
Apple Pay
Platform Integration Guide
September 2025

Introduction	 4
Getting started	 5

Guidelines	 ...5
Apple Pay vs In-App Purchases	 ...5
Apple Pay on the Web Acceptable Use Guidelines	 ..5

Understanding Apple Pay	 6

Payment flow	 ..6
Get set up for Apple Pay	 7

Confirm you operate in a supported region	 ..7
Confirm you support EMVCo Token data elements	 ...7
Set up your Server	 ..7
Register for an Apple developer account as an organization	 ..7

Design your Apple Pay solution	 8

Assess the checkout products you offer	 ..8
Apply the Apple Pay design principles	 ...8
Review the Human Interface Guidelines	 ...8

Merchant Onboarding	 9

Onboarding with a merchant-managed Apple Developer Account	 ..9
Build your merchant onboarding interface for Merchant-managed Developer Account	 9
Key management	 ...9

Onboarding with the Apple Pay Web Merchant Registration API	 ...10
Apply for access to the Apple Pay Web Merchant Registration API	 ...10
Configure your credentials	 ..10
Prepare merchant domains	 ...10
Register a Merchant	 ...10
Unregister a Merchant	 ...10
Get Merchant Details	 ...10
Build your merchant onboarding interface for the Web Merchant Registration API	 11

Build your Apple Pay solution	 12

Integration types	 ..12
Direct API Integration	 ...12
JavaScript & iOS Code Libraries	 ..12
Hosted Payment Forms	 ...12
iframes	 ...12

Offering Apple Pay	 ...13
Present the Apple Pay button	 ...13
Apple Pay Mark	 ...13
Check for Apple Pay Availability	 ...13

Processing Apple Pay	 14

Supported Transaction Types and Business Models	 ...15
Recurring Payments and Merchant tokens	 ...16

Support Merchant tokens (where applicable)	 ...16
MPAN Creation and Authorization Flow	 ...17

Merchant Token Management API	 ..18
Receiving and Handling Merchant Token Notifications	 ...18

Apple Pay Payment Object	 ..19

Platform Integration Guide June 2025 2

Contents

Decrypting the Payment Data	 ...20
Authorizing the Payment	 ..21
Constructing the Authorization Message	 ...21

American Express	 ...21
Good practice guidance when processing Apple Pay transactions	 ...22

Testing	 23
Test your integration on multiple devices and browsers	 ...23
Data Mapping and formatting	 ..23
Responding to Events	 ...23
Test all integration types	 ...23

Documentation	 23
Reporting	 23
Marketing Toolkit	 23
Frequently asked questions	 24
Troubleshooting	 24
API Diagrams	 25

Platform Integration Guide June 2025 3

Introduction
Apple Pay provides an easy and secure way to make payments in iOS, iPadOS, and
watchOS apps, and on the web when using compatible browsers. By using
biometric authentication, users can quickly and securely provide their payment,
shipping, and contact information to check out.

Customers love the simplicity of Apple Pay, and merchants love the increased
conversion rates and new user adoption that comes with it. To experience an Apple
Pay test transaction on a compatible device, visit the Apple Pay demo site at
applepaydemo.apple.com.

This guide outlines the steps and considerations you need to take as a platform to
enable Apple Pay payments for your merchants. If you are a merchant, please
reference the Apple Pay Merchant Integration Guide.

Platform Integration Guide June 2025 4

http://applepaydemo.apple.com
https://developer.apple.com/apple-pay/Apple-Pay-Merchant-Integration-Guide.pdf

Getting started
Before enabling Apple Pay, it is important that developers understand how Apple
Pay differs from an In-App purchase, and make sure their implementation follows
the guidelines. There are many ways to implement Apple Pay, with some of the most
popular Payment Service Providers and E-Commerce platforms offering an
Apple Pay SDK or JavaScript API as a quick and reliable way to support Apple Pay in
an app or on a website.

Guidelines

Apple Pay vs In-App Purchases
Use Apple Pay in your app to sell physical goods like groceries, clothing, and appliances; for services
such as club memberships, hotel reservations, and events tickets; and for donations. Use In-App
Purchases to sell virtual goods such as premium content for your app, and subscriptions for digital
content.

Apple Pay on the Web Acceptable Use Guidelines
Before merchants can deploy Apple Pay on their website, they must ensure that their implementation
follows these guidelines. When onboarding merchants using the Web Merchant Registration API, you
must also ensure these guidelines are being met by the merchant.

􀉣 Apple Pay on the Web Acceptable Use Guidelines

Platform Integration Guide June 2025 5

https://developer.apple.com/apple-pay/acceptable-use-guidelines-for-websites/

Understanding Apple Pay
Apple Pay is available on all iOS devices with a Secure Element — an industry-
standard, certified chip designed to store payment information safely. On Desktop,
users must have an Apple Pay-capable iPhone authorize the payment, or a Mac with
Touch ID. Any transaction type you currently support for regular debit and credit
cards can be performed with Apple Pay, including refunds.

Payment flow
Apple Pay uses device-specific tokenized credit or debit card credentials (DPAN) in place of a Payment
Account Number (PAN). When users authenticate the payment using their biometric data or passcode,
the tokenized card data is returned to your app or website. This token can then be passed to your
Payment Service Provider (PSP) to process as you would for a typical online credit or debit card
payment.

Platform Integration Guide June 2025 6

􀬩

􀪬

􁎣

􀤨

􀆪

􀍯

􀎽
Merchant App/Website
Sends the Apple Pay payment object to merchant server

Merchant Server
Receives payment object and maps data to PSP API or SDK

Payment Service Provider
Decrypts Apple Pay payment object and formats a 3D Secure authorization
message

Acquirer
Sends payment for authorization

Payment Network
De-tokenizes payment data and sends PAN to issuer for authorization

Customer
Authenticates with biometrics or passcode. Payment Data is encrypted and
returned to the app/website

Issuer
Authorizes payment

􀄩

􀄩

􀄩

􀄩

􀄩

􀄩

Get set up for Apple Pay
To enable Apple Pay on your app or website, you need to confirm that you have the
correct options configured on your server, are set up to accept Apple Pay Payments
and register for an Apple Developer account.

Confirm you operate in a supported region
Check the list of currently supported regions at the link below.

􀉣 Countries and regions that support Apple Pay

Confirm you support EMVCo Token data elements
In order to accept Apple Pay, the party processing the payments must be capable of handling the
appropriate fields related to processing EMVCo tokens such as TAVV, ECI or potentially 3D Secure
related data elements such as CAVV/UCAF values.

Set up your Server
For Apple Pay on web only, ensure that your server meets the set up requirements for secure
communications with Apple Pay.

􀉣 Setting up your server

Register for an Apple developer account as an organization
Both Apple Pay in apps and Apple Pay on the web require a subscription to the Apple developer
Program, which must be renewed yearly. You should enroll as an organization, and you can use the
same Apple developer account that you use today to publish apps to the App Store.

􀉣 Enroll for an Apple Developer account

Platform Integration Guide June 2025 7

􀃲􀂒

􀃲􀂒

􀃲􀂒

􀃲􀂒

https://support.apple.com/en-gb/102775
https://developer.apple.com/documentation/apple_pay_on_the_web/setting_up_your_server
https://developer.apple.com/programs/enroll/

Design your Apple Pay solution
Apple Pay creates a streamlined checkout process, allowing customers to authorize
payments and complete transactions promptly. Consider where and when in the
customers journey would be best to utilize Apple Pay to help drive conversion and
enhance the customer experience.

Assess the checkout products you offer
To help drive conversion and enhance the user’s experience, carefully consider the location of the
Apple Pay button. The best user experiences place the Apple Pay button as early in the checkout
process as possible in order to leverage Apple Pay provided information, and minimize data entry.

Apply the Apple Pay design principles
There are several key Apple Pay design principles that help drive conversion, increase usage and
engagement, and provide an excellent user experience. Please review our best practice
recommendations in Planning for Apple Pay.

􀉣 Planning for Apple Pay

Review the Human Interface Guidelines
Refer to the Apple Pay Human Interface Guidelines for additional information on how to best
incorporate Apple Pay in your app or website.

􀉣 Apple Pay Human Interface Guidelines

Platform Integration Guide June 2025 8

􀃲􀂒

􀃲􀂒

􀃲􀂒

https://developer.apple.com/apple-pay/planning/
https://developer.apple.com/design/human-interface-guidelines/technologies/apple-pay/introduction

Merchant Onboarding
Before merchants are able to support Apple Pay, they must first have a set of credentials registered
that identifies them as a merchant able to accept Apple Pay payments. These credentials can be
configured by the merchant within their own Apple Developer Account, or as a platform integrator, you
can manage the Apple Pay configuration on behalf of the merchant for web transactions.

Onboarding with a merchant-managed Apple Developer Account
To allow your merchants to offer Apple Pay within their Apps you must support this method of
onboarding. This option allows merchants to create and manage their own set of Apple Pay credentials
which can be used across both App and Web.

􀁢 Supports native in-app Apple Pay integrations

􀁢 Merchant has more control over their certificates and keys

􀀲 Merchant is required to have their own Apple Developer Account

􀀲 Does not support Hosted Payment Pages.

To remove complexity, merchants often let payment processors handle decryption of the Apple Pay
token. When a processor performs the decryption process, a unique key pair will need to be generated
for each merchant. The processor provides the public key via a Certificate Signing Request (CSR),
which the merchant uploads to the Apple Developer Portal to generate a Payment Processing
Certificate.

Build your merchant onboarding interface for Merchant-managed Developer Account
To streamline the onboarding process for the merchant, you should provide them the ability to generate
their key pair and CSR directly from within your merchant portal.

􀁢 Download a certificate signing request to generate their Payment Processing Certificate

􀁢 Upload the generated payment processing certificate for your records

Key management
Whether the payment platform is managing the keys on behalf of their merchants, or the merchant is
managing this via their own Apple Developer account, payment platforms should implement
mechanisms to roll keys and certificates without any downtime. Payment processors should support at
least 2 active key pairs/certificates on an Apple Pay configuration at a time so that it’s possible to
transition from one key pair to a new set.

The key rolling process should follow the below steps (assuming existing keys are in place):

1. Generate new key pair and CSR on the payment platform

2. Upload new CSR to Apple Developer account & download new certificate

3. Upload new certificate to the payment platform

4. Activate the new keys/certificates in the Apple Developer account

5. Revoke old keys/certificates

Payment Processors should use the value of the publicKeyHash to determine which merchant public
key Apple used for encryption, and then retrieve the corresponding certificate and private key for
decryption. This is especially important as keys/certificates are being transitioned.

Platform Integration Guide June 2025 9

􀃲􀂒

􀃲􀂒

Onboarding with the Apple Pay Web Merchant Registration API
The most streamlined and scalable way to onboard merchants on the web is by using the Apple Pay
Web Merchant Registration API. This is a REST API that enables payment platforms to register and
manage the Apple Pay configuration on behalf of the merchant. This offers some key benefits for both
the platform and merchant, including:

􀁢 Merchant is not required to create an Apple Developer Account

􀁢 Shared set of keys and certificates across your Merchant Portfolio

􀁢 Merchants can register their own domains, hosted payment pages, or both

􀁢 Domain registration does not expire

􀁢 Supports integrations on hosted pages and direct API or JS libraries

􀀲 Cannot be used for native in-app integrations

Apply for access to the Apple Pay Web Merchant Registration API
Platforms enrolled in the Apple developer program as an organization can apply to use the Apple Pay
Web Merchant Registration API by submitting an application form.

􀉣 Web Registration API Application form

Configure your credentials
Once you have been granted access to use the API, you will be able to set up a Payment Platform
Integrator ID and it’s associated certificates which follows the same process as a Merchant Identifier as
outlined in the Apple Pay Merchant integration Guide.

􀉣 Apple Pay Merchant Integration GuideStart using the Web Merchant Registration API

Prepare merchant domains
Before making a Register Merchant request, you must prepare each domain included in the request for
verification. When you have created your Payment Platform Integrator ID, you will be able to access the
domain verification file in the Apple Developer portal.

Download and distribute this file to each merchant whose domain will be registered via the Web
Merchant Registration API. If merchants will be using Apple Pay via pages hosted on your own domain,
host this file on your domain also. Host your domain verification file at the following path for each
domain being registered:

https://[DOMAIN_NAME]/.well-known/apple-developer-merchantid-domain-association

Register a Merchant
Retrieve information about a registered merchant’s current state by using the merchant’s internal
merchant identifier.

􀉣 registerMerchant

Unregister a Merchant
Unregister one or more domains associated with a previously registered merchant.

􀉣 unregisterMerchant

Get Merchant Details
Retrieve information about a registered merchant’s current state by using the merchant’s internal
merchant identifier.

􀉣 getDetails.

Platform Integration Guide June 2025 10

􀃲􀂒

􀃲􀂒

􀃲􀂒

􀃲􀂒

􀃲􀂒

􀃲􀂒

https://developer.apple.com/apple-pay/Apple-Pay-Merchant-Integration-Guide.pdf
https://developer.apple.com/documentation/applepaywebmerchantregistrationapi/register_merchant
https://developer.apple.com/documentation/applepaywebmerchantregistrationapi/unregister_merchant
https://developer.apple.com/documentation/applepaywebmerchantregistrationapi/get_merchant_details

Build your merchant onboarding interface for the Web Merchant Registration API
Using the API streamlines the onboarding process for merchants by removing many of the steps
required when they use they manage their own credentials. One step that remains is domain
verification. To allow merchants to prepare and register their own domains, provide them with the
necessary steps and files in your merchant portal.

􀁢 Download your domain verification file

􀁢 Instructions on how and where to host this on their domains

􀁢 Provide the list of domains that they want to register for use with Apple Pay

Platform Integration Guide June 2025 11

􀃲􀂒

Build your Apple Pay solution
When building your Apple Pay integration, the process is largely the same as a merchant integrating
Apple Pay on the web or in an App. You can follow step-by-step instructions on these processes using
the Apple Pay Merchant Integration Guide.

􀉣 Apple Pay Merchant Integration Guide

Integration types
Payment processors provide diverse integration options to cater to merchants, ranging from
straightforward hosted payment forms, to seamless direct API integrations. To ensure an optimal Apple
Pay experience, merchants should strategically place the Apple Pay button early in the checkout
process, typically on the product or basket summary page. Payment processors should allow
merchants to control the location of their Apple Pay experience within their checkout flow. Apple
recommends direct API support or integrating Apple Pay into JavaScript or iOS code libraries for the
best results.

Direct API Integration
Payment processors should always support this method of integration for Apple Pay because it gives
merchants complete control over how they integrate Apple Pay into their websites or apps. In this
scenario, the merchant manages interactions with Apple Pay APIs and sends the Apple Pay payment
data to the payment processor for consumption. Since payment processors often provide API fields for
customer address and contact information, these can be extended to support encrypted payment data.

While most merchants rely on their payment processors to decrypt payment data, some may want to
decrypt Apple Pay data themselves before sending it to their processors. Therefore, payment
processors should consider extending their APIs to support Apple Pay payloads in both encrypted and
decrypted formats.

JavaScript & iOS Code Libraries
Payment processors offer these products to simplify and speed up integrations, including Apple Pay.
They may wrap around Apple Pay APIs to reduce merchant effort in adopting Apple Pay.

It's recommended to build JavaScript and iOS libraries to simplify Apple Pay integration, yet give
merchants control over presenting the Apple Pay button in their checkout flow.

Hosted Payment Forms
Apple Pay is designed to streamline the checkout process. While it's possible to support Apple Pay on
a hosted payment form, its full potential won't be realized. By the time users reach the hosted payment
form, they've likely already provided their address and contact information—steps that could've been
skipped if Apple Pay had been presented earlier.

If payment processors are interested in supporting Apple Pay on a hosted payment form, they should
ensure that they enable onboarding merchants through the Apple Pay Web Merchant Registration API.

When integrating Apple Pay into the hosted payment form, the payment platform should follow the
standard steps for integrating Apple Pay on the web. However, they should use the
partnerInternalMerchantIdentifier value (created when registering a merchant via the Apple Pay Web
Merchant Registration API) in all fields used for the Merchant Identifier.

iframes
Apple Pay on the web uses a number of measures to ensure transactions remain secure and private.
One of these measures is to ensure that a validated domain is being used during the Apple Pay
payment. When using an iframe, this means that the top-level domain must be registered and verified,
and this domain should be passed to the Apple Pay servers as the initiativeContext value during
merchant validation. The iframe must also have the allow=“payment” attribute in order to communicate
correctly with the Apple Pay API’s.

Platform Integration Guide June 2025 12

􀃲􀂒

􀃲􀂒

􀃲􀂒

􀃲􀂒

https://developer.apple.com/apple-pay/Apple-Pay-Merchant-Integration-Guide.pdf

Offering Apple Pay
The system provides several Apple Pay button types and styles so that the merchant can choose the
button type that fits best with the terminology and flow of their purchase or payment experience. In
contrast to the Apple Pay buttons, the Apple Pay mark is used to communicate the availability of Apple
Pay as a payment option. Don’t create your own Apple Pay button design or attempt to mimic the
system-provided button designs.

Present the Apple Pay button
The button will be rendered by the appropriate PassKit or Javascript API, which will display the most up
to date version of the button as well as perform the appropriate localizations based on the users device
settings.

􀉣 Display the Apple Pay button - Apple Pay on web

􀉣 Display the Apple Pay button - PassKit

Apple Pay Mark
Use the Apple Pay mark to show that Apple Pay is an available payment option. The Apple Pay mark
isn’t a button and shouldn’t be used to launch the payment sheet. Use only the artwork Apple provides,
with no alterations other than height.

􀉣 Apple Pay mark and Marketing Guidelines

Check for Apple Pay Availability
To ensure that you only display the Apple Pay button to customers with a supported device, check for
Apple Pay availability.

􀉣 Checking for Apple Pay availability

canMakePayments() 
Verifies that the device is capable of making Apple Pay payments; it doesn’t verify that the user has a
provisioned card for use with Apple Pay on the device. You can call this method at any time. In App you
can extend this to include a list of supported networks, and it will only return true if a card with a listed
networks is available for payment.

􀉣 Web - canMakePayments()

􀉣 App - canMakePayments()

applePayCapabilites() 
Verifies on Safari and third-party browsers that the device is capable of making Apple Pay payments. It
also verifies on Safari browsers that the device has at least one payment credential provisioned in
Wallet. Depending on the response, you can determine if the device supports Apple Pay and whether
to display an Apple Pay button. Call this method if you want to default to Apple Pay during your
checkout flow, or if you want to add an Apple Pay button to your product detail page.

􀉣 applePayCapabilities()

Platform Integration Guide June 2025 13

􀃲􀂒

􀃲􀂒

􀃲􀂒

https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript
https://developer.apple.com/documentation/passkit/pkpaymentbutton
https://developer.apple.com/apple-pay/marketing/
https://developer.apple.com/documentation/apple_pay_on_the_web/apple_pay_js_api/checking_for_apple_pay_availability
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaysession/1778027-canmakepayments
https://developer.apple.com/documentation/passkit_apple_pay_and_wallet/pkpaymentauthorizationviewcontroller/1616192-canmakepayments
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaysession/4440085-applepaycapabilities

Processing Apple Pay
The diagram illustrates the flow of an Apple Pay transaction, showing the roles of different entities.
These roles may vary based on the payment processor's integration method, but the interaction is
divided into two stages:

Stage 1: Interacting with Apple Pay APIs to generate the payment data.

Stage 2: Using the payment data to process the payment.

Platform Integration Guide June 2025 14

􀬩

􀪬

􁎣

􀤨

􀆪

􀍯

􀎽
Merchant App/Website
Payment data is encrypted and returned to the merchant

Merchant Server
Receives payment object and maps data to PSP API or SDK

Payment Service Provider
Decrypts Apple Pay payment object and formats a 3D Secure authorization
message

Acquirer
Sends payment for authorization

Payment Network
De-tokenizes payment data and sends PAN to issuer for authorization

Customer
User authenticates the transaction with biometrics (Face ID, Touch ID etc)

Issuer
Authorizes payment

􀄩

􀄩

􀄩

􀄩

􀄩

􀄩

St
ag

e
1

St
ag

e
2

Supported Transaction Types and Business Models
Apple Pay supports most E-Commerce transaction types and offers the flexibility to accommodate
simple to complex business models.

Below are examples of transaction types supported by Apple Pay.

Transaction type Description Example

Authorization & capture Reserve funds on a customer’s account
and transfer money to your bank

Online shopping where
merchandise is readily available for
shipping

Authorization & delayed
capture

Reserve funds on a customer’s account
and transfer money to your bank later

Pre-order, delivery service with tip,
or order online to pick up in store

Authorization & capture
with different amount

Reserve funds on a customer’s account
and transfer money to your bank once an
order is successfully completed for an
amount higher or lower than authorized

Taxi, Scooter

Partial shipment Divide a purchase into multiple payments
for goods that are not shipped together

Multi-item purchase with more than
one delivery

Fixed subscription Handle repeating payments at a regular
frequency and with a fixed amount

Monthly gym membership

Flexible frequency
subscription

Handle payments for services where
frequency is inconsistent or the user has a
choice to vary frequency

Meal subscriptions, where user can
skip deliveries, reschedule delivery
dates, and change frequency of
deliveries

Flexible amount
subscription

Handle payments for services where price
varies based on consumption

Utility bill, or subscription with a
promotion on the first month

Managed subscription Handle payments for services where the
user can vary frequency and amount of
services received

Meal delivery service with high
flexibility

Canceled transactions Reverse money for canceled, reimbursed,
or disputed transactions

Chargeback, voided transaction, or
refund

Card verification Verify that the selected card is associated
with a cardholder account that is valid and
in good standing

$0 or $1 authorizations

Platform Integration Guide June 2025 15

Recurring Payments and Merchant tokens
A standard one-time payment with Apple Pay uses a device-specific token to securely complete the
transaction. In addition to this, Apple Pay supports the use of merchant tokens to complete supported
payments independent of a device. After the initial transaction, payment details can be stored to create
follow-on transactions.

Different flags may be required for subsequent transactions depending on the payment network. For
instance, Visa's MIT specification and MasterCard's DSRP specification outline the formatting of
authorization messages for these payments. Payment processors interested in supporting these
transactions should inquire with their acquiring partner or payment networks for further information.

Support Merchant tokens (where applicable)
A merchant token associates a payment card, merchant, and user, allowing for continuity across
multiple devices, even when a device is upgraded or a card is removed. When a payment request is
created for a recurring, automatic reload, or a deferred payment, the merchant can provide essential
information the customer directly in the payment sheet, potentially helping to decrease cart
abandonment and increase conversion rates.

To request a merchant token, the merchant must include one of the following in their payment request:

recurringPaymentRequest
Recurring payments, such as subscriptions, can feature different payment intervals (for
example, annually or monthly), and either regular or trial billing cycles.

􀉣 recurringPaymentRequest

automaticReloadPaymentRequest
Automatic reload payments, such as store card top-ups, feature a balance threshold and a
reload amount. The card automatically reloads with the reload amount when the account drops
below the balance threshold.

􀉣 automaticReloadPaymentRequest

deferredPaymentRequest
Deferred payments, such as for a Hotel booking or a pre-order, allow you to specify a free
cancellation period and specify the date when payment will be taken.

􀉣 deferredPaymentRequest

When any of these request types are used to initiate an Apple Pay transaction, a merchant token is
automatically requested by Apple, and where supported by the issuer, returned in the Apple Pay
payload. If an issuer does not yet support merchant tokens, Apple Pay defaults back to returning the
DPAN as it would for a regular Apple Pay transaction, but the customer still benefits from having the
updated information in the payment sheet.

If you are supporting these transaction types, ensure that you have built in the functionality for your
merchants to provide the additional fields necessary for these payment request types through your
product offerings.

Platform Integration Guide June 2025 16

􀃲􀂒

https://developer.apple.com/documentation/apple_pay_on_the_web/applepaymodifier/3955930-recurringpaymentrequest
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaymodifier/3955928-automaticreloadpaymentrequest
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaymodifier/4263326-deferredpaymentrequest

MPAN Creation and Authorization Flow

Platform Integration Guide June 2025 17

Transaction Authorization - Cardholder Initiated Transaction (CIT)􀀼

􀄫

􀄪

MPAN + Cryptogram

TRID

􁽇
Merchant

􀆪
PNO

􁎣
PSP

􀄫

􀄪

MPAN + Cryptogram

TRID

Subsequent Transaction(s) - Merchant Initiated Transaction (MIT)􀀾

􀄫MPAN + TRID􁽇
Merchant

􀆪
PNO

􁎣
PSP

􀄫MPAN + TRID

􀄫MPAN supporting
payment request type

􀄪 MPAN + Cryptogram

􁽇
Merchant

Initiating the recurring/autoReload/deferred payment request􀀺

􀆪
PNO

􀣺
Apple Pay

􀄫

􀄪

DPAN + Cryptogram

MPAN + Cryptogram

Merchant Token Management API
Merchant tokens are also designed to help prevent or resolve billing issues by giving visibility into
important payment lifecycle updates, such as account status, bank card art, and card expiration date.
The Apple Pay Merchant Token Management API allows you retrieve and manage these lifecycle
updates.

When your app or website creates a payment request using one of the supported request types, it
passes a notification URL in the tokenNotificationURL parameter. If a life-cycle event affects the token,
Apple Pay sends a notification with an event identifier to that tokenNotificationURL. The details of the
event can be retrieved by requesting the details from the Apple Pay server with the event identifier.

Receiving and Handling Merchant Token Notifications
When a life-cycle event occurs to a card associated with a merchant token, Apple Pay sends a GET
request to the endpoint included in the tokenNotificationURL parameter of the original payment
request.

When you receive this request, use the eventId included in the path to format a POST request to
retrieve the details of the event. This will include both the Merchant Identifier from the original
transaction, alongside the specific eventId that has been triggered.

􀉣 Receiving and handling merchant token notifications

In response, you should receive a merchantTokenEventResponse object containing the details of the
event. There are currently 3 event types that can be triggered.

UNLINK
The token have been revoked, and will be rejected if sent for processing. When receiving this
event type the merchant may want to reach out to the customer to ask them to update their
payment details before the next payment cycle.

UPDATED_METADATA
The metadata, such as the FPAN suffix, the expiry date, or the token itself has been updated.

UPDATED_CARD_ART
The card art for the underlying card has been updated.

􀉣 merchantTokenEventResponse

Platform Integration Guide June 2025 18

{
 statusCode: 200,
 merchantTokenEvent: {
 merchantTokenIdentifier: 'MAPLAB001M317N593274cf108544f98420d15c5c2',
 eventType: 'UNLINK',
 reason: 'UNLINKDEVICE'
 }
}

GET https://merchant.example.com/tokenapi/notification/merchantToken/{eventId}

POST https://apple-pay-gateway.apple.com/paymentServices/v1/merchantId/{merchantId}/merchantToken/
event/{eventId}

https://developer.apple.com/documentation/applepaymerchanttokenmanagementapi/receiving-and-handling-merchant-token-notifications
https://developer.apple.com/documentation/merchanttokennotificationservices/merchanttokeneventresponse
https://apple-pay-gateway.apple.com/paymentServices/v1/merchantId/

Apple Pay Payment Object
When a customer confirms a transaction, the secure element on a device will create a payment object
that contains a payment token with the encrypted payment data, alongside any additional contact data
requested from the customer.

The Secure Element encrypts the token’s payment data using either elliptic curve cryptography (ECC)
or RSA encryption. The encryption algorithm is selected by the Secure Element based on the payment
request, with most regions using ECC encryption. RSA is used only in regions where ECC encryption is
unavailable due to regulatory concerns. Unless advised otherwise, payment processors should focus
on ECC encryption/decryption.

Platform Integration Guide June 2025 19

{
 "billingContact": {
 "addressLines": [
 "1 First Street"
],
 "administrativeArea": "London",
 "country": "United Kingdom",
 "countryCode": "GB",
 "familyName": "Appleseed",
 "givenName": "John",
 "locality": "London",
 "phoneticFamilyName": "",
 "phoneticGivenName": "",
 "postalCode": "AB12 3CD",
 "subAdministrativeArea": "",
 "subLocality": ""
 },
 "shippingContact": {
 "addressLines": [
 "1 First Street"
],
 "administrativeArea": "London",
 "country": "United Kingdom",
 "countryCode": "GB",
 "emailAddress": "john.appleseed@apple.com",
 "familyName": "Appleseed",
 "givenName": "John",
 "locality": "London",
 "phoneticFamilyName": "",
 "phoneticGivenName": "",
 "postalCode": "AB12 3CD",
 "subAdministrativeArea": "",
 "subLocality": ""
 },
 "token": {
 "paymentData": {
 "data": "K+kSR...BbAj",
 "signature": "MIAG...AAA=",
 "header": {
 "publicKeyHash": "2xR1...PGQ=",
 "ephemeralPublicKey": "MFkw...1w==",
 "transactionId": "ba9c...7298"
 },
 "version": "EC_v1"
 },
 "paymentMethod": {
 "displayName": "NetworkName 1234",
 "network": "NetworkName",
 "type": "credit"
 },
 "transactionIdentifier": "ba9c...7298"
 }
}

Decrypting the Payment Data
The Secure Element encrypts the token’s payment data using either elliptic curve cryptography (ECC)
or RSA encryption. The encryption algorithm is selected by the Secure Element based on the payment
request, with most regions using ECC encryption. RSA is used only in regions where ECC encryption is
unavailable due to regulatory concerns. Unless advised otherwise, payment processors should focus
on ECC encryption/decryption.

􀉣 Payment Token Format Reference

Payment Processors should use the value of the publicKeyHash to determine which merchant public
key Apple used for encryption, and then retrieve the corresponding certificate and private key for
decryption. This is especially important as keys/certificates are being transitioned.

For a standard Apple Pay transaction that uses a device token, the decrypted payment information will
be formatted as shown below, and contains all of the necessary data for processing the payment.

When a merchant token has been issued, there will also be additional data within the decrypted
payload related to that token.

Platform Integration Guide June 2025 20

{
 "paymentDataType": "3DSecure",
 "applicationExpirationDate": "YYMMDD",
 "applicationPrimaryAccountNumber": "0001...1234",
 "currencyCode": "826",
 "deviceManufacturerIdentifier": "54...56",
 "transactionAmount": "10000",
 "paymentData": {
 "onlinePaymentCryptogram": "INX0...AwA=",
 "eciIndicator": “XX"
 }
}

{
 "paymentDataType": "3DSecure",
 "applicationExpirationDate": "YYMMDD",
 "applicationPrimaryAccountNumber": "0001...5678",
 "currencyCode": "826",
 "deviceManufacturerIdentifier": "54...56",
 "transactionAmount": "10000", 
 "merchantTokenIdentifier": “MAPL...1654”,
 "merchantTokenMetadata": {
 "cardArt": [
 {
 "name": "card.png",
 "type": "image/png",
 "url": "https://...d91b"
 }
],
 "cardMetadata": {
 "longDescription": "Long Card Name",
 "shortDescription": "Short Name",
 "cardCountry": "GB",
 "fpanSuffix": "1234"
 }
 },
 "paymentData": {
 "onlinePaymentCryptogram": "TIA0...bdE=",
 "eciIndicator": “XX"
 }
}

https://developer.apple.com/documentation/passkit/payment-token-format-reference

Authorizing the Payment
Once the user has authorized themselves on the payment sheet the app / website will receive the
Apple Pay payment object outlined in the previous section. At this point the user has verified their
identity using Touch ID or Face ID but a payment has not yet taken place.

The merchant needs to pass the token information to the payment processor who can then create an
authorization via the payment networks. As stated previously, the merchant can decrypt the payment
data themselves, but more commonly the payment processor will manage this complexity on the
merchant’s behalf.

Constructing the Authorization Message
Once the payment data has been decrypted, it needs to be sent for authorization. Apple Pay has been
designed to use similar data formatting as a 3D Secure transaction. Creating a successful authorization
should be a case of mapping the Apple Pay fields to payment fields used for card/EMVCo token
payments.

Some acquirers/networks may use existing 3D Secure fields whilst others may have dedicated fields
for EMVCo tokens. The tables below are only for guidance, always check with your acquiring/payment
network partner for the correct mapping.

American Express
Payments using an American Express card may require slightly different mapping to that outlined
above. In addition to the above mapping, please use the following table for guidance on mapping Amex
payment fields.

Apple Pay Field Representative Acquirer Field

data.applicationPrimaryAccountNumber PAN

data.applicationExpirationDate (YYMMDD) Expiration Date

data.paymentData.onlinePaymentCryptogram TAVV / CAVV / UCAF

data.paymentData.eciIndicator ECI

Apple Pay Field Amex Card Field

data.deviceManufacturerIdentifierToken Token Requestor ID

data.paymentData.onlinePaymentCryptogram Token Block A

[all zeros] fill field value with zeros Token Block B

Platform Integration Guide June 2025 21

Good practice guidance when processing Apple Pay transactions
Apple Pay offers multiple layers of security beyond many other payment methods. However, you can
apply the same industry best practices for risk mitigation to Apple Pay as you do for other E-commerce
payment methods.

Apple Pay uses device based tokens (DPAN) so PANs cannot be used as a unique key and each
transaction generates a unique cryptogram in place of the CV2. There are many standard checks that
are still applicable to Apple Pay.

Velocity and Pattern Checks
A velocity check monitors specific data elements to check and compare a customer's shopping history
with current purchases in order to identify any irregularities in their purchasing behaviour. This includes
sudden bursts of high activity considered inconsistent with standard purchase behaviours for your
industry or customer base.

Consider using purchase frequency, repeat billing/delivery address for high value purchases,
cardholder name, email, name and IP address - particularly if combinations of these details are used in
quick succession. Actions you could take based on a high risk transaction are:

• Decline the transaction.

• Delay shipping and complete outbound checks on address and customer details.

Delivery Checks
Consider implementing risk indicators for delivery methods such as the delivery address being
different from the billing address, temporary addresses, instructions to leave goods on doorsteps (or
similar), export address or requests for fast delivery. In countries where applicable, use Address
Verification Services (AVS) to verify the billing address is correct. Consider looking at data provided by
the user and check if it's linked to previous purchases (email addresses, phone numbers, billing and
shipping addresses linked to other users). Multiple transactions could be correlated against another
order.

Maintain a “Bad Transactions” List
Maintain a list of historical transactions for all payment methods which have either looked suspicious or
resulted in chargebacks and compare the details of new transactions against these. If one or more of
the transaction details match against historically bad transactions it may be worth putting the
transaction aside for manual review or declining it outright. This data may also be available via your
Payment Service Provider’s (PSP) Risk Management tool.

Email and IP address Checks
Ensure that email addresses are correct. You can use the Apple Pay Error Handling API's to ensure a
customer adheres to your email rules. If the domain looks ok, send an email to the address to confirm it
exists. Check the IP address coming from the device to verify the IP country matches the billing
country and country where the card was issued.

Country Checks
If you identify certain countries as high risk, you can use the supportedCountries property in the Apple
Pay payment request to limit payment cards to those that were issued in specific countries. The
supportedCountries list does not affect the currency used for the transaction, and it applies to all
payment cards in Wallet. You can also consider limiting IP addresses from high risk regions.

Platform Integration Guide June 2025 22

Testing
The Apple Pay sandbox environment enables merchants and developers to test their implementation of
Apple Pay using test credit and debit cards. This testing process helps verify the customer experience
and assess the ability to decrypt the transaction-specific payment data. To provision these test cards
to a test device, the user must sign in to iCloud using a Sandbox Tester account.

􀉣 Apple Pay Sandbox testing

It is also important to test Apple Pay in your production environment using real cards to ensure the
end-to-end transaction flow is working as expected.

Test your integration on multiple devices and browsers
Apple Pay is now available on Safari, third party browsers in iOS and MacOS, as well as on other
computing platforms. Check that the Apple Pay button is displayed on all the relevant devices and
locations, and the you are able to support third party browsers/devices.

Data Mapping and formatting
Confirm that you are able to map all of the relevant data included in the Apple Pay payload, including
the shipping and billing contact fields. Ensure you can handle this data in the various possible formats.
For example, phone numbers may contain numeric values as well as special character such as “+”.

Responding to Events
When you are supporting handling of Payment Sheet event, such as when the shipping contact or
method is updated, ensure you have tested your event handling process and that you are formatting
and responding using the relevant completion method.

Test all integration types
Test Apple Pay functions as expected across all of the integration types you are offering. Pay close
attention to integrations involving iframes to ensure they do not cause any errors during validation.

Documentation
Payment processors should provide detailed technical documentation to their merchants for all the
ways they support Apple Pay via their platform. It is recommended that payment processors provide
links to any existing content on the Apple Pay developer website, instead of recreating similar content
on their own site.

Where possible, it is recommended that payment processors use code examples and step-by-step
instructions to clearly explain the requirements for integrating Apple Pay.

Reporting
It is recommended that payment processors identify Apple Pay transactions in all transaction
information and reporting made available to merchants.

Marketing Toolkit
Let your merchants know that Apple Pay is available with messaging across all of your channels.
Highlight the ease of use, security, and privacy that Apple Pay brings to making payments. With the
canMakePayments API, merchants can target their messaging to customers with devices that support
Apple Pay. The Marketing Toolkit contains guidelines, tips, and templates to help create and implement
marketing campaigns.

􀉣 Apple Pay Marketing toolkit for PSP's

Platform Integration Guide June 2025 23

https://developer.apple.com/apple-pay/sandbox-testing/
https://developer.apple.com/apple-pay/Apple-Pay-Marketing-Toolkit-for-Payment-Service-Providers.pdf

Frequently asked questions
Where does the customer information come from in the payment sheet?
The information comes from Wallet & Apple Pay defaults in Settings, if available, as well as the My Card
in Contacts. It could also come from previous Apple Pay transactions. You can set up your My Card by
going to Settings > Contacts > My Info.

Is the customer information that comes from Apple Pay verified by Apple?
Customer information is shared as-is, and is not verified by Apple. You will need to validate it on your
platform and communicate through the Apple Pay API if fields should be corrected. For more
information visit the Error Handling section of this guide.

What customer information can I pull from Apple Pay?
Customer information includes shipping and billing address, name, phone number and email address.

What does the Apple Pay payment token contain?
The structure, format, and data included in the PKPaymentToken can be found in the Payment Token
Format Reference. PKPaymentToken only contains information on processing the payment; the
customer information is included in the PKPayment object. The PKPayment encapsulates the customer
information and the PKPaymentToken.

􀉣 Payment Token Format Reference

Can I use the same Apple developer account for all countries I process payments in?
Yes; you do not need to have separate Apple developer accounts for multiple markets. You can also
use the same Apple Merchant ID or Platform Integrator ID if you wish.

Troubleshooting
Further information and troubleshooting steps to debug common issues with Apple Pay can be found
in the below guide.

􀉣 Apple Pay on the Web Troubleshooting Guide

Platform Integration Guide June 2025 24

https://developer.apple.com/documentation/passkit/apple_pay/payment_token_format_reference
https://developer.apple.com/documentation/technotes/tn3103-apple-pay-on-the-web-troubleshooting-guide#

API Diagrams

Platform Integration Guide June 2025 25

Apple Pay in app

iOS App Merchant Server Apple Server PSP/Acquirer Network Issuer

 opt [payment method event]

 opt [shipping contact event]

 opt [payment method changed event]

 opt [shipping contact changed event]

 opt [shipping method changed event]

[1] canMakePayments() / canMakePayments(usingNetworks:)

[2] true / false

[3] User taps Apple Pay button

[4] create PKPaymentRequest

[5] instantiate PKPaymentAuthorizationController(paymentRequest:)

[6] present(completion:)

[7] Payment Sheet is presented

[8] paymentAuthorizationController(_: didSelectPaymentMethod: handler:)

[9] completion(PKPaymentRequestPaymentMethodUpdate(paymentSummaryItems:))

[10] paymentAuthorizationController(_: didSelectShippingContact: handler:)

[11] completion(PKPaymentRequestShippingContactUpdate(errors: shippingMethods:))

[12] Payment Sheet is activated

[13] User changes payment method

[14] paymentAuthorizationController(_: didSelectPaymentMethod: handler:)

[15] completion(PKPaymentRequestPaymentMethodUpdate(paymentSummaryItems:))

[16] User changes shipping contact / address

[17] paymentAuthorizationController(_: didSelectPaymentMethod: handler:)

[18] completion(PKPaymentRequestPaymentMethodUpdate(paymentSummaryItems:))

[19] User changes shipping method

[20] paymentAuthorizationController(_: didSelectShippingMethod: handler:)

[21] completion(PKPaymentRequestShippingMethodUpdate(paymentSummaryItems:))

[22] User authenticates with Touch ID / Face ID

[23] Apple Pay payment data
 is generated on device

[24] payment data sent to Apple Server

[25] Apple encrypt
 payment data using public key

 (associated with Payment
 Processing Certificate)

[26] encrypted payment data returned to iOS

[27] paymentAuthorizationController(_: didAuthorizePayment: handler :) {

[28] send user data and ecnrypted payment data to server

[29] send user data and ecnrypted payment data to psp

[30] PSP decrypts Apple Pay payment data

[31] decrypted payment data sent to PNO

[32] PNO detokenises Apple Pay token

[33] card data sent for authorisation

[34] authorisation response

[35] authorisation response

[36] authorisation response

[37] authorisation response

[38] completion(PKPaymentAuthorizationResult(status: errors:))

[39] Payment outcome displayed
 and payment sheet dismissed

show / hide Apple Pay button

Event only triggered if shipping contact
fields are requested in the

PKPaymentRequest.

Only a partial address is provided at this stage.
Full address is only provided after the user authenticates.

Event only triggered if shipping contact
fields are requested in the

PKPaymentRequest

Only a partial address is provided at this stage.
Full address is only provided after the user authenticates.

Event only triggered if shipping methods
are included in the

PKPaymentRequest.

Platform Integration Guide June 2025 26

Apple Pay on the web

iOS / Safari Website Merchant Server Apple Server PSP/Acquirer Network Issuer

 opt [payment method event]

 opt [shipping contact event]

 opt [payment method changed event]

 opt [shipping contact changed event]

 opt [shipping method changed event]

[1] canMakePayments() / canMakePaymentsWithActiveCard()

[2] true / false

[3] User taps Apple Pay button

[4] create ApplePayPaymentRequest and new ApplePaySession()

[5] session.begin()

[6] Payment Sheet is presented

[7] onvalidatemerchant event

[8] request a new merchant session

[9] request a new merchant session

[10] return merchant session blob

[11] return merchant session blob

[12] completeMerchantValidation()

[13] onpaymentmethodselected event

[14] completePaymentMethodSelection()

[15] onshippingcontactselected event

[16] completeShippingContactSelection()

[17] Payment Sheet is activated

[18] User changes payment method

[19] onpaymentmethodselected event

[20] completePaymentMethodSelection()

[21] User changes shipping contact / address

[22] onshippingcontactselected event

[23] completeShippingContactSelection()

[24] User changes shipping method

[25] onshippingmethodselected event

[26] completeShippingMethodSelection()

[27] User authenticates with Touch ID / Face ID

[28] Apple Pay payment data
 is generated on device

[29] payment data sent to Apple Server

[30] Apple encrypt
 payment data using public key

 (associated with Payment
 Processing Certificate)

[31] encrypted payment data returned to iOS

[32] onpaymentauthorized event

[33] send user data and ecnrypted payment data to server

[34] send user data and ecnrypted payment data to psp

[35] PSP decrypts Apple Pay payment data

[36] decrypted payment data sent to PNO

[37] PNO detokenises Apple Pay token

[38] card data sent for authorisation

[39] authorisation response

[40] authorisation response

[41] authorisation response

[42] authorisation response

[43] completePayment()

[44] Payment outcome displayed
 and payment sheet dismissed

show / hide Apple Pay button

Event only triggered if shipping contact
fields are requested in the

ApplePayPaymentRequest.

Only a partial address is provided at this stage.
Full address is only provided after the user authenticates.

Event only triggered if shipping contact
fields are requested in the

ApplePayPaymentRequest.

Only a partial address is provided at this stage.
Full address is only provided after the user authenticates.

Event only triggered if shipping methods
are included in the

ApplePayPaymentRequest.

Platform Integration Guide June 2025 27

Apple Pay on the web:
 PSP hosted payment page, merchant registered via API

iOS / Safari Hosted Payment Page Apple Server PSP/Acquirer Network Issuer

 opt [payment method event]

 opt [shipping contact event]

 opt [payment method changed event]

 opt [shipping contact changed event]

 opt [shipping method changed event]

[1] canMakePayments() / canMakePaymentsWithActiveCard()

[2] true / false

[3] User taps Apple Pay button

[4] create ApplePayPaymentRequest and new ApplePaySession()

[5] session.begin()

[6] Payment Sheet is presented

[7] onvalidatemerchant event

[8] request a new merchant session

[9] request a new merchant session

[10] return merchant session blob

[11] return merchant session blob

[12] completeMerchantValidation()

[13] onpaymentmethodselected event

[14] completePaymentMethodSelection()

[15] onshippingcontactselected event

[16] completeShippingContactSelection()

[17] Payment Sheet is activated

[18] User changes payment method

[19] onpaymentmethodselected event

[20] completePaymentMethodSelection()

[21] User changes shipping contact / address

[22] onshippingcontactselected event

[23] completeShippingContactSelection()

[24] User changes shipping method

[25] onshippingmethodselected event

[26] completeShippingMethodSelection()

[27] User authenticates with Touch ID / Face ID

[28] Apple Pay payment data
 is generated on device

[29] payment data sent to Apple Server

[30] Apple encrypt
 payment data using public key

 (associated with Payment
 Processing Certificate)

[31] encrypted payment data returned to iOS

[32] onpaymentauthorized event

[33] send user data and ecnrypted payment data to server

[34] PSP decrypts Apple Pay payment data

[35] decrypted payment data sent to PNO

[36] PNO detokenises Apple Pay token

[37] card data sent for authorisation

[38] authorisation response

[39] authorisation response

[40] authorisation response

[41] completePayment()

[42] Payment outcome displayed
 and payment sheet dismissed

show / hide Apple Pay button

Event only triggered if shipping contact
fields are requested in the

ApplePayPaymentRequest.

Only a partial address is provided at this stage.
Full address is only provided after the user authenticates.

Event only triggered if shipping contact
fields are requested in the

ApplePayPaymentRequest.

Only a partial address is provided at this stage.
Full address is only provided after the user authenticates.

Event only triggered if shipping methods
are included in the

ApplePayPaymentRequest.

	Contents
	Introduction
	Getting started
	Guidelines
	Apple Pay vs In-App Purchases
	Apple Pay on the Web Acceptable Use Guidelines

	Understanding Apple Pay
	Payment flow
	Customer
	Issuer
	Payment Network
	Acquirer
	Payment Service Provider
	Merchant Server
	Merchant App/Website

	Get set up for Apple Pay
	Confirm you operate in a supported region
	Confirm you support EMVCo Token data elements
	Set up your Server
	Register for an Apple developer account as an organization
	Design your Apple Pay solution
	Assess the checkout products you offer
	Apply the Apple Pay design principles
	Review the Human Interface Guidelines
	Merchant Onboarding
	Onboarding with a merchant-managed Apple Developer Account
	Build your merchant onboarding interface for Merchant-managed Developer Account
	Key management

	Onboarding with the Apple Pay Web Merchant Registration API
	Apply for access to the Apple Pay Web Merchant Registration API
	Configure your credentials
	Prepare merchant domains
	Register a Merchant
	Unregister a Merchant
	Get Merchant Details
	Build your merchant onboarding interface for the Web Merchant Registration API

	Build your Apple Pay solution
	Integration types
	Direct API Integration
	JavaScript & iOS Code Libraries
	Hosted Payment Forms
	iframes

	Offering Apple Pay
	Present the Apple Pay button
	Apple Pay Mark
	Check for Apple Pay Availability

	Processing Apple Pay
	Customer
	Payment Network
	Payment Service Provider
	Issuer
	Merchant App/Website
	Acquirer
	Merchant Server

	Supported Transaction Types and Business Models
	Recurring Payments and Merchant tokens
	Support Merchant tokens (where applicable)
	MPAN Creation and Authorization Flow

	Merchant Token Management API
	Receiving and Handling Merchant Token Notifications

	Apple Pay Payment Object
	Decrypting the Payment Data
	Authorizing the Payment
	Constructing the Authorization Message
	American Express

	Good practice guidance when processing Apple Pay transactions
	Testing
	Test your integration on multiple devices and browsers
	Data Mapping and formatting
	Responding to Events
	Test all integration types

	Documentation
	Reporting
	Marketing Toolkit
	Frequently asked questions
	Troubleshooting
	API Diagrams

