Retired Documents Library Developer
Search

Next: , Previous: Mixed Declarations, Up: C Extensions


5.25 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a declaration. This keyword is followed by an attribute specification inside double parentheses. The following attributes are currently defined for functions on all targets: noreturn, returns_twice, noinline, always_inline, nodebug, regparmandstackparm, flatten, pure, const, nothrow, sentinel, format, format_arg, no_instrument_function, section, constructor, destructor, used, unused, deprecated, weak, malloc, alias, warn_unused_result, nonnull, gnu_inline and externally_visible. Several other attributes are defined for functions on particular target systems. Other attributes, including section are supported for variables declarations (see Variable Attributes), for types (see Type Attributes), and labels (see Label Attributes).

You may also specify attributes with `__' preceding and following each keyword. This allows you to use them in header files without being concerned about a possible macro of the same name. For example, you may use __noreturn__ instead of noreturn.

See Attribute Syntax, for details of the exact syntax for using attributes.

alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another symbol, which must be specified. For instance,
          void __f () { /* Do something. */; }
          void f () __attribute__ ((weak, alias ("__f")));
     

defines `f' to be a weak alias for `__f'. In C++, the mangled name for the target must be used. It is an error if `__f' is not defined in the same translation unit.

Not all target machines support this attribute.

always_inline
Generally, functions are not inlined unless optimization is specified. For functions declared inline, this attribute inlines the function even if no optimization level was specified.
gnu_inline
This attribute should be used with a function which is also declared with the inline keyword. It directs GCC to treat the function as if it were defined in gnu89 mode even when compiling in C99 or gnu99 mode.

If the function is declared extern, then this definition of the function is used only for inlining. In no case is the function compiled as a standalone function, not even if you take its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. This has almost the effect of a macro. The way to use this is to put a function definition in a header file with this attribute, and put another copy of the function, without extern, in a library file. The definition in the header file will cause most calls to the function to be inlined. If any uses of the function remain, they will refer to the single copy in the library. Note that the two definitions of the functions need not be precisely the same, although if they do not have the same effect your program may behave oddly.

If the function is neither extern nor static, then the function is compiled as a standalone function, as well as being inlined where possible.

This is how GCC traditionally handled functions declared inline. Since ISO C99 specifies a different semantics for inline, this function attribute is provided as a transition measure and as a useful feature in its own right. This attribute is available in GCC 4.1.3 and later. It is available if either of the preprocessor macros __GNUC_GNU_INLINE__ or __GNUC_STDC_INLINE__ are defined. See An Inline Function is As Fast As a Macro.

Note that since the first version of GCC to support C99 inline semantics /* APPLE LOCAL extern inline */ is 4.3 (4.2 for Apple's gcc), earlier versions of GCC which accept this attribute effectively assume that it is always present, whether or not it is given explicitly. /* APPLE LOCAL extern inline */ In versions prior to 4.3 (4.2 for Apple's gcc), the only effect of explicitly including it is to disable warnings about using inline functions in C99 mode.

nodebug
This attribute prevents debug information to be generated for the function. This is to avoid stepping into the function which is of no interest to the user how it is implemented. An example is the x86 vector intrinsics. This is temporary and will be removed in some future version of the compiler.


flatten
Generally, inlining into a function is limited. For a function marked with this attribute, every call inside this function will be inlined, if possible. Whether the function itself is considered for inlining depends on its size and the current inlining parameters. The flatten attribute only works reliably in unit-at-a-time mode.
cdecl
On the Intel 386, the cdecl attribute causes the compiler to assume that the calling function will pop off the stack space used to pass arguments. This is useful to override the effects of the -mrtd switch.
const
Many functions do not examine any values except their arguments, and have no effects except the return value. Basically this is just slightly more strict class than the pure attribute below, since function is not allowed to read global memory.

Note that a function that has pointer arguments and examines the data pointed to must not be declared const. Likewise, a function that calls a non-const function usually must not be const. It does not make sense for a const function to return void.

The attribute const is not implemented in GCC versions earlier than 2.5. An alternative way to declare that a function has no side effects, which works in the current version and in some older versions, is as follows:

          typedef int intfn ();
          
          extern const intfn square;
     

This approach does not work in GNU C++ from 2.6.0 on, since the language specifies that the `const' must be attached to the return value.

constructor
destructor
The constructor attribute causes the function to be called automatically before execution enters main (). Similarly, the destructor attribute causes the function to be called automatically after main () has completed or exit () has been called. Functions with these attributes are useful for initializing data that will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective-C.

deprecated
The deprecated attribute results in a warning if the function is used anywhere in the source file. This is useful when identifying functions that are expected to be removed in a future version of a program. The warning also includes the location of the declaration of the deprecated function, to enable users to easily find further information about why the function is deprecated, or what they should do instead. Note that the warnings only occurs for uses:
          int old_fn () __attribute__ ((deprecated));
          int old_fn ();
          int (*fn_ptr)() = old_fn;
     

results in a warning on line 3 but not line 2.

The deprecated attribute can also be used for variables and types (see Variable Attributes, see Type Attributes.)

dllexport
On Microsoft Windows targets and Symbian OS targets the dllexport attribute causes the compiler to provide a global pointer to a pointer in a DLL, so that it can be referenced with the dllimport attribute. On Microsoft Windows targets, the pointer name is formed by combining _imp__ and the function or variable name.

You can use __declspec(dllexport) as a synonym for __attribute__ ((dllexport)) for compatibility with other compilers.

On systems that support the visibility attribute, this attribute also implies “default” visibility, unless a visibility attribute is explicitly specified. You should avoid the use of dllexport with “hidden” or “internal” visibility; in the future GCC may issue an error for those cases.

Currently, the dllexport attribute is ignored for inlined functions, unless the -fkeep-inline-functions flag has been used. The attribute is also ignored for undefined symbols.

When applied to C++ classes, the attribute marks defined non-inlined member functions and static data members as exports. Static consts initialized in-class are not marked unless they are also defined out-of-class.

For Microsoft Windows targets there are alternative methods for including the symbol in the DLL's export table such as using a .def file with an EXPORTS section or, with GNU ld, using the --export-all linker flag.

dllimport
On Microsoft Windows and Symbian OS targets, the dllimport attribute causes the compiler to reference a function or variable via a global pointer to a pointer that is set up by the DLL exporting the symbol. The attribute implies extern storage. On Microsoft Windows targets, the pointer name is formed by combining _imp__ and the function or variable name.

You can use __declspec(dllimport) as a synonym for __attribute__ ((dllimport)) for compatibility with other compilers.

Currently, the attribute is ignored for inlined functions. If the attribute is applied to a symbol definition, an error is reported. If a symbol previously declared dllimport is later defined, the attribute is ignored in subsequent references, and a warning is emitted. The attribute is also overridden by a subsequent declaration as dllexport.

When applied to C++ classes, the attribute marks non-inlined member functions and static data members as imports. However, the attribute is ignored for virtual methods to allow creation of vtables using thunks.

On the SH Symbian OS target the dllimport attribute also has another affect—it can cause the vtable and run-time type information for a class to be exported. This happens when the class has a dllimport'ed constructor or a non-inline, non-pure virtual function and, for either of those two conditions, the class also has a inline constructor or destructor and has a key function that is defined in the current translation unit.

For Microsoft Windows based targets the use of the dllimport attribute on functions is not necessary, but provides a small performance benefit by eliminating a thunk in the DLL. The use of the dllimport attribute on imported variables was required on older versions of the GNU linker, but can now be avoided by passing the --enable-auto-import switch to the GNU linker. As with functions, using the attribute for a variable eliminates a thunk in the DLL.

One drawback to using this attribute is that a pointer to a function or variable marked as dllimport cannot be used as a constant address. On Microsoft Windows targets, the attribute can be disabled for functions by setting the -mnop-fun-dllimport flag.

eightbit_data
Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified variable should be placed into the eight bit data section. The compiler will generate more efficient code for certain operations on data in the eight bit data area. Note the eight bit data area is limited to 256 bytes of data.

You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly.

exception_handler
Use this attribute on the Blackfin to indicate that the specified function is an exception handler. The compiler will generate function entry and exit sequences suitable for use in an exception handler when this attribute is present.
far
On 68HC11 and 68HC12 the far attribute causes the compiler to use a calling convention that takes care of switching memory banks when entering and leaving a function. This calling convention is also the default when using the -mlong-calls option.

On 68HC12 the compiler will use the call and rtc instructions to call and return from a function.

On 68HC11 the compiler will generate a sequence of instructions to invoke a board-specific routine to switch the memory bank and call the real function. The board-specific routine simulates a call. At the end of a function, it will jump to a board-specific routine instead of using rts. The board-specific return routine simulates the rtc.

fastcall
On the Intel 386, the fastcall attribute causes the compiler to pass the first argument (if of integral type) in the register ECX and the second argument (if of integral type) in the register EDX. Subsequent and other typed arguments are passed on the stack. The called function will pop the arguments off the stack. If the number of arguments is variable all arguments are pushed on the stack.
format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf, scanf, strftime or strfmon style arguments which should be type-checked against a format string. For example, the declaration:
          extern int
          my_printf (void *my_object, const char *my_format, ...)
                __attribute__ ((format (printf, 2, 3)));
     

causes the compiler to check the arguments in calls to my_printf for consistency with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and should be printf, scanf, strftime or strfmon. (You can also use __printf__, __scanf__, __strftime__ or __strfmon__.) The parameter string-index specifies which argument is the format string argument (starting from 1), while first-to-check is the number of the first argument to check against the format string. For functions where the arguments are not available to be checked (such as vprintf), specify the third parameter as zero. In this case the compiler only checks the format string for consistency. For strftime formats, the third parameter is required to be zero. Since non-static C++ methods have an implicit this argument, the arguments of such methods should be counted from two, not one, when giving values for string-index and first-to-check.

In the example above, the format string (my_format) is the second argument of the function my_print, and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take format strings as arguments, so that GCC can check the calls to these functions for errors. The compiler always (unless -ffreestanding or -fno-builtin is used) checks formats for the standard library functions printf, fprintf, sprintf, scanf, fscanf, sscanf, strftime, vprintf, vfprintf and vsprintf whenever such warnings are requested (using -Wformat), so there is no need to modify the header file stdio.h. In C99 mode, the functions snprintf, vsnprintf, vscanf, vfscanf and vsscanf are also checked. Except in strictly conforming C standard modes, the X/Open function strfmon is also checked as are printf_unlocked and fprintf_unlocked. See Options Controlling C Dialect.

The target may provide additional types of format checks. See Format Checks Specific to Particular Target Machines.

format_arg (string-index)
The format_arg attribute specifies that a function takes a format string for a printf, scanf, strftime or strfmon style function and modifies it (for example, to translate it into another language), so the result can be passed to a printf, scanf, strftime or strfmon style function (with the remaining arguments to the format function the same as they would have been for the unmodified string). For example, the declaration:
          extern char *
          my_dgettext (char *my_domain, const char *my_format)
                __attribute__ ((format_arg (2)));
     

causes the compiler to check the arguments in calls to a printf, scanf, strftime or strfmon type function, whose format string argument is a call to the my_dgettext function, for consistency with the format string argument my_format. If the format_arg attribute had not been specified, all the compiler could tell in such calls to format functions would be that the format string argument is not constant; this would generate a warning when -Wformat-nonliteral is used, but the calls could not be checked without the attribute.

The parameter string-index specifies which argument is the format string argument (starting from one). Since non-static C++ methods have an implicit this argument, the arguments of such methods should be counted from two.

The format-arg attribute allows you to identify your own functions which modify format strings, so that GCC can check the calls to printf, scanf, strftime or strfmon type function whose operands are a call to one of your own function. The compiler always treats gettext, dgettext, and dcgettext in this manner except when strict ISO C support is requested by -ansi or an appropriate -std option, or -ffreestanding or -fno-builtin is used. See Options Controlling C Dialect.

function_vector
Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified function should be called through the function vector. Calling a function through the function vector will reduce code size, however; the function vector has a limited size (maximum 128 entries on the H8/300 and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.

You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly.

interrupt
Use this attribute on the ARM, AVR, C4x, CRX, M32C, M32R/D, MS1, and Xstormy16 ports to indicate that the specified function is an interrupt handler. The compiler will generate function entry and exit sequences suitable for use in an interrupt handler when this attribute is present.

Note, interrupt handlers for the Blackfin, m68k, H8/300, H8/300H, H8S, and SH processors can be specified via the interrupt_handler attribute.

Note, on the AVR, interrupts will be enabled inside the function.

Note, for the ARM, you can specify the kind of interrupt to be handled by adding an optional parameter to the interrupt attribute like this:

          void f () __attribute__ ((interrupt ("IRQ")));
     

Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF.

interrupt_handler
Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to indicate that the specified function is an interrupt handler. The compiler will generate function entry and exit sequences suitable for use in an interrupt handler when this attribute is present.
kspisusp
When used together with interrupt_handler, exception_handler or nmi_handler, code will be generated to load the stack pointer from the USP register in the function prologue.
longcall/shortcall
On the Blackfin, RS/6000 and PowerPC, the longcall attribute indicates that the function might be far away from the call site and require a different (more expensive) calling sequence. The shortcall attribute indicates that the function is always close enough for the shorter calling sequence to be used. These attributes override both the -mlongcall switch and, on the RS/6000 and PowerPC, the #pragma longcall setting.

See RS/6000 and PowerPC Options, for more information on whether long calls are necessary.

malloc
The malloc attribute is used to tell the compiler that a function may be treated as if any non-NULL pointer it returns cannot alias any other pointer valid when the function returns. This will often improve optimization. Standard functions with this property include malloc and calloc. realloc-like functions have this property as long as the old pointer is never referred to (including comparing it to the new pointer) after the function returns a non-NULL value.
model (model-name)
On the M32R/D, use this attribute to set the addressability of an object, and of the code generated for a function. The identifier model-name is one of small, medium, or large, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their addresses can be loaded with the ld24 instruction), and are callable with the bl instruction.

Medium model objects may live anywhere in the 32-bit address space (the compiler will generate seth/add3 instructions to load their addresses), and are callable with the bl instruction.

Large model objects may live anywhere in the 32-bit address space (the compiler will generate seth/add3 instructions to load their addresses), and may not be reachable with the bl instruction (the compiler will generate the much slower seth/add3/jl instruction sequence).

On IA-64, use this attribute to set the addressability of an object. At present, the only supported identifier for model-name is small, indicating addressability via “small” (22-bit) addresses (so that their addresses can be loaded with the addl instruction). Caveat: such addressing is by definition not position independent and hence this attribute must not be used for objects defined by shared libraries.

naked
Use this attribute on the ARM, AVR, C4x and IP2K ports to indicate that the specified function does not need prologue/epilogue sequences generated by the compiler. It is up to the programmer to provide these sequences.
near
On 68HC11 and 68HC12 the near attribute causes the compiler to use the normal calling convention based on jsr and rts. This attribute can be used to cancel the effect of the -mlong-calls option.
nesting
Use this attribute together with interrupt_handler, exception_handler or nmi_handler to indicate that the function entry code should enable nested interrupts or exceptions.
nmi_handler
Use this attribute on the Blackfin to indicate that the specified function is an NMI handler. The compiler will generate function entry and exit sequences suitable for use in an NMI handler when this attribute is present.
no_instrument_function
If -finstrument-functions is given, profiling function calls will be generated at entry and exit of most user-compiled functions. Functions with this attribute will not be so instrumented.
noinline
This function attribute prevents a function from being considered for inlining.
nonnull (arg-index, ...)
The nonnull attribute specifies that some function parameters should be non-null pointers. For instance, the declaration:
          extern void *
          my_memcpy (void *dest, const void *src, size_t len)
          	__attribute__((nonnull (1, 2)));
     

causes the compiler to check that, in calls to my_memcpy, arguments dest and src are non-null. If the compiler determines that a null pointer is passed in an argument slot marked as non-null, and the -Wnonnull option is enabled, a warning is issued. The compiler may also choose to make optimizations based on the knowledge that certain function arguments will not be null.

If no argument index list is given to the nonnull attribute, all pointer arguments are marked as non-null. To illustrate, the following declaration is equivalent to the previous example:

          extern void *
          my_memcpy (void *dest, const void *src, size_t len)
          	__attribute__((nonnull));
     

noreturn
A few standard library functions, such as abort and exit, cannot return. GCC knows this automatically. Some programs define their own functions that never return. You can declare them noreturn to tell the compiler this fact. For example,
          void fatal () __attribute__ ((noreturn));
          
          void
          fatal (/* ... */)
          {
            /* ... */ /* Print error message. */ /* ... */
            exit (1);
          }
     

The noreturn keyword tells the compiler to assume that fatal cannot return. It can then optimize without regard to what would happen if fatal ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables.

The noreturn keyword does not affect the exceptional path when that applies: a noreturn-marked function may still return to the caller by throwing an exception or calling longjmp.

Do not assume that registers saved by the calling function are restored before calling the noreturn function.

It does not make sense for a noreturn function to have a return type other than void.

The attribute noreturn is not implemented in GCC versions earlier than 2.5. An alternative way to declare that a function does not return, which works in the current version and in some older versions, is as follows:

          typedef void voidfn ();
          
          volatile voidfn fatal;
     

This approach does not work in GNU C++.

nothrow
The nothrow attribute is used to inform the compiler that a function cannot throw an exception. For example, most functions in the standard C library can be guaranteed not to throw an exception with the notable exceptions of qsort and bsearch that take function pointer arguments. The nothrow attribute is not implemented in GCC versions earlier than 3.3.
pure
Many functions have no effects except the return value and their return value depends only on the parameters and/or global variables. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute pure. For example,
          int square (int) __attribute__ ((pure));
     

says that the hypothetical function square is safe to call fewer times than the program says.

Some of common examples of pure functions are strlen or memcmp. Interesting non-pure functions are functions with infinite loops or those depending on volatile memory or other system resource, that may change between two consecutive calls (such as feof in a multithreading environment).

The attribute pure is not implemented in GCC versions earlier than 2.96.

regparm (number)
On the Intel 386, the regparm attribute causes the compiler to pass arguments number one to number if they are of integral type in registers EAX, EDX, and ECX instead of on the stack. Functions that take a variable number of arguments will continue to be passed all of their arguments on the stack.

Beware that on some ELF systems this attribute is unsuitable for global functions in shared libraries with lazy binding (which is the default). Lazy binding will send the first call via resolving code in the loader, which might assume EAX, EDX and ECX can be clobbered, as per the standard calling conventions. Solaris 8 is affected by this. GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be safe since the loaders there save all registers. (Lazy binding can be disabled with the linker or the loader if desired, to avoid the problem.)

sseregparm
On the Intel 386 with SSE support, the sseregparm attribute causes the compiler to pass up to 3 floating point arguments in SSE registers instead of on the stack. Functions that take a variable number of arguments will continue to pass all of their floating point arguments on the stack.
force_align_arg_pointer
On the Intel x86, the force_align_arg_pointer attribute may be applied to individual function definitions, generating an alternate prologue and epilogue that realigns the runtime stack. This supports mixing legacy codes that run with a 4-byte aligned stack with modern codes that keep a 16-byte stack for SSE compatibility. The alternate prologue and epilogue are slower and bigger than the regular ones, and the alternate prologue requires a scratch register; this lowers the number of registers available if used in conjunction with the regparm attribute. The force_align_arg_pointer attribute is incompatible with nested functions; this is considered a hard error.
returns_twice
The returns_twice attribute tells the compiler that a function may return more than one time. The compiler will ensure that all registers are dead before calling such a function and will emit a warning about the variables that may be clobbered after the second return from the function. Examples of such functions are setjmp and vfork. The longjmp-like counterpart of such function, if any, might need to be marked with the noreturn attribute.
saveall
Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that all registers except the stack pointer should be saved in the prologue regardless of whether they are used or not.
section ("section-name")
Normally, the compiler places the code it generates in the text section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. The section attribute specifies that a function lives in a particular section. For example, the declaration:
          extern void foobar (void) __attribute__ ((section ("bar")));
     

puts the function foobar in the bar section.

Some file formats do not support arbitrary sections so the section attribute is not available on all platforms. If you need to map the entire contents of a module to a particular section, consider using the facilities of the linker instead.

sentinel
This function attribute ensures that a parameter in a function call is an explicit NULL. The attribute is only valid on variadic functions. By default, the sentinel is located at position zero, the last parameter of the function call. If an optional integer position argument P is supplied to the attribute, the sentinel must be located at position P counting backwards from the end of the argument list.
          __attribute__ ((sentinel))
          is equivalent to
          __attribute__ ((sentinel(0)))
     

The attribute is automatically set with a position of 0 for the built-in functions execl and execlp. The built-in function execle has the attribute set with a position of 1.

A valid NULL in this context is defined as zero with any pointer type. If your system defines the NULL macro with an integer type then you need to add an explicit cast. GCC replaces stddef.h with a copy that redefines NULL appropriately.

The warnings for missing or incorrect sentinels are enabled with -Wformat.

short_call
See long_call/short_call.
shortcall
See longcall/shortcall.
signal
Use this attribute on the AVR to indicate that the specified function is a signal handler. The compiler will generate function entry and exit sequences suitable for use in a signal handler when this attribute is present. Interrupts will be disabled inside the function.
regparmandstackparm
This is an X86_32-specific attribute.

Two entry points will be created for this function. One will have the traditional calling convention, and the other will have a mangled name and a register-based calling convention.

The register-based calling convention will pass up to four float or double values in XMM registers, and up to two integral values in integer registers. Long double values are still passed on the stack, and functions returning long double will still use the x87 stacktop.

Other modules linked with this function may use either entry point. If a calling module has seen an extern declaration with the regparmandstackparm attribute, it will call the register-based entry point; otherwise, it will use the traditional entry point in the usual way.

When taking the address of a regparmandstackparm function, the address of the traditional entry point will be used. Calls through function pointers always use the traditional calling convention.

The mangled name is currently created by appending “$3SSE” to the original function name (before any C++ name-mangling), but users should not rely upon this.

The current implementation associates the original function body with the register-based entry point. The traditional entry point will load some registers from the stack and call the register-based entry point. This means the traditional entry point will be slightly less efficient than a function without the regparmandstackparm attribute, and the generated code will be slightly larger. Depending upon sizes and optimization levels, the inliner may inline the register-based body into the traditional entry point; nothing is done to preclude this. If the function was declared static, optimization may discard the original entry point entirely.

          extern double __attribute__ ((regparmandstackparm)) my_cos (double d);
     

sp_switch
Use this attribute on the SH to indicate an interrupt_handler function should switch to an alternate stack. It expects a string argument that names a global variable holding the address of the alternate stack.
          void *alt_stack;
          void f () __attribute__ ((interrupt_handler,
                                    sp_switch ("alt_stack")));
     

stdcall
On the Intel 386, the stdcall attribute causes the compiler to assume that the called function will pop off the stack space used to pass arguments, unless it takes a variable number of arguments.
tiny_data
Use this attribute on the H8/300H and H8S to indicate that the specified variable should be placed into the tiny data section. The compiler will generate more efficient code for loads and stores on data in the tiny data section. Note the tiny data area is limited to slightly under 32kbytes of data.
trap_exit
Use this attribute on the SH for an interrupt_handler to return using trapa instead of rte. This attribute expects an integer argument specifying the trap number to be used.
unused
This attribute, attached to a function, means that the function is meant to be possibly unused. GCC will not produce a warning for this function.
used
This attribute, attached to a function, means that code must be emitted for the function even if it appears that the function is not referenced. This is useful, for example, when the function is referenced only in inline assembly.
visibility ("visibility_type")
This attribute affects the linkage of the declaration to which it is attached. There are four supported visibility_type values: default, hidden, protected or internal visibility.
          void __attribute__ ((visibility ("protected")))
          f () { /* Do something. */; }
          int i __attribute__ ((visibility ("hidden")));
     

The possible values of visibility_type correspond to the visibility settings in the ELF gABI.

default
Default visibility is the normal case for the object file format. This value is available for the visibility attribute to override other options that may change the assumed visibility of entities.

On ELF, default visibility means that the declaration is visible to other modules and, in shared libraries, means that the declared entity may be overridden.

On Darwin, default visibility means that the declaration is visible to other modules.

Default visibility corresponds to “external linkage” in the language.

hidden
Hidden visibility indicates that the entity declared will have a new form of linkage, which we'll call “hidden linkage”. Two declarations of an object with hidden linkage refer to the same object if they are in the same shared object.
internal
Internal visibility is like hidden visibility, but with additional processor specific semantics. Unless otherwise specified by the psABI, GCC defines internal visibility to mean that a function is never called from another module. Compare this with hidden functions which, while they cannot be referenced directly by other modules, can be referenced indirectly via function pointers. By indicating that a function cannot be called from outside the module, GCC may for instance omit the load of a PIC register since it is known that the calling function loaded the correct value.
protected
Protected visibility is like default visibility except that it indicates that references within the defining module will bind to the definition in that module. That is, the declared entity cannot be overridden by another module.

All visibilities are supported on many, but not all, ELF targets (supported when the assembler supports the `.visibility' pseudo-op). Default visibility is supported everywhere. Hidden visibility is supported on Darwin targets.

The visibility attribute should be applied only to declarations which would otherwise have external linkage. The attribute should be applied consistently, so that the same entity should not be declared with different settings of the attribute.

In C++, the visibility attribute applies to types as well as functions and objects, because in C++ types have linkage. A class must not have greater visibility than its non-static data member types and bases, and class members default to the visibility of their class. Also, a declaration without explicit visibility is limited to the visibility of its type.

In C++, you can mark member functions and static member variables of a class with the visibility attribute. This is useful if if you know a particular method or static member variable should only be used from one shared object; then you can mark it hidden while the rest of the class has default visibility. Care must be taken to avoid breaking the One Definition Rule; for example, it is usually not useful to mark an inline method as hidden without marking the whole class as hidden.

A C++ namespace declaration can also have the visibility attribute. This attribute applies only to the particular namespace body, not to other definitions of the same namespace; it is equivalent to using `#pragma GCC visibility' before and after the namespace definition (see Visibility Pragmas).

In C++, if a template argument has limited visibility, this restriction is implicitly propagated to the template instantiation. Otherwise, template instantiations and specializations default to the visibility of their template.

If both the template and enclosing class have explicit visibility, the visibility from the template is used.

warn_unused_result
The warn_unused_result attribute causes a warning to be emitted if a caller of the function with this attribute does not use its return value. This is useful for functions where not checking the result is either a security problem or always a bug, such as realloc.
          int fn () __attribute__ ((warn_unused_result));
          int foo ()
          {
            if (fn () < 0) return -1;
            fn ();
            return 0;
          }
     

results in warning on line 5.

weak
The weak attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions which can be overridden in user code, though it can also be used with non-function declarations. Weak symbols are supported for ELF targets, and also for a.out targets when using the GNU assembler and linker.
weakref
weakref ("target")
The weakref attribute marks a declaration as a weak reference. Without arguments, it should be accompanied by an alias attribute naming the target symbol. Optionally, the target may be given as an argument to weakref itself. In either case, weakref implicitly marks the declaration as weak. Without a target, given as an argument to weakref or to alias, weakref is equivalent to weak.
          static int x() __attribute__ ((weakref ("y")));
          /* is equivalent to... */
          static int x() __attribute__ ((weak, weakref, alias ("y")));
          /* and to... */
          static int x() __attribute__ ((weakref));
          static int x() __attribute__ ((alias ("y")));
     

A weak reference is an alias that does not by itself require a definition to be given for the target symbol. If the target symbol is only referenced through weak references, then the becomes a weak undefined symbol. If it is directly referenced, however, then such strong references prevail, and a definition will be required for the symbol, not necessarily in the same translation unit.

The effect is equivalent to moving all references to the alias to a separate translation unit, renaming the alias to the aliased symbol, declaring it as weak, compiling the two separate translation units and performing a reloadable link on them.

At present, a declaration to which weakref is attached can only be static.

externally_visible
This attribute, attached to a global variable or function nullify effect of -fwhole-program command line option, so the object remain visible outside the current compilation unit

You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration.

Some people object to the __attribute__ feature, suggesting that ISO C's #pragma should be used instead. At the time __attribute__ was designed, there were two reasons for not doing this.

  1. It is impossible to generate #pragma commands from a macro.
  2. There is no telling what the same #pragma might mean in another compiler.

These two reasons applied to almost any application that might have been proposed for #pragma. It was basically a mistake to use #pragma for anything.

The ISO C99 standard includes _Pragma, which now allows pragmas to be generated from macros. In addition, a #pragma GCC namespace is now in use for GCC-specific pragmas. However, it has been found convenient to use __attribute__ to achieve a natural attachment of attributes to their corresponding declarations, whereas #pragma GCC is of use for constructs that do not naturally form part of the grammar. See Miscellaneous Preprocessing Directives.