CHAPTETR 2

Drag Manager
Programmer’s Guide

Contents
About the Drag Manager 2-3
The Drag Process 2-3
Starting a Drag 2-4
Tracking a Drag 2-5
Finishing a Drag 2-5
Drag Items 2-6
Drag Item Flavors 2-7
Drag Handlers 2-8
Drag Tracking 2-9
Receiving Data 2-11
Drag Procedures 2-12
Sending Data 2-12
Overriding Standard Input 2-13
Overriding Standard Drawing 2-13
Using the Drag Manager 2-14
Installing and Removing Drag Handlers 2-14
Recognizing the Start of a Drag 2-17
Performing a Drag 2-18
Adding Drag Item Flavors 2-19
Creating the Drag Region 2-22
Tracking a Drag 2-24
Determining What is Being Dragged 2-27
Receiving a Drop 2-28
Providing Flavor Data on Demand 2-30
Drag Manager Reference 2-31
Constants 2-32
Gestalt Selector and Response Bits 2-32
Flavor Flags 2-32
Drag Attributes 2-34
Special Flavor Kinds 2-34
Zoom Acceleration 2-34

Data Structures 2-35

CHAPTER 2

Drag Manager Programmer’s Guide

Drag Reference 2-35
Drag Item Reference 2-35
Flavor Type 2-36
HFS Drag Item Flavor Record 2-36
Drag Manager Routines 2-37
Installing and Removing Drag Handler Routines
Creating and Disposing of Drag References
Providing Drag Callback Procedures 2-44
Adding Drag Item Flavors 2-47
Performing a Drag 2-49
Getting Drag Item Information 2-56
Getting Drag Status Information 2-61
Window Highlighting Utilities 2-65
Drag Manager Utilities 2-68
Application-Defined Routines 2-69
Drag Handler Routines 2-69
Drag Callback Procedures 2-72
Summary of the Drag Manager 2-78
Pascal Summary 2-78
Constants 2-79
Data Types 2-79
Drag Manager Routines 2-79
Application-Defined Routines 2-82
C Summary 2-83
Constants 2-83
Data Types 2-84
Drag Manager Routines 2-85
Application-Defined Routines 2-86
Assembly-Language Summary 2-89
Constants 2-89
Data Structures 2-90
Trap Macros 2-90
Result Codes 2-92

2-41

2-37

CHAPTER 2

Drag Manager Programmer’s Guide

This chapter describes how your application can use the Drag Manager to drag items that
reside within your application. By using the Drag Manager, you can allow items from
your application to be directly dragged to other applications and you can receive items
from other applications.

The Drag Manager is not available in all versions of system software. Use tiiest al t
function, described in the chapter “Gestalt Manager” ofnside Macintosh: Operating
System Ultilities , to determine whether the Drag Manager is present.

Read this chapter if you want your application to be able to drag items either within
your own application’s windows or between your application and other applications. You
might want to allow the user of your application to drag selections of your documents to
the Finder to create “clippings” from your documents. You might also want to allow
selections from other applications to be dragged directly into your documents.

About the Drag Manager

Many Macintosh applications typically allow their users to drag objects within their
documents. The Finder, for example, allows users to move files and folders anywhere
within the file system using a simple drag-and-drop user interface.

The Drag Manager is the part of the Macintosh Toolbox that facilitates dragging objects
within the Macintosh user interface. The Drag Manager provides routines that handle
the user interface for dragging an object from, within, or to one of your application’s
windows. The Drag Manager can be used whenever an object is dragged within your
application.

This chapter describes how your application can use the Drag Manager to facilitate drag
and drop of objects within your documents. The Drag Manager also provides your
application with the ability to receive dragged items from other applications as well as
allowing other applications to receive items dragged from your application.

This document does not discuss the actual human interface guidelines for drag and drop.
Please see the separate document “Drag and Drop Human Interface Guidelines.”

IMPORTANT
The Drag Manager is not available in all versions of system software. Use test al t
function to determine if the Drag Manager is available for usea

The Drag Process

The Drag Manager divides the drag and drop user interface into three discrete steps. The
steps are starting a drag, tracking a drag, and finishing a drag. The Drag Manager
divides the action of dragging into these three steps to allow for the possibility that

2-3

CHAPTER 2

Drag Manager Programmer’s Guide

different applications will be involved in each of the steps.

In the simplest case, the user may drag an item wholly within one of your document
windows. In this case, your application starts the drag, tracks the movement of the item
through the document window, and then accepts the item when the user releases the item
in the window.

In a more ambitious scenario where the user drags an item from one application to
another, the source application starts the drag; potentially several other applications
become involved as the user moves the mouse on the screen while searching for a place to
drop the item; and finally a different application may be involved when the user drops
the item at its final destination.

The remainder of this section describes each of the these three steps in greater detail.

Starting a Drag

The first step in a drag-and-drop action occurs when the user clicks on a selected object and
begins to move the mouse without first releasing the mouse button. The Drag Manager
includes a\Wai t MouseMoved function that allows you to easily determine if the mouse
has moved far enough to start a drag.

Figure 2-1 Starting a Drag

Mannequin
9 items 38 ME in disk &6.1 ME available

Frojects Applications Word Processing

E[[=——— AppleLink 6.1 ==—=—=M15
4 items S8 ME in disk E&.1 ME available
HyperCard Crawn's Work o
. sl
-
Sysztern Folder Docurnents AppleLink £.1 Help
Connection Files Documents

i
=l B

Your application must create a newdrag referencewhich is used by your application to
refer to a specific drag process in subsequent calls to the Drag Manager. Use fiewDr ag
function to create a new drag reference. After creating a new drag reference, your
application provides the Drag Manager with a description of the selected item or items
being dragged. You describe the selection being dragged by creating a list dfag item
flavors that represent the different data formats that each drag item may be produced
in. The Drag Manager includes théddDr agl t enFl avor function for adding drag item
flavors to a drag reference.

CHAPTER 2

Drag Manager Programmer’s Guide

After preparing the Drag Manager to drag your application’s selection, your application
begins the drag by the Drag Manager'dr ackDr ag function.

Tracking a Drag

While the user drags a selection on the screen, the drag is “tracked” through each
window the the cursor moves over. Destination highlighting occurs while tracking a drag
after the cursor has left the source location. Also, destination feedback may occur if a
container under the cursor can accept the selection (such as folders in the Finder).

Figure 2-2 Tracking a Drag

Mannequin
9 iterns 22 ME in disk E&.1 ME available

Frojects Word Processing

E[[=——— AppleLink 6.1 ==—=—=M15
S8 ME in disk E&.1 ME available
HyperCard Crawn's Work o
i
-
Sysztern Folder Docurnents AppleLink £.1 Help
Connection Files Documnents
i
=l [of

While the drag is being tracked on the screen by the Drag Manager, the Drag Manager
calls routines provided by your application to track the drag through your windows.
These routines are calleddrag tracking handlers

Your drag tracking handlers can inspect the description of the items that are being
dragged and highlight parts of the application’s windows accordingly. Routines are
provided that allow you to inspect the data within the selection being dragged, and
routines are provided to create and remove drag highlighting.

You can also provide the Drag Manager with routines that override the Drag Manager’s

standard behaviors, such as to provide a different appearance for the dotted outline or to
modify the keyboard or mouse inputs.

Finishing a Drag

When the user releases the mouse button, the Drag Manager calls another routine
provided by your application called alrag receive handler Your application’s drag
receive handler is responsible for accepting the drop and performing the actual data

2-5

CHAPTER 2

Drag Manager Programmer’s Guide

transaction that is required to place the selection at its final destination.

Your drag receive handler can inspect and request the data types contained within the
drag by using theGet Fl avor Dat a function provided by the Drag Manager.

Figure 2-3 Finishing a Drag

Mannequin
9 iterns 22 ME in disk EE.1 ME available

Frojects Applications “wWord Processing

E[[=——— fApplelink 6.1 =—"=0E
4 items 58 ME in disk 66,1 ME available
Hy perCard Crawn's Work O
Applelink €.1 Hel,
Systemn Folder Dacurnents PRl =P
Connection Files Documents

i
@l B

When dragging a selection from your application, each distinct object being dragged is a
drag item The following list contains examples of single drag items:

= any icon in the Finder
= a selection in a bitmap drawing application
= a selection of objects in an object-oriented graphics application

= a continuous range of text in a word processor (even if the text selection
contains a picture)

There are many circumstances that result in multiple drag items being dragged
simultaneously:

= any group of icons in the Finder

= a discontinuous text selection (resulting from using the Command key)

When deciding how to break your application’s selections into drag items, keep in mind
that when dragging to the Finder, each drag item results in a separate “clipping” icon.
One of the best heuristics is to draw distinctions from your application’s richest data
format (which may be your own internal data format).

CHAPTER 2

Drag Manager Programmer’s Guide

Drag Item Flavors

Many items that can be dragged (such as text, pictures or sounds) can be represented using
several different data formats. The Drag Manager introduces the concept dfrag item
flavors to allow Drag Manager clients to send and receive objects in the most preferable
data format that both the sender and receiver can understand.

When you start a drag, you use drag item flavors to inform the Drag Manager of each of
the data formats that you could provide to the receiver of the drag. The Drag Manager
provides anAddDr agl t enFl avor function to add flavors to drag items before starting a
drag.

For example, a text selection of the string\Welcome to Macintosh.” is represented in
standard TEXT’ format as:

VWl cone to Maci nt osh.

The standard TEXT’ format does not include any information such as the text’s font or
size. The standard Macintosh styled TextEdit data formastyl ~ supplements the
‘TEXT’ data structure by providing font and style information. Thet'yl’ data for the
same selection (in hexadecimal) is:

0000: 0001 0000 0000 OOOE
0008: OOOA 0015 0000 00O0C
0010: 0000 0000 0000

Another popular data format is rich text format. The RTF data format includes much
more information about the fonts and styles, and also includes information about the
source document’s margins, page size, columns, etc. The same text selection is represented
in RTF format as:

{\rtfl\mac\deff2 \wi ndowctrlI\ftnbj\fracw dth
\sectd \linenpdO\IlinexO\col s1\ endnhere
\pard\plain {\f21 Wl cone to Macintosh.}

There are many other ways to represent this string. Most importantly, if the user drags a
selection entirely within one of your documents, you might want to transfer the data in
your application’s own internal data format.

There is no way to know where the user intends to drag a selection when starting a drag.
The user may want to drag within one of your windows, between two of your windows or to
a different application’s window. Different destinations may prefer different data
formats. In the text selection example, your own application might prefer its own

internal data format. Another sophisticated word processor may not understand your
internal data format, but may prefer RTF over styled text. A simple TextEdit field, such
as the Comments field of the Finder’s Get Info window may only be able to accept the
plain text.

CHAPTER 2

Drag Manager Programmer’s Guide

Each flavor has its own set of flags associated with it. These flags are used by the Drag
Manager and its clients to provide additional information about each drag item flavor.
The following flags may be set for each flavor:

Flavor flag descriptions

fl avor Sender Onl y
This flag is set by the sender if the flavor should only be available to the
sender of the drag. Flavors that are marked with this flag do not appear
to any other application other than the sender.

fl avor Sender Tr ansl at ed
Set if the flavor data is translated by the sender. This attribute is useful
if the receiver needs to determine if the sender is performing its own
translation to generate this data type. The Finder does not save
translated types into clipping files.

fl avor Not Saved
Set by the sender if the flavor data should not be stored by the receiver.
This flag is useful for marking flavor data that will become stale after
the drag is completed. Receivers that store data should not store flavors
that are marked with this flag. Flavor types marked with this flag are
not stored by the Finder in clipping files.

fl avor Syst enilr ansl at ed
Set if the flavor data is provided by the Translation Manager. If this
flavor is requested, the Drag Manager will obtain the required data type
from the sender and then it will use the Translation Manager to provide
the data that the receiver requested. Flavor types marked with this
flag are not stored by the Finder in clipping files.

Drag Handlers

You register with the Drag Manager callback routines that the Drag Manager calls to
allow your application to implement dragging. The Drag Manager uses two different
types of callback routines, calleddrag handlers and drag procedures Drag handlers are
routines that are installed on windows that the Drag Manager uses when dragging over
that window. Drag procedures are routines that are used by the Drag Manager during a
drag regardless of which window the user may be dragging over. The Drag Manager
allows you to install the following drag handlers on your application’s windows:

= adrag trackinghandler that the Drag Manager calls when the user drags a
selection through one of your application’s windows. This allows you to track
the drag within the window

= adrag receivehandler that the Drag Manager calls when the user finishes a
drag in one of your application’s windows

CHAPTER 2

Drag Manager Programmer’s Guide

The Drag Manager provides a pair of nst al | Handl er andRenmoveHand! er routines
that allow you to register handlers of each of these two types with windows in your
application. You can register a different set of handlers to be used for each window in
your application. You can also register with the Drag Manager a set of handlers to be
used when a window does not have its own handlers.

If you assign more than one handler of the same type on the same window, the Drag
Manager calls each of these handler routines in the order that they were installed.
Figure 2-4 shows an example of the tracking handler registry for an application that has
installed the same handler for its “Graphics” and “Documents” window, an additional
handler for its “Graphics” window, and a handler to be used for all windows in the
application including the “Graphics” and “Documents” windows. When the Drag
Manager tracks a drag through the “Documents” window, Handler 1 is called followed by
Handler 3 being called. When the Drag Manager tracks a drag through the “Graphics”
window, Handlers 1, 2 and 3 three are called, in order. Finally, if the Drag Manager
tracks a drag through any other window in the application, only Handler 3 is called.

Figure 2-4 Example “Tracking” Handler Registry

Tracking Handlers

Window Window All
“Documents” “Graphics” windows
\
Handler 1 | Handler 1 I Handler 3 |
)
Handler 2 I

In the next three sections, the drag tracking and drag receive handler types are described
in more detail.

Drag Tracking

While the user drags a collection of items on the screen, as the mouse passes through one
of your application’s windows, the Drag Manager calls youlr agTr acki ngHandl er to
allow you to track the drag through your windows.

2-9

CHAPTER 2

Drag Manager Programmer’s Guide

The Drag Manager sends youDr agTr acki ngHandl er tracking status messages as the
user moves the mouse. YoubPr agTr acki ngHandl| er receives the following messages
from the Drag Manager:

= anenter handlermessage when the focus of a drag enters a window that is
handled by yourDr agTr acki ngHandl er from any window that is not
handled by the sameDr agTr acki ngHandl| er

= anenter windowmessage when the focus of a drag enters any window that is
handled by yourDr agTr acki ngHandl er

= anin windowmessage as the user drags within a window handled by your
DragTracki ngHandl er

= aleave windowmessage when the focus of a drag leaves any window that is
handled by yourDr agTr acki ngHandl er

= aleave handler message when the focus of a drag enters a window that is not
handled by yourDr agTr acki ngHandl er

When you receive any of these messages from the Drag Manager, you can use several
routines provided by the Drag Manager that allow your application to determine what is
being dragged. This includes counting the number of drag items, counting the number of
flavors in a drag item and getting the type and flags for each flavor in a drag item. Using
the information returned by these functions, your application can determine if a portion of
a window should highlight when the user drags through the window.

The in windowmessage is where most highlighting occurs. You can test the current
position of the mouse and highlight different areas of your window accordingly.

The enter windowandleave window messages always occur in pairs. These messages are
useful for determining the point at which the mouse enters or leaves a window.

The enter handlerandleave handler messages also occur in pairs. These messages only
occur when the drag moves between windows that are handled by different handler
routines. These messages are useful for allocating and releasing memory that you might
need when tracking within a set of windows.

Figure 2-5 shows an example of a user dragging a clipping from the Finder through two

windows of a word processing application. The following example demonstrates what
tracking messages are sent to the Finder and application during a drag;:

2-10

CHAPTER 2

Drag Manager Programmer’s Guide

Figure 2-5 Example Drag Tracking Path Through Multiple Applications and Windows

Clippings
4 itemnz 28.7 MB in dizk 65.5 MB availal
=
untitled 1
"With this in mind, we can formulate a more [
inte llige nt solution ko the problem. First, create a

chssof EMe=——o—— sample Tent =—————|
into suk

cialy 3

..... A

Company Logo
& Lpon a time, ina kingdom not far from here, a king

5 nimoned b of his advisors fora best. He showed them
= (e

th a shiny metal box with bwo slots inthe top, a conrol knob,
bacon; g 20

Sihiak do you think P is?”
hard-bo .) e))
various { One advisor, anengineer, answ=d first. "It is a toaster,” he

said. The king asked, "How would you design an embedded
compubet for £

¢‘| The enginesr replied, "Using a four-bit microconiroller, [would
wirite a simple program that reads the darkness knob and
guantizes its position o one of 16 shades of darkness, from

b
Gl o]

1. The user clicks and drags the clipping and the Finder starts a drag. The Finder
receives an enter handler message followed by an enter window message. As the
user drags within the Finder’s “Clippings” window, the Finder receives multiple
in window messages.

2. When the user drags into the word processor’s “untitled 1” window, the Finder
receives a leave window message followed by a leave handler message. The
word processing application then receives an enter handler message followed by
an enter window message. While the user drags within the application’s
“untitled 1” window, the application receives in window messages.

3. Assuming that both of the word processor’s windows are handled by the same
Dr agTr acki ngHandl er, when the user drags into the “Sample Text” window,
the word processing application receives a leave window message followed by an
enter window message. It does not receive any enter/leave handler messages since
the same handler routine is used for both windows. As the user drags within the
application’s “Sample Text” window, the application receives in window
messages.

4. When the user releases the mouse button, the data transaction occurs by calling
the word processing application’s receive drop handler routine. Following the
data transaction, the application receives a leave window message followed by a
leave handler message. The drag is now complete and both the Finder’s and word
processor’s event loops continue as they did before the drag and drop action.

Receiving Data

When the user drops a collection of items in one of your application’s windows, the Drag
Manager calls anyDr agRecei veHand!l er routines that are installed on the destination
window. This call allows you to request the drag item flavors that your application
wishes to accept.

2-11

2-12

CHAPTER 2

Drag Manager Programmer’s Guide

YourDr agRecei veHandl er can inspect the available flavors by using the
Count Dr agl t ens, Get Dr agl t enRef er enceNunber ,Count Dr agl t enFl avor s,
Get Fl avor Type andGet Fl avor Fl ags functions.

The Dr agRecei veHand| er may receive data from the sender of the drag by calling the
Cet Fl avor Dat a function.

Drag Procedures

In addition to installing drag handler routines on windows for a drag, you can supply the
Drag Manager with several different kinds oflrag proceduresDrag procedures are used

by the Drag Manager during a drag regardless of which window the user may be dragging
over. You do not need to provide the Drag Manager with drag procedures unless you wish
to override the default behavior. Only the sender of a drag can specify drag procedures to
be used during a drag. The Drag Manager allows you to install the following drag
procedures in a given drag;:

= asend dataprocedure that the Drag Manager calls when the receiver
application requests a drag item flavor that the Drag Manager does not
currently have the data cached for

= adrag inputprocedure that the Drag Manager calls when sampling the mouse
position and keyboard state to allow the application program to override the
current state of the input devices

= adrag drawingprocedure that the Drag Manager calls to allow your
application to assume responsibility for drawing the drag region on the screen

Sending Data

The Drag Manager caches the flavor data for any flavors that were added to a drag with
the AddDr agl t enFl avor function. If a receiver calls th&et Fl avor Dat a function to
get a flavor’s data, the Drag Manager simply returns the cached data to the caller.

If your application passesNl L as the pointer to the flavor data when adding a new
flavor with the AddDr agl t enFl avor function, the Drag Manager does not cache any
data in the new flavor. In this case, when a receiver requests the data by calling

Get Fl avor Dat a, the Drag Manager will call the drag’s send data procedure to get the
data from the sender.

This mechanism allows your application to add all of the various drag item flavor types
that could be provided to a receiver upon request, but doesn't require the sender to spend
the time and memory required to generate the data. This is usually a consideration when
the sender must perform expensive computations to produce the data or if the resulting
data requires a great deal of memory to store.

CHAPTER 2

Drag Manager Programmer’s Guide

A drag send data procedure is only required when one or more flavors were added to a
drag without specifying a pointer to the flavor data when calling the
AddDr agl t enfl avor function.

Overriding Standard Input

The Drag Manager allows your application to provide a drag input procedure that is
called by the Drag Manager each time the Drag Manager samples the mouse and
keyboard.

The drag input procedure gets passed the current mouse location, mouse button state and
keyboard modifier status. A drag input procedure can either slightly modify these

parameters or completely change them.

For example, a drag input procedure can inhibit or force specific modifier keys, can control
the state of the mouse button, and can control the coordinates of the cursor.

Overriding Standard Drawing

The Drag Manager provides the sender application with a way to override the standard
drag region drawing behavior. This is done be specifying a drag drawing procedure for a
given drag operation.

When a drag drawing procedure is given for a drag, the Drag Manager sends your drag
drawing procedure a sequence of messages that allow you to assume responsibility for
drawing the drag region or similar feedback on the screen. Yol agDr awi ngPr oc
receives the following messages from the Drag Manager:

= adrag region begimessage when a drag is beginning and it is time for your
Dr agDr awi ngPr oc to allocate memory and initialize any data structures it
needs to function properly

= adrag region drawmessage when the drag region has moved or needs to be
redrawn on the screen

= adrag region hidenessage when all or part of the drag region needs to be
removed from the screen

= adrag region idlenessage when the drag region has not moved and does not
need to be redrawn

= adrag region endnessage when the drag has ended and it is time for your
Dr agDr awi ngPr oc to deallocate any memory it may have allocated

2-13

CHAPTER 2

Drag Manager Programmer’s Guide

Using the Drag Manager

2-14

You use the Drag Manager to let the user drag items in your application. The Drag
Manager will allow items to be dragged between windows of your application and also
between other applications that the user is currently using. The Drag Manager is also
used to drag items both to and from the Macintosh Finder.

Before items can be dragged into or out of one of your application’s windows, you must
register a set of drag handlers for the Drag Manager to use when you application is
involved in dragging. A drag handler is a callback routine that the Drag Manager will
call when the Drag Manager needs to send your application a message about a drag
occurring within your application.

A drag and drop action by the user is broken down into three discrete steps. The steps are
first to pick upthe item or items being dragged, then ttrack the selection being dragged
through application windows as the user searches for a place to drop the selection, and
finally to drop the item or items at the user’s chosen destination.

This section explains in detail how you use the Drag Manager to:

= install and remove drag handlers to and from the Drag Manager’s handler
registry for your application’s windows

= recognize the start of a drag operation

= create new drag reference to be used in a drag operation

= prepare the Drag Manager with drag items and drag item flavors
= provide a drag send procedure to the Drag Manager

= start a drag

= track a drag through your application’s windows

= receive a drop and accept the contents of a drag

= send data to the receiver of a drag that originated from one of your
application’s windows

Installing and Removing Drag Handlers

You register a drag handler with the Drag Manager using tHenst al | Handl er
functions. There is a separatd nst al | Handl er function for each kind of handler. These
functions arel nst al | Tr acki ngHandl er andl nst al | Recei veHand| er.

Each of thel nst al | Handl er functions takes a pointer to the window that you want to
associate the handler with. If you suppI\I L as the window pointer, the Drag Manager
will register the handler in the special area that is used when a drag occurs in any
window in your application. Handlers installed in this special area are calletefault

CHAPTER 2

Drag Manager Programmer’s Guide

handlers.

A reference constant may be passed to each of thenst al | Handl er functions. This value
is stored by the Drag Manager and is forwarded to your handler routine when it is called.
You can use this reference constant to provide additional information to your handler
routine, such as a pointer to a data structure used by your handler.

Listing 2-1 shows how to use thd nst al | Handl er functions to install a default receive
handler and a default tracking handler for your application.

Listing 2-1 Installing Default Drag Handlers

OSErr Ml ni t DragManager ()

{ OSErr result;
result = Install Tracki ngHandl er (MyDef aul t Tr acki ngHandl er, OL,
&nyd obal s);
if (result !'= noErr)
return(result);
result = Install Recei veHandl er (MyDef aul t Recei veHandl er, OL, &nyd obal s);

return(result);

The functionMy| ni t Dr agManager defined in Listing 2-1 calls

I nstal | Tracki ngHandl er andl nst al | Recei veHandl er to install default tracking
and receive handlers for your application. In the window paramete®l (NI L) is passed
to specify that these handlers should be installed as default handlers. A pointer to the
application’s global variables is passed in the reference constant parameter.

Listing 2-2 shows how to use thd nst al | Handl er functions to install handlers for a
specific window.

Listing 2-2 Installing Drag Handlers for Individual Windows

OSErr MyDoNewW ndow(W ndowPt r * newW ndow)

{ OSErr result;
W ndowPt r t heW ndow;

if (!(theWndow = Get NewW ndow kMyW ndowi D, OL, -1L))) {
return(resNot Found) ;
}

2-15

CHAPTER 2

Drag Manager Programmer’s Guide

if (result = Install Tracki ngHandl er (MyTr acki ngHandl er,
t heW ndow, &myd obal s)) {
Di sposeW ndow(t heW ndow) ;
return(result);

}
if (result = Install Recei veHandl er (MyRecei veHandl er,
t heW ndow, &myd obal s)) {
Di sposeW ndow(t heW ndow) ;
RemoveTr acki ngHandl er (MyTr acki ngHandl er, theW ndow) ;
return(result);
}

*newW ndow = t heW ndow,
return(noErr);

The functionMy DoONewW ndow defined in Listing 2-2 calls both of thenst al | Handl er
functions to install a pair of drag handlers for the window that it creates. In
My DoNewW ndow, the window pointer is passed to thénst al | Handl er functions.

In the scenario created in the last two example functions, the Drag Manager will use the
MyDef aul t Tr acki ngHandl er andMyDef aul t Recei veHandl er functions for all
windows in your application. The Drag Manager will also use thy Tr acki ngHand! er
and MyRecei veHand! er functions for windows that were specifically created by

My DoNewW ndow.

To remove a drag handler from the Drag Manager’s handler registry, call the
corresponding RenoveHand| er functions. Listing 2-3 shows how to remove drag
handlers.

Listing 2-3 Removing Drag Handlers from Individual Windows

OSErr MyDod oseW ndow W ndowPt r t heW ndow)

{

2-16

RemoveTr acki ngHandl er (MyTr acki ngHandl er, theW ndow) ;
RemoveRecei veHandl er (MyRecei veHandl er, theW ndow) ;

Di sposeW ndow(t heW ndow) ;

return(noErr);

The functionMyDoCl oseW ndow defined in Listing 2-3 demonstrates the use of the
RempoveHand| er functions. The same handler address and window pointer used to install

CHAPTER 2

Drag Manager Programmer’s Guide

a handler is used to remove a handler. L (NI L) is used as the window pointer, the
Drag Manager will attempt to remove the default handler with that address.

Recognizing the Start of a Drag

When the user clicks on an item or a selection of items in your application and begins to
move the mouse without first releasing the mouse button, the user is making a gesture to
begin dragging the selected items.

The Drag Manager provides a functiod\ai t MouseMoved that you can use to determine if
the mouse has moved far enough after aouseDown event to start a drag. Listing 2-4
show how to determine if avbuseDown event should result in a drag.

Listing 2-4 Handling a Mouse Down Event with Dragging

OSErr MyDoMouseDown(Event Record *t heEvent)
{ OSEr r result = noErr;
short t hePart ;
W ndowPt r t heW ndow;
Bool ean onltem
thePart = Fi ndW ndow(t heEvent - >where, &t heW ndow) ;

switch(thePart) {

}

case

i nCont ent :
if (theWndow == Front W ndow()) {
MyDoCont ent O i ck(t heEvent, theW ndow, &onlten);
if (onltem &% Wi t MouseMoved(t heEvent - >where)) ({
result = MyDoStartDrag(theEvent, theW ndow);

} else {
Sel ect W ndow(t heW ndow) ;
}

case ...

return(result);

The functionMyDoMouseDown defined in Listing 2-4 shows a simplified mouse down event
service routine. Only the code for handling ahnCont ent part code fromFi ndW ndowis
shown. TheMyDoCont ent Cl i ck function either selects, extends the selection or

deselects an item in the application’s document window. Thenl t emparameter to
MyDoCont ent Cl i ck returnst r ue if the mouse down event occurred on a draggable item.

2-17

CHAPTER 2

Drag Manager Programmer’s Guide

If the mouseDown event occurred on a draggable object, thééi t MouseMoved function is
then called, which is a Drag Manager function that waits for the mouse button to be
released or the mouse to move from its mouse down locatioWai t MouseMoved returns

t r ue if the mouse moved and it returnkal se if the mouse button is released before the
mouse moved.

The MyDoSt ar t Dr ag function, which is defined later in Listing 2-5, is called if the user
gestures to start a drag.

Performing a Drag

To perform a drag, you need to first create a new drag reference by calling fkewDr ag
function. TheNewDr ag function returns a reference number that you use to refer to a
specific drag process in subsequent function calls to the Drag Manager.

After creating a new drag reference, the drag item flavors that describe the contents of
the drag are added to the drag by calling the Drag ManagerA&ldDr agl t enfl avor
function.

Specific callback procedures can be added to the drag that the Drag Manager will call in
response to several Drag Manager events. These callback procedures allow your
application to defer the sending of data to the receiver of the drag, or to change the input
or drawing behaviors of the Drag Manager.

When all of the data describing the items contained in the drag has been given to the
Drag Manager, callTr ackDr ag to actually perform the drag. After a drag is performed,
the Di sposeDr ag function is used to release the memory associated with a drag process.

Listing 2-5 demonstrates each of these steps by showing the implementation of the

MyDoSt ar t Dr ag function that is called by théy DoMouseDown function defined in the
previous section.

Listing 2-5 Performing a Drag

OSErr MyDoSt art Drag(Event Record *t heEvent, W ndowPtr theW ndow)

{ OSErr result;
DragRef erence theDrag;
RgnHandl e dr agRegi on;

if (result = NewDrag(& heDrag)) {
return(result);
}

if (result = MyDoAddFl avors(theW ndow, theDrag)) {

2-18

CHAPTER 2

Drag Manager Programmer’s Guide

Di sposeDrag(theDrag);
return(result);

}
dr agRegi on = NewRgn();

if (result = MyGet DragRegi on(theW ndow, dragRegi on, theDrag)) {
Di sposeDrag(theDrag);
return(result);

}

if (result = SetDragSendProc(theDrag, My/SendDataProc, OL)) {
Di sposeDrag(theDrag);
return(result);

}
result = TrackDrag(theDrag, theEvent, dragRegion);

Di sposeRgn(dr agRegi on);
Di sposeDrag(theDrag);

return(result);

The MyDoSt ar t Dr ag function that is defined in Listing 2-5 first creates a new drag by
calling the NewDr ag function. It then calls thdyDoAddFl avor s function, which is
defined in Listing 2-6, to add the application’s drag item flavors to the drag. The drag
region for the drag is created by calling the applicationy Get Dr agRegi on function,
which is defined in Listing 2-7. Th&et Dr agSendPr oc function is then called to allow
the application to prepare and send data to a receiver at the end of the drag operation.
The Tr ackDr ag function is called to perform the drag. Finally, tHd sposeDr ag
function is called to release all of the memory used to perform the drag.

Adding Drag Item Flavors

In the next program listing, thdy DoAddFI avor s function is defined, which
demonstrates how a set of drag item flavors are added to a drag. The drag item flavors
describe the contents of a drag to the Drag Manager and to any potential receiver of the
drag.

To add drag item flavors to a drag, use theddDr agl t enFl avor function. The

AddDr agl t enFl avor function requires a drag reference number to add the flavor to. You
also provide an item reference number when adding flavors. You may specify any item
numbers when adding items. Use the same item number for adding flavors to the same
item. Using different item numbers results in new items being created.

Listing 2-6 shows how to add drag item flavors to a drag.

2-19

CHAPTER 2

Drag Manager Programmer’s Guide

Listing 2-6 Adding Drag Item Flavors

OSErr MyDoAddFl avor s(W ndowPt r t heW ndow, DragRef erence theDrag)

{

2-20

MyDocurnentltem *theltem
theltem = MyGet Fi r st Sel ect edl t em(t heW ndow) ;
while (theltem {

AddDr agl t enFl avor (t heDrag, (ltenReference) theltem ' DATA ,
theltem >dataPtr, theltem >dataSi ze,
fl avor Sender Onl y) ;

AddDr agl t enFl avor (t heDrag, (ltenReference) theltem 'TEXT,
oL, OL, 0);

if (theltem >hasStyles) {
AddDr agl t enFl avor (t heDrag, (ltenReference) theltem 'styl',
oL, OL, 0);
}

theltem = t hel tem >next Sel ect edl t em

The MyDoAddFI avor s function defined in Listing 2-6 uses the Drag Manager’s
AddDr agl t enFl avor function to add either two or three flavors to the drag for each
item that is selected in the window.

This function goes through a loop of all of the selected items in the given window. The
AddDr agl t enFl avor function is used to add the first flavor to the drag. This first
flavor is of the application’s own internal data typeDATA’. A pointer to the data and
the data’s size is given to théAddDr agl t enFl avor function. The data given to the
AddDr agl t enFl avor function is copied (or cached) into the given drag by the Drag
Manager. Thef | avor Sender Onl y flag is set for this flavor to make th®ATA’ flavor
visible only to the sending application.

The item reference number used for the firsDATA’ flavor and the following flavors is
derived fromt hel t empointer used by the application. Since eacyDocunent|tem
element will have a unique address, the pointer to these elements may be used as unique
item reference when adding new items to a drag.

The second call toAddDr agl t enFl avor uses the same document item pointer as the drag
item reference number. Since this is the same item number used in the last call, the second
flavor is added to the same drag item. This flavor is of typkEXT".

CHAPTER 2

Drag Manager Programmer’s Guide

Suppose that you do not want to provide the plain text data to the Drag Manager unless
this flavor is specifically requested by the receiver of a drag. M L pointer and zero size
is passed toAddDr agl t enFl avor . By passingNIl L, the Drag Manager will mark the
flavor as not being cached in the drag and will call the dragls agSendDat aPr oc if the
data is requested.

In our example, an item in the selection may have text styles, and if it does, it also adds a
‘styl ’ flavor. Again, the same item reference number is used to add the flavor to the
same drag item. The flavor data is not provided; it will only be created by the

Dr agSendDat aPr oc if needed.

The MyDoAddFI avor s function loops to the next selected item in its list. When it adds
the flavors for the next item, it will be using a different item number (since the address of
the next item is different), which will result in a new item being created.

To illustrate the effect of calling thdWyDoAddFI avor s function defined above, Figure 2

6 shows an example list of selected items and the resulting drag items and drag item
flavors.

2-21

CHAPTER 2

Drag Manager Programmer’s Guide

Figure 2-6 Drag Items and Drag Item Flavors from Application Example
Selected Iltem List
10400: [-> 10580: [-> 10700:
ltem 1 Iltem 2 Iltem 3
hasStyles =0 hasStyles =0 hasStyles =1
nextitem L nextitem L nextitem L4
Drag Item List
Drag ltem Drag Item Drag Iltem
10400 10580 10700
‘DATA' ‘DATA’ ‘DATA’
Flavor Data Flavor Data Flavor Data
‘TEXT ‘TEXT ‘TEXT
No Data No Data No Data
‘styl’
No Data

Creating the Drag Region

In the next program listing, théWy Get Dr agRegi on function is defined, which
demonstrates how to create the drag region for a drag. The drag region is the region
drawn by the Drag Manager in a dithered 50% gray pattern that follows the mouse on the
screen during the drag.

Listing 2-7 shows how to create a drag region for the drag.

2-22

CHAPTER 2

Drag Manager Programmer’s Guide

Listing 2-7 Creating a drag region

CSEr r

My Get Dr agRegi on(W ndowPt r t heW ndow, RgnHandl e dragRegi on,

Dr agRef er ence t heDr agRef)

{ MyDocunentltem *theltem

RgnHandl e t enpRgn;
Poi nt gl obal Poi nt;
theltem = MyGet Fi r st Sel ect edl t en(t heW ndow) ;

t enpRgn

NewRgn() ;

gl obal Point.v = global Point.h = O;
Local Tod obal (&gl obal Poi nt);

while (theltem {

}

CopyRgn(theltem >t heRegi on, tenpRgn);

I nset Rgn(tenpRgn, 1, 1);
Di ff Rgn(t heltem >t heRegi on, tenpRgn, tenpRgn);

O f set Rgn(t enpRgn, gl obal Poi nt. h, gl obal Point.v);
Uni onRgn(t enpRgn, dragRegi on, dragRegi on);

Set Dragl t enrBounds(t heDrag, (ltenReference) theltem
&(**t enpRgn) . r gnBBoX) ;

theltem = t heltem >next Sel ect edl t em

Di sposeRgn(tenpRgn);
return(noErr);

The My Get Dr agRegi on function defined in Listing 2-7 loops through all of the selected
items in the given window. For each selected item in the window, the region of the item
is added to thedr agRegi on and the item’s bounding rectangle is set by using the Drag
Manager’s Set Dr agl t emBounds function.

The function usesCopyRgn to copy the item’s region intd enpRgn. Thet enpRgn is inset
by one pixel and then subtracted from the original region withi f f Rgn. Performing
these three steps creates a region that has the same outline as the original region but is
only one pixel thick. Figure 2-7 demonstrates the effect of this procedure on the region.

2-23

CHAPTER 2

Drag Manager Programmer’s Guide

Figure 2-7 Creating a drag region

2-24

Object’s region Object’s region Drag region is
inset by 1 pixel difference of
previous two regions

Each of the individual drag regions that are created for each item being dragged is offset
from local coordinates to global screen coordinates by theéf f set Rgn call. Each item’s
drag region is added to the final drag region with tHéni onRgn call. It is this composite
region of each item’s individual drag region that is returned by this function and used in
the call toTr ackDr ag.

The My CGet Dr agRegi on function also calls the Drag Manager’Set Dr agl t enBounds
function for each item in the drag.Set Dr agl t enBounds is used to provide the bounding
rectangle of each of the individual items in the drag. This rectangle is also specified in
global screen coordinates. During a drag, Drag Manager clients may ask for the bounding
rectangle of any drag item by using th&et Dr agl t enBounds function. The

Get Dr agl t emBounds function returns the item’s bounds relative to the current mouse
location.

Tracking a Drag

During a drag, as the user moves the mouse on the screen, searching for a destination for
the drag items, the Drag Manager sends a sequence of tracking messages to the tracking
handlers that are registered for the window that the mouse is over.

Your tracking handler is responsible for providing all of the feedback to the user that the
group of items being dragged can be accepted into the current destination. Your tracking
handler can inspect the drag item flavors contained in a drag and highlight your
application’s windows or part of your application’s windows in response to data that your
application can accept.

Listing 2-8 shows an example of a very simple tracking handler. This tracking handler
highlights the destination window if each of the drag items contains either the

CHAPTER 2

Drag Manager Programmer’s Guide

application’s own DATA’ flavor or the TEXT’ flavor. It also calls the application’s
MyTrackl t emnder Mouse function that could be defined to highlight other parts of the
window as the mouse moves through the window.

Listing 2-8 Example Tracking Handler

OSErr MyTracki ngHandl er (Dr agTr acki ngMessage t heMessage, W ndowPtr theW ndow,
voi d *handl er Ref Con, DragRef erence theDrag)

{ d obal shtr nyd obal s = (d obal sPtr) handl er Ref Con;
Poi nt nouse, | ocal Mbuse;
DragAttributes attributes;
RgnHandl e hiliteRgn;

Cet DragAttri butes(theDrag, &attributes);
swi tch(theMessage) {

case dragTracki ngEnt er Handl er:
br eak;

case dragTracki ngEnt er W ndow:
myd obal s- >canAccept Drag = | sMyTypeAvai | abl e(t heDrag);
nyd obal s->i nContent = fal se;
br eak;

case dragTracki ngl nW ndow.
i f (!nyd obal s->canAccept Dr ag)
br eak;

Get DragMbuse(t heDrag, &mrouse, OL);
| ocal Mouse = npuse;
A obal ToLocal (& ocal Mouse) ;

if (attributes & dragHasLeft Sender W ndow)
if (PtlnRect(Ilocal Mouse, & **(nmyd obal s->theTE)). vi ewRect)) {

if (!myd obal s->i nContent) {
Rect Rgn(hiliteRgn = NewRgn(),
&(**(myd obal s->t heTE)). vi ewRect) ;
ShowDr agHi lite(theDrag, hiliteRgn, true);
Di sposeRgn(hiliteRgn);
nmyd obal s->i nContent = true;
}

} else {
i f (nyd obal s->i nContent) {

Hi deDragHi |l i te(theDrag);
nmyd obal s->i nContent = fal se;

2-25

2-26

}

CHAPTER 2

Drag Manager Programmer’s Guide

}
}
}
MyTr ackl t emnder Mouse(| ocal Mouse, theW ndow) ;
br eak;

case dragTracki ngLeaveW ndow.

i f (myd obal s->canAccept Drag && myd obal s->i nContent) {
Hi deDragHi |l i te(theDrag);

}
nyd obal s- >canAccept Drag = fal se;
br eak;

case dragTracki ngLeaveHandl er:

br eak;

return(noErr);

The MyTr acki ngHandl er function defined in Listing 2-8 switches on the given message
from the Drag Manager. This example does not require any setup or memory allocation
when the handler is entered or left, so thdr agTr acki ngEnt er Handl er and the
dragTr acki ngLeaveHand! er messages are ignored.

When My Tr acki ngHandl er receives thedr agTr acki ngEnt er W ndow message, it calls
the application’s | sSMyTypeAvai | abl e function, which is defined in Listing 2-9. It
returns eithert r ue orf al se, depending on whether a type is available in each of the
drag items that the application window can accept. The result of this function is stored in
the application’s global variablecanAccept Dr ag. Another global variable

i nCont ent is used to keep track of whether the mouse is inside the area of the window
that can be highlighted during a drag.

When the dr agTr acki ngl nW ndow message is received, if the window can accept the
drag, Get Dr aghMbuse is called to get the mouse location. The code then checks to make
sure that the drag has left the source window. Therag and Drop Human Interface
Guidelines specify that drag highlighting should only occur after the mouse has left the
source window. The local mouse coordinate is then checked against the region that will
highlight and either ShowDr agHi | i t e orHi deDr agHi | i t e is then called to show or
hide the highlighting. Finally, the application’dW Tr ackl t emnder Mouse is called.
Presumably, MyTr ackl t emnder Mouse would use the giverl ocal Mouse location to
determine if the mouse is over an object that must also be highlighted.

When the dr agTr acki ngLeaveW ndow message is received, if the window can accept
the drag and the highlighting is still visibleli deDr agHi | i t e is called to remove the
window highlighting.

CHAPTER 2

Drag Manager Programmer’s Guide

Determining What is Being Dragged

To determine what drag items and drag item flavors are available in a drag, use the
Count Dr agl t ens,Get Dr agl t enRef er enceNunber ,Count Dr agl t enFl avor s,
Get Fl avor Type andGet Fl avor Fl ags functions.

Given a drag reference numberount Dr agl t ens returns the number of drag items
contained in the drag. Thdzet Dr agl t enmRef er enceNunber function returns an item
reference number given a drag item’s index. Given an item reference number,

Count Dr agl t enFl avor s returns the number of drag item flavors in a drag item. The
Get Fl avor Type function returns the type of a flavor given the flavor’s index. The
Get Fl avor Fl ags function returns the flavor flags of a flavor.

Listing 2-9 shows thel sMyTypeAvai | abl e function which demonstrates the use of these

functions to determine if at least one of the application’s flavor types is available in
each item being dragged.

Listing 2-9 Determining What Flavors Are Available

Bool ean | sMyTypeAvai | abl e(Dr agRef er ence t heDr ag)

{

short

itens, index;

Fl avor Fl ags t heFl ags;
I t enRef erence t hel tem

CSEr r

result;

Count Dragltens(t heDrag, & tens);

for (index = 1; index <= itemns; index++) {
Cet Dr agl t emRef er enceNunber (t heDrag, index, & heltem;

result = GetFlavorFl ags(theDrag, theltem 'DATA', &t heFlags);
if ((result == noErr) && (theFlags & flavorSenderOnly)) {

}

conti nue;

result = GetFl avorFl ags(theDrag, theltem 'TEXT', &t heFlags);
if (result == noErr) {

}

conti nue;

return(false);

}

return(true);

2-27

CHAPTER 2

Drag Manager Programmer’s Guide

The | sMyTypeAvai | abl e function defined in Listing 2-9 counts the number of items in

the drag and begins a loop through each of the items. It continues with the next drag item
when it encounters either a flavor of typeDATA’ or a flavor of typeTEXT’. The

| sMyTypeAvai | abl e function returnsf al se if it encounters a drag item that does not
contain at least one of these two flavors. It returdisr ue after it verifies that the last

drag item contains either a DATA" or TEXT’ flavor.

Note that whenl sMyTypeAvai | abl e checks for the DATA’ flavor, it also checks to
make sure that thef | avor Sender Onl y flag is set, which guarantees that the private
‘DATA’ flavor has come directly from this application, and not some other application.

The result that this function returns is used my thiy Tr acki ngHandl er function
defined in Listing 2-8 to determine if the window highlighting should be drawn.

Receiving a Drop

When the user has chosen a final destination for the items being dragged, the Drag
Manager calls the destination window’s receive drop handlers to allow your application
to request the drag item flavors that it wishes to accept.

Your receive drop handler gets a pointer to the destination window, the handler’s
reference constant, and the drag reference. Your receive drop handler can user the Drag
Manager’s Count Dr agl t ens, Get Dr agl t enRef er enceNunber,

Count Dr agl t enFl avor s,Get Fl avor Type, Get Fl avor FI ags andGet Fl avor Dat a
functions to determine what items, flavors, and data are contained in the drag.

Listing 2-10 shows an example receive handler that iterates through each of the items in
the received drag. If an item contains the application’s internaDATA’ flavor, the data

is inserted directly into the document. If there is n®@ATA’ flavor in the item, the

handler checks for a TEXT’ flavor. If aTEXT’ flavor exists, it attempts to get data for
both ‘st yl “and TEXT’ types. The text data is inserted into the document regardless of
the existence of the optionalst y| type.

Listing 2-10 Example Receive Handler

OSErr MyRecei veHandl er (W ndowPt r t heW ndow, void *handl er Ref Con,
Dr agRef er ence t heDr ag)

{ A obal spPtr nyd obal s = (d obal sPtr) handl er Ref Con;
Poi nt nouse;
short items, index;
ItenReference theltem
Fl avor Fl ags t heFl ags;
Size dat aSi ze, styl Size;
char *t heData, *theStyl;

2-28

CHAPTER 2

Drag Manager Programmer’s Guide

OSEr r result;
CGet DragWouse(t hebrag, &nouse, OL);
Count Dragltens(t heDrag, & tens);

for (index = 1; index <= itens; index++) {
CGet Dr agl t enRef er enceNunber (t heDrag, index, & heltem;

result = GetFl avorFl ags(theDrag, theltem 'DATA', &theFl ags);
if ((result == noErr) && (theFlags & flavorSenderOnly)) {

Get Fl avor Dat aSi ze(theDrag, theltem 'DATA', &dataSi ze);

t heData = NewPtr (dat aSi ze);

CGet Fl avor Dat a(t heDrag, theltem 'DATA , theData, dataSize, OL);
Myl nsert Dat aAt Poi nt (t heDat a, dataSi ze, nouse, theW ndow);

Di sposePtr (theDat a);

conti nue;
}
result = CGetFl avorFl ags(theDrag, theltem 'TEXT' , &theFl ags);
if (result == noErr) {
theStyl = OL;
if (CetFlavorDataSize(theDrag, theltem
"styl', &stylSize) == noErr) {
theStyl = NewPtr(styl Size);
CGet Fl avor Dat a(t heDrag, theltem 'styl',
theStyl, stylSize, OL);
}
CGet Fl avor Dat aSi ze(theDrag, theltem 'TEXT' , &dataSize);
t heData = NewPtr (dat aSi ze);
CGet Fl avor Dat a(t heDrag, theltem 'TEXT', theData, dataSize, OL);
M/l nsert Styl Text At Poi nt (t heDat a, dat aSi ze,
theStyl, styl Size, nouse, theW ndow);
Di sposePtr (theData);
if (theStyl) {
Di sposePtr(theStyl);
}
}

return(noErr);

2-29

CHAPTER 2

Drag Manager Programmer’s Guide

The MyRecei veHandl er function defined in Listing 2-10 counts the number of items in the
drag and begins a loop through each of the items. It checks for the existence oDATA’
flavor by using theGet Fl avor Fl ags function. If this flavor exists in the item, the size
of the flavor’s data is obtained by callinget Fl avor Dat aSi ze, memory is allocated for
the data andGet Fl avor Dat a is used to get the flavor data from the Drag Manager. The
application’s Myl nser t Dat aAt Poi nt function is called to insert the data into the
document at the givennmouse point.

If the DATA'’ type is not available in the given itenzet FI avor Fl ags is called to check
for the existence of the TEXT’ flavor type. If there is aTEXT’ flavor in the item, the
handler then also checks for ast yl ’ flavor. If this flavor exists, thetyl data is
copied into thet heSt yl buffer. The TEXT’ data is copied into thd¢ heDat a buffer. The
application’s Myl nsert St yl Text At Poi nt function is used to insert thd EXT data with
the optional st yl information into the document at the givetrouse point.

The MyRecei veHandl er continues with each item in the drag by inserting acceptable
data into the destination document window.

Providing Flavor Data on Demand

If the receiver of a drop requests a flavor whose data has not been cached by the Drag
Manager (as is the case for theTEXT" and st y| ’ flavors in our example), the Drag
Manager calls the drag’sDr agSendDat aPr oc to obtain the data when needed.

The Drag Manager calls yourtDr agSendDat aPr oc with the requested flavor type, your
handler’s reference constant, and the item and drag reference numbers. In your

Dr agSendDat aPr oc, call theSet Dr agl t enfl avor Dat a function to provide the
requested flavor data to the Drag Manager. Listing 2-11 shows an example send data
procedure.

Listing 2-11 Example Send Data Procedure

OCSErr MySendDat aPr oc(Fl avor Type t heType, void *dragSendRef Con,
ItenRef erence theltem DragReference theDrag)
{ MyDocument I t em *nyltem
my Dat a;
result;

2-30

myltem = (MyDocunmentltem *) theltem

swi tch(theType) {

" TEXT' :
nyData = MyConvertlteniToText (nylten);
HLock(myDat a) ;

CHAPTER 2

Drag Manager Programmer’s Guide

result = SetDragltenFl avorData(theDrag, theltem 'TEXT', *nyData,
CGet Handl eSi ze(nybData), OL);

HUnl ock(nmyDat a) ;

Di sposeHandl e(nyDat a) ;

br eak;

case 'styl':
nyData = MyConvertlteniToStyl (nylten);
HLock(myDat a) ;
result = SetDragltenfl avorData(theDrag, theltem 'styl', *nyData,
CGet Handl eSi ze(nyData), OL);
HUnl ock(nyDat a) ;
Di sposeHandl| e(nyDat a) ;
br eak;

defaul t:
result = badDragFl avorErr;
br eak;

}

return(result);

The MySendDat aPr oc function defined in Listing 2-11 provides both theTEXT” and

‘st yl ’ flavors to the Drag Manager. The routine uses the item reference number as a
pointer to the application’sMyDocument | t emdata structure (this pointer was used when
adding the drag item flavors withAddDr agl t enFl avor). The routine calls its own
MyConvertltenToText andMyConvert|teniToStyl functions to get the needed data.
The Drag Manager’sSet Dr agl t enFl avor Dat a function is then called to pass the
requested data to the Drag Manager.

Drag Manager Reference

This section describes the Drag Manager’s constants, data structures and routines.

The “Constants” section describes the constants received from the Drag Manager and used
when calling Drag Manager routines. The “Data Structures” section shows the data
structures used to refer to drags, drag items, drag item flavors, and special drag item
flavor data. The “Drag Manager Routines” section describes Drag Manager routines for
installing and removing drag handlers, creating and disposing of drag references, adding
drag item flavors to a drag, providing drag callback routines, tracking a drag, getting
drag item information, getting drag status information, window highlighting and Drag
Manager related utilities. The “Application-Defined Routines” section describes both
the drag handler and drag callback functions.

2-31

CHAPTER 2

Drag Manager Programmer’s Guide

Constants

The constants described in this section are received from the Drag Manager and used when
calling Drag Manager routines.

Gestalt Selector and Response Bits

You can determine if the Drag Manager is available by calling ti{éest al t function
with the selectorgest al t DragMgr At tr.

#define gestaltDragMgrAttr "drag" // Drag Manager attributes

The Gest al t function returns information by setting or clearing bits in the response
parameter. The following constant defines the bit currently used:

#def i ne gestal t DragMgr Pr esent 0 /1 Drag Manager is present

Constant description

gest al t DragMgr Pr esent
Set if the Drag Manager is installed. When the Drag Manager is
installed, all of the features contained within this document are
available for use by your application.

You can determine if the new TextEdit functioREGet Hi | i t eRgn is available by calling
the Gest al t function with the selectogest al t TEAt tr.
#defi ne gestal t TEAttr "teat' // TextEdit attributes

The Gest al t function returns information by setting or clearing bits in the response
parameter. The following constant defines the bit currently used:

#define gestalt TEHasGetHi liteRgn 0 /1 TEGetHiliteRgn present
Constant description
gestal t TEHasGet Hi | i t eRgn

Set if the TextEdit functionTEGet Hi | i t eRgn is available. This new
TextEdit function was introduced with the Drag Manager.

Flavor Flags

The following constants are used to provide additional attribute information about drag
item flavors. These constants are used when calling th&ddFl avor functions and can be
obtained using theGet Fl avor Fl ags function.

2-32

CHAPTER 2

Drag Manager Programmer’s Guide

#def i ne
#def i ne
#def i ne
#def i ne

Constant

fl avor Sender Onl y 0x00000001
fl avor Sender Tr ansl at ed 0x00000002
fl avor Not Saved 0x00000004
fl avor Syst enilr ansl at ed 0x00000100
descriptions

fl avor Sender Onl y

Set by the sender if the flavor should only be available to the sender of a
drag. If this flag is set when adding the flavor to a drag, no Drag
Manager clients other than the sender can receive this flavor.

f1 avor Sender Tr ansl| at ed

Set by the sender if the flavor data is translated by the sender. This flag
is useful to a receiver if the receiver needs to determine if the sender is
performing its own translation to generate this data type. Typically,
receivers that store dragged data without interpreting each data type do
not store translated types. Flavor types marked with this flag are not
stored by the Finder in clipping files.

f | avor Not Saved

Set by the sender if the flavor data should not be stored by the receiver.
This flag is useful for marking flavor data that will become stale after
the drag has completed. Receivers that store dragged data should not
store flavors that are marked with this flag. Flavor types marked with
this flag are not stored by the Finder in clipping files.

fl avor Syst enir ansl at ed

Drag Attributes

Set if the flavor data is provided by the Translation Manager. If this
flavor is requested, the Drag Manager will obtain any required data
types from the sender and then it will use the Translation Manager to
provide the data that the receiver requested. Typically, receivers that
store dragged data without interpreting each data type do not store
translated types. Flavor types marked with this flag are not stored by
the Finder in clipping files.

The following constants are used to provide additional attribute information about a drag
that is in progress. The attribute flags provide information about the window and
application that the drag is currently occurring in. During a drag, the current drag
attributes can be obtained by calling thé&et Dr agAt t ri but es function.

#def i ne dragHasLeft Sender W ndow 0x00000001
#def i ne dragl nsi deSender Appl i cation 0x00000002
#def i ne dragl nsi deSender W ndow 0x00000004

2-33

CHAPTER 2

Drag Manager Programmer’s Guide

Constant descriptions

dr agHasLef t Sender W ndow
Set if the drag has left the source window since the beginning of the drag.
This flag is useful for providing window highlighting after the user has
moved the mouse outside of the source window.

dr agl nsi deSender Appl i cati on
Set if the drag is currently in any window that belongs to the application
that started the drag.

dr agl nsi deSender W ndow
Set if the drag is currently in the same window that the drag started
from.

Special Flavor Kinds

The following constants are used to identify special flavor kinds that are defined by the
Drag Manager.

#def i ne fl avor TypeHFS "hfs '
#defi ne fl avor TypeProm seHFS ' phfs'
#defi ne fl avor TypeDi rectory "diry'

Constant descriptions

fl avor TypeHFS
The flavor type for an HFS file system object. The Finder uses HFS
flavors when dragging existing file system objects. The HFS flavor data
is defined by theHFSFI| avor structure defined below.

fl avor TypePr om seHFS
The flavor type for promising an HFS file system object to the receiver of
the drag. This flavor type can be used when a file could be created if the
destination of the drag can accept file system objects. The
Prom seHFSFI avor structure defined below is used to access the data in
this flavor type.

flavor TypeDi rectory
The flavor type for a AOCE directory specification. Refer to the AOCE
documentation for definition of theDSSpec data structure.

Zoom Acceleration

2-34

The following constants are used when specifying aaccel er at i on constant to either
the ZoonRect s orZoonRegi on functions.

#defi ne zoomNoAccel erati on
#defi ne zoomAccel erate
#defi ne zoonDecel erate

NEF O

CHAPTER 2

Drag Manager Programmer’s Guide

Constant descriptions

zoomNoAccel eration
Use linear interpolation for each frame of animation between the source
and destination.

zoomAccel erate
Increment the step size for each frame of animation between the source
and destination. This option produces the visual appearance of the
animation speeding up as it approaches the destination.

zoonDecel erat e
Decrement the step size for each frame of animation between the source
and destination. This option produces the visual appearance of the
animation slowing down as it approaches the destination.

Data Structures

This section describes the data structures that you use to identify drags, drag items, drag
item flavors and special drag item flavor data.

Drag Reference

The Drag Reference is a reference to a drag object. Before calling any other Drag Manager
routine, you must first create a new Drag Reference by calling tliNewDr ag function. The
Drag Reference that is returned byNewDr ag is used in all subsequent calls to the Drag
Manager. Use theDi sposeDr ag function to dispose of a Drag Reference after you are
finished using it.

IMPORTANT

The meaning of the bits in a drag reference is internal to the Drag Manager. You should

not attempt to interpret the value of the drag referencea

t ypedef unsigned | ong DragReference;

Drag Item Reference

The Drag Item Reference is a reference number used to refer to a single item in a drag.
Drag Item Reference numbers are created by the sender application when adding drag
item flavor information to a drag. Drag Item Reference numbers are created by and should
only be interpreted by the sender application.

t ypedef unsigned | ong ItenReference;

2-35

Flavor Type

CHAPTER 2

Drag Manager Programmer’s Guide

HFS Flavor

The Flavor Type is a four character type that describes the format of drag item flavor
data. The Flavor Type has the same function as a scrap type; it designates the format of
the associated data. Any scrap type or resource type may be used.

Four character types consisting of only lower-case letters are reserved by Apple. You can
be guaranteed a unique type by using your registered application signature.

typedef ResType Fl avor Type;

The Drag Manager defines a special flavor type for dragging file system objects. The HFS
drag item flavor is used when dragging document and folder icons in the Finder. The HFS
drag item flavor data structure is defined by thelFSF| avor data type.

typedef struct HFSFl avor ({

OSType fileType; /1l file type

OSType fileCreator; /1 file creator

unsi gned short fdFl ags; /1 Finder flags

FSSpec fil eSpec; /1 file system specification
} HFSFl avor;

Field descriptions
fileType The file type of the object.

fileCreator The file creator of the object.

f dFl ags The Finder flags of the object (Finder flags are defined in the “Finder
Interface” chapter of Inside Macintosh).

fil eSpec The FSSpec record for the object.

Promise HFS Flavor

2-36

The Drag Manager defines a special data flavor for promising file system objects. The
Promise HFS flavor is used when you wish to create a new file when dragging to the
Finder. The flavor consists of an array of the followinfgr omi seHFSFI avor structures,
with the first entry being the preferred file type you would like to create, and subsequent
array entries being file types in descending preference. This structure allows you to create
the file in yourDr agSendDat aPr oc, and provide theFSSpec for the new file at that
time.

typedef struct Prom seHFSFl avor {

OSType fileType; /1 file type
OSType fileCreator; /1l file creator
unsi gned short fdFl ags; /1 Finder flags
Fl avor Type prom sedFl avor; /1 FSSpec flavor

CHAPTER 2

Drag Manager Programmer’s Guide
} HFSFl avor;

Field descriptions
fileType The potential file type of the object.

fil eCreator The potential file creator of the object.

f dFl ags The expected Finder flags of the object (Finder flags are defined in the
“Finder Interface” chapter of Inside Macintosh).

prom sedFl avor
The Fl avor Type of a separate promised flavor to contain thESSpec for

the new file. CallAddDr agl t enFl avor and promise this separate
flavor if you wish to create the file in youdr agSendDat aPr oc. After
providing anFSSpec in this flavor, the Finder will move the new file to
the drop location. If you wish to create the file before the drag and
provide the FSSpec data up front, create the new file in the Temporary
Items folder so it does not prematurely appear in an open Finder window.

Drag Manager Routines

This section describes the Drag Manager routines you can use to start a drag from your
application, gain control when the user drags an object into one of your application’s
windows, support the drag and drop user interface, and send and receive data as part of a
drop transaction.

Installing and Removing Drag Handler Routines

You can use the Drag Manager to install or remove drag handler routines for your entire
application or for one of your application’s windows. The Drag Manager provides a pair
of install/remove functions for each of the two different handler types.

InstallTrackingHandler

Use thel nst al | Tracki ngHandl er function to install a tracking handler routine for the
Drag Manager to use while the user drags through your application’s windows.

pascal OSErr |nstall Tracki ngHandl er
(DragTracki ngHandl er tracki ngHandl er,
W ndowPt r t heW ndow,
voi d *handl er Ref Con) ;

t racki ngHandl er
Pointer to aDr agTr acki ngHandl| er routine.

2-37

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

t heW ndow A pointer to the window to install the drag tracking handler for. When
the cursor moves into this window during a drag, the Drag Manager sends
tracking messages to the tracking handler routine. If this parameter is
NI L, the tracking handler receives messages for all open windows in your
application.

handl er Ref Con
A reference constant that will be forwarded to your drag tracking handler
routine when it is called by the Drag Manager. Use this constant to pass
any data you wish to forward to your drag tracking handler.

The | nst al | Tracki ngHandl er function installs a tracking handler for one of your
application’s windows. Installing a tracking handler allows your application to track
the user’s movements through your application’s windows during a drag. You may install
more than one drag tracking handler on a single window.

The Drag Manager sequentially calls all of the drag tracking handlers installed on a
window when the user moves the cursor over that window during a drag.

By specifying a value ofNI L int heW ndow, the tracking handler is installed in the
default handler space for your application. Drag tracking handlers installed in this way
are called when the user moves the mouse over any window that belongs to your
application.

noErr 0 No error
par ankrr -50 Parameter error
menful | Err -108 Not enough memory

dupl i cateHandl er Err -1855 Handler already exists

InstallReceiveHandler

2-38

Use thel nst al | Recei veHandl er function to install a drag receive handler routine for
the Drag Manager to use when the user releases the mouse button while dragging over one
of your application’s windows.

pascal OSErr Install Recei veHandl er
(Dr agRecei veHandl er recei veHandl er,
W ndowPt r t heW ndow,
voi d *handl er Ref Con) ;

recei veHandl er
Pointer to aDr agRecei veHandl er routine.

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

t heW ndow A pointer to the window to install the receive drop handler for. When a
drop occurs over this window, the Drag Manager calls this routine to
allow your application to accept the drag. If this parameter M L, the
receive handler is called regardless of which window the drop occurred
in your application.

handl er Ref Con
A reference constant that will be forwarded to your receive drop handler
routine when it is called by the Drag Manager. Use this constant to pass
any data you wish to forward to your drag receive handler.

The I nst al | Recei veHandl er function installs a drag receive handler for one of your
application’s windows. Installing a drag receive handler allows your application to
accept a drag by getting drag item flavor data from the Drag Manager when the user
releases the mouse button while dragging over one of your application’s windows. You
may install more than one drag receive handler on a single window.

The Drag Manager sequentially calls all of the drag receive handlers installed on a
window when a drop occurs in that window.

By specifying a value ofNI L int heW ndow, the drag receive handler is installed in the
default handler space for your application. Drag receive handlers installed in this way
are called when a drop occurs in any window that belongs to your application.

noErr 0 No error
par ankrr -50 Parameter error
menful | Err -108 Not enough memory

dupl i cateHandl er Err -1855 Handler already exists

RemoveTrackingHandler

Use the RenoveTr acki ngHandl er function to remove a tracking handler routine from
one of your application’s windows.

pascal OSErr RenoveTracki ngHandl er
(DragTracki ngHandl er tracki ngHandl er,
W ndowPt r t heW ndow) ;

t racki ngHandl er
Pointer to aDr agTr acki ngHandl| er routine.

2-39

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

t heW ndow A pointer to the window to remove the drag tracking handler from. If
this parameter isNI L, the given handler will be removed from the
default handler space for your application.

The RenoveTr acki ngHandl er function removes a drag tracking handler from one of
your application’s windows.

By specifying a value ofNl L int heW ndow, the tracking handler is removed from the
default handler space for your application.

nokErr 0 No error
par ankrr -50 Parameter error
dupl i cat eHandl er Err -1856 Handler not found

RemoveReceiveHandler

DESCRIPTION

2-40

Use the RenpbveRecei veHandl| er function to remove a drag receive handler routine from
one of your application’s windows.

pascal OSErr RenobveRecei veHandl er
(Dr agRecei veHandl er recei veHandl er,
W ndowPt r t heW ndow) ;

recei veHandl er
Pointer to aDr agRecei veHandl er routine.

t heW ndow A pointer to the window to remove the drag receive handler from. If this
parameter is NI L, the given handler will be removed from the default
handler space for your application.

The RenbveRecei veHandl| er function removes a drag receive handler from one of your
application’s windows.

By specifying a value ofNl L int heW ndow, the drag receive handler is removed from
the default handler space for your application.

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

noErr 0 No error
par ankrr -50 Parameter error
dupl i cat eHandl er Err -1856 Handler not found

Creating and Disposing of Drag References

You create a drag reference whenever your application wishes to start a drag. A drag
reference is a token that is used in all subsequent calls to Drag Manager routines to refer to
a particular drag.

NewDrag

Use the NewDr ag function to create a new drag reference token.

pascal OSErr NewDrag (DragReference *theDragRef);

t heDragRef The drag reference, whichNewDr ag fills in before returning.
DESCRIPTION

RESULT CODES

The NewDr ag function allocates a new drag object for your application to use with the
Drag Manager and returns a token to it ihheDr ag parameter. Use this drag reference in
subsequent calls to the Drag Manager to identify the drag. This drag reference is required
when adding drag item flavors and callingr ackDr ag. Your installed drag handlers
receive this drag reference so you can call other Drag Manager routines within your drag
handlers.

noErr 0 No error

par ankrr -50 Parameter error

menfFul | Err -108 Not enough memory
DisposeDrag

Use the Di sposeDr ag function to dispose of a drag reference token and its associated
data when a drag has been completed or if the drag reference is no longer needed.

pascal OSErr Di sposeDrag (DragReference theDragRef);

t heDr agRef The drag reference of the drag object to dispose of.

2-41

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

The Di sposeDr ag function disposes of the drag object that is identified by the given
drag reference token. If the drag reference contains any drag item flavors, the memory
associated with the drag item flavors is disposed of as well.

You should callDi sposeDr ag after a drag has been performed usingr ackDr ag or if a
drag reference was created but is no longer needed.

nokErr 0 No error
par ankrr -50 Parameter error
badDr agRef Er r -1850 Unknown drag reference

Adding Drag Item Flavors

You can use the set oAddF| avor routines to create drag items and to provide the data
types for each item. There is a speciadddF| avor routine to add an HF$SSpec flavor
to a drag item.

AddDragltemFlavor

2-42

Use the AddDr agl t enFl avor function to create drag items and to add a data flavor to a
drag item.

pascal OSErr AddDragltentl avor (DragReference theDragRef,
I tenRef erence theltenRef,
Fl avor Type t heType,
voi d *dataPtr,
Si ze dat aSi ze,
Fl avor Fl ags t heFl ags) ;

t heDragRef A drag reference.

theltemRef The drag item reference to add the flavor to. You create new drag items
by providing unique item reference numbers. By using the same item
reference number as in a previous call tdddDr agl t enFl avor, the
flavor is added to an existing item. You may use any item reference
number when adding flavors to items.

t heType The data type of the flavor to add. This may be any four-character scrap
type. Use you application’s signature for a unique type for your own
internal use.

dat aPt r A pointer to the flavor data to add.

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

dat aSi ze The size, in bytes, of the flavor data to add.
t heFl ags A set of attributes to set for this flavor.

The AddDr agl t enFl avor function adds a drag item flavor to a drag item. A new drag
item is created if the given item reference number is different than any other item
reference numbers. When adding multiple flavors to the same item, supply the same item
reference number.

In many cases it is easiest to use index numbers as item reference numbers (1, 2, 3...). Item
reference numbers are only used as unique “key” numbers for each item. Item reference
numbers do not need to be given in order, nor must they be sequential. Depending on your
application, it might be easier to use your own internal memory addresses as item
reference numbers (as long as each item being dragged has a unique item reference number).

Sometimes it is preferable to defer the creation of a particular data type until a receiver
has specifically requested it (possibly if a lengthy translation is required). This can be
done by passingNI L in thedat a parameter when adding a drag item flavor. Flavors

that are added in this way will cause the Drag Manager to call the drag’s send data
procedure if the flavor is requested to get the data from your application. See the section
“Application Defined Routines” for information on writing a send data procedure for a
drag.

You must add all of the drag item flavors to a drag before callifig ackDr ag. Once
Tr ackDr ag is called, receiving applications may not operate properly if new drag items
or drag item flavors are added.

noErr 0 No error

parantrr -50 Parameter error

menful | Err -108 Not enough memory
badDr agRef Er r -1850 Unknown drag reference

dupl i cateFl avorErr -1853 Flavor type already exists

SetDragltemFlavorData

Use the Set Dr agl t enFl avor Dat a function to set the data or part of the data contained
within an existing flavor.

pascal OSErr SetDragltentl avorData (DragReference theDragRef,
I tenRef erence theltenRef,
Fl avor Type t heType,
voi d *dataPtr,

2-43

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

Si ze dat aSi ze,
unsi gned | ong dataCf fset);

t heDr agRef A drag reference.

theltemRef A drag item reference of the item that contains the flavor you wish to set

all or part of the data for.

t heType The data type of the existing flavor to set all or part of the data for.
dat aPtr A pointer to the flavor data.
dat aSi ze The size, in bytes, of the flavor data.

dat aOf f set The offset, in bytes, into the flavor record to place the data specified by
the dat aPt r anddat aSi ze parameters.

The Set Dr agl t enFl avor Dat a function sets all or part of a given flavor’s data. The
data pointed to bydat aPt r with the size given irdat aSi ze is placed into the flavor
record at the offset specified bydat aCf f set .

This function is commonly used in a scenario where a flavor’s data is not added to the
flavor when the flavor is created usingdddDr agl t enFl avor. When the sender's

Dr agSendDat aPr oc is called,Set Dr agl t enfl avor Dat a can be used to provide the
requested data to the Drag Manager. This method is useful when the data needs to be
translated by the sender and would be to expensive to compute the data until required.

By using thedat aOf f set parameter, small pieces of the data may be placed into the
flavor with each call toSet Dr agl t entl avor Dat a.

This function, unlike theAddFl avor functions, may be called both before and during a
drag.

noErr 0 No error

parantrr -50 Parameter error

menful | Err -108 Not enough memory

badDr agRef Er r -1850 Unknown drag reference
badDr agl t entrr -1851 Unknown drag item reference
badDr agFl avor Err -1852 Unknown flavor type

Providing Drag Callback Procedures

2-44

You provide drag callback procedures to the Drag Manager when you want to override the

default behavior of the Drag Manager. You can override the mechanisms in the Drag

Manager that provide data to a drop receiver, that sample the mouse and keyboard, and

that draw the standard “dotted outline” drag feedback.

CHAPTER 2

Drag Manager Programmer’s Guide

SetDragSendProc

DESCRIPTION

RESULT CODES

Use the Set Dr agSendPr oc function to set the send data procedure for the Drag Manager
to use with a particular drag.

pascal OSErr Set DragSendProc (DragReference theDragRef,
Dr agSendDat aPr oc sendPr oc,
voi d *dragSendRef Con) ;

t heDragRef The drag reference thatSet Dr agSendPr oc will set the drag send
procedure for.

sendProc The send data routine that will be called by the Drag Manager when the
receiver of a drop requests the flavor data of a flavor that has not been
cached by the Drag Manager.

dr agSendRef Con
A reference constant that will be forwarded to your drag send procedure
when it is called by the Drag Manager. Use this constant to pass any
data you wish to forward to your drag send procedure.

The Set Dr agSendPr oc function sets the drag send procedure for the given drag reference.
A drag’s drag send procedure is called by the Drag Manager when the receiver of a drop
requests the data of a flavor and the requested flavor data is not currently cached by the
Drag Manager.

The Drag Manager caches drag item flavor data when the flavor was added to a drag by
calling AddDr agl t enFl avor. IfNI L is passed toAddDr agl t enFl avor as the data
pointer, the flavor data is not cached and the Drag Manager will attempt to cache the
data by calling the drag send procedure.

You do not need to provide a drag send procedure if your application never pas$dsL to
AddDr agl t enFl avor when adding a drag item flavor to a drag.

Details for how to write a drag send procedure are covered in the “Application-Defined
Routines” section below.

noErr 0 No error
parantrr -50 Parameter error
badDr agRef Er r -1850 Unknown drag reference

2-45

CHAPTER 2

Drag Manager Programmer’s Guide

SetDragInputProc

DESCRIPTION

RESULT CODES

Use the Set Dr agl nput Pr oc function to set the drag input procedure for the Drag
Manager to use with a particular drag.

pascal OSErr Set Dragl nput Proc (DragReference theDragRef,
Dr agl nput Proc i nput Proc,
voi d *dragl nput Ref Con) ;

t heDragRef The drag reference thatSet Dr agl nput Pr oc will set the drag input
procedure for.

input Proc The drag input routine that will be called by the Drag Manager
whenever the Drag Manager requires the location of the mouse, the state
of the mouse button, and the status of the modifier keys.

dr agl nput Ref Con
A reference constant that will be forwarded to your drag input procedure
when it is called by the Drag Manager. Use this constant to pass any
data you wish to forward to your drag input procedure.

The Set Dr agl nput Pr oc function sets the drag input procedure for the given drag
reference. A drag’s drag input procedure is called by the Drag Manager whenever the
Drag Manager requires the location of the mouse, the state of the mouse button, and the
status of the modifier keys on the keyboard. The Drag Manager typically calls this
routine once per cycle through the Drag Manager’s main drag tracking loop.

Your drag input procedure may either modify the current state of the mouse and keyboard
to slightly alter dragging behavior or entirely replace the input data to drive the drag
completely by itself.

Details for how to write a drag input procedure are covered in the “Application-Defined
Routines” section below.

noErr 0 No error

parantrr -50 Parameter error

badDr agRef Er r -1850 Unknown drag reference
SetDragDrawingProc

2-46

Use the Set Dr agDr awi ngPr oc function to set the drag drawing procedure for the Drag
Manager to use with a particular drag.

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

pascal OSErr SetDragDraw ngProc (DragReference theDragRef,
Dr agDr awi ngProc draw ngPr oc,
voi d *dragDr awi ngRef Con) ;

t heDragRef The drag reference thatSet Dr agDr awi ngPr oc will set the drag
drawing procedure for.

dr awi ngProc The drag drawing routine that will be called by the Drag Manager to
draw, move and hide the “dotted outline” drag feedback on the screen
during a drag.

dr agDr awi ngRef Con
A reference constant that will be forwarded to your drag drawing
procedure when it is called by the Drag Manager. Use this constant to
pass any data you wish to forward to your drag drawing procedure.

The Set Dr agDr awi ngPr oc function sets the drag drawing procedure for the given drag

reference. A drag’s drag drawing procedure is called by the Drag Manager when the Drag

Manager needs to draw, move or hide the “dotted outline” drag feedback on the screen.

Your drag drawing procedure can implement any type of drag feedback, such as dragging a

bitmap of the object being dragged.

Details for how to write a drag drawing procedure are covered in the “Application
Defined Routines” section below.

nokErr 0 No error
par ankrr -50 Parameter error
badDr agRef Er r -1850 Unknown drag reference

Performing a Drag

TrackDrag

You can use theTr ackDr ag function to start a drag from within your application.

Use the Tr ackDr ag function to drag an item or collection of items from your application.

pascal OSErr TrackDrag (DragReference theDragRef,
const Event Record *theEvent,
RgnHandl e t heRegi on);

2-47

DESCRIPTION

CHAPTER 2

Drag Manager Programmer’s Guide

t heDragRef A drag reference token to perform the drag operation with.

t heEvent The mouseDown event record that your application received that
resulted in starting a drag.

t heRegi on A region that represents the item or items being dragged. Note that under
normal circumstances, the drag region should only include the pixels that
represent the outline of the items being dragged. The Drag Manager
draws the region on the screen by using callinBai nt Rgn (not
FrameRgn).

The Tr ackDr ag function performs a drag operation with a particular drag reference
given the mouseDown event and a drag region.

The Drag Manager follows the cursor on the screen with the “dotted outline” drag
feedback and sends tracking messages to applications that have registered drag tracking
handlers. The drag item flavor information that was added to the drag using the
AddDr agl t enFl avor functions is available to each application that becomes active
during a drag.

When the user releases the mouse button, the Drag Manager calls any receive drop
handlers that have been registered on the destination window. An application’s receive
drop handler(s) are responsible for accepting the drag and transferring the dragged data
into their application.

The Tr ackDr ag function returnsnoEr r in situations where the user selected a destination
for the drag and the destination received data from the Drag Manager. If the user drops
over a non-aware application or the receiver does not accept any data from the Drag
Manager, the Drag Manager automatically provides a “zoom back” animation and returns
user Cancel edErr.

SPECIAL CONSIDERATIONS

RESULT CODES

2-48

During the call toTr ackDr ag, your application’s context is temporarily switched out
when the Drag Manager calls a different application’s tracking and receive handlers. Do
not depend on your application’s context to be active for the entire duration of a drag.

noErr 0 No error

par ankrr -50 Parameter error

menful | Err -108 Not enough memory
user Cancel edErr -128 Drag was canceled
badDr agRef Er r -1850 Unknown drag reference

CHAPTER 2

Drag Manager Programmer’s Guide

Getting Drag Item Information

The Drag Manager provides a set of functions that allow you to get information about the
drag items and drag item flavors that have been added into a drag reference.

CountDragltems

Use the Count Dr agl t ens function to determine how many drag items are contained in a
drag reference.

pascal OSErr CountDragltens (DragReference theDragRef,
unsi gned short *nunltens);

t heDr agRef A drag reference.

numl t ens The Count Dr agl t ens function returns the number of drag items in the
given drag reference in thenum t ens parameter.

DESCRIPTION
The Count Dr agl t ens function returns the number of drag items in a drag reference in the
num t ens parameter.

RESULT CODES

noErr 0 No error
par ankrr -50 Parameter error
badDr agRef Er r -1850 Unknown drag reference

GetDragltemReferenceNumber

Use the Get Dr agl t enRef er enceNunber function to determine the item reference
number of a specific item in a drag reference.

pascal OSErr GetDragltenRef erenceNunber
(Dr agRef erence t heDr agRef,
unsi gned short index,
I tenRef erence *theltenRef);

t heDr agRef A drag reference.
i ndex The index of an item in a drag to get the item reference number for.

theltenRef The Get Draglt enRef er enceNunmber function returns the item reference

2-49

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

number of the item with the specified index in thiehel t enRef
parameter.

The Get Dr agl t enRef er enceNunber function returns the item reference number of the
item with the specified index in thé¢ hel t emRef parameter.

If i ndex is zero or larger than the number of items in the dragadDr agl t enErr is
returned byGet Dr agl t enRef er enceNunber .

noErr 0 No error

par ankrr -50 Parameter error

badDr agRef Er r -1850 Unknown drag reference
badDr agl t entrr -1851 Unknown drag item reference

CountDragltemFlavors

DESCRIPTION

2-50

Use the Count Dr agl t enFl avor s function to determine how many drag item flavors are
contained within a drag item.

pascal OSErr CountDragltentlavors (DragReference theDragRef,
It enRef erence theltenRef,
unsi gned short *nun¥l avors);

t heDragRef A drag reference.

t hel tenRef An item reference number.

nunFl avors The Count Dr agl t enFl avor s function returns the number of drag item
flavors in the specified drag item in theaun¥| avor s parameter.

The Count Dr agl t enfl avor s function returns the number of drag item flavors in the
specified drag item in thenun¥l avor s parameter.

When Count Dr agl t enFl avor s is called by an application other than the sender, the
flavors that are marked with thef | avor Sender Onl y flavor flag are not included in
the count.

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

noErr 0 No error

par ankrr -50 Parameter error

badDr agRef Err -1850 Unknown drag reference

badDr agl t enEr r -1851 Unknown drag item reference
GetFlavorType

DESCRIPTION

RESULT CODES

Use the Get Fl avor Type function to determine the type of a specific flavor in a drag
item.

pascal OSErr GetFl avor Type (DragReference theDragRef,
It enRef erence theltenRef,
unsi gned short index,
Fl avor Type *t heType);

t heDragRef A drag reference.
t heltenmRef An item reference number.

i ndex The index of a flavor in the specified item to get the flavor type of.

t heType The Get Fl avor Type function returns the type of the specified flavor in
the t heType parameter.

The Get Fl avor Type function returns the type of the specified flavor in theheType
parameter.

If i ndex is zero or larger than the number of flavors in the itedpadDr agFl avor Err is
returned byGet Fl avor Type.

If a flavor is marked with thd | avor Sender Onl y flavor flag, it is only visible to the
sender application. IfGet Fl avor Type is called by any application other than the
sender, flavors that are visible only to the sender will not be returned.

noErr 0 No error

par ankrr -50 Parameter error

badDr agRef Er r -1850 Unknown drag reference
badDr agl t enErr -1851 Unknown drag item reference
badDr agFl avor Err -1852 Bad flavor index

2-51

CHAPTER 2

Drag Manager Programmer’s Guide

GetFlavorFlags

DESCRIPTION

RESULT CODES

Use the Get Fl avor Fl ags function to get the flags for a specific flavor in a drag item.

pascal OSErr GetFl avor Fl ags (DragReference theDragRef,
It enRef erence theltenRef,
Fl avor Type t heType,
Fl avor Fl ags *t heFl ags) ;

t heDragRef A drag reference.
t hel tenRef An item reference number.

t heType The flavor type of the flavor to get the attributes of.

t heFl ags The Get Fl avor Fl ags function returns the attributes of the specified
flavor in thet heFl ags parameter.

The Get Fl avor Fl ags function returns the flags of the specified flavor in thieheFl ags
parameter.

If a flavor is marked with thd | avor Sender Onl y flavor flag, it is only visible to the
sender application. IfGet Fl avor Fl ags is called by any application other than the
sender, the flags for flavors that are visible only to the sender will not be returned.

noErr 0 No error

par anerr -50 Parameter error

badDr agRef Er r -1850 Unknown drag reference

badDr agl t erEr r -1851 Unknown drag item reference

badDr agFl avor Err -1852 Unknown flavor type
GetFlavorDataSize

2-52

Use the Get Fl avor Dat aSi ze function to get the size of the flavor data for a specific
flavor in a drag item.

pascal OSErr GetFl avorDat aSi ze (DragRef erence theDragRef,
It enRef erence theltenRef,
Fl avor Type t heType,
Si ze *dat aSi ze) ;

t heDr agRef A drag reference.

CHAPTER 2

Drag Manager Programmer’s Guide

theltemRef An item reference number.
t heType The flavor type of the flavor to get the data size of.

dat aSi ze The Get Fl avor Dat aSi ze returns the size of the specified drag item
flavor data in thedat aSi ze parameter.

DESCRIPTION
Before calling Get Fl avor Dat a (defined below), you may want to first determine the size
of the data contained within a flavor. Th€et Fl avor Dat aSi ze function returns the
specified flavor’s data size in thedat aSi ze parameter.

Note that callingGet Fl avor Dat aSi ze on a flavor that requires translation will force
that translation be performed in order to determine the data size. Since translation may
require a significant amount of time and memory during processing, call

Get Fl avor Dat aSi ze only when absolutely necessary.

RESULT CODES

noErr 0 No error

par ankrr -50 Parameter error

menful | Err -108 Not enough memory

badDr agRef Err -1850 Unknown drag reference

badDr agl t erEr r -1851 Unknown drag item reference

badDr agFl avor Err -1852 Unknown flavor type

cant Get Fl avor Err -1854 Error while trying to get flavor data
GetFlavorData

Use the Get Fl avor Dat a function to get all or part of the flavor data for a specific flavor
in a drag item.

pascal OSErr GetFl avorData (DragReference theDragRef,
It enRef erence theltenRef,
Fl avor Type t heType,
voi d *dataPtr,
Si ze *dat aSi ze,
unsi gned | ong *dataCf fset);

t heDragRef A drag reference.
t heltenRef An item reference number.

t heType The flavor type of the flavor to get the flavor data from.

dat aPtr Specifies where theGet Fl avor Dat a function should copy the requested
flavor data. Your application is responsible for allocating the memory

2-53

DESCRIPTION

RESULT CODES

2-54

CHAPTER 2

Drag Manager Programmer’s Guide

for the flavor data and for setting thelat aSi ze parameter to the
number of bytes that you have allocated for the data.

dat aSi ze Contains the size of the data (in bytes) that you have allocated memory
for and wish to receive from the flavor. Whe@&et Fl avor Dat a returns,
dat aSi ze will contain the actual number of bytes copied into the buffer
specified bydat aPtr.

If you specify adat aSi ze that is smaller than the amount of data in the
flavor, the data is copied into your buffer andat aSi ze is unchanged
when Get Fl avor Dat a returns.

If you specify adat aSi ze that is larger than the amount of data in the
flavor, only the amount of data in the flavor is copied into your buffer
and thedat aSi ze parameter will contain the actual number of bytes
copied whenGet Fl avor Dat a returns.

dat aOf f set The offset (in bytes) into the flavor record to begin copying data from into
the supplied buffer pointed to bydat aPtr.

The Get Fl avor Dat a function returns all or part of a flavor’s data in a data buffer
supplied by thedat aPtr parameter.

You can first determine the size of a flavor by calling tieet FI avor Dat aSi ze function.

If you wish to receive the flavor data in smaller pieces than the entire size of the data,
you can set thedat aSi ze to be as large as your buffer and caiet FI avor Dat a multiple
times while incrementing thedat aCf f set by the size of your buffer.

You can determine when you have reached the end of the flavor’s data when the
dat aSi ze parameter returns a number of bytes lower than you provided.

If thedat aOf f set was larger than the amount of data contained within the flavde,
(zero) will be returned in thelat aSi ze parameter denoting that no data was copied into
your buffer.

Note that callingGet Fl avor Dat a on a flavor that requires translation will force that
translation to occur in order to return the data.

noErr 0 No error

par ankrr -50 Parameter error

menful | Err -108 Not enough memory

badDr agRef Er r -1850 Unknown drag reference
badDr agl t enErr -1851 Unknown drag item reference

CHAPTER 2

Drag Manager Programmer’s Guide

badDr agFl avor Err -1852 Unknown flavor type
cant Get Fl avor Err -1854 Error while trying to get flavor data
GetDragltemBounds

Use the Get Dr agl t emBounds function to determine the bounding rectangle of a drag
item.

pascal OSErr GetDragltenBounds (DragReference theDragRef,
It enRef erence theltenRef,
Rect *itenBounds);

t heDragRef A drag reference.

t hel tenRef An item reference number.

i terBounds The Get Dr agl t emBounds function returns the bounding rectangle of the
specified item in global coordinates in thé t emBounds parameter.

DESCRIPTION
The Get Dr agl t emBounds returns the bounding rectangle of the specified item. The

rectangle is provided in global coordinates.
Get Dr agl t emBounds always returns the rectangle relative to the current pinned mouse

position. You can use théet Dr agl t emBounds function in your tracking or receive
handlers to determine the current or dropped location of each item in the drag.

RESULT CODES

noErr 0 No error

par ankrr -50 Parameter error

badDr agRef Er r -1850 Unknown drag reference

badDr agl t entrr -1851 Unknown drag item reference
SetDragltemBounds

Use the Set Dr agl t enBounds function to set the bounding rectangle of a drag item.

pascal OSErr SetDragltenBounds (DragReference theDragRef,
It enRef erence theltenRef,
const Rect *itenBounds);

t heDragRef A drag reference.

t hel tenRef An item reference number.

2-55

CHAPTER 2

Drag Manager Programmer’s Guide

i temBounds The bounding rectangle to set for the given drag item. This rectangle is
specified in global coordinates relative to the mouse down position.

DESCRIPTION
The Set Dr agl t enBounds function sets the bounding rectangle for a given drag item. The

rectangle is specified in global coordinates relative to the mouse down position that is
given to theTr ackDr ag function. Your application would normally want to call
Set Dragl t emBounds on each drag item before starting a drag withr ackDr ag.

If you do not set the bounds of an item, the rectangle returned Bet Dr agl t enBounds is
an empty rectangle centered under the pinned mouse location.

RESULT CODES

noErr 0 No error

par ankrr -50 Parameter error

badDr agRef Er r -1850 Unknown drag reference
badDr agl t entrr -1851 Unknown drag item reference

Getting Drag Status Information

The Drag Manager provides a set of functions that allow you to get information about a
drag that is currently in progress.

GetDragAttributes

Use the Get DragAt tri but es function to get the current set of drag attribute flags.

pascal OSErr GetDragAttributes
(Dr agRef erence t heDragRef,
DragAttributes *attri butes);

t heDragRef A drag reference.

attributes The GetDragAttributes function returns the drag attribute flags for
the given drag reference in theat t ri but es parameter.

DESCRIPTION
The Get DragAt t ri but es function returns the drag attribute flags for the given drag

reference in theat t ri but es parameter.

2-56

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

If Get DragAttri but es is called during a drag, the current set & agAttri but es is
returned. IfGet DragAttri but es is called after a drag, the set dr agAttri butes
that were set at drop time is returned.

noErr 0 No error

par ankrr -50 Parameter error

badDr agRef Er r -1850 Unknown drag reference
GetDragMouse

DESCRIPTION

Use the Get Dr agMbuse function to get the current mouse and pinned mouse locations.

pascal OSErr Get DragMbuse (DragReference theDragRef,
Poi nt *nouse,
Poi nt *pi nnedMouse) ;

t heDragRef A drag reference.

nouse The Get Dr agMbuse function returns the current mouse location in the
mouse parameter. The mouse location is given in global screen
coordinates.

pi nnedMouse The Get Dr agMbuse function returns the current pinned mouse location in
the pi nnedMbuse parameter. The pinned mouse location is the mouse
location that is used to draw the drag region on the screen. The
pi nnedMouse location is different than therouse location when the
cursor is being constrained in either dimension by a tracking handler. The
pinned mouse location is given in global screen coordinates.

The Get Dr agMbuse function returns the mouse location in thepuse parameter and the
pinned mouse location in thpi nnedMouse parameter. All coordinates are given in
global screen coordinates.

The pinned mouse location is the mouse location used to draw the drag region on the
screen. Tracking handlers may constrain the mouse by setting the pinned mouse location to

be different than the current mouse location by using thset Dr agMbuse function.

You may passNI L into thenbuse orpi nnedMbuse parameters if you wish to disregard
either of these return values.

Calling Get Dr agMouse before using the drag in &r ackDr ag call returns (0, 0) as both
the mouse andpi nnedMbuse locations.

2-57

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

If Get Dr agMbuse is called during a drag, the currentbuse andpi nnedMouse are
returned. IfGet Dr agMbuse is called after a drag completes, thepuse and
pi nnedMouse at the drop location are returned.

noErr 0 No error
badDr agRef Er r -1850 Unknown drag reference
SetDragMouse

DESCRIPTION

RESULT CODES

Use the Set Dr agMbuse function to set the current pinned mouse location.

pascal OSErr Set DragMuse (DragReference theDragRef,
Poi nt pi nnedMbuse) ;

t heDragRef A drag reference.

pi nnedMouse The coordinates to set the pinned mouse location. The pinned mouse
location is specified in global screen coordinates.

The Set Dr agMouse function sets the current pinned mouse location. The pinned mouse
location is the location used to draw the drag region on the screen. You can use the
Set Dr agMouse function to “constrain” the mouse while dragging through one of your
application’s windows.

To constrain the mouse within one of your application’s windows, caBet Dr aghbuse
from within your tracking handler when you receivdr agTr acki ngl nW ndowmessages.
The Drag Manager updates the position of the drag region on the screen after each time
your tracking handlers are called.

noErr 0 No error
badDr agRef Er r -1850 Unknown drag reference
GetDragOrigin

2-58

Use the Get DragOri gi n function to get thatouseDown location that started the given
drag.

CHAPTER 2

Drag Manager Programmer’s Guide

pascal OSErr GetDragOrigin (DragReference theDragRef,
Point *initial Muse);

t heDragRef A drag reference.

initial Muse
The Get Dr agOri gi n function returns themouseDown location that
started the given drag in thd ni ti al Mouse parameter. The initial
mouse location is given in global screen coordinates.

DESCRIPTION
The Get DragQOri gi n function returns therouseDown location that started the given

drag. The initial mouse location is returned in global screen coordinates.

Get DragOri gi n may be called to return the initial mouse location both during and after

a drag.
RESULT CODES

noErr 0 No error

badDr agRef Er r -1850 Unknown drag reference
GetDragModifiers

Use the Get DragModi fi ers function to get the current set of keyboard modifiers.

pascal OSErr GetDraghbdifiers (DragReference theDragRef,
short *nodifiers,
short *mouseDownModi fiers,
short *mouseUpModifiers);

t heDragRef A drag reference.

nmodi fiers The Get DraghModi fi ers function returns the current keyboard modifiers
in thenodi f i er s parameter.

mouseDownhMbdi fiers
The Get Dr agWbdi fi er s function returns the keyboard modifiers at
mouseDown time in thenbuseDownModi f i er s parameter.

nouseUpModi fi ers
The Get Dr aghodi fi er s function returns the keyboard modifiers at

mouseUp time in themouseUpModi f i er s parameter.

2-59

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

The Get Dr aghvbdi f i er s function returns the set of modifier keys that are currently
pressed and that were pressed atmbuseDown time and atmouseUp time.

You may passNI L into thenodi fi er s, nouseDownModi fi er s ormouseUphbdi fiers
parameters if you wish to disregard any of these return values.

Calling Get Dr aghbdi fi er s before using the drag in &r ackDr ag call returns zero in all
of thenodi fi er parameters. CallingGet Dr aghodi fi er s during a drag, but while the
drag is still tracking returns zero in thepuseUpModi fi er s parameter. Calling

Get Dr agModi f i er s in a receive handler or after the drag has completed returns all of
the nodi fi er parameters.

noErr 0 No error
badDr agRef Err -1850 Unknown drag reference
GetDropLocation

DESCRIPTION

2-60

Use the Get DroplLocat i on function to get an AppleEvent descriptor of the drop location.

pascal OSErr GetDropLocation
(Dr agRef erence t heDragRef,
AEDesc *droplLocation);

t heDr agRef A drag reference.

dropLocati on
The Get Dr opLocat i on function returns an AppleEvent descriptor of the
drop location in thedr opLocat i on parameter. The drop location is only
valid after the receiver has set the drop location by calling
Set DropLocati on.

The Get Dr opLocat i on function returns an AppleEvent descriptor describing the drop
location in thedr opLocat i on parameter.

If the destination is in the Finder, the Finder sets the drop location to be an alias to the
location in the file system that received the drag. Refer to the Finder Interface chapter
of Inside Macintosh for more information about aliases to desktop objects.

If the receiver of the drag has not set a drop location by calling tBet Dr opLocati on
function, t ypeNul | will be returned in the descriptor.

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

Get DropLocat i on may be called both during a drag as well as after a drag has
completed.

nokrr 0 No error

par ankrr -50 Parameter error

menful | Err -108 Not enough memory to duplicate descriptor

badDr agRef Er r -1850 Unknown drag reference
SetDropLocation

DESCRIPTION

RESULT CODES

Use the Set Dr opLocat i on function to set the AppleEvent descriptor for the drop
location for a drag.

pascal OSErr SetDroplLocation
(DragRef erence t heDr agRef,
const AEDesc *dropLocation);

t heDragRef A drag reference.

dropLocati on
The AppleEvent descriptor of the drop location to set.

The Set Dr opLocat i on function is used to set the AppleEvent descriptor of the drop
location of a drag. Typically, this function is called by a receive handler before
attempting to get any flavor data by using th€et Fl avor Dat aSi ze orCet Fl avor Dat a
functions. When a sender application's drag send data procedure is called to provide
flavor data to a receiver,Get Dr opLocat i on can then be called to determine the drop
location while providing data to the sender.

nokrr 0 No error

par ankrr -50 Parameter error

menful | Err -108 Not enough memory to duplicate descriptor
badDr agRef Er r -1850 Unknown drag reference

Window Highlighting Utilities

You can use theShowDr agHi | i t e, Hi deDr agHi | i t e, andUpdat eDr agHi | i t e functions
to highlight parts of your application’s windows during a drag. You can also use the

2-61

CHAPTER 2

Drag Manager Programmer’s Guide

Dr agPreScrol | andDr agPost Scrol | functions if you intend to scroll parts of your
window that contain drag highlighting.

ShowDragHilite

DESCRIPTION

2-62

Use the ShowDr agHi | i t e function to highlight an area of your window during a drag.
Your tracking handler routine should call this if a drop is allowed at the current mouse
position.

pascal OSErr ShowbDragHi|lite (DragReference theDragRef,
RgnHandl e hiliteFrane,
Bool ean i nsi de);

t heDragRef The drag reference of the drag currently in progress.

frame A QuickDraw region of the frame of the window, pane, or shape you wish
to highlight. This region should be in the window’s local coordinate
system.

i nsi de If true, the highlighting will be drawn inside the frame shape.

Otherwise it will be drawn outside the frame shape. Note that in either
case, the highlight will not include the boundary edge of the frame.

The ShowDr agHi | i t e procedure creates a standard drag and drop highlight in your
window. You can only have one highlight showing at a time, and if you call this routine
when a highlight is currently visible, the first one is removed before the newly requested
highlight is shown.

The highlight that is drawn is defined by thhi | i t eFr ame andi nsi de parameters.
The hi | i t eFr ane defines the shape of the highlighting to draw, thiensi de

parameter determines whether the highlighting is drawn on the outside or inside of the
hi l'i t eFr ame region. This allows you to easily highlight inside a window frame or a
pane, or to highlight outside of a container or object in your windowhowDragHi | i t e
uses a two pixel thick line when drawing the highlight.

ShowDr agHi | i t e assumes that the highlighting should be drawn in the current port.
Your application should make sure that the correct port is set before calling

ShowDr agHi | i t e. Also, highlighting drawn byShowDr agHi | i t e is clipped to the
current port. Make sure that the port’s clip region is appropriately sized to draw the
highlighting.

The Drag Manager maintains the currently highlighted portion of your window if you use
the Hi deDragHi | i t e andUpdat eDr agHi | i t e functions. If you intend to scroll the
window that contains the highlighting, you can use thBr agPr eScr ol | and

Dr agPost Scrol | functions to properly update the drag highlighting.

CHAPTER 2

Drag Manager Programmer’s Guide

RESULT CODES

noErr 0 No error

par ankrr -50 Parameter error

mentul | Err -108 Not enough memory

badDr agRef Er r -1850 Unknown drag reference
HideDragHilite

This routine removes highlighting created with th&ShowDr agHi | i t e function.

pascal OSErr HideDragHilite (DragReference theDragRef);

t heDragRef The drag reference that is currently showing a drag highlight.

DESCRIPTION
Use the Hi deDr agHi | i t e function to remove any highlighting from your window that

was shown using theShowDr agHi | i t e function.

Hi deDragHi | i t e assumes that the highlighting should be erased from the current port.
Your application should make sure that the correct port is set before calling

Hi deDr agHi i t e. Also, highlighting erased byHi deDr agHi | i t e is clipped to the
current port. Make sure that the port’s clip region is appropriately sized to remove the
highlighting.

RESULT CODES

noErr 0 No error
badDr agRef Er r -1850 Unknown drag reference
DragPreScroll

When scrolling part of your window when drag highlighting is showing, use the
DragPreScrol | function to remove any drag highlighting that would be scrolled away
from thehi | i t eFr anme given toShowDr agHi | i t e.

pascal OSErr DragPreScroll (DragReference theDragRef,
short dH,
short dV);

t heDragRef The drag reference.

2-63

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

dH The horizontal distance you intend to scroll.

dv The vertical distance you intend to scroll.

The Dr agPreScr ol | function prepares your window or pane for scrolling. Use this
function if you plan to scroll part of your window usirficr ol | Rect orCopyBits.

Scrolling part of your window may inadvertently move part of the drag highlighting
with it. DragPreScrol | is optimized to remove from the screen only the parts of the
highlighting that will be scrolled away from théi | i t eFr ame region. After calling
DragPreScrol | with thedHanddV that you are going to scroll, you can then scroll your
window followed by a call tdr agPost Scr ol | which redraws any necessary
highlighting after the scroll.

If you use an offscreen port to draw your window into while scrolling, it is recommended
that you simply use theHi deDragHi | i t e andShowDr agHi | i t e functions to preserve
drag highlighting in your offscreen port. Th&r agScr ol | functions are optimized for
onscreen scrolling.

noErr 0 No error

parantrr -50 Parameter error

menful | Err -108 Not enough memory

badDr agRef Er r -1850 Unknown drag reference
DragPostScroll

DESCRIPTION

2-64

Use the Dr agPost Scr ol | function to restore the drag highlight after scrolling part of
your window using theDr agPr eScr ol | function.

pascal OSErr DragPost Scroll (DragReference theDragRef);

t heDr agRef The drag reference.

The Dr agPost Scr ol | function restores the drag highlight after you scroll part of your
window. This routine must be called following a call for agPr eScrol | .

CHAPTER 2

Drag Manager Programmer’s Guide

RESULT CODES

noErr 0 No error

par ankrr -50 Parameter error

menfFul | Err -108 Not enough memory

badDr agRef Err -1850 Unknown drag reference
UpdateDragHilite

Use the Updat eDr agHi | i t e function to update a portion of the drag highlight that was
drawn over by your application.

pascal OSErr UpdateDragH lite (DragReference theDragRef,
RgnHandl e updat eRgn) ;

t heDragRef The drag reference.
updat eRgn A region that needs to be updated. Typically the portispdat eRgn.

DESCRIPTION
The Updat eDr agHi | i t e function redraws the portion of the drag highlight which

intersects the givenupdat eRgn. Use this function if your application draws into the
highlighted portion of your window during a drag. For example, dragging over a folder
icon in the Finder causes the Finder to redraw the folder icon in its darkened (selected)
color. The Finder callsUpdat eDr agHi | i t e to redraw any portion of the drag highlight
that may have intersected with the folder icon.

You must guarantee, however, that any current highlighting within thepdat eRgn has

been completely erased or is clipped out. If this routine is asked to highlight over an
area which is still highlighted, it will be redrawn incorrectly.

RESULT CODES

noErr 0 No error

par ankrr -50 Parameter error

menful | Err -108 Not enough memory
badDr agRef Er r -1850 Unknown drag reference

Drag Manager Ultilities

You can use theWi t MouseMoved function to determine after a mouseDown event if a
drag should be started, theZoonRect s andZoonRegi on functions to provide “zooming”
animation similar to the Finder’s in your application, andEGet Hi | i t eRgn to get the
QuickDraw highlight region from the current selection in a TextEdit record.

2-65

CHAPTER 2

Drag Manager Programmer’s Guide

WaitMouseMoved

DESCRIPTION

ZoomRects

When your application receives a mouseDown event on a draggable object, call
Wai t MouseMoved to determine if you should begin to drag the object.

pascal Bool ean \Wai t MouseMoved (Point initial Mbuse);

initial Muse
The point where a mouseDown event occurred. Thieni ti al Mouse
location is given in global screen coordinates.

The Wi t MouseMoved function waits for either the mouse to move from the given

i ni ti al Mouse location or for the mouse button to be released. If the mouse moves away
from thei ni ti al Mouse location before the mouse button is releasedMi t MouseMbved
returnst r ue. If the mouse button is released before the mouse moved from the

i ni ti al Mouse location,Wai t MouseMoved returnsf al se.

2-66

Use the ZoonRect s function to animate a rectangle into a second rectangle. This routine
provides the same visual effect that the Finder uses to open windows and applications.

pascal OSErr ZoomRects (const Rect *fromRect,
const Rect *toRect,
short zoontt eps,
ZoomAccel eration accel eration);

fronmRect Specifies the starting rectangle to animate from, in global coordinates.
t oRect Specifies the ending rectangle to animate to, in global coordinates.

zoontt eps Specifies the number of animation steps that are shown between the
source and destination rectangles. The minimum number cfoonSt eps is
4. If less thard are specified,4 will be used. The maximum number of
zoontt eps is25. If more than?5 are specified,25 will be used.

accel eration

Specifies how the intermediate animation steps will be calculated. Can
accept the constantszoonmNoAccel er ati on,zoomAccel er at e, or
zoonDecel er at e. UsingzoonmNoAccel er ati on makes the distance
between steps from the source to the destination equal. Using
zoomAccel er at e makes each step from the source to the destination
increasingly larger, making the animation appear to speed up as it
approaches the destination. UsingzoonDecel er at e makes each step
from the source to the destination smaller, making the animation appear
to slow down as it approaches the destination.

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

The ZoonRect s function animates a movement between two rectangles on the screen. It
does this by drawing gray dithered rectangles incrementally toward the destination
rectangle.

ZoonRect s draws on the entire screen, outside of the current port. It does not change any
pixels on the screen after it has completed its animation. It also preserves the current
port and the port’s settings.

noErr 0 No error
par ankrr -50 Parameter error

ZoomRegion

Use the ZoonmRegi on function to animate a region’s outline from one screen location to
another. This routine provides the same visual feedback that the Finder uses to “zoom”
icons when performing a Clean Up operation.

pascal OSErr ZoomRegi on (RgnHandl e region,
Poi nt zoonDi st ance,
short zoontt eps,
ZoomAccel eration accel eration);

regi on A region to animate.

zoonDi st ance
The horizontal and vertical distance from the starting point that the
region will animate to.

zoonBt eps Specifies the number of animation steps that are shown between the
source and destination regions. The minimum number gfoont eps is4.
If less than4 are specified,4 will be used. The maximum number of
zoontt eps is25. If more than?5 are specified,25 will be used.

accel eration

Specifies how the intermediate animation steps will be calculated. Can
accept the constantszoonmMNoAccel er ati on,zoomAccel er at e, or
zoomnDecel er at e. UsingzoormNoAccel er ati on makes the distance
between steps from the source to the destination equal. Using
zoomAccel er at e makes each step from the source to the destination
increasingly larger, making the animation appear to speed up as it
approaches the destination. UsingzoonDecel er at e makes each step
from the source to the destination smaller, making the animation appear
to slow down as it approaches the destination.

2-67

DESCRIPTION

RESULT CODES

CHAPTER 2

Drag Manager Programmer’s Guide

The ZoonRegi on function animates a region from one location to another on the screen. It
does this by drawing gray dithered regions incrementally toward the destination region.

ZoonRegi on draws on the entire screen, outside of the current port. It does not change any
pixels on the screen after it has completed its animation. It also preserves the current
port and the port’s settings.

nokErr 0 No error
par ankrr -50 Parameter error

TextEdit Utilities

The TEGet Hi | i t eRgn can be used to get the QuickDraw highlight region from the
current selection in a TextEdit record. This TextEdit utility is useful for determining what
areas of a TextEdit field can be dragged by the user.

TEGetHiliteRgn

DESCRIPTION

2-68

Use the TEGet Hi | i t eRgn function to get the QuickDraw highlight region from the
current selection in a TextEdit record.

pascal OSErr TEGetHiliteRgn (RgnHandl e region,
TEHandl e hTE);

regi on The TEGet Hi | i t eRgn function computes the QuickDraw region of the
current selection in the given TextEdit handle. This region is placed into
the r egi on parameter that you have already allocated. This region is
in your window’s local screen coordinates.

hTE A TextEdit handle.

The TEGet Hi | i t eRgn function returns in the egi on parameter the region of the current
selection in the given TextEdit handle.

TECet Hi | i t eRgn does not allocate a new region. You must create a new region with
NewRgn before callingTEGet Hi | i t eRgn. Also, the previous contents of the region are
replaced by the TextEdit selection region.

CHAPTER 2

Drag Manager Programmer’s Guide

If the given TextEdit handle does not currently have a selectiofEGet Hi | i t eRgn
returns an empty region.

RESULT CODES
noErr 0 No error
mentul | Err -108 Not enough memory

Application-Defined Routines

This section describes the application-defined routines whose addresses you pass to the
Drag Manager. You can define routines that the Drag Manager calls during a drag to
implement the different aspects of dragging both into and out of your application’s
windows.

Drag Handler Routines

Most of the application’s dragging functionality is implemented through the use of drag
handlers. The Drag Manager calls your application’s drag handlers while the user drags
a collection of items through one of your application’s windows, and when the user drops
the items into one of your application’s windows.

DragTrackingHandler

A drag tracking handler has the following syntax:

pascal OSErr DragTracki ngHandl er (DragTracki ngMessage nessage,
W ndowPt r t heW ndow,
voi d *handl er Ref Con,
Dr agRef er ence t heDragRef);

nmessage A tracking message from the Drag Manager.

t heW ndow A pointer to the window that the mouse is currently over.

handl er Ref Con
A reference constant that was provided td nst al | Tr acki ngHandl er
when this handler was installed.

t heDr agRef The drag reference of the drag.

2-69

CHAPTER 2

Drag Manager Programmer’s Guide

DESCRIPTION
When the user drags an item or collection of items through a window, the Drag Manager
calls any Dr agTr acki ngHandl er functions that have been installed on that window.
YourDr agTr acki ngHandl er can determine the contents of the drag by calling the drag
item information functions, such asCount Dr agl t ens, Count Dr agl t enFl avor s,
Get Fl avor Type andGet Fl avor Fl ags and highlight or modify the objects in your
window accordingly.

You use themessage parameter to determine what action youbr agTr acki ngHandl er
should take. Themessage parameter may be one of the following values:

Message descriptions

dr agTr acki ngEnt er Handl er
You will receive a call with this message when the focus of a drag enters
a window that is handled by youbr agTr acki ngHandl er . If the user
moves the drag directly to another window that is handled by the same
Dr agTr acki ngHandl er, a seconddr agTr acki ngEnt er Handl er
message is not received. Youbr agTr acki ngHandl er only receives this
message when the drag enters the domain of your procedure after leaving
another.

dr agTr acki ngEnt er W ndow
You will receive a call with this message when a drag enters any window
that is handled by yourDr agTr acki ngHandl er. This message is sent to
your Dr agTr acki ngHandl er for each window that the drag may enter.
You will always receive this message within a pair of
dr agTr acki ngEnt er Handl er anddr agTr acki ngLeaveHand! er
calls.

dr agTr acki ngl nW ndow
You will receive calls with this message as the user is dragging within a
window handled by yourDr agTr acki ngHandl er . You can use this
message to track the dragging process through your window. You will
always receive this message within a pair of
dr agTr acki ngEnt er W ndowanddr agTr acki ngLeaveW ndow calls.

You would typically draw the majority of your window highlighting and
track objects in your window when you receive this message from the Drag
Manager.

dr agTr acki ngLeaveW ndow
You will receive a call with this message when a drag leaves any
window that is handled by youibr agTr acki ngHandl er. You are
guaranteed to receive this message after receiving a corresponding
dragTracki ngEnt er W ndow. You will always receive this message
within a pair ofdr agTr acki ngEnt er Handl er and
dragTracki ngLeaveHandl er calls.

dr agTr acki ngLeaveHand! er
You will receive a call with this message when the focus of a drag enters
a window that is not handled by youbr agTr acki ngHandl er. You are

2-70

CHAPTER 2

Drag Manager Programmer’s Guide

guaranteed to receive this message after receiving a corresponding
dr agTr acki ngEnt er Handl er.

When the Drag Manager calls youiDr agTr acki ngHandl er, the port will always be set
to the window that the mouse is over.

SPECIAL CONSIDERATIONS

The Drag Manager guarantees that your application’s A5 world and low-memory
environment is properly set up for your application’s use. Therefore, you can allocate
memory, and use your application’s global variables. You can also rely on low-memory
globals being valid.

You can call\ai t Next Event or any other Event Manager routines from within your

Dr agTr acki ngHandl er . This includes calling any routines that may call the Event
Manager, such asMbdal Di al og orAl ert. Note that the Process Manager's process
switching mechanism is disabled during calls to your handler. If your application is not
frontmost when calling these routines, your application will not be able to switch
forward. This may result in a situation where a modal dialog appears behind the front
process but will not be able to come forward in order to interact with the user.

DragReceiveHandler

DESCRIPTION

A drag receive handler has the following syntax:

pascal OSErr DragRecei veHandl er (W ndowPtr theW ndow,
voi d *handl er Ref Con,
Dr agRef er ence t heDragRef);

t heW ndow A pointer to the window that the drop occurred in.

handl er Ref Con
A reference constant that was provided td nst al | Recei veHandl er
when this handler was installed.

t heDragRef The drag reference of the drag.

When the user releases a drag in a window, the Drag Manager calls any

Dr agRecei veHandl er functions that have been installed on that window. You can get
the information about the data that is being dragged to determine if your window will
accept the drop by using the drag information functions provided by the Drag Manager.

After yourDr agRecei veHandl er decides that it can accept the drop, use the
Get Fl avor Dat a function to get the needed data from the sender of the drag.

2-71

CHAPTER 2

Drag Manager Programmer’s Guide

When the Drag Manager calls youiDr agRecei veHandl er, the port will be set to the
window that the drop occurred in.

If you want to provide an optional AppleEvent descriptor of the drop location for the
sender, use theSet Dr opLocat i on function to set the drop location descriptor before
calling the sender with theGet Fl avor Dat a orCet Fl avor Dat aSi ze functions.

If you return any result code other thanoEr r from yourDr agRecei veHandl er, the
Drag Manager will “zoomback” the drag region to the source location and return
user Cancel edErr fromTr ackDr ag.

If the drag is dropped into a location that cannot accept the drag (such as the window
title bar or window scroll bars) or no acceptable data types were available, your

Dr agRecei veHandl er should returndr agNot Accept edEr r, which will cause the
Drag Manager to provide the “zoomback” animation described above.

SPECIAL CONSIDERATIONS
The Drag Manager guarantees that your application’s A5 world and low-memory
environment is properly set up for your application’s use. Therefore, you can allocate
memory, and use your application’s global variables. You can also rely on low-memory
globals being valid.

You can call\ai t Next Event or any other Event Manager routines from within your

Dr agRecei veHand| er . This includes calling any routines that may call the Event
Manager, such asMbdal Di al og orAl ert. Note that the Process Manager's process
switching mechanism is disabled during calls to your handler. If your application is not
frontmost when calling these routines, your application will not be able to switch
forward. This may result in a situation where a modal dialog appears behind the front
process but will not be able to come forward in order to interact with the user.

Drag Callback Procedures

There are several Drag Manager functions that can be overridden by setting any of several
drag callback procedures for any given drag. The available drag callback procedures
override the standard flavor data sending, mouse and keyboard sampling, and drag
region drawing functions.

DragSendDataProc

A drag send data procedure has the following syntax:

2-72

DESCRIPTION

CHAPTER 2

Drag Manager Programmer’s Guide

pascal OSErr DragSendDataProc (Fl avor Type theType,
voi d *dragSendRef Con,
It enRef erence theltenRef,
Dr agRef er ence t heDragRef);

t heType A flavor type being requested by a drop receiver.

dr agSendRef Con
A reference constant that was provided wheibet Dr agSendPr oc was
called to install this procedure.

thel tenrRef The item reference of the item that the flavor data is being requested
from.

t heDragRef The drag reference of the drag.

The Drag Manager calls yourDr agSendDat aPr oc when drag item flavor data is
requested by a drop receiver if the drag item flavor data is not already cached by the
Drag Manager. Use theSet Dr agl t enFl avor Dat a function to give the Drag Manager
the requested data.

The Drag Manager caches all drag item flavor data that was given in tHat a pointer
when the flavor was added using thé&ddDr agl t enFl avor function. If thedat a pointer
is NI L when the flavor is added, the Drag Manager will call thar agSendDat aPr oc to
get the data only if a receiver requests the data using tieet Fl avor Dat a or

Cet Fl avor Dat aSi ze functions.

A second scenario where theDr agSendDat aPr oc is called is when a drop receiver
requests a flavor that is translated by the Translation Manager and the source data
(which would be a different type than actually requested by the receiver) is not already
cached by the Drag Manager.

You can use theGet Dr opLocat i on function to get the AppleEvent descriptor of the drop
location from within yourDr agSendDat aPr oc. It is optional for the receiver to provide
a drop location descriptor. If the receiver does not provide the drop location descriptor,
t ypeNul | will be returned by thézet Dr opLocat i on function.

You do not need to provide &r agSendDat aPr oc if you do not ever pasil L as thedat a
pointer when callingAddDr agl t enFl avor.

SPECIAL CONSIDERATIONS

The Drag Manager guarantees that your application’s A5 world and low-memory
environment is properly set up for your application’s use. Therefore, you can allocate
memory, and use your application’s global variables. You can also rely on low-memory
globals being valid.

2-73

CHAPTER 2

Drag Manager Programmer’s Guide

You can call\ai t Next Event or any other Event Manager routines from within your

Dr agTr acki ngHandl er . This includes calling any routines that may call the Event
Manager, such asMbdal Di al og orAl ert. Note that the Process Manager's process
switching mechanism is disabled during calls to your handler. If your application is not
frontmost when calling these routines, your application will not be able to switch
forward. This may result in a situation where a modal dialog appears behind the front
process but will not be able to come forward in order to interact with the user.

DraglnputProc

DESCRIPTION

2-74

A drag input procedure has the following syntax:

pascal OSErr Dragl nput Proc (Point *nouse,
short *nodifiers,
voi d *dragl nput Ref Con,
Dr agRef er ence t heDragRef);

nouse On entry, thenouse parameter contains the physical location of the
mouse. On exit, youDr agl nput Pr oc returns the desired current mouse
location in themouse parameter. Thenmouse location is specified in
global screen coordinates.

modifiers On entry, thenodi fi er s parameter contains the physical state of the
keyboard modifiers and mouse button. On exit, youdr agl nput Pr oc
returns the desired state of the keyboard modifiers and mouse button. The
modi fi er s parameter is specified using the same format and constants as
the Event Manager'sEvent Recor d. nodi fi er s field.

dr agl nput Ref Con
A reference constant that was provided wherSet Dr agl nput Pr oc was
called to install this procedure.

t heDr agRef The drag reference of the drag.

Each time the Drag Manager samples the mouse and keyboard, it calls the
Dr agl nput Pr oc (if one has been set by callinget Dr agl nput Pr oc) to provide a way to
modify or completely change the mouse and keyboard input to the Drag Manager.

When the Dr agl nput Pr oc is called, themouse andnmodi fi er s parameters contain the
actual values from the physical input devices. Youbr agl nput Pr oc may modify these
values in any way. For example, youbr agl nput Pr oc may simply inhibit the control
key modifier bit from being set or it may completely replace the mouse coordinates with
those generated some other way to drive the drag itself.

CHAPTER 2

Drag Manager Programmer’s Guide

Note that the Drag Manager uses thdt nSt at e flag in thenndi fi er s parameter to
determine when the mouse button has been released to finish a drag.

SPECIAL CONSIDERATIONS
Your application’s context is not available when youbr agl nput Pr oc is called by the
Drag Manager. If you need access to your application’s global variables, you will need to
setup and restore your application’s A5 world yourself.

You cannot callWai t Next Event or any other Event Manager routines in your

Dr agl nput Proc. This restriction includes calling any routines that may call the Event
Manager, such asMbdal Di al og orAl ert.

DragDrawingProc

A drag drawing procedure has the following syntax:

pascal OSErr DragDrawi ngProc (DragRegi onMessage nessage,
RgnHandl e showRegi on,
Poi nt showOri gi n,
RgnHandl e hi deRegi on
Poi nt hi deOri gi n,
voi d *dragDr awi ngRef Con,
Dr agRef er ence t heDragRef);

nessage A drag region drawing message from the Drag Manager.

showRegi on A region containing the drag region as it should be drawn or is currently
visible on the screen. TheshowRegi on parameter has slightly different
meanings depending on themessage passed to yourDr agDr awi ngPr oc.
The showRegi on is always given in global screen coordinates.

showOri gin The point corresponding to the originahbuseDown location in the drag
region within the givenshowRegi on. TheshowOr i gi n is always given
in global screen coordinates.

hi deRegi on A region containing the drag region as it should be erased from the screen.
The hi deRegi on parameter has slightly different meanings depending
on themessage passed to yourDr agDr awi ngPr oc. Thehi deRegi on is
always given in global screen coordinates.

hi deOri gi n The point corresponding to the originahbuseDown location in the drag
region within the givenhi deRegi on. Thehi deOri gi n is always given
in global screen coordinates.

dr agDr awi ngRef Con
A reference constant that was provided wheiSet Dr agDr awi ngPr oc
was called to install this procedure.

2-75

DESCRIPTION

2-76

CHAPTER 2

Drag Manager Programmer’s Guide

t heDr agRef

The drag reference of the drag.

If your application set a custom drawing procedure for a drag using the
Set Dr agDr awi ngPr oc function, the Drag Manager calls youbr agDr awi ngPr oc to
perform all drag region drawing operations.

The Drag Manager tracks the drag region as it appears on the screen and as it should
follow the mouse. All drag region operations are performed on the region given to the
Tr ackDr ag function. Drag region drawing is managed by sending tHar agDr awi ngPr oc
messages to show and hide pieces of the drag region.

The Drag Manager has its own drag region port that is used to do all drag region drawing
during a drag. This port is set to the current port before calling yddragDr awi ngPr oc.
The drag region port is for youbr agDr awi ngPr oc’s exclusive use during a drag. You

may modify its fields and depend on its contents between calls to your

Dr agDr awi ngPr oc.

You use themessage parameter to determine what action youbr agDr awi ngPr oc
should take. Themessage parameter may be one of the following values:

Message descriptions
dr agRegi onBegi n

You will receive a call with this message when a drag is being started
and it is time to initialize your drawing procedure. You should not draw
anything to the screen when you receive this message.

The showRegi on contains the drag region that was passed to the

Tr ackDr ag function and theshowOr i gi n contains thembuseDown
location that was given to thelr ackDr ag function. This location is the
origin of the drag region.

The hi deRegi on isNI L when yourDr agDr awi ngPr oc receives this
message.

dr agRegi onDr aw

You will receive a call with this message when you should move your
drag region from the area of the screen defined by th@ deRegi on to the
area of the screen defined by thehowRegi on.

The showRegi on contains the drag region that was passed to the
Tr ackDr ag function, offset to the current pinned mouse location. This
region represents the area of the screen that must be drawn into.

The hi deRegi on contains the drag region as it is currently visible on the
screen from the last call with alr agRegi onDr awmessage. This region
represents the area of the screen that must be restored. Any part of the
drag region that was previously obscured by a call with the

dr agRegi onHi de message is not included in thiki deRegi on.

CHAPTER 2

Drag Manager Programmer’s Guide

dr agRegi onHi de
You will receive calls with this message when you should remove part of
the drag region from the screen. You will receive this message when the
drag has ended or when part of the region must be obscured for drawing
operations to occur underneath the drag region.

The showRegi on isNI L when yourDr agDr awi ngPr oc receives this
message.

The hi deRegi on contains the part of the currently visible drag region
that must be removed from the screen.

dr agRegi onl dl e
You will receive calls with this message when the drag region has not
moved on the screen and no drawing is necessary. You can use this message
if animation of the drag region is necessary.

The showRegi on contains the drag region as it is currently visible on the
screen.

The hi deRegi on isNI L when yourDr agDr awi ngPr oc receives this
message.

dr agRegi onEnd
You will receive a call with this message when the drag has completed
and it is time to deallocate any allocations made from within the
Dr agDr awi ngPr oc. YourDr agDr awi ngPr oc will have already
received adr agRegi onHi de message to hide the entire drag region
before receiving this message. After you receive this message, your
Dr agDr awi ngPr oc will not be called again for the duration of the drag.

Both the showRegi on and thehi deRegi on areNl L when your
Dr agDr awi ngPr oc receives this message.

SPECIAL CONSIDERATIONS
Your application’s context is not available when youbr agDr awi ngPr oc is called by the
Drag Manager. If you need access to your application’s global variables, you will need to
setup and restore your application’s A5 world yourself.

You cannot callWai t Next Event or any other Event Manager routines in your

Dr agDr awi ngPr oc . This restriction includes calling any routines that may call the
Event Manager, such asMbdal Di al og orAl ert.

2-77

CHAPTER 2

Drag Manager Programmer’s Guide

Summary of the Drag Manager

Pascal Summary

Constants

CONST
{ Gestalt Constants }
gestal t DragMgr At tr = 'drag'; { Drag Manager attributes }
gest al t DragMgr Pr esent = 0; { Drag Manager is present }
gestal t TEAt tr = '"teat'; { TextEdit attributes }
gestal t TEHasGet Hi | i t eRgn = 0; { TextEdit has TEGetHi liteRgn }
{ Flavor Flags }
fl avor Sender Onl y = $00000001; { flavor available to sender only }
f I avor Sender Tr ansl at ed = $00000002; { flavor translated by sender }
fl avor Not Saved = $00000004; { flavor should not be saved }
fl avor Syst enilr ansl at ed = $00000100; { flavor translated by system}

{ Drag Attributes }

dr agHasLef t Sender W ndow

dr agl nsi deSender Appl i cati on
dr agl nsi deSender W ndow

$00000001; { drag has |left source w ndow }
$00000002; { drag is in the source app }
$00000004; { drag is in the source w ndow }

{ Special Flavor Type }

fl avor TypeHFS = "hfs '; { flavor type for HFS data }
fl avor TypePr om seHFS = 'phfs'; { flavor type for prom sed HFS }
flavor TypeDirectory ='diry'; { flavor type for ACCE directory }

{ Drag Tracki ng Handl er Messages }
dr agTr acki ngEnt er Handl er
dr agTr acki ngEnt er W ndow
dr agTr acki ngl nW ndow

dr agTr acki ngLeaveW ndow
dr agTr acki ngLeaveHandl er

drag has entered handler }
drag has entered w ndow }

drag is noving within w ndow }
drag has exited w ndow }

drag has exited handler }

| L | I A |
mAaALNRE
e Lt Yaon Yaon Latn)

{ Drag Drawi ng Handl er Messages

dr agRegi onBegi n = 1; { initialize draw ng }

dr agRegi onDr aw = 2; { draw drag feedback }

dr agRegi onHi de = 3; { hide drag feedback }

dr agRegi onl dl e = 4; { drag feedback idle tine }
dr agRegi onEnd = b5; { end of draw ng }

{ Zoom ng Constants }

zoomNoAccel erati on = 0; { use linear interpolation }
zoomAccel erat e = 1; { ranp up step size }
zoomDecel erat e = 2; { ranp down step size }

2-78

CHAPTER 2

Drag Manager Programmer’s Guide

Data Types

Drag Manager Data Types
TYPE
Dr agRef er ence
| t enRef erence

LONG NT;
LONG NT;

Fl avor Type = ResType;
Fl avor Fl ags = LONG NT;
DragAttri butes = LONG NT;

DragTracki ngMessage = | NTEGER,
Dr agRegi onMessage = | NTEGER;

ZoomAccel erati on = | NTEGER,

Special Flavor Data Types
HFSFI avor = RECORD

fileType: OSType; { file type }

fileCreator: OSType; { file creator }

f dFl ags: | NTEGER, { Finder flags }

fil eSpec: FSSpec; { file system specification }
END;
Pr om seHFSFI avor = RECORD

fileType: OSType; { file type }

fileCreator: CSType; { file creator }

f dFl ags: | NTEGER,; { Finder flags }

prom sedFl avor: Fl avor Type; { promi sed flavor containing FSSpec }
END;

Drag Manager Routines

Installing and Removing Drag Handlers
FUNCTI ON | nst al | Tr acki ngHandl er
(tracki ngHandl er : DragTracki ngHandl er;
t heW ndow : W ndowPtr ;
handl erRef Con : UNIV Ptr) : OSErr;

FUNCTI ON | nst al | Recei veHandl| er (recei veHandl er : DragRecei veHandl er;
t heW ndow : W ndowPtr ;
handl erRef Con : UNIV Ptr) : OSErr;

FUNCTI ON RenmoveTr acki ngHandl er (t racki ngHandl er : DragTracki ngHandl er;
t heW ndow : W ndowPtr) : OSErr;

2-79

CHAPTER 2

Drag Manager Programmer’s Guide

FUNCTI ON RenpveRecei veHandl er (recei veHandl er : DragRecei veHandl er;
t heW ndow : W ndowPtr) : OSErr;

Creating and Disposing of Drag References

FUNCTI ON NewDr ag (VAR t heDragRef : DragReference) : OSErr;

FUNCTI ON Di sposeDr ag (theDragRef : DragReference) : OSErr;

Adding Drag Item Flavors
FUNCTI ON AddDr agl t enFl avor (theDragRef : DragReference;
theltenRef : |tenReference;
t heType : Fl avor Type;
dataPtr : UNIV Ptr;
dat aSi ze : Si ze;
theFl ags : FlavorFlags) : OSErr;

FUNCTI ON Set Dragl t enl avor Dat a(t heDragRef : DragReference;
theltenRef : |tenReference;
t heType : Fl avor Type;
dataPtr : UNIV Ptr;
dat aSi ze : Si ze;
dataOrfset : LONG NT) : OSErr;

Providing Drag Callback Procedures

FUNCTI ON Set Dr agSendPr oc (theDragRef : DragReference;
sendProc : DragSendDat aProc;
dragSendRef Con : UNIV Ptr) : OSErr;

FUNCTI ON Set Dr agl nput Pr oc (theDragRef : DragReference;
i nput Proc : Dragl nput Proc;
dragl nput RefCon : UNIV Ptr) : OSErr;

FUNCTI ON Set Dr agDr awi ngPr oc (theDragRef : DragReference;
drawi ngProc : DragDraw ngProc;
dragDrawi ngRef Con : UNIV Ptr) : OSErr;

Performing a Drag
FUNCTI ON Tr ackDr ag (theDragRef : DragReference;
t heEvent : Event Record;
t heRegi on : RgnHandl e) : OSErr;

Getting Drag Item Information
FUNCTI ON Count Dr agl t ens (theDragRef : DragReference;
VAR numitens : | NTEGER) : OSErr;

FUNCTI ON Cet Dr agl t enRef er enceNunber
(theDragRef : DragReference;
i ndex : | NTEGER;

VAR theltenRef : ItenReference) : OSErr;

2-80

CHAPTER 2

Drag Manager Programmer’s Guide

FUNCTI ON Count Dr agl t enfl avor s

FUNCTI ON Cet Fl avor Type

FUNCTI ON Get Fl avor Fl ags

FUNCTI ON Get Fl avor Dat aSi ze

FUNCTI ON Get Fl avor Dat a

FUNCTI ON Cet Dr agl t emBounds

FUNCTI ON Set Dr agl t enBounds

(t heDr agRef Dr agRef er ence;
theltenRef : |tenReference;
VAR nunfl avors :

| NTEGER) CSErr;

(t heDr agRef Dr agRef er ence;

t hel t enRef I t enRef er ence;

i ndex : | NTECGER;

VAR t heType : Fl avor Type) CSErr;
(t heDr agRef Dr agRef er ence;

t hel t enRef I t enRef erence;

t heType : Flavor Type;

VAR t heFl ags : Fl avor Fl ags) OSErr;
(t heDr agRef Dr agRef er ence;

t hel t enRef I t enRef er ence;

t heType : Fl avor Type;

VAR dat aSi ze : Size) CSErr;
(t heDr agRef Dr agRef er ence;

t hel t enRef I t enRef erence;

t heType : Flavor Type;

dataPtr : UNIV Ptr;

VAR dat aSi ze : Si ze;

dat aCr f set LONG NT) OSErr;
(t heDr agRef Dr agRef er ence;

t hel t enRef I t enRef erence;

VAR i temBounds : Rect) CSErr;

(t heDr agRef
t hel t enRef
i t emBounds :

Dr agRef er ence;
I t enRef erence;
Rect) OSErr;

Getting and Setting Drag Status Information

FUNCTI ON CGet DragAttri butes

FUNCTI ON Get Dr ag©ouse

FUNCTI ON Set Dr agMbuse

FUNCTI ON Get DragOrigin

FUNCTI ON CGet Draghodi fi ers

FUNCTI ON Cet DropLocati on

(theDragRef : DragReference;
VAR attributes : DragAttributes)

(t heDr agRef Dr agRef er ence;
VAR nouse : Point;
VAR pi nnedMouse :

(t heDr agRef
pi nnedMbuse :

(theDragRef : DragReference;
VAR initial Mouse : Point)

(theDragRef : DragReference;

VAR nodi fiers : | NTEGER;

VAR mouseDownModi fiers : | NTEGER;
VAR nouseUpModi fiers : | NTEGER)

(t heDr agRef Dr agRef er ence;

CSErr;

Poi nt) CSErr;

Dr agRef er ence,;
Poi nt) OCSErr;

CSErr;

CSErr;

2-81

CHAPTER 2

Drag Manager Programmer’s Guide

FUNCTI ON Set DropLocati on

Window Highlighting Utilities
FUNCTI ON ShowDragHilite

FUNCTI ON Hi deDragHilite
FUNCTI ON Dr agPr eScr ol |

FUNCTI ON Dr agPost Scrol |
FUNCTI ON UpdateDragHilite

Drag Manager Utilities
FUNCTI ON Wi t MouseMoved

FUNCTI ON ZoonRect s

FUNCTI ON ZoonRegi on

TextEdit Utilities

VAR dropLocation :

(t heDr agRef
dropLocation :

AEDesc) CSErr;

Dr agRef er ence;
AEDesc) CSErr;

(t heDr agRef Dr agRef er ence;
hiliteFrame : RgnHandl e;
i nside : BOOLEAN) : OSErr;

(t heDr agRef

(t heDr agRef :
dH : | NTEGER;
dV : | NTEGER)

(t heDr agRef

(t heDr agRef
updat eRgn :

Dr agRef er ence) OSErr;

Dr agRef er ence;

CSErr;

Dr agRef er ence) OSErr;

Dr agRef er ence;
RgnHandl e) OSErr;

(initial Muse : BOOLEAN;

(fromRect : Rect;
t oRect Rect ;
zoontt eps : | NTEGER;
accel eration : ZoomAccel erati on)

(region : RgnHandl €;
zoonDi st ance Poi nt;
zoontSteps : | NTEGER
accel eration : ZoomAccel erati on)

Poi nt)

CSErr;

CSErr;

FUNCTI ON TEGet Hi | i t eRgn (region : RgnHandl e;
hTE : TEHandl e) CSErr;
Application Defined Routines
Drag Handler Routines
FUNCTI ON Dr agTracki ngHandl er (nessage : DragTracki ngMessage;
t heW ndow : W ndowPtr ;
handl er Ref Con : Ptr;
t heDr agRef Dr agRef er ence) CSErr;
FUNCTI ON Dr agRecei veHandl er (theW ndow : W ndowPtr;
handl er Ref Con : Ptr;
t heDr agRef Dr agRef er ence) OSErr;

2-82

CHAPTER 2

Drag Manager Programmer’s Guide

Drag Callback Procedures

FUNCTI ON Dr agSendDat aPr oc (theType :

Fl avor Type;
dr agSendRef Con :

Ptr;

t hel t enRef I t enRef erence;

t heDr agRef Dr agRef er ence) OSErr;
FUNCTI ON Dr agl nput Proc (VAR nouse : Point;

VAR nodi fiers @ | NTEGER

dr agl nput Ref Con : Ptr;

t heDr agRef Dr agRef er ence) OSErr;
FUNCTI ON Dr agDr awi ngPr oc (rmessage : DragRegi onMessage;

showRegi on : RgnHandl e;

showOrigin : Point;

hi deRegi on : RgnHandl e;

hi deGrigin : Point;

dr agDr awi ngRef Con : Ptr;

t heDr agRef Dr agRef er ence) CSErr;
C Summary
Constants
/* Gestalt Constants */
#define gestaltDragMgr Attr 'drag" // Drag Manager attributes
#def i ne gestal t DragMgr Pr esent 0 /1 Drag Manager is present
#define gestalt TEAttr "teat' // TextEdit attributes
#defi ne gestalt TEHasGet Hi |l it eRgn 0 /1 TextEdit has TEGetHi liteRgn
/* Flavor Flags */
#def i ne fl avor Sender Only 0x00000001 // flavor available to sender only
#def i ne fl avor Sender Tr ansl at ed 0x00000002 // flavor translated by sender
#def i ne fl avor Not Saved 0x00000004 // flavor should not be saved
#def i ne flavor Syst enilr ansl at ed 0x00000100 // flavor translated by system
/* Drag Attributes */
#def i ne dragHasLeft Sender W ndow 0x00000001 // drag has left source w ndow
#def i ne dragl nsi deSender Appl i cati on 0x00000002 // drag is in the source app
#defi ne dragl nsi deSender W ndow 0x00000004 // drag is in the source w ndow
/* Special Flavor Type */
#defi ne fl avor TypeHFS "hfs ' [/ flavor type for HFS data
#def i ne fl avor TypeProm seHFS "phfs' // flavor type for pronised HFS
#defi ne fl avor TypeDi rectory "diry" // flavor type for ACCE directory

2-83

/* Drag Tracking Handl er Messages */

enum {

dr agTr acki ngEnt er Handl er =1, /1 drag has entered handl er

dr agTr acki ngEnt er W ndow = 2, /1 drag has entered w ndow

dr agTr acki ngl nW ndow = 3, /1 drag is nmoving within w ndow
dr agTr acki ngLeaveW ndow = 4, /1 drag has exited w ndow

dr agTr acki ngLeaveHandl er =5 /1 drag has exited handl er

s

/* Drag Draw ng Handl er Messages */

enum {

dr agRegi onBegi n = 1, /[l initialize draw ng

dr agRegi onDr aw = 2, /1 draw drag feedback

dr agRegi onHi de = 3, /1 hide drag feedback

dr agRegi onl dl e = 4, /] drag feedback idle tine
dr agRegi onEnd =5 /1 end of draw ng

/* Zoom ng Constants */

enum {

zoonNoAccel erati on = 0, /1 use linear interpolation
zoonAccel erate =1, /1 ranp up step size
zoonmDecel erat e =2 /1 ranp down step size

b

Data Types

Drag Manager Data Types

t ypedef
t ypedef

t ypedef
t ypedef
t ypedef

t ypedef
t ypedef

t ypedef

unsi gned | ong DragReference;
unsi gned | ong |tenReference;

ResType Fl avor Type;
unsi gned | ong Fl avor Fl ags;
unsi gned | ong DragAttri butes;

short DragTracki ngMessage;
short DragRegi onMessage;

short ZoomAccel erati on;

Special Flavor Data Types

t ypedef struct HFSFl avor ({
OSType fileType; /1 file type
OSType fileCreator; /1 file creator
unsi gned short fdFl ags; /1 Finder flags
FSSpec fil eSpec; /1 file system specification

} HFSFl avor;

CHAPTER 2

Drag Manager Programmer’s Guide

typedef struct Prom seHFSFl avor {

OSType fileType;

OSType fileCreator;

unsi gned short fdFl ags;

Fl avor Type prom sedFl avor;
} HFSFl avor;

Drag Manager Routines

file type

file creator

Fi nder fl ags

prom sed flavor contai ni ng FSSpec

Installing and Removing Drag Handlers
pascal OSErr Install Tracki ngHandl er

(DragTracki ngHandl er tracki ngHandl er,

W ndowPt r

t heW ndow,

voi d *handl er Ref Con) ;

pascal OSErr |nstall Recei veHandl er

(Dr agRecei veHandl er recei veHandl er,

W ndowPt r

t heW ndow,

voi d *handl er Ref Con) ;

pascal OSErr RenoveTracki ngHandl er

(DragTracki ngHandl er tracki ngHandl er,
W ndowPt r t heW ndow) ;

pascal OSErr RenoveRecei veHandl er

(Dr agRecei veHandl er recei veHandl er,
W ndowPt r t heW ndow) ;

Creating and Disposing of Drag References
pascal OSErr NewDr ag
pascal OSErr Di sposeDrag

Adding Drag Item Flavors

(DragRef erence *t heDragRef);
(DragRef erence t heDragRef);

pascal OSErr AddDragltentl avor (Dr agRef erence t heDr agRef,
It enRef erence theltenRef,
Fl avor Type t heType,

void *dataPtr,
Si ze dat aSi ze,

Fl avor Fl ags t heFl ags) ;

pascal OSErr SetDragltentl avor Dat a

(Dr agRef erence t heDragRef,
It enRef erence theltenRef,
Fl avor Type t heType,

void *dataPtr,
Si ze dat aSi ze,

unsi gned | ong dataOfset);

2-85

CHAPTER 2

Drag Manager Programmer’s Guide

Providing Drag Callback Procedures

pascal OSErr SetDragSendProc (DragReference theDragRef,
Dr agSendDat aPr oc sendProc,
voi d *dragSendRef Con) ;

pascal OSErr Set Dragl nput Proc (DragReference theDragRef,
Dr agl nput Proc i nput Proc,
voi d *dragl nput Ref Con) ;

pascal OSErr Set DragDraw ngProc
(Dr agRef erence t heDragRef,
Dr agDr awi ngPr oc dr awi ngPr oc,
voi d *dragDr awi ngRef Con) ;

Performing a Drag

pascal OSErr TrackDrag (DragRef erence t heDr agRef,
const Event Record *t heEvent,
RgnHandl e t heRegi on);

Getting Drag Item Information
pascal OSErr CountDragltens (DragRef erence t heDragRef,
unsi gned short *nunitemns);

pascal OSErr GetDragltenRef erenceNunber
(DragRef erence t heDr agRef,
unsi gned short index,
It enRef erence *theltenRef);

pascal OSErr Count Dragltenfl avors
(Dr agRef erence t heDr agRef,
It enRef erence theltenRef,
unsi gned short *nun¥l avors);

pascal OSErr GetFl avor Type (DragRef erence t heDragRef,
It enRef erence theltenRef,
unsi gned short index,
Fl avor Type *t heType);

pascal OSErr GetFl avor Fl ags (Dr agRef erence t heDragRef,
It enRef erence theltenRef,
Fl avor Type t heType,
Fl avor Fl ags *t heFl ags) ;

pascal OSErr GetFl avor Dat aSi ze(Dr agRef er ence t heDr agRef,
It enRef erence theltenRef,
Fl avor Type t heType,
Si ze *dat aSi ze) ;

pascal OSErr GetFl avorDat a (Dr agRef erence t heDragRef,
It enRef erence theltenRef,
Fl avor Type t heType,
voi d *dataPtr,
Si ze *dat aSi ze,

2-86

CHAPTER 2

Drag Manager Programmer’s Guide

unsi gned | ong dataCf fset);

pascal OSErr GetDragltenBounds(DragReference theDragRef,

I t enRef erence theltenRef,
Rect *itenBounds);

pascal OSErr Set DragltenBounds(DragReference theDragRef,

I tenRef erence theltenRef,
const Rect *itenBounds);

Getting and Setting Drag Status Information
pascal OSErr GetDragAttributes(DragReference theDragRef,

pascal OSErr GetDraghMuse

pascal OSErr SetDraghMuse
pascal OSErr GetDragOrigin

pascal OSErr GetDraghbdifiers

pascal OSErr GetDropLocation

pascal OSErr SetDropLocation

Window Highlighting Utilities
pascal OSErr ShowDragHilite

pascal OSErr Hi deDragHilite
pascal OSErr DragPreScroll

pascal OSErr DragPost Scrol |

DragAttributes *attri butes);

(DragRef erence t heDragRef,
Poi nt *nouse,
Poi nt *pi nnedMouse) ;

(DragRef erence t heDr agRef,
Poi nt pi nnedMbuse) ;

(Dr agRef erence t heDr agRef,
Point *initial Muse);

(Dr agRef erence t heDr agRef,
short *nodifiers,
short *mouseDownModi fiers,
short *mouseUpModifiers);

(DragRef erence t heDr agRef,
AEDesc *droplLocati on);

(DragRef erence theDragRef,
const AEDesc *droplLocation);

(DragRef erence t heDragRef,
RgnHandl e hiliteFrane,
Bool ean i nsi de);

(DragRef erence t heDragRef);

(DragRef erence t heDr agRef,
short dH,
short dV);

(DragRef erence t heDragRef);

pascal OSErr UpdateDragH lite (DragReference theDragRef,

Drag Manager Utilities

RgnHandl e updat eRgn) ;

pascal Bool ean Wai t MouseMoved (Point initial Mbuse);

2-87

CHAPTER 2

Drag Manager Programmer’s Guide

pascal OSErr ZoonRects (const Rect *fronRect,
const Rect *toRect,
short zoontt eps,
ZoomAccel eration accel eration);

pascal OSErr ZoonRegi on (RgnHandl e regi on,
Poi nt zoonDi st ance,
short zoontt eps,
ZoomAccel eration accel eration);

TextEdit Utilities
pascal OSErr TEGetHiliteRgn (RgnHandl e regi on,
TEHandl e hTE);

Application Defined Routines

Drag Handler Routines
pascal OSErr DragTracki ngHandl er
(DragTracki ngMessage nessage,
W ndowPt r t heW ndow,
voi d *handl er Ref Con,
Dr agRef er ence t heDragRef);

pascal OSErr DragRecei veHandl er
(WndowPt r theW ndow,
voi d *handl er Ref Con,
Dr agRef er ence t heDragRef);

Drag Callback Procedures

pascal OSErr DragSendDataProc (Fl avor Type theType,
voi d *dragSendRef Con,
It enRef erence theltenRef,
Dr agRef er ence t heDragRef);

pascal OSErr Dragl nput Proc (Poi nt *nouse,
short *nmodifiers,
voi d *dragl nput Ref Con,
Dr agRef er ence t heDragRef);

pascal OSErr DragDrawi ngProc (DragRegi onMessage nessage,
RgnHandl e showRegi on,
Poi nt showOri gi n,
RgnHandl e hi deRegi on,
Poi nt hi deOrigin,
voi d *dragDr awi ngRef Con,
Dr agRef er ence t heDragRef);

2-88

CHAPTER 2

Drag Manager Programmer’s Guide

Assembly-Language Summary

Constants

; Cestalt Selector and Response Constants

gestal t DragMgr At tr EQU 'drag'
gest al t DragMgr Pr esent EQU 0
gestal t TEAt tr EQU "teat'

gestal t TEHasGet Hi |l i t eRgn EQU 0

; Flavor Fl ags

fl avor Sender Onl y EQU $00000001
fl avor Sender Tr ansl at ed EQU $00000002
f 1 avor Not Saved EQU $00000004
f |l avor Syst enilr ansl at ed EQU $00000100

; Drag Attributes

dr agHasLef t Sender W ndow EQU $00000001
dr agl nsi deSender Appl i cati on EQU $00000002
dr agl nsi deSender W ndow EQU $00000004

; Speci al Flavor Types

fl avor TypeHFS EQU "hfs '
fl avor TypePr om seHFS EQU ' phfs'
flavor TypeDi rectory EQU "diry'

; Drag Tracki ng Handl er Messages

dr agTr acki ngEnt er Handl er EQU 1
dr agTr acki ngEnt er W ndow EQU 2
dr agTr acki ngl nW ndow EQU 3
dr agTr acki ngLeaveW ndow EQU 4
dr agTr acki ngLeaveHandl er EQU 5
; Drag Drawi ng Procedure Messages

dr agRegi onBegi n EQU 1
dr agRegi onDr aw EQU 2
dr agRegi onHi de EQU 3
dr agRegi onl dl e EQU 4

Drag Manager attributes
Drag Manager is present

TextEdit attributes
TextEdit has TEGetHiliteRgn

flavor available to sender only
flavor is translated by sender
flavor should not be saved
flavor is translated by system

drag has |l eft source w ndow
drag is in the source app
drag is in the source w ndow

flavor type for HFS data
flavor type for prom sed HFS
flavor type for ACCE directory

drag has entered handl er
drag has entered wi ndow
drag is nmoving w thin w ndow
drag has exited w ndow

drag has exited handl er

initialize draw ng
draw drag feedback
hi de drag feedback
drag feedback idle tine

2-89

CHAPTER 2

Drag Manager Programmer’s Guide

dr agRegi onEnd EQU 5 ; end of draw ng

;. Zoom Accel eration

zoomNoAccel erati on EQU 0 ; use linear interpolation
zoomAccel erat e EQU 1 ; ranmp up step size
zoomDecel erat e EQU 2 ; ranp down step size
Data Structures

HFS Flavor Record

0 fileType long file type

4 fileCreator long file creator

8 f dFl ags word Finder flags

10 fil eSpec 70 bytes file system specification

Promised HFS

Flavor Record

0 fileType long file type

4 fileCreator long file creator
8 f dFl ags word Finder flags
10 prom sedFl avor long

Trap Macros

promised flavor containing FSSpec

Trap Macros Requiring Routine Selector
_DragDi spat ch

Selector
$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0009
$000A

2-90

Routine

I nstal | Tracki ngHandl er
I nst al | Recei veHandl er
RenoveTr acki ngHandl er
RenmoveRecei veHandl er
NewDr ag

Di sposeDr ag

AddDr agl t enFl avor

Set Dr agl t enFl avor Dat a
Set Dr agSendPr oc

CHAPTER 2

Drag Manager Programmer’s Guide

$000B Set Dr agl nput Proc
$000C Set Dr agDr awi ngPr oc
$000D Tr ackDr ag

$000E Count Dr agl t ens
$000F Get Dragl t enRef er enceNunber
$0010 Count Dr agl t enl avor s
$0011 Get Fl avor Type
$0012 Get Fl avor Fl ags
$0013 Get Fl avor Dat aSi ze
$0014 Get Fl avor Dat a
$0015 Get Dr agl t enBounds
$0016 Set Dr agl t enBounds
$0017 Get Dr opLocati on
$0018 Set Dr opLocat i on
$0019 Get DragAttri butes
$001A Get Dr agWbuse

$001B Set Dr aghbuse

$001C GetDragOrigin
$001D Get DraghWodi fiers
$001E ShowDragHilite
$001F H deDragH lite
$0020 DragPreScrol |

$0021 Dr agPost Scr ol |
$0022 UpdateDragHilite
$0023 Wi t MouseMoved
$0024 ZoonRect s

$0025 ZoonRegi on

_TEDi spat ch

Selector Routine

$000F TEGet Hi | it eRgn

2-91

CHAPTER 2

Drag Manager Programmer’s Guide

Result Codes

noErr
par ankrr
menful | Err

badDr agRef Er r

badDr agl t entrr
badDr agFl avor Err
dupl i cat eFl avor Err
cant Get Fl avor Err
dupl i cat eHandl er Err
dupl i cat eHandl er Err
dr agNot Accept edErr

2-92

-50
-108
-1850
-1851
-1852
-1853
-1854
-1855
-1856
-1857

No error

Parameter error

Not enough memory

Unknown drag reference

Unknown drag item reference
Unknown flavor type

Flavor type already exists

Error while trying to get flavor data
Handler already exists

Handler not found

Drag was not accepted by receiver

	Drag Manager Programmer’s Guide
	About the Drag Manager
	The Drag Process
	Starting a Drag
	Tracking a Drag
	Finishing a Drag

	Drag Items
	Drag Item Flavors
	Drag Handlers
	Drag Tracking
	Receiving Data

	Drag Procedures
	Sending Data
	Overriding Standard Input
	Overriding Standard Drawing

	Using the Drag Manager
	Installing and Removing Drag Handlers
	Recognizing the Start of a Drag
	Performing a Drag
	Adding Drag Item Flavors
	Creating the Drag Region
	Tracking a Drag
	Determining What is Being Dragged
	Receiving a Drop
	Providing Flavor Data on Demand

	Drag Manager Reference
	Constants
	Data Structures
	Drag Manager Routines
	Application- Defined Routines

	Summary of the Drag Manager
	Pascal Summary
	Constants
	Data Types
	Drag Manager Routines
	Application Defined Routines

	C Summary
	Constants
	Data Types
	Drag Manager Routines
	Application Defined Routines

	Assembly- Language Summary
	Constants
	Data Structures
	Trap Macros

	Result Codes

