
Using WebScript

27

Using WebScript

This chapter provides an overview of WebScript, the WebObjects scripting
language. The chapter includes the following major sections:

• “The WebScript Language” describes basic WebScript language syntax and
the “modern” variation on this syntax.

• “Using WebScript in a WebObjects Application” describes using WebScript
within the context of a WebObjects application. This section uses a simple
example application to explain the issues that arise in creating a WebObjects
application, as well as special WebObjects features.

• “WebScript Language Summary” provides a reference to the WebScript
language.

For a detailed discussion of the structure of a WebObjects application, see the
chapter “Getting Started.”

The WebScript Language

This section describes WebScript language features and syntax. For a complete
WebScript example and a discussion of how scripts operate within the larger
context of a WebObjects application, see the section “Using WebScript in a
WebObjects Application.”

Declaring Variables
To declare a variable in WebScript, use the syntax:

id myVar;
id myVar1, myVar2;

A value can also be assigned to a variable at the time it is declared:

id myVar3 = 77;

WebScript only supports one data type: objects (ids).

The id Data Type
The id type is defined as a pointer to an object—in reality, a pointer to the
object’s data (its instance variables). Like a C function or an array, an object is
identified by its address. All objects, regardless of their instance variables or
methods, are of type id.

Using WebScript The WebScript Language

28

Making Assignments
The basic syntax for making assignments in WebScript is straightforward:

myVar = aValue ;

The value you assign to a variable can be either a constant or another variable.
For example:

// assign another variable to a variable
myVar = anotherVar;

// assign a string constant to a variable
myString = @"This is my string.";

The syntax myString = @"This is my string"; is a way of creating instances
of the class NSString. For more discussion of this syntax, see the section
“Creating Constant NSStrings, NSArrays, and NSDictionaries.”

WebScript only supports one data type: objects (ids). However, if you assign a
literal integer or floating point value to a variable:

id myInt = 167;

WebScript represents it as an NSNumber object. In this sense WebScript can be
said to support integers and floats.

Messaging in WebScript
To get an object to do something in WebScript, you send it a message telling it
to perform a method. In WebScript, message expressions are enclosed in square
brackets:

[receiver message]

The receiver is an object, and the message tells it what to do. For example, the
statement:

[aString length];

tells the object aString to perform its length method, which returns the string’s
length. Methods can also take arguments. For example, this statement:

[aString isEqual:anotherString];

tells the object aString to perform its isEqual: method, which takes another object
as an argument and tests it against aString for equality. A method can take
multiple arguments. For example the statement:

[aString insertString:anotherString atIndex:3];

29

Using WebScript The WebScript Language

inserts the characters of anotherString into aString at the specified index. Note that
the method name insertString:atIndex: has two colons, one for each of its
arguments. The colons are preceded by keywords that describe their arguments
(for example, atIndex: takes as its argument an integer representing an index).

One message can also be nested inside another. Here the description method
returns the string representation of an NSCalendarDate object myDate, which is
then appended to aString.The resulting string is assigned to newString:

newString = [aString stringByAppendingString:[myDate description]];

To give another example, here the array anArray returns an object at a specified
index. That object is then sent the description message, which tells the object to
return a string representation of itself, which is assigned to desc:

id desc = [[anArray objectAtIndex:anIndex] description];

Sending a Message to a Class
Most commonly, the object receiving a message is an instance of a class. For
example, in the statement:

[aString length];

the variable aString is an instance of the class NSString.

However, sometimes you send messages to a class. You send a class a message
when you want to create a new instance of that class. For example the
statement:

aString = [NSString stringWithString:@"Fred"];

tells the class NSString to invoke its stringWithString: method, which returns an
instance of NSString that contains the specified string. Note that a class is
represented in a script by its corresponding class name—in this example,
NSString.

The classes you use in WebScript include both class and instance methods.
Most class methods create a new instance of that class, while instance methods
provide behavior for instances of the class. The following example shows how
you use an NSString class method to create an instance of NSString, and then
use instance methods to operate on the instance myString:

// Use a class method to create an instance of NSString
id myString = [NSString stringWithFormat:@”The next word is %@”, word];

// Use instance methods to operate on the instance myString
length = [myString length];
lcString = [myString lowercaseString];

Using WebScript The WebScript Language

30

In a class definition, class methods are preceded by a plus sign (+), while
instance methods are preceded by a minus sign (-). You can define new classes
in WebScript: see “Scripted Classes” for details. Or you can take advantage of
existing classes. For more information, see the chapter “A Foundation for
WebScript Programmers: Quick Guide to Useful Classes.”

Creating Objects
There are two different ways to create objects in WebScript. The first approach,
which applies to all classes, is to use class creation methods. The second
approach applies to just NSStrings, NSArrays, and NSDictionaries. For these
classes WebScript provides a convenient syntax for initializing constant objects.

Using Creation Methods
All classes provide creation methods that you can use to create an instance of
that class. Depending on the class and the particular creation method, the
instances of the class you create might be either mutable (modifiable) or
immutable (constant). When you use creation methods to create NSStrings,
NSArrays, and NSDictionaries, you can choose to create either an immutable or
a mutable object. For clarity, it’s best to use immutable objects wherever
possible. Only use a mutable object if you need to change its value after you
initialize it.

Here are some examples of using creation methods to create mutable and
immutable NSString, NSArray, and NSDictionary objects:

// Create a mutable string
string = [NSMutableString stringWithFormat:@"The string is %@", aString];

// Create an immutable string
string = [NSString stringWithFormat:@"The string is %@", aString];

// Create a mutable array
array = [NSMutableArray array];
anotherArray = [NSMutableArray arrayWithObjects:@"Marsha", @"Greg", @"Cindy", nil];

// Create an immutable array
array = [NSArray arrayWithObjects:@"Bobby", @"Jan", @"Peter", nil];

// Create a mutable dictionary
dictionary = [NSMutableDictionary dictionary];

// Create an immutable dictionary
id stooges = [NSDictionary

dictionaryWithObjects:@("Mo", "Larry", "Curley")
forKeys:@("Stooge1", "Stooge2", "Stooge3")];

31

Using WebScript The WebScript Language

The instances of some classes are always mutable or always immutable. The
following examples show how you can create and work with NSCalendarDates,
which are always immutable:

// Using the creation method date, create an NSCalendarDate instance
// 'now' that contains the current date and time
now = [NSCalendarDate date];

// Return a string representation of 'now' using a format string
dateString = [now descriptionWithCalendarFormat:@"%B %d, %Y"];

// Using the creation method dateWithString:, create an NSCalendarDate
// instance 'newDate' from 'dateString'
newDate = [NSCalendarDate dateWithString:dateString

calendarFormat:@"%B %d, %Y"];

// Return a new date in which newDate's day field is decremented
date = [newDate addYear:0 month:0 day:-1 hour:0 minute:0 second:0];

For a detailed discussion of these classes and a more complete listing of
methods, see the chapter “A Foundation for WebScript Programmers: Quick
Guide to Useful Classes.”

Creating Constant NSStrings, NSArrays, and NSDictionaries
NSStrings, NSArrays, and NSDictionaries are the classes you use most often in
WebScript. WebScript provides a convenient syntax for initializing constant
objects of these types. In such an assignment statement, the value you’re
assigning to the constant object is preceded by an at sign (@). You use
parentheses to enclose the elements of an NSArray, and curly braces to enclose
the key-value pairs of an NSDictionary. The following are examples of how you
use this syntax to assign values to constant NSStrings, NSArrays, and
NSDictionaries in WebScript:

myString = @"hello world";
myArray = @("hello", "goodbye");
myDictionary = @{"key" = 16};
anotherArray = @(1, 2, 3, "hello");
aDict = @{ "a" = 1; "b" = "hello world"; "c" = (1,2,3);

"d" = { "x" = 1; "r" = 2 }};

The following rules apply when you use this syntax to create constant objects:

• The value you assign must be a constant (that is, it can’t include variables).
For example, the following is not allowed:

// This is not allowed!!
myArray = @("hello", aVariable);

Using WebScript The WebScript Language

32

• You shouldn’t use @ to identify NSStrings, NSArrays, or NSDictionaries
inside the value being assigned. For example:

// This is not allowed!!
myDictionary = @(@"value" = 3);

// Do this instead
myDictionary = @("value" = 3);

For more information on NSStrings, NSDictionaries, and NSArrays, see the
chapter “A Foundation for WebScript Programmers: Quick Guide to Useful
Classes.”

Writing Your Own Methods
You can write your own methods in WebScript. The methods you write can be
associated with one of two types of objects: the WOApplication object that’s
automatically created when you run your script, or a WOComponent object
that’s associated with a particular grouping of a script, an HTML template, and
a declarations file (for more information, see the section “The Role of Scripts in
a WebObjects Application”). When you write your own methods, you’re
effectively extending the behavior of the object associated with the script.

You implement WOApplication methods in the application script. You
implement WOComponent methods in a component script—that is, a script that
has a corresponding HTML template and declarations file. This grouping of
three files most commonly maps to a single, dynamically generated HTML
page, but this isn’t always the case—a component can also represent just a
portion of a page.

To define a new method, simply put its implementation in the appropriate
application or component script file. You don’t need to declare it ahead of time.
For example, the following method addFirstValue:toSecondValue: adds one value to
another and returns the result:

- addFirstValue:firstValue toSecondValue:secondValue {
id result;
result = firstValue + secondValue;
return result;

}

In this example, note the following:

33

Using WebScript The WebScript Language

• There is no type information supplied for the method’s arguments and return
types. These types are assumed to be (and must be) id, and if you supply any
type information, you will get an error.

// This is fine.
- aMethod:anArg {

// NO!! This won’t work.
- (void) aMethod:(NSString *)anArg {

// This won’t work either.
- (id)aMethod:(id)anArg {

• This method returns a value, stored in result. If a method doesn’t return a
meaningful value, you don’t have to include a return statement (and, as stated
above, even if a method returns no value you shouldn’t declare it as returning
void).

To invoke the addFirstValue:toSecondValue: method shown above from another
method in the same script, you’d simply do something like the following:

id sum, val1 = 2, val2 = 3;
sum = [self addFirstValue:val1 toSecondValue:val2];

To access the method from another script, you’d first return the page associated
with the script in which the method is implemented. You’d then ask the page
object to perform the method:

id sum, val1 = 2, val2 = 3;
// Get the page in which the method is implemented
id computePage = [WOApp pageWithName:@"Compute"];
// Send the page object to perform the method
sum = [computePage addFirstValue:val1 toSecondValue:val2];

The pageWithName: method is discussed in more detail in the section “Accessing
and Sharing Variables.”

What is self?
In WebScript, self is available in every method. It refers to the object (the
WOApplication object, the WOSession object, or the WOComponent object)
associated with a script. When you send a message to self, you’re telling the
object associated with the script to perform a method that’s implemented in the
script. For example, suppose you have a script that implements the method
giveMeARaise. From another method in the same script you could invoke
giveMeARaise as follows:

[self giveMeARaise];

Using WebScript The WebScript Language

34

This tells the WOApplication, WOSession, or WOComponent object associated
with the script to perform its giveMeARaise method.

Categories
Categories are a feature of WebScript borrowed from Objective-C. They allow
you to add methods to an existing class without having to create a subclass of
that class. The existing class can be a WebObjects public class or any custom or
NeXT-provided Objective-C class. The methods added by the category
become part of the class type. You can invoke them on any object of that type
within an application.

To create a category you must implement it within an @implementation block,
which is terminated by the @end directive. The category name appears in
parentheses after the class name. Unlike Objective-C categories, no typing of
method arguments or return values is allowed. The category can be in any script
file of the application.

The following example is a simple category of WORequest that gets the
sender’s Internet e-mail address from the request headers (“From” key) and
returns it (or “None”).

@implementation WORequest(RequestUtilities)

- emailAddressOfSender {

 id address = [self headerForKey:@"From"];

 if (!address) address = @"None";

 return address;

}

@end

Elsewhere in your WebScript code, you invoke this method on WORequest
objects just as you do with any other method of that class:

- takeValuesFromRequest:request inContext:context {

[super takeValuesFromRequest:request inContext:context];

 [self logWithFormat:@"Email address of sender: %@",

 [request emailAddressOfSender]];

}

Scripted Classes
You can create an Objective-C class in a script file, then load that class into your
application at run time and generate instances from it. The instances will
behave as any other Objective-C object.

35

Using WebScript The WebScript Language

As with categories, no typing is permitted. You must specify the class interface
in an @interface...@end block and the class implementation in an
@implementation...@end block. For the sake of loading, the scripted class code
should be in its own “.wos” file. The following example is in a file named
Surfshop.wos:

@interface Surfshop:NSObject {

id name;

id employees;

}

@end

@implementation Surfshop

- initWithName:aName employees:theEmployees {

 name = [aName copy];

 employees = [theEmployees retain];

 return self;

}

@end

To use the class, you locate it in the application, load it, and then allocate and
initialize instances using the class object. For example:

id allSurfshops;

- init

{

 id scriptPath;

 id surfshopClass;

 [super init];

 scriptPath = [WOApp pathForResourceNamed:@"Surfshop" ofType:@"wos"];

 surfshopClass = [WOApp scriptedClassWithPath:scriptPath];

 allSurfshops = [NSMutableArray array];

 [allSurfshops addObject:[[[surfshopClass alloc] initWithName:

 "Banana Surfshop" employees:@("John Popp", "Jenna de Rosnay")] autorelease]];

 [allSurfshops addObject:[[[surfshopClass alloc] initWithName:

 "Rad Swell" employees:@("Robby Naish", "Nathalie Simon")] autorelease]];

 return self;

}

“Modern” WebScript Syntax
When you designate an action method in WebObjects Builder, it can emit code
similar to this (if the appropriate preference is selected):

Using WebScript The WebScript Language

36

function submit() {

}

This is an instance of “modern” syntax, a variation of WebScript designed to
appeal to programmers more familiar with such languages as Visual Basic and
Java. The rules for transformming “classic” WebScript to “modern” WebScript
can be illustrated by examples that map one to another.

Method Definition
Classic:

- submit {

// <body>

}

Modern:

function submit() {

// <body>

}

Method Invocation — No Argument
Classic:

[self doIt];

Modern:

self.doIt();

Method Invocation — One Argument
Classic:

[guests addObject:newGuest];

Modern:

guests.addObject(newGuest);

Method Invocation — Two or More Arguments
Classic:

[guests insertObject:newGuest atIndex:anIndex];

Modern:

guests.insert(object := newGuest, atIndex := anIndex);

37

Using WebScript Using WebScript in a WebObjects Application

Note that in this last example that the left parenthesis can occur at any point
before the first argument. You can even have no keyword on the left side of the
first assignment. Thus the following two mappings would be valid as well:

guests.insertObjec(t := newGuest, atIndex := anIndex); // not recommended!

guests.insertObject(newGuest, atIndex := anIndex);

However, if the “modern” message is to map to an existing Objective-C method
(which, of course, follows “classic” WebScript syntax), then the characters just
inside the left parenthesis (that is, on the left side of the first assignment) are
significant. When WebScript transforms “modern” to “classic” syntax internally,
it capitalizes this character before concatentating the keywords of the selector.
Thus the first example immediately above would change to “classic” syntax as:

[guests insertObjecT:newGuest atIndex:anIndex];

By default WebObjects Builder emits “classic” WebScript syntax. If you want to
work with “modern” syntax, choose the appropriate option in the Language
display of Preferences.

Using WebScript in a WebObjects Application

This section discusses using WebScript in the context of a WebObjects
application. For a detailed discussion of the structure of a WebObjects
application, see the chapter “Getting Started.”

The Role of Scripts in a WebObjects Application
In developing WebObjects applications, you usually write your business logic as
compiled Objective-C code (though you can write entire applications using just
WebScript). You then use WebScript to provide your “interface logic.” A
WebScript script typically includes the following ingredients:

• Variable declarations
• The instantiation of objects that get bound to HTML elements
• Action methods that define a response to user actions
• Logic for performing page navigation

Component Scripts
Most scripts are for components. A component is a page or a identifiable part of a
page that can dynamically generate itself and send action messages when users
interact with it. A component contains one or more dynamic HTML elements
and usually some static HTML elements as well. Components can exist on the

Using WebScript Using WebScript in a WebObjects Application

38

server or on the client browser. (See “Java Client-Side Components” for an
example of the latter.)

On the server side, components are instances of a WOComponent subclass.
(WOComponent is an abstract class that defines the interface and behavior of
WOComponent objects.) At run time, WebObjects creates an instance of a
special subclass for each component script and dynamically makes the script
code the class implementation. Applications can, and often do, have multiple
components.

In most cases, a script for a server-side component has a corresponding
declarations file and HTML template. The declarations file provides a mapping
between the actions and variables defined in the script, and the HTML
elements that will be dynamically generated and then substituted in the
HTML template.The three files in a group have the same base name but
different extensions; for example, Main.wos (script), Main.wod (declarations), and
Main.html (template). These application resources are used by the
WOComponent object to prepare responses to user requests.

In a WebObjects application you generally put each group of three files (the
script, the declaration, and the HTML template) into a directory that has the
same base name and the extension .wo. So, for example, you can have a directory
Main.wo that contains the files Main.wos, Main.wod, and Main.html. The script
associated with a component (in this example, Main.wos) is called a component
script.

Figure 1. The Contents of a Component Directory

Main.html Main.wod Main.wos

Main.wo

39

Using WebScript Using WebScript in a WebObjects Application

The Application and Session Scripts
In addition to having one or more components, a WebScript application can also
include an application script and a session script. The application script is where
you declare and initialize application variables, and where you perform tasks
that affect the entire application. The session script is where you declare,
initialize, and store variables that persist throughout a session; in a session script
you also perform tasks that affect the session as a whole. For more information
on application, session, and other variables, see the section “Variables and
Scope.”

The application script has the name Application.wos and the session script is
named Session.wos. Both files reside immediately under the application (.woa)
directory. Similar to component scripts, the script code is dynamically made the
implementation code of special WOApplication (Application.wos) and WOSession
(Session.wos) subclasses from which instances are generated at run time.

Visitors Example
To explain how a WebScript operates within the larger context of a WebObjects
application, this section uses the Visitors application as an example. The Visitors
application takes the name of the current visitor, and displays the most recent
visitor, the total number of visitors to the page, and the time remaining in the
session:

Figure 2. The Visitors Example

Using WebScript Using WebScript in a WebObjects Application

40

The Visitors application includes the following directories and files:

/Visitors.woa
Application.wos
Session.wos
/Main.wo

Main.html
Main.wod
Main.wos

To view the contents of Main.wod and Main.html, see the on-line Visitors example.
The contents of Application.wos, Session.wos, and Main.wos are listed in the
following sections.

Application.wos
Application.wos is the application script for the Visitors application. It declares two
application variables: visitorNum and lastVisitor. Application variables can be
accessed throughout the application, and they live for the duration of the
application. For more information on application variables, see the section
“Variables and Scope.”

id lastVisitor;
// the most recent visitor

id visitorNum;
// the total number of visitors the page

- init
{
 [super init];
 lastVisitor = @"";
 [self setTimeOut:7200];
 return self;
}

Implementing the init Method

The Application.wos script includes a method called init. The init method is where
you can initialize the variables associated with the object. Thus, in an
application script, it’s common to implement an init method to initialize
application variables. In a component script, on the other hand, you use init to
prepare the associated page and its variables for use during the processing of the
page.

As illustrated in the above example, an implementation of init should always
begin by invoking the init method of super (the superclass object). It should
always end by returning self.

41

Using WebScript Using WebScript in a WebObjects Application

Session.wos
In Session.wos of the Visitors application, an init method also initializes declared
variables. These variables have session-wide visibility and persistence. But this
init does much more than initialze variables.

• It sets a time-out period for the session.

• It creates a timer scheduled to fire every second.

• It implements a method that is invoked when the timer is fired. This method
increments a “seconds-counter” variable, which is bound to a WOString on
the page.

id timeSinceSessionBegan;

id timer;

- init

{

[super init];

 timeSinceSessionBegan = 0;

 timer = [NSTimer scheduledTimerWithTimeInterval:1.0 target:self

selector:"timeOfSession" userInfo:nil repeats:YES];

[self setTimeOut:120];

 return self;

}

- timeOfSession

{

 timeSinceSessionBegan++;

}

As this example shows, you can do many things in the init method to set up the
associated object besides initializing variables. This code example also
illustrates a couple specific aspects of WebScript. The “hidden” variable self in
this script refers to a WOSession object, and so the method invoked (setTimeOut:)
must be declared by the WOSession class. Second, you can invoke any method
of the Foundation framework, such as NSTimer’s
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:.

Note: The example above illustrates a syntax difference between WebScript and
Objective-C: the way you refer to selectors and similar entities. In Objective,
you use the @selector() directive; in WebScript, because “@” has special
significance, you simply quote the selector.

Using WebScript Using WebScript in a WebObjects Application

42

Main.wos
The script associated with the first (and in this example, only) page of the
Visitors application is Main.wos. This script increments the number of visitors to
the page (visitorNum), and assigns the name (aName) entered in the application’s
text field to the last visitor (lastVisitor). It then clears the text field by assigning an
empty string to aName.

id number, aName;

- awake {
 if (!number) {

number = [[self application] visitorNum];
number++;
[[self application] setVisitorNum:number];

}
}

- recordMe
{

if ([aName length]) {
[[self application] setLastVisitor:aName];
[self setAName:@""]; // clear the text field

}
return self; // use request page as response page

}

Implementing the awake Method

For a given page, the awake method is invoked exactly once per transaction, at
the beginning of that transaction. The init method is invoked only once, at the
start of an object’s lifetime (see “The Duration of a Component” for the reasons
why). Because of this, it is more appropriate in the Visitor application to
implement awake rather than init. We want to track each “visit” to this page.
Because awake is invoked once per transaction, if the same page handles the
request as well as generates the response (for example, the first page of an
application), the awake method is only invoked during the request phase.

The awake method is a good place to initialize variables whose values are known
or can be resolved at the start of the request-response cycle, such as a list of
hyperlinks. The advantage of using awake to perform this type of initialization is
that the variables are guaranteed to be initialized every time the page is
displayed.

The awake method has a complementary method, sleep, in which you can
explictly deallocate objects assigned to variables by assigning nil to the variables.
As a technique for improving application scalability, you can turn off page
caching, initialize variables in awake (rather than in init), and deallocate them in
sleep .

43

Using WebScript Using WebScript in a WebObjects Application

The Duration of a Component
When users navigate to a page of an WebObjects application for the first time, a
WOComponent object associated with the page is created and (in init)
initialized. When users go to another page, the original component typically
does not go away. It persists through an arbitrary number of subsequent
transactions before it’s deallocated. Thus when users backtrack to a page they
visited earlier (as long as the transaction limit hasn’t expired) things are as they
left them—displayed results, entered values, and selected options.

Note: An application looks first for request pages in its cache and if they’re there,
it restores them. Thus pages are restored when users backtrack to a page and
when a request component returns itself as the response page. In typical
request-handling scenarios, the response page is created. For example, the
application’s pageWithName: method (typically invoked in an action method)
returns a new instance of a page—even if that page has been visited before in
the same session.

You set the number of pages the application caches, and thus the life span of an
application’s components, with WOApplication’s setPageCacheSize: method. If
the page-cache size attribute is not explicitly set, the default is 30 pages. You can
also determine the current transaction limit by sending pageCacheSize to the
application object.

To minimize the size of a session, you can reduce the page-cache size or you can
turn off page caching altogether by setting the page-cache size to zero. If you
turn off page caching, you must re-initialize each page for each transaction it’s
involved in. You can perform initializations in init or awake, since both are
invoked with identical frequency.

Relying on the page cache to retain the state of a page for a user introduces
certain issues and problems. One implication, of course, is scalability. If you
want finer control over this aspect of an application, consider selectively storing
page state in session variables, reinitializing variables in the awake method, or
some combination of the two.

Variables and Scope
In WebScript, the scope of variables depends on where and how you declare
them. The notion of scope in WebScript really encompasses two different ideas:
a variable’s visibility and its lifetime.

The simplest kind of variable in WebScript is a local variable, which is declared
inside a method as follows:

Using WebScript Using WebScript in a WebObjects Application

44

- aMethod {
id localVar;
/*...*/

}

Local variables have no visibility outside the method in which they’re declared,
and no lifetime beyond the method’s execution. For this reason, they’re the only
type of variable that can’t be referenced in a declarations file.

All other variables have some degree of persistence within your application. To
understand the role of these variables, it’s useful to think about the flow of
activity in a WebObjects application. The life of a WebObjects application is
marked by the continual recurrence of requests (such as a user clicking a control
to initiate an action), and the subsequent responses (such as the server returning
a dynamically generated HTML page in response to a request). A request-
response cycle is called a transaction. Processing and variable scoping in a
WebObjects application is organized around transactions.

Non-local variables behave differently depending on whether they’re declared
in an application script (where they’re called application variables), in a session
script (where they’re called session variables), or in a component script (where
they’re called component variables).

Application variables
Application variables can be accessed from all pages of an application, and they
last for the duration of an application. An application variable is available across
all sessions, and there is one copy of the variable per application. Application
variables are declared in the application script outside a method as follows:

id applicationVar;

Session Variables
Whereas all users of an application see an application variable with the same
value, each session has its own unique set of session variables. A variable with
session scope lasts for the duration of a session. A session represents a browser
(user) accessing a WebObjects application, which could be serving multiple
users. A session is initiated when a browser (single user) connects to a
WebObjects application, at which time the session is assigned a unique
identifier. This session ID is embedded in the URLs of the pages associated
with the application. The session ID lasts as long as the session is valid. A
session is terminated either when the user quits out of his or her browser, or
when the application explicitly times the session out. For more information on
session time out, see the section “Setting Session TimeOut” in the chapter
“Managing State.”

45

Using WebScript Using WebScript in a WebObjects Application

A session variable is accessible from every component script and from the
application script. Its value is stored and restored at the beginning and the end
of each request-response cycle. There is one copy of the variable per user
session. Session variables are declared in the session script (Session.wos) outside
a method. You can access those variables by sending a message to the current
WOSession object, obtainable through a message to self:

id value = [[self session] mySessionVariable];
[[self session] setMySessionVariable:newValue];

Component Variables
A component variable is declared in a component script outside a method, as
follows:

id myVar;

This kind of variable lasts the lifetime of a component. The WOApplication
object usually stores each component instance through multiple transactions,
the number of which is determined by the application’s page-cache size. (See
“The Duration of a Component” for more information.) Component variables
are visible to all of the methods within the script in which they’re declared.

Variables and Scope: a Summary
The following table summarizes the different types of variables in WebScript:

Variable Type Where It’s Declared Where It’s Visible How Long It Lives

Local Inside a method in either
an application or a com-
ponent script

Only inside the method
in which it’s declared

For the duration of the
method

Component Outside a method in a
component script

Inside the script in
which it’s declared

For the duration of a
component, which is
determined by the appli-
cation’s page-cache
size

Session Outside a method in an
session script

Component scripts can
access session vari-
ables by sending acces-
sor messages to the
WOSession object.
Every session has its
own version of a session
variable.

For the duration of the
session

Using WebScript Using WebScript in a WebObjects Application

46

Accessing and Sharing Variables
WebScript automates the process of accessing non-local variables, whether
they’re declared in an application script, a session script, or in a component
script. For a non-local variable myVar, for example, you can set and return its
value from the script that declares it, as follows:

[self myVar];
[self setMyVar:newValue];

You don’t have to implement these methods to invoke them—WebScript does
this work behind the scenes. For example, you may notice that the Visitors
Application.wos script doesn’t implement visitorNum, setVisitorNum:, or setLastVisitor:
methods, yet the Main.wos script invokes them.

In these statements:

[self myVar];
[self setMyVar:newValue];

the myVar and setMyVar: messages are sent to self, which indicates that the variable
myVar is declared in the script that’s accessing it. Sometimes a component script
has to access application or session variables declared elsewhere. When you
work with application and session variables, remember that they’re owned by
the application and session objects, respectively. To set or return their values,
you send a message to the appropriate object, which, from a component script,
you can always get by sending application or session to self. For example, the
Main.wos script in the Visitors example includes these statements:

number = [[self application] visitorNum];
[[self application] setVisitorNum:number];
[[self application] setLastVisitor:[[self application] aName]];

Note: The application object is also represented by the global variable WOApp.
However, use of WOApp is discouraged because global variables are not
permitted in some of the languages supported by WebObjects.

Application Outside a method in an
application script

In the application script.
Component scripts can
access application vari-
ables by sending acces-
sor messages to the
WOApplication object.
Every session sees
application variables
with the same value.

For the duration of the
application

47

Using WebScript WebScript Language Summary

You can also access a non-local variable declared in one component script from
another component script. This is something you commonly do right before you
navigate to a new page, for example:

id anotherPage = [[self application] pageWithName:@"Hello"];
[anotherPage setNameString:newValue];

The current script uses the statement [anotherPage setNameString:newValue];
to set the value of nameString, which is declared in the page entitled “Hello”.

This example uses the pageWithName: method, which takes the name of a page as
an argument and returns that page. You most commonly use pageWithName: inside
a method that returns a new page for display in the browser. Such a method
could be associated with a hyperlink or a submit button. For example:

- contactPsychicNetwork
{
 id nextPage;
 nextPage = [[self application] pageWithName:@"Predictions"];
 return nextPage;
}

WebScript Language Summary

This section summarizes the WebScript language.

Reserved Words
WebScript includes the following reserved words:

if
else
for
while
id
break
continue
nil
YES/NO

Statements
WebScript supports the following statements:

if
else
for
while

Using WebScript WebScript Language Summary

48

break
continue
return

In WebScript these statements behave as they do in the C language.

Arithmetic Operators
WebScript supports the arithmetic operators +, - , /, *, and %. The rules of
precedence in WebScript are the same as those for the C language. You can use
these operators in compound statements such as:

b = (1.0 + 3.23546) + (((1.0 * 2.3445) + 0.45 + 0.65) - 3.2);

Logical Operators
WebScript supports the negation (!), AND (&&), and OR (||) logical operators.
You can use these operators as you would in the C language, for example:

if (!(!a || a && !i) || (a && b) && (c || !a && (b+3))) i = 0;

Relational Operators
WebScript supports the relational operators <, <=, >, >=, ==, and !=. In
WebScript these operators behave as they do in C.

Increment and Decrement Operators
WebScript supports the ++ and -- operators. These operators behave as they do
in the C language, for example:

// Use myVar as the value of the expression and then increment myVar
myVar++;

// Increment myVar and then use its value as the value of the expression
++myVar;

id
WebScript supports only one data type: objects (ids). The id type is defined as a
pointer to an object—in reality, a pointer to the object’s data (its instance
variables). Like a C function or an array, an object is identified by its address. All
objects, regardless of their instance variables or methods, are of type id.

self
In WebScript, self is available in every method. It is a “hidden” variable that
refers to the object (the WOApplication object, the WOSession object, or the
WOComponent object) associated with a script. When you send a message to

49

Using WebScript What Are the Origins of WebScript?

self, you’re telling the object associated with the script to perform a method
that’s implemented in the script.

super
As with self, super is a “hidden” variable available in every method. By sending
a message to super, you are invoking the superclass’ implementation of the
method. An invocation of super’s init method should occur at the beginning of an
init implementation.

What Are the Origins of WebScript?

WebScript is an interpreted language that uses a subset of Objective-C syntax.
Objective-C is an object-oriented language that adds extensions to the C
language.

You do not need to know Objective-C to use WebScript or to write WebObjects
applications. However, if you’re interested in learning more about the
Objective-C language, see NeXT’s Software’s Object-Oriented Programming and
the Objective-C Language.

A Note to Objective-C Developers

WebScript uses a subset of Objective-C syntax, but its role within an application
is significantly different. The following table summarizes some of the
differences.

Using WebScript A Note to Objective-C Developers

50

Objective-C WebScript

Is compiled Is interpreted

Supports primitive C data types Only supports the id data type

Requires method prototyping Doesn’t require method prototyping (that is, you
don’t declare methods before you use
them)

Usually includes a .h and a .m file Usually has corresponding declarations and
HTML template files (unless it is an application
script)

Supports all C language features Has limited support for C language features; for
example, doesn’t support structures, pointers,
enumerators, or unions

Methods not declared to return void must Methods aren’t required to include a
include a return statement return statement

Has preprocessor support Has no preprocessor support—that is, doesn’t
support the #import or #include statements

Perhaps the most significant difference between Objective-C and WebScript is
that in WebScript, the only valid data type is id. Some of the less obvious
implications of this are:

• You can’t use methods that take non-object arguments (unless those
arguments are integers or floats, which WebScript converts to NSNumbers).
For example, in WebScript the following statement is invalid:

// NO!! This won’t work.
string = [NSString stringWithCString:"my string"];

• You can only use the “at sign” character (@) as a conversion character with
methods that take a format string as an argument:

// This is fine.
[self logWithFormat:@"The value is %@", myVar];

// NO!! This won’t work.
[self logWithFormat:@"The values are %d and %s", var1, var2];

• You shouldn’t supply any type information for a method’s arguments and
return types. These types are assumed to be id, and if you supply any type
information, you will get an error.

// This is fine.

51

Using WebScript A Note to Objective-C Developers

- aMethod:anArg {

// NO!! This won’t work.
- (void) aMethod:(NSString *)anArg {

// This won’t work either
- (id)aMethod:(id)anArg {

• You need to substitute integer values for enumerated types.

For example, suppose you want to compare two numeric values using the
enumerated type NSComparisonResult. This is how you might do it in
Objective-C:

result = [num1 compare:num2];
if(result == NSOrderedAscending)/* This won’t work in WebScript */

/* num1 is less than num2 */

But this won’t work in WebScript. Instead, you have to use the integer value
of NSOrderedAscending, as follows:

result = [num1 compare:num2];
if(result == -1)

/* num1 is less than num2 */

For a listing of the integer values of enumerated types, see the “Types and
Constants” section in the Foundation Framework Reference.

Using WebScript A Note to Objective-C Developers

52

