
Creating Reusable Components

2

Creating Reusable Components

As you’ve seen in previous chapters, a WebObjects application comprises a
number of components. Each component is represented in the file system as a
directory (for example, MyComponent.wo) that stores the component’s template,
declarations, and script files (MyComponent.html, MyComponent.wod, and
MyComponent.wos, respectively) as well as other resource files. In the simplest
applications, each component corresponds to an HTML page, and no two
applications share components. However, one of the strengths of the
WebObjects’ architecture is its support of reusable components: components
which once defined, can be used within multiple applications, multiple pages of
the same application, or even multiple sections of the same page.

This chapter describes reusable components and shows you how to take
advantage of them in your applications. The topics covered include:

• The benefits of reusable components
• How to use them in your applications
• How applications find these components at run time
• How to design components for reusability

Benefits of Reusable Components

Reusable components benefit you in two fundamental ways. They help you:

• Centralize application resources

• Simplify interfaces to packages of complex, possibly parameterized, logic and
display.

The following sections explain these concepts in detail.

Centralizing Application Resources
One of the challenges of maintaining a web-based application derives from the
sheer number of pages that must be created and maintained. Even a modest
application can contain scores of HTML pages. Although some pages must be
crafted individually for each application, many (for example, a page that gathers
customer information) could be identical across applications. Even pages that
aren’t identical across applications can share at least some portions (header,
footer, navigation bars, and so on) with pages in other applications. With
reusable components, you can factor out a portion of a page (or a complete page)
that’s used throughout one or more applications, define it once, and then use it
wherever you want, simply by referring to it by name. This is a simple but
powerful concept, as the following example illustrates.

3

Creating Reusable Components Benefits of Reusable Components

Suppose you want to display a navigational control at the bottom of each page of
your application, something like this

Figure 1. Navigational Control

The HTML code for this control is:

<HTML>

<HEAD>

 <TITLE>World Wide Web Wisdom, Inc.</TITLE>

</HEAD>

<BODY>

Please come visit us again!

<!-- start of navigation control -->

<CENTER>

<TABLE BORDER = 7 CELLPADDING = 0 CELLSPACING = 5>

 <TR ALIGN = center>

<TH COLSPAN = 4> World Wide Web Wisdom, Inc.</TH>

 </TR>

 <TR ALIGN = center>

<TD> Home <a></TD>

<TD> Sales <a></TD>

<TD> Service <a></TD>

<TD> Search <a></TD>

 </TR>

</TABLE>

</CENTER>

<!-- end of navigation control -->

</BODY>

</HTML>

Thirteen lines of HTML code define the HTML table that constitutes the
navigational control. You could copy these lines into each of the application’s
pages or use a graphical HTML editor to assemble the table wherever you need
one. But as application size increases, these approaches becomes less practical.
And obviously, when a decision is made to replace the navigational table with an
active image, you must update this code in each page. Duplicating HTML code
across pages is a recipe for irritation and long hours of tedium.

Creating Reusable Components Benefits of Reusable Components

4

With a reusable component, you could define the same page like this:

<HTML>

<HEAD>

 <TITLE>World Wide Web Wisdom, Inc.</TITLE>

</HEAD>

<BODY>

Please come visit us again!

<!-- start of navigation control -->

<WEBOBJECT NAME="NAVCONTROL"></WEBOBJECT>

<!-- end of navigation control -->

</BODY>

</HTML>

The thirteen lines are reduced to one, which positions the WebObject named
NAVCONTROL. The declarations file for this page binds the WebObject
named NAVCONTROL to the component named NavigationControl:

NAVCONTROL: NavigationControl {};

All of the application’s pages would have entries identical to these in their
template and declarations files.

WebObjects Builder makes reusable components even more attractive by
providing a graphical way to create and maintain them. With the builder, you can
assemble these components graphically and then put them on a palette for later
use. Adding a custom reusable component to you application becomes a simple
matter of dragging it from Builder’s palette into your application and binding its
attributes to variables or methods just as you would a dynamic element you drag
from Builder’s palettes. See “Advanced WebObjects Builder Tasks” in the
WebObjects Builder Guide for more information.

NavigationControl is a component that’s defined once, for the use of all of the
application’s pages. Its definition is found in the directory NavigationControl.wo in
the file NavigationControl.html and contains the HTML for the table:

<CENTER>

<TABLE BORDER = 7 CELLPADDING = 0 CELLSPACING = 5>

 <TR ALIGN = center>

<TH COLSPAN = 4> World Wide Web Wisdom, Inc.</TH>

 </TR>

 <TR ALIGN = center>

<TD> Home <a></TD>

<TD> Sales <a></TD>

5

Creating Reusable Components Benefits of Reusable Components

<TD> Service <a></TD>

<TD> Search <a></TD>

 </TR>

</TABLE>

</CENTER>

Since NavigationControl defines a group of static elements, no declaration or
script file is needed. However, a reusable component could just as well be
associated with complex, dynamically determined behavior, as defined in an
associated script file.

Now, to change the navigational control on all of the pages in this application,
you simply change the NavigationControl component. What’s more, since
reusable components can be shared by multiple applications, the World Wide
Web Wisdom company could change the look of the navigational controls in all
of its applications by changing this one component.

If your application’s pages are highly structured, reusable components could be
the prevailing feature of each page:

<HTML>

<HEAD>

 <TITLE>World Wide Web Wisdom, Inc.</TITLE>

</HEAD>

<BODY>

<WEBOBJECT NAME="HEADER"></WEBOBJECT>

<WEBOBJECT NAME="PRODUCTDESCRIPTION"></WEBOBJECT>

<WEBOBJECT NAME="NAVCONTROL"></WEBOBJECT>

<WEBOBJECT NAME="FOOTER"></WEBOBJECT>

</BODY>

</HTML>

The corresponding declarations file might look like this:

HEADER: CorporateHeader {};

PRODUCTDESCRIPTION: ProductTable {productCode = "WWWW0314"};

NAVCONTROL: NavigationControl {};

FOOTER: Footer {type = "catalogFooter"};

Notice that some of these components above take arguments, that is, they are
parameterized. For example, the ProductTable component’s productCode
attribute is set to a particular product identifier, presumably to display a
description of that particular product. The combination of reusability and
customizability is particularly powerful, as you’ll see in the following section.

Creating Reusable Components Benefits of Reusable Components

6

Simplifying Interfaces
Another benefit of reusable components is that they let you work at a higher
level of abstraction than would be possible by working directly with HTML
code or with WebObjects’ dynamic elements. You (or someone else) can create
a component that encapsulates a solution to a possibly complicated
programming problem, and then reuse that solution again and again without
having to be concerned with the details of its implementation. Examples of this
kind of component include:

• A menu that posts different actions depending on the user’s choice.
• A calendar that lets a user input start and end dates.
• A table view that displays records returned by a database query.

To illustrate this feature, consider a simple reusable component, an alert panel:

Figure 2. Alert Panel

The panel is similar to the navigation table introduced above, but as you’ll see,
most of the component’s attributes are customizable.

To use this component, you simply declare its position within the HTML page
and give it a name:

<HTML>

<HEAD>

 <TITLE>Alert</TITLE>

</HEAD>

<BODY>

<WEBOBJECT NAME = "ALERT"></WEBOBJECT>

</BODY>

</HTML>

The declarations file specifies the value for each of the panel’s attributes, either
by assigning a constant value or by binding the attributes value to a value

7

Creating Reusable Components Intercomponent Communication

determined by the script file (as with the alertString and infoString attributes
below):

ALERT: AlertPanel {

 alertString = alertTitle;

 alertFontColor = "#A00000";

 alertFontSize = 6;

 infoString = alertDescription;

 infoFontSize = 4;

 infoFontColor = "#500000";

 tableWidth = "50%";

};

The script file defines the alertTitle and alertDescription instance variables or
methods (see “Intercomponent Communication” below for more information
about binding attributes to methods), which set the text that’s displayed in the
upper and lower panes of the alert panel. The alertDescription method could, for
example, consult a database to determine the release date of the video.

WebObjects Builder makes working with reusable components such as
AlertPanel even easier. For the component creator, WebObjects Builder lets you
determine which of the reusable component’s attributes will be “exported” to
clients. You could, for example, export only the alertTitle and infoString attributes,
but not allow clients to set font color, table width, and other attributes. Clients,
on the other hand, can simply drag the AlertPanel from WebObjects Builder’s
palette window into their applications and use the Inspector to set the bindings.
They don’t need to manually edit the declarations file to set these bindings. See
“Advanced WebObjects Builder Tasks” in the WebObjects Builder Guide for more
information.

AlertPanel is one of several components included in the Reusable Components
Examples. If you take a look at the source code for AlertPanel, you’ll notice that
it’s moderately complicated and in fact relies on other reusable components for
its implementation. However, WebObjects lets you think of the AlertPanel
component as a black box. You simply position the component in your HTML
template, specify its attributes in the declarations file, and implement any
associated dynamic behavior in the script file.

Intercomponent Communication

Reusable components can vary widely in scope, from as extensive as an entire
HTML page to as limited as a single character or graphic in a page. They can
even serve as building blocks for other reusable components. When a reusable

Creating Reusable Components Intercomponent Communication

8

component is nested within another component, be it a page or something
smaller, the containing component is known as the parent component, and the
contained component is known as the child component. This section examines the
interaction between parent and child components.

In the AlertPanel example above, you saw how the parent component, in its
declarations file, sets the attributes of the child component:

ALERT: AlertPanel {

 alertString = alertTitle;

 alertFontColor = "#A00000";

 alertFontSize = 6;

 infoString = alertDescription;

 infoFontSize = 4;

 infoFontColor = "#500000";

 tableWidth = "50%";

};

Each of the AlertPanel’s attributes is set either statically (for example,
alertFontSize = 6) or dynamically, by binding the attribute’s value to a variable
or method invocation in the parent’s script file (for example, alertString =

alertTitle). Communication from the parent to the child is quite
straightforward.

But for reusable components to be truly versatile, there must also be a
mechanism for the child component to interact with the parent, either by setting
the parent’s variables or invoking its methods, or both. This mechanism must be
flexible enough that a given child component can be reused by various parent
components without having to be modified in any way. WebObjects provides
just such a mechanism, as illustrated by the following example.

Consider an AlertPanel component like the one described above, but with the
added ability to accept user input and relay that input to a parent component.
The panel might look like this:

Figure 3. Alert Panel That Allows User Input

9

Creating Reusable Components Intercomponent Communication

As in the earlier example, you use this component by simply declaring its
position within the HTML page:

Parent's Template File

<HTML>

<HEAD>

 <TITLE>Alert</TITLE>

</HEAD>

<BODY>

<WEBOBJECT NAME = "ALERT"></WEBOBJECT>

</BODY>

</HTML>

The corresponding declarations file reveals two new attributes (indicated in
bold):

Parent's Declarations File (excerpt)

ALERT: AlertPanel {

 infoString = message;

 infoFontSize = 4;

 infoFontColor = "#500000";

 alertString = "New Release";

 alertFontColor = "#A00000";

 alertFontSize = 6;

 tableWidth = "50%";

 parentAction = “respondToAlert ”;

 exitStatus = usersChoice ;

};

The parentAction attribute identifies a callback method, one that the child
component invokes in the parent when the user clicks the Yes or No link. The
exitStatus attribute identifies a variable that the parent can check to discover
which of the two links was clicked. This attribute passes state information from
the child to the parent. A reusable component can have any number of callback
and state attributes , and they can have any name you choose.

Creating Reusable Components Intercomponent Communication

10

Now let’s look at the revised child component. The template file for the
AlertPanel component has to declare the positions of the added Yes and No
hyperlinks. (Only excerpts of the implementation files are shown here.)

Child Component's Template File (excerpt)

<TD>

<WEBOBJECT name=NOCHOICE></WEBOBJECT>

</TD>

<TD>

<WEBOBJECT name=YESCHOICE></WEBOBJECT>

</TD>

The corresponding declarations file binds these declarations to scripted
methods:

Child Component's Declarations File (excerpt)

NOCHOICE: WOHyperlink {

 action = rejectChoice;

 string = "No";

};

YESCHOICE: WOHyperlink {

 action = acceptChoice;

 string = "Yes";

};

And the script file reveals the implementation the rejectChoice and acceptChoice
methods:

Child Component's Script File (excerpt)

id exitStatus;

id parentAction;

- rejectChoice

{

 exitStatus = NO;

 return [self performParentAction:parentAction];

}

- acceptChoice

{

 exitStatus = YES;

 return [self performParentAction:parentAction];

}

11

Creating Reusable Components Intercomponent Communication

Note that exitStatus and parentAction are simply component variables. Depending
on the method invoked, exitStatus can have the values YES or NO. The
parentAction variable stores the name of the method in the parent component that
will be invoked by the child. In this example parentAction identifies the parent
method named “respondToAlert”, as specified in the parent’s declarations file. Note:
You must enclose the name of the parent’s action method in quotes, as in the
example above.

Now, looking at the rejectChoice and acceptChoice method implementations, you
can see that they are identical except for the assignment to exitStatus. Note that
after a value is assigned to exitStatus, the child component sends a message to
itself to invoke the parent’s action method, causing the parent’s respondToAlert
method to be invoked. Since the parent’s usersChoice variable is bound to the
value of the child’s exitStatus variable (see the parent’s declaration file above), the
parent script can determine which of the two links was clicked and respond
accordingly. The following diagram illustrates the connections between the
child and parent components.

Figure 4. Parent and Child Component Interconnections

The child component’s parentAction attribute provides a separation between a
user action (such as a click on a hyperlink) within a reusable component and
the method it ultimately invokes in the parent. Because of this separation, the

id usersChoice;

- respondToAlert {
 if (usersChoice == YES) {
 // process order
 } else {
 // return to previous page
 }
}

Parent Script File

id exitStatus;
id parentAction;

- rejectChoice {
 exitStatus = NO;
 return [self performParentAction:
 parentAction];
}

- acceptChoice {
 exitStatus = YES;
 return [self performParentAction:
 parentAction];
}

Child Script File

ALERT: AlertPanel {
 exitStatus = usersChoice;
 parentAction = respondToAlert;
};

Parent Declarations File

Creating Reusable Components Intercomponent Communication

12

same child component can be used by multiple parents, invoking different
methods in each of them:

Parent1's Declarations File (excerpt)

ALERT: AlertPanel {

 ...

 parentAction = “respondToAlert”;

 exitStatus = usersChoice;

};

Parent2's Declarations File (excerpt)

ALERT: AlertPanel {

 ...

 parentAction = “okCancel”;

 exitStatus = result;

};

Parent3's Declarations File (excerpt)

ALERT: AlertPanel {

 ...

 parentAction = “alertAction”;

 exitStatus = choice;

};

In summary, parent and child components communicate in these ways:

A parent component can, in its declarations file, set child component attributes
by:

• Assigning constant values

• Binding an attribute to the value of a variable declared in the parent’s script
file

• Binding an attribute to the return value of a method defined in the parent’s
script file

A child component can communicate actions and values to a parent component
by:

• Invoking the parent’s callback method

• Setting variables that are bound to variables in the parent, as specified in the
parent’s declarations file

13

Creating Reusable Components Intercomponent Communication

Synchronizing Attributes in Parent and Child Components
WebObjects treats attribute bindings between parent and child components as
potentially two-way communication paths and so synchronizes the values of the
bound variables at strategic times during the request-response loop. This
synchronization mechanism has some implications for how you design
components.

For the sake of illustration, consider a page that displays a value in two different
text fields--one provided by the parent component and one by the child:

Figure 5. Synchronized Components

Setting the value of either text field and submitting the change causes the new
value to appear in both text fields.

The parent’s declarations file reveals the binding between the two components:

CHILDCOMPONENT: ChildComponent {

 childValue=parentValue;

};

When a value is entered in a field and the change submitted, WebObjects will,
if needed, synchronize the value in the parent (parentValue) and child (childValue)
at each of the three stages of the request-response loop:

• Before and after the components receive the takeValuesFromRequest:inContext:
message.

• Before and after the components receive the invokeAction:inContext: message.
• Before and after the components receive the appendToResponse:inContext:

message.

Synchronization is accomplished through key-value coding, a standard interface
for accessing an object’s properties either through methods designed for that
purpose or directly through its instance variables. (The key-value coding
mechanism is declared in the Enterprise Objects Framework, in
EOKeyValueCoding.h. See the Enterprise Objects Framework Developer's Guide for
more information.) Key-value coding always first attempts to set properties
through accessor methods, only reverting to accessing the instance variables
directly if the required accessor method is missing.

Creating Reusable Components Search Path for Reusable Components

14

Given that synchronization occurs several times during each cycle of the
request-response loop and that key-value coding is used to accomplish this
synchronization, how does this affect for the design of reusable component? It
has these implications:

• You rarely need to implement accessor methods for your component’s
instance variables. For instance, it’s sufficient in the example above to simply
declare a childValue instance variable in the child component and a parentValue
instance variable in the parent. You only need to implement accessor methods
(such as setChildValue: and childValue) if the component must do some
calculation (say, determine how long the application has been running) before
returning the value.

• If you do provide accessor methods, they should have no unwanted side
effects and should be implemented as efficiently as possible since they will
be invoked several times per transaction.

• If you bind a component’s attribute to a method rather than to an instance
variable, you must provide both accessor methods: one to set the value and
one to return it. Let’s say the parent component in the example above doesn’t
have a discrete parentValue instance variable but instead stores the value in
some other way (for example, as an entry in an NSDictionary object). In that
case, the parent component must provide both a parentValue method (to
retrieve the value) AND a setParentValue: method (to set it). During
synchronization, WebObjects expects both methods to be present and will
raise an exception if one is missing.

Search Path for Reusable Components

When WebObjects encounters the name of a reusable component at run time:

NAVCONTROL: NavigationControl {};

it must find a WOComponent object to represent the component and then find
the component’s resources (HTML template file, image files, etc.).

To find an object to represent the component, WebObjects looks in the
Objective-C run time for a subclass of WOComponent with the same name as
the component (“NavigationControl” in the example above). For compiled
reusable components this search should succeed, but for scripted ones it should
fail. For scripted components, WebObjects provides its own private subclass of
WOComponent.

15

Creating Reusable Components Designing for Reusability

Next, WebObjects looks within the application directory for the reusable
component’s resources. For example, if you manually start an application that
resides in Doc_Root/WebObjects/MyWOApps/Fortune.woa, the Fortune.woa directory will
be searched.

WebObjects pages and reusable components can be located in subdirectories
within the application directory. For example, assuming you use different
navigation controls for different parts of your application, you might specify the
navigation control for your application’s catalog pages as:

NAVCONTROL: CatalogPages/ReusableComponents/NavigationControl {};

This causes WebObjects to search the application directory’s
CatalogPages/ReusableComponents subdirectory for the NavigationControl’s
resources. You’ll find that grouping reusable components within subdirectories
like this helps keep your application directories organized.

Designing for Reusability

Here are some points to consider when creating reusable components.

Make sure that your reusable component generates HTML that can be embedded in the HTML of
its parent component.
A reusable component should be designed to be a “good citizen” within the
context in which it will be used. Thus, for example, the template file for a
reusable component should not start and end with the <HTML> and
</HTML> tags (since these tags will be supplied by the parent component).
Similarly, it is unlikely that a reusable component’s template would contain
<BODY>, <HEAD>, or <TITLE> tags.

Further, if you intend your component to be used within a form along with other
components, don’t declare the form (<FORM...> ... </FORM>) within the
reusable component’s template file. Instead, let the parent component declare
the form. Similar considerations pertain to submit buttons. Since most browsers
allow only one submit button within a form, putting a submit button in a
reusable component severely limits where it can be used.

Guard against name conflicts.
Reusable components are identified by name and location. (see “Search Path for
Reusable Components”). Those that reside within a particular application’s
application directory are only available to that application. Those that reside in
Doc_Root/WebObjects are available to all applications on that server. Since no two

Creating Reusable Components Designing for Reusability

16

component directories can have the same name in Doc_Root/WebObjects, shared
reusable components must have unique names. Consider adding a prefix to
component names to increase the likelihood that they will be unique.

Provide attributes for all significant features.
The more customizable a component is, the more likely it is that people will be
able to reuse it. For example, if the AlertPanel component discussed above let
you set the titles of the hyperlinks (say, to OK and Cancel or Send Now and
Send Later), the panel could be adapted for use in many more applications.

Provide default values for attributes wherever possible.
Don’t require people to set more attributes than are strictly required by the
design of your reusable component. In your component’s init method, you can
provide default values for optional attributes. When the component is created,
the attribute values specified in the init method are used unless others are
specified in the parent’s declarations file.

For example, the AlertPanel’s init method could set these default values:

- init {

 [super init];

 alertString = @"Alert!";

 alertFontColor = @"#ff0000";

 alertFontSize = 6;

 infoString = @"User should provide an infoString";

 infoFontColor = @"#ff0000";

 infoFontSize = 4;

 borderSize = 2;

 tableWidth = @"50%";

 return self;

}

Then, in a declarations file, you are free to specify all or just a few attributes.
This declaration specifies values for all attributes:

Complete Declaration

ALERT: AlertPanel {

 infoString = message;

 infoFontSize = 4;

 infoFontColor = "#500000";

 alertString = "New Release";

 alertFontColor = "#A00000";

17

Creating Reusable Components Designing for Reusability

 alertFontSize = 6;

 tableWidth = "50%";

};

This declaration specifies a value for just one attribute; all others will use the
default values provided by the component’s awake method:

Partial Declaration

ALERT: AlertPanel {

 alertString = "Choice not available.";

};

Consider building reusable components from reusable components.
Rather than build a monolithic component, consider how the finished
component can be built from several, smaller components. You may be able to
employ these smaller components in more than one reusable component.

Take, for example, the AlertPanel example (see the Reusable Components
Examples to view the source code for this component). The AlertPanel lets you
not only set the message displayed to the user, but the message’s font size and
color. These font handling features aren’t provided by the AlertPanel itself but
by an embedded reusable component, FontString. FontString itself is a versatile
component that’s used in many other components.

Document the reusable component's interface and requirements.
If you plan to make your components available to other programmers, you
should provide simple documentation that includes information on:

• What attributes are available and which are required

• What are the default values for optional attributes

• What context needs to be provided for the component. For example, does it
need to be embedded in a form?

• Any restrictions that affect its use. For example, is it possible to have a submit
button in the same form as the one that contains this component?

In addition, it’s helpful if you provide an example showing how to use your
component.

Creating Reusable Components Designing for Reusability

18

