
Introduction

3

Introduction

WebObjects is an environment for developing and deploying World Wide Web
applications. For development, it provides a scripting language and objects that
you use to create web applications. For deployment, it provides a system of
interrelated components that connect your WebObjects applications to the
Web.

WebObjects gives you all the benefits of object technology. At the same time, it
scales to accommodate the complexity of your programming tasks. You can
create simple applications without having to compile anything—just implement
the logic in scripts. Scripted applications can even access your corporate
database. For more complex tasks, you can easily combine WebObjects with
your own compiled objects.

The Ingredients of a WebObjects Application

In its simplest form, a WebObjects application contains these ingredients:

• Dynamic HTML pages (called components)

• WebObjects classes that provide an infrastructure for the web application

• An application executable that responds to requests from a web browser

Of these ingredients, you only have to provide the components. Create an
application directory under <DocumentRoot>/WebObjects (<DocumentRoot> is your
HTTP server’s document root), and place the components in that directory.
The application directory must have the extension .woa.

A default application executable is provided as part of the WebObjects package.
The executable uses instances of the WebObjects classes to receive requests
from a web browser and responds to them using the components that you
provide.

More complex WebObjects applications may also contain:

• An optional application script that creates and manages application-wide
resources

• An optional session script that creates and manages session-wide resources

• Optional compiled code that implements custom data and logic (WebObjects
Pro and Enterprise only)

Introduction The Ingredients of a WebObjects Application

4

For information on using application or session scripts or including compiled
code, see “The Role of Scripts in a WebObjects Application” in “Using
WebScript” and “Compiling and Debugging WebObjects Applications.”

Components
To write a WebObjects application, you create components and connect them
together. A component is a page or portion of a page that has both HTML
content and behavior. Each component is located in its own directory named
Component.wo and generally contains these files:

• An HTML template (Component.html) that specifies how the page looks.

• A script file (Component.wos) that defines the component’s attributes (variables)
and implements its behavior in WebScript.

• A declarations file (Component.wod) that binds the dynamic elements of the
template to the script’s variables and actions.

• If necessary, any images or other resources the component uses.

Figure 1. The Contents of a Component Directory

The script file is only included in scripted components. You may also write
compiled components, which use Objective-C instead of a script file.

The first page of a WebObjects application is usually named Main.wo. When
users start a session with a WebObjects application, they can specify the name
of the first page, but such a practice is uncommon. If no page is specified,
WebObjects applications look for the Main.wo component.

Main.html Main.wod Main.wos

Main.wo

5

Introduction Connecting to a WebObjects Application

Note: Not all components represent an entire page. You can nest small, reusable
components inside a component representing a whole page. For more
information, see the “Creating Reusable Components” chapter.

Application Executables
Applications that don’t contain compiled code use WODefaultApp (located in
NextLibrary/Executables). This application uses the resources you provide to
respond to user requests.

If you incorporate compiled code into your WebObjects application, you must
also provide the application executable. You must write a main() function,
compile the source code, and link it with the WebObjects library. You place your
executable in NextLibrary/WOApps. See the “Compiling and Debugging
WebObjects Applications” chapter for more information.

Note: If you place the application executable in NextLibrary/WOApps, you can also
place the .woa there as well. For more information, see the description of WOApps
in “Where Things Go.”

Connecting to a WebObjects Application

To connect to a WebObjects application from a web browser, you open a URL
with the following form:

Figure 2. URL to Start a WebObjects Application

Communicating with a WebObjects application involves the following
processes:

• An HTTP server. Any HTTP server that uses the Common Gateway Interface
(CGI), the Netscape Server API (NSAPI), or the Internet Server API (ISAPI).

• A WebObjects adaptor. Acts as an intermediary between WebObjects
applications and HTTP servers. Adaptors insulate applications from server
interfaces by handling all server communication. Simply by switching

The WebObjects application
directory in <DocumentRoot>

Examples/HelloWorld

Name of the
Web server’s
cgi-bin directory

cgi-bin/

Web server
host name

//sonora/http: WebObjects/

Name of the
Web server’s
cgi-bin directory

cgi-bin/

WebObjects
adaptor name

Introduction Connecting to a WebObjects Application

6

adaptors, you use a different HTTP server and a different server interface
without modifying application code.

• A WebObjects application executable. The application executable receives
incoming requests and responds to them, usually by returning a dynamically
generated HTML page.

Figure 3. Chain of Communication between Browser and WebObjects

WebObjects Adaptors
The WebObjects adaptor receives requests from the server, repackages the
requests in a standard format, and forwards them to an appropriate WebObjects
application. All WebObjects adaptors communicate with WebObjects
applications in the same way, but they communicate with HTTP servers using
whatever interface is provided by a particular server. For example, the
WebObjects CGI adaptor uses the Common Gateway Interface, the Netscape
Interface adaptor uses the Netscape Server API, and the Internet Server adaptor
uses ISAPI. Thus, WebObjects adaptors can take advantage of server-specific
interfaces but still provide server-independence.

Figure 4. The Role of a WebObjects Adaptor

By default, WebObjects uses the WebObjects CGI adaptor. The Common
Gateway Interface is supported by all HTTP servers, so you can use the CGI
adaptor with any server—including those that are publicly available. As
performance demands increase, use one of the other adaptors with a server that
supports the corresponding API (Netscape Server API or Internet Server API).
Such servers are capable of dynamically loading the adaptor, eliminating the
overhead of starting a new process for each request. As shown in Figure 5, the
communication between the adaptor and the HTTP server occurs inside a
single process.

WebObjects
Adaptor

Web
Browser

WebObjects
Application

HTTP
Server

WebObjects
Adaptor

HTTP
Server

WebObjects
Application

WebObjects
Interface

Server
Interface

7

Introduction Connecting to a WebObjects Application

Figure 5. The Netscape Interface Adaptor

“Serving WebObjects” describes how to configure a WebObjects adaptor.

The WebObjects Application Executable
When a WebObjects application receives a request from a WebObjects adaptor,
it processes the request in three phases. As shown in Figure 6, the application
uses the page-to-script mappings defined in the declarations files to:

• Extract the values from the request and map them to the script.
• Invoke an action.
• Generate a response page.

WebObjects
Application

WebObjects
Interface

Netscape
Interface
Adaptor

Netscape
Commerce

Server

Introduction Connecting to a WebObjects Application

8

Figure 6. Request-Response Loop

The following sections describes what happens during each phase.

Take Values From Request
The application prepares for the request by updating variables in the request
page—the page from which the request was made. That is, if a user has provided
any input that maps to a component variable, the application assigns the new
value to the variable. For example, when a user clicks Submit in the first page
of the HelloWorld example application (in
NextLibrary/Examples/WebObjects/HelloWorld.woa), the application gets the value from
the text field and assigns it to the visitorName variable defined in the Main
component.

Invoke Action
After preparing for the request, the application determines whether or not the
user has triggered an action. If an action has been triggered—for example, if the
user clicked a button or a hyperlink—the application invokes the action method
that corresponds to what the user did. For example, clicking Submit in
HelloWorld has the effect of invoking the sayHello action method. An action
method returns a component that represents the response page—the page that is
sent back to the web server. sayHello returns a component that represents the

WebObjects Application

1 Take Values
 From Request

2 Invoke Action

3 Generate
 Response

Request
Page

User
performs an
action.

Response
Page

User sees the
next page.

Web Browser WebObjects AdaptorHTTP Server

Request Request Component

Returns
response
component.

Response
Component

Generates
response
page.

ResponseResponse

9

Introduction Where Things Go

Hello page. If the user does not trigger an action, the components for the request
page also represents the response page.

Generate Response
The response page component generates the HTML for the response. Using
the HTML template and declarations file, the component generates the
HTML that is eventually displayed in the user’s web browser. For example,
after Submit is clicked in HelloWorld and sayHello returns the component for the
Hello page, the Hello page component generates the resulting personalized
greeting.

Where Things Go

Figure 7. WebObjects Directories

HelloWorldDodgeLite

WebObjects

Executables

WODefaultApp

Frameworks

WebObjects

NEXT_ROOT

NextDeveloper NextLibrary

WOAdaptors WOApps

CGI ISAPI NSAPI

Examples

Introduction Where Things Go

10

NeXT_ROOT, the installation directory, depends on the platform you are using:

After you install WebObjects, you’ll find the following items:

• NextDeveloper/Apps/WebObjectsBuilder.app contains the WebObjects Builder
application (WebObjects Pro or Enterprise only).

• NextDeveloper/Examples/WebObjects contains several sample WebObjects
applications.

• NextLibrary/WOAdaptors contains the WebObjects adaptors. If you have
WebObjects Pro or Enterprise, this directory also contains adaptor source
code, which you can compile for additional platforms.

Your HTTP server does not access the adaptor in this directory. Instead, it
accesses a link or copy of it in the server’s <cgi-bin> directory.

• NextLibrary/WOApps is an empty directory when first installed. If you create
applications that contain compiled code, you place the application’s
executable in this directory.

If the application’s executable is in WOApps, you can also place the
application’s .woa directory in WOApps. This ensures the .woa directory’s
privacy; if you place the .woa under the document root and outside users
have read access on .wos and .wod files, they have access to the application’s
source. However, if the application imports any images or sounds, you must
leave a “sparse” copy of the application in the document root so that the
client’s browser can find these resources. In this case “sparse” means that
the application’s directory structure is reproduced in the document root, but
the only files it contains are the static resources that the server must dispense
to a client’s browser.

Note: Applications in WOApps must include the executable file. If you have a
WebObjects application that relies on the generic application executable
(NextLibrary/Executables/WODefaultApp) and you want to place it in WOApps, you
can still do so. Copy WODefaulApp into that application’s directory and name
the copy after your application.

Platform Installation Directory

Mach /

Solaris Defined at installation time.

Windows NT Defined at installation time.

11

Introduction Where Things Go

• NextLibrary/Executables contains WODefaultApp, the generic application
executable.

• NextLibrary/Frameworks contains the WebObjects framework, the library of
WebObjects classes. This is also where you find header files.

To run the WebObjects applications you write, your web server must be able to
access the adaptor and the application’s code or script. Therefore, after installing
WebObjects, make sure your web server’s directories contain the following links
or copies:

• <cgi-bin>/WebObjects is a copy of or link to the CGI adaptor
NextLibrary/WOAdaptors/CGI/WebObjects (or WebObjects.exe).

• <DocumentRoot>/WebObjects/Examples is a copy of or link to
NextLibrary/Examples/WebObjects.

Figure 8 shows the resources that should be present in your web server after the
WebObjects installation process is completed. If any of these links or copies are
missing, check the instructions “About WebObjects.”

Figure 8. The Contents of Your Web Server’s Directories After Installing WebObjects

WebObjects

HelloWorldDodgeLite

DocumentRoot

Examples

cgi-bin

WebObjects

Introduction Summary

12

Summary

What’s in a WebObjects Application?
A typical WebObjects application contains the following ingredients:

• Components that specify the content, presentation, and behavior of the
application’s pages

• An optional application script that creates and manages application-wide
resources

• An optional session script that creates and manages session-wide resources

• Optional compiled code that implements custom data and logic

• WebObjects classes that provide an infrastructure for the web application

What Parts Do I Write?
You write the following parts of a WebObjects application:

• Components consisting of HTML templates, script files, and declarations
files

• An optional application script

• An optional session script

• Optional compiled code

How Do I Run a WebObjects Application?
To run a WebObjects application, you open an URL with the following form:

Figure 9. URL to Start a WebObjects Application

How Do I Connect a WebObjects Application to the Web?
To connect a WebObjects application to the Web, you need the following:

The WebObjects application
directory in <DocumentRoot>

Examples/HelloWorld

Name of the
Web server’s
cgi-bin directory

cgi-bin/

Web server
host name

//sonora/http: WebObjects/

Name of the
Web server’s
cgi-bin directory

cgi-bin/

WebObjects
adaptor name

13

Introduction Summary

• An HTTP server. You can use any HTTP server that uses the Common
Gateway Interface (CGI), the Netscape Server API (NSAPI), or the Internet
Server API (ISAPI).

• A WebObjects adaptor. A WebObjects adaptor connects WebObjects
applications to the Web by acting as an intermediary between web
applications and HTTP servers.

• A WebObjects application executable. An application executable receives
incoming requests and responds to them, usually by returning a dynamically
generated HTML page.

What Happens Behind the Scenes?
Behind the scenes of a running WebObjects application, the application enters
a request-response loop each time it receives a request. In the request-response
loop, a WebObjects application uses the page-to-script file mappings defined in
declarations files to:

• Take values from the request.
• Invoke an action.
• Generate a response page.

Introduction Summary

14

