
Safari Web Content
Guide

Contents

Developing Web Content for Safari 8
At a Glance 8

Making It Work 8
Enhancing the User Experience 9

How to Use This Document 10
Prerequisites 10
See Also 10

Creating Compatible Web Content 12
Use Standards 12
Follow Good Web Design Practices 13
Use Security Features 14
Avoid Framesets 14
Use Columns and Blocks 15
Know iOS Resource Limits 17

Checking the Size of Webpages 18
Use the Select Element 19
Use Supported JavaScript Windows and Dialogs 19
Use Supported Content Types and iOS Features 20
Use Canvas for Vector Graphics and Animation 23
Use the HTML5 Audio and Video Elements 23
Use Supported iOS Rich Media MIME Types 23
Don’t Use Unsupported iOS Technologies 24

Optimizing Web Content 27
Using Conditional CSS 27
Using the Safari User Agent String 30

Configuring the Viewport 32
Layout and Metrics on iPhone and iPod touch 33
What Is the Viewport? 33

Safari on the Desktop Viewport 35
Safari on iOS Viewport 35
Examples of Viewports on iOS 36

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

2

Default Viewport Settings 40
Using the Viewport Meta Tag 40
Changing the Viewport Width and Height 41
How Safari Infers the Width, Height, and Initial Scale 44
Viewport Settings for Web Applications 49

Customizing Style Sheets 52
Leveraging CSS3 Properties 52
Adjusting the Text Size 52
Highlighting Elements 54

Designing Forms 56
Laying Out Forms 56
Customizing Form Controls 58
Configuring Automatic Correction and Capitalization 60

Handling Events 62
One-Finger Events 63
Two-Finger Events 66
Form and Document Events 67
Making Elements Clickable 67
Handling Multi-Touch Events 68
Handling Gesture Events 71
Preventing Default Behavior 73
Handling Orientation Events 73
Supported Events 75

Promoting Apps with Smart App Banners 78
Implementing a Smart App Banner on Your Website 79
Providing Navigational Context to Your App 79

Configuring Web Applications 81
Specifying a Webpage Icon for Web Clip 81
Specifying a Startup Image 83
Hiding Safari User Interface Components 83
Changing the Status Bar Appearance 83
Linking to Other Native Apps 84

Creating Video 85
Sizing Movies Appropriately 86

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

3

Contents

Don’t Let the Bit Rate Stall Your Movie 86
Using Supported Movie Standards 86
Encoding Video for Wi-Fi, 3G, and EDGE 87
Creating a Reference Movie 88
Creating a Poster Image for Movies 88
Configuring Your Server 89

Storing Data on the Client 91
Creating a Manifest File 91
Declaring a Manifest File 92
Updating the Cache 92
Handling Cache Events 93

Getting Geographic Locations 95
Geographic Location Classes 95
Getting the Current Location 95
Tracking the Current Location 96
Handling Location Errors 97

Debugging Web Content on iOS 98
Enable Web Inspector on iOS 98
Inspect From Your Mac 100

Inspecting Content in a Web View 101
Use JavaScript to Interact with Your Device 102

HTML Basics 104
What Is HTML? 104
Basic HTML Structure 104
Creating Effective HTML Content 106
Using Other HTML Features 109

CSS Basics 111
What Is CSS? 111
Inline CSS 111
Head-Embedded CSS 112
External CSS 114

Document Revision History 116

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

4

Contents

Figures, Tables, and Listings

Creating Compatible Web Content 12
Figure 1-1 Comparison of frameset on the desktop and iOS 15
Figure 1-2 Comparison of no columns vs. columns 16
Figure 1-3 Comparison of the select element on the desktop and iOS 19
Figure 1-4 Confirm dialog 20
Figure 1-5 Playing video on iOS 21
Figure 1-6 Viewing PDF documents on iOS 22
Table 1-1 Supported iOS rich media MIME types 23

Optimizing Web Content 27
Figure 2-1 Small device rendering 28
Figure 2-2 Desktop rendering 28
Listing 2-1 Screen-specific style sheet 29
Listing 2-2 Print-specific style sheet 29
Listing 2-3 iPhone running on iOS 2.0 user agent string 30
Listing 2-4 iPod touch running iOS 1.1.3 user agent string 31
Listing 2-5 iPad running iOS 3.2 user agent string 31
Listing 2-6 iPhone running iOS 1.0 user agent string 31

Configuring the Viewport 32
Figure 3-1 Layout and metrics in portrait orientation 33
Figure 3-2 Differences between Safari on iOS and Safari on the desktop 34
Figure 3-3 Safari on desktop viewport 35
Figure 3-4 Viewport with default settings 36
Figure 3-5 Viewport with width set to 320 37
Figure 3-6 Viewport with width set to 320 and scale set to 150% 38
Figure 3-7 Viewport with width set to 320 and scale set to 50% 39
Figure 3-8 Viewport with arbitrary user scale 39
Figure 3-9 Default settings work well for most webpages 40
Figure 3-10 Comparison of 320 and 980 viewport widths 42
Figure 3-11 Webpage is too narrow for default settings 43
Figure 3-12 Web application page is too small for default settings 44
Figure 3-13 Default width and initial scale 45
Figure 3-14 Default width with initial scale set to 1.0 46

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

5

Figure 3-15 Width set to 320 with default initial scale 47
Figure 3-16 Width set to 200 with default initial scale 48
Figure 3-17 Width set to 980 and initial scale set to 1.0 49
Figure 3-18 Not specifying viewport properties 50
Figure 3-19 Width set to device-width pixels 51

Customizing Style Sheets 52
Figure 4-1 Comparison of text adjustment settings 53
Figure 4-2 Differences between default and custom highlighting 55
Listing 4-1 Setting the text size adjustment property 54
Listing 4-2 Changing the tap highlight color 54

Designing Forms 56
Figure 5-1 Form metrics when the keyboard is displayed 57
Figure 5-2 A custom checkbox 58
Figure 5-3 A custom text field 59
Figure 5-4 A custom select element 60
Table 5-1 Form metrics 57
Listing 5-1 Creating a custom checkbox with CSS 58
Listing 5-2 Creating a custom text field with CSS 59
Listing 5-3 Creating a custom select control with CSS 60

Handling Events 62
Figure 6-1 The panning gesture 63
Figure 6-2 The touch and hold gesture 64
Figure 6-3 The double-tap gesture 65
Figure 6-4 One-finger gesture emulating a mouse 66
Figure 6-5 The pinch open gesture 66
Figure 6-6 Two-finger panning gesture 67
Table 6-1 Types of events 76
Listing 6-1 A menu using a mouseover handler 67
Listing 6-2 Adding an onclick handler 68
Listing 6-3 Displaying the orientation 74

Promoting Apps with Smart App Banners 78
Figure 7-1 A Smart App Banner of the Apple Store app 78
Listing 7-1 Routing the user to the correct view controller 80

Creating Video 85
Figure 9-1 Export movie panel 87

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

6

Figures, Tables, and Listings

Figure 9-2 Reference movie components 88
Table 9-1 File name extensions for MIME types 89

Storing Data on the Client 91
Listing 10-1 Sample manifest file 92

Debugging Web Content on iOS 98
Figure 12-1 Inspecting a web page from the Develop menu 100
Figure 12-2 Web Inspector 100
Figure 12-3 Inspecting a native app’s web view from the Develop menu 101
Figure 12-4 Observing the value of document.title in the debug console 102
Figure 12-5 Alert dialog triggered from the debug console 103

HTML Basics 104
Listing A-1 Basic HTML document 104
Listing A-2 Adding a paragraph 107
Listing A-3 Adding a heading 107
Listing A-4 Creating a hyperlink 107
Listing A-5 Adding an image 108
Listing A-6 Creating a table 109

CSS Basics 111
Listing B-1 The styles.css file 114

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

7

Figures, Tables, and Listings

Safari is a full-featured Web browser for Mac OS, Windows, and iOS. You don't need to add any Safari-specific
tweaks to make your website work with Safari or to make your website work on iOS-based devices. If you
design your website using W3C standards for HTML, CSS, and JavaScript, and don't rely on third-party plug-ins,
users can view and interact with your website using Safari on all supported platforms.

Making websites work with Safari is just a first step, however. It should be your goal to optimize websites to
create the best experience for all users, including people using Safari on handheld devices with touch screens.
Use CSS to change the layout of your website in portrait or landscape modes, for example; add touch and
gesture support; animate changes in CSS properties for Safari users, and so on.

At a Glance
There are three main areas to focus on when creating web content for Safari:

 ● Make sure your website is compatible with Safari.

 ● Enhance the user experience in Safari, particularly on mobile devices.

 ● Make the best use of dynamically changing network bandwidth when delivering audio and video.

Making It Work
Safari has an array of built-in tools for quickly spotting incompatibilities and debugging problems. If you have
a website up and running, and are getting complaints that the site doesn't work with Safari, it is usually because
of one of the following problems:

 ● The site uses Internet Explorer extensions that other browsers don't support.

 ● The site includes media compressed in a format that Safari doesn't support.

 ● The site relies on plug-ins to handle audio, video, or animation.

Use the Error Console to immediately identify and locate any unsupported HTML, CSS, or JavaScript, making
it easy to correct.

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

8

Developing Web Content for Safari

There are Safari-compatible media formats and embedding techniques for every job. Safari supports audio
media in AAC, MP3, AIFF, and WAVE formats on all platforms. Safari supports video media encoded using H.264
compression, commonly used in MPEG-4 format, on all platforms. Handheld devices support a somewhat more
limited set of MPEG-4 profiles than desktop devices.

Safari on the desktop supports plug-ins. There are Safari-compatible versions of all common plug-ins, including
QuickTime, Flash, and SilverLight. Safari on iOS does not support plug-ins. To make your website accessible
using handheld devices, do not rely on plug-ins to display content. Use the HTML5 <audio> and <video>
tags to embed audio and video files in supported formats, with fallback to a plug-in for older browsers on the
desktop. Use CSS or Canvas to embed animation and create special effects.

Relevant Chapter: See “Creating Compatible Web Content” (page 12) for ways to quickly test for,
identify, and correct problems.

Enhancing the User Experience
Enhance the user's experience by providing different page layouts for handheld and desktop devices using
simple CSS and JavaScript detection and CSS layout. You can also detect portrait and landscape orientation
on handheld devices and automatically switch between layouts using elegant CSS and JavaScript syntax.

It's easy to add touch and gesture support by adding a few event handlers to your site. Make navigation easier
for touchscreen users by making links large enough to reliably hit with a finger, and by surrounding links with
enough whitespace to avoid accidentally hitting the wrong link. Leave a blank gutter or border on the page
as well, so the user can easily scroll the screen with a finger without touching a link.

iOS-specific enhancements can turn your website into a web app that behaves like a native iOS app. Optimize
websites for iOS by providing an icon for the user's home screen, by making your website into a fullscreen web
app, and by including links that dial a phone number, open the Maps app, or open other built-in iOS apps.

Relevant Chapters: See “Configuring the Viewport” (page 32) and “Configuring Web
Applications” (page 81) for tips and guidance.

Use caching and client-side storage to make your website work even when the user is offline or the user’s
device loses network connectivity. Safari supports HTML5 client-side storage and caching, “lazy” caching for
offline reading, and techniques for allowing web-based games to work offline.

Developing Web Content for Safari
At a Glance

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

9

Relevant Chapter: See “Storing Data on the Client” (page 91) for more information.

How to Use This Document
You can read this document from start to finish, or you can jump to a specific chapter to accomplish a task.

If you are creating a new website and plan to support Safari and iOS devices, read the rest of the chapters in
order.

If you are modifying an existing website to work with Safari, read “Creating Compatible Web Content” (page
12).

If you are showcasing an app on your website, read “Promoting Apps with Smart App Banners” (page 78).

If you are using video on your website, read “Creating Video” (page 85).

If you are debugging web content on your iOS device, read “Debugging Web Content on iOS” (page 98).

Prerequisites
You need a solid understanding of HTML, familiarity with JavaScript, and a basic understanding of CSS in order
to make the best use of this document.

See Also
 ● Safari Developer Tools Guide—How to use Safari’s built-in tools for debugging and optimization, such as

the Error Console and the Web Inspector.

 ● Safari HTML5 Audio and Video Guide—How to embed audio and video without using plug-ins, or by using
a plug-in as a fallback.

 ● Safari HTML5 Canvas Guide—How to add sophisticated animation and interactive games to a website
without using plug-ins.

 ● Safari CSS Visual Effects Guide—How to enhance websites using WebKit extensions for masks, gradients,
reflections, CSS animation, and 3D transformations.

 ● Safari Client-Side Storage and Offline Applications Programming Guide—How to create websites that work
when the user is offline, or that contain HTML5 client-side databases.

Developing Web Content for Safari
How to Use This Document

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

10

 ● HTTP Live Streaming Overview—How to optimize network bandwidth for streaming audio and video from
a standard web server.

 ● Safari HTML Reference—HTML elements and attributes supported in Safari.

 ● Safari CSS Reference—CSS properties and classes supported in Safari.

 ● Safari DOM Additions Reference—Events and other DOM additions supported in Safari.

Developing Web Content for Safari
See Also

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

11

This chapter covers best practices in creating web content that is compatible with Safari on the desktop and
Safari on iOS. Many of these guidelines simply improve the reliability, performance, look, and user experience
of your webpages on both platforms. If your target is iOS, the first step is to get your web content working
well on the desktop. If your target is the desktop, with minimal modifications, you can get your web content
to look good and perform well on iOS too.

For example, you need to pay attention to the layout of your content and execution limits on iOS. If you use
conditional CSS, as recommended in “Optimizing Web Content” (page 27), your webpages optimized for iOS
still work in other browsers. Read the rest of this document for how to optimize your web content for Safari.

iOS Note: When designing your webpages, be aware of how Safari on iOS presents webpages to
the user and how the user interacts with your webpages using gestures to zoom, pan, and double-tap.
Read iOS Human Interface Guidelines for metrics and tips on designing user interfaces for iOS.

Use Standards
The first design rule is to use web standards. Standards-based web development techniques ensure the most
consistent presentation and functionality across all modern browsers, including Safari. A well-designed website
probably requires just a few refinements to look good and work well on Safari.

The WebKit engine, shared by Safari on the desktop and Safari on iOS, supports all the latest modern web
standards, including:

 ● HTML 4.01

 ● XHTML 1.0

 ● CSS 2.1 and partial CSS3

 ● ECMAScript 3 (JavaScript)

 ● DOM Level 2

 ● AJAX technologies, including XMLHttpRequest

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

12

Creating Compatible Web Content

The web is always evolving, and as it does, so does WebKit and Safari. You’ll want to keep informed of the
evolving standards emanating from the Web Hypertext Application Technology Working Group (WHATWG)
and World Wide Web Consortium (W3C) standards bodies. The WHATWG and W3C websites are a good place
to start learning more about these standards and the upcoming HTML5:

www.whatwg.org

www.w3.org

Refer to Safari reference documents, such as Safari HTML Reference and Safari CSS Reference , for availability
of features on specific platforms.

Follow Good Web Design Practices
You should follow well-established rules of good web design. This section covers a few basic rules that are
critical for Safari. Read Web Page Development: Best Practices for more general advice on designing webpages.

 ● Add a DOCTYPE declaration to your HTML files.

Preface your HTML files with a DOCTYPE declaration, which tells browsers which specification to parse
your webpage against. See “HTML Basics” (page 104) for how to do this.

 ● Separate your HTML, CSS, and JavaScript into different files.

Your webpages are more maintainable if you separate page content into distinct files for mark-up,
presentation, and interaction.

 ● Use well-structured HTML.

You increase cross-platform browser compatibility by running your HTML files through a validator. You
should fix common problems such as missing quotes, missing close tags, incorrect nesting, incorrect case,
and malformed doctype. See http://validator.w3.org or use the validator provided by your web development
tools.

 ● Be browser independent.

Avoid using the user agent string to check which browser is currently running. Instead, read Object Detection
to learn how to determine if a browser supports a particular object, property, or method, and read Detecting
WebKit with JavaScript to learn how to detect specific WebKit versions. Also use the W3C standard way
of accessing page objects—that is, use getElementByID("elementName"). Only as a last resort, use
the user agent string as described in “Using the Safari User Agent String” (page 30) to detect Safari on
iOS.

Read “HTML Basics” (page 104) and “CSS Basics” (page 111) for how to write structured HTML and add CSS to
existing HTML.

Creating Compatible Web Content
Follow Good Web Design Practices

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

13

http://www.whatwg.org
http://www.w3.org
http://developer.apple.com/internet/webcontent/bestwebdev.html
http://validator.w3.org
http://developer.apple.com/internet/webcontent/objectdetection.html
http://trac.webkit.org/projects/webkit/wiki/DetectingWebKit
http://trac.webkit.org/projects/webkit/wiki/DetectingWebKit

Use Security Features
Safari on all platforms uses the same SSL implementation to provide end-to-end security. The same encryption
that prevents listening on the wire is just as secure when used in a wireless situation, whether through Wi-Fi,
3G, or EDGE. Specifically, Safari supports:

 ● SSL 2, SSL 3, and TLS with many popular cipher suites

 ● RSA keys up to 4096

 ● HTTPS

iOS Note: Note that the Diffie-Hellman protocol, DSA keys, and self-signed certificates are not
available on iOS.

Avoid Framesets
In general, avoid using complicated framesets that rely on the ability to scroll individual frames because there
are no scroll bars on iOS.

On the desktop, frames in a frameset can be independently scrolled as shown on the left in Figure 1-1. On iOS,
scrollable frames in a frameset are expanded to fit their content and then a frame is scaled down to fit its region
as shown on the right in Figure 1-1. Scrollable full-width inline frames are expanded to fit their content, too.
All other scrollable inline frames can be panned using the two-finger gesture. See “Two-Finger Events” (page
66) for the events generated from the two-finger gesture.

Creating Compatible Web Content
Use Security Features

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

14

Because there are no scroll bars on the inline frames, this is not an optimal user experience for viewing web
content on iOS, so avoid using framesets. Instead use columns as described in “Use Columns and Blocks” (page
15).

Figure 1-1 Comparison of frameset on the desktop and iOS

Frameset on the desktop Frameset on iPhone

980 x 544 pixels

488 x 544 pixels 488 x 544 pixels

Use Columns and Blocks
To be compatible with iOS, use columns and blocks to lay out your webpage like many online newspapers.
This makes your webpage more readable and also works better with double-tapping on iOS.

Creating Compatible Web Content
Use Columns and Blocks

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

15

Text blocks that span the full width of the webpage are difficult to read on iOS as shown on the left in Figure
1-2. Columns not only break up the webpage, making it easy to read, as shown on the right in Figure 1-2, but
allow the user to easily double-tap objects on the page.

Figure 1-2 Comparison of no columns vs. columns

No columns Columns

When the user double-taps a webpage, Safari on iOS looks at the element that was double-tapped, and finds
the closest block (as identified by elements like <div>, , , and <table>) or image element. If the
found element is a block, Safari on iOS zooms the content to fit the screen width and then centers it. If it is an
image, Safari on iOS zooms to fit the image and then centers it. If the block or image is already zoomed in,
Safari on iOS zooms out.

Your webpage works well with double-tapping if you use columns and blocks. Read “CSS Basics” (page 111)
for how to add CSS to existing HTML.

Creating Compatible Web Content
Use Columns and Blocks

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

16

Know iOS Resource Limits
Your webpage performing well on the desktop is no guarantee that it will perform well on iOS. Keep in mind
that iOS uses EDGE (lower bandwidth, higher latency), 3G (higher bandwidth, higher latency), and Wi-Fi (higher
bandwidth, lower latency) to connect to the Internet. Therefore, you need to minimize the size of your webpage.
Including unused or unnecessary images, CSS, and JavaScript in your webpages adversely affects your site’s
performance on iOS.

Because of the memory available on iOS, there are limits on the number of resources it can process:

 ● The maximum size for decoded GIF, PNG, and TIFF images is 3 megapixels for devices with less than 256
MB RAM and 5 megapixels for devices with greater or equal than 256 MB RAM.

That is, ensure that width * height ≤ 3 * 1024 * 1024 for devices with less than 256 MB RAM.
Note that the decoded size is far larger than the encoded size of an image.

 ● The maximum decoded image size for JPEG is 32 megapixels using subsampling.

JPEG images can be up to 32 megapixels due to subsampling, which allows JPEG images to decode to a
size that has one sixteenth the number of pixels. JPEG images larger than 2 megapixels are
subsampled—that is, decoded to a reduced size. JPEG subsampling allows the user to view images from
the latest digital cameras.

 ● The maximum size for a canvas element is 3 megapixels for devices with less than 256 MB RAM and 5
megapixels for devices with greater or equal than 256 MB RAM.

The height and width of a canvas object is 150 x 300 pixels if not specified.

 ● JavaScript execution time is limited to 10 seconds for each top-level entry point.

If your script executes for more than 10 seconds, Safari on iOS stops executing the script at a random place
in your code, so unintended consequences may result.

This limit is imposed because JavaScript execution may cause the main thread to block, so when scripts
are running, the user is not able to interact with the webpage.

Read “Debugging Web Content on iOS” (page 98) for how to debug JavaScript on iOS.

 ● The maximum number of documents that can be open at once is eight on iPhone and nine on iPad.

Creating Compatible Web Content
Know iOS Resource Limits

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

17

iOS Note: In iOS 1.1.4 and earlier, the JavaScript execution time was limited to 5 seconds and the
size of allocations to 10 MB. Also, the limit on the size of canvas elements was the same as Safari on
the desktop.

In iOS 2.2.1 and earlier, the sum of all of the frames needs to be less than 2 megapixels—that is,
width * height * number of frames ≤ 2 * 1024 * 1024. In iOS 3.0 and later, the limit
only applies to one frame at a time.

You also need to size images appropriately. Don’t rely on browser scaling. For example, don’t put a 100 x 100
image in a 10 x 10 element. Tile small backgrounds images; don’t use large background images.

Checking the Size of Webpages
You can check the size of your webpages by using Safari’s Web Inspector as described in “Optimizing Download

Time” in Safari User Guide for Web Developers or by saving your webpage as a web archive. The total size of
the web archive is the size of the page and its associated resources. Follow these steps to create a web archive:

1. Choose File > Save As.

2. Enter the filename in the Save As text field.

3. Choose Web Archive from the Format pop-up menu.

4. Click Save.

On OS X, check the size of the web archive using either Finder or Terminal. Typically, pages under 30 MB work
fine on iOS.

Creating Compatible Web Content
Know iOS Resource Limits

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

18

Use the Select Element
If you use the select HTML element in your webpage, iOS displays a custom select control that is optimized
for selecting items in the list using a finger as the input device. On iOS, the user can flick to scroll the list and
tap to select an item from the list. Figure 1-3 compares the select element on the desktop with the select
element on iOS.

Figure 1-3 Comparison of the select element on the desktop and iOS

Select on the desktop Select on iPhone

Use Supported JavaScript Windows and Dialogs
Use windows and dialogs supported by Safari on iOS and avoid the others.

You can open a new window in JavaScript by invoking window.open(). Remember that the maximum number
of documents—hence, the maximum number of open windows—is eight on iOS.

Creating Compatible Web Content
Use the Select Element

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

19

Supported JavaScript dialog methods include alert, confirm, print, and prompt. If you use these methods,
Safari on iOS displays an attractive dialog that doesn’t obscure the webpage, as show in Figure 1-4.

Figure 1-4 Confirm dialog

iOS Note: Note that the showModalDialog method is not supported in Safari on iOS.

Use Supported Content Types and iOS Features
Be aware of the features you get for free in Safari on iOS by using supported content types and elements that
tailor the presentation of content for small handheld devices with touch screens. In particular, Safari on iOS
handles content types such as video and PDF files different from the desktop. Safari on iOS also has the ability
to preview content types and launch another application if it is available to display that type of document.
Following links such as phone numbers in your web content may launch applications too.

Creating Compatible Web Content
Use Supported Content Types and iOS Features

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

20

On iPhone and iPod touch, the video and audio is played back in fullscreen mode only. The video automatically
expands to the size of the screen and rotates when the user changes orientation, as shown in Figure 1-5. The
controls automatically hide when they are not in use. On iPad, the video and audio is played either inline in
the webpage or in fullscreen mode. Read “Creating Video” (page 85) for how to export video for iOS.

Figure 1-5 Playing video on iOS

Creating Compatible Web Content
Use Supported Content Types and iOS Features

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

21

PDF documents are easy to view using Safari on iOS and even easier to page through as shown in Figure 1-6.
PDF documents linked from web content are opened automatically. The page indicator keeps track of where
the user is in a document. And just as with video, the user can rotate iOS to view a PDF in landscape orientation.

Figure 1-6 Viewing PDF documents on iOS

Safari on iOS previews other content types like MS Office (Word, Excel and PowerPoint), iWork (Pages, Numbers,
and Keynote), and RTF documents. If another application registers for a content type that Safari on iOS previews,
then that application is used to open the document. For example, on iPad, Pages may be used to open Word
and Pages documents that are previewed in Safari on iOS. If another application registers for a content type
that Safari on iOS doesn’t support natively or preview, then Safari on iOS allows the document to be downloaded
and opened using that application.

iOS Note: Previews of RTF documents is available in iOS 3.2 and later. The ability to open a
downloaded file is available in iOS 3.2 and later.

When the user taps certain types of links, Safari on iOS may launch a native application to handle the link—for
example, Mail to compose an email message, Maps to get directions, and YouTube to view a video. If the user
taps a telephone number link on a phone device, a dialog appears asking whether the user wants to dial that
number. On the desktop, most of these links redirect to the respective website. ReadApple URL Scheme Reference
to learn more about using these types of links in your web content.

Creating Compatible Web Content
Use Supported Content Types and iOS Features

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

22

iOS Note: Note that Java and Flash content types are not supported. See “Don’t Use Unsupported
iOS Technologies” (page 24) for a complete list of unsupported technologies.

Use Canvas for Vector Graphics and Animation
You can use the same canvas object used by Dashboard widgets to implement sophisticated user interfaces
for web applications. The canvas object was introduced in Safari 2.0, is adopted by other browser engines, and
is part of the WHATWG specification. Read WebKit DOM Programming Topics to learn more about using the
canvas object.

Use the HTML5 Audio and Video Elements
You can use the HTML5 audio and video elements to add audio and video to your webpages. On smaller
devices like iPhone and iPad touch, the movie plays in full screen mode only and automatic playback is disabled
so a user action is required to initiate playback. On iPad, the video plays inline in the webpage. When the video
is played inline, you can create custom controls and receive media events—for example, pause and play
events—to enhance the user experience. Use the HTMLMediaElement class and its subclasses, described in
Safari DOM Additions Reference , to do this. Read Safari HTML5 Audio and Video Guide for more in-depth
information on the audio and video elements. Read “Creating Video” (page 85) for how to create media files
compatible with Safari.

Use Supported iOS Rich Media MIME Types
Table 1-1 lists the rich media MIME types supported by Safari on iOS. Files with these MIME types and filename
extensions can be played on iOS.

Table 1-1 Supported iOS rich media MIME types

ExtensionsDescriptionMIME type

3gp, 3gpp3GPP mediaaudio/3gpp

3g2, 3gp23GPP2 mediaaudio/3gpp2

aiff, aif, aifc, cddaAIFF audioaudio/aiff

audio/x-aiff

amrAMR audioaudio/amr

Creating Compatible Web Content
Use Canvas for Vector Graphics and Animation

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

23

ExtensionsDescriptionMIME type

mp3, swaMP3 audioaudio/mp3

audio/mpeg3

audio/x-mp3

audio/x-mpeg3

mp4MPEG-4 mediaaudio/mp4

mpeg, mpg, mp3, swaMPEG audioaudio/mpeg

audio/x-mpeg

wav, bwfWAVE audioaudio/wav

audio/x-wav

m4aAAC audioaudio/x-m4a

m4bAAC audio bookaudio/x-m4b

m4pAAC audio (protected)audio/x-m4p

3gp, 3gpp3GPP mediavideo/3gpp

3g2, 3gp23GPP2 mediavideo/3gpp2

mp4MPEG-4 mediavideo/mp4

mov, qt, mqvQuickTime Movievideo/quicktime

m4vVideovideo/x-m4v

Don’t Use Unsupported iOS Technologies
In general, Safari on iOS does not support any third-party plug-ins or features that require access to the file
system. The following web technologies are not supported on iOS:

 ● Modal dialogs

Don’t use window.showModalDialog() in JavaScript. Read “Use Supported JavaScript Windows and
Dialogs” (page 19) for a list of supported dialogs.

 ● Mouse-over events

The user cannot “mouse-over” a nonclickable element on iOS. The element must be clickable for a
mouseover event to occur as described in “One-Finger Events” (page 63).

Creating Compatible Web Content
Don’t Use Unsupported iOS Technologies

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

24

 ● Hover styles

Since a mouseover event is sent only before a mousedown event, hover styles are displayed only if the
user touches and holds a clickable element with a hover style. Read “Handling Events” (page 62) for all
the events generated by gestures on iOS.

 ● Tooltips

Similar to hover styles, tooltips are not displayed unless the user touches and holds a clickable element
with a tooltip.

 ● Java applets

 ● Flash

Don’t bring up JavaScript alerts that ask users to download Flash.

 ● QuickTime VR (QTVR) movies

 ● Plug-in installation

 ● Custom x.509 certificates

 ● WML

Safari on iOS is not a miniature web browser—it is a full web browser that renders pages as
designed—therefore, there is no need for Safari on iOS to support Wireless Markup Language (WML).
Alternatively, it does support XHTML mobile profile document types and sites at .mobi domains.

The XHTML mobile document type is:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.1//EN"
"http://www.openmobilealliance.org/tech/DTD/xhtml-mobile11.dtd">

 ● File uploads and downloads

Safari on iOS supports file uploading—that is, <input type="file"> elements—on iOS 6 and later.

Do not prompt the user to download plug-ins like Flash on iOS. See “Using the Safari User Agent
String” (page 30) for how to detect Safari on iOS.

By default, Safari on iOS blocks pop-up windows. However, it is a preference that the user can change. To
change the Safari settings, tap Settings followed by Safari. The Block Pop-ups setting appears in the Security
section.

Creating Compatible Web Content
Don’t Use Unsupported iOS Technologies

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

25

iOS Note: The HTML contenteditable attribute is supported in iOS 5.0 and later. In earlier versions,
replacecontenteditable, used to enable text input within a styled element, with a styled textarea
element. In Safari, you can customize the appearance of textarea elements using CSS. If necessary,
you can even disable any platform-specific, built-in styling on a textarea element by
setting -webkit-appearance to none.

The window.print() method is supported in iOS 4.2 and later.

Downloadable web fonts are supported in iOS 1.1.4 and earlier, and iOS 4.2 and later.

SVG is supported in iOS 2.1 and later.

XSLT is supported in iOS 2.0 and later.

Creating Compatible Web Content
Don’t Use Unsupported iOS Technologies

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

26

The first step in optimizing web content for iOS is to separate your iOS-specific content from your desktop
content and the next step is to tailor the web content for iOS. You might want to follow these steps even if
iOS is not your target platform so your web content is more maintainable in the future.

Use conditional CSS so that you can create iOS-specific style sheets as described in “Using Conditional CSS” (page
27). You can also use object detection and WebKit detection as described in “Follow Good Web Design
Practices” (page 13) to use extensions but remain browser-independent. Only if necessary, use the user agent
string as described in “Using the Safari User Agent String” (page 30) to detect Safari on iOS or a specific device.

After optimizing your content, read the rest of the chapters in this document to learn how to set viewport
properties, adjust text size, lay out forms, handle events, use application links, and export media for iOS. Finally
read “Debugging Web Content on iOS” (page 98) for how to debug your webpages.

Using Conditional CSS
Once you use CSS to lay out your webpage in columns, you can use conditional CSS to create different layouts
for specific platforms and mobile devices. Using CSS3 media queries, you can add iOS-specific style sheets to
your webpage without affecting how your webpages are rendered on other platforms.

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

27

Optimizing Web Content

For example, Figure 2-1 shows a webpage containing conditional CSS specifically for iOS. Figure 2-2 shows
the same webpage rendered on the desktop.

Figure 2-1 Small device rendering

Figure 2-2 Desktop rendering

CSS3 recognizes several media types, including print, handheld, and screen. iOS ignores print and handheld
media queries because these types do not supply high-end web content. Therefore, use the screen media type
query for iOS.

Optimizing Web Content
Using Conditional CSS

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

28

To specify a style sheet that is just for iOS without affecting other devices, use the only keyword in combination
with the screen keyword in your HTML file. Older browsers ignore the only keyword and won’t read your
iOS style sheet. Use max-device-width, and min-device-width to describe the screen size.

For example, to specify a style sheet for iPhone and iPod touch, use an expression similar to the following:

<link media="only screen and (max-device-width: 480px)" href="small-device.css"
type= "text/css" rel="stylesheet">

To specify a style sheet for devices other than iOS, use an expression similar to the following:

<link media="screen and (min-device-width: 481px)" href="not-small-device.css"
type="text/css" rel="stylesheet">

To load styles intended for users with Retina displays only, use an expression similar to the following:

<link media="only screen and (-webkit-min-device-pixel-ratio: 2)" href="retina.css"
type="text/css" rel="stylesheet">

Alternatively, you can use this format inside a CSS block in an HTML file, or in an external CSS file:

@media screen and (min-device-width: 481px) { ... }

@media screen and (-webkit-min-device-pixel-ratio: 2) { ... }

Here are some examples of CSS3 media-specific style sheets where you might provide a different style for
screen and print. Listing 2-1 displays white text on dark gray background for the screen. Listing 2-2 displays
black text on white background and hides navigation for print.

Listing 2-1 Screen-specific style sheet

@media screen {

#text { color: white; background-color: black; }

}

Listing 2-2 Print-specific style sheet

@media print {

Optimizing Web Content
Using Conditional CSS

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

29

#text { color: black; background-color: white; }

#nav { display: none; }

}

For more information on media queries, see: http://www.w3.org/TR/css3-mediaqueries/.

Using the Safari User Agent String
A browser sends a special string, called a user agent, to websites to identify itself. The web server, or JavaScript
in the downloaded webpage, detects the client’s identity and can modify its behavior accordingly. In the
simplest case, the user agent string includes an application name—for example, Navigator as the application
name and 6.0 as the version. Safari on the desktop and Safari on iOS have their own user agent strings, too.

The Safari user agent string for iOS is similar to the user agent string for Safari on the desktop except for two
additions: It contains a platform name and the mobile version number. The device name is contained in the
platform name. For example, you can detect iOS and the specific device such as iPad. Typically, you do not
send iPhone-specific web content to an iPad since it has a much larger screen. Note that the version numbers
in this string are subject to change over time as new versions of iOS become available, so any code that checks
the user agent string should not rely on version numbers.

For example, Listing 2-3 shows the user agent string for an iPhone running iOS 2.0 and later, where the string
XXXX is replaced with the build number.

Listing 2-3 iPhone running on iOS 2.0 user agent string

Mozilla/5.0 (iPhone; U; CPU iOS 2_0 like Mac OS X; en-us) AppleWebKit/525.18.1
(KHTML, like Gecko) Version/3.1.1 Mobile/XXXXX Safari/525.20

The parts of the Safari on iOS user agent string are as follows:

(iPhone; U; CPU iOS 2_0 like Mac OS X; en-us)
The platform string. iPhone is replaced with iPod when running on an iPod touch and iPad when
running on an iPad.

AppleWebKit/525.18.1
The WebKit engine build number.

Version/3.1.1
The Safari family version.

Optimizing Web Content
Using the Safari User Agent String

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

30

http://www.w3.org/TR/css3-mediaqueries/

Mobile/XXXXX
The mobile version number, where XXXX is the build number.

Safari/525.20
The Safari build number.

For example, the user agent string for an iPod touch contains iPod in the platform name as shown in Listing
2-4.

Listing 2-4 iPod touch running iOS 1.1.3 user agent string

Mozilla/5.0 (iPod; U; CPU like Mac OS X; en) AppleWebKit/420.1 (KHTML, like Gecko)
Version/3.0 Mobile/4A93 Safari/419.3

The user agent string for an iPad contains iPad in the platform name as shown in Listing 2-5.

Listing 2-5 iPad running iOS 3.2 user agent string

Mozilla/5.0 (iPad; U; CPU OS 3_2 like Mac OS X; en-us) AppleWebKit/531.21.10 (KHTML,
like Gecko) Version/4.0.4 Mobile/7B334b Safari/531.21.10

Note that the user agent string is slightly different for earlier Safari on iOS releases. Listing 2-6 shows the user
agent string for an iPhone running iOS 1.1.4 and earlier. Note that the platform string does not contain the
iOS version number.

Listing 2-6 iPhone running iOS 1.0 user agent string

Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko)
Version/3.0 Mobile/1A543 Safari/419.3

Typically, you use the WebKit build number to test for supported WebKit HTML tags and CSS properties. The
Safari family version, or marketing version, is included in the user agent string for Safari on the desktop, too.
Therefore, you can use it to track usage statistics across all Safari platforms.

Go to these websites to learn more about other recommended techniques for detecting Safari and WebKit:

 ● webkit.org

http://trac.webkit.org/projects/webkit/wiki/DetectingWebKit

Contains JavaScript sample code for detecting Safari on iPhone and iPod touch.

 ● developer.apple.com

http://developer.apple.com/internet/webcontent/objectdetection.html

Optimizing Web Content
Using the Safari User Agent String

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

31

http://trac.webkit.org/projects/webkit/wiki/DetectingWebKit
http://developer.apple.com/internet/webcontent/objectdetection.html

Safari on iOS displays webpages at a scale that works for most web content originally designed for the desktop.
If these default settings don’t work for your webpages, it is highly recommended that you change the settings
by configuring the viewport. You especially need to configure the viewport if you are designing webpages
specifically for iOS. Configuring the viewport is easy—just add one line of HTML to your webpage—but
understanding how viewport properties affect the presentation of your webpages on iOS is more complex.
Before configuring the viewport, you need a deeper understanding of what the visible area and viewport are
on iOS.

If you are already familiar with the viewport on iOS, read “Using the Viewport Meta Tag” (page 40) for details
on the viewport tag and “Viewport Settings for Web Applications” (page 49) for web application tips. Otherwise,
read the sections in this chapter in the following order:

 ● Read “Layout and Metrics on iPhone and iPod touch” (page 33) to learn about the available screen space
for webpages on small devices.

 ● Read “What Is the Viewport?” (page 33) for a deeper understanding of the viewport on iOS.

 ● Read “Default Viewport Settings” (page 40) and “Using the Viewport Meta Tag” (page 40) for how to use
the viewport meta tag.

 ● Read “Changing the Viewport Width and Height” (page 41) and “How Safari Infers the Width, Height, and
Initial Scale” (page 44) to understand better how setting viewport properties affects the way webpages
are rendered on iOS.

 ● Read “Viewport Settings for Web Applications” (page 49) if you are designing a web application for iOS.

See “Supported Meta Tags” for a complete description of the viewport meta tag.

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

32

Configuring the Viewport

Layout and Metrics on iPhone and iPod touch
Because Safari on iOS adds controls above and below your web content, you don’t have access to the entire
screen real estate. In portrait orientation, the visible area for web content on iPhone and iPod touch is 320 x
356 pixels as shown in Figure 1-1. In landscape orientation, the visible area is 480 x 208 pixels.

Figure 3-1 Layout and metrics in portrait orientation

480 pixels

Status bar: 20 pixels

URL text field: 60 pixels

Visible area: 320 x 356 pixels

Button bar: 44 pixels

Note that if the URL text field is not in use, it is anchored above the webpage and moves with the webpage
when the user pans. This adds 60 pixels to the height of the visible area. However, since the URL text field can
appear at any time, you should not rely on this extra real estate when designing your webpage. Video playback
uses the entire screen on small devices.

Read “Laying Out Forms” (page 56) in “Designing Forms” (page 56) for more metrics when the keyboard is
displayed for user input.

Note: Although it is helpful to know the metrics on small devices like iPhone and iPod touch, you
should avoid using these values in your code. Read “Using the Viewport Meta Tag” (page 40) for
how to use the viewport meta tag constants.

What Is the Viewport?
The viewport on the desktop and the viewport on iOS are slightly different.

Configuring the Viewport
Layout and Metrics on iPhone and iPod touch

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

33

Safari on iOS has no windows, scroll bars, or resize buttons as shown on the right in Figure 3-2. The user pans
by flicking a finger. The user zooms in by double-tapping and pinch opening, and zooms out by pinch
closing—gestures that are not available for Safari on the desktop. Because of the differences in the way users
interact with web content, the viewport on the desktop and on iOS are not the same. Note that these differences
between the viewports may affect some of the HTML and CSS instructions on iOS.

Figure 3-2 Differences between Safari on iOS and Safari on the desktop

Safari on the desktop Safari on iPhone

Configuring the Viewport
What Is the Viewport?

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

34

Safari on the Desktop Viewport
The viewport on the desktop is the visible area of the webpage as shown in Figure 3-3. The user resizes the
viewport by resizing the window. If the webpage is larger than the viewport, then the user scrolls to see more
of the webpage. When the viewport is resized, Safari may change the document’s layout—for example, expand
or shrink the width of the text to fit. If the webpage is smaller than the viewport, it is filled with white space
to fit the size of the viewport.

Figure 3-3 Safari on desktop viewport

Viewport

Safari on iOS Viewport
For Safari on iOS, the viewport is the area that determines how content is laid out and where text wraps on
the webpage. The viewport can be larger or smaller than the visible area.

When the user pans a webpage on iOS, gray bars appear on the right and bottom sides of the screen as visual
feedback to show the user the size of the visible area as compared to the viewport (similar to the length of
scroll bars on the desktop). Using the double tap, pinch open, and pinch close gestures, users can change the
scale of the viewport but not the size. The only exception is when the user changes from portrait to landscape
orientation—under certain circumstances, Safari on iOS may adjust the viewport width and height, and
consequently, change the webpage layout.

You can set the viewport size and other properties of your webpage. Mostly, you do this to improve the
presentation the first time iOS renders the webpage.

Configuring the Viewport
What Is the Viewport?

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

35

Examples of Viewports on iOS
The viewport on iOS is best illustrated using a few examples. Figure 3-4 shows a webpage on iPhone, containing
a single 320 x 356 pixel image, that is rendered for the first time using the default viewport settings.

Figure 3-4 Viewport with default settings

Viewport
default width = 980 pixels

Configuring the Viewport
What Is the Viewport?

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

36

Figure 3-5 shows the same webpage with the viewport set to the size of the visible area, which is also the size
of the image.

Figure 3-5 Viewport with width set to 320

Viewport
width = 320 pixels
scale = 1.0

Configuring the Viewport
What Is the Viewport?

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

37

However, the viewport can be larger or smaller than the visible area. If the viewport is larger than the visible
area, as shown in Figure 3-6, then the user pans to see more of the webpage.

Figure 3-6 Viewport with width set to 320 and scale set to 150%

Viewport
width = 320 pixels
scale = 1.5

Visible area

Configuring the Viewport
What Is the Viewport?

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

38

Figure 3-7 show the webpage when it is smaller than the viewport and filled with white space.

Figure 3-7 Viewport with width set to 320 and scale set to 50%

Viewport
width = 320 pixels
scale = 0.5

The user can also zoom in and out using gestures. When zooming in and out, the user changes the scale of
the viewport, not the size of the viewport. Consequently, panning and zooming do not change the layout of
the webpage. Figure 3-8 shows the same webpage when the user zooms in to see details.

Figure 3-8 Viewport with arbitrary user scale

User zoom, arbitrary scale

Configuring the Viewport
What Is the Viewport?

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

39

Default Viewport Settings
Safari on iOS sets the size and scale of the viewport to reasonable defaults that work well for most webpages,
as shown on the left in Figure 3-9. The default width is 980 pixels. However, these defaults may not work well
for your webpages, particularly if you are tailoring your website for a particular device. For example, the
webpage on the right in Figure 3-9 appears too narrow. Because Safari on iOS provides a viewport, you can
change the default settings.

Figure 3-9 Default settings work well for most webpages

Works well Too narrow

Using the Viewport Meta Tag
Use the viewport meta tag to improve the presentation of your web content on iOS. Typically, you use the
viewportmeta tag to set the width and initial scale of the viewport. For example, if your webpage is narrower
than 980 pixels, then you should set the width of the viewport to fit your web content. If you are designing
an iPhone or iPod touch-specific web application, then set the width to the width of the device. Refer to
“Additional meta Tag Keys” in Safari HTML Reference for a detailed description of the viewport meta tag.

Because iOS runs on devices with different screen resolutions, you should use the constants instead of numeric
values when referring to the dimensions of a device. Use device-width for the width of the device and
device-height for the height in portrait orientation.

Configuring the Viewport
Default Viewport Settings

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

40

You do not need to set every viewport property. If only a subset of the properties are set, then Safari on iOS
infers the other values. For example, if you set the scale to 1.0, Safari assumes the width is device-width in
portrait and device-height in landscape orientation. Therefore, if you want the width to be 980 pixels and
the initial scale to be 1.0, then set both of these properties.

For example, to set the viewport width to the width of the device, add this to your HTML file:

<meta name="viewport" content="width=device-width">

To set the initial scale to 1.0, add this to your HTML file:

<meta name="viewport" content="initial-scale=1.0">

To set the initial scale and to turn off user scaling, add this to your HTML file:

<meta name="viewport" content="initial-scale=2.3, user-scalable=no">

Use the Safari on iOS console to help debug your webpages as described in “Debugging Web Content on
iOS” (page 98). The console contains tips to help you choose viewport values—for example, it reminds you
to use the constants when referring to the device width and height.

Changing the Viewport Width and Height
Typically, you set the viewport width to match your web content. This is the single most important optimization
that you can do for iOS—make sure your webpage looks good the first time it is displayed on iOS.

Configuring the Viewport
Changing the Viewport Width and Height

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

41

The majority of webpages fit nicely in the visible area with the viewport width set to 980 pixels in portrait
orientation, as shown in Figure 3-10. If Safari on iOS did not set the viewport width to 980 pixels, then only
the upper-left corner of the webpage, shown in gray, would be displayed. However, this default doesn’t work
for all webpages, so you’ll want to use the viewport meta tag if your webpage is different.

Figure 3-10 Comparison of 320 and 980 viewport widths

320 pixels

980 pixels

356 pixels

1090 pixels

If your webpage is narrower than the default width, as shown on the left in Figure 3-11, then set the viewport
width to the width of your webpage, as shown on the right in Figure 3-11. To do this, add the following to
your HTML file inside the <head> block, replacing 590 with the width of your webpage:

Configuring the Viewport
Changing the Viewport Width and Height

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

42

<meta name="viewport" content="width=590">

Figure 3-11 Webpage is too narrow for default settings

Default width Custom width

980 pixels 590 pixels

Configuring the Viewport
Changing the Viewport Width and Height

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

43

It is particularly important to change the viewport width for web applications designed for devices with smaller
screens such as iPhone and iPod touch. Figure 3-12 shows the effect of setting the viewport width to
device-width. Read “Viewport Settings for Web Applications” (page 49) for more web application tips.

Figure 3-12 Web application page is too small for default settings

Default width Width set to device-width

980 pixels 320 pixels

Similarly you can set the viewport height to match your web content.

How Safari Infers the Width, Height, and Initial Scale
If you set only some of the properties, then Safari on iOS infers the values of the other properties with the goal
of fitting the webpage in the visible area. For example, if just the initial scale is set, then the width and height
are inferred. Similarly, if just the width is set, then the height and initial scale are inferred, and so on. If the
inferred values do not work for your webpage, then set more viewport properties.

Since any of the width, height, and initial scale may be inferred by Safari on iOS, the viewport may resize when
the user changes orientation. For example, when the user changes from portrait to landscape orientation by
rotating the device, the viewport width may expand. This is the only situation where a user action might resize
the viewport, changing the layout on iOS.

Configuring the Viewport
How Safari Infers the Width, Height, and Initial Scale

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

44

Specifically, the goal of Safari on iOS is to fit the webpage in the visible area when completely zoomed out by
maintaining a ratio equivalent to the ratio of the visible area in either orientation. This is best illustrated by
setting the viewport properties independently, and observing the effect on the other viewport properties. The
following series of examples shows the same web content with different viewport settings.

Figure 3-13 shows a typical webpage displayed with the default settings where the viewport width is 980 and
no initial scale is set.

Figure 3-13 Default width and initial scale

default = 980 pixels

Configuring the Viewport
How Safari Infers the Width, Height, and Initial Scale

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

45

Figure 3-14 shows the same webpage when the initial scale is set to 1.0 on iPhone. Safari on iOS infers the
width and height to fit the webpage in the visible area. The viewport width is set to device-width in portrait
orientation and device-height in landscape orientation.

Figure 3-14 Default width with initial scale set to 1.0

320 pixels

356 pixels

480 pixels

208 pixels

Configuring the Viewport
How Safari Infers the Width, Height, and Initial Scale

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

46

Similarly, if you specify only the viewport width, the height and initial scale are inferred. Figure 3-15 shows the
rendering of the same webpage when the viewport width is set to 320 on iPhone. Notice that the portrait
orientation is rendered in the same way as in Figure 3-14 (page 46), but the landscape orientation maintains
a width equal to device-width, which changes the initial scale and has the effect of zooming in when the
user changes to landscape orientation.

Figure 3-15 Width set to 320 with default initial scale

320 pixels

356 pixels

320 pixels

139 pixels

Configuring the Viewport
How Safari Infers the Width, Height, and Initial Scale

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

47

You can also set the viewport width to be smaller than the visible area with a minimum value of 200 pixels.
Figure 3-16 shows the same webpage when the viewport width is set to 200 pixels on iPhone. Safari on iOS
infers the height and initial scale, which has the effect of zooming in when the webpage is first rendered.

Figure 3-16 Width set to 200 with default initial scale

200 pixels

223 pixels

Configuring the Viewport
How Safari Infers the Width, Height, and Initial Scale

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

48

Finally, Figure 3-17 shows the same webpage when both the width and initial scale are set on iPhone. Safari
on iOS infers the height by maintaining a ratio equivalent to the ratio of the visible area in either orientation.
Therefore, if the width is set to 980 and the initial scale is set to 1.0 on iPhone, the height is set to 1091 in
portrait and 425 in landscape orientation.

Figure 3-17 Width set to 980 and initial scale set to 1.0

Width = 980 pixels
Height = 1091 pixels
Initial scale = 1.0

Width = 980 pixels
Height = 425 pixels
Initial scale = 1.0

The minimum-scale and maximum-scale properties also affect the behavior when changing orientations.
The range of these property values is from >0 to 10.0. The default value for minimum-scale is 0.25 and
maximum-scale is 5.0.

Viewport Settings for Web Applications
If you are designing a web application specifically for iOS, then the recommended size for your webpages is
the size of the visible area on iOS. Apple recommends that you set the width to device-width so that the
scale is 1.0 in portrait orientation and the viewport is not resized when the user changes to landscape orientation.

Configuring the Viewport
Viewport Settings for Web Applications

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

49

If you do not change the viewport properties, Safari on iOS displays your webpage in the upper-left corner as
shown in Figure 3-18. Setting the viewport width should be the first task when designing web applications for
iOS to avoid the user zooming in before using your application.

Figure 3-18 Not specifying viewport properties

Viewport
width = 980 pixels

By setting the width to device-width in portrait orientation, Safari on iOS displays your webpage as show
in Figure 3-19. Users can pan down to view the rest of the webpage if it is taller than the visible area. Add this
line to your HTML file to set the viewport width to device-width:

Configuring the Viewport
Viewport Settings for Web Applications

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

50

<meta name="viewport" content="width=device-width">

Figure 3-19 Width set to device-width pixels

Viewport
width = 320 pixels

You may not want users to scale web applications designed specifically for iOS. In this case, set the width and
turn off user scaling as follows:

<meta name = "viewport" content = "user-scalable=no, width=device-width">

Configuring the Viewport
Viewport Settings for Web Applications

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

51

Although configuring the viewport is an important way to optimize your web content for iOS, style sheets
provide further techniques for optimizing. For example, use iOS CSS extensions to control text resizing and
element highlighting. If you use conditional CSS, then you can use these settings without affecting the way
other browsers render your webpages.

Read “Optimizing Web Content” (page 27) for how to use conditional CSS and “CSS Basics” (page 111) for how
to add CSS to existing HTML. See Safari CSS Reference for a complete list of CSS properties supported by Safari.

Leveraging CSS3 Properties
There are many CSS3 properties available for you to use in Safari on the desktop and iOS. CSS properties that
begin with -webkit- are usually proposed CSS3 properties or Apple extensions to CSS. For example, you can
use the following CSS properties to emulate the iOS user interface:

-webkit-border-image
Allows you to use an image as the border for a box. See "-webkit-border-image" in Safari CSS Reference for
details.

-webkit-border-radius
Creates elements with rounded corners. See “Customizing Form Controls” (page 58) for code samples.
See "-webkit-border-radius" in Safari CSS Reference for details.

Adjusting the Text Size
In addition to controlling the viewport, you can control the text size that Safari on iOS uses when rendering a
block of text.

Adjusting the text size is important so that the text is legible when the user double-taps. If the user double-taps
an HTML block element—such as a <div> element—then Safari on iOS scales the viewport to fit the block
width in the visible area. The first time a webpage is rendered, Safari on iOS gets the width of the block and
determines an appropriate text scale so that the text is legible.

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

52

Customizing Style Sheets

If the automatic text size-adjustment doesn’t work for your webpage, then you can either turn this feature off
or specify your own scale as a percentage. For example, text in absolute-positioned elements might overflow
the viewport after adjustment. Other pages might need a few minor adjustments to make them look better.
In these cases, use the -webkit-text-size-adjust CSS property to change the default settings for any
element that renders text.

Figure 4-1 compares a webpage rendered by Safari on iOS with -webkit-text-size-adjust set to auto,
none, and 200%. On iPad, the default value for -webkit-text-size-adjust is none. On all other devices,
the default value is auto.

Figure 4-1 Comparison of text adjustment settings

Auto None 200%

To turn automatic text adjustment off, set -webkit-text-size-adjust to none as follows:

html {-webkit-text-size-adjust:none}

To change the text adjustment, set -webkit-text-size-adjust to a percentage value as follows, replacing
200% with your percentage:

html {-webkit-text-size-adjust:200%}

Listing 4-1 shows setting this property for different types of blocks using inline style in HTML.

Customizing Style Sheets
Adjusting the Text Size

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

53

Listing 4-1 Setting the text size adjustment property

<body style="-webkit-text-size-adjust:none">

<table style="-webkit-text-size-adjust:auto">

<div style="-webkit-text-size-adjust:200%">

Highlighting Elements
By default, when the user taps a link or a JavaScript clickable element, Safari on iOS highlights the area in a
transparent gray color. Using the -webkit-tap-highlight-color CSS property, you can either modify or
disable this default behavior on your webpages.

The syntax for setting this CSS property is:

-webkit-tap-highlight-color:<css-color>

This is an inherited property that changes the tap highlight color, obeying the alpha value. If you don’t specify
an alpha value, Safari on iOS applies a default alpha value to the color. To disable tap highlighting, set the
alpha to 0 (invisible). If you set the alpha to 1.0 (opaque), then the element won’t be visible when tapped.

Listing 4-2 uses an alpha value of 0.4 for the custom highlight color shown on the right in Figure 4-2.

Listing 4-2 Changing the tap highlight color

<html>

<head>

<meta name = "viewport" content = "width=200">

</head>

<body>

default highlight color

<a href = "whatever0.html" style =
"-webkit-tap-highlight-color:rgba(200,0,0,0.4);">custom highlight color

</body>

Customizing Style Sheets
Highlighting Elements

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

54

</html>

Figure 4-2 Differences between default and custom highlighting

Default highlight Custom highlight

Note that changing this behavior does not affect the color of the information bubble when the user touches
and holds.

You can also use the -webkit-tap-highlight-color CSS property in combination with setting a touch
event to configure buttons to behave similar to the desktop. On iOS, mouse events are sent so quickly that
the down or active state is never received. Therefore, the :active pseudo state is triggered only when there
is a touch event set on the HTML element—for example, when ontouchstart is set on the element as follows:

<button class="action" ontouchstart="" style="-webkit-tap-highlight-color:
rgba(0,0,0,0);">Testing Touch on iOS</button>

Now when the button is tapped and held on iOS, the button changes to the specified color without the
surrounding transparent gray color appearing.

Read “Handling Events” (page 62) for the definition of a clickable element. See "-webkit-tap-highlight-color" in
Safari CSS Reference to learn more about this property. Read “Handling Multi-Touch Events” (page 68) for
details on touch events.

Customizing Style Sheets
Highlighting Elements

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

55

There are many adjustments you can make to your forms so that they work better on iOS. The forms should
fit neatly on the iOS screen, especially if you are designing a web application specifically for iOS. Web applications
can have a rich user interface and even look like native applications to the user. Consequently, the user may
expect them to behave like native applications, too.

This chapter explains what you can do to make your forms work well on iOS:

 ● Take into account the available screen space when the keyboard is and isn’t displayed.

 ● Use CSS extensions to create custom controls.

 ● Control where automatic correction and capitalization are used.

See iOS Human Interface Guidelines for more tips on laying out forms and designing web applications for iOS.
Read “Hiding Safari User Interface Components” (page 83) for how to use the full-screen like a native application.

Laying Out Forms
The available area for your forms changes depending on whether or not the keyboard is displayed on iOS. You
should compute this area and design your forms accordingly.

Figure 5-1 shows the layout of Safari controls when the keyboard is displayed on iPhone. The status bar that
appears at the top of the screen contains the time and Wi-Fi indicator. The URL text field is displayed below
the status bar. The keyboard is used to enter text in forms and is displayed at the bottom of the screen. The
form assistant appears above the keyboard when editing forms. It contains the Previous, Next, and Done
buttons. The user taps the Next and Previous buttons to move between form elements. The user taps Done

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

56

Designing Forms

to dismiss the keyboard. The button bar contains the back, forward, bookmarks, and page buttons and appears
at the bottom of the screen. The tool bar is not visible when the keyboard is visible. Your webpage is displayed
in the area below the URL text field and above the tool bar or keyboard.

Figure 5-1 Form metrics when the keyboard is displayed

Status bar: 20 pixels

URL text field: 60 pixels

Form assistant: 44 pixels

Keyboard: 216 pixels

480 pixels

Table 5-1 contains the metrics for the objects that you need to be aware of, in both portrait and landscape
orientation, when laying out forms to fit on iPhone and iPod touch.

Table 5-1 Form metrics

Metrics in pixelsObject

Height = 20Status bar

Height = 60URL text field

Height = 44Form assistant

Portrait height = 216

Landscape height = 162

Keyboard

Portrait height = 44

Landscape height = 32

Button bar

Designing Forms
Laying Out Forms

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

57

Use this information to compute the available area for your web content when the keyboard is and isn't
displayed. For example, when the keyboard is not displayed, the height available for your web content on
iPhone is 480 - 20 - 60 - 44 = 356. Therefore, you should design your content to fit within 320 x 356 pixels in
portrait orientation. If the keyboard is displayed, the available area is 320 x 140 pixels on iPhone.

iOS Note: In iOS 1.1.4 and earlier, the keyboard height in landscape orientation on iPhone and iPod
touch was 180 pixels.

Customizing Form Controls
Form controls in Safari on iOS are resolution independent and can be styled with CSS specifically for iOS. You
can create custom checkboxes, text fields, and select elements.

For example, you can create a custom checkbox designed for iOS as shown in Figure 5-2 with the CSS code
fragment in Listing 5-1. This example uses the -webkit-border-radius property—an Apple extension to
WebKit. See Safari CSS Reference for details on more WebKit properties.

Figure 5-2 A custom checkbox

Listing 5-1 Creating a custom checkbox with CSS

{

Designing Forms
Customizing Form Controls

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

58

width: 100px;

height: 100px;

-webkit-border-radius: 50px;

background-color: purple;

}

Figure 5-3 shows a custom text field with rounded corners corresponding to the CSS code in Listing 5-2 (page
59).

Figure 5-3 A custom text field

Listing 5-2 Creating a custom text field with CSS

{

-webkit-border-radius: 10px;

}

Designing Forms
Customizing Form Controls

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

59

Figure 5-4 shows a custom select control corresponding to the CSS code in Listing 5-3 (page 60).

Figure 5-4 A custom select element

Listing 5-3 Creating a custom select control with CSS

{

background: red;

border: 1px dashed purple;

-webkit-border-radius: 10px;

}

Configuring Automatic Correction and Capitalization
You can also control whether or not automatic correction or capitalization are used in your forms on iOS. Set
the autocorrect attribute to on if you want automatic correction and the autocapitalize attribute to a
value if you want automatic capitalization. If you do not set these attributes, then the browser chooses whether
or not to use automatic correction or capitalization. For example, Safari on iOS turns the autocorrect and
autocapitalize attributes off in login fields and on in normal text fields.

For example, the following line turns the autocorrect attribute on:

Designing Forms
Configuring Automatic Correction and Capitalization

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

60

<input type="text" name="field1" autocorrect="on" />

The following line turns the autocorrect attribute off:

<input type="text" name="field2" autocorrect="off" />

In iOS 5.0, the autocapitalize attribute allows finer control on how automatic capitalization behaves than
just specifying on and off values. For example, if autocapitalize is words, each word is capitalized, as in
“Jane Doe,” appropriate for a first and last name input field. If autocapitalize is characters, each letter
is capitalized, as in “NY” and “CA,” appropriate for a state input field.

You can also use the autocorrect and autocapitalize attributes on <form> elements to give inner form
controls (like <input> and <textarea> elements) default behavior. If the inner form controls have these
attributes set, those values are used instead. If they don’t have these attributes set, the value is inherited from
their parent <form> element. If neither element has these attributes set, the default value is used.

For example, the following code fragment sets the autocapitalize attribute to words on the form but to
characters on the state and none on the username input fields. The first-name and last-name input
fields inherit the words setting from the form element.

<form autocapitalize="words">

First Name: <input name="first-name">

Last Name: <input name="last-name">

State: <input name="state" autocapitalize="characters">

Username: <input name="username" autocapitalize="none">

Comment: <textarea name="comment" autocapitalize="sentences"></textarea>

</form>

Refer to autocorrect and autocapitalize in Safari HTML Reference for all possible values and defaults.

Designing Forms
Configuring Automatic Correction and Capitalization

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

61

This chapter describes the events that occur when the user interacts with a webpage on iOS. Forms and
documents generate the typical events in iOS that you might expect on the desktop. Gestures handled by
Safari on iOS emulate mouse events. In addition, you can register for iOS-specific multi-touch and gesture
events directly. Orientation events are another example of an iOS-specific event. Also, be aware that there are
some unsupported events such as cut, copy, and paste.

Gestures that the user makes—for example, a double tap to zoom and a flick to pan—emulate mouse events.
However, the flow of events generated by one-finger and two-finger gestures are conditional depending on
whether or not the selected element is clickable or scrollable as described in “One-Finger Events” (page 63)
and “Two-Finger Events” (page 66).

A clickable element is a link, form element, image map area, or any other element with mousemove, mousedown,
mouseup, or onclick handlers. A scrollable element is any element with appropriate overflow style, text areas,
and scrollable iframe elements. Because of these differences, you might need to change some of your elements
to clickable elements, as described in “Making Elements Clickable” (page 67), to get the desired behavior in
iOS.

In addition, you can turn off the default Safari on iOS behavior as described in “Preventing Default
Behavior” (page 73) and handle your own multi-touch and gesture events directly. Handling multi-touch and
gesture events directly gives developers the ability to implement unique touch-screen interfaces similar to
native applications. Read “Handling Multi-Touch Events” (page 68) and “Handling Gesture Events” (page 71)
to learn more about DOM touch events.

If you want to change the layout of your webpage depending on the orientation of iOS, read “Handling
Orientation Events” (page 73).

See “Supported Events” (page 75) for a complete list of events supported in iOS.

On iOS, emulated mouse events are sent so quickly that the down or active pseudo state of buttons may never
occur. Read “Highlighting Elements” (page 54) for how to customize a button to behave similar to the desktop.

It’s very common to combine DOM touch events with CSS visual effects. Read Safari CSS Visual Effects Guide
to learn more about CSS visual effects.

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

62

Handling Events

One-Finger Events
This section uses flow charts to break down gestures into the individual actions that might generate events.
Some of the events generated on iOS are conditional—the events generated depend on what the user is
tapping or touching and whether they are using one or two fingers. Some gestures don’t generate any events
on iOS.

One-finger panning doesn’t generate any events until the user stops panning—an onscroll event is generated
when the page stops moving and redraws—as shown in Figure 6-1.

Figure 6-1 The panning gesture

Pan (no events)

Finger down

Finger stop

onscroll

Finger move

Displaying the information bubble doesn’t generate any events as shown in Figure 6-2. However, if the user
touches and holds an image, the image save sheet appears instead of an information bubble.

Handling Events
One-Finger Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

63

iOS Note: The image save sheet appears on iOS 2.0 and later.

Figure 6-2 The touch and hold gesture

Information bubble
(no events)

Finger down

Finger held down

Clickable element

Handling Events
One-Finger Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

64

Finally, a double tap doesn’t generate any events either as shown in Figure 6-3.

Figure 6-3 The double-tap gesture

Finger down

Quick finger up

Double-tap zoom
(no events)

Quick finger down

Quick finger up

Handling Events
One-Finger Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

65

Mouse events are delivered in the same order you'd expect in other web browsers illustrated in Figure 6-4. If
the user taps a nonclickable element, no events are generated. If the user taps a clickable element, events
arrive in this order: mouseover, mousemove, mousedown, mouseup, and click. The mouseout event occurs
only if the user taps on another clickable item. Also, if the contents of the page changes on the mousemove
event, no subsequent events in the sequence are sent. This behavior allows the user to tap in the new content.

Figure 6-4 One-finger gesture emulating a mouse

Content change

Finger down

Not a clickable
element

No events

Finger up
Clickable element

mouseover, mousemove No events

No content change

mousedown, mouseup, click

Two-Finger Events
The pinch open gesture does not generate any mouse events as shown in Figure 6-5.

Figure 6-5 The pinch open gesture

Fingers separate Pinch zoom
(no events)

Two fingers down

Figure 6-6 illustrates the mouse events generated by using two fingers to pan a scrollable element. The flow
of events is as follows:

Handling Events
Two-Finger Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

66

 ● If the user holds two fingers down on a scrollable element and moves the fingers, mousewheel events
are generated.

 ● If the element is not scrollable, Safari on iOS pans the webpage. No events are generated while panning.

 ● An onscroll event is generated when the user stops panning.

Figure 6-6 Two-finger panning gesture

Two fingers down

Scrollable element

Two fingers move

Not a scrollable element

mousewheel

Pan (no events)

Finger stop

onscroll

Form and Document Events
Typical events generated by forms and documents include blur, focus, load, unload, reset, submit,
change and abort. See “Supported Events” (page 75) for a complete list of supported events on iOS.

Making Elements Clickable
Because of the way Safari on iOS creates events to emulate a mouse, some of your elements may not behave
as expected on iOS. In particular, some menus that only use mousemove handlers, as in Listing 6-1, need to
be changed because iOS doesn’t recognize them as clickable elements.

Listing 6-1 A menu using a mouseover handler

<span onmouseover = "..."

Handling Events
Form and Document Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

67

onmouseout = "..."

WHERE TO BUY

To fix this, add a dummy onclick handler, onclick = "void(0)", so that Safari on iOS recognizes the
span element as a clickable element, as shown in Listing 6-2.

Listing 6-2 Adding an onclick handler

<span onmouseover = "..."

onmouseout = "..."

onclick = "void(0)">

WHERE TO BUY

Handling Multi-Touch Events
You can use JavaScript DOM touch event classes available on iOS to handle multi-touch and gesture events
in a way similar to the way they are handled in native iOS applications.

If you register for multi-touch events, the system continually sends TouchEvent objects to those DOM elements
as fingers touch and move across a surface. These are sent in addition to the emulated mouse events unless
you prevent this default behavior as described in “Preventing Default Behavior” (page 73). A touch event
provides a snapshot of all touches during a multi-touch sequence, most importantly the touches that are new
or have changed for a particular target. The different types of multi-touch events are described in TouchEvent

Class Reference in Safari DOM Additions Reference .

A multi-touch sequence begins when a finger first touches the surface. Other fingers may subsequently touch
the surface, and all fingers may move across the surface. The sequence ends when the last of these fingers is
lifted from the surface. An application receives touch event objects during each phase of any touch.

Handling Events
Handling Multi-Touch Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

68

Touch events are similar to mouse events except that you can have simultaneous touches on the screen at
different locations. A touch event object is used to encapsulate all the touches that are currently on the screen.
Each finger is represented by a touch object. The typical properties that you find in a mouse event are in the
touch object, not the touch event object.

Note that a sequence of touch events is delivered to the element that received the original touchstart event
regardless of the current location of the touches.

Follow these steps to use multi-touch events in your web application.

1. Register handlers for multi-touch events in HTML as follows:

<div

ontouchstart="touchStart(event);"

ontouchmove="touchMove(event);"

ontouchend="touchEnd(event);"

ontouchcancel="touchCancel(event);"

></div>

2. Alternatively, register handlers in JavaScript as follows:

element.addEventListener("touchstart", touchStart, false);

element.addEventListener("touchmove", touchMove, false);

element.addEventListener("touchend", touchEnd, false);

element.addEventListener("touchcancel", touchCancel, false);

3. Respond to multi-touch events by implementing handlers in JavaScript.

For example, implement the touchStart method as follows:

function touchStart(event) {

// Insert your code here

}

4. Optionally, get all touches on a page using the touches property as follows:

var allTouches = event.touches;

Note that you can get all other touches for an event even when the event is triggered by a single touch.

Handling Events
Handling Multi-Touch Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

69

5. Optionally, get all touches for the target element using the targetTouches property:

var targetTouches = event.targetTouches;

6. Optionally, get all changed touches for this event using the changedTouches property:

var changedTouches = event.changedTouches;

7. Access the Touch object properties—such as the target, identifier, and location in page, client, or screen
coordinates—similar to mouse event properties.

For example, get the number of touches:

event.touches.length

Get a specific touch object at index i:

var touch = event.touches[i];

Finally, get the location in page coordinates for a single-finger event:

var x = event.touches[0].pageX;

var y = event.touches[0].pageY;

You can also combine multi-touch events with CSS visual effects to enable dragging or some other user action.
To enable dragging, implement the touchmove event handler to translate the target:

function touchMove(event) {

event.preventDefault();

curX = event.targetTouches[0].pageX - startX;

curY = event.targetTouches[0].pageY - startY;

event.targetTouches[0].target.style.webkitTransform =

'translate(' + curX + 'px, ' + curY + 'px)';

}

Handling Events
Handling Multi-Touch Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

70

Typically, you implement multi-touch event handlers to track one or two touches. But you can also use
multi-touch event handlers to identify custom gestures. That is, custom gestures that are not already identified
for you by gesture events described in “Handling Gesture Events” (page 71). For example, you can identify a
two-finger tap gesture as follows:

1. Begin gesture if you receive a touchstart event containing two target touches.

2. End gesture if you receive a touchend event with no preceding touchmove events.

Similarly, you can identify a swipe gesture as follows:

1. Begin gesture if you receive a touchstart event containing one target touch.

2. Abort gesture if, at any time, you receive an event with >1 touches.

3. Continue gesture if you receive a touchmove event mostly in the x-direction.

4. Abort gesture if you receive a touchmove event mostly the y-direction.

5. End gesture if you receive a touchend event.

Handling Gesture Events
Multi-touch events can be combined together to form high-level gesture events.

GestureEvent objects are also sent during a multi-touch sequence. Gesture events contain scaling and
rotation information allowing gestures to be combined, if supported by the platform. If not supported, one
gesture ends before another starts. Listen for GestureEvent objects if you want to respond to gestures only,
not process the low-level TouchEvent objects. The different types of gesture events are described in GestureEvent

Class Reference in Safari DOM Additions Reference .

Follow these steps to use gesture events in your web application.

1. Register handlers for gesture events in HTML:

<div

ongesturestart="gestureStart(event);"

ongesturechange="gestureChange(event);"

ongestureend="gestureEnd(event);"

></div>

2. Alternatively, register handlers in JavaScript:

Handling Events
Handling Gesture Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

71

element.addEventListener("gesturestart", gestureStart, false);

element.addEventListener("gesturechange", gestureChange, false);

element.addEventListener("gestureend", gestureEnd, false);

3. Respond to gesture events by implementing handlers in JavaScript.

For example, implement the gestureChange method as follows:

function gestureChange(event) {

// Insert your code here

}

4. Get the amount of rotation since the gesture started:

var angle = event.rotation;

The angle is in degrees, where clockwise is positive and counterclockwise is negative.

5. Get the amount scaled since the gesture started:

var scale = event.scale;

The scale is smaller if less than 1.0 and larger if greater than 1.0.

You can combine gesture events with CSS visual effects to enable scaling, rotating, or some other custom user
action. For example, implement the gesturechange event handler to scale and rotate the target as follows:

onGestureChange: function(e) {

e.preventDefault();

e.target.style.webkitTransform =

'scale(' + e.scale + startScale + ') rotate(' + e.rotation + startRotation
+ 'deg)';

}

Handling Events
Handling Gesture Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

72

Preventing Default Behavior

iOS Note: The preventDefault method applies to multi-touch and gesture input in iOS 2.0 and
later.

The default behavior of Safari on iOS can interfere with your application’s custom multi-touch and gesture
input. You can disable the default browser behavior by sending the preventDefault message to the event
object.

For example, to prevent scrolling on an element in iOS 2.0, implement the touchmove and touchstart event
handlers as follows :

function touchMove(event) {

// Prevent scrolling on this element

event.preventDefault();

...

}

To disable pinch open and pinch close gestures in iOS 2.0, implement the gesturestart and gesturechange
event handlers as follows:

function gestureChange(event) {

// Disable browser zoom

event.preventDefault();

...

}

Important: The default browser behavior may change in future releases.

Handling Orientation Events
An event is sent when the user changes the orientation of iOS. By handling this event in your web content,
you can determine the current orientation of the device and make layout changes accordingly. For example,
display a simple textual list in portrait orientation and add a column of icons in landscape orientation.

Similar to a resize event, a handler can be added to the <body> element in HTML as follows:

Handling Events
Preventing Default Behavior

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

73

<body onorientationchange="updateOrientation();">

where updateOrientation is a handler that you implement in JavaScript.

In addition, the window object has an orientation property set to either 0, -90, 90, or 180. For example, if
the user starts with the iPhone in portrait orientation and then changes to landscape orientation by turning
the iPhone to the right, the window’s orientation property is set to -90. If the user instead changes to
landscape by turning the iPhone to the left, the window’s orientation property is set to 90.

Listing 6-3 adds an orientation handler to the body element and implements the updateOrientation
JavaScript method to display the current orientation on the screen. Specifically, when an orientationchange
event occurs, the updateOrientationmethod is invoked, which changes the string displayed by the division
element in the body.

Listing 6-3 Displaying the orientation

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Orientation</title>

<meta name = "viewport" content="width=320, user-scalable=0"/>

<script type="text/javascript" language="javascript">

function updateOrientation()

{

var displayStr = "Orientation : ";

switch(window.orientation)

{

case 0:

displayStr += "Portrait";

break;

case -90:

Handling Events
Handling Orientation Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

74

displayStr += "Landscape (right, screen turned clockwise)";

break;

case 90:

displayStr += "Landscape (left, screen turned
counterclockwise)";

break;

case 180:

displayStr += "Portrait (upside-down portrait)";

break;

}

document.getElementById("output").innerHTML = displayStr;

}

</script>

</head>

<body onorientationchange="updateOrientation();">

<div id="output"></div>

</body>

</html>

Supported Events
Be aware of all the events that iOS supports and under what conditions they are generated. Table 6-1 specifies
which events are generated by Safari on iOS and which are generated conditionally depending on the type of
element selected. This table also lists unsupported events.

Handling Events
Supported Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

75

iOS Note: Although drag and drop are not supported, you can produce the same effect using touch
events as described in “Using Touch to Drag Elements” in Safari CSS Visual Effects Guide .

The unload event may not work as expected for back and forward optimization. Use the pageshow
and pagehide events instead.

Table 6-1 Types of events

AvailableConditionalGeneratedEvent

iOS 1.0 and later.NoYesabort

iOS 1.0 and later.NoYesblur

iOS 1.0 and later.NoYeschange

iOS 1.0 and later.YesYesclick

N/ANocopy

N/ANocut

N/ANodrag

N/ANodrop

iOS 1.0 and later.NoYesfocus

iOS 2.0 and later.N/AYesgesturestart

iOS 2.0 and later.N/AYesgesturechange

iOS 2.0 and later.N/AYesgestureend

iOS 1.0 and later.NoYesload

iOS 1.0 and later.YesYesmousemove

iOS 1.0 and later.YesYesmousedown

iOS 1.0 and later.YesYesmouseup

iOS 1.0 and later.YesYesmouseover

iOS 1.0 and later.YesYesmouseout

iOS 1.1.1 and later.N/AYesorientationchange

Handling Events
Supported Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

76

AvailableConditionalGeneratedEvent

iOS 4.0 and later.NoYespagehide

iOS 4.0 and later.NoYespageshow

N/ANopaste

iOS 1.0 and later.NoYesreset

N/ANoselection

iOS 1.0 and later.NoYessubmit

iOS 2.0 and later.N/AYestouchcancel

iOS 2.0 and later.N/AYestouchend

iOS 2.0 and later.N/AYestouchmove

iOS 2.0 and later.N/AYestouchstart

iOS 1.0 and later.NoYesunload

Handling Events
Supported Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

77

Safari has a new Smart App Banner feature in iOS 6 and later that provides a standardized method of promoting
apps on the App Store from a website, as shown in Figure 7-1 (page 78).

Figure 7-1 A Smart App Banner of the Apple Store app

Note: Smart App Banners only show on iOS, not OS X.

Smart App Banners vastly improve users’ browsing experience compared to other promotional methods. As
banners are implemented in iOS 6, they will provide a consistent look and feel across the web that users will
come to recognize. Users will trust that tapping the banner will take them to the App Store and not a third-party
advertisement. They will appreciate that banners are presented unobtrusively at the top of a webpage, instead
of as a full-screen ad interrupting the web content. And with a large and prominent close button, a banner is
easy for users to dismiss.

If the app is already installed on a user's device, the banner intelligently changes its action, and tapping the
banner will simply open the app. If the user doesn’t have your app on his device, tapping on the banner will
take him to the app’s entry in the App Store. When he returns to your website, a progress bar appears in the
banner, indicating how much longer the download will take to complete. When the app finishes downloading,
the View button changes to an Open button, and tapping the banner will open the app while preserving the
user’s context from your website.

Smart App Banners automatically determine whether the app is supported on the user’s device. If the device
loading the banner does not support your app, or if your app is not available in the user's location, the banner
will not display.

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

78

Promoting Apps with Smart App Banners

Implementing a Smart App Banner on Your Website
To add a Smart App Banner to your website, include the following meta tag in the head of each page where
you’d like the banner to appear:

<meta name="apple-itunes-app" content="app-id=myAppStoreID,
affiliate-data=myAffiliateData, app-argument=myURL">

You can include three comma-separated parameters in the content attribute:

 ● app-id: (Required.) Your app's unique identifier. To find your app ID from the iTunes Link Maker, type
the name of your app in the Search field, and select the appropriate country and media type. In the results,
find your app and select iPhone App Link in the column on the right. Your app ID is the nine-digit number
in between id and ?mt.

 ● affiliate-data: (Optional.) Your iTunes affiliate string, if you are an iTunes affiliate. If you are not, find
out more about becoming an iTunes affiliate at http://www.apple.com/itunes/affiliates/.

 ● app-argument: (Optional.) A URL that provides context to your native app. If you include this, and the
user has your app installed, she can jump from your website to the corresponding position in your iOS
app. Typically, it is beneficial to retain navigational context because:

 ● If the user is deep within the navigational hierarchy of your website, you can pass the document’s
entire URL, and then parse it in your app to reroute her to the correct location in your app.

 ● If the user performs a search on your website, you can pass the query string so that she can seamlessly
continue the search in your app without having to retype her query.

 ● If the user is in the midst of creating content, you can pass the session ID to download the web session
state in your app so she can nondestructively resume her work.

You can generate the app-argument of each page dynamically with a server-side script. You can format
it however you'd like, as long as it is a valid URL.

Note: You cannot display Smart App Banners inside of a frame.

Providing Navigational Context to Your App
In your app, implement the application:openURL:sourceApplication:annotation: method in your
app delegate, which fires when your app is launched from a URL. Then provide logic that can interpret the
URL that you pass. The value you set to the app-argument parameter is available as the NSURL url object.

Promoting Apps with Smart App Banners
Implementing a Smart App Banner on Your Website

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

79

http://itunes.apple.com/linkmaker/
http://www.apple.com/itunes/affiliates/

The example in Listing 7-1 (page 80) illustrates a website that passes data to a native iOS app. To accomplish
this, detect if the URL contains the string /profile. If it does, then open the profile view controller and pass
the profile ID number that is in the query string.

Listing 7-1 Routing the user to the correct view controller

- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url
sourceApplication:(NSString *)sourceApplication annotation:(id)annotation

{

// in this example, the URL from which the user came is
http://example.com/profile/?12345

// determine if the user was viewing a profile

if ([[url path] isEqualToString:@"/profile"]) {

// switch to profile view controller

[self.tabBarController setSelectedViewController:profileViewController];

// pull the profile id number found in the query string

NSString *profileID = [url query];

// pass profileID to profile view controller

[profileViewController loadProfile:profileID];

}

return YES;

}

Promoting Apps with Smart App Banners
Providing Navigational Context to Your App

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

80

A web application is designed to look and behave in a way similar to a native application—for example, it is
scaled to fit the entire screen on iOS. You can tailor your web application for Safari on iOS even further, by
making it appear like a native application when the user adds it to the Home screen. You do this by using
settings for iOS that are ignored by other platforms.

For example, you can specify an icon for your web application used to represent it when added to the Home
screen on iOS, as described in “Specifying a Webpage Icon for Web Clip” (page 81). You can also minimize the
Safari on iOS user interface, as described in “Changing the Status Bar Appearance” (page 83) and “Hiding Safari
User Interface Components” (page 83), when your web application is launched from the Home screen. These
are all optional settings that when added to your web content are ignored by other platforms.

Read “Viewport Settings for Web Applications” (page 49) for how to set the viewport for web applications on
iOS.

Specifying a Webpage Icon for Web Clip

iOS Note: The Web Clip feature is available in iOS 1.1.3 and later. The
apple-touch-icon-precomposed.png filename is available in iOS 2.0 and later. Support for
multiple icons for different device resolutions is available in iOS 4.2 and later.

You may want users to be able to add your web application or webpage link to the Home screen. These links,
represented by an icon, are called Web Clips. Follow these simple steps to specify an icon to represent your
web application or webpage on iOS.

 ● To specify an icon for the entire website (every page on the website), place an icon file in PNG format in
the root document folder called apple-touch-icon.png or apple-touch-icon-precomposed.png.
If you use apple-touch-icon-precomposed.png as the filename, Safari on iOS won’t add any effects
to the icon.

 ● To specify an icon for a single webpage or replace the website icon with a webpage-specific icon, add a
link element to the webpage, as in:

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

81

Configuring Web Applications

<link rel="apple-touch-icon" href="/custom_icon.png"/>

In the above example, replace custom_icon.png with your icon filename. If you don’t want Safari on
iOS to add any effects to the icon, replace apple-touch-iconwith apple-touch-icon-precomposed.

 ● To specify multiple icons for different device resolutions—for example, support both iPhone and iPad
devices—add a sizes attribute to each link element as follows:

<link rel="apple-touch-icon" href="touch-icon-iphone.png" />

<link rel="apple-touch-icon" sizes="72x72" href="touch-icon-ipad.png" />

<link rel="apple-touch-icon" sizes="114x114"
href="touch-icon-iphone-retina.png" />

<link rel="apple-touch-icon" sizes="144x144"
href="touch-icon-ipad-retina.png" />

The icon that is the most appropriate size for the device is used. If no sizes attribute is set, the element’s
size defaults to 57 x 57.

If there is no icon that matches the recommended size for the device, the smallest icon larger than the
recommended size is used. If there are no icons larger than the recommended size, the largest icon is used. If
multiple icons are suitable, the icon that has the precomposed keyword is used.

If no icons are specified using a link element, the website root directory is searched for icons with the
apple-touch-icon... or apple-touch-icon-precomposed... prefix. For example, if the appropriate
icon size for the device is 57 x 57, the system searches for filenames in the following order:

1. apple-touch-icon-57x57-precomposed.png

2. apple-touch-icon-57x57.png

3. apple-touch-icon-precomposed.png

4. apple-touch-icon.png

See “Custom Icon and Image Creation Guidelines” for webpage icon metrics.

Configuring Web Applications
Specifying a Webpage Icon for Web Clip

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

82

Specifying a Startup Image

iOS Note: Specifying a startup image is available in iOS 3.0 and later.

On iOS, similar to native applications, you can specify a startup image that is displayed while your web application
launches. This is especially useful when your web application is offline. By default, a screenshot of the web
application the last time it was launched is used. To set another startup image, add a link element to the
webpage, as in:

<link rel="apple-touch-startup-image" href="/startup.png">

In the above example, replace startup.png with your startup screen filename. On iPhone and iPod touch,
the image must be 320 x 460 pixels and in portrait orientation.

Hiding Safari User Interface Components
On iOS, as part of optimizing your web application, have it use the standalone mode to look more like a native
application. When you use this standalone mode, Safari is not used to display the web content—specifically,
there is no browser URL text field at the top of the screen or button bar at the bottom of the screen. Only a
status bar appears at the top of the screen. Read “Changing the Status Bar Appearance” (page 83) for how to
minimize the status bar.

Set the apple-mobile-web-app-capable meta tag to yes to turn on standalone mode. For example, the
following HTML displays web content using standalone mode.

<meta name="apple-mobile-web-app-capable" content="yes" />

You can determine whether a webpage is displaying in standalone mode using the
window.navigator.standalone read-only Boolean JavaScript property.

Changing the Status Bar Appearance
If your web application displays in standalone mode like that of a native application, you can minimize the
status bar that is displayed at the top of the screen on iOS. Do so using the status-bar-style meta tag.

Configuring Web Applications
Specifying a Startup Image

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

83

This meta tag has no effect unless you first specify standalone mode as described in “Hiding Safari User Interface
Components” (page 83). Then use the status bar style meta tag,
apple-mobile-web-app-status-bar-style, to change the appearance of the status bar depending on
your application needs. For example, if you want to use the entire screen, set the status bar style to translucent
black.

For example, the following HTML sets the background color of the status bar to black:

<meta name="apple-mobile-web-app-status-bar-style" content="black" />

Linking to Other Native Apps
Your web application can link to other built-in iOS apps by creating a link with a special URL. Available
functionality includes calling a phone number, sending an SMS or iMessage, and opening a YouTube video in
its native app if it is installed. For example, to link to a phone number, structure an anchor element in the
following format:

Call me

For a complete look of these capabilities, see Apple URL Scheme Reference .

Configuring Web Applications
Linking to Other Native Apps

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

84

Safari supports audio and video viewing in a webpage on the desktop and iOS. You can use audio and video
HTML elements or use the embed element to use the native application for video playback. In either case, you
need to ensure that the video you create is optimized for the platform and different bandwidths.

iOS streams movies and audio using HTTP over EDGE, 3G, and Wi-Fi networks. iOS uses a native application to
play back video even when video is embedded in your webpages. Video automatically expands to the size of
the screen and rotates when the user changes orientation. The controls automatically hide when they are not
in use and appear when the user taps the screen. This is the experience the user expects when viewing all
video on iOS.

Safari on iOS supports a variety of rich media, including QuickTime movies, as described in “Use Supported
iOS Rich Media MIME Types” (page 23). Safari on iOS does not support Flash so don’t bring up JavaScript alerts
that ask users to download Flash. Also, don’t use JavaScript movie controls to play back video since iOS supplies
its own controls.

Safari on the desktop supports the same audio and video formats as Safari on iOS. However, if you use the
audio and video HTML elements on the desktop, you can customize the play back controls. See Safari DOM
Additions Reference for more details on the HTMLMediaElement class.

Follow these guidelines to deliver the best web audio and video experience in Safari on any platform:

 ● Follow current best practices for embedding movies in webpages as described in “Sizing Movies
Appropriately” (page 86), “Don’t Let the Bit Rate Stall Your Movie” (page 86), and “Using Supported Movie
Standards” (page 86).

 ● Use QuickTime Pro to encode H.264/AAC at appropriate sizes and bit rates for EDGE, 3G, and Wi-Fi networks,
as described in “Encoding Video for Wi-Fi, 3G, and EDGE” (page 87).

 ● Use reference movies so that iOS automatically streams the best version of your content for the current
network connection, as described in “Creating a Reference Movie” (page 88).

 ● Use poster JPEGs (not poster frames in a movie) to display a preview of your embedded movie in webpages,
as described in “Creating a Poster Image for Movies” (page 88).

 ● Make sure the HTTP servers hosting your media files support byte-range requests, as described in
“Configuring Your Server” (page 89).

 ● If your site has a custom media player, also provide direct links to the media files. iOS users can follow
these links to play those files directly.

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

85

Creating Video

Sizing Movies Appropriately
In landscape orientation on iOS, the screen is 480 x 320 pixels. Users can easily switch the view mode between
scaled-to-fit (letterboxed) and full-screen (centered and cropped). You should use a size that preserves the
aspect ratio of your content and fits within a 480 x 360 rectangle. 480 x 360 is a good choice for 4:3 aspect
ratio content and 480 x 270 is a good choice for widescreen content as it keeps the video sharp in full-screen
view mode. You can also use 640 x 360 or anamorphic 640 x 480 with pixel aspect ratio tagging for widescreen
content.

Don’t Let the Bit Rate Stall Your Movie
When viewing media over the network, the bit rate makes a crucial difference to the playback experience. If
the network cannot keep up with the media bit rate, playback stalls. Encode your media for iOS as described
in “Encoding Video for Wi-Fi, 3G, and EDGE” (page 87) and use a reference movie as described in “Creating a
Reference Movie” (page 88).

Using Supported Movie Standards
The following compression standards are supported:

 ● H.264 Baseline Profile Level 3.0 video, up to 640 x 480 at 30 fps. Note that B frames are not supported in
the Baseline profile.

 ● MPEG-4 Part 2 video (Simple Profile)

 ● AAC-LC audio, up to 48 kHz

Movie files with the extensions .mov, .mp4, .m4v, and .3gp are supported.

Any movies or audio files that can play on iPod play correctly on iPhone.

If you export your movies using QuickTime Pro 7.2, as described in “Encoding Video for Wi-Fi, 3G, and
EDGE” (page 87), then you can be sure that they are optimized to play on iOS.

Creating Video
Sizing Movies Appropriately

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

86

Encoding Video for Wi-Fi, 3G, and EDGE
Because users may be connected to the Internet via wired or wireless technology, using either Wi-Fi, 3G, or
EDGE on iOS, you need to provide alternate media for these different connection speeds. You can use QuickTime
Pro, the QuickTime API, or any Apple applications that provide iOS exporters to encode your video for Wi-Fi,
3G, and EDGE. This section contains specific instructions for exporting video using QuickTime Pro.

Follow these steps to export video using QuickTime Pro 7.2.1 and later:

1. Open your movie using QuickTime Player Pro.

2. Choose File > Export for Web.

A dialog appears.

3. Enter the file name prefix, location of your export, and set of versions to export as shown in Figure 9-1.

Figure 9-1 Export movie panel

4. Click Export.

QuickTime Player Pro saves these versions of your QuickTime movie, along with a reference movie, poster
image, and ReadMe.html file to the specified location. See the ReadMe.html file for instructions on
embedding the generated movie in your webpage, including sample HTML.

Creating Video
Encoding Video for Wi-Fi, 3G, and EDGE

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

87

Creating a Reference Movie
A reference movie contains a list of movie URLs, each of which has a list of tests, as show in Figure 9-2. When
opening the reference movie, a playback device or computer chooses one of the movie URLs by finding the
last one that passes all its tests. Tests can check the capabilities of the device or computer and the speed of
the network connection.

Figure 9-2 Reference movie components

iPhone over EDGE

iPhone over WiFi

Computer desktop

80 kbit
foo-iPhone-cell.3gp

1 Mbit
foo-iPhone.m4v

Main Profile
foo-desktop.m4v

foo-ref.mov

If you use QuickTime Pro 7.2.1 or later to export your movies for iOS, as described in “Encoding Video for Wi-Fi,
3G, and EDGE” (page 87), then you already have a reference movie. Otherwise, you can use the MakeRefMovie
tool to create reference movies. For more information on creating reference movies see Creating Reference
Movies - MakeRefMovie .

Also, refer to the MakeiPhoneRefMovie sample for a command-line tool that creates reference movies.

For more details on reference movies and instructions on how to set them up see “Applications and Examples”
in HTML Scripting Guide for QuickTime .

Creating a Poster Image for Movies
The video is not decoded until the user enters movie playback mode. Consequently, when displaying a webpage
with video, users may see a gray rectangle with a QuickTime logo until they tap the Play button. Therefore,
use a poster JPEG as a preview of your movie. If you use QuickTime Pro 7.2.1 or later to export your movies, as
described in “Encoding Video for Wi-Fi, 3G, and EDGE” (page 87), then a poster image is already created for
you. Otherwise, follow these instructions to set a poster image.

If you are using the <video> element, specify a poster image by setting the poster attribute as follows:

Creating Video
Creating a Reference Movie

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

88

https://connect.apple.com/cgi-bin/WebObjects/MemberSite.woa/wa/getSoftware?bundleID=19980

<video poster="poster.jpg" src="movie.m4v" ...> </video>

If you are using an <embed> HTML element, specify a poster image by setting the image for src, the movie
for href, the media MIME type for type, and myself as the target:

<embed src="poster.jpg" href="movie.m4v" type="video/x-m4v" target="myself" scale="1"
...>

Make similar changes if you are using the <object> HTML element or JavaScript to embed movies in your
webpage.

On the desktop, this image is displayed until the user clicks, at which time the movie is substituted.

Configuring Your Server
HTTP servers hosting media files for iOS must support byte-range requests, which iOS uses to perform random
access in media playback. (Byte-range support is also known as content-range or partial-range support.) Most,
but not all, HTTP 1.1 servers already support byte-range requests.

If you are not sure whether your media server supports byte-range requests, you can open the Terminal
application in OS X and use the curl command-line tool to download a short segment from a file on the
server:

curl --range 0-99 http://example.com/test.mov -o /dev/null

If the tool reports that it downloaded 100 bytes, the media server correctly handled the byte-range request.
If it downloads the entire file, you may need to update the media server. For more information on curl, see
OS X Man Pages .

Ensure that your HTTP server sends the correct MIME types for the movie filename extensions shown in Table
9-1.

Table 9-1 File name extensions for MIME types

MIME typeExtensions

video/quicktime.mov

video/mp4.mp4

video/x-m4v.m4v

Creating Video
Configuring Your Server

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

89

MIME typeExtensions

video/3gpp.3gp

Be aware that iOS supports movies larger than 2 GB. However, some older web servers are not able to serve
files this large. Apache 2 supports downloading files larger than 2 GB.

RTSP is not supported.

Creating Video
Configuring Your Server

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

90

There are several ways for a web application or website to store data on the client. You can use the JavaScript
database classes, described in Safari Client-Side StorageandOfflineApplicationsProgrammingGuide , for storing
application data or use the HTML5 application cache for storing resources on the client so webpages continue
to display offline when there is no network connection on the desktop and iOS. You can also use the application
cache to load webpages faster when there is a slow network connection. This chapter describes how to store
data locally using this HTML5 application cache.

To store resources on the client first you create a manifest file specifying which resources to cache. You declare
the manifest file in the main HTML file. Then you manipulate the cache and handle related events using
JavaScript. Webpages that were previously loaded and contain the resources you specify continue to display
correctly when there is no network. The application cache also persists between browser sessions. So, a web
application that was previously used on the computer or device can continue to work offline—for example,
when iOS has no network or is in airplane mode.

Creating a Manifest File
The manifest file specifies the resources—such as HTML, JavaScript, CSS, and image files —to downloaded
and store in the application cache. After the first time a webpage is loaded, the resources specified in the
manifest file are obtained from the application cache, not the web server.

The manifest file has the following attributes:

 ● It must be served with type text/cache-manifest.

 ● The first line must contain the text CACHE MANIFEST.

 ● Subsequent lines may contain URLs for each resource to cache or comments.

 ● Comments must be on a single line and preceded by the # character.

 ● The URLs are file paths to resources you want to download and cache locally. The file paths should be
relative to the location of the manifest file—similar to file paths used in CSS—or absolute.

 ● The HTML file that declares the manifest file, described in “Declaring a Manifest File” (page 92), is
automatically included in the application cache. You do not need to add it to the manifest file.

For example, Listing 10-1 shows a manifest file that contains URLs to some image resources.

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

91

Storing Data on the Client

Listing 10-1 Sample manifest file

CACHE MANIFEST

demoimages/clownfish.jpg

demoimages/clownfishsmall.jpg

demoimages/flowingrock.jpg

demoimages/flowingrocksmall.jpg

demoimages/stones.jpg

demoimages/stonessmall.jpg

Declaring a Manifest File
After you create a manifest file you need to declare it in the HTML file. You do this by adding a manifest
attribute to the <html> tag as follows:

<html manifest="demo.manifest">

The argument to the manifest attribute is a relative or absolute path to the manifest file.

In most cases, creating a manifest file and declaring it is all you need to do to create an application cache. After
doing this, the resources are automatically stored in the cache the first time the webpage is displayed and
loaded from the cache by multiple browser sessions thereafter. Read the following sections if you want to
manipulate this cache from JavaScript.

Updating the Cache
You can wait for the application cache to update automatically or trigger an update using JavaScript. The
application cache automatically updates only if the manifest file changes. It does not automatically update if
resources listed in the manifest file change. The manifest file is considered unchanged if it is byte-for-byte the
same; therefore, changing the modification date of a manifest file also does not trigger an update. If this is not
sufficient for your application, you can update the application cache explicitly using JavaScript.

Note that errors can also occur when updating the application cache. If downloading the manifest file or a
resource specified in the manifest file fails, the entire update process fails. If the update process fails, the current
application cache is not corrupted—the browser continues to use the previous version of the application cache.
If the update is successful, webpages begin using the new cache when they reload.

Storing Data on the Client
Declaring a Manifest File

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

92

Use the following JavaScript class to trigger an update to the application cache and check its status. There is
one application cache per document represented by an instance of the DOMApplicationCache class. The
application cache is a property of the DOMWindow object.

For example, you get the DOMApplicationCache object as follows:

cache = window.applicationCache;

You can check the status of the application cache as follows:

if (window.applicationCache.status == window.applicationCache.UPDATEREADY)...

If the application cache is in the UPDATEREADY state, then you can update it by sending it the update()
message as follows:

window.applicationCache.update();

If the update is successful, swap the old and new caches as follows:

window.applicationCache.swapCache();

The cache is ready to use when it returns to the UPDATEREADY state. See the documentation for
DOMApplicationCache for other status values. Again, only webpages loaded after an update use the new
cache, not webpages that are currently displayed by the browser.

iOS Note: Using JavaScript to add and remove resources from the application cache is currently
not supported.

Handling Cache Events
You can also listen for application cache events using JavaScript. Events are sent when the status of the
application cache changes or the update process fails. You can register for these events and take the appropriate
action.

For example, register for the updateready event to be notified when the application cache is ready to be
updated. Also, register for the error event to take some action if the update process fails—for example, log
an error message using the console.

Storing Data on the Client
Handling Cache Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

93

cache = window.applicationCache;

cache.addEventListener('updateready', cacheUpdatereadyListener, false);

cache.addEventListener('error', cacheErrorListener, false);

See the documentation for DOMApplicationCache for a complete list of event types.

Storing Data on the Client
Handling Cache Events

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

94

Use the JavaScript classes described in this chapter to obtain or track the current geographic location of the
host device. These classes hide the implementation details of how the location information is obtained—for
example, using Global Positioning System (GPS), IP addresses, Wi-Fi, Bluetooth, or some other technology. The
classes allow you to get the current location or get continual updates on the location as it changes.

iOS Note: Geographic location classes are available in iOS 3.0 and later.

Geographic Location Classes
The Navigator object has a read-only Geolocation instance variable. You obtain location information from
this Geolocation object. The parameters to the Geolocation methods that get location information are
mostly callbacks, instances of PositionCallback or PositionErrorCallback. Because there may be a
delay in getting location information, it cannot be returned immediately by these methods. The callbacks that
you specify are invoked when the location information is obtained or an error occurs. If the location information
is obtained, the position callback is passed a position object describing the geographic location. If an error
occurs, the error callback is passed an instance of PositionError describing the error. The position object
represents the location in latitude and longitude coordinates.

Getting the Current Location
The most common use of the Geolocation class is to get the current location. For example, your web
application can get the current location and display it on a map for the user. Use the getCurrentPosition
method in Geolocation to get the current location from the Navigator object. Pass your callback function
as the parameter to the getCurrentPosition method as follows:

// Get the current location

navigator.geolocation.getCurrentPosition(showMap);

Your callback function—the showMap function in this example—should take a position object as the parameter
as follows:

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

95

Getting Geographic Locations

function showMap(position) {

// Show a map centered at position

}

Use the coords instance variable of the passed-in position object to obtain the latitude and longitude
coordinates as follows:

latitude = position.coords.latitude;

longitude = position.coords.longitude;

Tracking the Current Location
You can also track the current location. For example, if your web application displays the current location on
a map, you can register for location changes and continually scroll the map as the current location changes.
When you register for location changes, you receive a callback every time the location changes. The callbacks
are continual until you unregister for location changes.

Use the watchPositionmethod in the Geolocation class to register for location changes. Pass your callback
function as the parameter. In this example, the scrollMap function is invoked every time the current location
changes:

// Register for location changes

var watchId = navigator.geolocation.watchPosition(scrollMap);

The callback function should take a position object as the parameter as follows:

function scrollMap(position) {

// Scroll the map to center position

}

Similar to “Getting the Current Location” (page 95), use the coords instance variable of the passed in position
object to obtain the latitude and longitude coordinates.

Use the clearWatch method in the Geolocation class to unregister for location changes. For example,
unregister when the user clicks a button or taps a finger on the map as follows:

Getting Geographic Locations
Tracking the Current Location

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

96

function buttonClickHandler() {

// Unregister when the user clicks a button

navigator.geolocation.clearWatch(watchId);

}

Note: Constantly tracking the current location may reduce the device’s battery life since the GPS
hardware is enabled in the tracking mode.

Handling Location Errors
Your web application should handle errors that can occur when requesting location information. For example,
display a message to the user if the location cannot be determined due to poor network connectivity or some
other error.

When registering for location changes, you can optionally pass an error callback to the watchPosition
method in the Geolocation class as follows:

// Register for location changes

var watchId = navigator.geolocation.watchPosition(scrollMap, handleError);

The error callback should take a PositionError object as the parameter as in:

function handleError(error) {

// Update a div element with the error message

}

Getting Geographic Locations
Handling Location Errors

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

97

With Safari on iOS 6 and later, you can debug your mobile web content from your Mac. You can view JavaScript
errors, edit HTML attributes, change CSS properties, and more—just as you would when developing for Safari
on OS X. This chapter describes how to use Web Inspector to debug web content on iOS.

You should test your web content on both the desktop and various iOS devices. If you do not have iOS devices
for testing, you can use iOS Simulator in the iOS SDK. Because there is a difference between web browsing on
iOS and OS X, you should specifically test your content on iPhone and iPad or emulate the hardware device in
Simulator. When testing in Safari on any platform, you can use Web Inspector to debug your web content.

For more tips on debugging web content in Safari, read SafariDeveloper ToolsGuide . Read the section “Changing

the User Agent String” in Safari User Guide for Web Developers to learn how to simulate iPhone- and iPad-like
behavior in Safari on OS X.

iOS Note: Web Inspector is available on iOS 6 and later.

Enable Web Inspector on iOS
Web Inspector provides valuable insight on what might be going wrong with your web content. Even though
Web Inspector is accessed through Safari on OS X, you can use it to inspect content that has loaded in Safari
or in any UIWebView on iOS.

To enable Web Inspector on iOS

1. Open the Settings app.

2. Tap Safari.

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

98

Debugging Web Content on iOS

3. Scroll down and select Advanced.

4. Switch Web Inspector to ON.

Debugging Web Content on iOS
Enable Web Inspector on iOS

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

99

Inspect From Your Mac
When Web Inspector on iOS is enabled, connect your device to your Mac with a USB cable. A menu item in
the Develop menu of Safari on OS X appears, as shown in Figure 12-1. If your device name does not immediately
appear in the Develop menu, try restarting Safari and/or reconnecting your connection cable.

Note: The Develop menu can be enabled in the Advanced pane of Safari preferences.

Figure 12-1 Inspecting a web page from the Develop menu

The name of the menu item will be either the name of each device connected and/or the name of the simulator.
A submenu containing each available page for each inspectable app appears. The app must be running in the
foreground for it to appear in the Develop menu. Select the page that you are interested in, and Web Inspector
opens in a new window.

The same interface and workflow to debug web content on OS X is used to debug web content on iOS, as
shown in Figure 12-2.

Figure 12-2 Web Inspector

Debugging Web Content on iOS
Inspect From Your Mac

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

100

All of Web Inspector’s features on OS X—such as timing HTTP requests, profiling JavaScript, or manipulating
the DOM Tree—are available on iOS as well. The sole difference is that by selecting your web page through
the Develop menu, you actively inspect web content on your device instead of on your Mac. If you browse to
another URL on your device with the Inspector window still open, you’ll notice that the inspected data reloads
to reflect the page you navigated to.

Note: To learn how to use Web Inspector to its full potential, consult Safari Developer Tools Guide .

Inspecting Content in a Web View
If you have a development provisioning profile installed on your device, you can debug any web view
(UIWebView object) in your app. This is particularly useful if your app manipulates the DOM in any way, and
you want to observe the generated markup.

To inspect a UIWebView, make sure that your app is open to the desired view so it appears under the Develop
menu. The name of your app will appear as a submenu under the name of your device, as seen in Figure 12-3.
When debugging web content in a web view, Web Inspector behaves in the same manner as debugging web
content in Safari.

Figure 12-3 Inspecting a native app’s web view from the Develop menu

Debugging Web Content on iOS
Inspect From Your Mac

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

101

Important: You can only inspect apps on devices that have been transferred to your device from Xcode.
You cannot inspect apps that have been downloaded from the App Store, even if it is your app.

Use JavaScript to Interact with Your Device
You can communicate to your device from your Mac by sending JavaScript commands with the interactive
Web Inspector debug console found under the Log inspector. Through the debug console you have access to
variables, functions, and the DOM tree of the page being inspected. As you start typing, notice that acceptable
values autopopulate. Press Return to send your command, and you receive a response, as shown in Figure
12-4.

Figure 12-4 Observing the value of document.title in the debug console

Tip: In the content browser, you can press the esc key to jump to the quick console at the bottom of the

inspector. The quick console has the same functionality of the debug console, but takes up less screen space.

Debugging Web Content on iOS
Use JavaScript to Interact with Your Device

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

102

Conversely, you can create messages on your device and send their values to your Mac for observation.
Throughout your JavaScript code, you can call the log(), warn(), and error() methods of the console
object. Pass an object containing any runtime variables you are curious about. In this way, you can determine
the value of an object at any stage of the loading process, instead of just at the end via the debug console.
For example, the following code prints the value of a variable to the console using the log() method:

console.log("The current value of myVariable is " + myVariable);

Observe the output of console logs, warnings, and errors in the Log navigator (control-8).

Not only can you pass messages back and forth between iOS and OS X but you can also trigger functions on
your device from your Mac. The example shown in Figure 12-5 calls window.alert(), but you can call any
top-level function available to the webpage, including functions of your own. This behavior is useful if you
want to closely examine the implementation of your code programmatically instead of through a user interface.

Figure 12-5 Alert dialog triggered from the debug console

Debugging Web Content on iOS
Use JavaScript to Interact with Your Device

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

103

HyperText Markup Language (HTML) is the fundamental mark-up language used to create web content. Your
HTML needs to be well structured and valid to work well with Safari on the desktop and Safari on iOS. Read
this appendix to learn more about creating conforming HTML content.

See Safari HTML Reference for a complete guide to all the HTML elements supported by Safari.

What Is HTML?
HTML is the standard for content structure on the web. Its original intention of the designers was to provide
the structure required for web browsers to parse its content into a meaningful format. This structure could
define entire documents, complete with headings, text, lists, data tables, images, and more. As the web
flourished, it also began to incorporate style and multimedia aspects as well.

Arguably the most important feature of HTML is the ability to "hyperlink" text. This gives content providers
the ability to assign the URI of other content on the web to a block of text, allowing it to be clicked and followed
by the user of the content.

The most recent revisions of the HTML standard are returning to the "old days" of separating the structure of
web content (HTML) from the presentation of the content (using a technology called Cascading Style Sheets,
or CSS). You can learn more about creating effective web content style in the “CSS Basics” (page 111) appendix.

This appendix, conversely, covers only the structure of HTML and how to properly format a document for a
variety of clients. It does not discuss advanced HTML features or proper webpage layout and design.

Basic HTML Structure
There are a few basic structure blocks that make up the core of an HTML document. The blocks are described
in the context of the HTML code shown in Listing A-1.

Listing A-1 Basic HTML document

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"

"http://www.w3.org/TR/REC-html40/strict.dtd">

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

104

HTML Basics

<html>

<head>

<title>HTML Sample Code</title>

</head>

<body>

<div>

<img src="myWelcomeGraphic.gif" width="600" height="200" alt="Welcome!"
/>

</div>

<h1>Big Heading</h1>

<p>This is our HTML sample code. It shows many elements:</p>

The HTML document block.

The HEAD and title of the page.

A paragraph.

An unordered list.

</body>

</html>

The html document block: The <html> document block is the entirety of the HTML code for a webpage. In
the example, the tags defining this block—<html> and </html>—are located towards the top and bottom
of the document. The document is prefaced with a DOCTYPEdeclaration, which tells browsers which specification
to parse your webpage against. If you are following the strict conventions of the HTML specification, you should
use the declaration shown above. Otherwise it can be left off, but it defaults to a "quirks" mode. Refer to the
HTML 4.01 Specification for more on document validation types.

The head block: The <head> block defines a block of metadata about the webpage. In this case, you can see
the webpage has a <title> element within it. The title is the text that is displayed at the top of a web browser
window. The <head> block also can contain a variety of other metadata, such as externally linked CSS style
sheets (using the link tag) and sets of JavaScript functions. This block should always contain at least the title,
and should always be external to the body content.

The body block: This block defines the entire body of the document—it should encompass the visible content
of the webpage itself. The body block itself is not designed for inline content. Rather, you should define other
block elements (such as paragraphs, divisions, and headers) and embed content within them. The <body>
block should be used to specify style parameters for the entirety of the content.

HTML Basics
Basic HTML Structure

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

105

http://www.w3.org/TR/REC-html40/

Other block elements: There are a number of other fundamental block elements enclosed within the content's
<body> block. They include:

 ● Heading. Specified in this case by the <h1> and </h1> tags, this defines the header for a following block
of content. The headers can be of six different sizes, ranging from a very large first-level heading (defined
with the <h1> and </h1> tags) down to a small sixth-level heading (defined with the <h6> and </h6>
tags). It should contain only brief text—other content such as large text blocks, images, and movies should
be embedded in other appropriate block elements such as paragraphs and divisions.

 ● Paragraph. Specified by the <p> and </p> tags, this is one of the fundamental block elements for web
content. Each individual paragraph should contain the inline text content that defines the readable content
of a webpage and should not enclose any other block elements. Generally, paragraph blocks are for text
only. An alternative to the paragraph is the division, and that is the most appropriate block element for
other media types such as images and movies.

 ● Division/Section. Specified by the <div> and </div> tags, the division is designed to contain all kinds
of content, including text, images, and other multimedia. It also can encompass other block elements such
as paragraphs, though enclosing divisions within other divisions is generally not recommended. Generally,
division blocks are used to define unified styles for blocks of content. In the example above, the division
block contains the heading image for the webpage.

 ● List. HTML supports two basic kinds of lists, the ordered list (specified by the and tags) and
the unordered list (specified by the and tags), as in the example above. An ordered list tags
each list element (specified by the and tags) with an incremental number (1, 2, 3, and so on).
An unordered list tags each list element with a bullet, though this marker can be changed using CSS
styling.

Now you've learned some of the fundamental skeleton elements of HTML structure. Block elements such as
paragraphs and divisions are the core of the content—by themselves they are invisible, but they contain inline
elements such as text, images, and movies. The next section takes you a little deeper into some features of
HTML content.

Creating Effective HTML Content
You've learned about the fundamental elements that define HTML structure, but a webpage is useless without
any kind of content in it. Now that you've laid down the foundation for the webpage, you should place some
content to create a rich experience for your users. This appendix discusses some basic inline HTML elements;
for all the elements supported by Safari and WebKit, refer to Safari HTML Reference .

HTML Basics
Creating Effective HTML Content

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

106

The most common web content contains a lot of text and a few images. Think of a travel journal, for example,
that has a discussion of the day's events alongside a few photos from the journey. As the Internet has matured,
you may have seen more in the way of movies, animations, and other "rich" forms of content introduced to
the web. But the most common media is still a combination of text and images.

Displaying text is a simple thing in HTML. Once you've established the surrounding block element—a paragraph,
for example, as discussed in the previous section—the text can just be placed inline. An example from the
fictional travel journal might be as shown in Listing A-2:

Listing A-2 Adding a paragraph

<p>

Today, we arrived in Cupertino, California. We visited the Apple campus. It was a
bright sunny day and exhibited none of the fog that was so prevalent during our
stay in San Francisco.

</p>

It's a simple textual entry, but there's not much else to it. A good travel journal also marks the date and time
of each entry, so you should add that to the content, as well. Listing A-3 shows the time and date added as a
heading.

Listing A-3 Adding a heading

<h1>Friday, May 20, 2005 - 4:40PM</H1>

<p>

Today, we arrived in Cupertino, California. We visited the Apple campus. It was a
bright sunny day and exhibited none of the fog that was so prevalent during our
stay in San Francisco.

</p>

It's still a simple textual entry, but at least you've provided your reader with a little extra information. But what
if your reader has no idea what Apple is? One of the great features of HTML is the ability to "hyperlink"
documents—create links to external webpages. Using the <a> and hyperlink tags, you can link your
reader to the Apple website as shown in Listing A-4.

Listing A-4 Creating a hyperlink

<h1>Friday, May 20, 2005 - 4:40PM</H1>

<p>

Today, we arrived in Cupertino, California. We visited the Apple campus. It was a

HTML Basics
Creating Effective HTML Content

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

107

bright sunny day and exhibited none of the fog that was so prevalent during our
stay in San Francisco.

</p>

Notice that the word "Apple" is now surrounded by this hyperlink element. The element describes two particular
attributes:

 ● The href attribute: This links to the URL of the webpage you want to link to. If you specified a relative
URL, such as "myPage.html" or "/pages/myPage.html", the link would point to a file within the same folder
as your code, or in a separate folder, respectively. In this example, the value is a fully qualified URL, so it
simply links to that site (the Apple homepage).

 ● The title attribute: This is an optional attribute, but one you should get into the habit of using. The title
attribute provides an alternate description of the link. In Safari, holding the mouse over the hyperlink for
a couple of seconds reveals this value as a tooltip. It's a great way to provide information about a link
before the user clicks it, letting them decide if they want to leave your webpage or not. Additionally, this
information is used by screen readers and other accessibility devices, so by using this attribute, you help
extend your content to a larger community.

With this hyperlink in place, the word "Apple" in the travel journal is now displayed as a clickable link. Clicking
the word redirects the user to the Apple homepage.

So far the travel journal reads great. But to really capture the attention of your readers, you might want to
include an image. An image in HTML is specified by the tag. It's important to note that an image is an
inline element, so needs to be placed within a block element such as a paragraph. It is also a little different
from some other inline elements in that it doesn't require a closing tag. Listing A-5 shows how to add an image
to the travel journal entry.

Listing A-5 Adding an image

<h1>Friday, May 20, 2005 - 4:40PM</h1>

<p>

Today, we arrived in Cupertino, California. We visited the Apple campus. It was a
bright sunny day and exhibited none of the fog that was so prevalent during our
stay in San Francisco.

</p>

HTML Basics
Creating Effective HTML Content

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

108

Notice that the image definition looks a lot like the hyperlink definition. The src attribute defines the URL to
the image (with the same rules for relative versus absolute URLs as in the hyperlink), and the alt attribute
defines a block of alternate text—this text can also be read by screen readers, or can be shown by some
browsers when images are turned off in the browser.

Another small element we added was the
 line break element. Remember that an image is an inline
element, just like text. Without a forced line break, the image would display and the text would follow directly
after, left to right, one after the other. That's a little awkward for a travel journal, but useful when you have
small images (like mathematical equations) that you want integrated into the text. Add the line break to force
the next line of text to a new line.

Now you've learned about actual web content—the inline text and media that defines what a user reads and
views when they visit your webpage. This section is by no means an exhaustive discussion on the content you
can provide to your users. For more information on the content that Safari and WebKit support, refer to Safari
HTML Reference .

Using Other HTML Features
This section discusses a few more features of HTML that you may want to use in your web content.

One other common block element is the <table> block. You can add a <table> block to display any kind of
tabular data. To the previous example, let's add a table of temperatures that the journal writer experienced
on his or her day in Cupertino. For the information to be useful, you'll also want to add something about the
time at which the temperature was recorded. Both the time and temperature can be labeled using table
headers, specified by the <th> and </th> tags. Notice that the order of the table headers and table cells
(specified by the <td> and </td> tags) match within their particular row (specified by the <tr> and </tr>
tags) in Listing A-6.

Listing A-6 Creating a table

<h1>Friday, May 20, 2005 - 4:40PM</h1>

<p>

Today, we arrived in Cupertino, California. We visited the Apple campus. It was a
bright sunny day and exhibited none of the fog that was so prevalent during our
stay in San Francisco.

</p>

HTML Basics
Using Other HTML Features

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

109

<table>

<tr>

<th>Time</th>

<th>Temperature</th>

</tr>

<tr>

<td>9:00AM</td>

<td>65 degrees</td>

</tr>

<tr>

<td>12:00PM</td>

<td>76 degrees</td>

</tr>

<tr>

<td>3:00PM</td>

<td>78 degrees</td>

</tr>

</table>

Another useful feature is the ability to integrate JavaScript—an interpreted language processed by web
browsers—within HTML. JavaScript can do a variety of tasks, many of which are addressed in WebKit DOM
Programming Topics . The JavaScript code can be embedded in external files, within the <script> block of
the webpage's <head> block, or even inline with the elements, using the various JavaScript delegates provided
by the browser. For example, if you want to display an alert when the user clicks a button, add the code (or
the function call, if the code is defined elsewhere) to the button's onClick delegate:

<input type="button" value="Click Me!" onClick="alert('This is an alert!')">

HTML Basics
Using Other HTML Features

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

110

Cascading Style Sheets (CSS) separates the presentation details from the HTML content, allowing you to create
style sheets for different platforms. If you are optimizing your web content for Safari on iOS, you need to use
CSS to access some of the iOS web content features. Read this appendix to learn how to add CSS to existing
HTML content.

See Safari CSS Reference for a complete guide to all the CSS properties supported by Safari.

What Is CSS?
CSS is an extension to standard HTML content that allows you to fine-tune the presentation of web content.
With CSS you can change a variety of style attributes of the content you are designing, such as the font for a
block of text, the background color of a table, or the leading (line spacing) between lines of text.

CSS allows you to cater to different clients and preferences, because you can change the style of a webpage
on the fly without ever editing the HTML structure. Instead of embedding style within the HTML structure,
such as using the bgcolor attribute for the webpage body, you should place CSS style definitions in a separate
block outside of it. In fact, your webpages are more maintainable if you separate your HTML and CSS code into
different files. This way, you can use one style sheet (which holds your style definitions) across multiple
webpages, dramatically simplifying your code.

The various ways you can define style for an HTML element within your webpages are described in the remaining
sections of this appendix.

Inline CSS
Using inline CSS—where style definitions are written directly into the HTML element definition—is perhaps
the easiest way to define style for an element. You can do this using the style attribute for the element. For
example, start with this paragraph:

<p>The quick brown fox jumped over the lazy dog.</p>

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

111

CSS Basics

Without any style definitions, this renders in the default paragraph font and style for the browser rendering
it. But let's say you wanted to change the style of the paragraph to display in a boldface. You can do this with
the CSS font-weight property. To change the style for this one paragraph, add the font-weight key and
the value for the style you want directly to the paragraph's style attribute:

<p style="font-weight: bold;">The quick brown fox jumped over the lazy dog.</p>

This changes the font style of that paragraph to boldface. There are some downsides to using the style definitions
inline with the HTML, though:

 ● The definition is not reusable. For each paragraph that you want displayed in boldface, you have to type
the same style definition—one for each paragraph. If you wanted to change the bold style to an italic
style, for example, you would have to change the definition for each and every paragraph, as well.

 ● The code can get cluttered. Most of the time, you won't have a single style definition. For a particular
paragraph, you may want to have it display in boldface, indent it 20 pixels from the left margin, and give
it a blue background color with a black border. At minimum, this requires four CSS style definitions for
each paragraph you want to match this style.

One of the big advantages of CSS is the ability to separate the style from the structure, but that advantage is
lost with this method. Other methods of using CSS in your content preserve the advantage, as explained in
the following sections.

Head-Embedded CSS
Near the beginning of every HTML document is a <head> block, which defines invisible metadata about the
content. Within this section you can define a variety of CSS definitions that you can then reuse within the actual
body content.

In the previous section there was an example of a paragraph in boldface with a blue background and a black
border, all indented 20 pixels from the left margin. The definitions for that style look like this:

font-weight: bold;

background-color: blue;

border: 1px solid black;

margin-left: 20px;

CSS Basics
Head-Embedded CSS

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

112

But how do you embed these definitions within HTML elements without typing them directly into the HTML?
First, you need to define them within the style section of the <head> block for the webpage. Second, you need
an identifier to isolate that particular set of style definitions from any others in the <style> block. Using the
identifier notebox, the style definition looks like this:

...

<head>

<style type="text/css">

.notebox {

font-weight: bold;

background-color: blue;

border: 1px solid black;

margin-left: 20px;

}

</style>

</head>

...

Notice that the definitions are bound by braces, and that the identifier (notebox) is preceded by a period.
The latter allows you to use this set of style definitions for any element within your HTML content. If you want
to limit its use only to paragraph elements, change the identifier to:

P.notebox

This tells the browser to use the definitions only if they are defined within a <p> paragraph element. If you
want to use these styles for all paragraphs, then you don't need the custom identifier. Change the identifier
to p.

You've learned how to define the custom styles in the <head> block of your content. But how do you actually
tell the browser which paragraphs should use these styles? Here are two paragraphs of text in HTML:

<p>This is some plain boring text.</p>

<p class="notebox">This is a finely styled paragraph!</p>

There’s a new attribute in the second paragraph: class. This is how you specify the style definition that a
particular element should render itself with. The top paragraph in the example above would render as usual,
in the default paragraph style for the browser. But with the style class of the second paragraph set to your new

CSS Basics
Head-Embedded CSS

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

113

notebox, it will render with a bold font, a blue background color, a 1-pixel solid black border, all 20 pixels
from the left margin. For any paragraph (or any element, since we didn't specify an explicit element it could
be assigned to), simply use that class attribute to name the identifier of your style definition.

There is however one disadvantage to this method of embedding CSS in a webpage. Though the definitions
are reusable within the webpage—you can now specify as many notebox paragraphs as you want—they are
not reusable across multiple webpages. If you want the paragraph's text to be rendered in an italic style instead
of a bold one, you'd have to change that definition on each webpage where you integrated it. The next section
describes the most scalable way to use CSS within your web content.

External CSS
If you want to use a particular style across multiple webpages, there's only one way to do it: externally linked
style sheets. Since each webpage has to know about the style definitions you created, placing all of them into
an external file and then linking each webpage to that file seems like a reasonable way to inform them. That
way, if you want to change boldface to italic, you only have to change it once—in the external file.

An external style sheet is almost exactly the same as the <style> block that you defined in the last section,
but it’s not embedded in HTML. All the browser needs are the style definitions themselves. Listing B-1 shows
a new file, called styles.css, that contains all the style definitions for the webpage.

Listing B-1 The styles.css file

.bordered {

font-weight: bold;

background-color: blue;

border: 1px solid black;

margin-left: 20px;

}

.emphasized {

font-style: italic;

}

CSS Basics
External CSS

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

114

For good measure, there is another style definition—one that simply sets the font style of the element's text
to an italic style. Now you have to somehow let the HTML content know about this external style sheet. You
won't have any more embedded style definitions, so you can remove the <style> block altogether. In its
place—still in the <head> block of the webpage—you'll add a <link> element that links the external style
sheet to the document:

<link rel="stylesheet" href="styles.css" type="text/css">

This line tells the browser to link to this external style sheet. Note that the URL specified by href is relative—for
this particular line to link the style sheet correctly, styles.cssmust be in the same folder as the HTML linking
to it.

Once you've included this line, you can use the HTML class attribute just as in the previous section:

<p>This is some plain boring text.</p>

<p class="emphasized">This is some italic text.</p>

<p class="bordered">This is a finely styled paragraph!</p>

You've learned how to integrate CSS style into your web content. For information on what kinds of CSS
properties and features are supported by Safari and WebKit, refer to Safari CSS Reference .

CSS Basics
External CSS

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

115

This table describes the changes to Safari Web Content Guide .

NotesDate

Added new chapters about Smart App Banners and using Web Inspector
on iOS.

2012-09-19

Updated for iOS 5.0.2011-10-12

Applied minor edits.2010-12-16

Updated per iOS 4.2 changes.2010-11-15

Applied minor edits throughout.2010-08-23

Made changes related to iPad throughout.2010-03-24

Minor edits.2010-01-20

Updated the iOS resource limits again.2009-09-09

Updated the iOS resource limits.2009-08-11

Changed the title from "Safari Web Content Guide for iPhone OS" and
applied minor edits throughout.

2009-06-08

Minor edits throughout.2009-03-05

Minor edits throughout.2009-01-30

Moved appendix to separate book called Apple URL Scheme Reference.
Removed redundant reference now included in the Safari HTML Reference
and Safari DOM Extensions Reference books.

2009-01-06

Added the chapter "Storing Data on the Client."2008-11-17

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

116

Document Revision History

NotesDate

Minor edits throughout.2008-10-15

Updated for iOS 2.1.2008-09-09

Updated for iOS 2.0.2008-07-15

Updated book link in "Specifying a Webpage Icon for Web Clip".2008-02-05

Added section on specifying a web clip icon.2008-01-15

Added instructions for exporting movies for iPhone using Quicktime Pro
7.2.1.

2007-10-31

Added figures to the "Customizing Style Sheets" and "Debugging" articles.
Removed the "Configuring Keyboard" section from "Designing Forms"
because using the lang property to select keyboard languages is
deprecated.

2007-10-11

Changed the title from Safari Web Content Guide. Completely revised to
describe how to create web content for Safari on the desktop and Safari
on iPhone using Web 2.0 technologies.

2007-09-27

Corrected typos.2005-08-11

New document that discusses creating effective web content for Safari
and the Web Kit.

2005-06-04

Document Revision History

2012-09-19 | © 2012 Apple Inc. All Rights Reserved.

117

Apple Inc.
© 2012 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Finder, iPad, iPhone, iPod,
iPod touch, iTunes, iWork, Keynote, Mac, Mac OS,
Numbers, OS X, Pages, QuickTime, Safari, and
Xcode are trademarks of Apple Inc., registered in
the U.S. and other countries.

Multi-Touch and Retina are trademarks of Apple
Inc.

App Store is a service mark of Apple Inc.

Java is a registered trademark of Oracle and/or
its affiliates.

iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

	Safari Web Content Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Creating Compatible Web Content
	Use Standards
	Follow Good Web Design Practices
	Use Security Features
	Avoid Framesets
	Use Columns and Blocks
	Know iOS Resource Limits
	Checking the Size of Webpages

	Use the Select Element
	Use Supported JavaScript Windows and Dialogs
	Use Supported Content Types and iOS Features
	Use Canvas for Vector Graphics and Animation
	Use the HTML5 Audio and Video Elements
	Use Supported iOS Rich Media MIME Types
	Don’t Use Unsupported iOS Technologies

	Optimizing Web Content
	Using Conditional CSS
	Using the Safari User Agent String

	Configuring the Viewport
	Layout and Metrics on iPhone and iPod touch
	What Is the Viewport?
	Safari on the Desktop Viewport
	Safari on iOS Viewport
	Examples of Viewports on iOS

	Default Viewport Settings
	Using the Viewport Meta Tag
	Changing the Viewport Width and Height
	How Safari Infers the Width, Height, and Initial Scale
	Viewport Settings for Web Applications

	Customizing Style Sheets
	Leveraging CSS3 Properties
	Adjusting the Text Size
	Highlighting Elements

	Designing Forms
	Laying Out Forms
	Customizing Form Controls
	Configuring Automatic Correction and Capitalization

	Handling Events
	One-Finger Events
	Two-Finger Events
	Form and Document Events
	Making Elements Clickable
	Handling Multi-Touch Events
	Handling Gesture Events
	Preventing Default Behavior
	Handling Orientation Events
	Supported Events

	Promoting Apps with Smart App Banners
	Implementing a Smart App Banner on Your Website
	Providing Navigational Context to Your App

	Configuring Web Applications
	Specifying a Webpage Icon for Web Clip
	Specifying a Startup Image
	Hiding Safari User Interface Components
	Changing the Status Bar Appearance
	Linking to Other Native Apps

	Creating Video
	Sizing Movies Appropriately
	Don’t Let the Bit Rate Stall Your Movie
	Using Supported Movie Standards
	Encoding Video for Wi-Fi, 3G, and EDGE
	Creating a Reference Movie
	Creating a Poster Image for Movies
	Configuring Your Server

	Storing Data on the Client
	Creating a Manifest File
	Declaring a Manifest File
	Updating the Cache
	Handling Cache Events

	Getting Geographic Locations
	Geographic Location Classes
	Getting the Current Location
	Tracking the Current Location
	Handling Location Errors

	Debugging Web Content on iOS
	Enable Web Inspector on iOS
	Inspect From Your Mac
	Inspecting Content in a Web View

	Use JavaScript to Interact with Your Device

	Appendix A: HTML Basics
	What Is HTML?
	Basic HTML Structure
	Creating Effective HTML Content
	Using Other HTML Features

	Appendix B: CSS Basics
	What Is CSS?
	Inline CSS
	Head-Embedded CSS
	External CSS

	Revision History

