
CarPlay App
Programming Guide

October 2023

 Developer

Table of Contents
Introduction	 ..3
Overview	 ...4

CarPlay app entitlements	 ...4

CarPlay app guidelines	 ...5
Development environment	 ..10

Entitlements	 ...10
Simulators	 ..14

Templates	 ..17
Action sheet	 ...18
Alert	 ..18
Contact	 ..19
Grid	 ...19
Information	 ..20
List	 ..21
Now playing	 ...22
Point of interest	 ...23
Tab bar	 ...24

Notifications	 ...25
Request authorization to show notifications	 ...25
Create a notification category with the CarPlay option	 ..25

Assets	 ...26
Audio handling	 ..28

Playback	 ..28
Recording	 ..28

Build a CarPlay app	 ...29
Startup	 ...29
Create a list template	 ..31
Create a now playing template	 ..32
Work while iPhone is locked	 ..33
Launch other apps	 ...33

Build a CarPlay navigation app	 ...34

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 1 56

Additional templates for navigation apps	 ..34
Startup	 ...42
Route guidance	 ...43
Keyboard and list restrictions	 ..47
Voice prompts	 ...47
Maps in the CarPlay Dashboard and instrument cluster displays	 49

Sample code	 ...54
Integrating CarPlay with your music app	 ...54
Integrating CarPlay with your navigation app	 ...54
Integrating CarPlay with your quick food ordering app	 ..54

Publish your CarPlay app	...55

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 2 56

Introduction
CarPlay is a smarter, safer way to use your iPhone in the car. CarPlay takes the things you want
to do with your iPhone while driving and puts them right on your car's built-in display.

In addition to getting directions, making calls, sending and receiving messages, and listening to
music, CarPlay supports the following types of apps.

• Audio

• Communication (messaging and calling)

• Driving task

• EV charging

• Fueling

• Navigation (turn-by-turn directions)

• Parking

• Quick food ordering

This guide describes how to create these types of CarPlay apps.

Note This guide does not cover CarPlay automaker apps (published by car manufacturers).

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 3 56

Overview
People download CarPlay apps from the App Store and use them on iPhone like any other app.
When connected to a CarPlay vehicle, the app icon appears on the CarPlay home screen.
CarPlay apps are not separate apps—you add CarPlay support to your existing app.

CarPlay apps are designed to look and feel like your app on iPhone, but with UI elements that
are similar to built-in CarPlay apps.

Your app uses the CarPlay framework to present UI elements to the user. iOS manages the
display of UI elements and handles the interface with the car. Your app does not need to
manage the layout of UI elements for different screen resolutions, or support different input
hardware such as touchscreens, knobs, or touch pads.

CarPlay apps must meet the basic requirements defined in the CarPlay Entitlement Addendum,
and must follow the CarPlay App Guidelines.

For general design guidance, see Human Interface Guidelines for CarPlay.

CarPlay app entitlements

All CarPlay apps require a CarPlay app entitlement that matches your app type.

To request a CarPlay app entitlement, go to http://developer.apple.com/carplay and provide
information about your app, including the type of entitlement that you are requesting. You also
need to agree to the CarPlay Entitlement Addendum.

Apple will review your request. If your app meets the criteria for a CarPlay app, Apple will assign
a CarPlay app entitlement to your Apple Developer account and notify you.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 4 56

https://developer.apple.com/design/human-interface-guidelines/carplay
http://developer.apple.com/carplay

CarPlay app guidelines
All CarPlay apps must adhere to the following guidelines.

Guidelines for all apps

1. Your CarPlay app must be designed primarily to provide the specified feature to a user (e.g.
CarPlay audio apps must be designed primarily to provide audio playback services, CarPlay
parking apps must be designed primarily to provide parking services, etc.).

2. Never instruct users to pick up their iPhone to perform a task. If there is an error condition,
such as a required log in, you can let users know about the condition so they can take action
when safe. However, user messages must not include wording that asks users to manipulate
their iPhone.

3. All CarPlay user flows must be possible without interacting with iPhone.

4. All CarPlay user flows must be meaningful to use while driving. Don’t include features in
CarPlay that aren’t related to the primary task (e.g. unrelated settings, maintenance features,
etc.).

5. No gaming or social networking.

6. Never show the content of messages, texts, or emails on the CarPlay screen.

7. Use templates for their intended purpose, and only populate templates with the specified
information types (e.g. a list template must be used to present a list for selection, album
artwork in the now playing screen must be used to show an album cover, etc.).

8. All voice interaction must be handled using SiriKit (with the exception of CarPlay navigation
apps, see below).

Additional guidelines for audio apps

1. Never show song lyrics on the CarPlay screen.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 5 56

Additional guidelines for communication (messaging and calling) apps

1. Communication apps must provide either short form text messaging features, VoIP calling
features, or both.

2. Email is not considered short form text messaging and is not permitted.

3. Communication apps that provide text messaging features must support all 3 of the
following SiriKit intents:

• Send a message (INSendMessageIntent)

• Request a list of messages (INSearchForMessagesIntent)

• Modify the attributes of a message (INSetMessageAttributeIntent)

4. Communication apps that provide VoIP calling features must support CallKit, and all of the
following SiriKit intents:

• Start a call (INStartCallIntent)

• Start an audio-only call (INStartAudioCallIntent) required for apps that support
iOS 14 and earlier

• Request a list of calls (INSearchCallHistoryIntent) required for apps that
support iOS 14 and earlier

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 6 56

Additional guidelines for driving task apps

1. Driving task apps must enable tasks people need to do while driving. Tasks must actually
help with the drive, not just be tasks that are done while driving.

2. Driving task apps must use the provided templates to display information and provide
controls. Other kinds of CarPlay UI (e.g. custom maps, real-time video) are not possible.

3. Do not show CarPlay UI for tasks unrelated to driving (e.g. account setup, detailed settings).

4. Do not periodically refresh data items in the CarPlay UI more than once every 10 seconds
(e.g. no real-time engine data).

5. Do not periodically refresh points of interest in the POI template more than once every 60
seconds.

6. Do not create POI (point of interest) apps that are focused on finding locations on a map.
Driving tasks apps must be primarily designed to accomplish tasks and are not intended to
be location finders (e.g. store finders).

7. Use cases outside of the vehicle environment are not permitted.

Additional guidelines for EV charging apps

1. EV charging apps must provide meaningful functionality relevant to driving (e.g. your app
can’t just be a list of EV chargers).

2. When showing locations on a map, do not expose locations other than EV chargers.

Additional guidelines for fueling apps

1. Fueling apps must provide meaningful functionality relevant to driving (e.g. your app can’t
just be a list of fueling stations).

2. When showing locations on a map, do not expose locations other than fueling stations.

Additional guidelines for parking apps

1. Parking apps must provide meaningful functionality relevant to driving (e.g. your app can’t
just be a list of parking locations).

2. When showing locations on a map, do not expose locations other than parking.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 7 56

Additional guidelines for navigation (turn-by-turn directions) apps

1. Navigation apps must provide turn-by-turn directions with upcoming maneuvers.

2. The base view must be used exclusively to draw a map. Do not draw windows, alerts, panels,
overlays, or user interface elements in the base view. For example, don’t draw lane guidance
information in the base view. Instead, draw lane guidance information as a secondary
maneuver using the provided template.

3. Use each provided template for its intended purpose. For example, maneuver images must
represent a maneuver and cannot represent other content or user interface elements.

4. Provide a way to enter panning mode. If your app supports panning, you must include a
button in the map template that allows the user to enter panning mode since drag gestures
are not available in all vehicles. Drag gestures must only be used for panning the map.

5. Immediately terminate route guidance when requested. For example, if the user starts route
guidance using the vehicle’s built-in navigation system, your app delegate will receive a
cancelation notification and must immediately stop route guidance.

6. Correctly handle audio. Voice prompts must work concurrently with the vehicle’s audio
system (such as the user listening to the car’s FM radio) and your app should not needlessly
activate audio sessions when there is no audio to play.

7. Ensure that your map is appropriate in each supported country.

8. Be open and responsive to feedback. Apple may contact you in the event that Apple or
automakers have input to design or functionality.

9. Voice control must be limited to navigation features.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 8 56

Additional guidelines for quick food ordering apps

1. Quick food ordering apps must be Quick Service Restaurant (QSR) apps designed primarily
for driving-oriented food orders (e.g. drive thru, pick up) when in CarPlay and are not
intended to be general retail apps (e.g. supermarkets, curbside pickup).

2. Quick food ordering apps must provide meaningful functionality relevant to driving (e.g. your
app can’t just be a list of store locations).

3. Simplified ordering only. Don’t show a full menu. You can show a list of recent orders, or
favorites limited to 12 items each.

4. When showing locations on a map, do not expose locations other than your Quick Service
Restaurants.

The following example shows how to structure a quick food ordering app in CarPlay. The app
provides four tabs which allow the user select a store, view a list of recent orders or favorite
items, and confirm order information. The icons and text may be customized.

Locations, lists, and information screens are limited to 12 items. Quick food ordering user
flows should be simple and limited to the most common tasks. Show only the most
important and relevant information.

Tab bar in a quick food ordering app

Recent orders or favorite items marked by the user
Order informationStore locator

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 9 56

Development environment
Xcode and an Apple Developer Program account are required to create apps for CarPlay.

Entitlements

Once you have received a CarPlay app entitlement, create a new Provisioning Profile that
includes the CarPlay app capability.

1. Log in to your Apple Developer Account https://developer.apple.com/account/.

2. Under Certificates, IDs & Profiles, select Identifiers.

3. Select the App ID associated with your app, or create a new App ID.

4. Select the Additional Capabilities tab.

5. Enable all necessary CarPlay app entitlements for your app.

6. Click Save on the top right.

7. Continue to Provisioning Profiles and create a new provisioning profile for your App ID.

For additional information, see Developer Account Help.

https://developer.apple.com/help/account/

After you have created a new Provisioning Profile, import it into Xcode. Xcode and Simulator
require a Provisioning Profile that supports CarPlay.

In Xcode, create an Entitlements.plist file in your project, if you don't have one already.
Add your CarPlay app entitlement keys as a boolean key. The following example is for a CarPlay
audio app that only supports the CarPlay framework.

<key>com.apple.developer.carplay-audio</key>

<true/>

In Xcode, under Signing & Capabilities turn off Automatically manage signing, and under Build
Settings ensure that Code Signing Entitlements is set to the path of your
Entitlements.plist file.

See Sample Code for project examples.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 10 56

https://developer.apple.com/account/
https://developer.apple.com/help/account/

Use the entitlement key(s) that match your selected provisioning profile.

Entitlement Key
Minimum iOS
version

CarPlay Audio App (CarPlay framework)

App supports the CarPlay framework.

If your app supports iOS 13 or earlier, this
entitlement may be combined with the
deprecated CarPlay Audio App (Media Player
framework) entitlement.

com.apple.developer.carplay-audio iOS 14

CarPlay Communication App

App supports the CarPlay framework, and
SiriKit intents for messaging or VoIP calling
apps.

If your app supports iOS 13 or earlier, this
entitlement may be combined with the
deprecated CarPlay Messaging App
entitlement and/or CarPlay VoIP Calling App
entitlement.

com.apple.developer.carplay-communication iOS 14

CarPlay Driving Task App

App supports the CarPlay framework.

com.apple.developer.carplay-driving-task iOS 16

CarPlay EV Charging App

App supports the CarPlay framework.

This entitlement may be combined with the
CarPlay Fueling App entitlement.

com.apple.developer.carplay-charging iOS 14

CarPlay Fueling App

App supports the CarPlay framework.

This entitlement may be combined with the
CarPlay EV Charging App entitlement.

com.apple.developer.carplay-fueling iOS 16

CarPlay Navigation App

App supports the CarPlay framework.

com.apple.developer.carplay-maps iOS 12

CarPlay Parking App

App supports the CarPlay framework.

com.apple.developer.carplay-parking iOS 14

CarPlay Quick Food Ordering App

App supports the CarPlay framework.

com.apple.developer.carplay-quick-ordering iOS 14

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 11 56

Deprecated audio app entitlements

Audio apps can support the CarPlay framework (recommended), Media Player framework
(deprecated), or both. Be sure to include the correct entitlement(s) to match the framework(s)
your app actually supports. On iOS 14 and later, the CarPlay framework will be used if your app
supports both frameworks.

If your app needs to work on iOS 13 and earlier, also support the Media Player framework and
include the com.apple.developer.playable-content entitlement. Apps that only
support the Media Player framework will work on later versions of iOS, but without a customized
user interface.

Entitlement Key

CarPlay Audio App (Media Player framework)

Deprecated. App supports the Media Player framework. Include
both CarPlay audio app entitlements if your app supports the
CarPlay framework and the Media Player framework.

com.apple.developer.playable-content

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 12 56

Deprecated communication app entitlements

Communication apps can support the CarPlay framework in addition to SiriKit and CallKit. Be
sure to include the correct entitlement(s) to match the frameworks and features you support.

If your app needs to work on iOS 13 and earlier, also include the
com.apple.developer.carplay-messaging and/or
com.apple.developer.carplay-calling entitlements to match your app features. Apps
that don’t support the CarPlay framework will still work on later versions of iOS, but without a
customized user interface.

All communication apps must support required SiriKit intents, and CallKit (for calling apps). For
a list of required SiriKit intents for communication apps, see CarPlay app guidelines.

Entitlement Key

CarPlay Messaging App

Deprecated. App relies solely on SiriKit and supports SiriKit intents
to send, request, and modify messages. May be combined with the
CarPlay Communication App entitlement, and the optional CarPlay
VoIP Calling App entitlement to support iOS 13 and earlier.

com.apple.developer.carplay-messaging

CarPlay VoIP Calling App

Deprecated. App relies solely on SiriKit and CallKit, and supports
SiriKit intents for starting calls and requesting a list of calls. May be
combined with the CarPlay Communication App entitlement, and
the optional CarPlay Messaging App entitlement to support iOS 13
and earlier.

com.apple.developer.carplay-calling

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 13 56

Simulators

Apple provides two simulators to help you develop and test your CarPlay app. Xcode Simulator
includes a CarPlay window that lets you run and debug your CarPlay UI. CarPlay Simulator is a
separate tool that simulates a complete car environment and requires you to install your app on
iPhone. It’s recommended that you download and use CarPlay Simulator to closely match the
behavior of CarPlay in a car.

You can also test your CarPlay app using a car or an aftermarket head unit with a power supply.
If you use an aftermarket head unit, choose one that supports wireless CarPlay so you can
simultaneously connect iPhone to the head unit and to Xcode on your Mac using a cable.

Xcode Simulator is useful for regular build and test cycles for your CarPlay UI, but you should
not rely exclusively on Xcode Simulator for all CarPlay app development. Here are some
scenarios that require CarPlay Simulator or an actual CarPlay environment, and cannot be
tested using Xcode Simulator.

• Testing while iPhone is locked. Most users interact with CarPlay while iPhone is locked
so you need to ensure that your app works correctly even when iPhone is locked.

• Testing runtime scenarios such as switching between CarPlay and the car’s built-in UI,
or connecting and disconnecting iPhone.

• Testing scenarios where the car is playing audio. Remember that additional audio
sources may be playing while CarPlay is active and your app must be a good audio
citizen. For example, activating an audio session in your app has the side effect of
immediately stopping the car’s FM radio so you must only activate your audio session
when you are ready to play audio.

• Testing Siri features with your app.

• Testing features that depend on location.

• Testing your navigation app with instrument cluster displays.

Xcode Simulator

Xcode Simulator lets you run and debug your CarPlay UI in a second window. The window acts
as the car’s display and allows you to interact with your CarPlay app in a similar manner to when
you are connected to a CarPlay system.

To access CarPlay in Xcode Simulator, launch Simulator and select I/O, External Displays, and
CarPlay to show a CarPlay screen.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 14 56

CarPlay Simulator

CarPlay Simulator is a standalone Mac app that simulates a complete car environment. CarPlay
Simulator is included in the Additional Tools for Xcode package which you can download from
https://developer.apple.com/download/all/.

Locate CarPlay Simulator in the Hardware folder, run it, and connect iPhone using a cable.
CarPlay starts on iPhone just the same as if you had it connected to a real car.

CarPlay Simulator

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 15 56

https://developer.apple.com/download/all/?q=Additional%20Tools%20for%20Xcode

Testing navigation apps in Xcode Simulator and CarPlay Simulator

If you are developing a navigation app, it’s important to try different display configurations to
ensure your map drawing code works correctly. Note that CarPlay supports both landscape and
portrait displays and can scale from 2x at low resolutions to 3x at high resolutions. Here are
some recommended screen sizes to test.

In CarPlay Simulator, simply click Configure to change the display configuration.

In Xcode Simulator, first enable extra options by entering the following command in Terminal
before launching Xcode Simulator.

defaults write com.apple.iphonesimulator CarPlayExtraOptions -bool YES

If your app is composed only of templates, you can still try different screen configurations to see
what your UI will look like in different cars, but the system will generally ensure that everything
works correctly.

Width and height Scale

Minimum
(smallest possible CarPlay screen)

748px x 456px 2.0

Standard
(default resolution typical of many CarPlay screens)

800px x 480px 2.0

High resolution
(typical of larger CarPlay screens)

1920px x 720px 3.0

Portrait
(example of a vertical CarPlay screen)

900px x 1200px 3.0

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 16 56

Templates
CarPlay apps are built from a fixed set of UI templates that iOS renders on the CarPlay screen.

CarPlay apps are responsible for selecting which template to show on the screen (the
controller), and providing data to be shown inside the template (the model). iOS is responsible
for rendering the information in CarPlay (the view).

The CarPlay framework includes general purpose templates such as alerts, lists, and tab bars. It
also includes templates designed for specific tasks such as contacts, maps, and now playing.

Each CarPlay app type supports specific templates and this is governed by the app entitlement.
Attempting to use an unsupported template triggers an exception at runtime.

*1 New in iOS 17.

There is a limit to the number of templates (depth of hierarchy) that you can push onto the
screen. Most apps are limited to a depth of 5 templates. Fueling apps are further limited to 3
templates, and driving task and quick food ordering apps are limited to 2 templates. These
include the root template.

Audio Communication Navigation

Driving task, EV
charging, fueling,
parking, and quick

food ordering
Action Sheet ● *1 ● ● ●
Alert ● ● ● ●
Grid ● ● ● ●
List ● ● ● ●
Tab bar ● ● ● ●
Information ● ● ●
Point of Interest ●
Now Playing ● ● *1

Contact ● ●
Map ●
Search ●
Voice control ●

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 17 56

Action sheet

An action sheet is a specific style of alert that appears in response to a control or action, and
presents a set of two or more choices related to the current context. Use action sheets to let
people initiate tasks, or to request confirmation before performing a potentially destructive
operation.

Action sheet

Alert

Alerts convey important information related to the state of your app. An alert consists of a title
and one or more buttons. You can provide titles of varying lengths and let CarPlay choose the
title that best fits the available screen space. If underlying conditions permit, alerts can be
dismissed programatically.

Alert

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 18 56

Contact

Contacts allow you to present information about a person or business. A contact consists of an
image, title, subtitle, and action buttons. Use action buttons to let users perform tasks related to
the current contact, such as making a phone call or sending a message.

Contact

Grid

A grid is a specific style of menu that presents up to eight choices represented by an icon and a
title. Use the grid template to let people select from a fixed list of items. The grid also includes a
navigation bar with a title, leading buttons, and trailing buttons which can be shown as icons or
text.

Grid

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 19 56

Information

An information screen is a specific style of list that presents a limited number of static labels
with optional footer buttons. Labels can appear in a single column or in two columns. Starting in
iOS 16, the information template can also include leading and trailing navigation bar buttons.

Use the information template to show important information. For example, an EV charging app
may display information about a charging station such as availability, while a quick food ordering
app may display an order summary such as pick-up location and time.

Since the number of labels is limited, show only the most important summary information
needed to complete a task.

Information

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 20 56

List

A list presents data as a scrolling, single-column table of rows that can be divided into sections.
Lists are ideal for text-based content, and can be used as a means of navigation for hierarchical
information.

Each item in a list can include attributes such as an icon, title, subtitle, disclosure indicator,
progress indicator, playback status, or read status. Use a general list item if you just need to
show an icon with text, or choose a specific list item such as the image row list item which is
useful in audio apps, or the messages list item which is useful in communication apps.

Some cars dynamically limit lists to 12 items. You can check for the maximum number of items,
but you always need to be prepared to handle the case where only 12 items are shown.

If your app supports SiriKit, you can add an “Ask Siri …” item that appears in the list.

List

List with an image row list item

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 21 56

Now playing

The now playing screen presents information about the currently playing audio, such as title,
artist, elapsed time, and album artwork. It also lets people control your app using playback
control buttons.

The now playing screen is customizable and you should adapt it to your needs. For example,
you can provide a link to upcoming tracks, the playback control buttons can be customized with
your own icons, and the elapsed time indicator can be configured for fixed-length audio or for
open ended audio such as a live stream.

The now playing template is special because users can directly access it from the CarPlay home
screen or through the now playing button in your app’s navigation bar. You must be prepared to
populate the now playing template at all times.

Only the list template may be pushed on top of the now playing template. For example, if your
app enables the “Playing Next” button in the now playing template, you can respond by showing
a list template containing the upcoming playback queue.

Now playing

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 22 56

Point of interest

A point of interest screen lets the user browse nearby locations on a map and choose one for
further action.

The point of interest template includes a map provided by the MapKit framework, and an overlay
containing a list of up to 12 locations with customizable pin images. Starting in iOS 16, you may
optionally provide a larger pin image for the currently selected location. The list of locations
should be limited to those that are most relevant or nearby.

Point of interest

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 23 56

Tab bar

The tab bar is a versatile container for other templates, where each template occupies one tab
in the tab bar. People can use the tab bar to rapidly switch between different templates.

Use the CPTabBarTemplate maximumTabCount method to determine the maximum
number of tabs that can be displayed. In current versions of iOS, the tab bar allows up to 4 tabs
for audio apps and up to 5 tabs for all other app types, although this may change in the future.

When your app is playing audio, CarPlay displays a now playing button in the top right corner of
the tab bar for easy access to playback controls. The now playing button may not appear if your
tab bar has more than 4 tabs.

Tab bar

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 24 56

Notifications
Notifications are supported in CarPlay communication, EV Charging, and parking apps.

Notifications should be used sparingly in CarPlay and must be reserved for important tasks
required while driving. Do not use notifications in CarPlay for features that are only relevant
when using your app on iPhone. In general, notifications are not read aloud in CarPlay.

Note that route guidance notifications in CarPlay navigation apps are handled by the CarPlay
framework itself and are not part of the standard app notification mechanism.

Request authorization to show notifications

In order to show notifications in CarPlay, include the carPlay option when requesting
authorization for notifications.

Only CarPlay communication, EV charging, and parking apps can request authorization to show
notifications.

Users can use Settings to show or hide your app’s notifications in CarPlay. Gracefully disable
notification-related features if the user declines to show notifications in CarPlay.

let authorizationOptions : UNAuthorizationOptions = [.badge, .sound, .alert, .carPlay]

let notificationCenter = UNUserNotificationCenter.current()

notificationCenter.requestAuthorization(options: authorizationOptions) {

 (granted, error) in

 // Enable or disable app features based on authorization

}

Create a notification category with the CarPlay option

In addition to requesting authorization, your app must enable CarPlay for the notification
categories you want displayed. To enable CarPlay, create a notification category with the
allowInCarPlay option. Assign an identifier to the category, and make sure that any local or
remote notifications for messages have the same category identifier.

If you are developing a CarPlay communication app, also see Implementing communication
notifications for more details on messaging notifications. In CarPlay, notifications must only
include information such as the sender and group name in the title and subtitle. The contents of
the message must never be shown in CarPlay.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 25 56

https://developer.apple.com/documentation/usernotifications/implementing_communication_notifications
https://developer.apple.com/documentation/usernotifications/implementing_communication_notifications

Assets
Prepare CarPlay assets for images used in templates such as icons and buttons. Note that
CarPlay supports multiple scales and both light and dark interfaces so you should take this into
account when creating assets. Create versions that are suitable for 2x and 3x scale factors, and
for light and dark styles.

Turn on CarPlay assets in Xcode and populate the CarPlay 2x and 3x image wells.

Turn on CarPlay assets

Populate the CarPlay 2x and 3x image wells

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 26 56

Use the following size guidance when creating images.

If you create assets programmatically, use UIImageAsset to combine UIImage instances into
single image with both light and dark trait collections.

If you need to know the CarPlay screen scale at runtime, use the trait collection
carTraitCollection to obtain the display scale. Don’t use other parameters in the
carTraitCollection and be sure to get the scale for the car’s screen (not the scale for the
iPhone screen).

To determine the sizes of images used in lists, use maximumImageSize in CPListItem and
CPListImageRowItem to obtain the maximum image size and provide images with matching
resolution.

Use CarPlay Simulator to test your app and see how it appears under different conditions,
including screen resolutions, scale factors, and light/dark styles.

Maximum size
in points

Maximum size
in pixels (3x)

Maximum size
in pixels (2x)

Contact action button 50pt x 50pt 150px x 150px 100px x 100px

Grid icon 40pt x 40pt 120px x 120px 80px x 80px

Now playing action button 20pt x 20pt 60px x 60px 40px x 40px

Tab bar icon 24pt x 24pt 72px x 72px 48px x 48px

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 27 56

Audio handling
Playback

If your app plays audio, ensure that it works well with audio sources in the car.

Only activate your audio session the moment you are ready to play audio. When you activate
your audio session, other audio sources in the car will stop. For example, if a user is listening to
the car’s FM radio and you active your audio session too soon, the FM radio will stop. People
expect FM radio to continue to play until they explicitly choose to play an audio stream in your
app. Don’t simply activate your audio session at the time your app launches. Instead, wait until
you actually need to play audio.

If you are developing a CarPlay navigation app, see Voice prompts for details on playing voice
prompts for upcoming route maneuvers.

Recording

In general, recording is not supported while in CarPlay. If your app has recording features, don’t
enable them when CarPlay is active. If you activate an audio session with recording enabled, it
can affect audio playback from other sources and impact audio input for the car’s own functions
such as voice assistants and phone calls. While in CarPlay, configure audio sessions without
recording features.

An exception is for CarPlay navigation apps which use recording features for voice input. In
CarPlay navigation apps, recording features may be used, but only in conjunction with the voice
control template.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 28 56

Build a CarPlay app
Startup

All CarPlay apps must adopt scenes and declare a CarPlay scene to use the CarPlay framework.
You can declare a scene dynamically, or you can include an application scene manifest in your
Info.plist file. The following is an example of an application scene manifest that declares a
CarPlay scene. You can add this to the top level of your app's Info.plist file.

<key>UIApplicationSceneManifest</key>

<dict>

 <key>UISceneConfigurations</key>

 <dict>

 <!-- Declare device scene -->

 <key>UIWindowSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>UIWindowScene</string>

 <key>UISceneConfigurationName</key>

 <string>Phone</string>

 <key>UISceneDelegateClassName</key>

 <string>MyAppWindowSceneDelegate</string>

 </dict>

 </array>

 <!-- Declare CarPlay scene -->

 <key>CPTemplateApplicationSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>CPTemplateApplicationScene</string>

 <key>UISceneConfigurationName</key>

 <string>MyApp-Car</string>

 <key>UISceneDelegateClassName</key>

 <string>MyApp.CarPlaySceneDelegate</string>

 </dict>

 </array>

 </dict>

</dict>

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 29 56

In the above example, the app declares 2 scenes—one for the iPhone screen, and one for the
CarPlay screen.

The name of the class that serves as the scene delegate is defined in the manifest by
UISceneDelegateClassName. Your delegate must conform to
CPTemplateApplicationSceneDelegate. Listen for the didConnect and
didDisconnect methods to know when your app has been launched on the CarPlay screen.
Remember, your app may be launched only on the CarPlay screen.

When your app is launched, you will receive a CPInterfaceController that manages all the
templates on the CarPlay screen. Hold onto the controller since you’ll need it to manage
templates, such as showing a now playing screen or an alert.

On launch, you must also specify a root template. In the example below, the app specifies a
CPListTemplate as the root template.

import CarPlay

class CarPlaySceneDelegate: UIResponder, CPTemplateApplicationSceneDelegate {

 var interfaceController: CPInterfaceController?

 // CarPlay connected

 func templateApplicationScene(_ templateApplicationScene: CPTemplateApplicationScene,

 didConnect interfaceController: CPInterfaceController) {

 self.interfaceController = interfaceController

 let listTemplate: CPListTemplate = ...

 interfaceController.setRootTemplate(listTemplate, animated: true)

 }

 // CarPlay disconnected

 func templateApplicationScene(_ templateApplicationScene: CPTemplateApplicationScene,

 didDisconnect interfaceController: CPInterfaceController) {

 self.interfaceController = nil

 }

}

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 30 56

Create a list template

The following example shows how to create a list containing a single list item with a title and a
subtitle.

When the user selects a list item, your list item handler will be called. You should take
appropriate action here, such as starting audio playback in the case of an audio app. If you
initiate asynchronous work and don’t immediately call the completion block, CarPlay will display
a spinner to let the user know that your app is busy. When you’re ready to continue, you must
call the completion block to tell CarPlay to remove the spinner.

import CarPlay

let item = CPListItem(text: “My title", detailText: “My subtitle")

item.listItemHandler = { item, completion, [weak self] in

 // Start playback asynchronously…

 self.interfaceController.pushTemplate(CPNowPlayingTemplate.shared(), animated: true)

 completion()

}

let section = CPListSection(items: [item])

let listTemplate = CPListTemplate(title: "Albums", sections: [section])

self.interfaceController.pushTemplate(listTemplate, animated: true)

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 31 56

Create a now playing template

The now playing template is a shared instance so you need to obtain it and configure its
properties.

Do this when the interface controller connects to your app because iOS can display the shared
now playing template on your behalf. For example, when the user taps the “Now Playing” button
on the CarPlay home screen or in your app’s navigation bar, iOS will immediately present the
shared now playing template.

This example shows an app configuring the playback rate button on the now playing template.

import CarPlay

class CarPlaySceneDelegate: UIResponder, CPTemplateApplicationSceneDelegate {

 func templateApplicationScene(_ templateApplicationScene: CPTemplateApplicationScene,

 didConnect interfaceController: CPInterfaceController) {

 let nowPlayingTemplate = CPNowPlayingTemplate.shared()

 let rateButton = CPNowPlayingPlaybackRateButton() {

 // Change the playback rate!

 }

 nowPlayingTemplate.updateNowPlayingButtons([rateButton])

 }

}

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 32 56

Work while iPhone is locked

CarPlay is frequently used while iPhone is in a locked state. Test your app throughly to ensure it
works as expected when iPhone is locked.

You won’t be able to access any of the following when launched or running while iPhone is
locked.

• Files saved with NSFileProtectionComplete or
NSFileProtectionCompleteUnlessOpen.

• Keychain items with a kSecAttrAccessible attribute of
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,
kSecAttrAccessibleWhenUnlocked or
kSecAttrAccessibleWhenUnlockedThisDeviceOnly.

Launch other apps

If your app launches other apps in CarPlay, such as to get directions or make a phone call, use
the CPTemplateApplicationScene open(_:options:completionHandler:)
method to launch the other app using a URL to ensure it launches on the CarPlay screen.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 33 56

Build a CarPlay navigation app
The following section describes how to create a CarPlay navigation app.

CarPlay navigation apps have additional UI elements and capabilities that are different from
other CarPlay app types. Skip this section if you are not creating a navigation app.

Additional templates for navigation apps

CarPlay navigation apps use additional templates to display map information, a keyboard, and
voice control feedback.

Base View

All CarPlay navigation apps start with a base view. The base view is where you draw your map.
Create the base view and attach it to the provided window when CarPlay starts.

The base view must be used exclusively to draw a map, and cannot be used to draw alerts,
overlays, or other UI elements. All UI elements that appear on the screen, including the
navigation bar and map buttons, must be implemented using the provided templates. Your app
won’t receive direct tap or drag events in the base view.

You will be required to draw your map on a variety of screens with different aspect ratios,
resolutions, and in light or dark mode. Get the current mode using contentStyle in your
CarPlay template application scene and receive contentStyleDidChange notifications in
your scene delegate. You must also consider the safe area (the portion of the map not obscured
by buttons). See Simulator for more information on testing with different display configurations,
including testing light and dark mode.

Base view

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 34 56

Map

The map template is a control layer that appears as an overlay over the base view and allows
users to manipulate the map. It consists of a navigation bar and map buttons drawn as individual
overlays. By default, the navigation bar appears when the user interacts with the app, and
disappears after a period of inactivity. You can customize this behavior, including whether to
hide the map buttons.

The navigation bar includes up to two leading buttons and two trailing buttons that can be
specified with icons or text.

You can also specify up to four map buttons which are shown as icons. Use the map buttons to
provide zooming and panning features. Although many cars support panning through direct
manipulation of the car’s touchscreen, there are cars that only support panning through knob or
touch pad events. CarPlay supports these cars with a “panning mode.” If your app supports any
panning features, you must allocate one of the map buttons to be a pan button that allows the
user to enter panning mode, and you must respond to the panning functions in
CPMapTemplate.

Map

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 35 56

Search

The search template displays a text entry field, a list of search results, and a keyboard. Your app
parses the text by responding to updatedSearchText and updating the list of search results
with an array of CPListItem elements. You must also take action when the user selects an
item from the list by responding to selectedResult.

Note that many cars limit when the keyboard may be shown. See keyboard and list restrictions
for details.

Search

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 36 56

Voice control

The voice control template allows you to provide visual feedback during a voice control session.
CarPlay navigation apps can provide a voice control feature, but it must be restricted to
navigation functions. In addition, navigation apps must display the voice control template
whenever a voice control audio session is active.

The voice control template can be used in navigation apps. Other CarPlay apps must use SiriKit
or Siri Shortcuts to provide voice control features.

Voice control

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 37 56

Panels

CarPlay navigation apps use panels to overlay information on the map. This includes trip
previews, route selection, route guidance, and navigation alerts. You don’t create panels directly.
Instead, use the provided APIs to trigger them.

Trip preview panel. Display up to 12 potential destinations and select one. The trip preview
panel is usually the result of a destination search. When users preview a trip, show a visual
representation of that trip in your base view.

Trip preview

Route choice panel. Display potential routes for a trip and select one. Each route should have
clear descriptions so the user can choose their preferred route. For example, a summary and
optional description for a route could be “Via I-280 South” and “Traffic is light.” When users
preview a route, show a visual representation of that route in your base view.

Route choice

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 38 56

Guidance and trip estimate panels. Displays upcoming maneuvers and trip estimates.

Maneuvers are normally shown one at a time, but in cases where maneuvers appear in rapid
succession, two maneuvers may be shown. The second maneuver may be repurposed to show
lane guidance or a junction image for the first maneuver.

In addition to providing upcoming maneuvers, you should continuously update overall trip
estimates.

Guidance and trip estimate

Each maneuver can include a symbol, instruction text, estimated remaining distance, and time.

You may optionally specify multiple variants for your images and instruction text so they appear
differently in your app and the CarPlay Dashboard. This includes maneuver symbols, junction
images, notification symbols, instruction text and notification text. To specify something
different, use the dashboard variants of the properties—for example, by default symbolImage
defines what appears in your app and the CarPlay Dashboard, but if you also specify a
dashboardSymbolImage property, then it will be used in the CarPlay Dashboard.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 39 56

Use the following guide when preparing maneuver symbol assets. Be sure to provide variants for
light and dark interfaces.

Maximum size
in points

Maximum size
in pixels (3x)

Maximum size
in pixels (2x)

First maneuver symbol
(symbol and instruction on one line)

50pt x 50pt 150px x 150px 100px x 100px

First maneuver symbol
(symbol and instruction on two lines)

120pt x 50pt 360px x 150px 240px x 100px

Second maneuver symbol
(symbol and instructions)

18pt x 18pt 54px x 54px 36px x 36px

Second symbol
(symbol only)

120pt x 18pt 360px x 54px 240px x 36px

CarPlay Dashboard junction image 140pt x 100pt 420px x 300px 280px x 200px

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 40 56

Navigation alert panel. Display important, real time feedback and optionally give the user a
chance to make a decision that will affect the current route. For example, you should show an
alert if there is unexpected traffic ahead and you are recommending that the user take an
alternate route. Navigation alerts result in a notification if your app is running in the background.

Navigation alerts can consist of an image, title, subtitle, duration for which the alert is visible
before it’s automatically dismissed, and up to 2 action buttons. For example, the action buttons
could provide options to either maintain the current route, or take an alternate route. Starting in
iOS 16 you can specify a navigation alert with longer subtitle text (previously it was limited to 3
lines), no action buttons (in which case the alert will have a simple close button), or action
buttons with custom colors.

Navigation alert

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 41 56

Startup

CarPlay navigation apps can declare two CarPlay scenes, one for the main app window in
CarPlay, and one for the CarPlay Dashboard. If you are using a scene manifest, extend it with
information about the CarPlay Dashboard scene. See Dashboard scene manifest for details.

Provide delegates for the CarPlay scene and the CarPlay Dashboard scene. Listen for the
didConnect and didDisconnect methods to know when your app has been launched in
each scene. In the main app window, your CPTemplateApplicationSceneDelegate will
be called using the didConnect and didDisconnect methods that receive an interface
controller and a window. CPInterfaceController and a CPWindow object.

For the main app view, retain references to both the interface controller and the map content
window for the duration of the CarPlay session.

self.interfaceController = interfaceController
self.carWindow = window

Next, create a new view controller and assign it to the window’s root view controller. Use the
view controller to manage your map content as the base view in the window.

let rootViewController = MyRootViewController()
window.rootViewController = rootViewController

Finally, create a map template and assign it as the root template.

let rootTemplate: CPMapTemplate = createRootTemplate()
self.interfaceController?.setRootTemplate(rootTemplate, animated:
false)

Create a default set of navigation bar buttons and map buttons and assign them to the root map
template. Specify navigation bar buttons by setting up the
leadingNavigationBarButtons and trailingNavigationBarButtons arrays.
Specify map buttons by setting up the mapButtons array.

If your CarPlay navigation app supports panning, one of the buttons you create must be a pan
button that lets the user enter panning mode. The pan button is essential in vehicles that don’t
support panning via the touch screen.

You can update the navigation bar buttons and map buttons dynamically based on the state of
the app. For example, during active route guidance, you may choose to replace the default
navigation bar buttons with an option to end route guidance.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 42 56

Route guidance

All CarPlay navigation apps have a standard flow for selecting a destination and providing route
guidance.

Select destination. All route guidance starts with the user selecting a destination, whether that
is the result of an on-screen search, voice command, or picking a category or destination from a
list.

Preview. When a destination is selected, the user is shown a preview of the trip. At the same
time, your map in the base view typically shows a visual representation of the trip. The preview
also supports disambiguation when there are multiple matching destinations. For example, if the
user chooses to navigate to a nearby park, the preview may show up to 12 nearby parks to
choose from.

Choose route and start guidance. Once the user has confirmed the destination, they may
start route guidance. If there are multiple possible routes, you may present the routes as options
for the user to choose from.

Show trip information and upcoming maneuvers. When the user starts route guidance,
show real time information including upcoming maneuvers, and travel estimates (distance and
time remaining) for the trip.

End guidance. Route guidance continues until the user arrives at the destination, or chooses to
end route guidance.

Select destination

Use CPInterfaceController to present templates that allow the user to specify a
destination. To present a new template, use pushTemplate with a supported CPTemplate
class such as CPGridTemplate, CPListTemplate, CPSearchTemplate, or
CPVoiceControlTemplate.

When the user selects an item or cancels the selection, your delegate will be called with
information about the action that was taken.

You may present multiple templates in succession to support hierarchical selection. For
example, you can show a list template that includes list items which lead to additional sublists
when selected. Be sure to set showsDisclosureIndicator to true for list items that
support hierarchical browsing, and push a new list template when the list item is selected.
Hierarchical selections must never exceed five levels of depth.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 43 56

Preview

After the user has selected a destination and you are ready to show trip previews, use
CPMapTemplate showTripPreviews to provide an array of up to 12 CPTrip objects.

Each CPTrip object represents a journey consisting of an origin, a destination, up to 3 route
choices, and estimates for remaining time and distance.

Use CPRouteChoice to define each route choice. Your descriptions for each route are
provided as arrays of variable length strings in descending order of length (longest string first).
CarPlay will display the longest string that fits in the available space on the screen.

For each CPTrip, be sure to provide travel estimates using CPMapTemplate
updateEstimates: and update the estimates if the remaining time or distance change.

You may also customize the names of the start, overview, and additional routes buttons shown
in the trip preview panel.

Choose route and start guidance

When the user selects a different route to preview, the delegate selectedPreviewFor: will
be called. Respond by updating your map base view.

If the user decides to start a trip, the delegate startedTrip: will be called. Respond by
starting route guidance. At this time, use CPMapTemplate hideTripPreviews to dismiss
the trip preview panel.

mapTemplate.hideTripPreviews()

Next use CPMapTemplate startNavigationSession to start a navigation session for the
selected trip and obtain a CPNavigationSession object that represents the active
navigation session.

let session = mapTemplate.startNavigationSession(for: trip)

While you are calculating initial maneuvers, set the navigation session pause state to
CPTripPauseReasonLoading so that CarPlay can display the correct state.

session.pauseTrip(for: .CPTripPauseReasonLoading)

At this time, update the navigation bar buttons and map buttons to provide appropriate actions
for the user to manage their route.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 44 56

Show trip information and upcoming maneuvers

During turn by turn guidance, show route guidance information by updating
upcomingManeuvers with information on upcoming turns. Each CPManeuver represents a
single maneuver and may include a symbol, an instruction, and estimates for remaining time and
distance.

Show a maneuver in the route guidance panel

Symbol. If the maneuver has an associated symbol, such as a turn right arrow, provide an
image using symbolSet. The symbol will be shown in the route guidance card and any related
notifications. You must provide two image variants using CPImageSet—one is used for
rendering the symbol on light backgrounds, the other is used for rendering the symbol on dark
backgrounds.

Instruction. Provide an instruction using instructionVariants which is an array of strings.
Use the array to provide variants of different lengths so that CarPlay can display the instruction
that best fits in the available space on the screen. For example, if the maneuver requires you to
turn right on the street named “Solar Circle” you may choose to provide 3 instruction variants
“Turn Right on Solar Circle,” “Turn Right on Solar Cir.”, and “Turn Right”. CarPlay will display the
instruction with the longest string length that fits in the available space. The array of
instructions must be provided in descending order of length (longest string first). You may
optionally provide attributedInstructionVariants to include embedded images in the
instruction. This is useful if you need to display special symbols, such as a highway symbol, as
part of the instruction. Note that other text attributes including text size and fonts will be
ignored. If you provide attributedInstructionVariants, always provide text-only
instructionVariants since CarPlay vehicles may not always support attributed strings.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 45 56

Maintain at least one upcoming turn in the maneuvers array at all times. In cases where there
are two maneuvers in quick succession, provide a second maneuver which may be shown on
the screen simultaneously.

If you provide a second maneuver, you can customize its appearance by specifying a symbol
style. In CPMapTemplateDelegate, return a CPManeuverDisplayStyle for the maneuver
when requested. The display style only applies to the second maneuver.

If your app provides lane guidance information, you must use the second maneuver to show
lane guidance. Create a second maneuver containing symbolSet with dark and light images
that occupy the full width of the guidance panel (maximum size 120pt x 18pt), provide an empty
array for instructionVariants, and in the CPMapTemplateDelegate, return a symbol
style of CPManeuverDisplayStyleSymbolOnly for the maneuver.

Show a maneuver with lane guidance information

Your app is responsible for continuously updating estimates for remaining time and distance for
each maneuver, and for the overall trip. Use CPNavigationSession updateEstimates: to
update estimates for each maneuver, and CPMapTemplate updateEstimates to update
overall estimates for the trip. Only update the values when significant changes occur, such as
when the number of remaining minutes changes.

If you need to display an alert related to the map or navigation, create a CPNavigationAlert
and use CPMapTemplate present to show it. Navigation alerts can be configured to
automatically disappear after a fixed interval. They may also be shown as a notification, even
when your app is not in the foreground.

For each maneuver and navigation alert, specify whether it should be shown as a CarPlay
notification when your app is running in the background. Respond to the
shouldShowNotificationFor delegate call to specify the maneuver or navigation alert

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 46 56

behavior. In the case of a maneuver, you can optionally include updating travel estimates as part
of the notification.

In addition to the route guidance panel, maneuvers may also be shown in notifications, or sent
to vehicles that support the display of CarPlay metadata in their instrument cluster or heads up
display.

End guidance

When route guidance is paused, canceled, or finished, call the appropriate method in
CPNavigationSession.

In some cases, CarPlay route guidance may be canceled by the system. For example, if the car’s
native navigation system starts route guidance, CarPlay route guidance automatically
terminates. In this case, your delegate will receive mapTemplateDidCancelNavigation
and you should end route guidance immediately.

Keyboard and list restrictions

Some cars limit keyboard use and the lengths of lists while driving. iOS automatically disables
the keyboard and reduces list lengths when the car indicates it should do so. However, if your
app needs to adjust other user interface elements in response to these changes, you can
receive notifications when the limits change. For example, you may want to disable a keyboard
icon or adjust list items when list lengths are shorter. Use CPSessionConfiguration to
observe limitedUserInterfaces.

Voice prompts

Voice prompts are essential for a route guidance experience, but you must ensure that your app
is a good audio citizen and works well with other audio sources on iPhone and in the car.

Audio session configuration

CarPlay navigation apps must use the following audio session configuration when playing voice
prompts for upcoming maneuvers.

1. Set the audio session category to AVAudioSessionCategoryPlayback.

2. Set the audio session mode to AVAudioSessionModeVoicePrompt.

3. Set the audio session category options to
AVAudioSessionCategoryOptionInterruptSpokenAudioAndMixWithOthers
and AVAudioSessionCategoryOptionDuckOthers.

Voice prompts are played over a separate audio channel and mixed with audio sources in the
car, including the car’s own audio sources such as FM radio.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 47 56

AVAudioSessionCategoryOptionInterruptSpokenAudioAndMixWithOthers
allows voice prompts to pause certain apps with spoken audio (such as podcasts or audio
books) and mix with other apps such as music.

AVAudioSessionCategoryOptionDuckOthers allows voice prompts to duck (lower the
volume) for other apps such as music while your audio is played.

Activate and deactivate the audio session

Keep your audio session deactivated until you are ready to play a voice prompt. Call
setActive with YES only when a voice prompt is ready to play. You may keep the audio
session active for short durations if you know that multiple audio prompts are going to be played
in rapid succession. However, while your AVAudioSession is active, music apps will remain
ducked, and apps with spoken audio will remain paused. Don’t hold on to the active state for
more than few seconds if audio prompts are not playing.

When you are done playing a voice prompt, call setActive with NO to allow other audio to
resume.

Prompt style

In some cases it doesn’t make sense to play a voice prompt. For example, the user may be on a
phone call or in the middle of using Siri.

Just before playing each voice prompt, check the audio session’s promptStyle. If necessary,
it will return a hint to alter the type of prompt you should play in response to other system audio.

Prompt style Action

None Don’t play any sound

Short Play a tone

Normal Play a full spoken prompt

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 48 56

Maps in the CarPlay Dashboard and instrument cluster displays

People using your navigation app want to see important information, even when your app is not
the foreground app in CarPlay.

Support for CarPlay Dashboard. Starting with iOS 13.4, you can add support for CarPlay
Dashboard. Display your map, upcoming maneuvers, and dashboard buttons so they are
available at a glance inside CarPlay Dashboard.

Support for instrument cluster displays. Starting with iOS 15.4, you can add support for
instrument cluster displays in supported vehicles. Display your map and upcoming maneuvers,
so they are visible at a glance in the car’s instrument cluster display.

It’s easy to support both CarPlay Dashboard and instrument cluster displays since they work in
similar ways.

CPTemplateApplicationDashboardScene and
CPTemplateApplicationInstrumentClusterScene are new UIScene subclasses that
CarPlay creates when it determines that your app should appear in CarPlay Dashboard or the
instrument cluster.

CPDashboardController and CPDashboardButton let you manage the CarPlay
Dashboard and the buttons that appear inside it. CPInstrumentClusterController lets
you manage instrument cluster displays.

Indicate support for the CarPlay dashboard and instrument cluster

In your application scene manifest, set CPSupportsDashboardNavigationScene and
CPSupportsInstrumentClusterNavigationScene to true and provide corresponding
keys for your scenes and delegates. See “Application scene manifest example” below.

Create scene delegates

Define delegates for CarPlay Dashboard and instrument cluster scenes just like you would for
the main template application scene. These delegates conform to
CPTemplateApplicationDashboardSceneDelegate and
CPTemplateApplicationInstrumentClusterSceneDelegate and will be called with
instances of CPDashboardController or CPInstrumentClusterController.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 49 56

Draw your content

Use the provided windows to draw map content for display in the CarPlay Dashboard or
instrument cluster.

When drawing maps in the instrument cluster, you must follow these guidelines:

• Draw a minimal version of your map with minimal clutter

• Show a detailed view of the upcoming route, not an overview

• Ensure the current heading is facing up (the top of the screen)

Also, as with all maps rendered in CarPlay, be sure to observe safe areas, and light and dark
mode settings (similar to your base view, use the contentMode in
CPTemplateApplicationDashboardScene or
CPTemplateApplicationInstrumentClusterScene).

When navigation begins in your app using CPMapTemplate and CPNavigationSession,
CarPlay automatically displays maneuver information.

For the CarPlay Dashboard, you can also provide two instances of CPDashboardButton to
CPDashboardController. These buttons appear in the guidance card area when your app is
not actively navigating. People can interact with your app through the dashboard buttons as
well as within your main app interface.

For instrument cluster displays, some cars may allow users to zoom the map in and out. It’s your
responsibility to respond to these events in your delegate. Similarly, if your app includes a
compass or speed limit, the corresponding delegates will tell your app whether it’s appropriate
to draw them or not. Depending on the shape of the car’s instrument cluster, your view area may
be partially obscured by other elements in the car. Override
viewSafeAreaInsetsDidChange on your view controller to know when the safe area
changes, and use the safeAreaLayoutGuide on your cluster view to ensure that important
content in the area of the view is always visible.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 50 56

Application scene manifest example

The following is an example of an application scene manifest that supports both the CarPlay
Dashboard and instrument cluster displays.
<key>UIApplicationSceneManifest</key>

<dict>

 <!-- Indicate support for CarPlay dashboard -->

 <key>CPSupportsDashboardNavigationScene</key>

 <true/>

 <!-- Indicate support for instrument cluster displays -->

 <key>CPSupportsInstrumentClusterNavigationScene</key>

 <true/>

 <!-- Indicate support for multiple scenes -->

 <key>UIApplicationSupportsMultipleScenes</key>

 <true/>

 <key>UISceneConfigurations</key>

 <dict>

 <!-- For device scenes -->

 <key>UIWindowSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>UIWindowScene</string>

 <key>UISceneConfigurationName</key>

 <string>Phone</string>

 <key>UISceneDelegateClassName</key>

 <string>MyAppWindowSceneDelegate</string>

 </dict>

 </array>

 <!-- For the main CarPlay scene -->

 <key>CPTemplateApplicationSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>CPTemplateApplicationScene</string>

 <key>UISceneConfigurationName</key>

 <string>CarPlay</string>

 <key>UISceneDelegateClassName</key>

 <string>MyAppCarPlaySceneDelegate</string>

 </dict>

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 51 56

 </array>

 <!-- For the CarPlay Dashboard scene -->

 <key>CPTemplateApplicationDashboardSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>CPTemplateApplicationDashboardScene</string>

 <key>UISceneConfigurationName</key>

 <string>CarPlay-Dashboard</string>

 <key>UISceneDelegateClassName</key>

 <string>MyAppCarPlayDashboardSceneDelegate</string>

 </dict>

 </array>

 <!-- For the CarPlay instrument cluster scene -->

 <key>CPTemplateApplicationInstrumentClusterSceneSessionRoleApplication</key>

 <array>

 <dict>

 <key>UISceneClassName</key>

 <string>CPTemplateApplicationInstrumentClusterScene</string>

 <key>UISceneConfigurationName</key>

 <string>CarPlay-Instrument-Cluster</string>

 <key>UISceneDelegateClassName</key>

 <string>MyAppCarPlayInstrumentClusterSceneDelegate</string>

 </dict>

 </array>

 </dict>

</dict>

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 52 56

Testing maps in instrument cluster displays

Use CarPlay Simulator to test your map in instrument cluster displays.

Simply click Configure | Cluster Display, turn on Instrument Cluster Display enabled and
specify scale factor, screen size, safe area, and safe area sizes. Here are some recommended
configurations to test.

Scale Factor Size Safe Area Origin Safe Area Size

Minimum 3x 300 x 200 0, 0 300 x 200

Basic 2x 640 x 480 0, 0 640 x 480

Widescreen
(wide safe area)

3x 1920 x 720 420, 0 1080 x 720

Widescreen
(small safe area)

2x 1920 x 720 640, 120 640 x 480

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 53 56

Sample code
The following sample code is available to help you get started developing your CarPlay app.

Integrating CarPlay with your music app

CarPlay Music is a sample music app that demonstrates how to display a custom UI from a
CarPlay–enabled vehicle. CarPlay Music integrates with the CarPlay framework by
implementing the CPNowPlayingTemplate and CPListTemplate. This sample’s iOS app
component provides a logging interface to help you understand the life cycle of a CarPlay app,
as well as a music controller.

Download

Integrating CarPlay with your navigation app

Coastal Roads is a sample navigation app that demonstrates how to display a custom map and
navigation instructions in a CarPlay–enabled vehicle. Coastal Roads integrates with the CarPlay
framework by implementing the map and additional CPTemplate subclasses, such as
CPGridTemplate and CPListTemplate. This sample’s iOS app component provides a logging
interface to help you understand the life cycle of a CarPlay app.

Download

Integrating CarPlay with your quick food ordering app

CarPlay Quick-Ordering is a sample quick food ordering app that demonstrates how to display
custom ordering options in a vehicle that has CarPlay enabled. The sample app integrates with
the CarPlay framework by implementing CPTemplate subclasses, such as
CPPointOfInterestTemplate and CPListTemplate. This sample’s iOS app component provides a
logging interface to help you understand the life cycle of a CarPlay app.

Download

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 54 56

https://developer.apple.com/documentation/carplay/integrating_carplay_with_your_music_app
https://developer.apple.com/documentation/carplay/integrating_carplay_with_your_navigation_app
https://developer.apple.com/documentation/carplay/integrating_carplay_with_your_quick-ordering_app

Publish your CarPlay app
When you are ready to publish your CarPlay app on the App Store, follow the same process as
for any iOS app and use App Store Connect to submit your app.

Ensure that your app follows the CarPlay App Guidelines.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 55 56


Apple Inc.
Copyright © 2023 Apple Inc.

All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Inc., with the following
exceptions: Any person is hereby
authorized to store documentation on a
single computer or device for personal
use only and to print copies of
documentation for personal use
provided that the documentation
contains Apple’s copyright notice.

No licenses, express or implied, are
granted with respect to any of the
technology described in this document.
Apple retains all intellectual property
rights associated with the technology
described in this document. This
document is intended to assist
application developers to develop
applications only for Apple-branded
products.

Apple Inc.
One Apple Park Way
Cupertino, CA 95014
408-996-1010

Apple is a trademark of Apple Inc.,
registered in the U.S. and other
countries.

APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,”
AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT, ERROR OR INACCURACY IN
THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the
exclusion of implied warranties or
liability, so the above exclusion may
not apply to you.

2023-10-19 | Copyright © 2023 Apple Inc. All Rights Reserved.

Page of 56 56

	Introduction
	Overview
	CarPlay app entitlements

	CarPlay app guidelines
	Development environment
	Entitlements
	Deprecated audio app entitlements
	Deprecated communication app entitlements

	Simulators
	Xcode Simulator
	CarPlay Simulator

	Templates
	Action sheet
	Alert
	Contact
	Grid
	Information
	List
	Now playing
	Point of interest
	Tab bar

	Notifications
	Request authorization to show notifications
	Create a notification category with the CarPlay option

	Assets
	Audio handling
	Playback
	Recording

	Build a CarPlay app
	Startup
	Create a list template
	Create a now playing template
	Work while iPhone is locked
	Launch other apps

	Build a CarPlay navigation app
	Additional templates for navigation apps
	Base View
	Map
	Search
	Voice control
	Panels

	Startup
	Route guidance
	Select destination
	Preview
	Choose route and start guidance
	Show trip information and upcoming maneuvers
	End guidance

	Keyboard and list restrictions
	Voice prompts
	Audio session configuration
	Activate and deactivate the audio session
	Prompt style

	Maps in the CarPlay Dashboard and instrument cluster displays
	Indicate support for the CarPlay dashboard and instrument cluster
	Create scene delegates
	Draw your content
	Application scene manifest example
	Testing maps in instrument cluster displays

	Sample code
	Integrating CarPlay with your music app
	Integrating CarPlay with your navigation app
	Integrating CarPlay with your quick food ordering app

	Publish your CarPlay app

