Test vBigDSP.c

/*
    Disclaimer: IMPORTANT:  This Apple software is supplied to you by Apple Computer, Inc.
                ("Apple") in consideration of your agreement to the following terms, and your
                use, installation, modification or redistribution of this Apple software
                constitutes acceptance of these terms.  If you do not agree with these terms,
                please do not use, install, modify or redistribute this Apple software.
 
                In consideration of your agreement to abide by the following terms, and subject
                to these terms, Apple grants you a personal, non-exclusive license, under Appleƕs
                copyrights in this original Apple software (the "Apple Software"), to use,
                reproduce, modify and redistribute the Apple Software, with or without
                modifications, in source and/or binary forms; provided that if you redistribute
                the Apple Software in its entirety and without modifications, you must retain
                this notice and the following text and disclaimers in all such redistributions of
                the Apple Software.  Neither the name, trademarks, service marks or logos of
                Apple Computer, Inc. may be used to endorse or promote products derived from the
                Apple Software without specific prior written permission from Apple.  Except as
                expressly stated in this notice, no other rights or licenses, express or implied,
                are granted by Apple herein, including but not limited to any patent rights that
                may be infringed by your derivative works or by other works in which the Apple
                Software may be incorporated.
 
                The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO
                WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
                WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN
                COMBINATION WITH YOUR PRODUCTS.
 
                IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
                CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
                GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION
                OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT
                (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN
                ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
#include <MacMemory.h>
#include <math.h>
#include <stdio.h>
 
#include "vBigDSP.h"
 
#ifndef PI
#define PI (3.1415926535897932384626433832795)
#endif
 
 
#pragma mark -
 
static double
RMSE_real(
    float * x,
    float * y,
    int         n
)
/* Calculates the root-mean-squared error between two real signals
 * x[n] and y[n].
 */
{
    double      t, err=0.0;
    int         i;
    
    for (i=0; i<n; i++)
    {
        t = x[i] - y[i];
        err += (t * t);
    }
    
    return(sqrt(err/n));
}
 
 
static double
RMSE_complex(
    float * x,
    float * y,
    int     n
)
/* Calculates the root-mean-squared error between two complex signals
 * x[n] and y[n].
 */
{
    double      t, err=0.0;
    int         i;
    
    for (i=0; i<n; i++)
    {
        t = x[2*i] - y[2*i];
        err += t * t;
        t = x[2*i+1] - y[2*i+1];
        err += t * t;
    }
    
    return(sqrt(err/n));
}
 
#pragma mark -
 
static void
ConvolveRealLiteral(
    float * x,
    float * y,
    float * z,
    int         n
)
/* Performs a literal cyclic convolution on x and y, placing the
 * result in z. This is an O(n^2) algorithm useful
 * for accuracy testing.
 */
{
    int         s, i, q;
 
    for (s = 0; s < n; s++)
    {
        z[s] = 0;
        for (q = 0; q < n; q++)
        {
            i = (s-q)%n;
            if(i<0) i+= n;
            z[s] += y[i] * x[q];
        }
    }
}
 
static void ConvolveComplexLiteral(
    float * x,
    float * y,
    float * z,
    int         n
)
/* Performs a literal cyclic convolution on x and y, placing the
 * result in z. This is an O(n^2) algorithm useful
 * for accuracy testing.
 */
{
    int         s, i, q;
 
    for (s = 0; s < n; s++)
    {
        z[2*s] = z[2*s+1] = 0;
        for (q = 0; q < n; q++)
        {
            i = (s-q)%n;
            if(i<0) i+= n;
            z[2*s] += y[2*i] * x[2*q] - y[2*i+1] * x[2*q+1];
            z[2*s+1] += y[2*i+1] * x[2*q] + y[2*i] * x[2*q+1];
        }
    }
}
 
static void
Convolve2DRealLiteral(
    float * x,
    float * y,
    float * z,
    int         w,
    int         h
)
/* Literal cyclic convolution in two dimensions, for testing purposes. The
 * convolution of x[] and y[] is output in z[].
 */
{
    int         k, j, q, p, kk, jj;
    
    for (k=0; k<h; k++)
    {
        for (j=0; j<w; j++)
        {
            z[j + k*w] = 0;
            for (q = 0; q < h; q++)
            {
                kk = (k-q<0)?k-q+h:k-q;
                for (p = 0; p < w; p++)
                {
                    jj = (j-p<0)?j-p+w:j-p;
                    z[j + k*w] += x[p + q*w] * y[jj + kk*w];
                }
            }
        }
    }
}
 
#pragma mark -
 
#define COMPLEX_TEST_MIN_POWER  0
#define COMPLEX_TEST_MAX_POWER  18
 
static void TestComplexFFT()
{
    float   *real_data;
    float   *vector_data;
    int     i, j;
    long    currentLength;
    OSErr   result;
    double  rmse_vector;
 
    for (i = COMPLEX_TEST_MIN_POWER; i<=COMPLEX_TEST_MAX_POWER; i++) {
        
        currentLength = 1 << i;
 
        real_data = (float*)NewPtr(2*currentLength*sizeof(float));
        vector_data = (float*)NewPtr(2*currentLength*sizeof(float));
        
        if (real_data == nil || vector_data == nil) {
            printf("\nerror allocating space for complex test");
        } else {
        
            /////////////////////////////////////////////////
            // initialize signal
            /////////////////////////////////////////////////
 
            for (j=0; j<currentLength; j++) {
                real_data[2*j] = vector_data[2*j] =
                    cos(PI*j*j/currentLength);
                real_data[2*j+1] = vector_data[2*j+1] =
                    sin(PI*j*j/currentLength);
                    
            }
            
            /////////////////////////////////////////////////
            // perform forward and inverse FFT and compare
            // result with original signal
            /////////////////////////////////////////////////
            
            result = FFTComplex(vector_data, currentLength, -1);
            if (result != noErr) {
                printf("\nerror in forward complex FFT");
            }
 
            result = FFTComplex(vector_data, currentLength, 1);
            if (result != noErr) {
                printf("\nerror in inverse complex FFT");
            }
 
            rmse_vector = RMSE_complex(real_data, vector_data, currentLength);
            
            printf("\n complex length %d FFT rmse: %g", currentLength, rmse_vector);
            
        }
        
        if (real_data) DisposePtr((Ptr)real_data);
        if (vector_data) DisposePtr((Ptr)vector_data);
    
    }
    
    
    
    
}
 
#define REAL_TEST_MIN_POWER 0
#define REAL_TEST_MAX_POWER 18
static void TestRealFFT()
{
    float   *real_data;
    float   *vector_data;
    int     i, j;
    double  negativeOneToI = -1;
    double  rmse_vector;
    long    currentLength;
    OSErr   result;
    
    for (i=REAL_TEST_MIN_POWER; i<= REAL_TEST_MAX_POWER; i++) {
        currentLength = 1 << i;
        
        real_data = (float*)NewPtr(currentLength*sizeof(float));
        vector_data = (float*)NewPtr(currentLength*sizeof(float));
        
        if (real_data == nil || vector_data == nil) {
 
            printf("\nerror allocating space for complex test");
 
        } else {
 
            /////////////////////////////////////////////////
            // initialize signal
            /////////////////////////////////////////////////
 
            for (j=0; j<currentLength; j++) {
                negativeOneToI = -negativeOneToI;
                
                real_data[j] = vector_data[j] = 
                    negativeOneToI + sin(3*PI*j/currentLength);
            }
 
            /////////////////////////////////////////////////
            // perform forward and inverse FFT and compare
            // result with original signal
            /////////////////////////////////////////////////
 
            result = FFTRealForward(vector_data, currentLength);
            if (result != noErr) {
                printf("\nerror in forward real FFT");
            }
            
            result = FFTRealInverse(vector_data, currentLength);
            if (result != noErr) {
                printf("\nerror in forward real FFT");
            }
 
            rmse_vector = RMSE_real(real_data, vector_data, currentLength);
 
            printf("\n real length %d FFT rmse: %g", currentLength, rmse_vector);
        }
        
        if (real_data) DisposePtr((Ptr)real_data);
        if (vector_data) DisposePtr((Ptr)vector_data);
 
    
    }       
 
    
 
}
 
#define COMPLEX_CONVOLVE_MIN_POWER  2
#define COMPLEX_CONVOLVE_MAX_POWER  13
static void TestComplexConvolve()
{
    float   *data1;
    float   *data2;
    float   *literalConvolveData;
    int     i, j;
    double  negativeOneToI = -1;
    double  rmse_vector;
    long    currentLength;
    OSErr   result;
    
    for (i=COMPLEX_CONVOLVE_MIN_POWER; i <= COMPLEX_CONVOLVE_MAX_POWER; i++) {
        currentLength = 1 << i;
        
        data1 =                 (float*)NewPtr(2*currentLength*sizeof(float));
        data2 =                 (float*)NewPtr(2*currentLength*sizeof(float));
        literalConvolveData =   (float*)NewPtr(2*currentLength*sizeof(float));
        
        if (data1 == nil || data2 == nil || literalConvolveData  == nil) {
 
            printf("\nerror allocating space for complex convolve test");
 
        } else {
 
            /////////////////////////////////////////////////
            // initialize signals
            /////////////////////////////////////////////////
 
            for (j=0; j<currentLength; j++) {
                data1[2*j]      =  cos(PI*j*j/currentLength);
                data1[2*j+1]    =  sin(PI*j*j/currentLength);
                
                data2[2*j]      =  2*sin(3.3*PI*j*j/currentLength);
                data2[2*j+1]    =  -cos(1.4*PI*j*j/currentLength);
                
                    
            }
 
 
            /////////////////////////////////////////////////
            // perform literal convolution, and compare
            // with convolution performed through FFT
            /////////////////////////////////////////////////
 
            ConvolveComplexLiteral(data1, data2, literalConvolveData, currentLength);
 
            result = ConvolveComplexAltivec(data1, data2, currentLength);
            
            if (result != noErr) {
                printf("\nerror in convolve complex");
            }
 
            rmse_vector = RMSE_complex(data2, literalConvolveData, currentLength);
 
            printf("\n complex length %d convolve rmse: %g", currentLength, rmse_vector);
        }
        
        if (data1) DisposePtr((Ptr)data1);
        if (data2) DisposePtr((Ptr)data2);
        if (literalConvolveData) DisposePtr((Ptr)literalConvolveData);
 
    
    }
    
 
}
 
 
 
#define REAL_CONVOLVE_MIN_POWER 0
#define REAL_CONVOLVE_MAX_POWER 14
static void TestRealConvolve()
{
    float   *data1;
    float   *data2;
    float   *literalConvolveData;
    int     i, j;
    double  negativeOneToI = -1;
    double  rmse_vector;
    long    currentLength;
    OSErr   result;
    
    for (i=REAL_CONVOLVE_MIN_POWER; i <=    REAL_CONVOLVE_MAX_POWER; i++) {
        currentLength = 1 << i;
        
        data1 =                 (float*)NewPtr(currentLength*sizeof(float));
        data2 =                 (float*)NewPtr(currentLength*sizeof(float));
        literalConvolveData =   (float*)NewPtr(currentLength*sizeof(float));
        
        if (data1 == nil || data2 == nil || literalConvolveData  == nil) {
 
            printf("\nerror allocating space for real convolve test");
 
        } else {
 
            /////////////////////////////////////////////////
            // initialize signals
            /////////////////////////////////////////////////
 
            for (j=0; j<currentLength; j++) {
                negativeOneToI = -negativeOneToI;
                
                data1[j] = 
                    negativeOneToI + sin(3*PI*j/currentLength);
                    
                data2[j] =  
                    3 * negativeOneToI + sin(4.4*PI*j/currentLength);
                
            }
 
            /////////////////////////////////////////////////
            // perform literal convolution, and compare
            // with convolution performed through FFT
            /////////////////////////////////////////////////
 
            ConvolveRealLiteral(data1, data2, literalConvolveData, currentLength);
 
            result = ConvolveRealAltivec(data1, data2, currentLength);
            
            if (result != noErr) {
                printf("\nerror in convolve real");
            }
 
            rmse_vector = RMSE_real(data2, literalConvolveData, currentLength);
 
            printf("\n real length %d convolve rmse: %g", currentLength, rmse_vector);
        }
        
        if (data1) DisposePtr((Ptr)data1);
        if (data2) DisposePtr((Ptr)data2);
        if (literalConvolveData) DisposePtr((Ptr)literalConvolveData);
 
    
    }
    
 
}
 
 
#define COMPLEX_FFT2D_MIN_POWER_X   1
#define COMPLEX_FFT2D_MAX_POWER_X   8
#define COMPLEX_FFT2D_MIN_POWER_Y   1
#define COMPLEX_FFT2D_MAX_POWER_Y   8
 
static void TestFFT2DComplex()
{
    float   *data1;
    float   *data2;
    int     xsize, ysize, j;
    double  negativeOneToI = -1;
    double  rmse_vector;
    long    currentLength;
    OSErr   result;
    
    for (xsize=COMPLEX_FFT2D_MIN_POWER_X; xsize <=  COMPLEX_FFT2D_MAX_POWER_X; xsize++) {
    
        for (ysize = COMPLEX_FFT2D_MIN_POWER_Y; ysize <= COMPLEX_FFT2D_MAX_POWER_Y; ysize++) {
        
            currentLength = (1 << xsize) * (1 << ysize);
            
            data1 =                 (float*)NewPtr(2*currentLength*sizeof(float));
            data2 =                 (float*)NewPtr(2*currentLength*sizeof(float));
            
            if (data1 == nil || data2 == nil ) {
 
                printf("\nerror allocating space for FFT 2D test");
 
            } else {
 
            /////////////////////////////////////////////////
            // initialize signal
            /////////////////////////////////////////////////
 
                for (j=0; j<currentLength; j++) {
                    data1[2*j] = data2[2*j] =
                        cos(PI*j*j/currentLength);
                    data1[2*j+1] = data2[2*j+1] =
                        sin(PI*j*j/currentLength);
                        
                }
 
                /////////////////////////////////////////////////
                // perform forward and inverse FFT and compare
                // result with original signal
                /////////////////////////////////////////////////
 
                result = FFT2DComplex(data1, 1 << xsize, 1 << ysize, -1);           
                if (result != noErr) {
                    printf("\nerror in fft 2d complex");
                }
                
                result = FFT2DComplex(data1, 1 << xsize, 1 << ysize, 1);
                if (result != noErr) {
                    printf("\nerror in fft 2d complex");
                }
                
                rmse_vector = RMSE_complex(data1, data2, currentLength);
                
                printf("\n complex 2D %d X %d FFT rmse: %g", 1 << xsize, 1 << ysize, rmse_vector);
                
            }
            
            if (data1) DisposePtr((Ptr)data1);
            if (data2) DisposePtr((Ptr)data2);
        
        }
        
    }
    
}
 
 
#define REAL_FFT2D_MIN_POWER_X  3
#define REAL_FFT2D_MAX_POWER_X  9
#define REAL_FFT2D_MIN_POWER_Y  2
#define REAL_FFT2D_MAX_POWER_Y  9
static void TestFFT2DReal()
{
    float   *data1;
    float   *data2;
    int     xsize, ysize, j;
    double  negativeOneToI = -1;
    double  rmse_vector;
    long    currentLength;
    OSErr   result;
    
    for (xsize=REAL_FFT2D_MIN_POWER_X; xsize <= REAL_FFT2D_MAX_POWER_X; xsize++) {
    
        for (ysize = REAL_FFT2D_MIN_POWER_Y; ysize <= REAL_FFT2D_MAX_POWER_Y; ysize++) {
        
            currentLength = (1 << xsize) * (1 << ysize);
            
            data1 =                 (float*)NewPtr(2*currentLength*sizeof(float));
            data2 =                 (float*)NewPtr(2*currentLength*sizeof(float));
            
            if (data1 == nil || data2 == nil ) {
 
                printf("\nerror allocating space for FFT 2D test");
 
            } else {
 
                /////////////////////////////////////////////////
                // initialize signal
                /////////////////////////////////////////////////
 
                for (j=0; j<currentLength; j++) {
                    negativeOneToI = -negativeOneToI;
                    
                    data1[j] = data2[j] = 
                        negativeOneToI + sin(3*PI*j/currentLength);
                }
 
                /////////////////////////////////////////////////
                // perform forward and inverse FFT and compare
                // result with original signal
                /////////////////////////////////////////////////
 
 
                result = FFT2DRealForward(data1, 1 << xsize, 1 << ysize);           
                if (result != noErr) {
                    printf("\nerror in fft 2d real forward");
                }
                
                result = FFT2DRealInverse(data1, 1 << xsize, 1 << ysize);
                if (result != noErr) {
                    printf("\nerror in fft 2d real inverse");
                }
                
                rmse_vector = RMSE_real(data1, data2, currentLength);
                
                printf("\n real 2D %d X %d FFT rmse: %g", 1 << xsize, 1 << ysize, rmse_vector);
                
            }
            
            if (data1) DisposePtr((Ptr)data1);
            if (data2) DisposePtr((Ptr)data2);
        
        }
        
    }
    
}
 
#define COMPLEX_CONVOLVE2D_MIN_POWER_X  2
#define COMPLEX_CONVOLVE2D_MAX_POWER_X  5
#define COMPLEX_CONVOLVE2D_MIN_POWER_Y  2
#define COMPLEX_CONVOLVE2D_MAX_POWER_Y  5
 
 
#define REAL_CONVOLVE2D_MIN_POWER_X 3
#define REAL_CONVOLVE2D_MAX_POWER_X 8
#define REAL_CONVOLVE2D_MIN_POWER_Y 2
#define REAL_CONVOLVE2D_MAX_POWER_Y 8
 
static void TestConvolve2DReal()
{
    float   *data1;
    float   *data2;
    float   *literalConvolve;
    int     xsize, ysize, j;
    double  negativeOneToI = -1;
    double  rmse_vector;
    long    currentLength;
    OSErr   result;
    
    for (xsize=REAL_CONVOLVE2D_MIN_POWER_X; xsize <=    REAL_CONVOLVE2D_MAX_POWER_X; xsize++) {
    
        for (ysize = REAL_CONVOLVE2D_MIN_POWER_Y; ysize <= REAL_CONVOLVE2D_MAX_POWER_Y; ysize++) {
        
            currentLength = (1 << xsize) * (1 << ysize);
            
            data1 =                 (float*)NewPtr(currentLength*sizeof(float));
            data2 =                 (float*)NewPtr(currentLength*sizeof(float));
            literalConvolve =       (float*)NewPtr(currentLength*sizeof(float));
            
            if (data1 == nil || data2 == nil || literalConvolve == nil) {
 
                printf("\nerror allocating space for convolve 2D real test");
 
            } else {
 
                /////////////////////////////////////////////////
                // initialize signals
                /////////////////////////////////////////////////
 
                for (j=0; j<currentLength; j++) {
                    negativeOneToI = -negativeOneToI;
                    
                    data1[j] = negativeOneToI + sin(0.05*PI*j/currentLength);
                    data2[j] = -1.3  * cos(1.3*PI*j/currentLength);
                }
 
                /////////////////////////////////////////////////
                // perform literal convolution, and compare
                // with convolution performed through FFT
                /////////////////////////////////////////////////
 
                Convolve2DRealLiteral(data1, data2, literalConvolve, 1 << xsize, 1 << ysize);
 
                result = ConvolveRealAltivec2D(data1, data2, 1 << xsize, 1 << ysize);
                if (result != noErr) {
                    printf("\nerror in fft 2d real");
                }
                
                rmse_vector = RMSE_real(data2, literalConvolve, currentLength);
                
                printf("\n real 2D %d X %d convolve rmse: %g", 1 << xsize, 1 << ysize, rmse_vector);
                
            }
            
            if (data1)              DisposePtr((Ptr)data1);
            if (data2)              DisposePtr((Ptr)data2);
            if (literalConvolve)    DisposePtr((Ptr)literalConvolve);
        
        }
        
    }
    
}
 
 
#pragma mark -
 
int main() {
    
    ////////////////////////////////////////////////////////////////////////////////
    
    printf("\n\nTesting complex FFT:\n");
    
    TestComplexFFT(); 
 
    ////////////////////////////////////////////////////////////////////////////////
 
    printf("\n\nTesting real FFT:\n");
 
    TestRealFFT();
 
    ////////////////////////////////////////////////////////////////////////////////
 
    printf("\n\nTesting 2D complex FFT:\n");
 
    TestFFT2DComplex();
 
    ////////////////////////////////////////////////////////////////////////////////
 
    printf("\n\nTesting 2D real FFT:\n");
 
    TestFFT2DReal();
 
    ////////////////////////////////////////////////////////////////////////////////
 
    printf("\n\nTesting complex convolution:\n");
 
    TestComplexConvolve();
 
    ////////////////////////////////////////////////////////////////////////////////
 
    printf("\n\nTesting real convolution:\n");
 
    TestRealConvolve();
 
    ////////////////////////////////////////////////////////////////////////////////
 
    printf("\n\nTesting 2D real convolution:\n");
 
    TestConvolve2DReal();
}