
Creating a Web-Based Database Application
With WebObjects Builder

3

Creating a Web-Based Database Application

WebObjects uses Enterprise Objects Framework to create web-based database applications. This chapter introduces
you to the Enterprise Objects Framework by showing you how to create a simple database application with
WebObjects Builder. The steps you take in creating this application demonstrate the principles you’ll use in every
other application you develop with WebObjects Builder and Enterprise Objects Framework.

Before you go on, you should be familiar with WebObjects Builder. If you haven’t already, read “Creating a Guest
Book Using WebObjects Builder.” It introduces many basic concepts and procedures that you should know before
doing this tutorial. Also, the application you’ll create in this chapter, Movies, is based on the Movies sample database
distributed with WebObjects. You must have the sample database installed to do this tutorial. Read the “Enterprise
Objects Framework Example Guide” for installation instructions.

The application has three pages: “Browse Movies,” “Movie Search,” and “Movie Details.” The Browse Movies and
Movie Search pages of the Movies application let you browse the movies that are in a database and search for movies
that match user-specified criteria. For example, you can search for all comedies starting with the letter “T” that have
an R rating. You can also use these pages to insert, update, and delete movie records.

Movies also has a Movie Details page that displays the actors who star in a selected movie and the roles that the actors
play. From this page, you can add new roles to a movie, change the name of a role, and assign a different actor to a role.

The Browse Movies page is the first page of
the Movies application. When you start the
application, it opens this page. Use the
Next Page and Previous Page buttons to
page through all the movies in a database.

The Movie Search page provides an
interface for searching the database for
movies that match user-specified criteria.
Type the first part of the strings you want to
match and click Match.

4

Creating a Web-Based Database Application

In this tutorial, you’ll learn the basic things you must do to create an Enterprise Objects Framework application for the
web. You’ll discover how to use WebObjects Builder to create web pages that access a database and how to work with
models in EOModeler.

The Movie Details page displays the roles
and the actors who play them for the
selected movie. You select a movie in
either the Browse Movies or Movie Search
page. Use the Movie Details page to insert,
update, and delete movie roles for the
selected movie.

5

Creating a Web-Based Database ApplicationEnterprise Objects and the Movies Database

Enterprise Objects and the Movies Database

Enterprise Objects Framework manages the interaction between the database and objects in the Movies application.
Its primary responsibility is to fetch data from relational databases into enterprise objects. The Movies application
centers around three enterprise objects: Movie, MovieRole, and Talent. A movie has many roles; and actors, or talent,
star in those roles.

An enterprise object is like any other object in that it couples data with methods for operating on that data. However,
an enterprise object class has certain characteristics that distinguish it from other classes:

• It has properties that map to stored data; an enterprise object instance typically corresponds to a single row or
record in a database.

• It knows how to interact with WebObjects Framework and Enterprise Objects Framework to give and receive
values for its properties.

The ingredients that make up an enterprise object are its class definition and the data values from the database row or
record with which the object is instantiated.

The Movie, MovieRole, and Talent enterprise objects in the Movies application correspond to tables in a relational
database. For example, the Talent enterprise object corresponds to the TALENT table in the database, which has
LAST_NAME and FIRST_NAME columns. The Talent enterprise object class in turn has lastName and firstName
instance variables, or class properties. (Instance variables based on database data are called class properties.) In an
application, Talent objects are instantiated using the data from a corresponding database row, as shown in the
following figure:

Talent

1028 Federighi Craig

1132 Feldman Corey

TALENT_ID LAST_NAME FIRST_NAME
TALENT

lastName "Federighi"
firstName "Craig"

6

Creating a Web-Based Database ApplicationDesigning the Main Page with the Database Wizard

Designing the Main Page with the Database Wizard

Every WebObjects application has at least one component—usually named “Main”—that represents the first page the
application displays. In Movies, the Main component represents the Browse Movies page shown below:

In this section, you’ll use the WebObjects Builder Database Wizard to design the Main page. The Database Wizard
performs all the setup that’s necessary to fetch database records and display them in a web page. Specifying different
wizard options yields completely different pages. For example, both the Browse Movies and Movie Search pages are
designed with the Database Wizard.

1. Create a New Application.

Use WebObjects Builder to create a new application named “Movies”.

Recall that you must create the application in a directory that’s under DocumentRoot/WebObjects.

2. Activate the Database Wizard.

Bring the Main component to the front.

Choose Tools->Database Wizard.

The Database Wizard panel opens.

Page through batches of Movies
with these buttons.

Click a movie title to select it.

Click here to delete the selected movie.

Click here to save changes to the
database (to insert a new movie, to
update a movie, or to delete a movie).

Click here to create a new, empty movie.

You’ll add these links later.

7

Creating a Web-Based Database ApplicationDesigning the Main Page with the Database Wizard

3. Specify a model file.

A model file defines a database-to-object mapping that associates database columns with instance variables of
objects. It also specifies object relationships based on database join criteria. You typically create model files
using the EOModeler application, but the Database Wizard can create a default model as a starting point. Later
on you’ll use EOModeler to modify the default model created by the wizard.

In the Database Wizard panel, select Create a new model file.

Click Select Database.

A Choose Database Adaptor panel opens.

An adaptor is a mechanism that connects your application to a particular database server. For each type of server
you use, you need a separate adaptor. WebObjects provides adaptors for Informix, Oracle, and Sybase servers,
and for any server that is ODBC compliant.

Note: Not all adaptors are available with all versions of WebObjects.

Choose the adaptor for the database you want to use.

A login panel for the database that corresponds to the selected adaptor opens. The examples in this chapter use
the Oracle version of the Movies database included with WebObjects.

Fill in the login panel.

Select this option.

Then click here.

8

Creating a Web-Based Database ApplicationDesigning the Main Page with the Database Wizard

When you use the Database Wizard to create a model file, the wizard uses a database adaptor to read the data
dictionary from the database you specified in the login panel and to create a default model.

4. Choose an entity.

An entity is a part of the database-to-object mapping that associates a database table with a class (or type) of
object. For example, the Movie entity maps rows from the MOVIE table to Movie objects.

In the Choose an entity panel, select the Movie entity.

When you choose the Movie entity, the wizard displays its attributes: category, dateReleased, language, movieId,
rating, revenue, studioId, and title. An attribute is a part of the database-to-object mapping that associates a database
column with one of a class’s instance variables. For example, the title attribute in the Movie entity maps the
TITLE column of the MOVIE table to the title instance variable of Movie objects.

Different databases require different
login information, so each database’s
login panel looks different. If you
don’t know how to fill in the login
panel, check with your database
administrator.

The entity’s attributes are listed here.

Select this entity.

9

Creating a Web-Based Database ApplicationDesigning the Main Page with the Database Wizard

5. Choose a primary key.

In a relational database, each table has a column or combination of columns whose values are guaranteed to
uniquely identify each row in that table. For example, in the Movies database the MOVIE table has as its
primary key the column MOVIE_ID. Each row in the MOVIE table has a different value in the MOVIE_ID
column, which uniquely identifies that row. Two movies could have the same name, but still be distinguished
from each other by their primary keys.

Enterprise Objects Framework uses primary keys to uniquely identify enterprise objects and to map them to
the appropriate database row. Therefore, you must assign a primary key to each entity you use in your
application. The Database Wizard set the Movie entity’s primary key to the attribute you choose; however,
you’ll need to explicitly assign primary keys to the other entities later on.

Select movieId.

You should choose primary key attributes that are assigned initial values and then are never modified.
Consequently applications usually assign primary key values automatically. For example, the Movies
application assigns a movieId value to a new movie when it’s created, and the value never changes afterward. The
Movies interface doesn’t even display movieId values because they aren’t meaningful to users of the application.

Enterprise Objects Framework provides several mechanisms for generating and assigning unique values to
primary key attributes. By default, Enterprise Objects Framework uses a native database mechanism to assign
primary key values. The scripts that come with WebObjects for installing the Movies database set up the
database for the default mechanism. See the chapter “Answers to Common Design Questions” in the Enterprise
Objects Framework Developer’s Guide for more information.

6. Choose a layout.

The Database Wizard provides several page layout options for formatting objects fetched from the database.

Choose Selected Record.

Choose Paginated 10 per page.

Based on your specifications, the wizard shows you a preview of the page it will generate.

10

Creating a Web-Based Database ApplicationDesigning the Main Page with the Database Wizard

7. Choose attributes to display.

The Database Wizard provides a list of all the Movie attributes.

Add attributes from the All Attributes column to the Attributes to display column.

The order in which you add the attributes determines the order in which they appear on the page, so add them
in the following order: title, category, rating, dateReleased, and revenue.

Don’t add any of the remaining attributes. The language, movieId, and studioId attributes don’t have meaning to
users, and should not be displayed in the page.

Select this...

... and this.

Then click here.

Select an attribute.

Then click here to add it.

Click here when you’re
done adding attributes.

11

Creating a Web-Based Database ApplicationDesigning the Main Page with the Database Wizard

8. Choose the attribute to display on the hyperlink.

When you choose the Selected Record layout, the pages generated by the Database Wizard contain a list of
hyperlinks—one for each record fetched. Clicking a hyperlink selects the corresponding record in a detail
portion of the page so the record can be edited. You choose the attribute that will be shown on the hyperlinks.

Select the title attribute.

Click Finish.

The Database Wizard designs a page for browsing Movie objects that are fetched from a database. It lays out
elements on the page, creates variables, and binds the variables to the page’s dynamic elements. Take a minute
to examine the bindings the wizard creates.

Later in this tutorial, you’ll build a page by hand that contains some of the features as this Main page. At that
time, you’ll perform by hand many of the procedures that the Database Wizard performs for you automatically.

9. Save the page.

Bring the Main component to the front.

Choose File->Save.

10. Run the application.

Use a web browser to run the application.

See the “Run the application” section in “Creating a Guest Book Using WebObjects Builder” for assistance.

The Database Wizard produces a functional web-based database application. Try browsing through the batches
of movies using the Next Page and Previous Page buttons.

IMPORTANT: At this point, you need to quit and restart WebObjects Builder to
avoid display problems that can occur after the use of an
NSSecureTextField (such as password fields in database login panels).
See the WebObjects Release Notes for more information.

12

Creating a Web-Based Database ApplicationRefining the Main Page

Refining the Main Page

When you run your application, you may notice that the dateReleased values are unformatted. Also, if you try to edit a
movie or to create a new one, the application returns an error page. At this point, saving changes to the database
doesn’t work.

To enable inserting and updating, you need to add a date format for the dateReleased text field element. The
dateReleased attribute is stored as an NSCalendarDate object in Movie objects, but it is represented as an NSString
object in the text field. Assigning a date format alerts the Movies application that it needs to translate between
NSCalendarDates and NSStrings. For more information, see the NSCalendarDate and NSString class specifications in
the Foundation Reference.

Assigning a date format also allows you to display dates in a more customary format. For example, you can transform a
date from its default format (1981-12-27 00:00:00 -0700, for example) to any of the following:

• 12/27/81

• December 21, 1981

• 21 Dec 1981

Similarly, you can specify a number format for the revenue text field element. For example, you can add a dollar sign
and thousands separators.

In this section, you’ll add date and number formats. In addition, you’ll configure the Movies application to sort the
movies it displays. You should also consider changing the labels of your text fields (for example, change “title” to
“Title”).

1. Inspect the dateReleased text field’s bindings.

Select the dateReleased text field element in the Main component window.

Click the “i” button.

The inspector that opens displays bindings, attributes, and other settings for elements in a component. Each
element occupies a place in the component’s HTML hierarchy. For example, a text field element is contained in
a form element, which is contained in a page. A page is the highest level in the hierarchy. As shown below, you
can use the inspector to traverse the hierarchy from the selected element on up.

Click here to open the inspector.

13

Creating a Web-Based Database ApplicationRefining the Main Page

The dateReleased text field element is selected, so the inspector show icons for the text field its parent
elements—the surrounding form and the page. Form and abstract elements (and all instances of
WODynamicElement subclasses) can have as many as two icons in the inspector’s icon path: one for inspecting
the HTML attributes of the element and a gears icon for inspecting the element’s bindings.

In the inspector, click the gears icon to inspect the text fields bindings.

2. Add a date format.

Select the dateformat attribute.

Type (including the quotes): “%d %b %Y”.

Click Connect.

Page

Form

TextField

Repetition

14

Creating a Web-Based Database ApplicationRefining the Main Page

Using this date format (“%d %b %Y”), the Movies application formats the date “1995-12-3 00:00:00 -0700” as “3
Dec 1995”. The %d conversion specifier stands for day of the month, %b stands for the abbreviated month
name, and %Y stands for year with century. You can create your own date formats with any of the conversion
specifiers defined for dates. For more information, see the NSCalendarDate class specification in the Foundation
Reference.

3. Add a number format.

Inspect the revenue text field bindings.

Bind the text field’s numberformat attribute to the string (including the quotes): “$ #,##0.00”.

Using this number format (“$ #,##0.00”), the Movies application formats the number 1750000 as “$ 1,750,000”.
For more information on creating number formats, see the NSNumberFormatter class specification available
through NeXTanswers as NeXTanswer 2481.

4. Specify a sort order.

As one of its tasks, the Database Wizard created the component variable movies—a WODisplayGroup object.
WODisplayGroups (also referred to as display groups) provide a simple interface for interacting with relational
databases in terms of objects. Display groups are discussed in more detail in the following sections.

Select the movies variable in the Main component’s object browser.

Click the checkmark button.

The checkmark button is only enabled when a WODisplayGroup object is selected in the object browser.

Then click here.

Select this attribute.

Type a date format.

15

Creating a Web-Based Database ApplicationRefining the Main Page

In the DisplayGroupEditor panel that opens, you can configure the movies display group to sort the Movie
objects it fetches from the database.

Select the title attribute in the Sort order pop-up list.

Select Ascending sort order.

5. Save and run your application.

Start a new session with your Movies application by opening the URL you used in the last section. This time,
the movies are sorted and the dateReleased and revenue values are formatted.

Try inserting and updating movies using dates and numbers in different formats. In particular, date formatters
are very flexible. Try entering the following dateReleased values for a selected movie:

• 12/3/95

• 95-12-3

• December 3, 1995

• today

Click here to open the
DisplayGroupEditor.

Select a WODisplayGroup variable.
(The cylinder icon denotes a
WODisplayGroup.)

Choose an attribute to sort on.

Select this option to sort from
’A’ to ’Z’.

Then click here.

16

Creating a Web-Based Database ApplicationAdding a MovieSearch Page

Adding a MovieSearch Page

The Database Wizard can also set up pages for searching the database. In this section, you’ll create a page that allows
you to search for movies that match criteria you specify. For example, you can search for all comedies that start with
the letter “T” and are rated R. After specifying matching criteria, click Match. The Movies application lists the movies
that match your criteria.

You can insert, update, and delete movies with this page the same way you do in Main. Not surprisingly, the steps for
creating the search page are very similar to those for creating Main.

1. Add a component.

Bring the Movies application window to the front.

Click the Component tab.

Click the plus button.

Name the component “MovieSearch”.

Type matching criteria. A database string
matches if it begins with the string in the
text field. For example, strings match
"The" if they start with the string "The".

Click here to start the search.

17

Creating a Web-Based Database ApplicationAdding a MovieSearch Page

2. Run the Database Wizard.

Activate the wizard from the MovieSearch component window, and perform the same steps you did for the
Main component, except this time you’ll:

• Use the model you created for the Main component instead of creating a new model.

• Choose the Matching Records layout option instead of Paginated 10 per page.

• Choose attributes on which to match in a window that only opens when you choose the Matching Records
layout.

When you use the Database Wizard to create a new model file as you did for the Main page, the wizard saves
the model in your application directory. When you run the Database Wizard this time, you can specify the
model file in the Movies application directory.

In the Database Wizard’s Specify a model file panel, click Browse to locate the model file.

In the Open panel, navigate to the Movies.woa directory.

A model file is actually a directory, or file package, that contains a collection of files that shouldn’t be separated. A
model’s file package has the extension .eomodeld (for eomodel directory).

Select the directory with the extension .eomodeld.

For Mach Users Only: If you are doing the tutorial on a Mach system, you need to follow a slightly different
procedure. WebObjects application directories such as Movies.woa are also file packages. Ordinarily you can’t see
the contents of a .woa directory in the Workspace File Viewer, in Open panels, or in Save panels. To select the
model file in the Database Wizard’s open panel, bring the Workspace File Viewer to the front. Navigate to your
Movies.woa application directory, and choose File->Open as Folder. The Workspace opens a new viewer window
that’s focused on the contents of the Movie.woa directory. Select the model file package, and drag it into the
Database Wizard’s Open panel.

Click this tab.

Click here to add a new component.

Type the component name.

18

Creating a Web-Based Database ApplicationAdding a MovieSearch Page

In the Choose an entity panel, select the Movie entity.

Model files store database login and primary key information, so when you run the Database Wizard this time it
doesn’t prompt you with a Choose Adaptor panel, a login panel, or a Pick a Primary Key panel.

Choose the Selected Record and Matching Records layout options.

As you can see in the Choose a layout panel’s page preview, the Matching Records option generates a database
search form in which users can specify record-matching criteria.

Choose the same attributes to display: title, category, rating, dateReleased, and revenue.

Choose the title attribute to display on the hyperlink.

When you choose the Matching Records layout option, you must tell the Database Wizard what attributes to put
in the query form.

Select title, category, and rating as the attributes on which to match.

As before, the Database Wizard designs a functional page, but this one allows you to search the database for a
movie that matches criteria you specify.

3. Add date and number formats.

Add a date format to the dateReleased text field and a number format to the revenue text field.

In the Main component, you used “%d %b %Y” and “$ #,##0.00”.

4. Change the fetch mode.

Open the DisplayGroupEditor for the MovieSearch component’s movies variable.

Uncheck the Fetches on load box.

Select this option.

Click here to locate a model file.

Type the model’s path name here.

OR

19

Creating a Web-Based Database ApplicationAdding a MovieSearch Page

When the Fetches on load box is checked, the application fetches Movie records from the database when the
component is loaded into the application. In the Main page, Fetches on load is enabled. As a result, when you
run the application, the Main page opens displaying a batch of movie records.

If you disable Fetches on load, you must explicitly tell the application to fetch movie records from the database.
This is the behavior you want to for the MovieSearch component. When the page opens, the application
shouldn’t display any movies. Instead, the user initiates the search by clicking Match.

Notice that Entries per batch is set to 0. This means that the application won’t display search results in batches.
Instead, all the movies that match a user’s search criteria are displayed at once. Contrast this with the Main
component. In Main, Entries per batch is set to 10 and you use the Next and Previous buttons to page through
the results.

The Database Wizard automatically configures a display group’s entries per batch based on the layout options.
For the Paginated... option, the wizard sets the entries per batch to the number of records you specify (10 is the
default). Whereas for the Display all records and Matching Records options, it sets the entries per batch to 0.

Set the sort order as you did for the Main component.

5. Add a hyperlink to the Main component.

Now your application needs a way for users to get to the MovieSearch page from the application’s Main page.
To provide it, add a hyperlink to the Main component that opens the MovieSearch page.

In the Main component window, place the cursor at the bottom of the page below the horizontal line.

Drag a Hyperlink from the Abstract Elements palette into the component window.

Sets the number of objects in a batch.
(0 means that all objects are in a
single batch.)

Uncheck to prevent automatic fetching.

20

Creating a Web-Based Database ApplicationAdding a MovieSearch Page

Change the “Hyperlink” label to “Movie Search”.

In the hyperlink bindings inspector, set the pagename attribute to “MovieSearch”.

The pagename binding is a mechanism for navigating to another page. By setting the attribute to “MovieSearch”,
you’re telling the application to open the MovieSearch page when the hyperlink is clicked.

6. Add a hyperlink to the MovieSearch component.

A user should also be able to get back to the Main page from the MovieSearch page.

Create a hyperlink labeled “Browse Movies” in the MovieSearch page that opens the Main page.

7. Save and run your application.

Reload the Browse Movies page in your web browser to get the Movies application to load the new Movie
Search link. In the Movie Search page, try searching for movies that match the word “The”. Notice that the
Movies application locates only movies that begin with the string “The”.

Using the DisplayGroupEditor, change the qualification mode for the movies display group.

How does the qualification mode affect searching in the Movies application?

21

Creating a Web-Based Database ApplicationAdding a MovieDetails Page

Adding a MovieDetails Page

The MovieDetails page shows you the detailed information about a movie you select in either the Main or the
MovieSearch page. So, for example, you can choose a movie in the Main page and then click a “Movie Details”
hyperlink to display the movie’s details in a new page. For this to work, the Main and MovieSearch pages have to tell
the MovieDetails page which movie the user selected.

The MovieDetails page uses a WODisplayGroup object to display movie information in the same way that the Main
and MovieSearch pages do. In the MovieDetails page, however, the display group manages exactly one record: the
selected movie. In the other pages, the display group manages a set of many records.

The Database Wizard doesn’t provide a layout option that resembles the user interface of the MovieDetails page, so
in this section you’ll perform by hand the tasks the Database Wizard performed to create the other two pages. You’ll
learn how to create a WODisplayGroup variable and how to bind it to dynamic elements. In the next few sections,
you’ll extend the MovieDetails page to display movie roles and the starring actors.

1. Create a component.

Add a new component to the Movies application, and name it “MovieDetails”.

2. Launch EOModeler.

In the OPENSTEP Enterprise program group, choose the EOModeler entry.

An empty model opens.

For Mach Users Only: On Mach systems, the EOModeler application is in /NextDeveloper/Apps.

3. Open your model file.

In EOModeler, choose Model->Open.

In the Open panel, navigate to your Movies.woa application directory.

Click here to open the
Browse Movies page.

Click here to open the
Movie Search page.

22

Creating a Web-Based Database ApplicationAdding a MovieDetails Page

Select the model file inside the application directory.

Click Open.

After your model file opens, you can close the empty model.

For Mach Users Only: If you are doing the tutorial on a Mach system, you have to follow a procedure similar to the
one you used to choose a model for the Database Wizard for the Movie Search page. you are doing the tutorial on
a Mach system, you need to follow a slightly different procedure. To open the model file, bring the Workspace
File Viewer to the front. Navigate to your Movies.woa application directory, and choose File->Open as Folder.
The Workspace opens a new viewer window that’s focused on the contents of the Movie.woa directory. Double-
click the model file package to open it in EOModeler.

4. Add a WODisplayGroup to the MovieDetails component.

Select the Movie entity in the EOModeler’s Model Editor.

Drag the Movie entity into the MovieDetails component window.

WebObjects Builder creates a component variable named movies, a WODisplayGroup object.

5. Add a setMovie: method.

As stated earlier, the MovieDetails display group manages only one object: the movie selected in the previous
page. The Main and MovieSearch pages need a way to set this record in the MovieDetails’ display group before
the MovieDetails page opens. They use the setMovie: method to do this.

In the MovieDetails component window, click the script button.

23

Creating a Web-Based Database ApplicationAdding a MovieDetails Page

The script window is empty except for the following line of code, which declares the component’s display
group:

id movies;

Add the following method to the script:

- setMovie:aMovie {
if (aMovie)

[movies setObjectArray:[NSArray arrayWithObject:aMovie]];
else

[movies setObjectArray:nil];
[movies selectObject:aMovie];

}

A WODisplayGroup manages a set of objects (called its objectArray) fetched from the database. The setMovie:
method sets movies’ objectArray to an array containing the single object aMovie. Display groups also keep track of
a selection. Generally, a WODisplayGroup’s selection is maintained programmatically. In this case, the setMovie:
method sets the movies display group’s selection to aMovie.

The Main and MovieSearch pages should invoke this method before they open the MovieDetails page, passing
MovieDetails their selected movie in the argument aMovie.

6. Invoke the setMovie: method from the Main component.

To get to the MovieDetails page from the Main page, users use a hyperlink. The hyperlink should invoke
MovieDetails’ setMovie: method and then open the MovieDetails page.

Next to the “Movie Search” hyperlink in the Main component, add a hyperlink labeled “Movie Details”.

Add the following method to the Main component script:

- showDetailsForMovie {
id detailsPage = [[self application] pageWithName:@"MovieDetails"];
[detailsPage setMovie:[movies selectedObject]];
return detailsPage;

}

Click here to open the script window.

Add this link.

24

Creating a Web-Based Database ApplicationAdding a MovieDetails Page

This method creates the MovieDetails page and then invoke’s its setMovie: method with the movie that’s
selected in the Main page. The display group method selectedObject returns its selected object, which, in the
Main component, is set when a user clicks a movie title hyperlink.

Connect the showDetailsForMovie method to the action attribute of the Movie Details hyperlink.

7. Invoke the setMovie: method from the MovieSearch component.

Repeat the same steps to invoke setMovie: from the MovieSearch component.

8. Create the MovieDetails user interface.

Drag a heading element from the Static Elements palette into the MovieDetails component window.

Double-click the “Heading” label so it’s selected.

Drag a string element from the Abstract Elements palette into the MovieDetails component window.

The string element is now inside the heading element. As a result, the string’s value is formatted as a heading
element. In the next task, you’ll bind the selected movie’s title to this heading string.

Place the cursor below the heading string.

Type a “Category: ” label.

Drag another string element into the MovieDetails component window.

Select the “Category: ” label.

Click the bold button.

Repeat the steps above adding Rating, Date Released, and Revenue labels and strings.

25

Creating a Web-Based Database ApplicationAdding a MovieDetails Page

9. Create bindings.

Now you need to bind attributes of the selected movie to the string elements so the selected movie’s
information will be displayed in the Movie Details page.

Click inside the heading string.

Select movies->title in the component window’s object browser.

A display group manages objects associated with a single entity. The movies display group operates on Movie
objects. The attributes above the line in the middle column of the object browser are actually attributes of
Movie objects rather than attributes of the display group itself. These attributes are provided as a convenience;
they correspond to the display group’s selected object.

Double-click title.

Double-clicking movies->title binds the title of movies’ selected object to the heading string’s value attribute.
Recall that the setMovie: method sets movies’ selected object to the movie selected by a user in the previous
page.

Repeat the steps above to create bindings for the Category, Rating, Date Released, and Revenue strings.

Select this heading string.
A pull-down button appears
in the string element when
the element is selected.

Double-click to bind the
string element’s value
binding to the title of the
selected movie.

26

Creating a Web-Based Database ApplicationAdding a MovieDetails Page

10. Add date and number formats to the Date Released and Revenue Strings.

String elements have dateformat and numberformat attributes just like text field elements.

Add formats the same way you would for text fields.

In the Browse Movies page, you used “%d %b %Y” and “$ #,##0.00” for the date and number formats,
respectively.

11. Add links back to the Main and MovieSearch pages.

Now add hyperlink elements to the Movie Details page so a user can navigate to the Main and Movie Search
pages from the Movie Details page.

Add two hyperlink elements to the bottom of the page.

Label one “Browse Movies” and the other one “Movie Search”.

Set the pagename attributes to “Main” and “MovieSearch”.

12. Save and run your application.

Reload the Browse Movies page in your web browser to get the Movies application to load the new Movie
Details link. In the Browse Movies page, select a movie and click the Movie Details link. The Movie Details
page should display all the movie’s information.

27

Creating a Web-Based Database ApplicationAdding Actors to the MovieDetail Page

Adding Actors to the MovieDetail Page

So far your Movies application fetches, inserts, updates, and deletes Movie objects. But considered alone, a Movie
object isn’t as interesting as it is when it’s related to actors and roles. In this section, you’ll add MovieRole and Talent
objects to the Movies application.

Before you can use MovieRole and Talent objects in your application, you first need to go back to EOModeler and
add relationships to the model’s entities.

Relational databases model not just individual entities, but entities’ relationships to one another. For example, a
movie has zero, one, or more roles. This is modeled in the database by both the MOVIE table and MOVIE_ROLE
table having a MOVIE_ID column. In the MOVIE_ROLE table, MOVIE_ID is a foreign key, while in MOVIE it’s a
primary key. A foreign key correlates with the primary key of another table to model a relationship a source table
(MOVIE) has to a destination table (MOVIE_ROLE). In the following diagram, notice that the value in the
MOVIE_ID column for both MOVIE_ROLE rows is 501. This matches the value in the MOVIE_ID column of the
“Alien” MOVIE row. In other words, “Ripley” and “Ash” are both roles in the movie “Alien”.

Values from Talent objects

Values from MovieRole objects

1028
Ripley 501 501 Alien

1132
Ash 501 703 Toy Story

TALENT_ID MOVIE_ROLE MOVIE_ID MOVIE_ID TITLE

MOVIE_ROLE MOVIE

28

Creating a Web-Based Database ApplicationAdding Actors to the MovieDetail Page

Suppose you fetch a Movie object. Enterprise Objects Framework takes the value for the movie’s MOVIE_ID
attribute and looks up movie roles with the corresponding MOVIE_ID foreign key. The Framework then assembles
an object graph that connects the Movie object with its MovieRoles. As shown below, a Movie object has an array of its
MovieRoles, and the MovieRoles each have a Movie.

After you add relationships to your model, you can access MovieRole and Talent objects through the Movie objects
fetched by the movies display group. Using WebObjects Builder, you’ll bind attributes of MovieRole and Talent
objects to elements in the Movie Details page.

1. Add relationships to your model.

The Movies application uses two pairs of inverse relationships. The first pair defines the relationship between
the Movie and MovieRole entities, while the second pair defines the relationship between the MovieRole and
Talent entities. An Enterprise Objects Framework relationship is directed; that is, a relationship has a source and
a destination. Generally you’ll define a relationship for each direction.

To create a relationship:

In EOModeler, double-click the open entity icon for the entity to which you want to add a relationship.

Movie

MovieRole

MovieRole

NSArray

movieRoles

movie

movie

29

Creating a Web-Based Database ApplicationAdding Actors to the MovieDetail Page

Choose Property->Add Relationship.

A new relationship named “Relationship” is added in the table view at the bottom of the model file window.

Choose Tools->Inspector.

The Relationship Inspector opens.

Set whether the relationship is To One or To Many.

Select a destination entity.

Click the model icon to see the entities
in the model.

Double click this icon to open an entity.

The icon path displays the selected
model object and its parents. Click
a model object’s icon to display it.

A newly added relationship

30

Creating a Web-Based Database ApplicationAdding Actors to the MovieDetail Page

Select a source attribute.

Select a destination attribute.

Click Connect.

EOModeler automatically renames the relationship based on the name of the destination entity. For example,
after connecting a to-many relationship from Movie to MovieRole, EOModeler names the relationship
“movieRoles”. To-one relationships are named with the singular form of the destination entity’s name. For
example, EOModeler names the inverse to-one relationship (from MovieRole to Movie) “movie”.

Create the following relationships using the steps outlined above:

• A to-many relationship in the Movie entity where:

The destination entity is MovieRole.
The source attribute is movieId.
The destination attribute is movieId.

• A to-one relationship in the MovieRole entity where:

The destination entity is Movie.
The source attribute is movieId.
The destination attribute is movieId.

EOModeler renames the relationship automatically
when you set the Destination and Join information.

Select whether the relationship is to-one or to-many.

Select a destination entity.

Then select a source attribute...

...and a matching destination attribute.

When you’re done, click here.

31

Creating a Web-Based Database ApplicationAdding Actors to the MovieDetail Page

• A to-one relationship in the MovieRole entity where:

The destination entity is Talent.
The source attribute is talentId.
The destination attribute is talentId.

• A to-many relationship in the Talent entity where:

The destination entity is MovieRole.
The source attribute is talentId.
The destination attribute is talentId.

2. Save the model file.

Choose Model->Save.

A Consistency Check panel runs alerting you that several of the model’s entities don’t have primary keys.

Click OK to save your model anyway.

You’ll add primary key values in the next step.

3. Assign primary key attributes.

The Database Wizard assigned a primary key attribute to the Movie entity when it created the model. You need
to assign primary keys to the rest of the entities using EOModeler.

To assign a primary key:

Click the model icon in the icon path to display the model’s entities.

Select the entity icon to which you want to assign a primary key.

Open the Inspector.

Click in the primary key column for the primary key attributes.

The Database Wizard assigned a primary
key to the Movie entity. None of the other
entities have been assigned a primary key.

32

Creating a Web-Based Database ApplicationAdding Actors to the MovieDetail Page

The Movies application only uses the Movie, MovieRole, and Talent entities, but you should assign primary
keys to all the entities in case you extend the application later.

Specify the following primary keys for the remaining entities:

• Director’s primary keys are movieId and talentId.

• MovieRole’s primary keys are movieId and roleName.

• PlotSummary’s primary key is movieId.

• Studio’s primary key is studioId.

• Talent’s primary key is talentId.

• TalentPhoto’s primary key is talentId.

Note that some of the entities have compound primary keys; that is, a primary key that is composed of more than
one attribute.

Now when you save EOModeler should not display the Consistency Check panel.

4. Add a repetition to the MovieDetails component.

Now you’ll extend the user interface of the MovieDetails component to display the actors in the selected movie.
Since different movies have different numbers of roles, you need the dynamism of a repetition element.

In the MovieDetails component window, add the bolded text “Starring:” beneath the Revenue line.

Place the cursor below the “Starring:” label.

Drag a repetition element into the component window from the Abstract Elements palette.

Delete the “Repetition” text inside the element.

Select the entity to which you want to assign a primary key.

There are several entity inspectors. Be sure that the inspector
title says "Entity Inspector".

Click in the primary key column for the attribute that is a
primary key attribute.

33

Creating a Web-Based Database ApplicationAdding Actors to the MovieDetail Page

Add three string elements inside the repetition.

The strings should all be on the same line, so don’t type carriage returns between them.

Type the word “as” between the last two string elements.

5. Create bindings

Click in the first field of the repetition element.

Navigate to movies->movieRoles in the object browser.

Double-click movieRoles.

Remember that a Movie object has a movieRoles instance variable that’s an array of MovieRole objects. The
steps above bind the movieRoles array of the selected Movie object to the repetition’s list attribute. WebObjects
Builder automatically adds a new variable to the MovieDetails component named movieRole and binds it to the
repetition’s item attribute.

The movieRole variable, a MovieRole object, has an instance variable—talent—that’s a Talent object. (The talent
instance variable is the result of the to-one relationship from the MovieRole entity to the Talent entity.)
Through the movieRole instance variable, you can access the name of the actor playing a particular role.

The only carriage return in
the repetition goes here.

This icon denotes a variable
whose class is defined in the
class dictionary. When the
Database Wizard creates a
display group, it adds a class
definition to the class
dictionary for each entity in
the model.

34

Creating a Web-Based Database ApplicationAdding Actors to the MovieDetail Page

Click in the first string element in the repetition.

Navigate to movieRole->talent->firstName in the object browser.

Double-click firstName.

Similarly, bind movieRole->talent->lastName to the second string element.

Bind movieRole->roleName to the last string element.

6. Save and run your application.

A WebObjects application only reads its model file once--when it loads the corresponding WODisplayGroup. As
a result, you’ll need to restart your the Movies application so it can see the relationships you added.

You may need the assistance of your system administrator to end the running Movies process, but generally you
use the Windows NT Task Manager to end processes.

Right-click on the toolbar.

Choose Task Manager

The Task Manager window opens.

Select the WODefaultApp process that corresponds to your Movies application.

Click End Process.

For Unix Users Only: On Unix systems you can use the kill command to end the WODefaultApp process.

35

Creating a Web-Based Database ApplicationAdding a Detail Display Group to MovieDetails

Adding a Detail Display Group to MovieDetails

In the previous section, you navigated relationships to access attributes in other entities. Using the movieRoles
relationship in the Movies entity, you were able to display attributes of a movie’s roles. Similarly, you displayed the
names of the actors who played a role by navigating two relationships: movieRoles to get from a movie to one of its roles
and talent to get from the role to the actor who played it. Traversing the object graph this way works very well in read-
only scenarios where you only want to display information in a related object. However, t doesn’t work completely in
scenarios where you want to be able to make changes to the related objects.

In the next section, you’ll give the application the ability to insert, update, and delete movie roles for the selected
movie. This read-write scenario requires a slight modification to the way you access movie role information. To be
able to insert new movie roles for a movie, you need a WODisplayGroup for managing MovieRole objects.

1. Disconnect the bindings for the “Starring:” repetition.

Inspect the repetition.

Disconnect the list binding.

Disconnect the item binding.

Similarly, disconnect the value bindings for each of the three string elements.

2. Delete the movieRole variable.

Select the movieRole variable in the object browser.

Click the delete button.

Select the binding you want to disconnect.

Then click here.

36

Creating a Web-Based Database ApplicationAdding a Detail Display Group to MovieDetails

Recall that the movieRole variable was created automatically when you bound movies->movieRoles to the
repetition’s list attribute. Since you disconnected the list and item bindings, you don’t need the movieRole variable
anymore.

3. Create a WODisplayGroup to manage MovieRole objects.

Drag the MovieRole entity from your model file into the MovieDetails component window.

WebObjects Builder creates a variable named movieroles in the MovieDetails component. movieroles is a
WODisplayGroup that manages MovieRole objects.

4. Add an init method to the MovieDetails component.

As is, the movieroles display group manages all the movie roles in the database, but it should manage only the
MovieRole objects that are related to the selected movie. To restrict the objects that movieroles manages, you
need to set up a master-detail relationship between the movieroles and movies display groups. The right place to
establish such a relationship is in the init method.

Add the following init method to MovieDetails’ script:

- init {
[super init];
[movieroles setDataSource:[[movies dataSource]

dataSourceQualifiedByKey:@"movieRoles"]];
return self;

}

The first line of this init method invokes any initialization performed by the object’s superclass. Whenever you
implement an init method, include a call to the super class’s init method. If you omit the call to super, your
objects won’t be fully initialized.

The second line of this method assigns a new data source to the movieroles display group. A data source—an
instance of an EODataSource subclass—is an object that defines a basic interface for providing enterprise
objects. It exists primarily as a simple means for a WODisplayGroup or other higher-level class to access a store
of objects. For example, when you tell a display group to fetch, it does so by telling its data source to fetch.

To restrict the objects that movieroles displays, you need to replace movieroles’ data source with a detail data source.
A detail data source is a data source that qualifies (restricts) its set of enterprise objects to an object that’s
selected in a master data source. A detail data source is set up to provide objects for the destination entity of a
particular relationship.

Select the variable you want to delete.

Then click here.

37

Creating a Web-Based Database ApplicationAdding a Detail Display Group to MovieDetails

The following expression:

[[movies dataSource] dataSourceQualifiedByKey:@"movieRoles"]

gets the data source from the movies display group and asks it to provide a detail data source. The data source
returned by dataSourceQualifiedByKey: is set up to provide MovieRole objects that are related to one of movies’
enterprise objects through the movieRoles relationship.

5. Qualify movieroles’ data source.

In a master-detail setup, changes to the detail apply to the objects in the master; for example, adding an object
to the detail also adds it to the relationship of the master object. Once you have a detail data source, you can set
the master object by sending the detail a qualifyWithRelationshipKey:ofObject: message. The detail then uses the
master object in evaluating the relationship, and applies inserts and deletes to that master object. In the
MovieDetails page, this plays out as follows: If you insert a new MovieRole object in the movieroles display
group, it is also added to the movieRoles array of the selected Movie object.

Modify the setMovie: method to look like this:

- setMovie:aMovie {
if (aMovie)

[movies setObjectArray:[NSArray arrayWithObject:aMovie]];
else

[movies setObjectArray:nil];
[movies selectObject:aMovie];

// Add the following lines.
[[movieroles dataSource]

qualifyWithRelationshipKey:@"movieRoles"
ofObject:aMovie];

[movieroles fetch];
}

6. Create the repetition bindings.

Bind the movieroles displayedObjects method to the repetition’s list attribute.

WebObjects Builder adds the movieRole variable back and automatically binds it to the repetition’s item attribute.

Bind movieRole->talent->firstName to the first string element.

Bind movieRole->talent->lastName to the second string element.

Bind movieRole->roleName to the last string element.

38

Creating a Web-Based Database ApplicationInserting, Updating, and Deleting MovieRoles

Inserting, Updating, and Deleting MovieRoles

In this final section, you’ll add the ability to insert, update, and delete movie roles:

Most of the set up is done already, but you have to add a few more methods. In this section, you’ll add methods to the
MovieDetails component that:

• Select a movie role when a user clicks a link.

• Manage the selected actor for the page’s browser element.

• Return the full name of an actor for display in the browser.

• Save changes to movie roles to the database.

1. Add a hyperlink around the roleName string.

Select the string element that displays role names.

Choose Format->Abstract Element->Hyperlink.

Click a role to select it.

Select the actor who stars
in the role.

Type the role name.

39

Creating a Web-Based Database ApplicationInserting, Updating, and Deleting MovieRoles

The Hyperlink command adds a hyperlink element as the selected element’s parent. Now the string element is
nested inside the hyperlink.

2. Add an action method to MovieRoles.

When you click one of the movie role hyperlinks, the application should select the corresponding MovieRole
object in the movieroles display group. You need to write a method to do this.

Add the following method to MovieDetails’ script:

- selectObject {
[movieroles selectObject:movieRole];

}

The movieRole variable is bound to the repetition element’s item attribute. In the selectObject method above,
movieRole represents the role a user clicked on.

3. Create the hyperlink bindings.

Bind the selectObject method to the hyperlink action attribute.

4. Add a form element to the MovieDetails page.

Drag a form element from the Form Elements palette into the MovieDetails page.

Replace the form’s first label and text field with a browser element.

The whole string element is gray
when it’s selected.

40

Creating a Web-Based Database ApplicationInserting, Updating, and Deleting MovieRoles

Label the remaining text field “Role Name:”.

5. Add a Talent display group.

You need a WODisplayGroup to provide a list of all the Talent objects for the browser.

Drag the Talent entity from EOModeler into the MovieDetails page.

Configure the newly created talents display group to sort its objects alphabetically (ascending) by lastName.

Configure it to fetch on load.

Set its Entries per batch to 0.

6. Create list and item bindings for the browser element.

Bind talents->displayedObjects to the browser element’s list attribute.

Like a repetition element, a browser has an item attribute. As the browser moves through its list, it sets item to the
object at the current index.

In the browser inspector, select the item attribute.

Type talent in the text field.

Click Connect.

WebObjects Builder creates a new variable named talent in the MovieDetails component and binds it to the
browser’s item attribute.

Set the class of the talent variable to be the Talent class.

Drag a browser element
to replace the first field
and its label.

41

Creating a Web-Based Database ApplicationInserting, Updating, and Deleting MovieRoles

Strictly speaking, this step is unnecessary, but it makes it easier to see what’s going on. Now when you select
talent variable in the object browser, you can see that it has lastName and firstName attributes.

7. Create the value binding for the browser element.

The value method tells the browser how to get the strings to display in the browser. For each item in its list, the
browser evaluates its value. Typically you bind an attribute of the item variable to the value attribute. For
example, you could bind talent->lastName to the value attribute. However, the browser in the MovieDetails page
should display the full name for each of the actors. Since the Talent class doesn’t provide an attribute for a full
name, you need to write a method to create and return a string containing the full name for the current actor.

Add the following method to the MovieDetails script.

- fullName {
return [NSString stringWithFormat:@"%@ %@",

[talent valueForKey:@"firstName"],
[talent valueForKey:@"lastName"]];

}

Bind the fullName method to the browser’s value attribute.

As the browser iterates through its list, it sets its item (in this case, talent) to the current Talent object and then
invokes the fullName method. When fullName is invoked, it returns a string containing the full name of the current
actor.

8. Create the selections binding for the browser element.

Browser elements have a selections attribute that should be set to an array of objects. A browser’s selection can
be zero, one, or many objects; but in this talent browser element, the selection should refer to a single object.
Consequently, you need to add two methods to manage the browser’s selection: one to return an array
containing the selected actor and one to set the selected actor from an array object.

Add the following method to the MovieDetails script:

- talentSelection {
id selectedTalent = [[movieroles selectedObject] valueForKey:@"talent"];
if (selectedTalent)

return [NSArray arrayWithObject:selectedTalent];
else

return nil;
}

Select the variable whose class you want
to set.

Then click here.

Choose a class.

42

Creating a Web-Based Database ApplicationInserting, Updating, and Deleting MovieRoles

Since the browser expects an array for its selections attribute, this method packages the talent object for the
selected MovieRole in an array. If the selected MovieRole object is nil, talentSelection simply returns nil to
indicate that the browser shouldn’t set a selection.

Add the following method:

- setTalentSelection:array {
if ([array count])

[[movieroles selectedObject]
takeValue:[array objectAtIndex:0]
forKey:@"talent"];

}

Again because the browser uses an array for its selections attribute, the setTalentSelection: method must take an
array as its argument. If array’s count is non-zero, then this method sets the selected MovieRole’s talent object to
the first object in the array. (Note that a user can select more than one actor. A production-quality application
would probably alert the user that a MovieRole can only be played by one actor, but this simple tutorial
application won’t take that extra step.)

Bind the talentSelection method to the browser’s selections attribute.

Given this binding, the browser invokes talentSelection to determine what the selection is. It invokes
setTalentSelection when a user changes the selection. As a result, the talent instance variable of the selected
MovieRole object is set to the newly selected actor.

9. Configure the browser’s appearance.

Open the Browser Inspector.

Set the number of rows shown to 10.

10. Create the text field binding.

Bind movieroles->roleName to the Role Name text field.

A browser element has a bindings inspector
(the right-most icon) and an HTML attributes
inspector (the selected icon).

Set the number of rows that the browser
displays to 10.

43

Creating a Web-Based Database ApplicationInserting, Updating, and Deleting MovieRoles

11. Add Insert, Update, and Delete buttons.

Delete the Submit and Reset buttons.

In the MovieDetails script, delete the submit method associated with the Submit button.

Note: If you save your application after deleting the buttons, WebObjects Builder automatically deletes the
submit method.

Drag three active image elements from the Form Elements palette into the form element.

12. Assign images to the active image elements.

Select the first active image element.

Open the Active Image Inspector.

Click Browse.

In the Open panel navigate to the Main.wo directory in the Movies.woa application directory.

Select the DBWizardInsert.gif file.

Click Open.

Follow the same procedure to set the second image’s source to DBWizardUpdate.gif.

Set the last image’s source to DBWizardDelete.gif.

13. Create bindings for the active image elements.

In the MovieDetails script, delete the three submit... methods that are bound to the active images.

The WODisplayGroup class defines the methods insert and delete that you’ll bind to the insert and delete active
image elements, respectively. It doesn’t, however, provide a save method. You’ll have to provide that.

Click here to locate the
image file in an Open panel.

44

Creating a Web-Based Database ApplicationInserting, Updating, and Deleting MovieRoles

When you use the Database Wizard and choose the Selected Record layout, the wizard sets up three active
image elements just as you’re doing in this page. As a part of that set up, it adds a method called saveChanges to
the component script. You can copy the saveChanges method generated by the Database Wizard for the Main
component and paste it into the MovieDetails component script.

Copy the saveChanges method from the Main script and paste it into the MovieDetails script.

function saveChanges() {
 id exception;

exception = self.session.defaultEditingContext.tryToSaveChanges();
if (exception != nil) {

[exception raise];
}

}

self.session (the same as [self session]) refers to a WOSession object that represents a connection to the application
by a single user. WOSession objects provides access to an EOEditingContext object. The expression

self.session.defaultEditingContext.tryToSaveChanges()

which is the same as the expression:

[[[self session] defaultEditingContext] tryToSaveChanges]

sends a tryToSaveChanges message to the WOSession’s defaultEditingContext. This default EOEditingContext object
manages graphs of objects fetched from the database, and all changes to the database are saved through it. For
more information, see the EOEditingContext class specification in the Enterprise Objects Framework Reference.

EOEditingContext’s tryToSaveChanges method uses other Enterprise Objects Framework objects to analyze its
graph of enterprise objects (Movie, MovieRole, and Talent objects referenced by the application) for changes
and then to perform a set of corresponding operations in the database. If an error occurs during this process,
tryToSaveChanges returns an NSException object. (See the NSException class specification in the Foundation
Reference for more information on exceptions.) By default, the saveChanges method simply raises the exception,
having the effect of returning a diagnostic page. You could return an error page that explains the reason for the
save failure instead, but the application in this tutorial uses the default behavior.

Bind the saveChanges method to the update image’s action attribute.

Bind movieroles->insert to the insert image’s action attribute.

Bind movieroles->delete to the delete image’s action attribute.

45

Creating a Web-Based Database ApplicationConclusion

Conclusion

Although it’s a simple example, the Movies application introduced you to many of the concepts, tools, and skills you’ll
need to create Enterprise Objects Framework applications for the web. You’ve learned about:

• Using WebObjects Builder’s Database Wizard

• Adding formatting to your user interface

• Using EOModeler to edit a model file

• Creating WODisplayGroups and binding them to dynamic elements

• Creating master-detail configurations

• Inserting, updating, and deleting enterprise objects

