Function

vDSP_zdotprD(_:_:_:_:_:_:)

Calculates the complex dot product of two double-precision complex vectors.

Declaration

Parameters

__A

Double-precision complex input vector A.

__IA

The stride within A.

__B

Double-precision complex input vector B.

__IB

The stride within B.

__C

Pointer to an allocated variable of type DSPDoubleSplitComplex; on return, it contains the dot product.

__N

The number of elements to process.

Discussion

The functions in this group calculate the dot product of two vectors, using the following operation:

C[0] = sum(A[n] * B[n], 0 <= n < N);

The following example shows how you calculate the luminosity of a color using the Rec. 709 luma coefficients for the color-to-grayscale conversion. Array a defines the color, 0xDa70D6, and array b defines the coefficients:

let a: [Float] = [0xDA, 0x70, 0xD6]
let b: [Float] = [0.2126, 0.7152, 0.0722]

Passing these values to vDSP_dotpr(_:_:_:_:_:_:) calculates the luminosity and writes the result to c:

let n = vDSP_Length(a.count)
var c: Float = .nan

let stride = vDSP_Stride(1)

vDSP_dotpr(a, stride,
           b, stride,
           &c,
           n)

print(c)    // Prints "141.9"

See Also

Dot Product Calculation

static func dot<U>(U, U) -> Double

Returns the double-precision dot product of two vectors.

static func dot<U>(U, U) -> Float

Returns the single-precision dot product of two vectors.

Beta Software

This documentation contains preliminary information about an API or technology in development. This information is subject to change, and software implemented according to this documentation should be tested with final operating system software.

Learn more about using Apple's beta software