified text is to be drawn.

hTE A handle to the edit record containing the text to be drawn.

Call TEUpdate every time the Event Manager function WaitNextEvent reports an
update event for a text editing window—after you call the Window Manager procedure
BeginUpdate, and before you call the EndUpdate procedure. You also need to erase the
update region with the EraseRect procedure. If you don’t the caret can sometimes
remain visible when the window is deactivated.

For a description of the WaitNextEvent function, see the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials. For more information about the
BeginUpdate and EndUpdate procedures, see the chapter “Window Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

2-88

The TETextBox procedure draws the indicated text in a given rectangle with the
specified alignment.

PROCEDURE TETextBox (text: Ptr; length: LongInt; box: Rect;
align: Integer) ;

text A pointer to the text to be drawn.
length The number of bytes comprising the text.

box The rectangle where the text is to be drawn. The rectangle is specified in
local coordinates (of the current graphics port) and must be at least as
wide as the first character drawn. (A good rule of thumb is to make the
rectangle at least 20 pixels wide.)

align The kind of alignment for the specified text.

TextEdit Reference

DESCRIPTION

TECalText

CHAPTER 2

TextEdit

The TETextBox procedure provides you with an easy way to display static text to a user.
It creates its own monostyled edit record, which it deletes when finished with it, so you
cannot edit the text it draws. The TETextBox procedure breaks a line of text correctly.
You can specify how text is aligned in the box using any of the following alignment
constants:

Constant Description

teFlushDefault Aligned according to primary line direction
teCenter Centered for all scripts

teFlushRight Right aligned for all scripts

teFlushLeft Left aligned for all scripts

DESCRIPTION

The TECalText procedure recalculates the beginnings of all lines of text in the specified
edit record.

PROCEDURE TECalText (hTE: TEHandle) ;

hTE A handle to the edit record whose text lines are to be recalculated.

The TECalText procedure updates elements of the 1ineStarts array in an edit record.
Call TECalText if you've changed the destination rectangle, the hText field, or any
other property of the edit record that pertains to line breaks and the number of characters
per line—for example, font, size, style, and so on.

ASSEMBLY-LANGUAGE INFORMATION

The low-memory global variable TERecal contains the address of the routine called by
TECalText to recalculate the line starts and set the first and last characters that need to
be redrawn. The TERecal default hook routine calls the Text Utilities
StyledLineBreak function. If you replace the default TERecal hook routine with a
customized version and your application supports non-Roman script systems, make sure
that your customized hook routine is script-aware. The registers on entry and exit for this
hook routine are:

Registers on entry
A3 Pointer to the locked edit record
D7 Change in the length of the record (word)

TextEdit Reference 2-89

CHAPTER 2

TextEdit

Registers on exit

D2 Line start of the line containing the first character to be redrawn (word)

D4 Position of last character to be redrawn (word)

TextEdit uses the low-memory global variable WordRedraw widely, but primarily for line
calculations and to determine how much of a line to redraw after the user typesin a
character. TextEdit sets the correct value for WordRedraw in TEInit based upon the
installed script systems. If a 2-byte script is installed, TEInit performs an OR operation
on WordRedraw with a 1; if a right-to-left script is installed, TEInit performs an OR
operation on WordRedraw with an $FF. The size of this global is one byte.

TextEdit interprets the final value of WordRedraw as follows:

Value Description
0 Redraws the character before the entered character.
1 Redraws the word before the entered character.
$FF Redraws the whole line.

TEGetHeight

DESCRIPTION

2-90

The TEGetHeight function returns the total height of all of the lines in the text between
and including the specified starting and ending lines.

FUNCTION TEGetHeight (endLine, startLine: LONGINT;
hTE: TEHandle) : INTEGER;

endLine The number of the last line of text whose height is to be included in the
total height. You can specify a value that is greater than or equal to 1 for
this parameter.

startLine The number of the first line of text whose height is to be included in the
total height. You can specify a value that is greater than or equal to 1 for
this parameter.

hTE A handle to the edit record containing the lines of text whose height is to
be returned.

For monostyled text, the TEGetHeight function uses the value of the edit record’s
lineHeight field. For multistyled text, it uses the line height element (LHElement) of
the line height table (LHTable). Note that TEGetHeight does not take into account
the height of any blank lines at the end of the text. You need to consider this

when scrolling text.

TextEdit Reference

CHAPTER 2

TextEdit

TEScroll
The TEScroll procedure scrolls the text within the view rectangle of the specified edit
record by the designated number of pixels.
PROCEDURE TEScroll (dh,dv: Integer; hTE: TEHandle) ;
dh The distance in pixels that the text is to be scrolled horizontally. A positive
value moves the text to the right; a negative value moves the text to
the left.
dv The distance in pixels that the text is to be scrolled vertically. A positive
value moves the text down; a negative value moves the text up.
hTE A handle to the edit record whose text is to be scrolled.
DESCRIPTION
The TEScroll procedure updates the text on the screen automatically to reflect the new
scroll position. The destination rectangle is offset by the amount scrolled. The TEScroll
and TEPinScroll procedures behave the same, except that TEPinScroll stops
scrolling when the last line of text is scrolled into view.
TEPinScroll
The TEPinScroll procedure scrolls the text within the view rectangle of the specified
edit record by the designated number of pixels. Scrolling stops when the last line of text
is scrolled into view.
PROCEDURE TEPinScroll (dh: Integer; dv: Integer; hTE: TEHandle) ;
dh The distance in pixels that the text is to be scrolled horizontally. A positive
value moves the text to the right; a negative value moves the text to
the left.
av The distance in pixels that the text is to be scrolled vertically. A positive
value moves the text down; a negative value moves the text up.
hTE A handle to the edit record whose text is to be scrolled.
DESCRIPTION

The TEPinScroll procedure updates the text on the screen automatically to reflect the
new scroll position, as does the TEScroll procedure. The destination rectangle is offset
by the amount scrolled. When the edit record is longer than the text it contains,
TEPinScroll displays up to the last line of text inclusive, and not beyond it.

TextEdit Reference 2-91

CHAPTER 2

TextEdit

TEAutoView

The TEAutoView procedure enables and disables automatic scrolling of the text in the
specified edit record.

PROCEDURE TEAutoView (fAuto: Boolean; hTE: TEHandle) ;

fAuto A flag indicating whether to enable or disable automatic scrolling. A value
of TRUE enables automatic scrolling. A value of FALSE disables automatic
scrolling.

hTE Ahandle to the edit record for which automatic scrolling is to be enabled
or disabled.

DESCRIPTION

The TEAutoView procedure does not actually scroll the text automatically: TESelView
does. However, when fAuto is set to FALSE, a call to TESelView has no effect.

If there is a scroll bar associated with the edit record, your application must manage
scrolling of it. You can replace the default click loop routine, which scrolls the text only,
with a customized version that also updates the scroll bar.

You can also enable or disable automatic scrolling for an edit record through the
teFAutoScroll feature of the TEFeatureFlag function.

SEE ALSO
For more information, see “TEFeatureFlag” on page 2-107.
TESelView
Once automatic scrolling has been enabled by a call to the TEAutoView procedure or
through the TEFeatureFlag function, the TESelView procedure ensures that the
selection range is visible and scrolls it into the view rectangle if necessary.
PROCEDURE TESelView (hTE: TEHandle);
hTE A handle to the edit record containing the text selection range.
DESCRIPTION

The top left part of the selection range is scrolled into view. If the text is displayed in a
rectangle that is not high enough, automatic scrolling can cause text to appear to flicker. If
automatic scrolling is disabled, TESelView has no effect.

2-92 TextEdit Reference

SEE ALSO

TEDelete

CHAPTER 2

TextEdit

For more information, see “TEFeatureFlag” on page 2-107.

Modifying the Text of an Edit Record

Although all of the TextEdit routines provide and support editing capabilities, the set of
routines described in this section implement the standard Macintosh editing features. An
application can use these routines to delete, insert, cut, copy, or paste multistyled or
monostyled text. The routines that you use for these purposes are TEDelete to remove a
selected range of text, TEInsert to insert text, TECut to remove the text, but save it to be
inserted, TECopy to copy the selected text with affecting the selection range, TEPaste to
replace the selected text with the text in the private scrap, without applying character
attribute information, TEStylePaste to replace the selected text with text and its
character attribute information from the desk scrap, and TEToScrap and TEFromScrap
to move monostyled text across applications or between applications and a desk
accessory.

DESCRIPTION

The TEDelete procedure removes the selected range of text from the text of the
designated edit record and redraws the remaining text as necessary.

PROCEDURE TEDelete (hTE: TEHandle) ;

hTE Ahandle to the edit record containing the text to be deleted.

When the TEDelete procedure deletes a selected range of text, it does not transfer the
text to either the private scrap or the Scrap Manager’s desk scrap.

For multistyled records, when you use TEDelete to delete a selected range of text, the
associated character attributes are saved in the null scrap to be applied to characters
entered after the text is deleted. When the user clicks in some other area of the text, the
character attributes are removed from the null scrap. You can use TEDelete to
implement the Clear command. The TEDelete procedure recalculates line starts and
line heights.

TextEdit Reference 2-93

TEInsert

CHAPTER 2

TextEdit

DESCRIPTION

TECut

The TEInsert procedure inserts the specified text immediately before the selection
range or the insertion point in the text of the designated edit record, redrawing the
text as necessary.

PROCEDURE TEIngert (text: Ptr; length: LongInt; hTE: TEHandle) ;

text A pointer to the text to be inserted.
length The number of characters to be inserted.

hTE A handle to the edit record containing the text buffer into which the new
text is to be inserted.

When you call the TEInsert procedure and a range of text is selected, TEInsert
doesn’t affect the selection range. The TEInsert procedure does not check for a 32 KB
limit, so your application must ensure that the inserted text does not exceed this text size
limit of 32 KB. The TEInsert procedure recalculates line starts and line heights to adjust
for the inserted text.

DESCRIPTION

2-94

The TECut procedure removes the current selection range from the text of the designated
edit record, redrawing the text as necessary.

PROCEDURE TECut (hTE: TEHandle) ;

hTE Ahandle to the edit record containing the text to be cut.

For monostyled text, the TECut procedure writes the cut text to the private scrap.

For multistyled text, TECut writes the cut text to the private scrap and its character
attributes to the style scrap; it also writes both to the Scrap Manager’s desk scrap. For
multistyled text, the TECut procedure removes the character attributes from the style
record’s style table when the text is cut.

For both monostyled and multistyled text, if the selection range is an insertion point,
TextEdit deletes everything from the private scrap. When the selection range is an
insertion point and the text is multistyled, TECut has no effect on the style scrap or the
Scrap Manager’s desk scrap.

TextEdit Reference

SEE ALSO

TECopy

CHAPTER 2

TextEdit

For more information about the desk scrap, see the chapter “Scrap Manager” in
Inside Macintosh: More Macintosh Toolbox.

DESCRIPTION

SEE ALSO

TEPaste

The TECopy procedure copies the text selection range from the edit record, leaving the
selection range intact.

PROCEDURE TECopy (hTE: TEHandle);

hTE A handle to the edit record containing the text to be copied.

The TECopy procedure copies the text to the private scrap. For text of a monostyled edit
record, the text is written to the private scrap only. For text of a multistyled edit record,
the text is written to the TextEdit private scrap, the character attribute information is
written to the TextEdit style scrap, and both are written to the Scrap Manager’s desk
scrap. Anything previously in the private scrap is deleted before the copied text is written
to it.

For both multistyled and monostyled text, if the selection range is an insertion point,
TECopy empties the TextEdit private scrap. When the selection range is an insertion
point and the text is multistyled, TECopy has no effect on the null scrap, the style scrap,
or the Scrap Manager’s desk scrap.

For more information about the desk scrap, see the chapter “Scrap Manager” in
Inside Macintosh: More Macintosh Toolbox.

The TEPaste procedure replaces the edit record’s selected text with the contents of the
private scrap and leaves an insertion point after the inserted text. If the selection range is
an insertion point, TEPaste inserts the contents of the private scrap there.

PROCEDURE TEPaste (hTE: TEHandle) ;

hTE A handle to the edit record into which the text is to be pasted.

TextEdit Reference 2-95

DESCRIPTION

CHAPTER 2

TextEdit

When you call TEPaste, after it pastes the text from the private scrap, it redraws all

of the text as necessary. If the private scrap is empty, TEPaste deletes the selection range.
If you call TEPaste for a multistyled edit record, it pastes only the text in the private
scrap. In this case, TEPaste ignores any associated character attribute information stored
in the style scrap; instead, it applies the character attributes of the first character of the
selection range being replaced to the text. If the selection range is an insertion point,
TEPaste applies the character attributes of the character preceding

the insertion point.

TEStylePaste

DESCRIPTION

2-96

The TEStylePaste procedure pastes text and its associated character attribute
information from the desk scrap into the edit record’s text at the insertion point—if the
current selection range is an insertion point—or it replaces the current selection range.

PROCEDURE TEStylePaste (hTE: TEHandle) ;

hTE A handle to the edit record into which the text is to be pasted.

When you call TEStylePaste and there is no character attribute information associated
with text in the desk scrap, TEStylePaste first checks the null scrap. If the null scrap
contains character attribute information, this is used. If the null scrap is empty,
TEStylePaste gives the text the same attributes as those of the first character of

the replaced selection range or that of the preceding character if the selection is an
insertion point.

For a monostyled edit record, TEStylePaste pastes the text only; there is no associated
character attribute information because all the text uses the same attributes.

TextEdit Reference

CHAPTER 2

TextEdit

TEToScrap

The TEToScrap function copies the contents of the TextEdit private scrap to the
desk scrap.

FUNCTION TEToScrap: OSErr;

DESCRIPTION

You use the TEToScrap function to move monostyled text across applications or
between an application and a desk accessory. Call the Scrap Manager function
ZeroScrap to initialize the desk scrap or clear its contents before calling TEToScrap.

ASSEMBLY-LANGUAGE INFORMATION

Copy the contents of the private scrap to the desk scrap by calling the Scrap Manager
function PutScrap; you can get the values you need from the global variables
TEScrpHandle and TEScrpLength

RESULT CODES

noErr 0 No error
noScrapErr -100 Desk scrap isn’t initialized

SEE ALSO

For more information about the Put Scrap function, the ZeroScrap function, and the
desk scrap, see the chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox.

TEFromScrap

The TEFromScrap function copies the contents of the desk scrap to the TextEdit
private scrap.

FUNCTION TEFromScrap: OSErr;

DESCRIPTION

You use this function to move monostyled text across applications or between an
application and a desk accessory.

TextEdit Reference 2-97

CHAPTER 2

TextEdit

ASSEMBLY-LANGUAGE INFORMATION

You can store a handle to the desk scrap in the global variable TEScrpHandle and the
size of the desk scrap in the global variable TEScrpLength; get the desk scrap’s handle
and size by calling the Scrap Manager’s InfoScrap function.

RESULT CODE

noErr 0 No error

SEE ALSO

For more information about the InfoScrap function and the desk scrap, see the chapter
“Scrap Manager” in Inside Macintosh: More Macintosh Toolbox.

Managing the TextEdit Private Scrap

This section describes the routines that you use to manage the private scrap. You use the
TEScrapHandle function get a handle to the private scrap, the TEGet ScrapLength
function to determine its size, and the TESet ScrapLength procedure to set its size.

TEScrapHandle

The TEScrapHandle function returns a handle to the TextEdit private scrap.

FUNCTION TEScrapHandle: Handle;

ASSEMBLY-LANGUAGE INFORMATION
You can get the handle to the private scrap from the global variable TEScrpHandle.

TEGetScrapLength

The TEGetScrapLength function returns the size of the TextEdit private scrap in bytes.

FUNCTION TEGetScrapLength: LongInt;

ASSEMBLY-LANGUAGE INFORMATION

You can get the size of the private scrap in bytes from the global
variable TEScrpLength.

2-98 TextEdit Reference

CHAPTER 2

TextEdit

TESetScrapLength

The TESetScrapLength procedure sets the size of the TextEdit private scrap
to the specified number of bytes.

PROCEDURE TESetScrapLength (length: LongInt) ;

length The size of the private scrap in bytes.

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable TEScrpLength to the size of the private scrap.

Checking, Setting, and Replacing Styles

TESetStyle

The routines described in this section let you manipulate the character attribute
information associated with a range of text. You can use the following routines to set,
replace, or copy character attribute information, or to check aspects of the text’s character
attributes. These routines are TESetStyle, TEReplaceStyle, TEContinuousStyle,
TEStylelInsert, TEGetStyleScrapHandle, TEUseStyleScrap, and
TENumStyles.

Note

In the original Inside Macintosh documentation the term style was used to
refer to the text font, size, style (face), and color. In this chapter the term
character attributes is used instead. This is so that the term style can be
used consistently throughout all of the documentation to refer to the
following text style attributes: bold, italic, underline, outline, condense,
extend, and shadow. In the past, the term face, which is now obsolete,
was used to refer to these attributes instead of style.

The TESetStyle procedure sets new character attributes for the current selection range
in the specified edit record.

PROCEDURE TESetStyle (mode: Integer; newStyle: TextStyle;
redraw: Boolean; hTE: TEHandle) ;

mode A selector that specifies which character attributes are to be changed. The
value for mode can be any additive combination of the mode constants for
font, style, type size, color, and so forth.

newStyle Arecord of type TextStyle that specifies the new attributes to be set.
This record contains the character attributes to be applied to the current
selection range based on the value of mode.

TextEdit Reference 2-99

DESCRIPTION

2-100

CHAPTER 2

TextEdit

redraw A flag that specifies whether or not TextEdit should immediately redraw
the affected text to reflect the new character attribute changes. A value of
TRUE causes the text to be redrawn immediately. Line breaks, line heights,
and line ascents are recalculated. A value of FALSE delays redrawing until
another event forces the update.

hTE Ahandle to the multistyled edit record containing the selected text.

The TESetStyle procedure has no effect on a monostyled record. You can use any
combination of the following constants to specify a value for the mode parameter. The
value of mode specifies which existing character attributes are to be changed to the new
character attributes specified by newStyle.

Constant Value Description

doFont 1 Sets the font family ID

doFace 2 Sets the character style

doSize 4 Sets the type size

doColor 8 Sets the color

doAll 15 Sets all attributes

addsize 16 Increases or decreases the current type size
doToggle 32 Modifies the mode

If doToggle is specified along with doFace and if an attribute specified in the given
newStyle parameter exists across the entire selected range of text, then TESetStyle
removes that attribute. Otherwise, if the attribute doesn’t exist across the entire selection
range, all of the selected text is set to include that character attribute.

If the redraw parameter is set to TRUE, TextEdit redraws the current selection range
using the new character attributes, recalculating line breaks, line heights, and line
ascents. If the redraw parameter is set to FALSE, TextEdit does not redraw the text or
recalculate line breaks, line heights, and line ascents. Consequently, when you call a
routine that uses any of this information, such as TEGetHeight (which returns a total
height between two specified lines), it does not reflect the new character attributes set
with TESetStyle. Instead, the routine uses the information that was available before
TESetStyle was called. To update this information, call the TECalText procedure. (See
“TECalText” on page 2-89 for more information.) To be certain that the new information
is always reflected, call the TESetStyle procedure with the redraw parameter set to
TRUE.

If you call the TESetStyle routine when the value of the selStart field of an edit
record equals the value of the selEnd field (specifying an insertion point), TextEdit
stores the input character attributes in the null scrap record pointed to by the null
style handle.

TextEdit Reference

CHAPTER 2

TextEdit

TEReplaceStyle

DESCRIPTION

The TEReplaceStyle procedure replaces any character attributes in the current
selection range that match the specified existing character attributes with the specified
new character attributes.

PROCEDURE TEReplaceStyle (mode: INTEGER;
oldStyle,newStyle: TextStyle;
redraw: BOOLEAN; hTE: TEHandle) ;

mode A selector that specifies which attributes to replace. It corresponds to any
additive combination of the mode constants for font, character style, type
size, color, and so forth.

oldstyle Apointer to a text style record that specifies the current character
attributes to search for in the selected text.

newStyle A pointer to a text style record that specifies the new attributes to be set.
This record contains the character attributes to be applied to the current
selection range based on the value of mode.

redraw A flag that specifies whether or not TextEdit should immediately redraw
the text to reflect the attribute changes. A value of FALSE delays
redrawing until another event forces the update. A value of TRUE causes
the text to be redrawn immediately using the new character attributes.

hTE A handle to the multistyled edit record containing the text selection whose
character attributes are to be changed.

The TEReplaceStyle procedure replaces any attribute in the current selection range
that matches the attribute specified by o1dstyle with that given by newStyle. Only
the character attributes specified by mode are affected.

Attribute changes are made directly to the style elements (STE1lement) within the style
table itself (TEStyleTable). If you specify the value doAl1 for the mode parameter,
newStyle replaces o1dStyle outright. Possible values for the mode parameter are
defined by the following constants. The TEReplaceStyle procedure has no effect on a
monostyled edit record.

Constant Value Description

doFont 1 Sets the font family ID

doFace 2 Sets the character style

doSize 4 Sets the type size

doColor 8 Sets the color

doAll 15 Sets all attributes

addsize 16 Increases or decreases the current type size

TextEdit Reference 2-101

CHAPTER 2

TextEdit

TEContinuousStyle

DESCRIPTION

2-102

The TEContinuousStyle function determines whether a given character attribute is
continuous over the current selection range.

FUNCTION TEContinuousStyle (VAR mode: Integer;
VAR aStyle: TextStyle;
hTE: TEHandle) : Boolean;

mode On input, a selector specifying the attributes to be checked. On output,
mode identifies only those attributes determined to be continuous over the
selection range.

aStyle On input, a text style record. On output, this record contains the values for
the mode attributes determined to be continuous over the selection.

hTE Ahandle to the edit record containing the selected text whose attributes
are to be checked.

This function does not modify the text selection. Possible values for the mode parameter
are defined by the following constants.

Constant Value Description

doFont 1 Specifies the font family ID
doFace 2 Specifies the character style
doSize 4 Specifies the type size
doColor 8 Specifies the color

doAll 15 Specifies all the attributes

The TEContinuou