Accessory Design Guidelines for Apple Devices

Release R8
Contents

Introduction 14

1. Introduction 15
 1.1 Purpose of This Specification 15
 1.2 Requirements, Recommendations, and Permissions 15
 1.3 Terminology 16
 1.3.1 Device 16
 1.3.2 Accessory 16

Accessories 17

2. All Accessories 18
 2.1 Integrated USB Receptacles 18
 2.2 User Supplied Cables and AC Power Adapters 18
 2.3 Attachments 19
 2.4 Magnetic Interference 19
 2.5 Radio Frequency (RF) Performance 19
 2.5.1 Materials and Coatings 20
 2.5.2 Antenna Keep-Out 20
 2.5.3 Over The Air (OTA) 20
 2.5.4 Near Field Communication (NFC) 21
 2.6 Qi Wireless Power 21

3. Cases 22
 3.1 Product Design 22
 3.1.1 Device Protection 22
 3.1.2 Access to Inputs and Interconnects 23
 3.1.3 Dock Compatibility 26
 3.1.4 Qi Wireless Power and Rear Pockets 26
 3.2 Acoustics 26
 3.2.1 Call Quality 26
 3.2.2 Speaker to Microphone Coupling 26
 3.2.3 Speaker/Microphone Openings 26
3.3 Ambient Light Sensor and Proximity Sensor Interference 29
3.4 Taptic Engine 29
3.5 Magnetic Interference 30
3.6 Home Button / Touch ID Sensor 30
3.7 Camera 30
 3.7.1 Geometry 30
 3.7.2 Color 31
 3.7.3 Surface Finish 31
 3.7.4 Image Degradation Examples 31
3.8 Reliability 32
 3.8.1 Device Insertion and Removal 32
 3.8.2 Colorfastness 32
3.9 Environmental 33
3.10 Test Procedures 33
 3.10.1 Required Device Models 33
 3.10.2 Product Design 38
 3.10.3 Taptic Engine 40
 3.10.4 Home Button / Touch ID Sensor Overlays 41
 3.10.5 Acoustics 42

4. Covers 44
 4.1 Magnetic Interference 44
 4.2 Smart Covers 44

5. Screen Overlays 45
 5.1 Product Design 45
 5.2 Edge Swipe and Edge Press Gestures 45

6. Camera Attachments 46
 6.1 Magnetic Interference 46

7. AC Power Adapters 47
 7.1 Converter Switching Frequencies 47
 7.2 YCAP AC Capacitor 47
 7.3 Impedance Stability 47
 7.4 Fuse Protection 48
 7.5 Short Circuit Response 49

8. USB-C to Micro-USB Adapters 50
9. Battery Packs 51

10. Apple AirPods Attachments 52
 10.1 Interference 52

11. Watch Bands 54
 11.1 Requirements 54
 11.2 Apple Watch Band Interface 56
 11.3 Example Apple Watch Lug 57
 11.4 Example Apple Watch Lug Assembly 58
 11.4.1 Required Equipment 58
 11.4.2 Recommended Equipment 58
 11.4.3 Assembly Instructions 58

Features 60

12. Device Power (Lightning) 61
 12.1 Direct Power Source 61
 12.2 External Power Source 61
 12.3 Declaring Capability 62
 12.4 Providing Power via USB Connectors 62
 12.5 Labeling Multiple Connectors 63
 12.6 iPhone Fast Charging (18 W) 63
 12.7 Overcurrent and Short Circuit Protection 64
 12.8 Overcurrent and Short Circuit Protection Resets 65
 12.9 Power State Changes 65

13. Bluetooth Accessory Identification 66
 13.1 HFP Command AT+XAPL 66

14. Bluetooth Headset Battery Level Indication 68
 14.1 HFP Command AT+IPHONEACCEV 68

15. Siri 69
 15.1 Enabling Custom Siri Commands 69
 15.2 Obtaining Siri Availability Information 69
 15.2.1 Obtaining Status Information at Connection 69
 15.2.2 Receiving Siri Availability Updates from the Device 70
 15.3 Initiating a Siri Session 71
20.4.4 Siri 93
20.4.5 Video Playback 93

21. iAP2 Protocol 94

Transports 95

22. Bluetooth 96
 22.1 Enhanced Data Rate 96
 22.2 Adaptive Frequency Hopping 96
 22.3 Sniff Mode for Low Power Consumption 96
 22.4 Role and Topology Management 97
 22.5 Extended Inquiry Response 98
 22.6 Secure Simple Pairing 98
 22.7 Pairing Button 99
 22.8 Class of Device (CoD) 99
 22.9 Link Supervision Timeout 99
 22.10 Delay Reporting 99
 22.11 Profiles 99
 22.11.1 Device ID Profile (DID) 100
 22.11.2 Service Discovery Protocol (SDP) 100
 22.11.3 Hands-Free Profile (HFP) 101
 22.11.4 Message Access Profile (MAP) 103
 22.11.5 Audio/Video Remote Control Profile (AVRCP) 103
 22.11.6 Advanced Audio Distribution Profile (A2DP) 105
 22.12 Audio Routing 105
 22.12.1 Audio Data Received via HFP Profile 106
 22.12.2 Audio Data Received via A2DP Profile 106
 22.13 HID 108

23. Bluetooth Low Energy (BLE) 109
 23.1 Role 109
 23.2 Advertising Channels 109
 23.3 Advertising PDU 109
 23.4 Advertising Data 109
 23.5 Advertising Interval 110
 23.6 Connection Parameters 111
 23.7 Data Packet Length Extension 111
 23.8 Privacy 112
27.42 iPad (5th and 6th generation) with Wi-Fi + Cellular 169
27.43 iPad (5th and 6th generation) Magnet/Hall Effect Sensors 1 of 2 170
27.44 iPad (5th and 6th generation) Magnet/Hall Effect Sensors 2 of 2 171
27.45 iPad Pro (9.7-inch) with Wi-Fi 172
27.46 iPad Pro (9.7-inch) with Wi-Fi + Cellular 173
27.47 iPad Pro (9.7-inch) Magnet/Hall Effect Sensors 1 of 2 174
27.48 iPad Pro (9.7-inch) Magnet/Hall Effect Sensors 2 of 2 175
27.49 iPad Pro (12.9-inch) 1st Generation with Wi-Fi 176
27.50 iPad Pro (12.9-inch) 1st Generation with Wi-Fi + Cellular 177
27.51 iPad Pro (12.9-inch) 1st Generation Magnet/Hall Effect Sensors 1 of 2 178
27.52 iPad Pro (12.9-inch) 1st Generation Magnet/Hall Effect Sensors 2 of 2 179
27.53 iPad mini 4 with Wi-Fi 180
27.54 iPad mini 4 with Wi-Fi + Cellular 181
27.55 iPad mini 4 Magnet/Hall Effect Sensors 182
27.56 iPad Air 2 with Wi-Fi 183
27.57 iPad Air 2 with Wi-Fi + Cellular 184
27.58 iPad mini 2 & iPad mini 3 with Wi-Fi 185
27.59 iPad mini 2 & iPad mini 3 with Wi-Fi + Cellular 186
27.60 iPad Air with Wi-Fi 187
27.61 iPad Air with Wi-Fi + Cellular 188
27.62 iPad mini with Wi-Fi 189
27.63 iPad mini with Wi-Fi + Cellular 190
27.64 iPad (4th generation) with Wi-Fi 191
27.65 iPad (4th generation) with Wi-Fi + Cellular 192
27.66 iPod touch (6th generation) 193
27.67 iPod touch (5th generation) 194
27.68 Apple Watch Series 4, 44 mm 195
27.69 Apple Watch Series 4, 40 mm 196
27.70 Apple Watch Series 3 Ceramic, 42 mm 197
27.71 Apple Watch Series 3 Ceramic, 38 mm 198
27.72 Apple Watch Series 3 Metal, 42 mm 199
27.73 Apple Watch Series 3 Metal, 38 mm 200
27.74 Apple Watch Series 2 Ceramic, 42 mm 201
27.75 Apple Watch Series 2 Ceramic, 38 mm 202
27.76 Apple Watch Series 2 Metal, 42 mm 203
27.77 Apple Watch Series 2 Metal, 38 mm 204
27.78 Apple Watch (1st generation) & Apple Watch Series 1, 42 mm 205
27.79 Apple Watch (1st generation) & Apple Watch Series 1, 38 mm 206
Revision History 207
 Added Content 207
 Updated Content 208
Figures and Tables

3. Cases

Figure 3-1 Device Protection
Figure 3-2 Touchscreen keep-out area
Figure 3-3 Microphone/speaker opening recommendations for thin cases
Figure 3-4 Thick case acoustic channels
Figure 3-5 Thick case microphone and speaker exit separation
Figure 3-6 Improper thick case seal
Figure 3-7 Sample image degradation by image blocking in ambient condition
Figure 3-8 Sample image degradation by color shift through accessory with strong color
Figure 3-9 Sample image degradation by flash interference
Figure 3-10 Device proudness test
Figure 3-11 Device gap test
Figure 3-12 Device touchscreen keep-out test
Table 3-1 iPhone XS Max Case Testing Matrix
Table 3-2 iPhone XS Case Testing Matrix
Table 3-3 iPhone XR Case Testing Matrix
Table 3-4 iPhone X Case Testing Matrix
Table 3-5 iPhone 8 Plus/iPhone 7 Plus Case Testing Matrix
Table 3-6 iPhone 8/iPhone 7 Case Testing Matrix
Table 3-7 iPhone 6s Plus/iPhone 6 Plus Case Testing Matrix
Table 3-8 iPhone 6s/iPhone 6 Case Testing Matrix
Table 3-9 iPhone 5/iPhone 5s/iPhone SE Case Testing Matrix
Table 3-10 iPhone 5c Case Testing Matrix
Table 3-11 iPad Air (3rd generation) Case Testing Matrix
Table 3-12 iPad mini (5th generation) Case Testing Matrix
Table 3-13 iPad Pro (12.9-inch) 3rd Generation Case Testing Matrix
Table 3-14 iPad Pro (11-inch) Case Testing Matrix
Table 3-15 iPad Pro (10.5-inch) Case Testing Matrix
Table 3-16 iPad Pro (12.9-inch) 2nd Generation Case Testing Matrix
Table 3-17 iPad (5th and 6th generation) Case Testing Matrix
Table 3-18 iPad Pro (9.7-inch) Case Testing Matrix
Table 3-19 iPad Pro (12.9-inch) 1st Generation Case Testing Matrix
Table 3-20 iPad mini 4 Case Testing Matrix
Table 3-21 iPad mini/iPad mini 2/iPad mini 3 Case Testing Matrix
Table 3-22 iPad Air 2 Case Testing Matrix 37
Table 3-23 iPad Air Case Testing Matrix 37
Table 3-24 iPad (4th generation) Case Testing Matrix 38
Table 3-25 iPod touch (5th generation)/iPod touch (6th generation) Case Testing Matrix 38

7. AC Power Adapters 47
Figure 7-1 Typical AC power adapter diode bridge circuit 48
Table 7-1 Typical component values for an AC power adapter diode bridge circuit 48

10. Apple AirPods Attachments 52
Figure 10-1 AirPods Keep-Out Drawing 53

11. Watch Bands 54
Figure 11-1 Apple Watch Band Interface 56
Figure 11-2 Apple Watch Lug 57
Figure 11-3 Apple Watch Lug Assembly Fixture 59

12. Device Power (Lightning) 61
Figure 12-1 Overcurrent and Short Circuit Protection 64
Table 12-1 Overcurrent/Short Circuit Protection Current Thresholds 64
Table 12-2 Overcurrent/Short Circuit Protection Time Thresholds 64
Table 12-3 Overcurrent/Short Circuit Protection Behaviors 64

15. Siri 69
Figure 15-1 Siri is Disabled/Enabled from the Device’s Settings 71
Figure 15-2 Initiating a Siri Session from the Accessory 72
Figure 15-3 Initiating a Siri Session from the Device 72
Figure 15-4 Ending a Siri Session from the Accessory 73
Figure 15-5 Siri Initialization Procedure 76
Figure 15-6 Siri Initialization Procedure with Siri Eyes Free 76
Figure 15-7 Siri Eyes Free User Interaction 78
Figure 15-8 Siri is Deactivated - Launching Voice Control 79
Figure 15-9 Siri is Deactivated - Displaying a Warning Message 79

16. USB Power Capability Vendor Request 85
Table 16-1 USB Vendor Request for accessory USB Embedded Host connector that does not implement iAP2 to communicate available power 85

17. USB D+/D- Resistor Networks 86
Figure 17-1 USB D+/D- resistor networks 86
Figures and Tables

Table 17-1 USB D+/D- resistor values 87
Table 17-2 USB D+/D- resistor values 88

20. Advanced Audio Distribution Profile (A2DP) 91
Table 20-1 SubBand Codec Information Elements for iOS devices and Mac computers 91
Table 20-2 MPEG-2/4 AAC Codec Information Elements for devices 92
Table 20-3 AAC audio packet for devices 92

22. Bluetooth 96
Figure 22-1 Initiate Audio Playback (e.g. music) 107
Figure 22-2 Initiate System Sound (e.g. turn-by-turn directions) 107

23. Bluetooth Low Energy (BLE) 109
Figure 23-1 Data Packet Length Extension 112
Introduction
1. Introduction

Note: These Accessory Design Guidelines for Apple Devices ('Guidelines') are subject to the terms and conditions set forth on the final page of this document. By downloading, accessing, or otherwise utilizing these Guidelines, you agree to be bound by, and only utilize the Guidelines in accordance with, such terms and conditions.

1.1 Purpose of This Specification

These guidelines address:

- The physical design of cases, covers, screen overlays, and camera attachments for iOS devices.
- The specifications for hardware accessories that use the Bluetooth transport to communicate with iOS devices and Mac computers.
- The design of AC power adapters, battery packs, and Qi wireless power transmitters for iOS devices.
- The physical design of band accessories that are compatible with Apple Watch.

These guidelines do not address other aspects of accessory communication with iOS, tvOS, or watchOS devices. Instead, see the MFi Program (https://developer.apple.com/programs/mfi/).

1.2 Requirements, Recommendations, and Permissions

This specification contains statements that are incorporated by reference into legal agreements between Apple and its licensees. The use of the words must, must not, required, shall, shall not, should, should not, recommended, not recommended, may, optional, and deprecated in a statement have the following meanings:

- must, shall, or required means the statement is an absolute requirement.
- must not, shall not or prohibited means the statement is an absolute prohibition.
- should or recommended means the full implications must be understood before choosing a different course.
- should not or not recommended means the full implications must be understood before choosing this course.
- may or optional means the statement is truly optional, and its presence or absence cannot be assumed.
- deprecated means the statement is provided for historical purposes only and is equivalent to 'must not'.
The absence of requirements, recommendations, or permissions for a specific accessory design in this specification must not be interpreted as implied approval of that design. Developers are strongly encouraged to ask Apple for feedback on accessory designs that are not explicitly mentioned in this specification.

1.3 Terminology

1.3.1 Device

Device and *iOS device* refer to an iPhone, iPad, or iPod running iOS.

Where appropriate, specific Apple product and operating system references will also be used.

1.3.2 Accessory

Accessory refers to any product that connects to a *device* via the interfaces described in this specification.
Accessories
2. All Accessories

The requirements in this section apply to all accessories regardless of their feature sets.

2.1 Integrated USB Receptacles

Accessories that incorporate a USB receptacle for the purpose of drawing power from an external USB power source must meet the following requirements:

- USB-B receptacles must comply with the *USB Battery Charging 1.2* specification.
- USB-C receptacles must comply with the requirements in *Drawing Power* (page 120).

2.2 User Supplied Cables and AC Power Adapters

Accessories that can reasonably be used with user-supplied cables and/or AC power adapters must be designed to work with any cable, AC power adapter, or battery pack that is compliant with this specification, see *AC Power Adapters* (page 47), and *Battery Packs* (page 51), including Apple branded cables and AC power adapters. Such accessories must not declare compatibility only with Apple branded USB cables or AC power adapters.

This compatibility requirement applies to all aspects of user-supplied cables and power adapters. For example:

- Connector receptacles on accessories must accommodate all spec-compliant connector overmolds, and any accessory opening surrounding the Lightning receptacle on a device must provide sufficient clearance for spec-compliant connector overmolds.
- Accessories must work with all cables that comply with the specification with regards to electrical DCR and SI.

Note: Such accessories must be tested with a wide variety of spec-compliant cables (including various lengths of the same cable if applicable) and AC power adapters during accessory development, in addition to Apple branded cables and AC power adapters.
2.3 Attachments

Accessories must remain compliant with the specification when connected to any attachments designed for that accessory.

Examples of accessory attachments include, but are not limited to:

- Car or desk mounts for a case accessory.
- Wireless charging mats for a dongle or case accessory.
- Detachable barcode scanners/credit card readers for a dock accessory.

2.4 Magnetic Interference

Apple recommends avoiding the use of magnets and metal components in accessories.

All accessories claiming compatibility with a device that has a digital compass (magnetometer) must minimize interference with the digital compass and must not repeatedly trigger compass recalibration.

All accessories claiming compatibility with a device that has rear camera autofocus (AF) and/or optical image stabilization (OIS) features must not affect the operation of these features.

This following devices feature optical image stabilization:

- iPhone XS Max
- iPhone XS
- iPhone XR
- iPhone X
- iPhone 8 Plus
- iPhone 8
- iPhone 7 Plus
- iPhone 7
- iPhone 6s Plus
- iPhone 6 Plus
- iPad Pro (12.9-inch) 3rd Generation
- iPad Pro (11-inch)
- iPad Pro (12.9-inch) 2nd Generation
- iPad Pro (10.5-inch)

2.5 Radio Frequency (RF) Performance

This section contains RF performance requirements and recommendations for all accessories.
2.5.1 Materials and Coatings

Accessories should avoid use of:

- Metals
- Conductive materials or coatings
- Materials with high dielectric (permittivity >5 F/m)

Such materials absorb radio frequency energy and may impair or degrade the performance of antennas for cellular communication, GPS, Wi-Fi, Bluetooth, and NFC.

Examples include (but are not limited to) the following:

- Steel, aluminum, magnesium, titanium, etc.
- Plastics with any carbon content
- Plastics with any glass content
- Plastics with metallic plating
- Metallic paints
- Black paints with high carbon loading
- White paints with high titanium dioxide loading
- Metallic Physical Vapor Deposition (PVD) coatings

2.5.2 Antenna Keep-Out

Antenna keep-out regions can be found in the device dimensional drawings, see Device Dimensional Drawings (page 125).

Accessory materials or coatings that absorb radio frequency energy (see Materials and Coatings (page 20)) in the antenna keep-out region have a higher risk of degrading device wireless performance.

2.5.3 Over The Air (OTA)

Accessories must not excessively degrade the device's RF transmission efficiency. This can be quantified by measuring Total Radiated Power (TRP) across all of the device's operating bands.

Accessories must not excessively degrade the device's RF reception sensitivity. This can be quantified by measuring Effective Isotropic Sensitivity (EIS) across all of the device's operating bands.

Accessories may have a higher risk of excessively degrading device RF performance if they:

- Contain magnets.
- Intrude on device antenna keep-out zones, see Antenna Keep-Out (page 20).
- Contain active electronic circuitry, such as:
 - Bluetooth radios.
Switched-mode power supplies.
• High speed data interfaces.

All accessory configurations must be taken into account when designing for maximum RF compatibility. Examples include, but are not limited to:

• Accessory on/off.
• Accessory open/closed.
• Attachment present/not present, see Attachments (page 19).

2.5.4 Near Field Communication (NFC)
Accessories that intrude on device antenna keep-out zones (see Antenna Keep-Out (page 20)) and claim compatibility with a device with NFC must not degrade device NFC transaction performance.

The following devices are NFC enabled:

• iPhone XS Max
• iPhone XS
• iPhone XR
• iPhone X
• iPhone 8 Plus
• iPhone 8
• iPhone 7 Plus
• iPhone 7
• iPhone SE
• iPhone 6s Plus
• iPhone 6s
• iPhone 6 Plus
• iPhone 6

2.6 Qi Wireless Power
Accessories that incorporate a Qi transmitter or receiver must be certified according to The Qi Power Transfer System, Power Class 0 standard, version 1.2.4, see https://www.wirelesspowerconsortium.com.
3. Cases

Accessories that substantially enclose devices must comply with the requirements stated in this chapter unless the accessory supports other features in this specification whose requirements conflict with the requirements in this chapter.

If the accessory has multiple user-detachable components that substantially enclose the device, the requirements and/or overrides must be applied to each component separately.

3.1 Product Design

A well-designed case will securely house a device while not interfering with the device’s operation. Significant factors in mechanical design include access to the device’s sensors, controls, and connectors. Dimensional drawings for devices can be found in Device Dimensional Drawings (page 125).

3.1.1 Device Protection

Cases must protect the device from a 1 m drop onto a hard paved surface in any device orientation. Specifically, exposed glass on the device must not come within 1 mm of a flat surface, such as a table or floor, in any orientation when the case is attached. This may be achieved by either covering the exposed glass or creating features around it that will space the exposed glass at least 1 mm away from the flat surface.

Care should be given to the design of the bottom of the case to achieve both device protection and access to device speakers, microphones, and connectors. For instance, the bottom of iPhone X cases should:

- Not have an opening wider than 50 mm (see dimension A in Figure 3-1 (page 23)).
- Be made of polycarbonate (PC) at least 1.15 mm thick (see dimension B in Figure 3-1 (page 23)).
3.1.2 Access to Inputs and Interconnects

The accessory must readily permit the user to access inputs and interconnects.

3.1.2.1 Access to Controls

The accessory must readily permit the user to access and operate the device's mechanical controls, such as:

- Volume buttons
- Ring/Silent switch
- Side button
- Home/Touch ID sensor
- Home button
- Sleep/Wake button

3.1.2.2 Access to the Headset Jack and Lightning Connector

The accessory must provide ready access to a device's headset jack. The headset jack opening (i.e., keep-out area) must be at least 6.0 mm in diameter and at most 14.0 mm deep. At least 6.5 mm in diameter and at most 10.0 mm deep is recommended for best compatibility with a range of headsets.
The accessory must also provide unobstructed access to the Lightning connector.

If the accessory is for a device with the Lightning connector, the opening (i.e., keep-out area) must be at least 12.05 mm by 6.30 mm with full radii rounded edges. 13.65 mm by 6.85 mm is recommended for best compatibility with a range of cables and docks.

In addition, the headset jack and Lightning connector openings must be designed with enough margin to compensate for shifting or dimensional changes of the accessory material.

3.1.2.3 Access to the Smart Connector
Accessories that do not make use of the Smart Connector must not expose it.

3.1.2.4 Touchscreen
The accessory should not have any edges that can collect water on the touchscreen area when the device is held at a 30° angle relative to the horizon.

Accessories must allow a 120° opening along the edges of the active area of the touchscreen to ensure compatibility with the device touchscreen features. See Figure 3-2 (page 24) for more information on the keep-out and Device Dimensional Drawings (page 125) device specific active display areas.

3.1.2.5 Edge Swipe Gestures
Users must be able to easily use iOS edge swipe gestures.
Examples of such gestures include, but are not limited to:

- Swipe in from the top edge for Control Center or Notification Center.
- Swipe in from the bottom edge for Home, App Switcher, or Reachability.
- Swipe in from the left edge in Messages or Mail to go back from a conversation.

The following devices make extensive use of edge swipe gestures in both portrait and landscape orientations:

- iPhone XS Max
- iPhone XS
- iPhone XR
- iPhone X
- iPad Pro (12.9-inch) 3rd Generation
- iPad Pro (11-inch)

3.1.2.6 Edge Press Gestures

Users must be able to easily use iOS edge press gestures.

The following devices support edge press gestures:

- iPhone 8 Plus
- iPhone 8
- iPhone 7 Plus
- iPhone 7
- iPhone 6s Plus
- iPhone 6s

An edge press gesture from the left is used to bring up the task switcher in iOS 9.0 and later.

3.1.2.7 Cover Glass Contact

Cases that claim compatibility with the following devices should not contact the cover glass as defined in their dimensional drawings:

- iPhone XS Max
- iPhone XS
- iPhone XR
- iPhone X
- iPhone 8 Plus
- iPhone 8
- iPhone 7 Plus
- iPhone 7
- iPhone 6s Plus
3.1.3 Dock Compatibility

For compatibility with docks, the distance from bottom of the device to the outside of a case should not exceed 1.8 mm.

3.1.4 Qi Wireless Power and Rear Pockets

Cases that claim compatibility with the Qi wireless power feature in devices must not have rear pockets or holders for credit cards, RFID cards, or other similar items. Cards may be damaged and/or impact wireless charging performance.

3.2 Acoustics

The accessory must not impair or degrade the acoustic performance of a device.

3.2.1 Call Quality

The accessory must not impair or degrade the user’s experience making and receiving both audio calls over a cellular network or audio/video calls using FaceTime in both handset and speakerphone modes. The accessory should not change the frequency response of the speakers or microphones. In addition, the user should not hear any distortion or echo resulting from the accessory.

The accessory must not obstruct any microphones during a phone call. Note that occluding any microphones can result in call quality degradation.

3.2.2 Speaker to Microphone Coupling

Cases must not facilitate the conduction of sound from any speaker to any microphone. Such sound conduction may cause echoing in phone calls.

3.2.3 Speaker/Microphone Openings

Device speaker/microphone port locations vary from model to model, see Device Dimensional Drawings (page 125).
3.2.3.1 Thin Cases (≤2.25 mm)

Microphone/speaker openings in thin cases should:

- Be offset at least 2.0 mm from the edge of any device speaker/microphone port.
- Be at most 1.5 mm thick along their inner diameter.
- Have a maximum 45° incoming angle to their inner diameter.
- Maintain a proper seal against the device between speaker/microphone ports.

Figure 3-3 Microphone/speaker opening recommendations for thin cases

![Diagram showing microphone/speaker opening recommendations for thin cases]

3.2.3.2 Thick Cases (>2.25 mm)

Speaker and microphone openings should be channeled independently and without interruption to/from the outside surface of a thick case.
Thick cases should maximize exit separation between speaker and microphone channels.

Thick case channels may act as a resonant chamber and detune microphone/speaker frequency response. The resulting frequency response may vary according to channel size/shape.

If a thick case does not maintain a proper seal against the device between microphone/speaker channels, the case itself may become an acoustic chamber.
3.3 Ambient Light Sensor and Proximity Sensor Interference

The ambient light sensor and proximity sensor locations for various devices are shown in the dimensional drawings cited in Device Dimensional Drawings (page 125). Some of the dimensional drawings specify a recommended keep-out area around these sensors. No material must be allowed to cover these sensors or their keep-out areas, this includes films and privacy screens. Accessories that allow the device to slide around must not obstruct any sensors.

3.4 Taptic Engine

Accessories should not cause substantial change in the feel of the device's Taptic Engine.

The following devices contain a Taptic Engine:

- iPhone XS Max
- iPhone XS
- iPhone XR
- iPhone X
- iPhone 8 Plus
- iPhone 8
- iPhone 7 Plus
- iPhone 7
- iPhone 6s Plus
- iPhone 6s
3.5 Magnetic Interference

Cases must not interfere with the device's:

- Magnetic compass.
- Rear camera autofocus.
- Rear camera optical image stabilization (OIS), if present.

See Magnetic Interference (page 19) for additional details.

3.6 Home Button / Touch ID Sensor

Accessories must not inhibit use of the device's Home button / Touch ID sensor including features such as Touch ID fingerprint recognition.

Home button / Touch ID sensor keep-outs for devices can be found in Device Dimensional Drawings (page 125).

Additionally, accessories that overlay the iPhone 8 Plus, iPhone 8, iPhone 7 Plus, and iPhone 7 Home button / Touch ID sensor may cause users to have difficulty using the Home button / Touch ID sensor.

3.7 Camera

The field of view (FOV) of the camera and the illumination provided by the flash are designed for each device camera. It is imperative that manufacturers consult technical specifications released for each device and do not assume these parameters are shared between devices.

Images from the camera may be affected by the geometry, color, and surface finish of the accessory openings for camera and applicable flash.

3.7.1 Geometry

The camera lens FOV must not be blocked. Making the accessory opening too small around the camera and flash may block the FOV of the lens and the illumination from the flash. Blocking the FOV may cause vignetting in the image, where one or more corners of the image reproduced are darker than the center. Blocking marginal rays just outside the FOV of the lens may also reduce the sharpness and contrast of the image. Blocking the illumination from the flash may cause haze in the image, which resulting in reduced contrast. See Device Dimensional Drawings (page 125) for the camera keep-out.
The accessory opening must not be designed in a way that directs stray light into the camera. If the opening is too narrow or too steep, it may reflect light into the camera, washing out the image or adding an unwanted color cast. Adding a chamfer to the accessory opening trim may help to direct stray light away from the camera. Additionally, where the product is equipped with a flash, a narrow or steep opening may reflect light from the accessory opening back into the camera. This may cause the image to appear washed out or contain unwanted artifacts. Designers should ensure that the mechanical keep-outs outlined in the device dimensional drawings (Device Dimensional Drawings (page 125)) are maintained with worst-case X-Y placement tolerances to minimize the risk of haze.

3.7.2 Color

Any light reflected from the accessory may pick up the color of the accessory. Black material or black coating may help avoid color bleeding into the camera from an external light source or the flash. The darker the color, the less light may be reflected from the source into the camera.

Note: Apple recommends a semi-gloss black material or coating around the camera and flash opening.

3.7.3 Surface Finish

The flash is a strong source of light and reflections from the camera accessory opening trim should be managed so that they do not reflect back into the camera. Semi-gloss material may direct light away from the camera. Matte or diffuse materials scatter light in all directions and will increase the likelihood that light from the flash or strong light sources in the scene is reflected into the camera.

3.7.4 Image Degradation Examples

Figure 3-7 Sample image degradation by image blocking in ambient condition

Reference Degraded
3.8 Reliability

Cases for devices must be tested to verify that they will withstand long-term use under typical use conditions, and that they do not impair or degrade the functionality of the device, damage it or its immediate surroundings, or adversely affect the user.

3.8.1 Device Insertion and Removal

The case must hold the device securely while permitting its easy insertion and removal. The case and the enclosed device must not be damaged by the repeated insertion and removal of the device from the case under conditions representative of long-term use in a variety of environments.

3.8.2 Colorfastness

Any dyes, inks, or coatings in or on the case must not bleed color onto either the device or its user, particularly while the case is in contact with common substances, such as water or sunscreen.
3.9 Environmental

Accessories must comply with applicable environmental regulations in the regions in which such accessories are to be sold, and any applicable substance or material restrictions, including applicable restrictions on the following substances:

- Organic tin compounds, PFOS, PFOA, phthalates, azo dyes, polybrominated biphenyls (PBBs) and PAHs, per requirements of the EU REACh regulation EC 1907/2006.
- Nickel leach rate on surfaces in prolonged skin contact, per requirements of the EU REACh regulation EC 1907/2006.
- Cadmium, lead, hexavalent chromium, and nickel, per requirements of EU Directive 2009/48/EC.
- Natural rubber latex, per requirements of EU Directive EC 93/42/EEC.
- Dimethylfumarate (DMFu), per requirements of EU Regulation 412/2012.
- pH and Formaldehyde, per requirements of China GB 18401 for textiles and China GB 20400 for leather.
- Endangered species of flora and fauna in products or packaging (US Lacey Act).
- Polybrominated diphenyl ethers (PBDE).
- Compliance with California proposition 65, as applicable.

3.10 Test Procedures

3.10.1 Required Device Models

Case testing procedures vary depending on the device they enclose.

3.10.1.1 iPhone XS Max

Table 3-1 iPhone XS Max Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPhone XS Max</td>
<td></td>
</tr>
<tr>
<td>Taptic Engine (page 40)</td>
<td>iPhone XS Max</td>
<td></td>
</tr>
<tr>
<td>Acoustics (page 42)</td>
<td>iPhone XS Max</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.2 iPhone XS

Table 3-2 iPhone XS Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPhone XS</td>
<td></td>
</tr>
<tr>
<td>Taptic Engine (page 40)</td>
<td>iPhone XS</td>
<td></td>
</tr>
<tr>
<td>Acoustics (page 42)</td>
<td>iPhone XS</td>
<td></td>
</tr>
</tbody>
</table>
3.10.1.3 iPhone XR

Table 3-3 iPhone XR Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPhone XR</td>
<td></td>
</tr>
<tr>
<td>Taptic Engine (page 40)</td>
<td>iPhone XR</td>
<td></td>
</tr>
<tr>
<td>Acoustics (page 42)</td>
<td>iPhone XR</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.4 iPhone X

Table 3-4 iPhone X Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPhone X</td>
<td></td>
</tr>
<tr>
<td>Taptic Engine (page 40)</td>
<td>iPhone X</td>
<td></td>
</tr>
<tr>
<td>Acoustics (page 42)</td>
<td>iPhone X</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.5 iPhone 8 Plus/iPhone 7 Plus

Table 3-5 iPhone 8 Plus/iPhone 7 Plus Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPhone 8 Plus and iPhone 7 Plus</td>
<td></td>
</tr>
<tr>
<td>Taptic Engine (page 40)</td>
<td>iPhone 8 Plus and iPhone 7 Plus</td>
<td></td>
</tr>
<tr>
<td>Home Button / Touch ID Sensor Overlays (page 41)</td>
<td>iPhone 8 Plus and iPhone 7 Plus</td>
<td></td>
</tr>
<tr>
<td>Acoustics (page 42)</td>
<td>iPhone 8 Plus and iPhone 7 Plus</td>
<td></td>
</tr>
</tbody>
</table>

It is not possible for a case to claim compatibility with only the iPhone 8 Plus or only the iPhone 7 Plus.

3.10.1.6 iPhone 8/iPhone 7

Table 3-6 iPhone 8/iPhone 7 Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPhone 8 and iPhone 7</td>
<td></td>
</tr>
<tr>
<td>Taptic Engine (page 40)</td>
<td>iPhone 8 and iPhone 7</td>
<td></td>
</tr>
<tr>
<td>Home Button / Touch ID Sensor Overlays (page 41)</td>
<td>iPhone 8 and iPhone 7</td>
<td></td>
</tr>
<tr>
<td>Acoustics (page 42)</td>
<td>iPhone 8 and iPhone 7</td>
<td></td>
</tr>
</tbody>
</table>

It is not possible for a case to claim compatibility with only the iPhone 8 or only the iPhone 7.
3.10.1.7 iPhone 6s Plus/iPhone 6 Plus

Table 3-7 iPhone 6s Plus/iPhone 6 Plus Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPhone 6s Plus and iPhone 6 Plus</td>
<td></td>
</tr>
<tr>
<td>Taptic Engine (page 40)</td>
<td>iPhone 6s Plus</td>
<td></td>
</tr>
</tbody>
</table>

It is not possible for a case to claim compatibility with only the iPhone 6s Plus or only the iPhone 6 Plus.

3.10.1.8 iPhone 6s/iPhone 6

Table 3-8 iPhone 6s/iPhone 6 Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPhone 6s and iPhone 6</td>
<td></td>
</tr>
<tr>
<td>Taptic Engine (page 40)</td>
<td>iPhone 6s</td>
<td></td>
</tr>
</tbody>
</table>

It is not possible for a case to claim compatibility with only the iPhone 6s or only the iPhone 6.

3.10.1.9 iPhone 5/iPhone 5s/iPhone SE

Table 3-9 iPhone 5/iPhone 5s/iPhone SE Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPhone SE</td>
<td></td>
</tr>
</tbody>
</table>

It is not possible for a case to claim compatibility with only the iPhone 5 or only the iPhone 5s or only the iPhone SE.

3.10.1.10 iPhone 5c

Table 3-10 iPhone 5c Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPhone 5c</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.11 iPad Air (3rd generation)

Table 3-11 iPad Air (3rd generation) Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad Air (3rd generation)</td>
<td></td>
</tr>
</tbody>
</table>
3.10.1.12 iPad mini (5th generation)

Table 3-12 iPad mini (5th generation) Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad mini (5th generation)</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.13 iPad Pro (12.9-inch) 3rd Generation

Table 3-13 iPad Pro (12.9-inch) 3rd Generation Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad Pro (12.9-inch) 3rd Generation</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.14 iPad Pro (11-inch)

Table 3-14 iPad Pro (11-inch) Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad Pro (11-inch)</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.15 iPad Pro (10.5-inch)

Table 3-15 iPad Pro (10.5-inch) Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad Pro (10.5-inch)</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.16 iPad Pro (12.9-inch) 2nd Generation

Table 3-16 iPad Pro (12.9-inch) 2nd Generation Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad Pro (12.9-inch) 2nd Generation</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.17 iPad (5th and 6th generation)

Table 3-17 iPad (5th and 6th generation) Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad (5th generation) or iPad (6th generation)</td>
<td></td>
</tr>
</tbody>
</table>
3.10.1.18 iPad Pro (9.7-inch)

Table 3-18 iPad Pro (9.7-inch) Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad Pro (9.7-inch)</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.19 iPad Pro (12.9-inch) 1st Generation

Table 3-19 iPad Pro (12.9-inch) 1st Generation Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad Pro (12.9-inch) 1st Generation</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.20 iPad mini 4

Table 3-20 iPad mini 4 Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad mini 4</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.21 iPad mini/iPad mini 2/iPad mini 3

Table 3-21 iPad mini/iPad mini 2/iPad mini 3 Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad mini 3</td>
<td></td>
</tr>
</tbody>
</table>

It is not possible for a case to claim compatibility with only the iPad mini or only the iPad mini 2 or only the iPad mini 3.

3.10.1.22 iPad Air 2

Table 3-22 iPad Air 2 Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad Air 2</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.23 iPad Air

Table 3-23 iPad Air Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad Air</td>
<td></td>
</tr>
</tbody>
</table>
3.10.1.24 iPad (4th generation)

Table 3-24 iPad (4th generation) Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPad (4th generation)</td>
<td></td>
</tr>
</tbody>
</table>

3.10.1.25 iPod touch (5th generation)/iPod touch (6th generation)

Table 3-25 iPod touch (5th generation)/iPod touch (6th generation) Case Testing Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Using</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Design (page 38)</td>
<td>iPod touch (6th generation)</td>
<td></td>
</tr>
</tbody>
</table>

It is not possible for a case to claim compatibility with only the iPod touch (5th generation) or only the iPod touch (6th generation).

3.10.2 Product Design

3.10.2.1 Equipment

- Device.
- Apple Lightning Digital AV Adapter
- Vernier calipers
- 0.85 mm plastic feeler gauge
- EarPods with 3.5 mm Headphone Plug
- Touchscreen test block (provided by Apple)

3.10.2.2 Procedure

1. Insert the device into the case.
2. Verify that the device completely fits inside the case. The device must not be loose.
3. Verify that all buttons are accessible.
4. Inspect for button feel. The buttons must not be too hard to press or take a lot of effort to press.
5. For devices that have an Apple Lightning connector:
 a. Insert the Apple Lightning Digital AV Adapter into the Lightning receptacle and verify that it fits.
 b. Using vernier calipers, measure the Lightning connector opening on the case. Verify that the opening is measured to be at least 12.05 mm by 6.30 mm.
6. For devices that have a 3.5 mm headset jack:
 a. Insert EarPods with 3.5 mm Headphone Plug into the headset jack of the device and verify it fits.
 b. Using vernier calipers, measure the headset jack opening on the case. Verify that the opening is measured to be at least 6 mm in diameter and no more than 14 mm deep.
7. For devices with Touch ID, use vernier calipers to verify that the case is at least 2 mm away from the Touch ID sensor.

8. Verify that the case is always proud of the feeler gauge when the gauge is placed at each corner of the device. See Figure 3-10 (page 39).

Figure 3-10 Device proudness test

9. Set the device flat on its face (screen facing down).

10. Roll the device towards any side that is not enclosed by the case until the gap between the device's exposed glass and flat surface is smallest.

11. Verify that the feeler gauge fits into the gap between the device's exposed glass and flat surface.

Figure 3-11 Device gap test
12. Place the touchscreen test block onto the touchscreen of the device. Verify the test block is sitting flush on the touchscreen.

Figure 3-12 Device touchscreen keep-out test

13. If the case has an overlay, verify that there are no air gaps introduced between it and the touchscreen.

3.10.3 Taptic Engine

3.10.3.1 Equipment

- Two devices A and B, same model
- Table

3.10.3.2 Procedure

1. Attach the case to device B.
2. Place device A on top of the table.
3. Place device B on top of the table next to device A.
4. Compare the Taptic Engine feedback between device A and device B for each of the following tasks:
 a. Go to: Settings > Sound & Haptics, set Vibrate on Silent to the on position.
 b. Toggle the Ring/Silent switch.
 c. Connect a charger to both devices.
 d. Go to: Settings > Notifications > Phone > Sounds, select Reflection (Default).
 e. Go to: Settings > Notifications > Messages > Sounds, select Note (Default).
 f. Go to the Home screen.
 g. Trigger a Quick Actions menu by applying pressure to the Settings app. Continue applying pressure.
 h. Slide your finger across the Quick Actions menu and release when Wi-Fi is selected.
 i. Go to the Home screen.
j. Apply pressure to the Home app.
k. Go to: Clock app and select Timer on the bottom right.
l. Scroll through the hours and minutes.

For devices that have a Home button, perform the following tasks:
a. Go to: Settings > General > Home Button, tap option 2.
b. Press the Home button.

5. Repeat the above tasks while holding device A in the left hand and device B in the right hand.

3.10.3.3 Pass/Fail Criteria

The case does not cause substantial change in the feel of the device's Taptic Engine.

3.10.4 Home Button / Touch ID Sensor Overlays

This test procedure is applicable to all iPhone 8 Plus, iPhone 8, iPhone 7 Plus or iPhone 7 accessories that overlay the Home button or the Touch ID sensor.

3.10.4.1 Equipment

- Nitrile gloves (e.g. Ansell TNT Blue)
- Ethyl alcohol hand sanitizer (e.g. Purell)
- Scissors

3.10.4.2 Procedure

1. Cut off a square of material from the nitrile glove's wrist portion.
2. Install the accessory onto the device.
3. Press the sleep/wake or side button to place the device into a sleep state (display off).
4. Place the square of nitrile glove material over the device's Home button / Touch ID sensor with the glove's outer side facing away from the device.
5. Apply a small amount of hand sanitizer (approximately dime-sized) to the nitrile over the Home button / Touch ID sensor.
6. Repeat the following steps 10 times:
 a. Press the Home button / Touch ID sensor with a thumb.
 b. Verify that the device wakes (display on).
 c. Press the sleep/wake or side button to place the device into a sleep state (display off).
7. Repeat the following steps 10 times:
 a. Press the Home button / Touch ID sensor with an index finger.
 b. Verify that the device wakes (display on).
 c. Press the sleep/wake or side button to place the device into a sleep state (display off).
3.10.4.3 Pass/Fail Criteria
The device must wake every time the Home button / Touch ID sensor is pressed.

3.10.5 Acoustics
The following test procedures apply to devices with a built in speaker and/or microphone.

3.10.5.1 Speakerphone Call
This procedure evaluates the impact of a case on the speakerphone performance of a device.

3.10.5.1.1 Equipment and Test Setup
This procedure requires two operators in separate quiet rooms.

Room A:
- Operator A
- The device (with cellular service) used to evaluate the case
 - The device should have at least two out of five bars of cellular reception within the room.

Room B:
- Operator B
- Landline speakerphone
- Digital audio recorder (e.g., a device with the Voice Memo app)

3.10.5.1.2 Pass/Fail Criteria
There are two categories of failure for this procedure:
- Echo: If Operator B hears their own voice from the landline.
- Double Talk: If Operator B hears Operator A inconsistently.

The pass/fail threshold for these two categories should be established by performing the test procedure using:
- The device (without the case) as a reference.

There should be no perceivable difference between the reference and the test conducted with the case on the device.

3.10.5.1.3 Procedure
1. Operator A: Use the device (without a case) in Room A to call the landline phone in Room B.
2. Operator A: Place the device in speakerphone mode.
3. Operator B: Answer the call with the landline phone in Room B.
4. Operator B: Place the landline phone in speakerphone mode.
5. Operator A and B: Simultaneously recite the following phrases to evaluate the call quality:
 a. The birch canoe slid on the smooth planks.
 b. Glue the sheet to the dark blue background.
 c. It's easy to tell the depth of a well.
 d. These days a chicken leg is a rare dish.
 e. Rice is often served in round bowls.
 f. The juice of lemons makes fine punch.
 g. The box was thrown beside the parked truck.
 h. The hogs were fed chopped corn and garbage.
 i. Four hours of steady work faced us.
 j. Large size in stockings is hard to sell.
6. Operator B: Evaluate the call. Ensure that the call is clear when there is no case on the device.
7. Operator A: Place the case on the device.
9. Operator A: State the test date and identify the manufacturer name, product name, and a unique identifier (UID) for case (production run name, design version, etc.).
10. Operator A and B: Simultaneously recite the same phrases as above.
11. Operator B: Stop audio recording.
12. Operator B: Evaluate the recording against the pass/fail criteria, see Pass/Fail Criteria (page 42).

4. Covers

This chapter is applicable to accessories that cover device displays.

4.1 Magnetic Interference

Accessory covers must not interfere with the device's:

- Magnetic compass.
- Rear camera autofocus.
- Rear camera optical image stabilization (OIS), if present.

See Magnetic Interference (page 19) for additional details.

4.2 Smart Covers

Dimensional drawings indicating magnet and Hall effect sensor locations are available for the following devices:

- iPad Air (3rd generation) with Wi-Fi 2 of 3 (page 144)
- iPad Air (3rd generation) with Wi-Fi + Cellular 2 of 3 (page 147)
- iPad mini (5th generation) with Wi-Fi 2 of 3 (page 150)
- iPad mini (5th generation) with Wi-Fi + Cellular 2 of 3 (page 153)
- iPad Pro (12.9-inch) 3rd Generation 2 of 3 (page 156)
- iPad Pro (11-inch) 2 of 3 (page 159)
- iPad Pro (12.9-inch) 2nd Generation Magnet/Hall Effect Sensors 1 of 2 (page 163)
- iPad Pro (12.9-inch) 2nd Generation Magnet/Hall Effect Sensors 2 of 2 (page 164)
- iPad Pro (10.5-inch) Magnet/Hall Effect Sensors 1 of 2 (page 167)
- iPad Pro (10.5-inch) Magnet/Hall Effect Sensors 2 of 2 (page 168)
- iPad (5th and 6th generation) Magnet/Hall Effect Sensors 1 of 2 (page 170)
- iPad (5th and 6th generation) Magnet/Hall Effect Sensors 2 of 2 (page 171)
- iPad Pro (9.7-inch) Magnet/Hall Effect Sensors 1 of 2 (page 174)
- iPad Pro (9.7-inch) Magnet/Hall Effect Sensors 2 of 2 (page 175)
- iPad Pro (12.9-inch) 1st Generation Magnet/Hall Effect Sensors 1 of 2 (page 178)
- iPad Pro (12.9-inch) 1st Generation Magnet/Hall Effect Sensors 2 of 2 (page 179)
- iPad mini 4 Magnet/Hall Effect Sensors (page 182)
5. Screen Overlays

The touch interface in a device senses the presence of one or more fingers on its surface. Any material between the surface and the user's hand, even a very thin sheet of plastic, may affect the performance of the touch interface.

5.1 Product Design

The screen overlay thickness must not exceed 0.1 mm for the following devices:

- iPad Air (3rd generation)
- iPad mini (5th generation)
- iPad Pro (12.9-inch) 3rd Generation
- iPad Pro (11-inch)
- iPad (6th generation)
- iPad Pro (12.9-inch) 2nd Generation
- iPad Pro (10.5-inch)
- iPad Pro (9.7-inch)
- iPad Pro (12.9-inch) 1st Generation

The screen overlay thickness must not exceed 0.3 mm for all other devices.

Additionally, screen overlays must not:

- Introduce air gaps between the touchscreen and overlay.
- Be electrically conductive.

5.2 Edge Swipe and Edge Press Gestures

See Edge Swipe Gestures (page 24) and Edge Press Gestures (page 25).
6. Camera Attachments

This chapter is applicable to accessories that intentionally alter the images captured by device cameras.

6.1 Magnetic Interference

Accessory camera attachments must not interfere with the device's:

- Magnetic compass.
- Rear camera autofocus.
- Rear camera optical image stabilization (OIS), if present.

See Magnetic Interference (page 19) for additional details.
7. AC Power Adapters

AC power adapters convert AC "mains" power to DC for the purpose of providing power to a device. They may provide power via one or more of the following:

- USB-C receptacle, see USB-C Receptacle (page 120), combined with a USB-C to Lightning cable.
- USB-A receptacle, see USB-A Receptacle (page 117), combined with a USB-A to Lightning cable.
- Qi wireless power, see Qi Wireless Power (page 21).

7.1 Converter Switching Frequencies

Converter switching frequencies in AC power adapters must be:

- Above 60 kHz (450 kHz is recommended) for all loads greater than 20 mA.
- Above 22 kHz (the audio band) for all loads greater than 5 mA.

Failure to comply with those requirements may cause issues with device touchscreen sensors or audio output.

7.2 YCAP AC Capacitor

AC power adapters should include a YCAP AC capacitor (up to 1000 pF) between the primary and secondary sections of the adapter’s transformer to reduce common-mode noise at switching frequencies. These frequencies or their harmonics can interfere with device touchscreen sensors.

7.3 Impedance Stability

AC power adapter series impedance should not change abruptly. Sudden changes in impedance may cause touchscreen sensor output oscillations.

Bridge diodes used in full-wave bridge rectifiers can be a major source of abrupt changes in the series impedance. If the bridge diodes have large inherent reverse capacitance (greater than 100 pF), then the net impedance change due to diode switching may be acceptably small. However, diode reverse capacitance may decrease in more compact IC designs due to decreased chip area.
Impedance of bridge diodes with unacceptably low reverse capacitance can be stabilized using the example circuit shown in Figure 7-1 (page 48) and Table 7-1 (page 48). In this example, capacitors C1, C2, C3, and C4 have been placed in parallel with diodes D1, D2, D3, and D4 to stabilize the bridge impedance. Their values are larger than the inherent reverse capacitances of the diodes.

Resistors R1, R2, R3, and R4 are optional; if included, they can block noise at very high frequencies, which can help with EMI compatibility. The recommended values of R1, R2, R3, and R4 in Table 7-1 (page 48) were chosen to have trivial levels of impedance relative to the impedances of C1, C2, C3, and C4 at power line frequencies.

Figure 7-1 Typical AC power adapter diode bridge circuit

![Diagram of a diode bridge circuit with capacitors and resistors](image)

Table 7-1 Typical component values for an AC power adapter diode bridge circuit

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3, C4</td>
<td>47 pF</td>
</tr>
<tr>
<td>R1, R2, R3, R4</td>
<td>2 kΩ</td>
</tr>
</tbody>
</table>

7.4 Fuse Protection

A fuse should be present at the input of the AC power adapter to protect it under any fault condition.
7.5 Short Circuit Response

The output of the AC power adapter should drop or fold back without any resulting damage if its output is shorted to the secondary common (less than 10 mΩ).
8. USB-C to Micro-USB Adapters

Bundled USB-C to Micro-USB adapters must consist of:

- USB-C plug, see USB-C Plug (page 118).
- Micro-USB receptacle.

All wiring must be handled in accordance with the USB specification.

A 56 kΩ pull-up with a tolerance of 5% or better must be connected to the USB CC wire.

The adapter must not consume any power from the Micro-USB receptacle.

The adapter must not monitor or modify the USB D+/D- signals.
A battery pack is an accessory that is designed to provide power to the device from an internal power supply.

The battery pack may provide power via one or more of the following:

- USB-C receptacle, see USB-C Receptacle (page 120), combined with a USB-C to Lightning cable.
- USB-A receptacle, see USB-A Receptacle (page 117), combined with a USB-A to Lightning cable.
- Qi wireless power, see Qi Wireless Power (page 21).
10. Apple AirPods Attachments

This chapter is applicable to accessories that attach to Apple AirPods.

10.1 Interference

Accessory AirPods attachments must not interfere with the keep-out areas specified in Figure 10-1 (page 53).
10. Apple AirPods Attachments

10.1 Interference

Figure 10-1 AirPods Keep-Out Drawing
11. Watch Bands

A well-designed band will securely attach to Apple Watch while not interfering with its operation. See Device Dimensional Drawings (page 125) for Apple Watch dimensional drawings with defined keep-out zones.

11.1 Requirements

Bands for Apple Watch must integrate two lugs that mate with the Apple Watch Band Interface, see Apple Watch Band Interface (page 56). Apple Watch uses a high precision interface profile, see https://developer.apple.com/watch/bands/ for a sample 2D lug profile. Lugs should lock into the band mating slot with a 'lug latch' feature that prevents accidental removal of the band.

Exposed edges of bands and lugs must pass UL 1439 tests for sharpness of edges on equipment and BS EN71-1:2014, Safety of Toys - Mechanical and physical properties.

The lug latch must never become jammed in the extended position.

Bands must not integrate magnetic chargers.

Bands and lugs should:

• Pass a 72 hour salt mist test as specified in ASTM B117 with no visible corrosion.
• Resist a 5-20 kgf lateral slide-out force when installed in Apple Watch.
• Resist a 20 kgf or greater pull force as specified in ISO-6245:1996, Specifications for Diver’s Watches, section 7.3.
• Detach easily from Apple Watch when the band release buttons are pressed.
• Take into account the weight of Apple Watch.

For compatibility with Apple Watch heart sensors, bands should:

• Have length sizing adjustment pitch of less than 7 mm (center to center).
• Provide sufficient adjustability for the user to achieve a snug, yet comfortable, fit that prevents movement of Apple Watch relative to skin.

Bands must not prevent the user's skin from maintaining direct contact with the Apple Watch heart sensors and back of Apple Watch, and must incorporate sufficient margin to compensate for shifting or dimensional changes of the band material. Failure to do so may interfere with Apple Watch wrist detect and Apple Pay features.
Bands intended for use during exercise should maintain a snug fit through a full range of motion to maintain compatibility with Apple Watch heart sensors.

Apple recommends the following materials for lug bodies:

- 75 Shore A silicone.
- 50-55% glass-filled nylon.
- 240-270HV 316L / EN 1.4435 stainless steel.

Apple recommends the following materials for lug latches:

- 50-55% glass-filled nylon.
- 240-270HV 316L / EN 1.4435 stainless steel.

Bands for Apple Watch must comply with applicable environmental regulations in the regions in which such bands are to be sold, and any applicable substance or material restrictions, including applicable restrictions on the following substances:

- Organic tin compounds, PFOS, PFOA, phthalates, azo dyes, polybrominated biphenyls (PBBs) and PAHs, per requirements of the EU REACh regulation EC 1907/2006.
- Nickel leach rate on surfaces in prolonged skin contact, per requirements of the EU REACh regulation EC 1907/2006.
- Cadmium, lead, hexavalent chromium, and nickel, per requirements of EU Directive 2009/48/EC.
- Natural rubber latex, per requirements of EU Directive EC 93/42/EEC.
- Dimethylfumarate (DMFu), per requirements of EU Regulation 412/2012.
- pH and Formaldehyde, per requirements of China GB 18401 for textiles and China GB 20400 for leather.
- Endangered species of flora and fauna in products or packaging (US Lacey Act).
- Polybrominated diphenyl ethers (PBDE).
11.2 Apple Watch Band Interface

Figure 11-1 Apple Watch Band Interface
11.3 Example Apple Watch Lug

Figure 11-2 Apple Watch Lug
11.4 Example Apple Watch Lug Assembly

11.4.1 Required Equipment

- Lugs
- Screws
- Pentalobe 1.1 screwdriver (bit model no. 05300018002 or 05300018001 (250 units)) from Wera Tools

11.4.2 Recommended Equipment

- Assembly fixture with clamping device
- Loctite 435 for screw threads

Proper assembly of the lug is critical to ensure the band securely attaches to the Apple Watch. Improper assembly may result in damage to the Apple Watch and/or the band.

Screws that have been previously installed/used must not be reused.

The assembly fixture should hold the lug assembly in place and a clamping device should compress the lug during screw insertion.

11.4.3 Assembly Instructions

See Figure 11-3 (page 59) for detailed drawing of assembly instructions.

1. Lightly insert the long end of the female pin in the band until hard stop. Ensure there is no warping or damage in the band.
2. Lightly insert the long end of the male pin in the other side of the band until it interlocks with the female pin and both pins are seated together. Ensure there is no warping or damage in the band.
3. Align the holes on the bottom of the lug with the exposed ends of the female and male pins. Note lug latch top/bottom orientation relative to band. Latch must be on the side of the band against the wrist.
4. Apply Loctite 435 to screw threads.
5. Install both screws at the top of the lug as seen in Figure 11-3 (page 59) using the following specification:
 - Torque: 1.1 kgf-cm ±10%
 - RPM: 120 ±10%
6. Inspect for screw proudness and cross-threading visually at 1200-1400 lux.
7. Ensure screw is just sub-flush to the lowest part of the counterbore and appears parallel to the long axis of the lug.
8. Ensure screw is flat and concentric with the counterbore, without damage to the Pentalobe pattern.
11. Watch Bands
11.4 Example Apple Watch Lug Assembly

Figure 11-3 Apple Watch Lug Assembly Fixture

1. Apple Watch Lug Assembly Fixture

2. Note lug orientation

3. Note lug orientation

4. Female pin

Male pin

Copyright © 2019 Apple Inc. All Rights Reserved.
Features
12. Device Power (Lightning)

The Device Power feature enables accessories to report their power characteristics and provide power to a device.

Apple strongly recommends providing power to the device whenever possible for the best user experience.

Accessories that provide power to a device must connect to the device either through an integrated Lightning connector or a USB to Lightning cable. To incorporate an integrated Lightning connector, the accessory developer must be a member of the Apple MFi licensing program. See https://developer.apple.com/programs/mfi for further information.

Accessories that provide power to a device must either:

- Provide direct power, see Direct Power Source (page 61).
- Manage power from external sources, see External Power Source (page 61).

All accessories that do not have the potential for data communication with the device must provide direct power to the device, see Direct Power Source (page 61).

12.1 Direct Power Source

Accessories that provide power directly must provide power at all times unless a direct user action is taken to put the accessory into an 'off' state. Failure to provide power at all times may result in the accessory being unable to charge a device whose battery level is too low for the device to boot.

12.2 External Power Source

Accessories that draw power from external power sources and provide all or a portion of that power to the device must identify the power source's capability and report accordingly to the device.
12.2 Device Power (Lightning)
12.3 Declaring Capability

Note: Accessories must not manipulate a device into drawing more power from the external power source than the device would normally draw when directly connected to the external power source.

Accessories must not manipulate a device into drawing less than the minimum power required by the accessory compatibility claims if it is available from the external source, see Providing Power via USB Connectors (page 62).

Accessories that draw power from external power sources may inform the device that power is not available or available at a reduced level (such as from an internal battery) when the user unplugs the accessory from the external power source (such as an AC power adapter or AC "mains" power outlet). Power to the device must be restored (and the power providing capability change must be communicated to the device) when the user re-connects the external power source.

See AC Power Adapters (page 47), Integrated USB Receptacles (page 18), and User Supplied Cables and AC Power Adapters (page 18) for additional requirements specific to external USB power supplies/cables.

12.3 Declaring Capability

If the accessory provides power via a:

- USB-A receptacle, then it must use one of the following to declare its power providing capability:
 - USB Power Capability Vendor Request (page 85).
 - USB D+/D- Resistor Networks (page 86).
- USB-C receptacle, then:
 - It must use one of the following to declare its power providing capability:
 - USB-C Current (page 90).
 - USB Power Delivery (page 89).
 - If the accessory does not have the potential for data communication with the device, it must also support the USB Battery Charging 1.2 specification.

12.4 Providing Power via USB Connectors

If the accessory connects via a USB-A receptacle, see Providing Power (page 117).

If the accessory connects via a USB-C receptacle, see Providing Power (page 121).
12.5 Labeling Multiple Connectors

If the accessory has multiple connectors with different device compatibilities, then the iPad-compatible connectors must be labeled with the text ‘iPad’ unless it is physically impossible to connect an iPad to the iPhone/iPod compatible connectors.

12.6 iPhone Fast Charging (18 W)

Power-providing accessories may claim support for iPhone Fast Charging (https://support.apple.com/en-us/HT208137) if they:

- Support USB Power Delivery (page 89).
- Supply 18 W (2 A at 9.0 V) using USB-PD.
- Claim compatibility with at least one iPhone model that supports Fast Charging.

The following iPhones support Fast Charging via the Lightning connector:

- iPhone XS Max
- iPhone XS
- iPhone XR
- iPhone X
- iPhone 8 Plus
- iPhone 8
12.7 Overcurrent and Short Circuit Protection

Power-providing accessories must implement overcurrent and short circuit protection for each region in Figure 12-1 (page 64) as follows:

Table 12-1 Overcurrent/Short Circuit Protection Current Thresholds

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_a</td>
<td>Nominal accessory output current (i.e. 1000 mA, 2100 mA, 2400 mA, 3000 mA).</td>
</tr>
<tr>
<td>I_b</td>
<td>$I_a + 60%$.</td>
</tr>
<tr>
<td>I_c</td>
<td>Lowest device current draw that will cause accessory output voltage (measured at Lightning Device Power) to drop below 2 V.</td>
</tr>
</tbody>
</table>

Table 12-2 Overcurrent/Short Circuit Protection Time Thresholds

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>Start of any device current draw transient.</td>
</tr>
<tr>
<td>T_1</td>
<td>Accessory overcurrent/short circuit deglitch/debounce time, must $\geq T_0 + 1$ ms.</td>
</tr>
</tbody>
</table>

Table 12-3 Overcurrent/Short Circuit Protection Behaviors

<table>
<thead>
<tr>
<th>Region</th>
<th>Name</th>
<th>Accessory Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Normal Operation</td>
<td>Accessory must not limit or shutdown output current.</td>
</tr>
<tr>
<td>B</td>
<td>Overcurrent Transient</td>
<td>Accessory must not shutdown output current. Accessory may limit output current to I_a or higher.</td>
</tr>
</tbody>
</table>

Figure 12-1 Overcurrent and Short Circuit Protection
<table>
<thead>
<tr>
<th>Region</th>
<th>Name</th>
<th>Accessory Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Overcurrent</td>
<td>Accessory must shutdown output current.</td>
</tr>
<tr>
<td>D</td>
<td>Potential Overcurrent</td>
<td>Accessory may shutdown output current.</td>
</tr>
<tr>
<td>E</td>
<td>Potential Short Circuit</td>
<td>If Lightning Device Power voltage drops below 2 V, the accessory may trigger short</td>
</tr>
<tr>
<td></td>
<td></td>
<td>circuit protection. Accessories must not trigger short circuit protection on device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>current draw.</td>
</tr>
</tbody>
</table>

12.8 Overcurrent and Short Circuit Protection Resets

Accessory overcurrent and short circuit protection must reset without mechanical intervention.

12.9 Power State Changes

Accessories must not change the amount of power provided to a device unless the accessory power state changes in one of the following ways:

- Direct user action is taken to turn the accessory on or off.
- An external power source (such as mains electricity or battery) is connected to or disconnected from the accessory.
- The accessory’s internal power source (such as a battery) is depleted or loaded to the point where it is no longer capable of supplying its declared power providing capability or is now capable of supplying more power that previously declared.
This chapter describes Apple-specific Bluetooth commands that extend accessory capabilities beyond those supported by standard Bluetooth profiles.

To enable Apple-specific features, the accessory must support HFP Command AT+XAPL (page 66), which provides accurate information about the accessory’s supported features. The device will use the information sent by this command to enable and disable custom commands.

The accessory must send the following AT+XAPL command after making a successful HFP Service Level Connection (SLC) to the device. The accessory should send an AT+XAPL command first, before sending any additional Apple-specific commands. See Siri (page 69) and Bluetooth Headset Battery Level Indication (page 68).

13.1 HFP Command AT+XAPL

Description: Enables custom AT commands from an accessory.

Initiator: Bluetooth accessory

Format: AT+XAPL=vendorID-productID-version,features

Parameters:

- **vendorID**: A string representation of the hex value of the vendor ID from the manufacturer, without the 0x prefix.
- **productId**: A string representation of the hex value of the product ID from the manufacturer, without the 0x prefix.
- **version**: The revision of the software.
- **features**: A base-10 representation of a bit field. Available features are:
 - Bit 0 = reserved
 - Bit 1 = The accessory supports battery reporting (reserved only for battery operated accessories).
 - Bit 2 = The accessory is docked or powered (reserved only for battery operated accessories).
 - Bit 3 = The accessory supports Siri status reporting.
 - Bit 4 = The accessory supports noise reduction (NR) status reporting.
 - All other values are reserved.

Example: AT+XAPL=ABCD-1234-0100,10 (Supports battery reporting and Siri status)
Response: +XAPL=iPhone,features
Any Hands-Free Bluetooth headset accessory can show its battery level to the user as an indicator icon in the device status bar. This feature is supported on all devices that support the Hands-Free Profile, including iPhone, iPod touch, and iPad.

Headset battery indication is implemented by two Apple-specific Bluetooth HFP AT commands, HFP Command AT+XAPL (page 66) and HFP Command AT+IPHONEACCEV (page 68)

14.1 HFP Command AT+IPHONEACCEV

Description: Reports a headset state change.

Initiator: Headset accessory

Format: \text{AT+IPHONEACCEV=Number of key/value pairs, key1, val1, key2, val2, ...}

Parameters:

- \text{Number of key/value pairs}: The number of parameters coming next.
- \text{key}: the type of change being reported:
 - 1 = Battery Level
 - 2 = Dock State
- \text{val}: the value of the change:
 - Battery Level: string value between '0' and '9'
 - Dock State: 0 = undocked, 1 = docked

Example: \text{AT+IPHONEACCEV=1,1,3}
Siri enables a user to have rich interactions with a device by primarily using their voice.

Accessories supporting Siri must not use an icon that resembles the Siri microphone icon.

The rest of this chapter is applicable to accessories that support Siri over Bluetooth using HFP commands.

To support Siri using other transports and protocols, the accessory developer must be a member of the Apple MFi licensing program. See https://developer.apple.com/programs/mfi for further information.

15.1 Enabling Custom Siri Commands

Every accessory that supports Siri over Bluetooth using HFP commands must support HFP Command AT+XAPL (page 66). The device will use the information sent by this command to enable and disable custom commands related to Siri.

To receive Siri status events, the accessory must send the AT+XAPL command after making a successful HFP Service Level Connection (SLC) to the device. The accessory should send an AT+XAPL command first, before sending any of the additional Siri-specific commands described below.

15.2 Obtaining Siri Availability Information

After establishing an HFP profile connection, an accessory can determine if Siri is available and enabled on a device. It can also receive notifications of changes in Siri status. If Siri is disabled, Voice Control will be activated instead.

15.2.1 Obtaining Status Information at Connection

The accessory should send the following command after making a successful HFP profile (SLC) connection and sending an AT+XAPL command.

15.2.1.1 HFP Command AT+APLSIRI?

Description: AT command to retrieve Siri status information.
Initiator: accessory

Format: AT+APLSIRI?

Response: +APLSIRI: value

Defined Values:

- 0 = Siri is not available on this platform.
- 1 = Siri is available and enabled.
- 2 = Siri is available but not enabled.

Example: +APLSIRI: 1 (Siri is available and enabled)

15.2.2 Receiving Siri Availability Updates from the Device

After initialization has been completed, the device will send the accessory the following notification if there is a change in Siri status. This notification will be provided only if the accessory has requested Siri status (by sending AT+APLSIRI?) at least once after connection, and if the device has reported that Siri is available and enabled.

15.2.2.1 HFP Command +APLSIRI

Description: Unsolicited event indicating a change in Siri status.

Initiator: Device

Format: +APLSIRI: value

Defined Values:

- 1 = Siri is available and enabled.
- 2 = Siri is available but not enabled.

Example: +APLSIRI: 2 (Siri is available but not enabled)
15.3 Initiating a Siri Session

Once support for Siri is established on both the accessory and the device, a Siri session can be started from either one.

15.3.1 Initiating a Session from the Accessory

The accessory should only initiate a Siri session as a result of a direct user action.

To initiate a Siri session, the accessory must use the voice recognition command AT+BVRA defined in the Bluetooth Hands-Free Profile specification. For further details, see the Bluetooth Hands-Free Profile 1.6 profile specification, section 4.25. The HFP profile must be connected and SLC must exist.

The accessory should use the following command sequence:

- The accessory sends an AT+BVRA=1 command to the device.
- The device sends an OK response.
- The device launches a Siri session and creates a Synchronous Connection (SCO) for the audio.
- If the Siri session is not finished, the accessory must send AT+BVRA=1 to continue the conversation. This may need to happen multiple times.
- When the Siri session is finished, the device sends a +BVRA:0 result code to the accessory.
- The device disconnects the SCO connection.

While a Siri session is active, the accessory must let the user continue the conversation and ask follow up questions within the current context. In order to do so, the accessory must be able to send an AT+BVRA=1 command to the device even after Siri has been already activated and before +BVRA:0 is received. Figure 15-2 (page 72) shows an overview of the interaction when Siri is triggered from the accessory, the running session was continued twice and once Siri was finished, the device dismissed the session.
15.3.2 Initiating a Session from the Device

If the accessory supports voice recognition commands, the device sends a +BVRA event to indicate the start of a Siri session. The accessory must enable support for voice recognition and indicate it in its feature response as described in the Bluetooth Hands-Free Profile 1.6 specification, section 4.34.1, "Bluetooth Defined AT Capabilities." Specifically, the HFP profile must be connected, SLC must exist, and voice recognition activation (bit 3) must be enabled in the AT+BRSF command. The device will not use virtual call functionality for the Siri session if voice recognition activation is supported by the accessory.

The accessory should expect the following command sequence:

- The device sends a +BVRA:1 event to the accessory.
- The device launches a Siri session and creates a SCO connection for the audio.
- When the Siri session is finished, the device sends a +BVRA:0 result code to the accessory.
- The device disconnects the SCO connection.

Figure 15-3 Initiating a Siri Session from the Device
15.3.3 Ending a Session from the Accessory

Once a Siri session is running the accessory must be capable of ending the session by sending an AT+BVRA=0 command to the device. Figure 15-4 (page 73) shows an example of ending a running Siri session from the accessory. The accessory should only end an active session as a result of a direct user action.

15.4 Siri Eyes Free Mode

Siri Eyes Free mode is a feature to control Siri responses that include display information and can be enabled or disabled as needed. In Siri Eyes Free mode, the user experience is tailored towards a driving scenario and interactions with Siri are done primarily via voice to minimize the need for the user to look at a screen. Siri Eyes Free mode is supported only for Bluetooth-enabled vehicle entertainment systems and should not be used by any other accessories. Siri Eyes Free should not be triggered via a voice command.

The device will listen for the HFP AT command AT+APLEFM to enable or disable Siri Eyes Free mode.

This command is used by the device to modify Siri responses that contain visual information or require user interaction. Suitable audio feedback and voice commands will be available to the user based on the Siri use case that was initiated.

Siri Eyes Free mode is disabled by default. Once the accessory has enabled Siri Eyes Free mode, it remains enabled for all subsequent Siri sessions initiated from the accessory until the accessory disables it or the Bluetooth connection is disconnected.

15.4.1 HFP Command AT+APLEFM

Description: An accessory sends this command to notify a device of the preferred state of Siri Eyes Free mode.
Initiator: accessory

Format: AT+APLEFM=value

Response: OK

Defined Values:

- 0x00 = Disable Siri Eyes Free mode.
- 0x01 = Enable Siri Eyes Free mode.
- 0x02-0xFF = reserved

Example: AT+APLEFM=1

15.5 Improving Voice Recognition

The microphone audio that the accessory sends to the device during a Siri session should be suitable for voice recognition. Audio requirements for optimal voice recognition may differ from requirements for optimal human perception (such as during a cellular phone call).

Filtering of the audio signal to remove echoes or feedback noise is acceptable.

To provide the best possible audio quality as Siri input, the accessory must observe the following recommendations:

- Echo cancellation and noise suppression (EC/NR): Directional microphones and linear beamforming with microphone arrays giving improved SNR are recommended. Linear echo cancellation for reducing unwanted audio sources (such as audio output from the system) without having any other effect on the speech signal are also recommended. However, single channel noise reduction methods (such as spectrum subtraction) must not be applied, as they will be detrimental to the speech recognition accuracy. Similarly, automatic gain control, residual echo suppression and attempts to blank out non-speech periods in the waveform must not be applied.

- Signal gain: When adjusting signal levels, the accessory must avoid artifacts, dropouts, and clipping in all circumstances. Automatic Gain Control is not recommended. If the accessory adjusts signal gain, the gain should be held constant across each spoken utterance. The nominal level measured at the uplink output of the accessory should be A-weighted -30 dB ±2 dB root-mean-square (RMS), expressed in units relative to full-scale (dBFS(A)). Alternatively, the nominal level may be 13 dB ±2 dB SLR if using the ITU measurement procedure.

- Signal-to-noise ratio (SNR): An average SNR greater than 20 dB is recommended. Below 20 dB, recognition rates will be impacted.

- Reverberation: Maintaining RT60 time at less than 200 ms is recommended.
15.5.1 Wide Band Speech Support

An accessory using Siri should support 16 kHz wide band speech audio for better audio quality and voice recognition performance. See the Bluetooth *Hands-Free Profile* 1.6 specification for details about wide band speech audio. Narrow band audio signal (8 kHz) is supported but not recommended.

15.6 Optimizing the Siri Experience

For best results in using Siri, the accessory design should follow these guidelines:

- The start of a Siri session should not be accompanied by local beeps or verbal indications (such as an announcement of "...voice dialing...") from the accessory. When a Siri session becomes active, the device sends two beeps indicating that Siri is ready to receive instructions. Adding extra audible notifications only inserts delays in the system.
- The accessory should wait for the device to end each Siri session. The accessory should not send an AT+BVRA=0 command unless it is prompted to do so by user interaction.
- The device expects that the accessory is capable of rendering audio as soon as the SCO connection is active. This is necessary to make sure that the user always hears the Siri introductory beeps with minimum delay. The delay should be within 200 ms.

15.7 Common Siri Applications

Siri can send messages, find points of interests, place phone calls, and much more. As Siri capabilities are constantly growing, additional use cases may become available after the initial integration. In Siri Eyes Free mode, some of these use cases may not be accessible as the user experience is tailored towards a driving scenario.

15.7.1 Initialization Procedure After Connection is Established

Figure 15-5 (page 76) outlines the sequence the accessory has to trigger to be able to use Siri on a device. After establishing an HFP profile connection, the accessory must first enable the custom Siri commands by sending AT+XAPL and provide the features it supports. After a confirmation is received from the device, the accessory should determine Siri’s availability with AT+APLSIRI?

Vehicles with Bluetooth-enabled infotainment systems can also enable Siri Eyes Free Mode during initialization. This is detailed in *Figure 15-6* (page 76).
15.7.2 Phone Dialing Using Siri

Upon the user’s request Siri can initiate an outgoing phone call. The device will initiate HFP call signaling to establish a phone call as described in Bluetooth (page 96). The accessory must be able to transition to Hands-Free dialing at any time during or after a Siri session when signaled by the device.

15.7.3 Audio Routing and Media Playback Using Siri

Siri can control the media playback on a device, and if Siri determines that the user wants to play or pause music it will either start, pause or resume media playback. The device will send a notification to the accessory indicating a change in playback state and any associated track information. The accessory must respond to those notifications, start or stop the music playback as requested, as well as update the correct playback state (e.g. shuffle, repeat).
The accessory must not force a change in the playback state after a Siri session is ended. If music was playing before Siri was started, it must continue playing, if it was paused, it must remain paused.

After Siri starts music playback the accessory must set its current audio route to match the audio source, depending on how audio is being received from the device (via Bluetooth or by a wired connection).

The available media playback notifications depend on the audio route being used:

- For a Bluetooth audio route, use the approach described in Notifications (page 104) and Audio Data Received via A2DP Profile (page 106).
- For a wired audio route, use iAP2.

15.7.4 Turn-By-Turn Directions Using Siri

Siri can initiate active route guidance that will play turn-by-turn directions. In case the device is the active source and is already playing music, turn-by-turn directions will be mixed in as part of the audio stream. In case the device is not playing music, the accessory should be able to mix in turn-by-turn directions with the active audio source.

The device will notify the accessory to play turn-by-turn directions only over Bluetooth. Detailed information on how to distinguish between music playback and turn-by-turn notifications is available in Notifications (page 104).

15.8 User Interaction with Siri Eyes Free in a Vehicle

A vehicle that uses Siri Eyes Free mode must integrate the Siri experience with the existing in-vehicle entertainment system and controls. The vehicle should provide a convenient interface to initiate, continue, and end a Siri session. Once a Siri session is running, the vehicle must display a visual cue that voice recognition is in process. Figure 15-7 (page 78) outlines how a Siri interaction should be designed.
If the accessory wishes to indicate that Siri is active, it must do one of the following:

- Display the word 'Siri' (as capitalized) with no additional text or icon.
- Use generic text or icon that does not resemble the Siri microphone icon.

If the vehicle is equipped with steering wheel controls, a dedicated button or a long-press on a button on the vehicle’s steering wheel is required to start, continue and end a Siri session. The button long-press must be 600 ms or less. If no steering wheel controls are available, a soft button must be available within the in-vehicle user interface to start, continue or end a Siri session.
When a vehicle enables Siri Eyes Free mode, the device will not display any onscreen Siri content. If the device was locked at the time the Siri session was activated from the vehicle, it will remain locked and the screen will not turn on. If the user unlocks or manually activates the device while in an Eyes Free Session there will be a notification that the device is in an active Siri session but there will be no visual Siri content displayed.

15.9 Enabling/Disabling Siri from the Device

The user has the ability to disable or enable Siri from the Settings menu on the device. When Siri is disabled, Voice Control becomes the recognition engine on the device and will be triggered by default. The accessory may choose to either launch Voice Control with no further changes, in the same way Siri is launched (shown in Figure 15-8 (page 79)) or display a warning message and not send an activation command to the device (Figure 15-9 (page 79)).

Figure 15-8 Siri is Deactivated - Launching Voice Control

Figure 15-9 Siri is Deactivated - Displaying a Warning Message
15.10 Test Procedures

15.10.1 Siri Eyes Free

The following test procedures are applicable to accessories that interact with Siri Eyes Free.

For the following spoken tests, the speaker should ideally be a native speaker of North American English. If the tester's native language is not English, set Siri to your native language and translate the phrases to be spoken below into your native language.

15.10.1.1 General

1. Pair and establish a Bluetooth Handsfree Profile (HFP) connection between the iPhone and the head unit. Activate Siri from the vehicle steering wheel button (e.g. by press hold):
 a. Observe that the iPhone screen remains inactive after a Siri session has started (a visual indicator will be visible on the device if the screen is activated manually).
 b. Ensure that Siri opening chime is heard completely through the vehicle speakers.
 c. Observe a visual notification in the in-car User Interface (UI) that a Siri session is active (textual notification, on-screen UI, etc.).

2. Activate Siri from the vehicle steering wheel button and say "Send a message to Peter. How are you?". While still saying the message, press the vehicle steering wheel button to cancel Siri (e.g. by press):
 a. Ensure the iPhone screen remains inactive (if manually activated, the visual indicator on the phone will disappear).
 b. Verify that the in-car UI for Siri interaction dismisses and the head unit resumes the state before Siri's interaction.

3. Activate Siri from the vehicle steering wheel button and say "How is the weather in San Francisco?". Wait for Siri to respond with the weather forecast. Once the weather forecast is complete, resume Siri from the vehicle steering wheel button and say "What about New York?":
 a. Observe that the visual indicator is still active on the phone.
 b. Listen for the Siri opening chime.
 c. The vehicle UI should be displaying an on-going Siri session.
 d. Verify that Siri responds with the weather forecast for New York.

4. In case the vehicle UI offers on-screen controls to activate/cancel/resume Siri, repeat steps (1) to (3) for all on-screen controls.

5. Activate Siri from the steering wheel button and say "What’s the time". Listen to the current time and do not interact with Siri or the iPhone. After 5 seconds have expired:
 a. Observe that the visual indicator on the phone is no longer visible.
 b. The in-car UI for Siri interaction should be dismissed.
 c. The head unit should resume the state before Siri’s interaction.
6. Listen to FM radio from the car speakers (no A2DP streaming active). Press and hold phone's Home button to activate Siri from the phone:
 a. Observe a visual notification in the in-car UI that a Siri session is active (textual notification, on-screen UI, etc.).
 b. Observe Siri's interaction on the phone's screen and ask "What's the time?"
 c. After Siri has responded, lock the phone again to dismiss the Siri session by pressing the phone's sleep/wake or side button.
7. On the phone go to Settings and turn off Siri. Activate Siri from the head unit. Observe one of the following depending on the actual implementation (a) Voice Control starts instead of Siri (b) The head unit displays a warning that Siri Eyes Free is not available.
8. On the phone go to Settings and turn Siri back on. Verify that Siri can be activated/cancelled from the head unit and from the Home button on the phone.
9. Turn Bluetooth off from the Settings on the phone. Verify that Siri cannot be started.
10. Turn Bluetooth back on from the Settings on the phone. Verify that Bluetooth HFP profile reconnects and that Siri can be activated/cancelled from the head unit and from the Home button on the phone.
11. Make sure there is no accessory battery status level indicator icon displayed on the phone's status bar.

15.10.1.2 Siri Dialog
1. Activate Siri from the vehicle's steering wheel button and say "Send a text message to insert contact name". When Siri prompts for "what would you like it to say", dictate a short message. After Siri has read back your dictated message, say "Review it". After Siri has read back the message again, say "Review it" again. Repeat this cycle ~5 times to ensure that the head unit is able to handle a long interaction with Siri. At the end say "Send it" and verify that the message is sent. Verify that the opening chime is audible and the message is sent. After the Siri session is closed, the audio playback should go back to the state it was before Siri was started, i.e. if it was paused remains paused, if it was playing remains playing.
2. Start Siri from the vehicle's steering wheel button and ask for directions. Follow up through the dialog until the navigation is started. Verify that the Siri session is closed and that the audio playback goes back to the state it was before Siri was started, e.g. if it was paused remains paused, if it was playing remains playing.
3. Start Siri from the vehicle's steering wheel button and say "Search the web for polar bears". Verify that Eyes Free mode is on and that this use case is blocked by Siri. Note: In some implementations the vehicle has to be in motion before Eyes Free is activated by the car kit.
4. Start Siri from the vehicle's steering wheel button and say "What is the current time in Munich?". After Siri has answered but before ~5 seconds have elapsed, resume Siri (e.g. by a short press on the steering wheel button) and verify that Siri is initiated again. Say "What about San Francisco?". Repeat (with a different city) and verify that this can continue indefinitely as long as you short press on the steering wheel button within 5 seconds of the last response.
15.10.1.3 Bluetooth HFP A2DP Music

1. Establish a Bluetooth A2DP connection and switch to Bluetooth audio source on the head unit. Activate Siri and ask "Next track". Verify that track advances and that audio is playing through vehicle speakers. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

2. Activate Siri and say "Pause the music". Verify that audio remains paused after Siri has been dismissed. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

3. Pause music playback on the head unit (via AVRCP command). Activate Siri and ask "What time is it?". Verify that the music playback remains paused after the Siri session has been dismissed. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

4. Switch to FM radio on the head unit. Activate Siri and ask "Play me a song". Verify that head unit is able to automatically switch to Bluetooth audio and iPhone music starts playing. Verify that the beginning of the selected track is heard, e.g. there is no skipping of audio packets. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

5. Activate Siri and ask "Shuffle all songs". Verify that head unit correctly updates NowPlaying track information. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

6. Activate Siri and ask to play a specific artist or title. Verify that the Siri session is dismissed after the music starts. Make sure the correct metadata is displayed on the screen. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

15.10.1.4 Call

1. Activate Siri and call a contact with more than one phone number (home and mobile). Wait for Siri’s response to ask for which phone number to call. Answer with "home". Verify that call transition is handled correctly by the head unit and any Siri UI displayed on the vehicle screen is dismissed.

2. While iPhone music is playing, activate Siri and say "Call insert contact name to call". Verify that call transition is handled correctly by the head unit. Verify that iPhone music playback resumes after the call has been answered and terminated on the far end. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

3. While iPhone music is playing, start Siri and say "Call insert contact name to call". Verify that call transition is handled correctly by the head unit. Verify that iPhone music playback resumes after the call has been answered and terminated on the near end (i.e. on the head unit). Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

4. While in a Siri session, receive an incoming call on the head unit. Verify that head unit handles call-signaling correctly and transitions to phone UI once the call has been accepted. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.
15.10.1.5 Bluetooth + Wired iAP2

1. Connect device to head unit via a Lightning connector (iPhone 5). Switch to iPod music and verify that audio is playing. Activate Siri and say "Next track". Verify that track advances and head unit displays track metadata correctly. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

2. From the head unit UI, select a playlist with a single song and start playing it. Start Siri from the vehicle steering wheel and say "Play make sure to select a song to play that is (a) not in the same album as the single-track playlist and (b) not song track index 0 of its album". Verify that the new song starts playing and that the head unit displays the track metadata for this new song correctly. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

3. Turn Shuffle off on the head unit UI. Then start Siri and say "Shuffle all songs". Verify that the shuffle indicator on the head unit UI is updated and the correct track metadata for the new now playing song is displayed correctly. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

4. Switch to FM radio on the head unit. Activate Siri and say "Play me a song". Verify that head unit is able to automatically switch to iPOD audio source and that audio starts playing through the speakers. Verify that there is no skipping of audio at the beginning of the selected track. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

5. Pause music playback on the head unit (via iAP2 commands). Activate Siri and ask "What time is it?". Verify that music playback remains paused after Siri session has been dismissed. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

6. While iPhone music is playing, start Siri and say "Call insert contact name to call". Verify that call transition is handled correctly by the head unit. Verify that iPhone music playback resumes after the call has been answered and terminated on the far end. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

7. While iPhone music is playing, start Siri and say "Call insert contact name to call". Verify that call transition is handled correctly by the head unit. Verify that iPhone music playback resumes after the call has been answered and terminated on the near end (i.e. on the head unit). Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.

8. Pause music playback on the head unit (via iAP2 commands). Start Siri and say "Call insert contact name to call". Verify that call transition is handled correctly by the head unit. Verify that iPhone music playback remains paused after the call has been answered and terminated on the far end. Verify that the Siri in-car UI is dismissed and the head unit goes back to its initial state.
Protocols
16. USB Power Capability Vendor Request

If the accessory is a USB host, and it does not implement iAP2, see iAP2 Protocol (page 94), then it may send an Apple-specific USB vendor request to communicate how much power is available to the device. In this case, the accessory must enumerate and identify the presence of a device, then send the vendor request. The vendor request must be sent every time the device is enumerated by the accessory.

Table 16-1 USB Vendor Request for accessory USB Embedded Host connector that does not implement iAP2 to communicate available power

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmRequestType</td>
<td>0x40</td>
<td>Device-to-host request, vendor-defined type, device is recipient</td>
</tr>
<tr>
<td>bRequest</td>
<td>0x40</td>
<td>Vendor-defined USB get enabled capabilities request</td>
</tr>
<tr>
<td>wValue</td>
<td>see comments</td>
<td>Charging current available, expressed as an offset from 500 mA. Must be 500 (1000 mA charging current available), 1000 (1500 mA charging current available), 1600 (2100 mA charging current available), 1900 (2400 mA charging current available), or 2500 (3000 mA charging current available)</td>
</tr>
<tr>
<td>wIndex</td>
<td>see comments</td>
<td>Must be the same as wValue</td>
</tr>
<tr>
<td>wLength</td>
<td>0</td>
<td>0 bytes expected</td>
</tr>
</tbody>
</table>
17. USB D+/D- Resistor Networks

Accessories that do not implement any of the following may use USB resistor networks to identify their current capability:

- iAP2, see iAP2 Protocol (page 94).
- USB enumeration or vendor commands, see USB Power Capability Vendor Request (page 85).
- USB-C Current, see USB-C Current (page 90).
- USB Power Delivery, see USB Power Delivery (page 89).

17.1 Electrical

The accessory must connect the USB D+ and USB D- pins to resistor networks as shown in Figure 17-1 (page 86).

Figure 17-1 USB D+/D- resistor networks

Note: Every iOS device-compatible connector on an accessory that uses a USB resistor network must have its own set of resistors. The accessory must be capable of supplying the total current required when all connectors are in use, regardless of whether the connectors are compatible with devices or not.
The resistor network must be connected at all times unless the accessory uses one of the following methods to enable charging or detect the presence of a device. In these cases, it must immediately present the resistor network.

- The accessory uses a direct user action to enable charging.
- The accessory senses the attachment of the device via electromechanical means such as a contact switch.

The accessory must not monitor the USB D+ and USB D- pins to detect the presence of a device.

Note: All resistors used to implement the networks specified in Figure 17-1 (page 86) must have a tolerance of 1% or better. The resistor network must not be emulated by driving the voltage of the USB D+/D- pins using some other means.

<table>
<thead>
<tr>
<th>Max Current</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400 mA</td>
<td>43.2 kΩ</td>
<td>49.9 kΩ</td>
<td>43.2 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>2100 mA</td>
<td>43.2 kΩ</td>
<td>49.9 kΩ</td>
<td>75.0 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>1000 mA</td>
<td>75.0 kΩ</td>
<td>49.9 kΩ</td>
<td>43.2 kΩ</td>
<td>49.9 kΩ</td>
</tr>
</tbody>
</table>

17.2 Identifying Power Source Current Limit

Accessories must take into account the variation of USB VBUS voltage and resistor tolerances.

The following procedure is recommended for identifying the current limit of a power source based on the resistor network values:

1. Read the VBUS voltage using an ADC. If value is less than 4.5 V, return no resistors detected.
2. For each D+ and D-, pull-down the line and read the voltage using an ADC. If either value is less than 1 V, return no resistors detected.
3. For each D+ and D-, disable the pull-down and allow the voltage to return to normal.
4. Read the D+ voltage using an ADC (to determine the value for R1).
5. Read the D- voltage using an ADC (to determine the value for R3).
6. For each measurement:
 - If the voltage is > 2.995 V (based on 1 MΩ load impedance), then assume a resistor value of 24.9 kΩ.
 - If the voltage is between 2.320 V and 2.995 V (based on 1 MΩ load impedance), then assume a resistor value of 43.2 kΩ.
 - If the voltage is < 2.320 V (based on 1 MΩ load impedance), then assume a resistor value of 75.0 kΩ.
7. Determine the max current based on Table 17-2 (page 88).
8. If resistor values could not be identified, proceed to identify the power available based on the *USB Battery Charging* 1.2 specification.

<table>
<thead>
<tr>
<th>Max Current</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 mA</td>
<td>75.0 kΩ</td>
<td>49.9 kΩ</td>
<td>75.0 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>1000 mA</td>
<td>75.0 kΩ</td>
<td>49.9 kΩ</td>
<td>43.2 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>1000 mA</td>
<td>75.0 kΩ</td>
<td>49.9 kΩ</td>
<td>24.9 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>2100 mA</td>
<td>43.2 kΩ</td>
<td>49.9 kΩ</td>
<td>75.0 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>2400 mA</td>
<td>43.2 kΩ</td>
<td>49.9 kΩ</td>
<td>43.2 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>1000 mA</td>
<td>43.2 kΩ</td>
<td>49.9 kΩ</td>
<td>24.9 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>1000 mA</td>
<td>24.9 kΩ</td>
<td>49.9 kΩ</td>
<td>75.0 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>1000 mA</td>
<td>24.9 kΩ</td>
<td>49.9 kΩ</td>
<td>43.2 kΩ</td>
<td>49.9 kΩ</td>
</tr>
<tr>
<td>1000 mA</td>
<td>24.9 kΩ</td>
<td>49.9 kΩ</td>
<td>24.9 kΩ</td>
<td>49.9 kΩ</td>
</tr>
</tbody>
</table>
18. USB Power Delivery

Accessories either providing USB Power Delivery (USB-PD) or drawing power from USB-PD sources must comply with the *USB Power Delivery Specification, Revision 3.0*.

Accessories implementing USB-PD must incorporate a PD controller that is USB-IF certified with a Silicon Test ID from the USB-IF.

Accessories drawing power from USB-PD sources must correctly identify all sources as defined in the *USB Power Delivery Specification, Revision 3.0*, version 1.1.
19. USB-C Current

Accessories either providing direct power via USB-C Current or drawing power from USB-C Current sources must comply with the *USB Type-C Cable and Connector Specification Release 1.3*, section 4.6.2.

Accessories providing power must provide 15 W (3 A at 5 V) and must identify their current capability using appropriate pull-up resistors on the CC wire.
20. Advanced Audio Distribution Profile (A2DP)

Accessories may implement the Advanced Audio Distribution Profile (A2DP) over Bluetooth (see Bluetooth (page 96)) to receive audio from iOS devices and Mac computers.

The audio content from the device can be broadly classified into two categories:

- Audio content from music, video, or gaming applications.
- System-generated sounds for alerts and notifications.

A2DP is often implemented in speakers and headsets.

Accessories that implement A2DP must satisfy all requirements stated in Bluetooth (page 96).

20.1 Bluetooth A2DP Specification

Every accessory that implements the Advanced Audio Distribution Profile must meet the requirements of the Bluetooth Advanced Audio Distribution Profile specification, Version 1.2.

20.1.1 AVDTP Transactions

Accessories must respond to Audio/Video Distribution Transport Protocol (AVDTP) signaling transactions before the device's 5 second RTX_SIG_TIMER expires or the device will terminate the signaling channel. See Section 6.2 "Transaction Model" and section 6.4 "Signal Command Set" of the Bluetooth Audio/Video Distribution Transport Protocol, Version 1.3.

20.2 SubBand Codec (SBC)

The SBC Codec Specific Information Elements, defined in Section 4.3.2 of the A2DP specification, that are applicable to iOS devices and Mac computers are listed in Table 20-1 (page 91).

<table>
<thead>
<tr>
<th>Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Frequency</td>
<td>44,100 Hz</td>
</tr>
<tr>
<td>Channel Mode</td>
<td>Stereo</td>
</tr>
<tr>
<td>Block Length</td>
<td>16</td>
</tr>
</tbody>
</table>
20.3 MPEG 2/4 AAC Codecs

Devices support the non-mandatory codec MPEG-2/4 AAC, as defined in Section 4.5 of the *Advanced Audio Distribution Profile* specification, Version 1.2. Accessories should use the AAC codec in addition to SBC, because it provides higher audio quality for a given bit rate.

Note:
The following specifications provide details of Apple's implementation of the MPEG-2/4 AAC codec. In case of conflicts, the A2DP specification governs.

The MPEG 2/4 AAC Codec Specific Information Elements, defined in Section 4.5 of the A2DP specification, that are applicable to devices are listed in Table 20-2 (page 92).

<table>
<thead>
<tr>
<th>Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subbands</td>
<td>8</td>
</tr>
<tr>
<td>Allocation Method</td>
<td>Loudness</td>
</tr>
<tr>
<td>Bitpool range</td>
<td>2 to 53. Accessories for iOS devices and Mac computers should support 53.</td>
</tr>
</tbody>
</table>

AAC audio stream packets in devices have the structure shown in Table 20-3 (page 92).

<table>
<thead>
<tr>
<th>Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Type</td>
<td>MPEG-2 AAC LC</td>
</tr>
<tr>
<td>Sampling Frequency</td>
<td>44,100 Hz</td>
</tr>
<tr>
<td>Channels</td>
<td>2</td>
</tr>
<tr>
<td>Bit rate</td>
<td>264,630 bps</td>
</tr>
<tr>
<td>VBR</td>
<td>0</td>
</tr>
</tbody>
</table>

The AAC Media Payload Format, as defined in Section 4.5.4 of the A2DP specification, is formatted using LATM, as defined in Section 4 of *IETF RFC 3016*. The following notes apply to the packet fields shown in Table 20-3 (page 92).

- The recommended L2CAP MTU value for each device's AAC streaming channel is 885 bytes.
- The AVDTP Header is shown as the RTP header in Figure 4 of RFC 3016, and is the header defined in Section 7.2.1 of the Bluetooth *Audio/Video Distribution Transport Protocol*, Version 1.2.
The AudioMuxElement is the same as the RTP payload in RFC 3016. It is defined in Section 1.7.3, Table 1.41 in ISO/IEC 14496-3:2009, subpart 1. The muxConfigPresent argument to the AudioMuxElement is set to 1 (in-band mode), as recommended in Section 4.1 of RFC 3016. As recommended in Section 4.3 of RFC 3016, only one AudioMuxElement is put into each AVDTP packet.

- The audio payload is encoded using MPEG-4, as recommended in Section 4.5.4 of the A2DP specification.
- For AAC-LC support, the accessory should support VBR capability. The device will be varying AAC bit rate depending on the content and the accessory should be able to handle the variation without causing gap in the audio.

20.4 Test Procedures

20.4.1 Audio Quality
Verify that there are no audio quality issues in each of the following scenarios:

1. Stream music from the Music app.
2. Stream music from a radio station within the Music app.
3. Stream audio using the Podcast app.

20.4.2 Audio Switching

1. During A2DP streaming, switch audio back to device and switch back to accessory.
2. Audio should be routed to the intended source. Audio quality should be good switching back to Bluetooth.

20.4.3 HFP Interaction

1. Make incoming / outgoing call during A2DP.
2. Audio should be suspended during the call and resume after the call.

20.4.4 Siri

1. Trigger Siri during A2DP.
2. Audio should be resumed after the Siri session.

20.4.5 Video Playback

1. Stream A2DP while watching a video.
2. Audio / video synchronization and quality should be good.
21. iAP2 Protocol

Third-party accessories can use the iAP2 protocol to access advanced device features. One such feature is the ability to communicate securely with third-party iOS applications via the iOS External Accessory Framework. For information about the External Accessory Framework, see http://developer.apple.com/library/ios/#featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html.

To incorporate the iAP2 protocol into an accessory design, the accessory developer must be a member of the Apple MFi licensing program and integrate specific MFi hardware into the accessory. For further information about MFi, see https://developer.apple.com/programs/mfi.
Transports
22. Bluetooth

Accessories that integrate Bluetooth technology must comply with the requirements stated in this chapter.

Every accessory that is compatible with a device must support the Bluetooth Core Specification Version 2.1 + EDR or higher. This specification introduced the important security feature Secure Simple Pairing as well as Extended Inquiry Response.

22.1 Enhanced Data Rate

The Enhanced Data Rate (EDR) feature introduced in the Bluetooth 2.0 specification enables accessories to communicate more efficiently. Every accessory must use EDR for the following reasons:

• It provides higher data rates compared to Basic Data Rate (BDR).
• It communicates more efficiently, transferring more data bits per unit of time.
• It reduces the power consumption used per bit transferred.
• It improves coexistence with Wi-Fi and other connected Bluetooth devices because it frees up more air time.
• It improves performance in multipoint configurations.

22.2 Adaptive Frequency Hopping

The Adaptive Frequency Hopping (AFH) feature introduced in the Bluetooth 1.2 specification improves coexistence with Wi-Fi and other connected Bluetooth devices. Every accessory must use AFH.

22.3 Sniff Mode for Low Power Consumption

Minimizing power consumption is critical for all mobile devices. Therefore, every accessory that is compatible with a device:

• Must support and should request Bluetooth sniff mode.
• Must accept requests for sniff mode and support all valid parameters listed in the Bluetooth specification.
• Must support a sniff interval of 15 ms.
• Should use the following recommended sniff mode values:
• Max Interval: 15 ms
• Min Interval: 15 ms
• Sniff Attempt: 1
• Sniff Timeout: 0
• Must not renegotiate sniff after being established.
• Must support sniff subrating.

Accessories that are compatible with iOS devices and Mac computers should also use sniff mode as much as possible, especially when there is little or no data being transmitted over the Bluetooth link. Besides its power consumption advantages, sniff mode enables better antenna sharing with Wi-Fi.

The sniff mode parameters are specific to the usage model and Bluetooth profile. The device expects the accessory to request sniff mode with appropriate parameters for a specific usage. If the accessory does not send such a request, the device may send a sniff mode request. When the device sends a request for sniff mode, the remote device must accept the request and its parameters without negotiation.

If the accessory sets the sniff mode parameters, the accessory must set the sniff interval to less than a third of the Bluetooth baseband Link Supervision Timeout, see Link Supervision Timeout (page 99). This makes the Bluetooth link less susceptible to interference. To improve link robustness, the accessory should use a shorter sniff interval instead of multiple sniff attempts.

Links with a sniff interval of 1 second or more make the slave device open up a large correlation window, which has to be taken into account when calculating the number of sniff attempts. With sniff intervals shorter than 1 second, multiple sniff attempts can improve link robustness but will increase power consumption.

22.4 Role and Topology Management

Every accessory that is compatible with a device must:

• Accept a request for Role Switch from a device.
• Continue with the connection when the device rejects a request for Role Switch.

In a Bluetooth connection, one device is the master and the other the slave. The master can have multiple slaves, thus forming a piconet. The master can also be a slave to another master, creating a scatternet.

Such a scenario creates complications since the device has to alternate between the two piconets and thus wastes valuable bandwidth. Managing the topology of the network is therefore important for maximum performance. The device may request a Role Switch, depending on its current topology, and the remote device must accept the request. The device may also reject a request for a Role Switch because of topology concerns. Having a suboptimal topology may degrade the audio quality and the user's experience.
The accessory should avoid requesting to be the master as the device will need to be the master in more frequently occurring scenarios. Accessories that always insist on being the master may impact the overall user experience.

Accessories that connect to multiple iOS devices or Mac computers simultaneously must support creating a scatternet.

22.5 Extended Inquiry Response

Every accessory that is compatible with a device must provide the following information in its Extended Inquiry Response packet:

- The Local Name of the accessory (Complete or Shortened).
- The TX Power Level.

During the Bluetooth discovery process, the device prefers to display the Friendly Name of discovered accessories. Before the 2.1 version of the Bluetooth specification the device would have to set up a connection to the accessory and do a Remote Name Request, which takes power, antenna time, and user’s time. The Extended Inquiry Response feature, introduced in Bluetooth 2.1, lets an accessory send its Local Name and other information as part of the Inquiry Response and thereby increase the speed and efficiency of the discovery process.

The Local Name should match the accessory’s markings and packaging and not contain ‘:’ or ‘;’. The accessory may append up to 6 differentiating characters to the Local Name, such as the last few digits of the serial number or MAC address, if a user is likely to encounter more than one of the accessories at the same time.

If the accessory allows the user to customize the Local Name parameter, the accessory should provide a means to restore the factory default name.

22.6 Secure Simple Pairing

Every accessory that is compatible with a device must:

- Use Secure Simple Pairing.
- Use the Numerical Comparison method if it has a display and input device supporting it.

Secure Simple Pairing greatly increases security and is a mandatory security feature introduced in the Bluetooth 2.1 specification. To protect against a man-in-the-middle attack, the Numerical Comparison association model should be used whenever feasible. See Volume 1, Section 5.4 in the *Bluetooth Core Specification, Version 2.1 + EDR*.
22.7 Pairing Button

If the accessory has a dedicated pairing control surface and it is labeled, it should use official Bluetooth branding. See https://www.bluetooth.com/marketing-branding/brand-best-practices-guidelines.

22.8 Class of Device (CoD)

iOS devices and Mac computers use the accessory’s Class of Device for UI purposes or to configure specific features.

Every accessory that is compatible with a device must accurately set its Class of Device using the Bluetooth SIG defined Major Device Class and Minor Device Class. See Volume 3, Part C, Section 3.2.4 in the Bluetooth Core Specification, Version 5.0.

For example, an audio/video accessory intended to operate in a vehicle should set Major Device Class to audio/video and Minor Device Class to car-audio.

22.9 Link Supervision Timeout

The link supervision timeout is used to detect link loss between the accessory and the device.

The accessory must set the link supervision timeout to 2 seconds or greater when it is the master to account for the unpredictable nature of RF signals as well as the device’s need to service other concurrent wireless systems.

22.10 Delay Reporting

Devices (as of iOS 8.2) support the Delay Reporting commands as specified in the Bluetooth Audio/Video Distribution Transport Protocol, Version 1.3. Accessories should provide this information as it is used to improve audio/video synchronization for video playback. Accessories should not report a delay of more than 1000 ms and should not update the delay more than 1 time per second.

22.11 Profiles

The Apple knowledge base article https://support.apple.com/kb/ht3647 provides a complete list of the Bluetooth profiles that certain devices support. The Bluetooth specifications are the starting point for designing accessories that are compatible with these products. The following sections add information and requirements for some profiles, which can help accessory developers achieve superior results.
22.11.1 Device ID Profile (DID)

Every accessory that is compatible with a device must:

- Support the Bluetooth Device ID Profile, version 1.3 or higher.
- Use the company identifier from the Assigned Numbers specification assigned by the Bluetooth SIG as its Vendor ID value (VID). See http://www.bluetooth.org/Technical/AssignedNumbers/identifiers.htm (requires login). Bluetooth HID Profile accessories may use a VID assigned by the USB Implementers Forum (USB-IF at http://www.usb.org) if the manufacturer does not have a Bluetooth SIG company identifier.
- Use its VID value for the end product manufacturer.
- Not use the Company ID assigned to Apple by the Bluetooth SIG or the Vendor ID assigned to Apple by the USB Implementers Forum.
- Use the Vendor ID Source field to identify which organization assigned the value used in Vendor ID field value. See Section 5.6 of the *Bluetooth Device ID Profile Specification*.
- Use a ProductID value that uniquely identifies the product.
- Use a Version value that uniquely identifies the software version.

The Device ID record lets the device identify the implementation of the remote accessory. This is valuable information and can be used to bridge alternate interpretations of the Bluetooth specification when communicating with a remote accessory. Therefore it is important that the information in the Device ID record uniquely identify the implementation.

In the case of Bluetooth car kit devices, for instance, the same car kit might go into two different car models. Ideally the two car kits should have different ProductIDs. However, it is acceptable for them to have the same ProductID as long as they have identical hardware, software, and features. If the implementations differ at all, they should have different ProductIDs. The accessory can also use a secondary Device ID record to uniquely identify the product ID or model number.

22.11.2 Service Discovery Protocol (SDP)

To facilitate caching of Service Discovery Protocol (SDP) service records, every accessory that is compatible with a device must:

- Support the ServiceDiscoveryServer Service Class.
- Support the ServiceDatabaseState attribute.
 - The attribute's value must change whenever any SDP service record or attributes within a record are added, removed, or modified.
 - The attribute's value must not change based on RFCOMM channel protocol parameters since devices query these values separately at connection time.
22.11.3 Hands-Free Profile (HFP)

Every accessory that is compatible with a device and supports the Handsfree Profile should meet the requirements of the *Bluetooth Hands-Free Profile Specification*, Version 1.5 or higher. Additional Apple requirements are specified in this section.

Remote accessories can use the Bluetooth *Hands-Free Profile* for phone communications. To achieve the best user experience, the remote accessory should support the following features, which are optional in the Bluetooth specification.

22.11.3.1 Remote Audio Volume Control

Every accessory that is compatible with a device and supports HFP should:

- Support Remote Audio Volume Control so the speaker volume on the Hands-Free accessory can be controlled from the device as described in Section 4.28 in the *Bluetooth Hands-Free Profile Specification* version 1.5.
- Set the Remote volume control bit in the Supported Features bitmap sent with the `AT+BRSF=` command.

In some situations it is easier for the user to control the output volume through the device instead of directly on the remote accessory. For example, a passenger (or-if the car is parked-the driver) in a car could use the volume slider on the phone to control the audio volume. Volume control synchronization is outlined in Section 4.48.2 in the *Bluetooth Hands-Free Profile Specification* version 1.5.

22.11.3.2 Indicator Event Reporting

Every accessory that is compatible with a device and supports HFP should use indicator events reporting and not perform repetitive polling of status.

iOS devices and Mac computers support all mandatory and optional indicators specified in HFP version 1.5 (service, call, callsetup, callheld, signal, roam, battchg). To minimize unnecessary polling of status using the `AT+CIND?` command, the remote accessory should enable indicator events reporting by sending an `AT+CMER` command. The device will then send a `+CIEV` event when there is a change in status of an indicator. The remote accessory should request the initial status using the `AT+CIND=?` and `AT+CIND?` commands, according to the HFP specification.

22.11.3.3 Voice Recognition Activation

Every accessory that is compatible with a device and supports HFP must:

- Support Voice Recognition Activation, both AG and HF initiated as described in Section 4.25 in the *Bluetooth Hands-Free Profile Specification* version 1.5.
- Set the Voice Recognition Activation bit in the "SupportedFeatures" bitmap sent with the `AT+BRSF=` command.
iOS devices and Mac computers support voice recognition initiated by remote (Hands-Free) accessories and iOS (Audio Gateway) accessories.

22.11.3.4 Echo Cancellation and Noise Reduction
When echo cancellation and noise reduction are performed locally on a Hands-Free accessory, it should turn off echo cancellation and noise reduction on the device by sending an AT+NREC command, as described in Section 4.24 in the Bluetooth Hands-Free Profile Specification version 1.5.

iOS devices and Mac computers support echo cancellation and noise reduction; these features are active by default. If a Hands-Free accessory also does echo cancellation and noise reduction it needs to turn these features off on the device (the Audio Gateway). This avoids unnecessary degradation of audio quality due to double audio processing.

22.11.3.5 In-Band Ringing
Every accessory that is compatible with a device and supports HFP should also support In-Band Ringing as specified in Section 4.13.1 in the Bluetooth Hands-Free Profile Specification version 1.5. If the user sets a ring tone on the device, the same ring tone should sound on the hands-free accessory.

22.11.3.6 Synchronous Connection
Every accessory that is compatible with a device and supports HFP must:

- Support eSCO parameter set S2 and S3 and accept requests for these settings. See Section 5.6 of the Bluetooth Hands-Free Profile Specification version 1.5.
- Request eSCO parameter set S2 or S3 when setting up a Synchronous Connection. Note that eSCO parameter set S1 should not be requested.
- Render audio within 40 ms after the SCO/eSCO connection has been set up.

The eSCO packet types offers retransmission of packets; traditional SCO packets are not retransmitted. This improves audio quality and the user's experience. The eSCO packet types 2-EV3 and 3-EV3 offer a greater time interval between packets, which can improve Wi-Fi performance and allow time for other concurrent Bluetooth connections to send data. Apple strongly recommends the use of 2-EV3 and 3-EV3 packets for SCO connections. Using HV3 packets is highly discouraged. HV3 packets require more link time and does not allow for retransmission of audio packets which impacts the audio performance in presence of RF interference.

22.11.3.7 Wide Band Speech
Every accessory that is compatible with a device and supports HFP should support Wide Band Speech as described in Section 5.7.4 of the Bluetooth Hands-Free Profile specification version 1.6. If Wide Band Speech is supported, it should support the T2 link parameter settings.
All devices running iOS 5 or later support Wide Band Speech. If both the device and the accessory support Wide Band Speech then Wide Band Speech link will be used for eSCO connection for use cases like cellular calls, FaceTime and Siri.

22.11.4 Message Access Profile (MAP)

Every accessory that is compatible with a device and supports MAP must:

- Support Message Notification as described in Section 4.1 of the Bluetooth Message Access Profile Specification, version 1.0.
- Register for notifications immediately after the connection is established, as described in Section 4.5 in the Message Access Profile Specification, version 1.0.
- Not expect the TEL property to be present in the originator VCARD (the properties N and FN will be included). See Section 3.1.3 in the Message Access Profile Specification, version 1.0.
- Not provide a user interface for sending messages. Devices do not support sending messages using MAP.

All devices running iOS 6.0 or later support MAP.

22.11.5 Audio/Video Remote Control Profile (AVRCP)

Every accessory that is compatible with a device and supports the Audio/Video Remote Control Profile should meet the requirements of the Bluetooth Audio/Video Remote Control Profile Specification, Version 1.4. Additional Apple requirements are specified in this section.

22.11.5.1 Supported Operations

iOS devices and Mac computers support the following operation IDs in passthrough commands:

- Play
- Stop
- Pause
- Fast Forward
- Rewind
- Forward
- Backward

22.11.5.2 Repeat and Shuffle Modes

Every device supports Repeat and Shuffle modes in the role of an AVRCP target. An AVRCP controller may use SetPlayerApplicationSettingValue to set a value on the device and GetPlayerApplicationSettingValue to read a value, as described in Sections 6.5.4 and 6.4.3 of the Bluetooth Audio/Video Remote Control Profile Specification version 1.4.
22.11.5.3 Notifications

Every accessory that is compatible with a device and supports AVRCP should register for notifications and not perform repetitive polling to determine the status of the device.

Every device supports registering for notifications in the role of an AVRCP Target, as described in Section 6.7 of the *Bluetooth Audio/Video Remote Control Profile Specification* version 1.4. The commands RegisterNotification and GetPlayStatus are supported for these notifications:

- EVENT_PLAYBACK_STATUS_CHANGED
- EVENT_TRACK_CHANGED
- EVENT_NOW_PLAYING_CONTENT_CHANGED
- EVENT_AVAILABLE_PLAYERS_CHANGED
- EVENT_ADDRESSED_PLAYER_CHANGED
- EVENT_VOLUME_CHANGED

22.11.5.4 Play/Pause Button

All accessories that support AVRCP and implement a Play/Pause control surface must confirm the playback status of the device via AVRCP notifications (see Notifications (page 104)) before sending a Play or Pause command (see Supported Operations (page 103)). Specifically:

- If the device has notified the accessory that it is paused, pressing the accessory’s Play/Pause control surface should send a Play command.
- If the device has notified the accessory that it is playing, pressing the accessory’s Play/Pause control surface should send a Pause command.
- The accessory should not infer device playback status based on the number of times the Play/Pause control surface has been pressed.

22.11.5.5 Volume Handling

Every accessory that is compatible with a device and supports AVRCP should support Absolute Volume, as described in Section 6.13 of the *Bluetooth Audio/Video Remote Control Profile Specification* version 1.4.

Every device supports volume handling in the role of AVRCP Controller.

22.11.5.6 Browsing

Every accessory that is compatible with a device and supports Browsing (in controller role) as part of AVRCP must:

- Not try to index or cache the entire library upon connection. The device may contain tens of thousands of media items, each present multiple times in the hierarchy.
When browsing a specific folder, do not fetch all its items. Only fetch those that are displayed to the user. It may prefetch a few items to improve the responsiveness of the user interface.

- Not reorder items (e.g. alphabetically).
- Not assume UIDs to be statically defined, especially in the root folder. The ordering and UIDs of folders and items may change at any point in future releases.
- Send the `SetBrowsedPlayer` command after receiving an `EVENT_UIDS_CHANGED` notification.
- Not assume that the UID passed to the `PlayItem` command will result in the media player playing that UID.

Currently only the built-in Music app supports browsing. When switching between players, an `EVENTAVAILABLE_PLAYERS_CHANGED` notification and an `EVENT_ADDRESSEDPLAYER_CHANGED` notification will be generated. The UI then needs to look at the feature bit mask of the listed player to determine whether browsing is currently available.

All devices running iOS 6.0 or later support AVRCP Browsing.

22.11.5.7 iOS App-Provided Metadata

An audio app running on a device may use the iOS Media Player Framework to provide metadata about the current audio stream. The device supplies this metadata to the accessory using AVRCP. For more information, see the `MPNowPlayingInfoCenter` class in Apple Media Player Framework documentation.

22.11.6 Advanced Audio Distribution Profile (A2DP)

See Advanced Audio Distribution Profile (A2DP) (page 91).

22.12 Audio Routing

This section describes how an accessory can differentiate between various audio contents coming from a device and use this information to decide playback behavior.

An accessory can receive audio data from the device via either of two Bluetooth profiles:

- HFP using eSCO channel
- A2DP using ACL channel

The device picks which channel to use depending on how the audio content is used. An audio path created for two way communication (such as phone calls or FaceTime) always uses the HFP (eSCO) route for sending audio data. Music and similar content uses the A2DP route. In the absence of a defined route, audio playback will default to the device.
22.12.1 Audio Data Received via HFP Profile

Most of the audio content sent via HFP (eSCO) routes requires two way communication. Cases where HFP (eSCO) is used include (but are not limited to) cellular calls, FaceTime, and voice mail.

For any audio content that is being received via the HFP (eSCO) route, it is expected that both the speaker and the microphone of the accessory are dedicated to the Bluetooth link and should not handle any other audio content.

22.12.2 Audio Data Received via A2DP Profile

Audio content transferred via A2DP profiles can be broadly classified into two categories:

- Audio content from music, video, or game-like applications.
- System-generated sound for alerts and notifications.

22.12.2.1 Differentiating Audio Content from System Sounds

Music-like content can be differentiated from system sound by adding support for Audio/Video Remote Control Profile (AVRCP) version 1.3 or later. The AVRCP profile allows an accessory to be aware of the audio playback state in the device, using notifications. See Audio/Video Remote Control Profile (AVRCP) (page 103).

When a device initiates audio playback over an A2DP channel for playing music content, an AVRCP notification EVENT_PLAYBACK_STATUS_CHANGED is sent to indicate that playback status has changed to play state. See Section 6.7.2 of the Audio/Video Remote Control Profile specification, version 1.4. This indicates that audio data via the A2DP profile contains music. When a device initiates audio playback over an A2DP channel for playing system sound, no AVRCP notification is sent.

Figure 22-1 (page 107) and Figure 22-2 (page 107) show the difference between the notifications for music playback and for system sounds.
22.12.2.2 Expected Audio Routing Behavior for A2DP

The accessory should tune its audio routing behavior based on audio content over the A2DP channel.

If audio data contains music, then it is expected that the accessory speakers are dedicated to audio data coming via the Bluetooth link and any other audio playback is paused. If audio data contains system sound, then it is expected that the accessory can render audio as desired. If the accessory is playing audio from a different source, then system sound data can be mixed with the existing track for playback; it is not necessary to pause existing audio playback on the device.
22.13 HID

When implementing HID over Bluetooth, the accessory:

- Should support Bluetooth HID Profile 1.1.
- Should support sniff mode (see Sniff Mode for Low Power Consumption (page 96)).
- Should use the following parameters in SDP for sniff subrating:
 - HIDSSRHostMaxLatency - 450 ms (720 slots)
 - HIDSSRHostMinTimeout - 45 ms (72 slots)
- Should use a typical report packet of 22 bytes or less. This is small enough to fit into a DH1 packet with L2CAP and HID header.
23. Bluetooth Low Energy (BLE)

The Bluetooth 4.0 specification introduces Bluetooth Low Energy (BLE), a wireless technology targeted for accessories with limited battery resources. If Bluetooth Low Energy is supported, the accessory should follow the guidelines in this section.

23.1 Role

The accessory should implement either the Peripheral role as defined in the Bluetooth 4.0 specification, Volume 3, Part C, Section 2.2.2.3 or the Broadcaster role, as defined in Section 2.2.2.1.

23.2 Advertising Channels

The accessory should advertise on all three advertising channels (37, 38, and 39) at each advertising event. See the Bluetooth 4.0 specification, Volume 6, Part B, Section 4.4.2.1.

23.3 Advertising PDU

The accessory should use one of the following advertising PDUs:

- ADV_IND
- ADV_NOCONN_IND
- ADV_SCAN_IND

ADV_DIRECT_IND should not be used. See the Bluetooth 4.0 specification, Volume 6, Part B, Section 2.3.1.

23.4 Advertising Data

The advertising data sent by the accessory should contain at least the following information as described in the Bluetooth Core Specification Supplement, Part A:

- Flags
- TX Power Level
23.5 Advertising Interval

The advertising interval of the accessory should be carefully considered, because it affects the time to discovery and connect performance. For a battery-powered accessory, its battery resources should also be considered.

To be discovered by the device, the accessory should first use the recommended advertising interval of 20 ms for at least 30 seconds. If it is not discovered within the initial 30 seconds, Apple recommends using one of the following longer intervals to increase chances of discovery by the device:

- 152.5 ms
- 211.25 ms
- 318.75 ms
- 417.5 ms
- 546.25 ms
- 760 ms
- 852.5 ms
- 1022.5 ms
- 1285 ms

Note: Longer advertising intervals usually result in longer discovery and connect times.
23.6 Connection Parameters

The accessory is responsible for the connection parameters used for the Low Energy connection. The accessory should request connection parameters appropriate for its use case by sending an L2CAP Connection Parameter Update Request at the appropriate time. See the Bluetooth 4.0 specification, Volume 3, Part A, Section 4.20 for details.

The connection parameter request may be rejected if it does not comply with all of these rules:

- Slave Latency ≤30
- 2 seconds ≤ connSupervisionTimeout ≤ 6 seconds
- Interval Min modulo 15 ms == 0
- Interval Min ≥15 ms
- One of the following:
 - Interval Min + 15 ms ≤ Interval Max
 - Interval Min == Interval Max == 15 ms
- Interval Max * (Slave Latency + 1) ≤ 2 seconds
- Interval Max * (Slave Latency + 1) * 3 < connSupervisionTimeout

Note that if an accessory requests Interval Min == Interval Max == 15 ms, some devices will scale the interval to 30 ms to balance power and performance constraints.

If Bluetooth Low Energy HID is one of the connected services of an accessory, connection interval down to 11.25 ms may be accepted by the device.

The device will not read or use the parameters in the Peripheral Preferred Connection Parameters characteristic. See the Bluetooth 4.0 specification, Volume 3, Part C, Section 12.5.

23.7 Data Packet Length Extension

Data Packet Length Extension is an enhancement introduced in the Bluetooth 4.2 specification which increases the maximum data length from 27 to 251. Using a longer per-packet data length improves radio efficiency, greatly increases application data rates, and boosts battery life. See the Bluetooth 5.0 specification, Volume 6, Part B, Section 4.6.6 for details.
Accessories should support Data Packet Length Extension for best performance with devices.

iOS devices and Mac computers operating as master will negotiate optimal data packet lengths based on various factors, such as connection event length, system topology, and protocol.

23.8 Privacy

The accessory should be able to resolve a Resolvable Private Address in all situations. Due to privacy concerns, the device will use a Random Device Address as defined in the Bluetooth 4.0 specification, Volume 3, Part C, Section 10.8.

23.9 Permissions

The accessory should not require special permissions, such as pairing, authentication, or encryption to discover services and characteristics. It may require special permissions only for access to a characteristic value or a descriptor value. See the Bluetooth 4.0 specification, Volume 3, Part G, Section 8.1, fifth paragraph.

23.10 Pairing

The accessory should not request pairing until an ATT request is rejected using the Insufficient Authentication error code. See the Bluetooth 4.0 specification, Volume 3, Part F, Section 4 for details.

If, for security reasons, the accessory requires a bonded relationship with the Central, the Peripheral should reject the ATT request using the Insufficient Authentication error code, as appropriate. As a result, the device may proceed with the necessary security procedures.
Similarly, if the device acts as a Central and a GATT server, it may reject an ATT request using the Insufficient Authentication error code. The accessory should initiate the security procedure for pairing in response.

Pairing may require user authorization depending on device. Once an accessory is paired with a device, it must retain the distributed keys of both central and peripheral for future use. If the pairing is no longer required, the accessory must delete both sets of keys.

23.11 MTU Size

An accessory that supports packet length extension must perform the packet length update procedure before performing the Exchange MTU Request handshake, see Data Packet Length Extension (page 111).

Devices will support and request an MTU size larger than the default during the Exchange MTU Request handshake. See the Bluetooth 4.0 specification, Volume 3, Part F, Section 3.2.8.

When operating as ATT client, the device will request the optimal MTU size based on factors such as the Bluetooth topology, connection event length, maximum data length, and protocol (GATT or connection-oriented L2CAP).

An accessory operating as ATT server should select an MTU that is equal to or greater than the device's MTU request.

23.12 Services

23.12.1 Generic Access Profile Service

The accessory should implement the Device Name characteristic per the Bluetooth 4.0 specification, Volume 3, Part C, Section 12.1. The Device Name characteristic should be writeable.

23.12.2 Generic Attribute Profile Service

The accessory must implement the Service Changed characteristic only if the accessory has the ability to change its services during its lifetime.

The device may use the Service Changed characteristic to determine if it can rely on previously read (cached) information from the device. See the Bluetooth 4.0 specification, Volume 3, Part G, Section 7.1.
23.12.3 Device Information Service

The accessory must implement the Device Information Service. The service UUID for this service should not be advertised in the Advertising Data. The following characteristics should be supported:

- Manufacturer Name String
- Model Number String
- Firmware Revision String
- Software Revision String

23.12.4 Available Services

With iOS 7.0, any device makes Battery Service, Current Time Service and Apple Notification Center Service (ANCS) available to an accessory. The Current Time Service supports the current time and local time information characteristics. The service does not provide an "Adjust Reason" when the current time changes. ANCS uses 7905F431-B5CE-4E99-A40F-4B1E122D00D0 as its UUID.

These services are not guaranteed to be available immediately after connection and the accessory must support Characteristic Value Indication of the Service Changed characteristic (see Bluetooth 4.0 specification, Volume 3, Part G, Section 7.1) to be notified when the services become available. The device will maintain a connection to an accessory as long as it is paired and uses one of the available services.

23.13 GATT Server

With iOS 6.0, applications may contribute services and characteristics to the GATT server that the device makes available to the accessory. The recommendations in this section apply to the accessory in this case.

The following services are implemented internally by iOS and must not be published by third party iOS applications:

- Generic Attribute Profile Service
- Generic Access Profile Service
- Bluetooth Low Energy HID Service
- Battery Service
- Current Time Service
- Apple Notification Center Service

The device implements the GAP Service Changed characteristic, because the database contents can change at any time. The accessory should therefore support the Characteristic Value Indication of this characteristic and, upon receiving indications, invalidate its database cache accordingly. See the Bluetooth 4.0 specification, Volume 3, Part G, Section 7.1.
The accessory should minimize the use of ATT/GATT requests and commands and only send what is necessary.
For example, do not use GATT Discover All Services when the accessory is looking for specific services. Use
Discover Primary Service By Service UUID instead. Less airtime equals less power consumption and better
performance for both the accessory and the device.

When third party iOS applications discover services on the accessory, the following services are used internally
by iOS and are filtered out from the list of discovered services:

- Generic Attribute Profile Service
- Generic Access Profile Service
- Bluetooth Low Energy HID Service
- Apple Notification Center Service

The accessory should be robust enough to handle any error gracefully. Pairing and Characteristic Value
reads/writes may fail if the application that owns the service is not in the foreground and is not entitled to run
in the background.

If an ATT Prepare Write Request is used, all queued attributes are contained within the same GATT Service.
Connectors
24. USB-A Receptacle

Accessories may incorporate a USB-A receptacle to:

- Provide power to a device.

24.1 Mechanical
The USB-A receptacle must meet or exceed all applicable USB-IF mechanical specifications.

24.2 Electrical
The USB-A receptacle must meet or exceed all applicable USB-IF electrical specifications.

24.2.1 Providing Power
Accessories that provide power to a device via the USB-A receptacle must:

- Supply 2100 mA at 4.97 V to claim compatibility with iPad. 3000 mA at 5.25 V is recommended.
- Supply 1000 mA at 4.90 V to claim compatibility with iPhone and iPod. 3000 mA at 5.25 V is recommended.

If the accessory does not implement an iAP2 connection, it must supply between 4.9 V to 5.25 V when there is no current being drawn.

24.3 Labeling Multiple Connectors
If the accessory has standard USB-A receptacles supplying 500 mA in addition to device-compatible USB-A receptacles, then the following labeling requirements apply:

- The standard USB-A receptacles supplying 500 mA must be labeled using the USB icon.
- USB-A receptacles capable of identifying themselves to a device as supplying 1000 mA must be labeled, singly or in groups, with the text 'iPhone/iPod'.
- USB-A receptacles capable of identifying themselves to a device as supplying 2100 mA or 2400 mA must be labeled, singly or in groups, with the text 'iPad'.
25. USB-C Plug

Accessories may incorporate a USB-C plug to:

- Draw power from Apple branded or MFi certified USB power sources.
- Draw power from USB-C Current sources.
- Draw power from USB Power Delivery sources.
- Draw power from USB Dedicated Charging Ports and USB hosts, such as a Mac.
- Enable USB connection to a Mac.

Examples of accessories that may benefit from including a USB-C plug include cables, battery packs, and adapters.

25.1 Mechanical

The USB-C plug must have an assigned Connector Test ID from the USB-IF.

The following USB-IF certified USB-C plugs are available from MFi distributors:

- FIT UT00123-1000J-7H
- FIT UT00123-0000P-7H

25.2 Electrical

Accessories must not directly electrically connect a USB-C plug to the device.

Accessories that draw power from the USB-C plug must:

- Correctly identify all Apple branded or MFi certified USB power sources that connect resistor networks to USB D+ and USB D-, see Identifying Power Source Current Limit (page 87).
- Correctly identify all USB Dedicated Charging Ports (DCP) as defined in the USB Battery Charging 1.2 specification.
- Correctly identify all USB-C Current sources, see USB-C Current (page 90).
- Enumerate as a USB device when connected to a USB host, such as a Mac, and:
 - Not draw more than 100 mA of current until they have been successfully enumerated.
 - Request no more than 500 mA of charging current in their USB device descriptor.
• Not draw more power than the USB power source claims it is capable of providing via one of the above methods.

Accessories may also correctly identify all USB Power Delivery (USB-PD) sources, see USB Power Delivery (page 89).

25.3 Test Procedures

25.3.1 Connector Test ID
Verify that the accessory's USB-C plug has an assigned Connector Test ID from the USB-IF.

25.3.2 Drawing Power
This procedure applies to accessories that draw power via the USB-C plug.

The following equipment is required:

• Apple 29W USB-C Power Adapter
• Bundled USB-C power adapter (if applicable)

Verify that the accessory correctly identifies all Apple branded or bundled power sources:

1. Verify that each USB-C power adapter is correctly identified and provides power.

Verify that the accessory correctly identifies a Mac:

1. Verify that the Mac is correctly identified and provides power.
26. USB-C Receptacle

Accessories may incorporate a USB-C receptacle to:

- Provide power to a device.
- Draw power from Apple branded or MFi certified USB power sources.
- Draw power from USB-C Current sources.
- Draw power from USB Power Delivery sources.
- Draw power from USB Dedicated Charging Ports and USB hosts, such as a Mac.
- Enable USB connection to a Mac.

Accessories must not integrate a USB-C receptacle to enable passthrough USB charge/sync of a device.

Examples of accessories that may benefit from including a USB-C receptacle include AC power adapters, see AC Power Adapters (page 47), battery packs, see Battery Packs (page 51), and speakers.

26.1 Mechanical

The USB-C receptacle must be USB-IF certified and have a Connector Test ID from the USB-IF.

The following USB-IF certified USB-C receptacles are available from MFi distributors:

- FIT UT12113-1160E-7H
- FIT UT13513-1180A-7H

26.2 Electrical

Accessories must not directly electrically connect a USB-C receptacle to the device.

26.2.1 Drawing Power

Accessories that draw power from the USB-C receptacle must:

- Correctly identify all Apple branded or MFi certified USB power sources that connect resistor networks to USB D+ and USB D-, see Identifying Power Source Current Limit (page 87).
• Correctly identify all USB Dedicated Charging Ports (DCP) as defined in the USB Battery Charging 1.2 specification.
• Correctly identify all USB-C Current sources, see USB-C Current (page 90).
• Enumerate as a USB device when connected to a USB host, such as a Mac, and:
 • Not draw more than 100 mA of current until they have been successfully enumerated.
 • Request no more than 500 mA of charging current in their USB device descriptor.
• Not draw more power than the USB power source claims it is capable of providing via one of the above methods.

Accessories may also correctly identify all USB Power Delivery (USB-PD) sources, see USB Power Delivery (page 89).

26.2.2 Providing Power
Accessories that provide power to a device via the USB-C receptacle:

• Must supply 15 W (3 A at 5.0 V) using either:
 • USB-C Current, see USB-C Current (page 90).
 • USB-PD, see USB Power Delivery (page 89).
• Should supply 18 W (2 A at 9.0 V) using USB-PD.

26.3 Test Procedures

26.3.1 Connector Test ID
Verify that the accessory's USB-C receptacle has an assigned Connector Test ID from the USB-IF.

26.3.1.1 Drawing Power
This procedure applies to accessories that draw power via the USB-C receptacle.

The following equipment is required:

• Apple USB-C Charge Cable (1 m)
• Apple USB-C Charge Cable (2 m)
• Bundled USB-C to USB-C cable (if applicable)
• Bundled USB-A to USB-C cable (if applicable)
• 3rd-party USB-A to USB-C cable
• Apple 5W USB Power Adapter
• Apple 10W USB Power Adapter
• Apple 18W USB Power Adapter
Verify that the accessory correctly identifies all Apple branded or bundled power adapters:

1. Using each USB-A to USB-C cable, verify that each USB-A power adapter is correctly identified and provides power.
2. Using each USB-C to USB-C cable, verify that each USB-C power adapter is correctly identified and provides power.

Verify that the accessory correctly identifies a Mac:

1. Using each USB-A to USB-C cable and USB-C to USB-C cable, verify that the Mac is correctly identified and provides power.

Verify that the accessory correctly identifies MFi power adapters:

1. Using each USB-A to USB-C cable, verify that each MFi USB-A power adapter is correctly identified and provides power.
2. Using each USB-C to USB-C cable, verify that each MFi USB-C power adapter is correctly identified and provides power.

26.3.1.2 Providing Power

This procedure applies to accessories that provide power via the USB-C receptacle.

The following equipment is required:

- Apple USB-C to Lightning Cable (1 m)
- Apple USB-C to Lightning Cable (2 m)
- Apple USB-C Charge Cable (1 m)
- Apple USB-C Charge Cable (2 m)
- Bundled USB-C to USB-C cable (if applicable)

Verify that the accessory correctly provides power to devices:

1. Using each USB-C to Lightning cable, verify that the accessory uses USB-C Current or USB-PD to identify at least 15 W of power providing capability.
2. Using each USB-C to Lightning cable, verify that the accessory provides power to the device.
Verify that the accessory correctly identifies a Mac:

1. Using each USB-C to USB-C cable, verify that the accessory is correctly identified and provides power to the Mac.
References
This chapter contains the following dimensional drawings:

- iPhone XS Max (page 128)
- iPhone XS (page 129)
- iPhone XR (page 130)
- iPhone X (page 131)
- iPhone 8 Plus (page 132)
- iPhone 8 (page 133)
- iPhone 7 Plus (page 134)
- iPhone 7 (page 135)
- iPhone 6s Plus (page 136)
- iPhone 6s (page 137)
- iPhone 6 Plus (page 138)
- iPhone 6 (page 139)
- iPhone 5s & iPhone SE (page 140)
- iPhone 5c (page 141)
- iPhone 5 (page 142)
- iPad Air (3rd generation) with Wi-Fi 1 of 3 (page 143)
- iPad Air (3rd generation) with Wi-Fi 2 of 3 (page 144)
- iPad Air (3rd generation) with Wi-Fi 3 of 3 (page 145)
- iPad Air (3rd generation) with Wi-Fi + Cellular 1 of 3 (page 146)
- iPad Air (3rd generation) with Wi-Fi + Cellular 2 of 3 (page 147)
- iPad Air (3rd generation) with Wi-Fi + Cellular 3 of 3 (page 148)
- iPad mini (5th generation) with Wi-Fi 1 of 3 (page 149)
- iPad mini (5th generation) with Wi-Fi 2 of 3 (page 150)
- iPad mini (5th generation) with Wi-Fi 3 of 3 (page 151)
- iPad mini (5th generation) with Wi-Fi + Cellular 1 of 3 (page 152)
- iPad mini (5th generation) with Wi-Fi + Cellular 2 of 3 (page 153)
- iPad mini (5th generation) with Wi-Fi + Cellular 3 of 3 (page 154)
- iPad Pro (12.9-inch) 3rd Generation 1 of 3 (page 155)
- iPad Pro (12.9-inch) 3rd Generation 2 of 3 (page 156)
- iPad Pro (12.9-inch) 3rd Generation 3 of 3 (page 157)
- iPad Pro (11-inch) 1 of 3 (page 158)
- iPad Pro (11-inch) 2 of 3 (page 159)
• iPad Pro (11-inch) 3 of 3 (page 160)
• iPad Pro (12.9-inch) 2nd Generation with Wi-Fi (page 161)
• iPad Pro (12.9-inch) 2nd Generation with Wi-Fi + Cellular (page 162)
• iPad Pro (12.9-inch) 2nd Generation Magnet/Hall Effect Sensors 1 of 2 (page 163)
• iPad Pro (12.9-inch) 2nd Generation Magnet/Hall Effect Sensors 2 of 2 (page 164)
• iPad Pro (10.5-inch) with Wi-Fi (page 165)
• iPad Pro (10.5-inch) with Wi-Fi + Cellular (page 166)
• iPad Pro (10.5-inch) Magnet/Hall Effect Sensors 1 of 2 (page 167)
• iPad Pro (10.5-inch) Magnet/Hall Effect Sensors 2 of 2 (page 168)
• iPad (5th and 6th generation) with Wi-Fi + Cellular (page 169)
• iPad (5th and 6th generation) Magnet/Hall Effect Sensors 1 of 2 (page 170)
• iPad (5th and 6th generation) Magnet/Hall Effect Sensors 2 of 2 (page 171)
• iPad Pro (9.7-inch) with Wi-Fi (page 172)
• iPad Pro (9.7-inch) with Wi-Fi + Cellular (page 173)
• iPad Pro (9.7-inch) Magnet/Hall Effect Sensors 1 of 2 (page 174)
• iPad Pro (9.7-inch) Magnet/Hall Effect Sensors 2 of 2 (page 175)
• iPad Pro (12.9-inch) 1st Generation with Wi-Fi (page 176)
• iPad Pro (12.9-inch) 1st Generation with Wi-Fi + Cellular (page 177)
• iPad Pro (12.9-inch) 1st Generation Magnet/Hall Effect Sensors 1 of 2 (page 178)
• iPad Pro (12.9-inch) 1st Generation Magnet/Hall Effect Sensors 2 of 2 (page 179)
• iPad mini 4 with Wi-Fi (page 180)
• iPad mini 4 with Wi-Fi + Cellular (page 181)
• iPad mini 4 Magnet/Hall Effect Sensors (page 182)
• iPad Air 2 with Wi-Fi (page 183)
• iPad Air 2 with Wi-Fi + Cellular (page 184)
• iPad mini 2 & iPad mini 3 with Wi-Fi (page 185)
• iPad mini 2 & iPad mini 3 with Wi-Fi + Cellular (page 186)
• iPad Air with Wi-Fi (page 187)
• iPad Air with Wi-Fi + Cellular (page 188)
• iPad mini with Wi-Fi (page 189)
• iPad mini with Wi-Fi + Cellular (page 190)
• iPad (4th generation) with Wi-Fi (page 191)
• iPad (4th generation) with Wi-Fi + Cellular (page 192)
• iPod touch (6th generation) (page 193)
• iPod touch (5th generation) (page 194)
• Apple Watch Series 4, 44 mm (page 195)
• Apple Watch Series 4, 40 mm (page 196)
• Apple Watch Series 3 Ceramic, 42 mm (page 197)
• Apple Watch Series 3 Ceramic, 38 mm (page 198)
• Apple Watch Series 3 Metal, 42 mm (page 199)
• Apple Watch Series 3 Metal, 38 mm (page 200)
• Apple Watch Series 2 Ceramic, 42 mm (page 201)
• Apple Watch Series 2 Ceramic, 38 mm (page 202)
• Apple Watch Series 2 Metal, 42 mm (page 203)
• Apple Watch Series 2 Metal, 38 mm (page 204)
• Apple Watch (1st generation) & Apple Watch Series 1, 42 mm (page 205)
• Apple Watch (1st generation) & Apple Watch Series 1, 38 mm (page 206)
27.24 iPad mini (5th generation) with Wi-Fi 3 of 3
27.78 Apple Watch (1st generation) & Apple Watch Series 1, 42 mm
28. Revision History

This chapter describes changes to the Accessory Design Guidelines for Apple Devices from the previous revision.

Added Content

- Integrated USB Receptacles (page 18)
- User Supplied Cables and AC Power Adapters (page 18)
- iPad Pro (10.5-inch) (page 36)
- iPad mini (5th generation) (page 36)
- AC Power Adapters (page 47)
- USB-C to Micro-USB Adapters (page 50)
- Battery Packs (page 51)
- Device Power (Lightning) (page 61)
- USB Power Capability Vendor Request (page 85)
- USB D+/D- Resistor Networks (page 86)
- USB Power Delivery (page 89)
- USB-C Current (page 90)
- USB-A Receptacle (page 117)
- USB-C Plug (page 118)
- USB-C Receptacle (page 120)
- iPad Air (3rd generation) with Wi-Fi 1 of 3 (page 143)
- iPad Air (3rd generation) with Wi-Fi 2 of 3 (page 144)
- iPad Air (3rd generation) with Wi-Fi 3 of 3 (page 145)
- iPad Air (3rd generation) with Wi-Fi + Cellular 1 of 3 (page 146)
- iPad Air (3rd generation) with Wi-Fi + Cellular 2 of 3 (page 147)
- iPad Air (3rd generation) with Wi-Fi + Cellular 3 of 3 (page 148)
- iPad mini (5th generation) with Wi-Fi 1 of 3 (page 149)
- iPad mini (5th generation) with Wi-Fi 2 of 3 (page 150)
- iPad mini (5th generation) with Wi-Fi 3 of 3 (page 151)
- iPad mini (5th generation) with Wi-Fi + Cellular 1 of 3 (page 152)
- iPad mini (5th generation) with Wi-Fi + Cellular 2 of 3 (page 153)
- iPad mini (5th generation) with Wi-Fi + Cellular 3 of 3 (page 154)
Updated Content

- **Purpose of This Specification** (page 15)
- **Covers** (page 44)
- **Screen Overlays** (page 45)
- **Extended Inquiry Response** (page 98)
Terms and Conditions ("Terms")

These Guidelines are made available to you for informational purposes only. If you make or distribute any accessory for an Apple device based on or in connection with these Guidelines ("Accessories"), you agree to the following covenants, terms and conditions:

All intellectual property rights in and to the Guidelines, and all technology described therein, are retained by Apple Inc. ("Apple"). You acknowledge and agree that Apple is not granting you, and nothing contained herein shall constitute or be construed or interpreted as a grant, by implication, estoppel or otherwise, of any license, covenant, immunity, release or right under or with respect to any intellectual property rights of Apple, including without limitation any rights to make, use, have made, sell, import, or otherwise relating in any way to any Apple device or technology described in or relating to the Guidelines.

You agree to follow Apple's Guidelines For Using Apple Trademarks and Copyrights as published on Apple's website at www.apple.com/legal/guidelinesfor3rdparties.html ("IP Guidelines") and as may be modified from time to time. You agree not to use the marks "Apple," the Apple Logo, "Mac," "iPhone," "iPad," "iPod," "Apple Watch," "WATCH" or any other marks belonging or licensed to Apple in any way except as expressly authorized in writing by Apple in each instance or as permitted in the IP Guidelines. You agree that all goodwill arising out of your authorized use of Apple's marks shall inure to the benefit of and belong to Apple.

You agree to indemnify, hold harmless, and, at Apple's option, defend, Apple against any claims, causes of action, losses, liabilities, damages, fines, settlements, costs, fees, and expenses (including attorney and other professional fees and expenses) arising out of: (i) your use of the Guidelines, including without limitation, any claims that any Accessory, or the combination of any Accessory with any software, technology, intellectual property, device, apparatus or assembly not supplied by Apple, infringes any patent, copyright, trade secret or other intellectual property right; (ii) the manufacture, use, promotion, distribution, sale, offer for sale, import, other distribution or exploitation or performance of any product, case, cover, band, charging stand, or other Accessory or product incorporating any Accessory, including any personal injury or product liability claims; or (iii) any failure to comply with any of the Guidelines. You will not, without Apple's prior written consent, make any admissions of liability, enter into any settlement that imposes any obligation on Apple, or publicize any settlement details relating to Apple. In addition, for any claims related to these Terms where you do not have an indemnification obligation, you shall provide all reasonable assistance to Apple and/or its counsel in connection with the defense, remedy or mitigation of such claims.

Applicable laws or regulations may impose additional restrictions or requirements on Accessories or products that incorporate the Accessories. You represent and warrant that you are in full compliance with all applicable laws, regulations, and policies in the United States and in any other location in which you engage, in whole or in part, in any activity related to the design, manufacture, marketing, sale or offer for sale, use, or other distribution of Accessories or products that incorporate the Accessories. You agree to promptly notify Apple of any complaints or threats of complaints regarding products that incorporate the Accessories with respect to any such regulatory requirements, in which case Apple may limit or terminate your ability to make, sell or purchase additional Accessories.

You expressly acknowledge and agree that access to the Guidelines is at your sole and entire risk and that you are solely responsible and liable for any harm or damage to any Apple product arising out of any breach by you of these covenants, terms and conditions. THE GUIDELINES ARE PROVIDED "AS IS" AND WITHOUT REPRESENTATION, WARRANTY, UPGRADES OR SUPPORT OF ANY KIND. APPLE AND APPLE'S DISTRIBUTORS, AFFILIATES, LICENSOR(S) AND SUPPLIER(S) ("APPLE PARTIES") EXPRESSLY DISCLAIM ALL REPRESENTATIONS, WARRANTIES AND CONDITIONS, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, OF SATISFACTORY QUALITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF NON-INFRINGEMENT AND OF ACCURACY. NONE OF THE APPLE PARTIES WARRANTS THAT THE GUIDELINES OR ANY ACCESSORY WILL MEET YOUR REQUIREMENTS, THAT DEFECTS IN THEM WILL BE CORRECTED OR THAT THEY WILL BE COMPATIBLE WITH FUTURE APPLE PRODUCTS. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY ANY APPLE PARTY OR AN APPLE AUTHORIZED REPRESENTATIVE WILL CREATE A WARRANTY.

EXCEPT TO THE EXTENT SUCH A LIMITATION IS PROHIBITED BY LAW, IN NO EVENT WILL ANY APPLE PARTY BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, CONSEQUENTIAL, EXEMPLARY OR PUNITIVE DAMAGES, INCLUDING LOST PROFITS, LOST REVENUES OR BUSINESS INTERRUPTIONS, ARISING OUT OF OR RELATING TO THE GUIDELINES UNDER A THEORY OF CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCTS LIABILITY OR OTHERWISE, EVEN IF ANY APPLE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND NOTWITHSTANDING THE FAILURE OF ESSENTIAL PURPOSE OF ANY REMEDY. IN NO EVENT WILL THE APPLE PARTIES' TOTAL LIABILITY TO YOU FOR ALL DAMAGES AND CLAIMS UNDER OR RELATED TO THE GUIDELINES EXCEED THE AMOUNT OF US$50.00.

These Terms will be governed by and construed and enforced under the laws of the United States and the State of Delaware, except that the arbitration clause and any arbitration hereunder shall be governed by the Federal Arbitration Act, Chapters 1 and 2. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to these Terms. All disputes arising out of or in connection with these Terms shall be finally settled under the Rules of Arbitration of the International Chamber of Commerce by one arbitrator appointed in accordance with such rules, and shall be conducted according to the International Bar Association Rules on the Taking of Evidence in International Arbitration. The arbitration shall take place in San Francisco, California. The arbitration shall be conducted in English. The award shall be rendered within six months of the commencement of the arbitration, unless the arbitrator determines that the interest of justice requires that such limit be extended.