
Integrating Your Code Into the
Request-Response Loop





77

Most of your program’s activity is a reaction to messages the application sends 
out during cycles of the request-response loop. These messages travel through 
the objects of an application: from application to session object, from session to 
component object, and from a component to its static and dynamic HTML 
elements. They enable the application to store user input, trigger action 
methods, and generate a response, usually in the form of an HTML page.

For background on the request-response loop, and on the roles the various 
WebObjects classes play in request handling, see “How WebObjects Works.”.

For WebObjects developers, the emitted messages are hooks into the request-
response loop allowing them to invoke custom application behavior. You can 
influence what happens during request handling by taking advantage of these 
hooks. For example, you can determine what page to return based on user input, 
modify the header lines of a generated HTTP response, initialize variables from 
database records, or substitute a page for the requested page.

There are three types of hooks that can be implemented in either scripts or 
compiled classes:

• Initialization methods establish the beginning state and behavior of objects. 
The init method is invoked when one of the objects involved in request 
handling is created. On the other hand, awake is invoked when an object 
becomes involved in each cycle of request handling.

• Action methods are associated with a particular user action such as clicking a 
button or hyperlink.

• Request-handling methods that are invoked at a particular point in the request-
response loop if you implement them in a subclass or a script:

takeValuesFromRequest:inContext:
invokeActionForRequest:inContext:
appendToResponse:inContext:

Initialization Methods

The application, session, and component objects in a WebObjects application 
receive two messages that allow the objects to initialize themselves. The two 
methods, init and awake, are invoked in both scripted and compiled instances of 
WOApplication, WOSession, and WOComponent subclasses. The main 
difference between the methods is when they are invoked.



Integrating Your Code Into the Request-Response LoopInitialization Methods

78

When init and awake are Sent
When objects are created, they receive an init message. The init method gives the 
receiver an opportunity to initialize its state and behavior just after it is created. 
The initialization is effective over the lifetime of an object; this lifetime varies 
according to the object’s type:

• The WOApplication object exists from the time the application is started 
until it is terminated (either explicitly or through application time-out).

• The WOSession object persists through a session. As session is a period 
during which a particular user is accessing the application, and during which 
resources are allocated accordingly. An application can have multiple 
concurrent sessions. The application object creates a WOSession object if a 
request is the first from a user (that is, there is no session ID associated with 
it). Sessions can be explicitly terminated or can end when a session time-out—
a period of no user activity—occurs.

• The WOComponent objects of an application are created each time a page is 
directly requested via URL and each time a pageWithName: message is sent to 
the application object. There are a couple exceptions to this. If page caching 
is turned on, as it is by default, the session object stores each component 
instance (page) at the end of each request-response loop. If the user 
backtracks through a session, the application restores page instances from this 
cache. Also, if the request component returns self or (preferably) nil in an 
action method, the application returns the cached instance of the request 
component rather than re-creating a new instance. 

An object’s awake method, on the other hand, is invoked at that point in each 
cycle of the request-response loop that the object begins to participate in 
request handling. This usually occurs right after init, except in those two cases 
noted above where an page is restored from a cache rather than created. In these 
cases, the awake method is invoked without a prior invocation of the init method.

See “How WebObjects Works” for a discussion of init and awake in the context 
of the request-response loop.

The Structures of init and awake
The init method must begin with an invocation of super’s init method and must 
end by returning self. 

- init {

[super init];

/* initializations go here */

return self;



79

Integrating Your Code Into the Request-Response LoopInitialization Methods

}

The awake method has no such structure. In it, you don’t need to send a message 
to super or return anything.

- awake {

    /* initializations go here */

}

The sleep and dealloc Methods
Complementing awake and init, respectively, are the sleep and dealloc methods. 
These methods let objects deallocate their instance variables and perform other 
clean-up tasks. The sleep method is invoked at the end of an object’s 
involvement in a transaction. The dealloc method is invoked just before an 
object is destroyed.

In Objective-C you deallocate instance variables by sending them release. In 
WebScript, on the other hand, all you need to do (in sleep) is set the instance 
variables to nil. WebScript has a “garbage-collection” mechanism that 
automatically disposes of unreferenced objects. For this reason, there’s seldom 
a reason for implementing dealloc in a script.

When Use init, When Use awake?
Since both init and awake are entry points for an object’s involvement in request 
handling, they are both suitable places for initializations. So which method is a 
better place for this? When is it better to use init, and when is it better to use 
awake?

The short answer is that, because objects are typically persistent to some degree, 
init is the better place to initialize an object. A WebObjects application, by 
default, stores page instances. Those component objects usually persist through 
a number of transactions (as specified in setPageCacheSize:) and are restored when 
the user backtracks to them. Pages that return nil in an action method also 
restore a cached instance of themselves. 

Page caching, however, can impose a penalty in terms of scalability for some 
applications. If scalability is a problem, you can optimize an application by 
initializing component instance variables in awake. Then, in sleep, you can 
deallocate these variables by setting them to nil. 

Even when optimizing, however, an important consideration is the cost of 
initializing operations as offset against the cost of storing page instances. For 
example, it is sensible to perform static initializations in awake, but it is 



Integrating Your Code Into the Request-Response LoopInitialization Methods

80

prohibitive to do database fetches in awake. Database and file system operations 
are expensive and so should not be repeated needlessly. 

You might want finer control over page persistence than that afforded by the 
page-caching mechanism; for instance, you may want the action method 
invoked by a Submit button to return the most recent instance of a page instead 
of new page. To achieve this finer control, you can always cache selected pages 
and component variables in the session object and restore them when these 
pages and variables are requested. See the chapter “Managing State” for a 
discussion of storage strategies and techniques.

In the final analysis, what you do in init and what you do in awake are a matter of 
common sense, given the object involved and the frequency of invocation. For 
example, if you want to tally the number of transactions a page is involved in, 
the component’s awake method is the logical place to increment a counter. On 
the other hand, you need to set the session time-out period only once, at the 
beginning of a session, so the obvious place to do that is in the init method of the 
session object.

Application Initialization
The application init method is invoked when the application is launched—
either from the command line or by autostarting—and never again. It’s common 
to initialize application variables in an application init method. For example, the 
follow excerpt from the Application.wos script in the DodgeDemo example 
initializes the models, categories, and priceRange application variables. 

id models, categories, priceRange;

- init {

id modelSource, categorySource;

    [super init];

[self logWithFormat:@"Welcome to DodgeDemo!!!"];

    /* code not shown... */

    // Create Model data source and fetch the models

    modelSource = [[[EODatabaseDataSource alloc] initWithEditingContext:

editingContext entityName:@"Model"] autorelease];

    if (!modelSource) {

        [self logWithFormat:@"Cannot create model data source"];

        [self terminate];

    }

    models = [modelSource fetchObjects];

    // Create Category data source and fetch the categories

    categorySource = [[[EODatabaseDataSource alloc] initWithEditingContext:



81

Integrating Your Code Into the Request-Response LoopInitialization Methods

editingContext entityName:@"Type"] autorelease];

    if (!categorySource) {

        [self logWithFormat:@"Cannot create category data source"];

        [self terminate];

    }

    categories = [categorySource fetchObjects];

     // Price range for price browsers

    priceRange = @(8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 

30000, 50000, 90000);

return self;

}

When scripted applications are run, WebObjects automatically creates an 
instance of a special subclass of WOApplication and adds to it the code from the 
application script. When you send init to super in an application script, you invoke 
the init method of the superclass of the instance: WOApplication. You can also 
create your own subclass of WOApplication and override init to perform any 
necessary initialization. It is more common, however, to implement the init 
method in an application script.

Because all applications are not reparsed after the first time, changing a scripted 
application init method has no effect on a running WebObjects application . To 
have changes to a scripted application’s init method take effect, you must restart 
the application.

In addition to using the application init method to initialize application variables, 
you can also use it to configure the application’s behavior. For example, you can 
set the application time-out period and specify the page-cache size:

// Set the number of transactions pages are persistent

[self setPageCacheSize:10];

// Set application timeout

[self setTimeOut:43200]; 

Session Initialization
The session’s init method is invoked when the application creates the 
WOSession object for the current session, which happens when the application 
receives the first request of a new user. Initialize variables in the session init 
method that should retain their values between transactions throughout the 
session. For example, the Session.wos script in the Visitors example initializes the 
session variable timeSinceSessionBegain before setting up a timer that will result in 
the variable’s value being incremented:



Integrating Your Code Into the Request-Response LoopInitialization Methods

82

id timeSinceSessionBegan;

id timer;

- init

{

    [super init];

    timeSinceSessionBegan = 0;

    timer = [NSTimer scheduledTimerWithTimeInterval:1.0 target:self

 selector:"timeOfSession" userInfo:nil repeats:YES];

[self setTimeOut:120];

    return self;

}

Note: An important side effect of using a timer object in a WebObject’s 
application is that the method invoked when the timer fires is outside the 
request-response loop. In other words, invocation occurs after the transaction 
concludes, and thus the method has no access to the WORequest, 
WOResponse, and WOContext of the transaction.

When a session begins in a scripted application, WebObjects automatically 
creates an instance of a special subclass of WOSession and adds to it the code 
from the session script. When you send init to super in an session script, you 
invoke the init method of the superclass of the instance: WOSession. You can 
also subclass WOSession and override init to perform any necessary initialization. 
It is more common, however, to implement the init method in an session script.

The WOSession object’s awake method is invoked just after the object is created 
(and receives init) and immediately after being restored for each subsequent 
transaction.

Component Initialization
It’s common in a component’s init method to initialize component variables. For 
example, the Department.wos script in the EmployeeBook example application 
uses init to initialize the departments component variable:

id departments; 

- init {

    id departmentsPath;

    [super init];

    departmentsPath = [WOApp pathForResourceNamed:@"Departments" ofType:@"array"];

    departments = [NSArray arrayWithContentsOfFile:departmentsPath];

    return self;

}



83

Integrating Your Code Into the Request-Response LoopAction Methods

The WOComponent class—an abstract class that implements basic component 
behavior—defines the init method for components and implements it to 
initialize some basic attributes. When a component object must be generated in 
a scripted application, WebObjects automatically creates an instance of a special 
subclass of WOComponent and adds to it the code from the component script. 
When you send init to super in an component script, you are invoking the init 
method of the superclass of the instance: WOComponent. You can also subclass 
WOComponent and override init to perform any necessary initialization. It is 
more common, however, to implement the init method in a component script. 

A component’s init method is invoked only when the component must be 
created. This happens at the start of a transaction except when the component is 
restored from the page cache as a result of the user backtracking or a request 
component returning itself as the response page. Even then, init is invoked only 
in cycles in which the component is participating. Generally, a component 
participates in a cycle of the request-response loop if:

• It represents the request page—the page associated with the request.
• It represents the response page—the page returned to the server.
• It’s nested in either the request or response page.
• It’s messaged in any other way during the current cycle.

The awake method is immediately invoked in a component after init and after 
each time the component is restored from the page cache. Just as in init, you can 
implement a component awake method that initializes component variables. For 
example, the Main.wos script in the CyberWind application uses awake to 
initialize the options component variable:

- awake {

options = @("See surfshop information", "Buy a new sailboard");

}

You can subclass WOComponent and override awake to perform any necessary 
initialization, but it is more common to implement the awake method in a 
component script. 

Action Methods

An action method is a method that’s associated with a user action. You associate 
methods with a user action using a dynamic element. For example, 
WOSubmitButton has an attribute named action to which you can assign a 
method. When the submit button in the corresponding HTML page is clicked, 
the action method is invoked in the subsequent cycle of the request-response 



Integrating Your Code Into the Request-Response LoopAction Methods

84

loop. This declaration in the HelloWorld application associates the action 
method sayHello with a submit button: 

SUBMIT_BUTTON: WOSubmitButton {action = sayHello};

Clicking the submit button sends a request to the HelloWorld application, 
initiating a cycle of the request-response loop in which sayHello is invoked.

Note: The WOActiveImage, WOHyperlink, and WOForm dynamic elements 
can also be used to associate action methods to a user action.

Action methods take no arguments and return a page that will be packaged with 
an HTTP response. For example, the sayHello action method of the HelloWorld 
example is defined as follows:

- sayHello

{

    id nextPage = [WOApp pageWithName:@"Hello"];

[nextPage setNameString:nameString];

    return nextPage;

}

As in sayHello, most action methods perform page navigation. It is common for 
action methods to determine the response page based on user input. For 
example, the following action method returns an error page if the user has 
entered an invalid part number (stored in the component variable partnumber) or 
an inventory summary otherwise:

- showPart {

    id errorPage;

    id inventoryPage;

    

    if ([self isValidPartNumber:partnumber]) {

errorPage = [[self application] pageWithName:@"Error"];

[errorPage setErrorMessage:@"Invalid part number %@.", partnumber];

return errorPage;

    }

inventoryPage = [[self application] pageWithName:@"Inventory"];

[inventoryPage setPartNumber:partnumber];

return inventoryPage;

}

Action methods don’t have to return a new page. They can instead direct the 
application to regenerate the request page. When an action method returns nil, 
the application uses the request component as the response component.



85

Integrating Your Code Into the Request-Response LoopRequest-Handling Methods

Note: Returning self in an action method generally has the same effect as 
returning nil. However, there’s a difference when the action method is 
implemented in a nested component. When a nested component—a 
component representing only a portion of the request page—returns self in an 
action, the application attempts to use the nested component to generate the 
response page. Since the component only represents a portion of a page, 
returning self is probably an error. Returning nil always has the effect of using the 
request page—the component representing the whole request page—as the 
response page. As a result, returning nil is considered to be a better practice than 
returning self. 

In the Visitors example, the request page is also used as the response page. The 
WebScript recordMe action method records the name of the last visitor and clears 
the text field:

- recordMe

{

    if ([aName length]) {

[[self application] setLastVisitor:aName];

[self setAName:@""]; // clear the text field

}

return nil;

}

Request-Handling Methods

WebObjects defines three request-handling methods that are invoked at 
particular points in the request-response loop if you implement them:

• takeValuesFromRequest:inContext:
• invokeActionForRequest:inContext:
• appendToResponse:inContext:

As with init and awake methods, the request-handling methods can be 
implemented for an application, a session, and the application’s components. All 
versions of a request-handling method work identically, and can be used for 
similar purposes. You choose to implement a method for the application, the 
session, or a component based on which is more appropriate for the behavior you 
need to provide. Generally, you implement request-handling methods in the 
application or the session object when the specified behavior should affect every 
request. You implement request-handling methods in a component when the 
behavior should affect a particular page.



Integrating Your Code Into the Request-Response LoopRequest-Handling Methods

86

The WOApplication, WOSession, and WOComponent classes each declare and 
implement the three methods that handle requests and responses. The 
implementations of these methods that you provide in scripts—Application.wos, 
Session.wos, and component scripts—are dynamically added to the appropriate 
subclass object that WebObjects generates at run time. Consequently, when 
WOApplication sends takeValuesFromRequest:inContext: to self, the 
takeValuesFromRequest:inContext: method defined in the corresponding 
Application.wos (if it exists) is invoked. In compiled subclasses of WOApplication, 
WOSession, and WOComponent, you can override the request-handling 
methods, but it is more common to implement them in a script.

In your implementations of request-handling methods you must invoke super’s 
implementation of the same methods. Where you invoke it is an important 
consideration because it can affect the request, response, and context 
information available at any given point. You will want to perform certain tasks 
before super is invoked and, for other tasks, after super is invoked.

takeValuesFromRequest:inContext:
This method is invoked during the phase of the request-response loop when the 
application stores user input. When this phase concludes, the request 
component has been initialized with the bindings made in WebObjects Builder 
or the assignments made in the declarations file. 

The first argument to takeValuesFromRequest:inContext: is a WORequest object. A 
WORequest object encapsulates information from an HTTP request such as 
the method line, request headers, URL, and form values. The second argument 
is a WOContext object. A WOContext object contains references to information 
specific to the application, such as the path to the request component’s directory, 
the version of WebObjects that’s running, the name of the application, and the 
name of the request page.

It is common to use this method to access request and context information. For 
example, the following implementation of takeValuesFromRequest:inContext: records 
the kinds of browsers—user agents—from which requests are made (the 
“recordUserAgent:” method is assumed to be implemented in the same script):

- takeValuesFromRequest:request inContext:context {

id userAgent = [request headerForKey:@"user-agent"];

[self recordUserAgent:userAgent]; 

[super takeValuesFromRequest:request inContext:context];

}

When you invoke super’s takeValuesFromRequest:inContext: in your implementation 
of the same method, the application processes user input. So after the message 



87

Integrating Your Code Into the Request-Response LoopRequest-Handling Methods

to super is when you could perform postprocessing of user input. For example, 
the following implementation takes the values for the street, city, state, and zipCode 
variables and stores them in address variable formatted as a standard mailing 
address.

- takeValuesFromRequest:request inContext:context {

[super takeValuesFromRequest:request inContext:context];

    address = [NSString stringWithFormat:@"%@\n%@, %@  %@",

            street, city, state, zipCode];

}

invokeActionForRequest:inContext:
The second phase of the request-response loop involves 
invokeActionForRequest:inContext:. This method is invoked, in turn, in the 
application object, the session object, the request page, and in every dynamic 
element on that page. Normally, the message is forward from object to object 
until it is handled by the dynamic element associated with the user action 
(typically a WOSubmitButton, a WOHyperLink, an WOActiveImage, or 
WOForm).

A common use of this “hook” in Appliation.wos, Session.wos, or a component script 
to return a page other than the one requested. A scenario where this might occur 
is when the user requests a page which has a dependency on another page that 
the user must fill out first. The user might finish ordering items from a catalog 
application and want to go to a fulfillment page; but first he or she must supply 
credit card information.

The following invokeActionForRequest:inContext: method, implemented in 
Session.wos, returns a “CreditCard” page if the user hasn’t supplied this 
information yet:

- invokeActionForRequest:request inContext:context {

    id creditPage;

    id responsePage = [super invokeActionForRequest:request inContext:context];

    id nameOfNextPage = [responsePage name];

    if ([self verified]==NO &&

        [nameOfNextPage isEqual:@"Fulfillment"]) {

        creditPage = [[self application] pageWithName:@"CreditCard"];

        [creditPage setNameOfNextPage:nameOfNextPage];

        return creditPage;

    }

    return responsePage;

}



Integrating Your Code Into the Request-Response LoopRequest-Handling Methods

88

When the application receives a request for a new page (say, a fulfillment page), 
the session determines whether or not the user has supplied valid credit-card 
data by checking the value of its verified variable. If the value of verified is NO, the 
session returns the “CreditCard” component. As shown in the following action 
method, the “CreditCard” component sets the verified session variable to YES 
when the user has supplied valid credit information and returns the user to the 
original request page to try again.

- verifyUser {

if ([self isValidCredit]) {

    [[self session] setVerified:YES];

    return [[self application] pageWithName:nameOfNextPage];

  }

  return nil;

}

Limitations on Direct Requests
By specifying a page in a URL, a user can attempt to access any page in an 
application without invoking an action. For example, you can access the second 
page of HelloWorld without invoking the sayHello action by opening the URL:

http://serverhost/cgi-bin/WebObjects/Examples/HelloWorld.woa/Hello.wo/

When a WebObjects application receives such a request, it bypasses the user-
input (takeValuesFromRequest:inContext:) and action-invocation 
(invokeActionForRequest:inContext:) phases because there is no user input to store 
and no action to invoke. As a result, the object representing the requested 
page—Hello in this case—generates the response. 

By implementing security mechanisms in invokeActionForRequest:inContext:, you can 
prevent users from accessing pages without authorization, but only if those 
pages are not directly requested in URLs. 

appendToResponse:inContext:
This method is invoked in the phase of the request-response loop during which 
the application generates HTML for the response page. You can implement this 
method to add to the response content or otherwise manipulate the HTTP 
response. For example, you can add or modify the HTTP headers. The 
following code excerpt sets the “Expires” header in the HTTP response to “0.” 

- appendToResponse:aResponse inContext:aContext

{

[super appendToResponse:aResponse inContext:aContext];

[aResponse setHeader:@"0" forKey:@"Expires"];

}



89

Integrating Your Code Into the Request-Response LoopRequest-Handling Methods

The first argument to appendToResponse:inContext: is a WOResponse object. A 
WOResponse object encapsulates information contained in the generated 
HTTP response such as the status, response headers, and response content. 
The second argument is a WOContext object. A WOContext object contains 
references to application-specific information such as the path to the request 
component’s directory, the version of WebObjects that’s running, the name of 
the application, and the name of the request page.

In a similar manner, you can use appendToResponse:inContext: to append text to the 
response content. In the following example, a component’s 
appendToResponse:inContext: method appends bold and italic markup elements 
around a string’s value as follows: 

id value;
id escapeHTML;
id isBold;
id isItalic;

- appendToResponse:aResponse inContext:aContext
{

id aString = [value description];
  [super appendToResponse:aResponse inContext:aContext];
 [aResponse appendContentHTMLAttributeValue:@"<p>"];
    if (isBold) {
        [aResponse appendContentHTMLAttributeValue:@"<b>"];
    }
    if (isItalic) {
        [aResponse appendContentHTMLAttributeValue:@"<i>"];
    }

    if (escapeHTML) {
        [aResponse appendContentString:aString];
    } else {
        [aResponse appendContentHTMLString:aString];
    }

    if (isItalic) {
        [aResponse appendContentHTMLAttributeValue:@"</i>"];
    }
    if (isBold) {
        [aResponse appendContentHTMLAttributeValue:@"</b>"];
    }
}

After you invoke super’s appendToResponse:inContext:, the application generates the 
response page. At this point you could do something appropriate for the end of 
the transaction. For example, the following implementation terminates the 
current session:

- appendToResponse:response inContext:context {
 [super appendToResponse:response inContext:context];



Integrating Your Code Into the Request-Response LoopSummary

90

    [[self session] terminate];
}

The WOSession method terminate schedules the destruction of state associated 
with the current session, but termination is deferred until the current transaction 
concludes. You can explicitly terminate a session anytime, anywhere in a 
WebObjects application.

Summary

What request-response loop “hooks” can you implement?
There are three types of methods that allow your application to influence what 
happens in the request-response loop:

• Initialization methods—init and awake— are invoked, respectively, when an 
object is created and just before the receiver begins to participate in each 
cycle of the request-response loop. The methods dealloc and sleep allow the 
deallocation of variables initialized in init and awake.

• Action methods are associated with a particular user action such as clicking a 
button or hyperlink.

• Request–handling methods, if implemented, are invoked in application, session, 
and component objects at particular points in the request-response loop.

You can participate in the request-response loop by implementing any of these 
methods.

What you can use the hooks for?
The following list summarizes common uses of the request-response loop 
“hooks”:

• Action methods perform page navigation.

• Application init and awake methods are places to initialize application variables 
and configure application behavior.

• Session init and awake methods are places to initialize session variables and 
configure session behavior.

• Component init and awake methods are places to initialize component 
variables and configure component behavior.



91

Integrating Your Code Into the Request-Response LoopSummary

• The sleep and dealloc methods are places to deallocate variables initialized in 
awake and init, respectively.

• In most situations, you can use init to initialize variables. To optimize 
applications, you might do more of your initializations in awake, especially if 
they involve inexpensive operations.

• Use takeValuesForRequest:inContext: methods to access request and context 
information and to perform postprocessing of user input.

• Use invokeActionForRequest:inContext: methods to substitute a different page for 
the response (except for initial requests).

• Use appendToResponse:inContext: methods to add to the response content or 
otherwise manipulate the HTTP response.



Integrating Your Code Into the Request-Response LoopSummary

92


