
Client-Side Components: Support Classes

2

Client-Side Components: Support ClassesJava Client-Side Components

Java Client-Side Components

Introduction

Programs written for the World Wide Web implicitly acknowledge a well-defined and somewhat limiting separation
between the client (browser) and the server. Data can pass from server to the browser and back again, but only under
rigidly controlled conditions. This is considered true of object-oriented programs as well as procedural programs. For
example, you can have objects on the server side of a connection and objects on the browser side that have been
downloaded from the server. The server can pass initial values to the downloaded objects, but once they’re on the
page, these objects tend to be pretty much on their own.

A feature named Java client-side components bridges this “gulf.” It enables Java applets on the client side to synchronize
their states continuously with objects on the server side. Java client-side components also allow applets to trigger
action methods on the server.

There are several advantages to using client-side components in a WebObjects application. The most obvious benefit
is that Java applets have almost none of the limitations of forms. HTML forms are fixed and limited as to what they
can do or how they look. You have fields and buttons, and not much else. Applets, on the other hand, are true programs
with a graphical user interface, set in the context of an HTML browser. Applets can be just about any imaginable
control on a page: a dynamic calendar, a spreadsheet, a graphing tool. If a control that you need doesn’t exist, you can
create it, with a little work. And with a little extra work, you can get the applet to work with the objects on the server
side of a WebObjects application.

Another advantage of Java client-side components results from the way these components—that is, the applet
controls—communicate with the server. Previously, the initial state of applets could be downloaded from the server,
but that ended the communication. There was no way the applets could pass data back to the server or receive any
subsequent updated state from the server.

Client-side components enable applet controls to synchronize any change in their state with the server and to receive
back any further change in that state made by the server-side component. This state synchronization occurs in a
request-response cycle in which the response-generation phase is used primarily to return state. As a result, state is
synchronized without the page being reloaded.

Furthermore, client-side components allow users to activate applet controls to trigger action methods in the server
component, and elicit responses that can result in the re-synchronization of state or the return of a new page.

It’s easy to think of potential uses of client-side components. For example, you could have a tax-preparation
application in which an assortment of applets represent a tax form. The aggregate applet itself performs calculations on
the entered data, but it downloads timely information like tax tables from the server. When a form is complete, the
user could trigger an action method to store the current tax record in a database.

If Client-Side Components Doesn’t Work

After you install WebObjects, the Java client-side components feature should “just work” (assuming you have a Java-
enabled browser). Unfortunately, files are inadvertently moved or deleted sometimes. The following checklist will
assist you in situations like these. For Java client-side components to work, the following parts must be in place.

• You must have a Java-enabled browser.

• The following packages and classes must be installed in DOCUMENT_ROOT/

3

Client-Side Components: Support ClassesJava Client-Side Components

WebObjects/Java:
next.util.PropertyListUtilities.class
next.util.KeyValueCoding.class
next.wo.client.Association.class
next.wo.client.SimpleAssociation.class
next.wo.client.SimpleAssociationDestination.class

In addition, the next.wo.client.controls package, which contains the applet classes (TextFieldApplet, ButtonAp-
plet, and so on), must be installed in the same location. See “Client-Side Applet Controls” for descriptions of
each supported applet.

When NeXT's Java package is installed, it is written to NEXT_ROOT/NextLibrary/Java as well as to
DOCUMENT_ROOT/WebObjects/Java. If your DOCUMENT_ROOT has been deleted or corrupted, you can copy the
packages in NEXT_ROOT/NextLibrary/Java to DOCUMENT_ROOT/WebObjects/Java.

Of course, if you intend to create your own applets or Association subclasses, or do other Java development, you must
obtain Sun’s JDK (Java Development Kit) or a similar product.

If you install the development version of WebObjects, you get examples of applications that use client-side
components in NEXT_ROOT/NextDeveloper/Examples/WebObjects and example applet controls in the
next.wo.client.examples package (installed in both NEXT_ROOT/NextLibrary/Java and DOCUMENT_ROOT/WebObjects/
Java). The TimeOffJava example application contains the source code for the controls in next.wo.client.examples. You are
strongly encouraged to read the application's ReadMe file before attempting to compile this source code.

Note: If Java client-side components don't seem to work on your system, do not set the CLASSPATH environment
variable to point to the next.* packages in DOCUMENT_ROOT. Doing so might seem to resolve the problem, but this
is true only in those situations where the browser and server reside on the same machine.

How Client-Side Components Work

Client-side components have a duality in that they are represented by objects both on the client browser and in the
server component. On the client side they are specially modified or interfaced applets. On the server side, they are
represented by WOApplet dynamic elements.

A WOApplet dynamic element is a kind of “proxy” on the server for the applet. A WOApplet permits the
specification of applet-specific parameters, such as the dimensions of the applet and the location of the “.class” file to
download to the browser. It also allows you to initialize parameters to be downloaded to the applet and to bind an
applet’s keys to variables and methods in the server-side component. These bindings associate state in the applet
with state in the server and events in the applet with the invocation of methods in the server. What makes these
bindings possible is another parameter specified in a WOApplet declaration: an association class. By providing an
association class, you endow an applet with the capabilities of state synchronization and action invocation.

Before delving further into the subject of Associations, first consider the keys defined by an applet and how state
synchronization happens. An application determines the keys of an applet through the class of the applet (specified in
the code attribute) and the applet’s association class (specified in associationClass). Keys fall into two groups: state
bindings and action bindings. State bindings form the basis for state synchronization by associating state in the
applets with state in the server. Action bindings associate particular events in the client applet (such as button being
clicked) with the invocation of methods in the server.

4

Client-Side Components: Support ClassesJava Client-Side Components

Figure 1: Bindings Between Client and Server Components

State is synchronized between client and server in three phases:

1. When a page is first generated the server sends all state for which there are bindings to the client.

2. Before an action is invoked in the server, the client sends any of its state that has changed back to the server.

3. After the action is completed, the server sends of its state that has changed back to the client.

This last synchronization occurs only if no new page is returned to the browser. When a method invoked remotely
through an applet action binding returns nil, it signals that, instead of returning a new page, the server should re-
synchronized its state with the applets on the page. WebObjects “snapshots” the changes in state in the server so that
only the state that has changed is sent back to the client.

Note: The last two phases of synchronization cycle can only be initiated on the browser side. That is, except for the first
“initialization” phase, the server component can only react to an action triggered in an applet. The component cannot
unilaterally update the state of an applet when its own state changes.

An Association object—specifically an instance of an Association subclass—provides the “glue” that secures the
bindings of state and action between client and server. Associations know how to get and set the state of their applets
at run time. They are also responsible for knowing when to fire their applets’ supported actions. To enable this,
Associations for particular applets maintain a list of “keys” (state attributes) that the applet manages and a list of
actions that the applet can trigger. The value for a “key” must be a property-list type of object (either singly or in
combination, such as an array of string objects). The corresponding property-list type of objects for Objective-C and
Java are:

Table 1:

Objective-C Java

NSString String

NSArray Vector

NSDictionary Hashtable

NSData byte[]

stringValue

action

Main.wod

TEXTFIELD : WOApplet {
 // ...
 stringValue = aName;
};

BUTTON : WOApplet {
 // ...
 action = recordThis;
};

Main.wos

id aName;

- recordThis {
 // ...
};

AssociationKeys

5

Client-Side Components: Support ClassesJava Client-Side Components

Associations, however, don’t act alone. They mediate the exchange of state and action information between their
applets and a hidden applet downloaded along with the applets that appear on the page. This hidden applet,
AppletGroupController, controls the visible applets and handles communication back to the server. The
AppletGroupController uses an Association to access each of the applets on the page. It is through these Associations
that the data or state which each applet manages is passed to the AppletGroupController and, through it, to the server.
When an Association fires its applet’s action, the AppletGroupController does what is necessary to ensure that the
bound method in the server is invoked. An AppletGroupController, once downloaded, knows what class of
Association to use and what the destination applets are by inspecting the visible applets on the page and looking for
some special parameters.

Figure 2: The Principal Objects Involved in Client-Side Components

Sometimes an Association subclass can be tied to a particular “family” of applets instead a particular applet. Such is
the case with applets provided by NeXT. These applets use the SimpleAssociation class, but get and set the key
values themselves. To do this, they assume most of the duties of the Association by implementing the
SimpleAssociationDestination interface. You can adopt this strategy with applets that you create. See “Making Your
Own Java Client-Side Components” on page 9 for more information on this subject.

Integrating Client-Side Components

How do you get custom applet controls to work in a WebObjects application? This section describes the procedure.
Before you begin, however, make sure that the next.* package and all other ingredients needed for client-side
components are in place (see “If Client-Side Components Doesn’t Work” on page 1 for specifics).

Note: Most applet controls provided by NeXT are available on a WebObjects Builder palette. However, the
instructions below are geared toward hand-crafted HTML and declarations made in a “.wod” file. See “Loading and
Unloading Palettes” in “Advanced WebObjects Builder Tasks” for instructions on loading palettes.

The following instructions use the CapitalizeString example application to illustrate each of the steps.

serser ververcc lientlient
(br(br oo wser)wser)

WOApplet

page

dynamic and
static HTML
elements

Java applet

AppletGroup
Controller

Association

6

Client-Side Components: Support ClassesJava Client-Side Components

1. Place dynamic-element markers (WEBOBJECT) in the HTML file

You position and identify applet controls as dynamic elements in the HTML file of the component (page) just as you
do any other dynamic element.

<!-- Other HTML goes here -->

 Enter a string in the field, select a function from the list and press the Do It but-
ton:

 <WEBOBJECT name=INPUTFIELD></WEBOBJECT>

 <WEBOBJECT name=FUNCTION></WEBOBJECT>

 <WEBOBJECT name=BUTTON></WEBOBJECT>

 Result:

 <WEBOBJECT name=OUTPUTFIELD></WEBOBJECT>

<!-- Other HTML goes here -->

2. Make the appropriate WOApplet bindings

In the component’s “.wod” file, associate each identifier with a WOApplet dynamic element and initialize the standard
WOApplet attributes as well as those specific to the applet class.

INPUTFIELD : WOApplet {

 code = "next.wo.client.controls.TextFieldApplet.class";

 codebase = "/WebObjects/Java";

 width = "200";

7

Client-Side Components: Support ClassesJava Client-Side Components

 height = "20";

 associationClass = "next.wo.client.SimpleAssociation";

 stringValue = inputString

};

FUNCTION : WOApplet {

 code = "next.wo.client.controls.ChoiceApplet.class";

 codebase = "/WebObjects/Java";

 width = "100";

 height = "20";

 associationClass = "next.wo.client.SimpleAssociation";

 itemList = functionItemList;

 selectedItem = functionSelectedItem;

 backgroundColor = "white";

};

BUTTON : WOApplet {

 code = "next.wo.client.controls.ButtonApplet.class";

 codebase = "/WebObjects/Java";

 width = "200";

 height = "20";

 associationClass = "next.wo.client.SimpleAssociation";

 title = "DoIt";

 action = "capitalizeString"

};

OUTPUTFIELD : WOApplet {

 code = "next.wo.client.controls.TextFieldApplet.class";

 codebase = "/WebObjects/Java";

 width = "200";

8

Client-Side Components: Support ClassesJava Client-Side Components

 height = "20";

 associationClass = "next.wo.client.SimpleAssociation";

 stringValue = outputString;

 enabled = "NO";

};

The following WOApplet attributes are standard and require assigned values. Although you could bind these
attributes to variables, they are assigned constants in most cases. Constant values should be quoted.

code
The class (including complete package prefix) of the applet.

codebase
The DOCUMENT_ROOT subdirectory containing the package specified in the code attribute.

width
The width of the applet, in pixels.

height
The height of the applet, in pixels.

associationClass
The subclass of Association for objects that get and set the state of applets and cause methods to be invoked in
the server when actions are triggered in the applet. For the applet controls provided by NeXT, the Association
subclass is SimpleAssociation. As the example shows, you must specify the package as well as the class. This
attribute is optional. If you do not specify an Association subclass, however, then the applet is largely orna-
mental (as in WebObjects 2.0), since it is only able to accept initial values.

The reference chapter “Client-Side Applet Controls” describes the attributes representing the keys and actions of
particular applets provided by NeXT.

3. Declare and initialize variables for bound keys

In the implementation file or “.wos” script of the server-side component, declare transaction variables for each of the
key bindings made in the “.wod” file. Then you can initialize these variables in the init or awake methods. These
initialized values are downloaded to the applets when the page is composed.

id inputString;

id outputString;

id functionItemList;

id functionSelectedItem;

- init {

 self = [super init];

9

Client-Side Components: Support ClassesJava Client-Side Components

 // Set up parameter values

 inputString = @"Scrumptious";

 outputString = @"";

 functionItemList = [NSArray arrayWithObjects:@"Uppercase", @"Lowercase",

@"Capitalize", @"Flandersize", nil];

 functionSelectedItem = @"0";

 return self;

}

In this example, the initial values of both TextFieldApplets are set as well the items of the ListApplet. Setting the
functionSelectedItem to zero causes the first item in the functionItemList array (“Uppercase”) to be preselected.

4. Implement methods for bound actions

Implement action methods just as you do in other WebObjects scripts or Objective-C implementation methods. Just
be sure to return nil instead of self or a response page. This signals to the server-side component that it should
synchronize its state with the client applets after completion of the method.

- capitalizeString {

if ([functionSelectedItem isEqualToString:@"1"]) {

outputString = [inputString lowercaseString];

} else if ([functionSelectedItem isEqualToString:@"2"]) {

outputString = [inputString capitalizedString];

 } else if ([functionSelectedItem isEqualToString:@"3"]) {

if ([inputString length] > 4) {

outputString = [NSString stringWithFormat:@"%@-diddly-%@",

[inputString substringToIndex:5], [inputString substringFromIndex:3]];

} else {

outputString = [inputString stringByAppendingString:@"-eroonie"];

}

 } else {

outputString = [inputString uppercaseString];

 }

10

Client-Side Components: Support ClassesJava Client-Side Components

 return nil;

}

A Note on Backtracking

It is a good idea to have a “welcome” page for applications that use client-side components and, indeed, for all
WebObjects applications. Generally the client browser caches URLs and WebObjects caches the corresponding
component instances to use as request pages. When the user backtracks through the pages of a session and reaches the
first page, a new session will begin and you’ll lose all state associated with the lost session. The reason for this is that
the first page does not have a URL that includes the session ID, a context ID, and other important information.

In addition to having a “welcome” page as the first page, you can also disable caching by the client, setting the page
expiration date to “now.” This setting forces the URL request to be sent anew to the WebObjects application, which
regenerates the request page. You disable client caching by sending setPageRefreshOnBacktrackEnabled: to the
WOApplication object with an argument of YES (this happens automatically with pages that have client-side
components on them).

Making Your Own Java Client-Side Components

If none of the applets in next.wo.client.controls meets your needs, you can write your own applet and implement the
associative behavior that is necessary to make the applet a WebObjects client-side component. You can also turn
applets that you find on the Internet or buy into client-side components. The strategies you may adopt differ for
applets for which you have source code and those for which you don’t.

If you have the source code for an applet, you will probably want to modify it so that it implements the
SimpleAssociationDestination interface. Applets that implement this interface can use the SimpleAssociation class (a
subclass of Assocation) to mediate the exchange of state and action information with the AppletGroupController and
thus with the server. You are not required to take this course with applets for which you have the source; if you wish,
you can create a subclass of Association and implement the mandatory methods (see “Creating a Subclass of
Association” on page 11). However, applets that implement SimpleAssociationDestination do not require an
Association subclass tailored for them. Instead they can use the generic SimpleAssociation class.

Implementing the SimpleAssociationDestination Interface

If you write an applet, or aquire the source code for an applet, you will probably want to follow this procedure to give
the applet the associative behavior it needs to be a client-side component.

1. In the class declaration, insert the “implements SimpleAssociationDestination” clause.

public class MyApplet extends Applet implements SimpleAssociationDestination {

//

}

2. Implement the keys() method to return a list (Vector) of state keys managed by the applet.

11

Client-Side Components: Support ClassesJava Client-Side Components

 public Vector keys() {

 Vector keys = new Vector(1);

 keys.addElement("title");

 return keys;

 }

3. Implement the takeValueForKey(Object, String) and valueForKey(String) methods to set and get the values of keys.

 synchronized public Object valueForKey(String key) {

 if (key.equals("title")) {

 return this.getLabel();

 }

 }

 synchronized public void takeValueForKey(Object value, String key) {

 if (key.equals("title")) {

 if ((value != null) && !(value instanceof String)) {

 System.out.println("Object value of wrong type set for key

 'title'. Value must be a String.");

 } else {

 self.setLabel(((value == null) ? "" : (String)value));

 }

 }

You should be able to access the keys directly or, ideally, through accessor methods (“getLabel()” and “setLabel()”
in the above example). It is a good idea to use the synchronize modifier with takeValueForKey(Object, String) and
valueForKey(String) because these methods can be invoked from other threads to read or set data.

The remaining steps apply only if the applet has an action.

4. Declare an instance variable for the applet’s Association object and then, in setAssociation(Association), assigned the
passed-in object to that variable.

 protected Association _assoc;

 // ...

12

Client-Side Components: Support ClassesJava Client-Side Components

 synchronized public void setAssociation(Association assoc) {

 _assoc = assoc;

 }

The Association object must be stored so it can be used later as the receiver of the invokeAction() message. The Asso-
ciation forwards the action to the AppletGroupController, which handles the invocation of the server-side action
method.

5. When an action is invoked in the applet, send invokeAction(String) to the applet’s Association.

 synchronized public boolean action(Event evt, Object what) {

 if (_assoc != null) {

 _assoc.invokeAction("action");

 }

 return true;

 }

Creating a Subclass of Association

If you have an applet, but do not have the source code for it, you must follow the following strategy for making the
applet a client-side component. You must know the applet’s accessor methods for setting and getting state, and, if the
applet triggers actions, there must be some way for your Association to detect this. If the applet doesn’t have API for
getting and setting state, you cannot make the applet into a client-side component.

1. Declare an subclass of the Association class.

 class MyAssociation extends Association {

 // ...

 }

2. Implement the keys() method to return a list (Vector) of keys managed by the applet. See “Implementing the Sim-
pleAssociationDestination Interface” on page 9 for an example.

3. Implement the takeValueForKey(Object, String) and valueForKey(String) methods to set and get the values of keys. Use
Association’s destination() method to obtain the destination object (that is, the applet).

 synchronized public Object valueForKey(String key) {

 Object dest = this.destination();

 if (key.equals("title")) {

13

Client-Side Components: Support ClassesJava Client-Side Components

 return ((MyApplet)dest).getLabel();

 }

 }

 synchronized public void takeValueForKey(Object value, String key) {

 Object dest = this.destination();

 if (key.equals("title")) {

 if ((value != null) && !(value instanceof String)) {

 System.out.println("Object value of wrong type set for key

 'title'. Value must be a String.");

 } else {

 ((MyApplet)dest).setLabel(((value == null) ? "" : (String)value));

 }

 }

Note that the class of the destination applet (“MyApplet” in the example) must be cast.

If the applet triggers an action method, it must some mechanism for communicating this event to observers (such as
an “observeGadget()” method).

4. The Association responds to the triggering of the applet’s action by sending invokeAction(String) to itself.

 public void observeGadget(Object sender, String action) { // fictictious

 if ((sender instanceof Gadget) && action.equals(“vacuum”)) {

 this.invokeAction(action);

 }

 }

Note that in this hypothetical example, the Association must first set itself up as an observer.

