
Managing State

95

Managing State

Originally, the World Wide Web was designed solely for “stateless” applications.
An application could display pages and even request information from the user,
but it couldn’t keep track of a particular user from one transaction to the next.
Such an application is like a person with no long-term memory. Each interaction
begins with not so much as a “Haven’t we met somewhere before?” and ends
with an implied “Farewell forever!” Stateless applications aren’t well-suited for
on-line commerce since it wouldn’t do to lose a customer’s order between the
catalog and billing pages. A remedy had to be found.

Given the ingenuity of software developers, not one but several solutions have
been advanced. They fall into two basic categories:

• Storing state information on the client’s machine. With each transaction the
client passes the state information back to the server, in effect “reminding”
the server of the client’s identity and the state information associated with
that client. (This approach includes storing state in the page and using cookies,
as explained later in this chapter.)

• Storing state information on the server. With each transaction, the web
application locates the state information associated with a request from a
particular client. The state information might be stored in memory, in a file
on disk, or in a standard database, depending on the application.

Passing state back to the client with every transaction simplifies the accounting
associated with state management but is inefficient and can constrain the design
of your site. Storing state on the server, on the other hand, requires sophisticated
applications that can keep track of per-session information no matter how many
users are accessing the application simultaneously. However, without support
from your programming environment, storing state on the server is not an
attractive option.

As you’ll see in this chapter, WebObjects lets you easily make use of any of these
state-storage solutions. For a given application, state management can be as
simple as selecting the management strategy you want to use and identifying
the information that you want stored on a per-session basis. The WebObjects
framework does the rest no matter how many users will be accessing the
application simultaneously.

This chapter discusses the issues involved with storing session state and
describes the different mechanisms available for storing and managing state
information. Some of the topics covered are:

• When Do You Need to Store State?
• Objects and State
• State Management and the Request-Response Loop

Managing State When Do You Need to Store State?

96

• State Storage Strategies
• Controlling Session State
• Controlling Component State

When Do You Need to Store State?

Web applications that store state information are necessarily somewhat more
complex than those that don’t. State storage can also raise scalability (such as
how much physical storage should an application server have for a given number
of simultaneous users) and performance issues . Given these considerations, it’s
clearly best to avoid storing state.

Applications differ widely in their state storage requirements. At one extreme
are simple applications that vend read-only pages (company information,
specifications for hardware devices, and so on). These traditional World Wide
Web applications don’t need to store state information. At the other extreme are
commercial applications that let users wheel virtual shopping carts from page to
page, selecting items for purchase. These applications must keep track of order
information on a per-user basis. Considering that a popular site could have scores
of simultaneous sessions, these commercial applications must employ a
sophisticated means of handling state for each session. Somewhere between
these extremes are applications with simple state storage requirements, such as
keeping track of the total number of votes on an issue, the number of visitors to
the web site, and so on.

Characteristically, WebObjects takes an object-oriented approach to fulfilling
any of these state-storage requirements.

Objects and State

WebObjects defines three classes that manage state in an application—
WOApplication, WOSession, and WOComponent. (Note: In Java these classes
are known as WebApplication, WebSession, and Component.) An application
object handles state associated with the application as a whole, session objects
handle state associated with a particular user session within the application, and

97

Managing State Objects and State

component objects handle state associated with a particular page or component
within a session:

Figure 1. Application, Sessions, and Components

Keep in mind as you read about these classes and about their participation in the
request-response loop that the behaviors described are the default ones. Since
these classes are public, you are free to change or augment their behaviors either
by overriding their methods in scripts, by adding methods through categories, or
by creating and using subclasses in their place.

The Application Object and Application State
No matter how many client sessions a WebObjects application is serving, it has
one and only one application object. Each page (actually each component, as
you learned in previous chapters) knows how to access the application object, so
this is the logical place to store data that needs to be shared by all components
in all sessions of an application.

Application state is typically stored in the application object’s instance variables.
For example, if you look at Application.wos in the CyberWind example that comes
with the WebObjects release, you’ll see that the application object keeps track
of the number of sessions that have been created, the total number of requests
for all sessions, how long the application has been running, and other statistics:

id sessionCount;

id requestCount;

id upSince;

id activeSessions;

Managing State Objects and State

98

- init {

 [super init];

 upSince = [NSCalendarDate date];

 [upSince setCalendarFormat:@"%d %b %Y %H:%M:%S"];

 return self;

}

- createSession {

 activeSessions++;

 return [super createSession];

}

Components can access this information in a couple of ways. Using “dot
notation” you can bind an attribute of a component’s dynamic element to the
state stored in the application object:

Figure 2. Binding a WOString to a Session Variable

A component can also access application variables through its scripted or
compiled code:

- isLuckyWinner {
if ([[self application] sessionCount] == 1000)

return YES;
return NO;

}

Application state is accessible to any component within the application and, of
course, persists for as long as the application is running. If your site runs multiple
instances of the same application, application state must be accessible to all
instances. In this case, application state might be best stored in a file or database,
where application instances could easily access it. This approach is also useful as
a safeguard against losing application state (such as the number of visitors to the
site) if an application instance crashes.

99

Managing State Objects and State

The Session Object and Session State
A more interesting type of state that web applications can store is the state
associated with a user’s session. This state might include the selections a user
makes from a catalog, the total cost of the selections so far, or the user’s billing
information. The details of how WebObjects handles session state are discussed
in “State Management and the Request-Response Loop” below, but a quick
overview will help you understand the scope and duration of session state.

A WebObjects application centralizes session state in objects of the WOSession
class (called WebSession, in Java). Each user session has one and only one
session object, and a single WebObjects application has as many session objects
as it has active user sessions. The session objects segregate data in one session
from that in another. There’s no way for one session to query or set the data in
another. If data needs to be shared across sessions, the application object should
be used.

The URLs that make up the requests to a WebObjects application contain an
identifier for a particular session within the application. Using this identifier, the
application can restore the state corresponding to that session before the request
is processed. If the request is that of a user contacting the application for the first
time, a new session object is created for that user.

As you can imagine, storing data for each session has the potential of consuming
excessive amounts of resources, so WebObjects lets you set a timeout for session
objects and lets you terminate them directly.

In summary, session state is only accessible to objects within the same session,
and persists only as long as the session object persists.

Component Objects and Component State
In WebObjects, state can also be scoped to a component, such as a dynamically
generated page or a reusable component within a page. This state is
encapsulated in an object of the WOComponent class (or Component in Java).
A component only exists within a session; that is, each session has it own
component instances. Component instances are not shared across sessions.

Component state typically includes the data that a page displays, such as a list
of choices to present to the user (see Main.wo in the CyberWind or DodgeLite
examples). Suppose a user requests the page that lists these choices. The
component that represents the page needs to initialize itself with the choice
data and then return the response page. This completes one transaction. Now
suppose the user looks at the list of choices, selects the third car down, and
submits a new request. The same component must be present in this second

Managing State State Management and the Request-Response Loop

100

transaction to identify the choice and take the appropriate action. In short,
component state often needs to persist from one client-server transaction to the
next.

Component state is scoped to a component object, but it only exists within a
session. Within a session, a component’s state is often set or queried by other
components, but a component’s state is not visible across user sessions. So, you
can think of component state as being a specific type of session state.

Component state persists until the component object is deallocated, which
occurs for various reasons, as described later.

State Management and the Request-Response Loop

As you’ve seen in the previous chapter, “How WebObjects Works,” WebObjects
manages session state as part of the request-response loop. User-specific state—
whether it’s associated with an individual component or with the entire
session—is kept in a session object that’s made available when a request is
received and is stored away after the response page is sent. This section takes a
closer look at how WebObjects manages session objects.

First Contact: A New Session
A user first contacts a WebObjects application by directing a browser to open a
location with a URL of this type (using the CyberWind example for illustration):

http://localhost/cgi-bin/WebObjects/Examples/CyberWind

When the WebObjects application receives this request (in the application
objects’s handleRequest: method), the application object searches the request
URL for a session identifier. Since this is the first request, the URL doesn’t
include this identifier and so the application creates a new session by sending
itself a createSession message.

The next step is to find the requested page. Pages are normally accessed
through the session object, but since this is a new session it doesn’t yet have any
pages. So, the application creates a new component for the page called “Main”.
(Remember, if no page is specified in the request, WebObjects assumes a page
name of “Main”.)

From this point on, the request processing proceeds as described in the last
chapter, with the page taking values from the request, invoking an action
method, and finally returning a response page to the application.

101

Managing State State Management and the Request-Response Loop

The application object saves the response page in the session object and then
saves the session object in the application-wide session store (an object of the
WOSessionStore class). You’ll learn more about the session store in “State
Storage Strategies” below, but for now it’s sufficient to know that a session store
is a repository for the application’s session objects when they are not actively
engaged in request-response loop processing. Finally, the application returns to
the client the HTTP response generated by the response page.

Accessing an Existing Session
The page returned to the user may contain hyperlinks, active images, or submit
buttons that let the user make some choice about what happens next. For
instance, the CyberWind example gives the user the choice of visiting some on-
line surf shops or placing an order.

Figure 3. Initial Page in a Session

If you view the web browser’s source for this HTML page, you’ll find that the
hyperlinks specify destinations like this:

Clicking a hyperlink has the effect of submitting one of the URLs above. These
URLs encode everything the WebObjects application needs to find the
appropriate page within the newly established session. More generally, once a

Choose between the following menu options:

See surfshop information

Buy a new sailboard

Managing State State Management and the Request-Response Loop

102

session has been established, an HTTP request to a WebObjects application has
this format:

Figure 4. Parts of a WebObjects URL

Once a session has been established, URLs to the application contain an
embedded session identifier, as you see above. Since sessions are designed to
protect the data of one user’s transactions from that of another, it’s important that
session IDs cannot be easily predicted or faked. To this end, WebObjects uses
randomly generated 32-digit integers as session IDs. (You can override
WOSession’s sessionID method to implement another security scheme if you’d
like.) The URL also specifies the name of the page that should process this
request (Main.wo) and provides a context ID to further identify the request-
processing page—more on context IDs below.

http://ursa/cgi-bin/WebObjects/SomeWebApp.woa/ 1933547151826100838039837077512 /Main.wo/62793212911/0.1.0/-/ursa

application name

adaptor name secure session ID

page name

context ID

active element ID

HTTP server name

application instance number

application server name

103

Managing State State Management and the Request-Response Loop

Using the session ID, the application can retrieve the corresponding session
object from the session store, thus maintaining an association between incoming
requests and the sessions they belong to:

Figure 5. Associating a Request with a Session Object

Next, the session object must locate the page that will process this request. The
page name is part of the URL, but the name alone is not enough—this is where
the context ID comes in. A context ID is needed to identify a page as it existed
at the end of a particular transaction. An example will help clarify the need for a
context identifier.

Imagine you’re accessing a WebObjects application that lets you subscribe to
various publications. You navigate from the site’s home page to the order page
where you select a publication, and then you go to the customer information
page and fill in your address. After submitting this information, you navigate
back to the home page. Next, you decide to enter a subscription for a friend. You
follow the process a second time, selecting a different publication and entering
your friend’s address.

At this point, within a single session with the subscriptions application, you’ve
accessed the same pages twice, entering different information each time. Let’s
say that you now realize that you made a mistake in your own address, so you
backtrack to that page, change the address, and resubmit the information. It’s
important that the new address information is submitted to the customer
information page as it existed during the first order so that the revised
information can be associated with the right publication order.

Managing State State Storage Strategies

104

WebObjects associates a different context ID (again, a randomly generated
integer—to maintain security) with each transaction that occurs between a
client browser and the WebObjects application. A request to a session includes
both the name of request page and a context ID so the session object can locate,
from its cache of page instances, the appropriate one to handle the request.

State Storage Strategies

WebObjects gives you the option of storing state in various ways:

• In the server. State is maintained in memory within a WebObjects application.

• In the page. State is embedded in the HTML page that’s returned to the user.

• In cookies. State is embedded in name-value pairs (“cookies”) in the HTTP
header and passed between the client and server. Like “state-in-the-page”,
cookies store state on the client.

• In custom stores. State is stored using a mechanism of your own design.

By default, WebObjects uses the first approach, storing state in the server.
Before examining how to use these different strategies, let’s take a look at some
of their advantages and disadvantages.

Comparison of Storage Options
These options are discussed in more detail in later sections, but seeing an overall
comparison might save you time in deciding which options to explore.

Table 1: Comparing Storage Schemes

feature State in server State in page State in cookies Custom storage

Simplicity Simplest approach;
WebObject’s default.

Relatively simple, but
can involve design
changes to application.

Relatively simple. More complex.

Security Secure since state is
on server and accessed
by encrypted session
IDs.

Since data is passed to
client, opens possibil-
ity that data could be
modified by user.

Since data is passed to
client, opens possibil-
ity that data could be
modified by user.

If stored on server, can
be as secure or more
secure than state-in-
server.

105

Managing State State Storage Strategies

If you know you want to use WebObjects’ default server-side storage
mechanism, read the “State in the Server” section below and then you can skip
to “Controlling Session State” for information about managing the memory
requirements of your application. If you want to examine the other storage
options in more detail, continue with “A Closer Look at Storage Strategies”.

A Closer Look at Storage Strategies
The SessionStores example application that accompanies this documentation
demonstrates various ways to store state. The code excerpts used in the
following sections come from the SessionStores example, so please refer to the
example itself for more details about the implementation.

Note: The SessionStores example was designed to illustrate WebObjects’
support for various state storage strategies and so lets you switch between
strategies while the application is running. This is not a design you should
emulate in your applications—changing storage strategies mid-session can
cause errors. For example, imagine an application that stores state in the page
during the first half of a session and stores state in cookies for the second. Now

Scalability Can consume lots of
memory. Also, can’t
use round-robin
request handling once
state is established in a
particular application
instance.

More scalable since
any application
instance can handle a
request (because state
is bundled with each
request). Applications
don’t grow when new
sessions are added.

Not very scalable.
Cookie specification
limits capacity to 4K
bytes per cookie, but
some browsers have
further limitations.

Depends on design of
storage. If filesystem
or database used for
storage, can scale to
accommodate almost
any need.

Reliability Least reliable since if
the server crashes,
state is lost.

More reliable since a
server crash doesn’t
affect state stored on
client.

More reliable since a
server crash doesn’t
affect state stored on
client.

Can be extremely reli-
able if state is stored in
server file system or
database.

Other Performance can suf-
fer if lots of data is
passed back and forth
between client and
server. State can
become out of sync,
especially when using
frames (see below).

Client can refuse to
accept cookies.

Table 1: Comparing Storage Schemes

feature State in server State in page State in cookies Custom storage

Managing State State Storage Strategies

106

suppose that the user backtracks from a page in the second half to one in the first
and resubmits the page. The application’s strategy and the actual storage
mechanism won’t match, and state will be lost.

The SessionStores application presents the user with a choice of storage
strategies:

Figure 6. SessionStores: Storage Choices

Once an initial choice has been made, the application plays a guessing game
with the user:

Figure 7. SessionStores: Guessing Game

As you can see, the application keeps track of a user’s previous guesses within a
session—this, in part, is the state that must be stored from transaction to
transaction.

This application switches between storage strategies through the facilities of the
WOApplication and WOSessionStore classes. WOApplication declares the
setSessionStore: method that lets you switch between strategies, and
WOSessionStore declares the following methods to create specific types of
session stores:

• serverSessionStore
• pageSessionStore
• cookieSessionStoreWithDistributionDomain:secure:

In the SessionStores example, the setStateStorageStrategy method demonstrates
how these methods work together to set the application’s storage type (from

107

Managing State State Storage Strategies

StoreSwitch.wos). When the user makes a choice from the strategy list, the
setStateStorageStrategy method is invoked and sets the desired strategy:

- setStateStorageStrategy {

id sessionStore;

id strategyIndex;

...

// Code to determine the value of strategyIndex

// which indicates which choice the user has made

...

// Set the state storage strategy

if (strategyIndex == 0) {

sessionStore = [WOSessionStore serverSessionStore];

} else if (strategyIndex == 1) {

sessionStore = [WOSessionStore pageSessionStore];

} else if (strategyIndex == 2) {

sessionStore = [WOSessionStore

cookieSessionStoreWithDistributionDomain:@”” secure:NO];

} else if (strategyIndex == 3) {

// Use a custom session store

sessionStore = [[[FileSessionStore alloc] init] autorelease];

}

[[self application] setSessionStore:sessionStore];

...

return [[self application] pageWithName:@"Pages/Guess"];

}

(Notice too that this application lets the user choose to store state in the file
system using the custom FileSessionStore class. We’ll examine this approach in
“Custom State Storage Options” below.)

Normally, an application chooses just one storage strategy for the duration of its
execution and so establishes that strategy in the init method of the Application.wos
file.

Managing State State Storage Strategies

108

State in the Server
Storing state in memory on the application server is WebObjects default
behavior. As you can see from the SessionStores example, the server session
store object is accessible from the WOSessionStore class:

id sessionStore = [WOSessionStore serverSessionStore];

[[self application] setSessionStore:sessionStore];

In later sections, we’ll look at the principal ways of controlling the amount of
memory that this state storage mechanism consumes:

• Setting session timeouts (see “Managing Session Resources”)

• Setting the size of the page cache (see “Server-Side Page Caching”)

• Page uniquing by implement pageWithName: in the session object (see
“pageWithName: and Page Caching”)

One consequence of storing state in memory should be emphasized: Once state
for a session is established in a particular application instance, all subsequent
requests in that session must return to that instance. WebObjects handles this
automatically by including the application instance number in the URL, as
illustrated in Figure 2: “Parts of a WebObjects URL”.

However, at a popular web site it may be desirable to have multiple application
instances (perhaps running on different physical machines) service incoming
requests. As long as the application is stateless—or the state is stored outside the
application (as with any of the other techniques described here)—the
WebObjects adaptor can route requests to any available application. However, if
session state is stored in memory, a request must return to the application that
stores that state. (See Serving WebObjects for more information about running
multiple application instances.)

State in the Page
The HTML specification defines an input element of type “hidden” that’s
commonly used to pass state information back and forth between the client and
server. The hidden field simply contains text that is not displayed in the user’s
browser. For example using state in the page, the HTML source for the Guess
page of the SessionStores example would look something like this:

<FORM METHOD=Post ACTION=someAction >

Can you guess my favorite digit?

<SELECT NAME=”guesses”>

<OPTION>1

109

Managing State State Storage Strategies

<OPTION>2

...

<OPTION>9

</SELECT>

<INPUT TYPE=”hidden” NAME=”hiddenState” VALUE= ”previousGuesses ”>

<INPUT TYPE=”submit” VALUE="Guess">

</FORM>

The hidden field carries the record of the user’s previous guesses back and forth
between the client and server for the duration of the game.

Through its page session store and WOStateStorage dynamic element,
WebObjects makes it simple to use the page state storage mechanism, as you’ll
soon see. However, there are some limitations inherent in storing state in the
page, as we can deduce from the code excerpt above:

• Since state is stored in an input element—which according to the HTML
specification must exist within a form element—you must structure your
application around forms. If you want session state to be available at any point
in the application, each page of the application must have a form, and that
form must contain a hidden field (or in the case of WebObjects, a
WOStateStorage element, as discussed later).

• Each page carries a record of the state existing at the time of its creation, so
backtracking can make the page state and the actual state disagree. For
example, if the user make five guesses in the SessionStores example,
backtracks two pages, and submits another guess, the application will claim
that four guesses were made when the actual number is six.

• Storing state in the page is a problem if the “pages” in question are frames.
Your state can quickly get out of sync. For example, suppose you have a mail
application with two frames. One of the frames shows a list of messages with
one message selected, and the other frame shows the text of the selected
message. If you delete the message in the top frame, the state of the bottom
frame isn’t updated (unless you implement your own solution).

• If a page has multiple forms, you must include the page state data in each
form. If a form lacking this data is submitted, the application will no longer
have the state information it needs.

A WebObjects application can store state in the page by establishing the page
session store as the application’s state storage mechanism and by structuring its
pages so that they each contain an HTML form and a WOStateStorage element.

Managing State State Storage Strategies

110

You generally set the session storage type in the init method of the application
script (Application.wos):

- init {

[super init];

[self setSessionStore:[WOSessionStore pageSessionStore]];

return self;

}

Next, you must add a form to each page of the application and place a
WOStateStorage object within the form. For example, the HTML template of
a page might look like this:

<WEBOBJECT NAME="FORM">

<WEBOBJECT NAME = "STATE"></WEBOBJECT>

<WEBOBJECT NAME = "NAME_FIELD"></WEBOBJECT>

<WEBOBJECT NAME = "SUBMIT_BUTTON"></WEBOBJECT>

</WEBOBJECT>

The declarations file declares that the State element is a WOStateStorage
dynamic element:

STATE: WOStateStorage{ size = 500 };

(With WebObjects Builder, you embed a WOStateStorage element in a page by
dragging a Custom element from the Palettes panel into the component window
and then using the Inspector panel to specify that the type of the element is
“WOStateStorage”.)

When you run the application, WebObjects stores session state in the HTML
page at the location specified by the WOStateStorage element. What happens is
this: When WebObjects generates a page to return to the user, it packages the
session state by archiving the session object—and consequently, all the
component objects that it contains—into an NSData object. The NSData object
is then asked for its ASCII representation, which is written into the HTML
page as hidden fields.

WOStateStorage’s size attributes specifies the maximum size of each of these
hidden fields (500 bytes in the example above). WebObjects writes as many
hidden fields as necessary to accommodate the state data. The size attribute is
provided since browsers differ in the amount of text that they allow within a
single hidden field. Most browsers have no problem with the default value of
1000 bytes.

111

Managing State State Storage Strategies

When the user submits the HTML page to the server, the process is reversed.
The application’s page session store restores the session state by recombining
the ASCII data it finds in the hidden fields into the original ASCII archive,
converting the ASCII archive to its binary, NSData, representation, and then
unarchiving the session object and its contents from the NSData object. (See
the class specification for NSArchiver in the Foundation Framework Reference for
more information on archiving.)

One consequence of storing state in the page is that only objects that know how
to archive themselves can be stored. For scripted objects, WebObjects provides
a default archiving implementation that will archive data stored in the object’s
instance variables. For compiled objects, on the other hand, you have to
implement the archiving methods yourself, as described in “Storing State for
Custom Objects”.

State in Cookies
A “cookie” is another way that a web application can store state information in
the client machine. Instead of being part of the HTML page as with the state-
in-the-page mechanism, a cookie is passed as part of the HTTP header
information. The syntax for the cookie header line is:

Set-Cookie: NAME=VALUE; expires= DATE; domain= DOMAIN_NAME; path= PATH; secure

The NAME=VALUE association is the only required field. It holds the cookie’s
data and the name by which it can be accessed. The other fields are optional and
set limitations on when the data will be passed from the client back to the server:

expires The date after which the cookie is no longer valid. Once a cookie expires, the
client will no longer return it to the server, and client is free to delete it.

domain The Internet domain name for which the cookie is valid. For example, if the
specified domain is apple.com for a given cookie, that cookie will be
returned along with a request to any host whose domain ends with
apple.com (for example, www.apple.com)—assuming the URL is within
the directories specified by path.

path The directories within a given domain for which this cookie is valid. For
example, if a cookie has a domain of www.apple.com and a path of
/devDoc, the client will return the cookie to the server for any request that
begins with http://www.apple.com/devDoc...

secure Specifies that the cookie can only be passed using a secure
communications channel, such as SHTTP.

Managing State State Storage Strategies

112

See http://www.netscape.com/newsref/std/cookie_spec.html for a complete description
of cookies.

WebObjects makes it simple to use cookies as a state storage mechanism. As you
might expect, you generally set the application’s session storage type in the init
method of the application script:

- init {

[super init];

[self setSessionStore:

[WOSessionStore cookieSessionStoreWithDomain:@”” secure:NO]];

return self;

}

In this case, we set the domain to the empty string so that cookies that this
application sends to the user are valid for all domains. We also turn off the
requirement for a secure communications channel. Note that the cookie store
API doesn’t allow for a path argument. WebObjects automatically restricts the
path so that cookies that an application produces are only valid within the
application directory. For example, if you set the SessionStores application to
use a cookie session store, the client only returns a cookie if the request URLs
have this prefix:

/cgi-bin/WebObjects/Examples/SessionStores.woa/

Once the cookie session store has been established as the application’s state
storage mechanism, WebObjects does the rest. Just as with storing state in the
page, WebObjects packages the session state by archiving the session object
(and all the component objects that it contains) into an NSData object. The
NSData object is then asked for its ASCII representation. WebObjects pairs this
data with names it generates and creates the Set-Cookie headers of the response
page.

The process is reversed when a user submits a request containing cookies. The
ASCII archive from the Set-Cookie headers is converted to its binary, NSData,
representation. The session object and the components it contains are then
unarchived from the NSData object, thus restoring the session state.

One of the big advantage of using cookies over state in the page is that cookie
storage does not require your application to be designed around forms. As you
recall, storing state in the page implied using hidden field elements, which must
be located in HTML forms. Cookies, however, are stored in the HTTP header
so are independent of the HTML elements in the page. With a cookie session

113

Managing State State Storage Strategies

store you could, for example, let users navigate from page to by using hyperlinks
rather than by submitting forms. In addition (and for similar reasons), storing
state in cookies works better with frames than does storing state in the page.

You should be aware, however, that the cookie mechanism has a size restriction
that limits its usefulness. Currently, cookie data is passed from the HTTP server
to the WebObjects application either through environment variables that
typically are limited to 8K bytes or through a server’s own API that in some cases
is even more restrictive. We recommend that cookie state data (that is the ASCII
representation of the state data) be kept to 2K bytes or less. Given these
limitations, cookies can be best used for such things as storing keys used to fetch
information from a database.

Custom State Storage Options
WebObjects provides direct support for storing state in the application, in the
page, and in cookies. In addition, you can implement your own state storage—
for example, you might want to store state in a file or database. The
SessionStores application provides an example of a state storage mechanism that
uses the filesystem. Let’s take a look at how it’s done.

In WebObjects, an application saves and restores sessions by sending the
session store object these messages:

• saveSession:
• restoreSession

This is the minimum interface that a custom session store must present to the
application object. In the SessionStores example, the custom storage class
FileSessionStore presents this interface:

@interface FileSessionStore:NSObject {

 id archiveDirectory;

}

- init;

- archiveFileForSessionID:aSessionID;

- archiveForSessionID:aSessionID;

- restoreSession;

- saveSession:aSession;

@end

These methods have the following implementation:

@implementation FileSessionStore

- init {

Managing State State Storage Strategies

114

self = [super init];

archiveDirectory = [WOApp pathForResourceNamed:@"SessionArchives" ofType:nil];

return self;

}

- archiveFileForSessionID:aSessionID {

return [NSString stringWithFormat:@"%@/%@", archiveDirectory, aSessionID];

}

- archiveForSessionID:aSessionID {

id archiveFile = [self archiveFileForSessionID:aSessionID];

return [NSData dataWithContentsOfFile:archiveFile];

}

- restoreSession {

id request = [[WOApp context] request];

id archivedSession;

id restoredSession;

// Allow requests in this session to go to any application instance.

[[WOApp context] setDistributionEnabled:YES];

// Get archived session (as an NSData object)

archivedSession = [self archiveForSessionID:[request sessionID]];

// Unarchive session

restoredSession = [NSUnarchiver unarchiveObjectWithData:archivedSession];

return restoredSession;

}

- saveSession:aSession {

id request = [[WOApp context] request];

// Store data corresponding to session only if necessary.

if (![aSession isTerminating] && ![request isFromClientComponent]) {

id sessionData = [NSArchiver archivedDataWithRootObject:aSession];

id sessionFilePath = [self archiveFileForSessionID:[aSession sessionID]];

[sessionData writeToFile:sessionFilePath atomically:YES];

 }

}

@end

115

Managing State State Storage Strategies

As you can see, when the FileSessionStore receives a saveSession: message, it
checks to see if the session object needs to be archived, and if so, it asks
NSArchiver to create a binary archive of the session object and all of the
components it contains. It then invokes its own archiveFileForSessionID: to
determine the path for the archive file. Finally, it writes the data to the file.
Notice that the session data is written to a file whose name is the session ID
itself.

FileSessionStore restoreSession is responsible for restoring the state for a
particular session. An interesting point in the restoreSession method
implementation is the setDistributionEnabled: message to the application object. By
enabling distribution, you let any instance of the application process handle a
request. (See Serving WebObjects for information on using multiple application
instances as a means of load balancing.) More specifically, if distribution is
enabled, the application instance number is not appended to the response URL.
Since session state is store in the file system and not in the application’s memory,
it’s possible for any application instance to handle any request.

Storing State for Custom Objects
When state is stored in the server, the objects that hold state are kept intact in
memory between transactions. In contrast, when state is stored in the page, in
cookies, or in the filesystem, objects are asked to archive themselves before
being put into storage. The objects that are part of the WebObjects and
Foundation frameworks know how to archive themselves, so require no effort
on your part. But if your application has custom classes that need to store state,
these classes must know how to archive and unarchive themselves. How you
implement archiving for custom classes depends on whether your application
makes use of the Enterprise Objects framework and its EOEditingContext
class.

Using EOEditingContext to Archive Custom Objects

In an Enterprise Objects application, an EOEditingContext manages a graph of
enterprise objects which represent records fetched from a database. You send
messages to the EOEditingContext to fetch objects from the database, insert or
delete objects, and save the data from the changed objects back to the database.
(See the Enterprise Objects Framework Developer’s Guide for more information.)

In WebObjects, applications that use the Enterprise Objects framework must
enlist the help of the EOEditingContext to archive enterprise objects. The
primary reason is so that the EOEditingContext can keep track, from one
transaction to the next, of the objects it is designed to manage. But using an

Managing State State Storage Strategies

116

EOEditingContext for archiving also benefits your application in these other
ways:

• During archiving, an EOEditingContext stores only as much information
about its enterprise objects as is needed to reconstitute the object graph at a
later time. For example, unmodified objects are stored as simple references
that will allow the EOEditingContext to recreate the object from the
database at a later time. Thus, your application can store state very efficiently
by letting an EOEditingContext archive your enterprise objects.

• During unarchiving, an EOEditingContext can recreate individual objects in
the graph only as they are needed by the application. This approach can
significantly improve an application’s perceived performance.

An enterprise object (like any other object that uses the OpenStep archiving
scheme) makes itself available for archiving by declaring that it conforms to the
NSCoding protocol and by implementing the protocol’s two methods,
encodeWithCoder: and initWithCoder:. It implements these methods like this:

- (void)encodeWithCoder:(NSCoder *)aCoder {

[EOEditingContext encodeObject:self withCoder:aCoder];

}

- (id)initWithCoder:(NSCoder *)aDecoder {

[EOEditingContext initObject:self withCoder:aDecoder];

return self;

}

The enterprise object simply passes on responsibility for archiving and
unarchiving itself to the EOEditingContext class, by invoking the
encodeObject:withCoder: and initObject:withCoder: class methods and passing a
reference to itself (self) as one of the arguments. The EOEditingContext takes
care of the rest. (See the EOEditingContext class reference for more
information.)

Using the NSCoding Protocol to Archive Custom Objects

Custom classes that can’t take advantage of an EOEditingContext for archiving
must take a different approach. These classes must conform to the NSCoding
protocol and implement its encodeWithCoder: and initWithCoder: methods.
encodeWithCoder: instructs an object to encode its instance variables to the coder
provided; an object can receive this message any number of times. initWithCoder:
instructs an object to initialize itself from data in the coder provided; as such, it
replaces any other initialization method and is only sent once per object.

117

Managing State Controlling Session State

Note: Most of the Foundation classes already conform to the NSCoding protocol.
This section only applies to the custom classes you write yourself.

For example, the DodgeDemo ShoppingCart class in the WebObjects examples
includes the following implementations for encodeWithCoder: and initWithCoder:.

- (void)encodeWithCoder:(NSCoder *)coder {

[coder encodeObject:carID];

[coder encodeObject:colorID];

[coder encodeObject:colorPicture];

[coder encodeObject:packagesIDs];

[coder encodeObject:downPayment];

[coder encodeObject:leaseTerm];

}

- initWithCoder:(NSCoder *)coder {

self = [super init];

carID = [[coder decodeObject] retain];

colorID = [[coder decodeObject] retain];

colorPicture = [[coder decodeObject] retain];

packagesIDs = [[coder decodeObject] retain];

downPayment = [[coder decodeObject] retain];

 leaseTerm = [[coder decodeObject] retain];

 car = nil;

return self;

}

For more information on archiving, see the NSCoding, NSCoder, NSArchiver,
and NSUnarchiver class specifications in the Foundation Framework Reference.

Controlling Session State

Maintaining state in memory on the server has the potential of consuming
considerable resources, so WebObjects provides a number of mechanisms to
control session and page caching. This section takes a closer look at how you
store, access, and manage session-wide and component state.

Creating and Accessing Session State
You typically store session state as instance variables in your application’s session
object. Using WebScript, you add these variables to a session script file named
Session.wos, which is located in the application directory (for example,
MyApp.woa/Session.wos). A less common but equally effective alternative is to add

Managing State Controlling Session State

118

these instance variables to a compiled session object. It’s also possible to store
session state within a special dictionary provided by the session object, as we’ll
see shortly.

Session state is directly accessible to any component within the application. One
way to access a session variable is to bind it to an attribute of a dynamic element.
For instance, if you open the Visitors example application in WebObjects
Builder, you’ll see that the value of a WOString dynamic element is bound to
the session variable that stores the elapsed time since the session began:

Figure 8. Binding a WOString to a Session Variable

Another way to access session variables is from a component’s scripted or
compiled code:

elapsedTime = [[self session] timeSinceSessionBegan];

(A component inherits from the WOComponent class, which defines
convenience methods such as session and application, making it easy for a
component to access these other objects simply by sending a message to self.)

The WOSession class also provides a dictionary where state can be stored by
associating it with a key. WOSession’s setObject:forKey: and objectForKey methods
give access to this dictionary. For an example of when this session dictionary
might be useful, consider a web site that collects users’ preferences about
movies. At this web site, users work their way through page after page of movie
listings, selecting their favorite movie on each page. A “Choices” component at
the bottom of each page displays the favorites that have been picked so far in
the user’s session. The Choices component is a general purpose reusable
component that might be found in various applications.

The designer of the Choices component decided to store the session-wide list
in the session dictionary:

[[self session] setObject: usersChoiceArray forKey:@”Choices”];

By storing the information in the session dictionary rather than in a discrete
session instance variable, this component can be added to any application
without requiring code changes such as adding variables to the session object.

This approach works well until you have multiple instances of a reusable
component in the same page. For example, what if users were asked to pick
their most and least favorite movies from each list, with the results being

119

Managing State Controlling Session State

displayed in two different Choices components in each page. In this case, each
component would have to store its data under a separate key, such as
“BestChoices” and “WorstChoices”.

A more general solution to the problem of storing state when there are multiple
instances of a reusable component is to store the state under unique keys in the
session dictionary. One way to create such keys is to concatenate the
component’s name, context ID, and element IDs:

id componentName;
id context;
id contextID;
id elementID;
id uniqueKey;

context = [self context];
componentName = [[context component] name];
contextID = [context contextID];
elementID = [context elementID];
uniqueKey = [NSString stringWithFormat:@”%@-%@-%@”, componentName, contextID,

elementID];
[[self session] setObject: someState forKey:uniqueKey];

Since, for a given context, each element in a page has its own element ID,
combining the context and element IDs yields a unique key. We added the
component name to the key for readability during debugging.

Managing Session Resources
If you choose to store state in memory on the application server, memory usage
can become an issue. (See “State Storage Strategies” for alternative ways of
storing this information.) Take care that your application only stores state for
active sessions and stores the smallest amount of state possible. WOSession lets
you control these factors by providing a timeout mechanism for inactive sessions
and by providing a way to specify exactly what state to store between
transactions.

Setting Session Time-out
By assigning a timeout value to a session, you can ensure that the session will be
deallocated after a specific period of inactivity. WOSession’s setTimeOut: method
lets you set this period and timeOut returns it.

Here’s how the session time-out works: After a transaction, WebObjects
associates a timer with the session object that was involved in the transaction
and then puts the session object into the session store. The timer is set to the
value returned by the session object’s timeOut method. If the timer goes off

Managing State Controlling Session State

120

before the session is asked to handle another transaction, the session and its
resources are deallocated. A user submitting a request to a session that has timed
out receives an error message:

Figure 9. Session Time-out Error Message

By default, a session object’s timeout value is so large that sessions effectively
never time out. You should set the session timeout for your application to the
shortest period that seems reasonable. For example, to set the timeout to ten
minutes, you could send this setTimeOut: message in your application’s Session.wos
script:

- init {

[super init];

[self setTimeOut:600];

return self;

}

Note that the argument to setTimeOut: is interpreted as a number of seconds.

At times, a user’s choice signals the end of a session (such as when the Yes button
is clicked in response to the query, “Do you really want to leave the Intergalactic
Web Mall?”). If you are sure a session has ended, you can send a terminate
message to the session object, marking it (and the resources it holds) for release.

A session marked for release won’t actually be released until the end of the
current request-response loop. Other objects may need to know whether a
particular request-response loop is their last, so they can close files or do other
clean up. They can learn their fate by sending the session object an isTerminating
message.

Using awake and sleep
Another strategy for managing session state is to create it at the beginning of the
request-response loop and then release at the end. WOSession’s awake and sleep
methods provide the hooks you need to implement this strategy. A session
object receives an awake message at the beginning of the request-response loop
(where you could reinitialize the session state) and a sleep message at the end
(where you could release it).

121

Managing State Controlling Component State

Controlling Component State

As mentioned previously, a WOComponent can represent a portion of a page (as
with reusable components) or a complete page. State associated with the
component is generally stored in the component object’s instance variables and
so persists for the life of the object. Component objects exist within a particular
session and are stored along with the session object between each cycle of the
request-response loop. Since a user can visit many pages during a session,
managing component state can be crucial to reducing your application’s storage
requirements.

Creating and Accessing Component State
Common uses for component state include storing:

• A list of items that a user can choose from within a particular page
• The user’s selection from that list
• Information that the user enters in a form
• Default values for a component’s attributes

 A simple example of component state can be seen in the first page of the
DodgeLite example application, which list models, prices, and types of vehicles
for the user to choose from:

Figure 10. First Page of the DodgeLite Example

The script for this component (Main.wos) declares instance variables for the
values displayed in the browser and for the user’s selection from the browsers.
Before the page can be sent to the user, the instance variables that hold the
values to be displayed (model, price, type) are initialized:

id models, model, selectedModels;

id prices, price, selectedPrices;

id types, type, selectedTypes;

- init

Managing State Controlling Component State

122

{

[super init];

models = [[WOApp modelsDict] allValues];

types = [[WOApp typesDict] allValues];

prices = [WOApp prices];

return self;

}

(The selectedModels, selectedPrices, and selectedTypes instance variables are bound
to the selections attributes of the three WOBrowsers and so will contain the user’s
selections when the Display Cars button is clicked.)

When a user starts a session of the DodgeLite application, the Main
component’s init method is invoked, initializing the component’s instance
variables from data accessed through the application object. From this point on
(subject to conditions discussed below), the Main component and its instance
variables become part of the state stored for that user’s session of the DodgeLite
application. When the session is released, the component is also released.
However, there are other techniques that allow you to control resource
allocation on a component basis, as you’ll see in the next section.

As with the session state, a component’s state is accessible to other objects
within the same session. As the result of a user’s action, for example, it’s quite
common for one component to create the component for the next page and set
its state. Looking again at the DodgeLite application, consider what happens
when the user makes a selection in the first page and clicks Display Cars. The
displayCars method in the Main component is invoked:

- displayCars

{

id selectedCarsPage = [[self application] pageWithName:@"SelectedCars"];

...

[selectedCarsPage setModels:selectedModels];

[selectedCarsPage setTypes:selectedTypes];

[selectedCarsPage setPrices:selectedPrices];

...

[selectedCarsPage fetchSelectedCars];

return selectedCarsPage;

}

123

Managing State Controlling Component State

The new component is created by sending a pageWithName: message to the
WOApplication object, and then a series of messages is sent to this new object
to set its state before the object is returned as the response page.

Managing Component Resources
Typically, page caching occurs on both the client machine and on the
WebObjects application server. WOApplication provides methods to control
caching on either end of a web connection. This section discusses server-side
caching and the section “Client-Side Page Caching” looks at the consequences
of page caching on the client.

Techniques for controlling component resources include:

• Adjusting the page cache size
• Using awake and sleep to initial and release resources
• Controlling page instantiation by implementing pageWithName:

Adjusting the Page Cache Size
As noted earlier, except for the first request, a request to a WebObjects
application contains a session ID, page name, and context ID. The application
uses this information to ask the appropriate session object for the page identified
by the name and context ID. As long as the page is still in the cache, it can be
retrieved and enlisted in handling the request.

By default, a WebObjects application caches the last 30 pages that a user has
visited within a session.You can change the size of the cache using
WOApplication’s setPageCacheSize: method and retrieve the cache size with the
pageCacheSize method. Within each session, new pages are added to the cache
until the cache size limit is reached. Thereafter, for each new page added to the
cache, the cached page object representing the least recently visited page is
released.

To reduce the resource requirements for an application, you could set the page
cache to a smaller number. However, doing so increases the possibility that a
request could address a page that is no longer in the cache. For example, if you
set the page cache size to four, a user could backtrack five pages to a order form,
make some changes, and resubmit the form. The result would be an error page
like this:

Figure 11. Backtracking Error Message

Managing State Controlling Component State

124

To keep users from encountering this error, your application should maintain a
moderate sized cache of pages. (Another strategy is to limit the number of
identical page instances that your application creates; see “pageWithName: and
Page Caching” for one way to do this.) The default cache size of 30 pages is a
reasonable value that protects users from reaching the backtracking limit under
normal conditions; however, you can adjust the limit to any positive value you
like or even zero.

Setting the page cache size to zero has two effects. As expected, it disables page
caching. But furthermore, it signals to WebObjects that you intend to provide for
component state persistence rather than rely on WebObjects’ inherent support.
Thus, if you set the cache size to zero, no error page is generated if a request
addresses a page that can’t be found in the cache. Instead, WebObjects creates
a new page by sending the application object a pageWithName: message. Since
with this model pages do not persist from one transaction to the next, you
assume responsibility for maintaining any needed component state. For this
reason, it’s rarely advisable to turn off page caching.

Using awake and sleep
Another way to control the amount of component state that’s maintained
between transactions is to make use of WOComponent’s awake and sleep
methods. Unlike the component’s init method that’s invoked just once in the life
of the component, a component’s awake and sleep methods are invoked at the
beginning and end of any request-response loop that involves the component.

By moving a component’s variable initialization routines from its init method to
its awake method and implementing a sleep method to release those variables,
you can reduce the space requirements for storing a component. For example,
the code for DodgeLite’s Main component that we looked at earlier could be
changed to:

id models, model, selectedModels;

id prices, price, selectedPrices;

id types, type, selectedTypes;

- awake {

models = [[WOApp modelsDict] allValues];

types = [[WOApp typesDict] allValues];

prices = [WOApp prices];

}

- sleep {

models = nil;

125

Managing State Controlling Component State

types = nil;

prices = nil;

}

Note that in WebScript you set a variable to nil to mark it for release; whereas, in
Objective-C you send the object a release message:

- sleep {

[models release];

[types release];

[prices release];

}

Of course, what you save in storage by moving variable initialization to the awake
method is lost in performance since these variables will be reinitialized on each
cycle of the request-response loop.

pageWithName: and Page Caching
When the application object receives a pageWithName: message, it creates a new
component. For example, in the HelloWorld example a user enters a name in
the first page (the Main component), clicks Submit, and is presented with a
personal greeting on the second page (the Hello component). Clicking the
Submit button in the first page invokes the sayHello method in the Main
component. As part of its implementation sayHello sends a pageWithName: message
to the application object:

id visitorName;

- sayHello {

id nextPage;

// Create the next page.

nextPage = [[self application] pageWithName:@"Hello"];

// Set state in the Hello page

[nextPage setVisitorName:visitorName];

// Return the 'Hello' page.

return nextPage;

}

Managing State Controlling Component State

126

Each time the sayHello method is invoked, a new Hello component is created.
For example, if the user backtracks to the main page and clicks the Submit
button again, another Hello page is created. It’s unlikely this duplication of
components will be a problem for the HelloWorld application, since users
quickly tire of its charms. But, depending on design, some applications may
benefit by modifying the operation of pageWithName: so that an existing
component can be reused.

If you want to extend WebObjects’ page caching mechanism to include pages
returned by pageWithName:, you must implement your own solution. Fortunately,
it’s easy. One approach is to have the session maintain a dictionary that maps
page names to page objects. Here’s the code you would add to an application’s
Session.wos file:

id pageDictionary;

- init {

[super init];

pageDictionary = [NSMutableDictionary dictionary];

return self;

}

- pageWithName:aName {

id aPage = [pageDictionary objectForKey:aName];

if (!aPage) {

aPage = [[self application] pageWithName:aName];

[pageDictionary setObject:aPage forKey:aName];

}

return aPage;

}

Note that we implement pageWithName: in the session object since we want to
cache these pages on a per-session basis. (Overriding the method in the
application object would cache pages on a per-application basis.) Since the
pageWithName: method that we want to use now resides in the session object, one
line in the sayHello method has to change (change in bold):

- sayHello {

id nextPage;

nextPage = [[self session] pageWithName:@"Hello"];

[nextPage setVisitorName:visitorName];

return nextPage;

127

Managing State Controlling Component State

}

Client-Side Page Caching
When accessing a web page, the user’s browser associates the URL with the
HTML page it downloads from the server and stores this information on the
user’s machine. If the browser is asked to display the URL again at a later date,
it fetches the cached page rather than emitting another request. In many cases,
this short-circuit is desirable since it reduces network traffic and increases a web
site’s perceived responsiveness.

Sometimes, however, you need to make sure the user is seeing the most up-to-
date information, so you must disable client-side caching. WOApplication
provides the setPageRefreshOnBacktrackEnabled: method for this purpose. In
general, you send this message in the init method of your application script
(Application.wos):

- init {

[super init];

[self setPageRefreshOnBacktrackEnabled:YES];

return self;

}

The setPageRefreshOnBacktrackEnabled: method adds a header to the HTTP
response that sets the expiration date for an HTML page to the date and time
of the creation of the page. Later, when the browser checks its cache for this
page, it finds that the page is no longer valid and so refetches it by resubmitting
the request URL to the WebObjects application.

A WebObjects application handles a page-refresh request differently than it
would a standard request. When the application determines that the request
URL is identical to one it has previously received (that is, the session and
context IDs in the request URL are identical to those in a request it has
previously received), it simply returns the response page that was associated
with this earlier request. The first two steps of a normal request handling loop
(value extraction from the request and action invocation) don’t occur.

Page Refresh and WODisplayGroup
If you’re using a WODisplayGroup object in your application, you must enable
page refresh so that the application and the client browser stay in agreement
about which objects are being displayed.

Managing State Controlling Component State

128

A WODisplayGroup holds a set of objects (generally enterprise objects fetched
from a database) and provides “batched” access to these objects. For example,
if a user submits a query (such as, “Show me the movies released in 1996.”) to a
Movies application, a WODisplayGroup might return ten records at a time to
the user’s browser. The application would offer controls to let the user display
the next and previous batches of ten movie titles. When the user decides to
order one of the movies, the WODisplayGroup needs to know which batch the
item comes from.

As the user presses the Next Ten Movies or Previous Ten Movies buttons, the
WODisplayGroup updates its record of the which ten movies are being
displayed. When the user decides to order the second movie in the list, the
WODisplayGroup can determine the actual record since it knows which batch
is being displayed and which record is number two in that batch. But if the user
backtracks to a previous page (with page refresh disabled) and chooses the
second record, the WODisplayGroup will erroneously pick the second record
from its current batch. By enabling page refresh, the WODisplayGroup is
alerted each time the user backtracks and can update its notion of the current
batch, eliminating this problem.

