

Enterprise Objects
Framework
Tools And Techniques

K

Apple, NeXT, and the publishers have tried to make the information contained in
this manual as accurate and reliable as possible, but assume no responsibility for
errors or omissions. They disclaim any warranty of any kind, whether express or
implied, as to any matter whatsoever relating to this manual, including without
limitation the merchantability or fitness for any particular purpose. In no event shall
they be liable for any indirect, special, incidental, or consequential damages arising
out of purchase or use of this manual or the information contained herein. NeXT or
Apple will from time to time revise the software described in this manual and
reserves the right to make such changes without obligation to notify the purchaser.

Copyright



 1998 by Apple Computer, Inc., 1 Infinite Loop, Cupertino, CA 95014.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher or
copyright owner. Printed in the United States of America. Published simultaneously
in Canada.

NeXT, the NeXT logo, OPENSTEP, Enterprise Objects, Enterprise Objects
Framework, Objective-C, WEBSCRIPT, and WEBOBJECTS are trademarks of
NeXT Software, Inc. Apple is a trademark of Apple Computer, Inc., registered in the
United States and other countries. PostScript is a registered trademark of Adobe
Systems, Incorporated. Windows NT is a trademark of Microsoft Corporation.
UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. ORACLE is a registered trademark
of Oracle Corporation, Inc. SYBASE is a registered trademark of Sybase, Inc. All
other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 [or, if
applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

This manual describes WebObjects 4.0.

Writing: Kelly Toshach
Graphic Design: Karin Stroud
Production: Terri Fitzmaurice
Release Control: Chona Reyes

Table of Contents

Table of Contents

Introduction 7

Introduction to Enterprise Objects Framework Tools and Techniques 9

Creating a New Model 11

About Models 13

Starting EOModeler 14

Creating a New Model 15

Selecting an Adaptor 15

Choosing What to Include in Your Model 17

Choosing the Tables to Include 19

Specifying Primary Keys 19

Specifying Referential Integrity Rules 20

Choosing Stored Procedures 22

Saving the Model 23

What a New Model Includes 23

Updating Your Model 24

Checking for Consistency 25

Using the Model Editor 27

The Model Editor in Table Mode 29

Navigating a Model With the Tree View 30

Displaying a Model’s Components in the Table Mode 31

The Open Entity Icon 32

Adding Columns with the Add Column Menu 33

Using Other Display Modes 34

Diagram View 34

Browser Mode 35
3

Table of Contents

4

Working with Attributes 37

Changing an Attribute’s Characteristics 39

Using Table Mode 40

Using the Attribute Inspector 43

Using Custom Data Types 44

Using the Advanced Attribute Inspector 45

Prototype Attributes 45

Assigning a Prototype to an Attribute 46

Creating Prototype Attributes 47

Working with Relationships 49

Creating Relationships 51

Forming Relationships in the Diagram View 52

Forming Relationships in the Relationship Inspector 52

Forming Relationships Across Models and Databases 55

Tips for Specifying Relationships 56

Adding Referential Integrity Rules 58

Adding Derived Properties 61

Derived Attributes 63

Adding a Derived Attribute 63

Flattened Attributes 65

When Should You Use Flattened Attributes? 66

Flattening an Attribute 67

Flattened Relationships 70

When Should You Use Flattened Relationships? 70

Flattening a Relationship 71

Working with Entities 73

Changing an Entity’s Characteristics 75

Using the Entity Inspector 77

Specifying an Enterprise Object Class 79

Table of Contents

Generating Source Files 81

Generating Objective-C Source Files 81

Generating Java Source Files 83

Generate Client Java Files 84

Customizing Source File Generation 85

Creating a Subclass 85

Setting Other Information for an Entity 86

Advanced Entity Inspector 86

Stored Procedures Inspector 89

UserInfo Inspector 89

Working with Stored Procedures 91

Adding Stored Procedures 93

Assigning a Stored Procedure to an Entity 96
Requirements for Framework-Invoked Stored Procedures 98

Working with Fetch Specifications 99

Fetch Specifications 101

Creating a Fetch Specification 101

Building a Qualifier 103

Creating Compound Qualifiers 104

Using Qualifier Variables 106

Assigning a Sort Ordering 108

Specifying Prefetching and Other Options 109

Configuring Prefetching 110

Other Options 112

Configuring Raw Row Fetching 113

Using Custom SQL and Stored Procedures 115

Testing a Fetch Specification 116

Interacting with a Database 117

Setting Adaptor Information 119

Switching Adaptors 121

Using the Data Browser 121

Generating SQL 122
5

Introduction

Introduction to Enterprise Objects Framework
Tools and Techniques

One of the ingredients in all Enterprise Objects Framework

applications is a model. A model defines, in entity-relationship terms,

the mapping between your enterprise objects and a relational database.

The EOModeler application, being the tool you use to create and

maintain models, has a prominent place in the suite of applications you

use to develop your Enterprise Objects Framework applications.

You use EOModeler to:

• Read the data dictionary from a database to create a default

model, which can then be tailored to suit the needs of your

application.

• Specify enterprise object classes for the entities in your model.

• Generate source code files for the enterprise object classes you

specify.

• Define fetch specifications (queries) that you can invoke by

name in your applications.

• Create and drop databases and database tables.

This book describes EOModeler and the techniques you use to define

models that work effectively in Enterprise Objects Framework

applications.

For more general information on Enterprise Objects Framework and

on creating applications that use it, see the book Enterprise Objects
Framework Developer’s Guide.
9

Creating a New Model

Chapter 1

This chapter describes how to create a new model from an existing

database. It is organized into the following sections:

• “About Models” (page 13)

• “Starting EOModeler” (page 14)

• “Creating a New Model” (page 15)

• “What a New Model Includes” (page 23)

• “Updating Your Model” (page 24)

• “Checking for Consistency” (page 25)

About Models

Although a model can be generated dynamically at run time, you

typically create models using EOModeler and then add them to your

project as model files.

Models are designed to be loaded incrementally to maximize

performance. A model consists of one global file, with a separate file for

each entity. Entity descriptions are loaded in to an application as

needed. Models have an .eomodeld file wrapper (which is actually a

directory), and the individual entity files within the model are in ASCII

format. If you want to view the ASCII files in a model, open the
.eomodeld directory. This displays the individual entity, stored

procedure, and fetch specification files in the model. The entity files

have a .plist extension, indicating that the files’ contents are in ASCII

property list format. The stored procedure files have the extension

.storedProcedure . The fetch specification files have the extension

.fspec .You can view the individual files in a text editor.

The global file has the name index.eomodeld . It contains the

connection dictionary, the adaptor name, and a list of all of the entities

in the model.

Models describe the database-to-enterprise object mapping by using

the modeling classes EOModel, EOEntity, EOAttribute, and

EORelationship (EORelationships include additional information in

the form of EOJoin objects).
13

Chapter 1

Creating a New Model

The following table describes the database-to-object mapping provided

in a model:

While the modeling classes correspond to elements in a relational

database, a model represents a level of abstraction above the database.

Consequently, the mapping between modeling classes and database

components doesn’t have to be one-to-one. So, for example, while an

EOEntity object described in a model corresponds to a database table, in

reality it can contain references to multiple tables. In that sense, a model

is actually more analogous to a database view. Similarly, an EOAttribute

can either correspond directly to a column in the root entity, or it can be

derived or flattened. A derived attribute typically has no corresponding

database column, while a flattened attribute is added to one entity from

another entity. For more information, see the chapter “Adding Derived

Properties” on page 61.

You can store your model files anywhere, but to use a model in an

application you must copy it into your application’s project directory.

Starting EOModeler

To start EOModeler on Windows NT, launch EOModeler from the

WebObjects program group in the Start menu. On Rhapsody, locate

EOModeler in /System/Developer/Applications and double-click its icon

(shown in Figure 1).

Database Element Model Object Object Mapping

Data Dictionary EOModel —

Table EOEntity Enterprise object class

Row — Enterprise object
instance

Column EOAttribute Enterprise object
instance variable (class
property)

Referential Constraint EORelationship Reference to another
object
14

Creating a New Model

Figure 1. EOModeler’s Application Icon

Alternatively, you can start EOModeler by double-clicking an existing

model file—from inside the Project Builder application or from the file

system.

Tip: On Windows NT, you open a model’s .eomodeld directory and

double-clicking the index.eomodeld file to open it in EOModeler.

Creating a New Model

To create a model, choose Model New.

EOModeler starts the New Model Wizard, which assists you to configure

your new model. The following sections describe the wizard pages that

guide you through the model creation process.

Selecting an Adaptor
An adaptor is a mechanism that connects your application to a particular

database server. For each type of server you use, you need a separate

adaptor. Enterprise Objects Framework provides adaptors for Informix,

Oracle, and Sybase servers, and for any server that is ODBC compliant. It

also provides a sample adaptor for a flat-file data store and an adaptor for

OpenBase Lite—a database that ships with Enterprise Objects

Framework as an unsupported demo.
15

Chapter 1

Creating a New Model

Figure 2. Selecting an Adaptor

After you select an adaptor, EOModeler displays the login panel for the

database that corresponds to the adaptor you selected. Fill in the login

panel and click OK.

Figure 3. Oracle Login Panel

Different databases require different login information, so each

database’s login panel looks different.The examples in this chapter use

the Oracle version of the Movies database included with the Enterprise

Objects Framework; Figure 3 shows the Oracle login panel.
16

Creating a New Model

Choosing What to Include in Your Model
In this next wizard page, you can specify the degree to which the wizard

configures your model.

Figure 4. Choosing What to Include in the Model

How complete the model EOModeler creates is depends on how

completely the schema information is inside your database server.

For example, the wizard includes relationships in your model only

if the server’s schema information specifies foreign key definitions.

Using the options in this page, you can tell EOModeler that you want to

supplement the model with additional information. (Note that the wizard

doesn’t modify the underlying database.)

Assign primary keys to all entities
Enterprise Objects Framework uses primary keys to uniquely identify

enterprise objects and to map them to the appropriate database row.

Therefore, you must assign a primary key to each entity you use in your

application. The wizard automatically assigns primary keys to the model

if it finds primary key information in the database’s schema information.
17

Chapter 1

Creating a New Model

Checking this box causes the wizard to prompt you to choose primary

keys that aren’t defined in the database’s schema information. If your

database doesn’t define them, the wizard later prompts you to choose

primary keys.

Ask about relationships
If there are foreign key definitions in the database’s schema information,

the wizard includes the corresponding relationships in the model.

However, a definition in the schema information doesn’t provide enough

information for the wizard to set all of a relationship’s options. Checking

this box causes the wizard to prompt you to provide the additional

information it needs to complete the relationship configurations.

Ask about stored procedures
Checking this box causes the wizard to read stored procedures from the

database’s schema information, display them, and allow you to choose

which to include in your model.

Use custom enterprise objects
An entity maps a table to enterprise objects by storing the name of a

database table (MOVIE, for example) and the name of the corresponding

enterprise object class (a Java class, Movie, for example). When deciding

what class to map a table to, you have two choices: EOGenericRecord or

a custom class. EOGenericRecord is a class whose instances store key-

value pairs that correspond to an entity’s properties and the data

associated with each property.

If you don’t check the “Use custom enterprise objects” box, the wizard

maps all your database tables to EOGenericRecord. If you do check this

box, the wizard maps all your database tables to custom classes. The

wizard assumes that each entity is to be represented by a custom class

with the same name. For example, a table named MOVIE has an entity

named Movie, whose corresponding custom class is also named Movie.

Use a custom enterprise object class only when you need to add business

logic; otherwise use EOGenericRecord.
18

Creating a New Model

Choosing the Tables to Include
After specifying what additional information to include in your model,

the wizard prompts you to choose the tables to include in your model. By

default, all the tables are selected.

Figure 5. Choosing the Tables to Include

The wizard creates entities only for the tables you select. If you later

decide you want to include a table you didn’t select at this stage, you can

add it using the Model New Updated Model command, as described

in “Updating Your Model” on page 24.

Specifying Primary Keys
If you are using a database that stores primary key information in its

database server’s schema information, the wizard skips this step. The

wizard has already successfully read primary key information from the

schema information and assigned primary keys to your model.

However, if primary key information isn’t specified in your database

server’s schema information or if the adaptor can’t read it (as with

Microsoft Access), the wizard now asks you to specify a primary key for

each entity.

Control-shift-
click to select
and deselect

Click to select
all the tables.

Click to deselect
all the tables.
19

Chapter 1

Creating a New Model

Figure 6. Specifying an Entity’s Primary Key

If an entity’s primary key is compound; that is, if it’s composed of more

than one attribute, control-shift-click to select all of the attributes in the

primary key. You use a compound primary key when any single attribute

isn’t sufficient to uniquely identify a row. For example, in the MovieRole

entity, if requires the combination of the movieId and talentId attributes to

uniquely identify a row.

Specifying Referential Integrity Rules
If foreign key definitions aren’t specified in your database server’s schema

information or the adaptor can’t read that information (as with Microsoft

Access), the wizard hasn’t created any relationships at all, and it skips this

step. You can add relationships later as described in the chapter “Working

with Relationships” on page 49.

On the other hand, if you’re using a database that stores foreign key

definitions in its database server’s schema information, the wizard reads

them and creates corresponding relationships in your model. For

example, Movie has a to-many relationship to MovieRole (that is, a

Movie has an array of MovieRoles), and Talent has a to-many relationship

to MovieRole.

Control-Shift-
click to select
more than one
attribute.
20

Creating a New Model

At this point, if you specified that the wizard ask about relationships (as

described in “Choosing What to Include in Your Model” on page 17), the

wizard now asks you to provide additional information about the

relationships so it can further configure them.

Figure 7. Specifying Referential Integrity Rules for a Relationship

Owns Destination
The checkbox in this page lets you specify whether the relationship’s

source owns its destination objects. When a source object owns its

destination objects and you remove a destination object from the source

object’s relationship array, this also has the effect of deleting it from the

database (alternatively, you can transfer it to a new owner). This is

because ownership implies that the owned object can’t exist without an

owner.

For example, in the relationship shown in Figure 7, Movie owns its

MovieRole objects.This means that a destination object (MovieRole)

can’t exist without its source (a Movie). Consequently, when a MovieRole

is removed from its Movie’s array of MovieRoles, the MovieRole is

deleted—deleted in memory and deleted in the database.

The name
assigned to the
relationship is
dependent on
the adaptor
you're using.
21

Chapter 1

Creating a New Model

Delete Rule
The radio button you choose in this page specifies what to do when the

relationship source is deleted: nullify, cascade, or delete. For example, in

the relationship shown in Figure 7, when a user tried to delete a Movie,

you could:

• Delete the Movie and set all it’s MovieRoles not to be associated

with a Movie (nullify).

• Delete the Movie and all its MovieRoles (cascade).

• Refuse the deletion if the Movie has MovieRoles (deny).

Choosing Stored Procedures
If you asked the wizard to include stored procedures in your model (as

described in “Choosing What to Include in Your Model” on page 17), the

wizard asks you to specify which stored procedures to include. By default,

all the stored procedures are selected.

Figure 8. Choosing the Stored Procedures to Include

Control-shift-
click to select
and deselect
stored procedures.

Cick to select
all the stored
procedures.
Cick to deselect
all the stored
procedures.
22

What a New Model Includes

The wizard includes stored procedure information only for the stored

procedures you select. If you later decide you want to include a

stored procedure you didn’t select at this stage, you can add it using the

Property Add Stored Procedure command, as described in the chapter

“Working with Stored Procedures” on page 91.

Saving the Model
When you finish the wizard, EOModeler displays the new model. If

you’re planning to use your model in an application for which you’ve

already created a project, you should save the model into your project

folder. You will be prompted to add it to the project; click OK.

What a New Model Includes

When you create a new model, the information it includes depends on

how completely you’ve specified the underlying database. EOModeler

can read all of the following from a database and include it in a default

model:

• Table and column names

• Column data types, including the width constraint of string

data types

• Primary keys

• User constraints, such as null constraints and uniqueness

• Foreign key definitions (which are expressed in a model as

relationships)

• Stored procedures

A model contains not only the information it reads from the database, but

values it derives from that information, including:

• Entity and attribute names

• A mapping between the data type of a database column and

a corresponding value class, such as String, Number, or

NSGregorianDate (NSString, NSNumber, or NSCalendarDate

in Objective-C). See the class specification for each adaptor for

a listing of the adaptor’s default database type to value class

mapping.
23

Chapter 1

Creating a New Model

EOModeler derives entity names by taking a database table name and

making all of it lowercase except for the first letter. It then removes

underbar (_) characters and capitalizes any characters following

underbars. For example:

Attribute names are based on corresponding database columns. They’re

derived in the same way as entities, except that EOModeler doesn’t

capitalize the first character. For example:

Updating Your Model

When you create a new model in EOModeler, the New Model Wizard

prompts you to select the tables you want to include, as described in

“Choosing the Tables to Include” on page 19. But what if you decide at

a later point that you want your model to include tables you didn’t select

when you first created it? Or what if your database has been modified, and

you want your model to reflect the changes?

To update an existing model, choose Model New Updated Model.

This creates a new model that you can use for cutting and pasting from.

Using the New Updated Model command doesn’t have a destructive

effect on your original model—it just gives you a second model to use for

“spare parts.”

Database Table Entity Name

EMPLOYEE Employee

EMPLOYEE_PHOTO EmployeePhoto

TEST_OF_SEVERAL_WORDS TestOfSeveralWords

Database Column Attribute Name

NAME name

FIRST_NAME firstName

MOVIE_ID movieId
24

Checking for Consistency

When you invoke New Updated Model, EOModeler opens a Select

Tables panel (shown in Figure 9) that lets you specify the tables you want

in the “spare parts” model. By default, the Select Tables panel selects

only tables that aren’t represented in your working model; accepting the

selection creates a new, complementary model.

Figure 9. Selecting Tables for the New Updated Model

Checking for Consistency

EOModeler provides consistency checking to confirm that your model is

valid. For example, a model that has entities without primary keys or

relationships without join components is not valid.

You can explicitly check your model at any point by choosing

Model Check Consistency. Consistency checking is also invoked

automatically whenever you save your model. When a consistency check

occurs and inconsistencies are found, the Consistency Check panel

appears with a list of diagnostic messages, as shown in Figure 10.
25

Chapter 1

Creating a New Model

Figure 10. Checking for Consistency

If you prefer for EOModeler not to run the consistency check when you

save, you can turn off this behavior with the Preferences panel.
26

Using the Model Editor

Chapter 2

This chapter describes the Model Editor—the window in which

EOModeler displays models and in which you view and edit them.

The chapter is organized into the following sections:

• “The Model Editor in Table Mode” (page 29)

• “Navigating a Model With the Tree View” (page 30)

• “Displaying a Model’s Components in the Table Mode”

(page 31)

• “Using Other Display Modes” (page 34)

The Model Editor in Table Mode

EOModeler displays models in the Model Editor—the main window

in EOModeler. By default, EOModeler uses the table mode, as shown

in Figure 11. In this mode, the Model Editor has a tree view for

navigating a model, and a table for editing the model’s components

(entities, attributes, relationships, and so on).

Figure 11. The Model Editor

Toolbar for
quick access
to common
operations

Table for
viewing and
editing a
model's
components

Tree view
for navigating
the model
29

Chapter 2

Using the Model Editor

There are two other modes you can use: the browser mode and the diagram
view. For more information on these, see the section “Using Other

Display Modes” on page 34.

Navigating a Model With the Tree View

You navigate a model by clicking icons in the Model Editor’s tree view. In

Figure 12, the icon labeled Movies (in the upper left corner of the tree

view) represents the model itself. You double-click this icon to expand

and contract the tree view. When the tree view is expanded, it shows the

model’s entities.

Figure 12. Expanding the Tree View

Similarly, you can expand a model’s entities and stored procedures folder.

As shown in Figure 12, expanding an entity displays the entity’s

relationships. A relationship in the tree view represents the relationship’s

destination entity. Expanding the relationship in the tree view in displays

the destination entity’s relationships, and so on. Expanding the stored

procedures folder displays the model’s stored procedures.

You control what’s displayed in the Model Editor’s table by selecting

icons in the tree view. When the model is selected (as shown in

Figure 13), the Model Editor displays the model’s entities in the table.

Double-click the model icon to
expand and contract the tree view

Click here to expand or contract
an icon.

means that the icon is already
expanded. Click to contract.

means that the icon can be
expanded.

If an icon has neither a dash nor
a plus, then it can't be expanded.
30

Displaying a Model’s Components in the Table Mode

To display an entity’s attributes and relationships in the table, select the

entity. Similarly, to display a stored procedure’s attributes, select it.

Figure 13. Changing the Table’s Contents

You can also use the icons in the tree view in drag and drop operations—

for example, to drag an entity into the Data Browser (described in the

chapter “Interacting with a Database” on page 117) or into WebObjects

Builder (described in the chapter “Creating a WebObjects Database

Application” in the book Getting Started with WebObjects).

Displaying a Model’s Components in the Table Mode

The Model Editor’s table changes depending on what’s selected in the

tree view. When the model itself is selected, the table displays the

model’s entities, one entity per row. The columns of the table display

information about the entities—entity name, name of the corresponding

database table, and so on.

When an entity is selected, the display changes to show two tables: one

for the entity’s attributes and one for the entity’s relationships (shown in

Figure 14).

Click an entry
to select it and
to display it's
attributes and
relationships
in the table.

Click a stored
procedure to
select it and
to display it's
arguments in
the table.
31

Chapter 2

Using the Model Editor

Figure 14. Displaying an Entity’s Attributes and Relationships

The Open Entity Icon
When the model is selected in the tree view and the table is displaying

the model’s entities, the Model Editor displays an icon to the left

each entity in the table. Double-clicking this icon opens that entity,

selecting that entity and displaying its attributes and relationships in

the table. You can accomplish the same thing by selecting the entity

in the tree view.
32

Displaying a Model’s Components in the Table Mode

Figure 15. Navigating from the Table View

Adding Columns with the Add Column Menu
You use the Add Column menu (shown in) to add columns to the table

view. The items in the menu depend on what modeling component the

table is displaying and on what columns the table contains. As you add

columns to the table, the corresponding menu items are removed from

the Add Column menu.

Double-click
here to open
an entity.

Use the Add Column menu to
add columns to the table view.

To remove a
column from
the table, click
the column's
heading and
press the
backspace key.
33

Chapter 2

Using the Model Editor

Using Other Display Modes

In addition to the table mode, the Model Editor has two other display

modes: browser mode and diagram view. You can switch between display

modes with the Change Display View pop-up button on the toolbar as

shown in Figure 16.

Figure 16. Changing the Model Editor’s Display Mode

Diagram View
The diagram view of the Model Editor is very useful for displaying and

printing your model graphically. As with the table mode, you can use the

diagram view to edit components of the model, but it’s editing

capabilities are more limited.

Table mode

Diagram view

Browser mode
34

Using Other Display Modes
Figure 17. Model Editor Displaying Diagram View

Use the Show Entity and Show Relationship pop-up lists just under the

toolbar to specify the information you want to include in the diagram.

Click the Entity Chooser button to display the Entity Chooser panel,

where you can choose the entities you want to include in the diagram.

Browser Mode
To display the attributes for a particular entity, such as Movie, select the

entity. The attributes appear in the column to the right of the entity along

with the entity’s relationships. You can traverse the model by clicking

relationships, as shown in Figure 18
35

Chapter 2 Using the Model Editor
Figure 18. Model Editor in Browser Mode
36

Working with AttributesChapter 3

This chapter describes setting an attribute’s characteristics.

It’s organized in the following sections:

• “Changing an Attribute’s Characteristics” (page 39) describes

attribute characteristics and the ways you can edit them: using

the table mode of the Model Editor, using the diagram view, and

using attribute inspectors.

• “Prototype Attributes” (page 45) describes how to assign a

prototype to an attribute, how to define your own prototype

attributes, and how to hide the prototypes provided by the

Framework.

Changing an Attribute’s Characteristics

EOModeler provides three mechanisms for viewing and modifying an

entity’s attributes: the table mode of the Model Editor, the diagram

view of the Model Editor, and the Attribute Inspector. You can use any

of the mechanisms to examine the characteristics of your model’s

attributes and to make refinements. Each has advantages over the

others and is useful in different circumstances.

• The Model Editor in table mode is most convenient for most

attribute editing, because you have access to all of but a few of

the possible attribute characteristics.

• Use the diagram view of the Model Editor for very limited

attribute editing when you’re already using the diagram view.

Because you can modify only a few of an attribute’s

characteristics in diagram view, you have to switch to another

mechanism for many tasks.

• Use the Attribute Inspector for editing attribute characteristics

that you can’t access in the Model Editor’s table mode.

Additionally, some attribute characteristics are easier to set in the

inspector.

The following sections provide more detail on what attribute

characteristics you can set with each mechanism.
39

Chapter 3 Working with Attributes
Using Table Mode
To display an entity’s attributes in table mode, select the entity in the tree

view.

Figure 19. Displaying an Entity’s Attributes

Each table column corresponds to a single characteristic of the attribute,

such as its name or its external type (that is, the type by which it’s

represented in the database). By default, the columns included in this

view only represent a subset of the possible characteristics you can set for

a given attribute. To add columns for additional characteristics, you use

the Add Column menu in the lower left corner of the table.

The following table describes the characteristics you can set for an

attribute. Unless otherwise specified, the instructions are for editing the

characteristic in the Model Editor’s table mode.

Characteristic What it is How you modify it

Allows Null Indicates whether the attribute can
have a NULL value.

Click in the column to toggle the
check on and off. (The column for
Allows Null is labeled “A”.)
40

Changing an Attribute’s Characteristics
Class Property Indicates a property that meets both
of these criteria: you want to include
it in your class definition, and it can
be fetched from the database.

Click in the column to toggle
class property off and on.
You can also edit this characteristic
in diagram view.

Client-Side
Class Property

Declares whether a property is a
class property in the entity’s client-
side class. Only applicable for Java
Client applications.

Click in the column to toggle
locking off and on.

Column The database name of the column
that corresponds to the attribute.

Edit the table cell.

Definition The definition for a derived attribute.
Note that Column and Definition are
mutually exclusive; you can’t set
both. Setting one clears the other.

Edit the table cell.

External Type The data type of the attribute as it’s
understood by the database.

Choose a value from the pull-down
list

Locking Indicates whether an attribute
should be used for locking when an
update is performed.

Click in the column (shown in
Figure 19) to toggle locking off and
on.
You can also edit this characteristic
in diagram view.

Name The name your application uses for
the attribute. EOModeler supplies
default names derived from the
name of the corresponding column
in the database. You can edit these
names if desired.

Edit the table cell.
You can also edit this characteristic
in diagram view.

Precision The number of significant digits. Edit the table cell.
Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Primary Key Declares whether a property is, or is
part of, the primary key for the entity.

Click in the column to toggle the
primary key off and on.
You can also edit this characteristic
in diagram view.

Prototype A prototype attribute from which this
attribute derives its characteristics.

Choose a value from the pull-down
list
41

Chapter 3 Working with Attributes
Read Format The format string that’s used to
format the attribute’s value for
SELECT statements. In the string,
%P is replaced by the attribute’s
external name. This string is used
whenever the attribute is referenced
in a select list or qualifier.

Edit the table cell.

Read Only Indicates whether the attribute is
read only.

Use the Advanced Attribute
Inspector. You can’t set this
characteristic in the Model Editor.

Scale The number of digits to the right of
the decimal point. Can be negative.

Edit the table cell.
Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Value Class
(Java)

If your enterprise object is a Java
class, the Java type to which the
attribute will be coerced in your
application.

Edit the table cell.
Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Value Class
(Obj-C)

If your enterprise object is an
Objective-C class, the Objective-C
type to which the attribute will be
coerced in your application.

Edit the table cell.
Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Value Type The conversion character (such as
“i” or “d”) for the data type a
NSNumber attribute is converted to
and from in your application.

Edit the table cell.
Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Width The maximum width (applies to
string and raw data only).

Edit the table cell.
Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Write Format The format string that’s used to
format the attribute’s value for
INSERT or UPDATE expressions. In
the string, %P is replaced by the
attribute’s external name.

Edit the table cell.
42

Changing an Attribute’s Characteristics
Using the Attribute Inspector
The Attribute Inspector is most useful for setting characteristics of an

attribute that are related to how the attribute is represented inside your

application. These characteristics are:

• Precision

• Scale

• Value Class (Java)

• Value Class (Obj-C)

• Value Type

• Width

The Attribute Inspector is particularly useful for editing these

characteristics because it manages the dependencies between them. For

example, EOModeler supplies a default mapping between an attribute’s

external type and internal type, both for Java and Objective-C. If you

change the Java value class, the Objective-C value class is automatically

updated correspondingly, and vice versa. Also, some of the attribute

characteristics are only applicable to attributes whose internal type is set

to a particular value class. For example, Precision and Scale are only

applicable to decimal number value classes—BigDecimal in Java and

NSDecimalNumber in Objective-C.

The Attribute Inspector helps you keep track of these dependencies by

changing its user interface to match whatever internal data type you

choose (shown in Figure 20).
43

Chapter 3 Working with Attributes
Figure 20. Setting Internal Data Type Characteristics with he Attribute Inspector

To view an attribute in the Attribute Inspector, select the attribute in the

Model Editor and open the inspector, either by clicking the button

in the toolbar or by choosing Tools Inspector.

Using Custom Data Types
Some attributes, such as TalentPhoto’s photo attribute, use custom value

classes to represent them inside your application. When you use a custom

data type, you are responsible for specifying how the data is read from and

written to the database. You can use the Attribute Inspector to specify a

custom data type. For a description of how to do this, see the chapter

“Advanced Enterprise Object Modeling” in the book Enterprise Objects
Framework Developer’s Guide. See the class specification for EOAttribute

in the Enterprise Objects Framework Reference for more discussion of custom

data types.

Manages dependencies
between internal types
characteristics

Sets both the Value
Class (Java) and
Value Class (Obj-C)
characteristics.

Depending on the
type you choose,
the rest of the
Internal Data Type
area changes to
display other
characteristics (if any)
that are appropriate
for that type.
44

Prototype Attributes
Using the Advanced Attribute Inspector
The main reason you use the Advanced Attribute Inspector is to set an

attribute’s Read Only characteristic. By default, and attribute is read-

write. You only need to set it if you want it to be read-only. To do this, you

have to use the Advanced Attribute Inspector. Open the inspector panel,

and select the Advanced Attribute Inspector as shown in Figure 21.

Figure 21. Displaying the Advanced Attribute Inspector

Prototype Attributes

To allow easier model creation from scratch, EOModeler supports the

concept of prototype attributes. Prototype attributes are just what they

sound like — special attributes from which other attributes derive their

settings. A prototype can specify any of the characteristics you normally

Click this button to choose
the Advanced Attribute
Inspector
45

Chapter 3 Working with Attributes
define for an attribute. When you create an attribute, you can associate it

with one of these prototypes, and the attribute’s characteristics are then

set from the prototype definition.

For example, suppose your adaptor contains a date prototype that defines

the value class to be NSGregorianDate (NSCalendarDate in

Objective-C) and the external type to be DATE. When you create an

attribute and associate it with this date prototype, the attribute’s value

class is dynamically resolved to NSGregorianDate and its external type is

dynamically resolved to DATE.

Assigning a Prototype to an Attribute
To associate an attribute with a prototype, use the table mode of the

Model Editor. Simply choose a prototype from the combo box in the

Prototype column as shown in Figure 22. If EOModeler isn’t displaying

the Prototype column, activate it from the Add Column menu.

Figure 22. Assigning a Prototype to an Attribute

If any of the prototype information is incorrect for your attribute, you can

override it. Just set the property of the attribute to the value you want (see

Figure 23). The remaining attribute properties will still dynamically

resolve to the values set in the prototype.

Choose a prototype
from this combo-box

The values
an attribute
derives from
it's prototype
are shown
in brown.

Use this
menu to
add the
prototype
column
to the table.
46

Prototype Attributes
Figure 23. Overriding Prototype Settings

Creating Prototype Attributes
The prototypes you can assign to an attribute come from three places:

1. An entity named EO<AdaptorName>Prototypes , where

<AdaptorName> is the name of the adaptor for your model

(EOOraclePrototypes, for example)

2. An entity named EOPrototypes

3. The adaptor for your model

So to create your own prototype, create a prototype entity—an entity

named either EO<AdaptorName>Prototypes or EOPrototypes —and add

an attribute to it. Note that the EO<AdaptorName>Prototypes and

EOPrototypes entities can be defined in the current model or in another

model in the model group (all the models in your project are typically a

part of the same model group).

The asterisk indicates
that one or more of the
prototype's settings are

overridden by the
attribute.

Values the
attribute doesn't
derive from it's
prototype, including
overridden values,
are displayed
in black text.
47

Chapter 3 Working with Attributes
When resolving a prototype name, Enterprise Objects Framework looks

for prototypes in EO<AdaptorName>Prototypes , then in EOPrototypes ,

and finally in the adaptor for your model. This search path allows you to

override the prototypes provided by each adaptor. Furthermore, if you

don’t want to use the adaptor-defined prototypes at all, you can hide

them. Create an entity named EOPrototypesToHide . For each prototype

you want to hide, create an attribute with that name; you don’t need to

specify other attribute properties.
48

Working with RelationshipsChapter 4

This chapter describes creating and configuring relationships.

It’s organized in the following sections:

• “Creating Relationships” (page 51)

• “Forming Relationships in the Diagram View” (page 52)

• “Forming Relationships in the Relationship Inspector”

(page 52)

• “Forming Relationships Across Models and Databases”

(page 55)

• “Tips for Specifying Relationships” (page 56)

• “Adding Referential Integrity Rules” (page 58)

Creating Relationships

If the database on which your model is based includes definitions for

foreign keys, these definitions will automatically be expressed in your

model as ready-made relationships.

You can also explicitly form a relationship between entities if one

doesn’t already exist. This relationship must reflect an actual

relationship between the entities’ corresponding tables in the

database.

Forming a relationship allows you to access data in a destination table

that relates to data in a source table (it’s also possible to have a reflexive

relationship, in which the source and destination tables are the same).

For example, to find all of the roles in a particular movie, you can form

a relationship between the MovieRole and Movie entities.

EOModeler provides two mechanisms for forming relationships.

You can form them in the Model Editor’s diagram view or in the

Relationship Inspector. Using the diagram is the quickest way to create

a new relationship, but using the Relationship Inspector gives you

access to more relationship characteristics. Each mechanism is

discussed in the following sections.
51

Chapter 4 Working with Relationships
Forming Relationships in the Diagram View

To create a relationship in diagram view, control-drag from a source

attribute to the destination attribute, as shown in Figure 24.

Figure 24. Control-Dragging to Create a Relationship

Control-dragging to create a relationship actually creates two

relationships: one in the source attribute’s entity and an inverse

relationship in the destination attribute’s entity. So in Figure 24, control-

dragging from the Movie entity’s studioId attribute to the Studio entity’s

studioId attribute creates the relationships:

• studio , a to-one relationship in Movie to Studio

• movies , a to-many relationship in Studio to Movie

You can view the new relationships in the Model Editor’s table mode and

you can further configure them in the Relationship Inspectors as

described in the next sections.

Forming Relationships in the Relationship Inspector

Creating a relationship with the Relationship Inspector is a more manual

process than creating one in the diagram view. The inspector provides

only the ability to configure a relationship that already exists.

Consequently, unlike with the diagram view, you have to create a

relationship before you can edit it with the Relationship Inspector.
52

Forming Relationships in the Relationship Inspector
1. Select a source entity in the Model Editor, such as Movie.

2. Choose Property Add Relationship.

Figure 25. Adding a Relationship

Alternatively, you can click the button in the toolbar. In either

case, the text “Relationship” appears in the relationship table at

the bottom of the window.

3. Select the new relationship in the Model Editor.

4. Open the Relationship Inspector, either from the toolbar or by

choosing Tools Inspector.

The new
relationship
is displayed
here.
53

Chapter 4 Working with Relationships
Figure 26. The Relationship Inspector

5. In the Inspector, select the destination entity (Studio) in the

Destination browser.

Typically, you form a relationship by connecting a primary key in

one entity and a corresponding foreign key in another entity. In a

to-one relationship, the source entity usually holds the foreign key,

while the destination entity holds the primary key. The opposite is

true for a to-many relationship. For example, studioId is a foreign

key for Movie, while it’s the primary key for Studio.

6. Select the source attribute (studioId) in the Source Attributes

browser.

7. Select the destination attribute (studioId) in the Destination

Attributes browser

8. Make sure the relationship has the proper cardinality (in this

example it should be set to To One since a movie has only one

Studio).

9. Click Connect.

Select a destination entity here.

Then select a source attribute...

... and a destination attribute.

When you're done, click here.
54

Forming Relationships Across Models and Databases
EOModeler assigns the relationship a default name; in this

example it’s “studio.” You can edit this name if desired using

either the Inspector or the table view.

Forming Relationships Across Models and Databases

The entities in one model can have relationships to the entities in another

model. You can form such relationships even if the models map to

different databases and different database servers.

When you add a model to a project, it becomes part of a model group,

even if the model group only contains that one model (for more

information on model groups, see the EOModelGroup class specification

in the Enterprise Objects Framework Reference). Each subsequent model

that you add to the project—either directly by adding the model to the

project’s Resources suitcase or indirectly by adding a framework that

includes a model—automatically becomes part of the group. Entity

names must be unique within a model group; you can’t use the same

entity name in two different models in the same group. Put another way,

all the entities used in an application must have unique names.

To form a relationship from one model to another, use the Relationship

Inspector as follows:

1. Add a relationship to the entity you want to use as the source of the

relationship.

For example, you can form a to-one relationship between the

Movie entity in the Movies sample database and the VideoTape

entity in the Rentals sample database.

2. In the Relationship Inspector, use the Model pop-up list to choose

the model containing the entity you want to use as the destination

of the relationship.
55

Chapter 4 Working with Relationships
Figure 27. Creating a Relationship Across Models

3. Specify the relationship as you normally would.

Note: You can’t flatten properties across databases, nor can you map

inheritance hierarchies across databases (though you can do both of

these things across models that map to the same database).

Tips for Specifying Relationships

The following tips are useful to keep in mind as you specify relationships

in your model:

• The relationships you define in your model must reflect a

corresponding implementation in the database, as well as the

features supported by your adaptor. EOModeler doesn’t know, for

example, if a relationship is to-one or to-many, or if your adaptor

supports left outer joins. You need to know your database and your

adaptor, and specify relationships accordingly.

Use this pop-up list to choose
the model that contains the entity
you want to use as the destination
of the relationship.
56

Tips for Specifying Relationships
• Use the diagram view to quickly create pairs of inverse

relationships by control-dragging between source and destination

attributes.

• Use the Relationship Inspector to specify information about a

relationship, such as whether it’s to-one or to-many, its semantics

(that is, the type of join represented by the relationship), and the

name of the destination model (if the destination isn’t in the

current model).

• Relationships are created as to-one relationships. You need to

change this setting if the two entities have a to-many relationship

(for example, a movie has many roles).

• A relationship can be compound, meaning that it can consist of

multiple pairs of connected attributes. You can specify additional

pairs of attributes only in the Relationship Inspector. Simply select

a second source attribute and a second destination attribute, and

click Connect a second time.

• A to-one relationship from one primary key to another primary key

must always have exactly one row in the destination entity—if this

isn’t guaranteed to be the case, use a to-many relationship. This

rule doesn’t apply to a foreign key to primary key relationship,

where a NULL value for the foreign key in the source row

indicates that no row exists in the destination.

• To-one relationships must join on the complete primary key of the

destination entity as the join component.

For more discussion about modeling relationships, see the chapter

“Advanced Enterprise Object Modeling” in the book Enterprise Objects
Framework Developer’s Guide.
57

Chapter 4 Working with Relationships
Adding Referential Integrity Rules

You can use the Advanced Relationship Inspector to add referential

integrity rules for a relationship.

To add referential integrity rules:

1. Select the relationship for which you want to add rules.

2. In the Relationship Inspector, click the Advanced Relationship

Inspector icon as shown in Figure 28.

Figure 28. Advanced Relationship Inspector

You can use the fields in the Advanced Relationship Inspector to further

specify a relationship. The options in this inspector are described in the

following sections.

Click this button to choose
the Advanced Relationship
Inspector
58

Adding Referential Integrity Rules
Batch Faulting
Normally when a fault is triggered, just that object (or array of objects for

a to-many relationship) is fetched from the database. You can take

advantage of this expensive round trip to the database by batching faults

together. The value you type in the Batch Size field indicates the number

of faults for the same relationship that should be triggered along with the

first fault. For more discussion of batch faulting, see the class specification

for EODatabaseContext in the Enterprise Objects Framework Reference.

Optionality
This field lets you specify whether a relationship is optional or mandatory.

For example, you could require all departments to have a location

(mandatory), but not require every employee to have a manager

(optional).

Delete Rule
This field lets you specify the delete rules that should be applied to an

entity that’s involved in a relationship. For example, you could have a

department with multiple employees. When a user tried to delete the

department, you could:

• Delete the department and remove any back reference the

employee has to the department (Nullify).

• Delete the department and all of the employees it contains

(Cascade).

• Refuse the deletion if the department contains employees (Deny).

• Allow the deletion and do nothing to the destination objects (No

Action).

The No Action rule is useful for tuning performance. However, you

should use this delete rule with great caution since it can result in

dangling references in your object graph. For more information, see the

class specification for EOClassDescription in the Enterprise Objects
Framework Reference.
59

Chapter 4 Working with Relationships
Owns Destination
The Owns Destination checkbox lets you set a source object as owning

its destination objects. When a source object owns its destination objects

and you remove a destination object from the source object’s relationship

array, this also has the effect of deleting it from the database (alternatively,

you can transfer it to a new owner). This is because ownership implies

that the owned object can’t exist without an owner—for example, line

items can’t exist outside of a purchase order.

Propagate Primary Key
The Propagate Primary Key checkbox lets you specify that the primary

key of the source entity should be propagated to newly inserted objects

in the destination of the relationship. This is typically used for an owning

relationship, where the owned object has the same primary key as the

source. For example, in the Movies database the TalentPhoto entity has

the same primary key as the entity that owns it, Talent.
60

Adding Derived PropertiesChapter 5

The Enterprise Objects Framework supports three different kinds of

attributes: simple, derived, and flattened. Simple attributes, which

correspond to a single column in the root table of the entity and can be

read or updated directly from or to the database, are described in the

chapter “Working with Attributes” on page 37. This chapter describes

the other two types.

Additionally, the Framework supports two kinds of relationships.

Simple relationships, which relate one table to another with a join, are

described in the chapter “Working with Relationships” on page 49.

The other kind, flattened relationships, are described in this chapter.

It’s organized into the following sections:

• “Derived Attributes” (page 63)

• “Flattened Attributes” (page 65)

• “Flattened Relationships” (page 70)

Derived Attributes

A derived attribute doesn’t map directly to a single column in the root

table of the entity. A derived attribute can be based on another

attribute that’s modified in some way, such as an bonus attribute that’s

the result of a calculation performed on a salary attribute. A derived

attribute can also be an aggregate consisting of more than one attribute;

for example, you can create a derived attribute fullName that is an

aggregate of lastName and firstName .

Derived attributes, since they don’t correspond to real values in the

database, are read-only; it makes no sense to write a derived value.

Adding a Derived Attribute
You can use the concept of derived attributes to add to an entity a new

attribute that doesn’t correspond to any database column. This

attribute can contain a computed value, for example, or an aggregate of

multiple attributes.

To add a new attribute to your entity:
63

Chapter 5 Adding Derived Properties
1. In the Model Editor, select the entity (such as Talent) to which you

want to add an attribute.

2. Choose Property Add Attribute.

Alternatively, you can use the button on the toolbar. In either

case, a new attribute with the name “Attribute” appears in the

entity’s list of attributes.

3. In the Attribute Inspector, edit the Name field to supply a new

name for the attribute.

For example, you can create an attribute called fullName that

combines the firstName and lastName attributes.

Note that this is a contrived example. A safer way to achieve the

same end would be to implement a method on your enterprise

object—this would ensure that if the firstName or lastName

attribute is modified, the derived attribute fullName will

immediately reflect the change.

4. Use the pop-up list to the left of the Definition field to change the

attribute type from Column to Derived.

5. Edit the Definition field to supply the SQL needed to specify the

derived attribute.

For example, to concatenate the firstName and lastName attributes

in Oracle, type the text:

firstName||' '||lastName

The Sybase equivalent is:

firstName+' '+lastName

6. In the External Type field, add the attribute’s data type

(VARCHAR2). This should be the data type as it is in the database.

7. In the External Width field, type the width constraint for the

attribute (this only applies to string and data values).

Figure 29 shows the Attribute Inspector with the new attribute fullName

specified.
64

Flattened Attributes
Figure 29. Adding a Derived Attribute

The text you supply in the Definition field must be valid SQL for your

database. While you can use either the internal or external names for

simple attributes in this field, for derived and flattened attributes you

have to use the internal names (flattened and derived attributes have no

external names). For consistency’s sake, you may want to use only

internal names in this field.

Flattened Attributes

A flattened attribute is a special kind of attribute that you effectively add

from one entity to another by traversing a relationship. When you form a

to-one relationship between two tables (such as MovieRole and Talent),

you can add attributes from the destination entity to the source entity—

for example, you can add a lastName attribute to MovieRole to identify

the actor who played a particular role. This is called “flattening” an
65

Chapter 5 Adding Derived Properties
attribute. Flattening an attribute is equivalent to creating a joined

column; it allows you to create objects that extend across tables.

When Should You Use Flattened Attributes?
Flattening attributes is just one way to conceptually “add” an attribute

from one entity to another. A generally better approach is to traverse the

object graph directly through relationships. Both WebObjects Builder

and Interface Builder make this easy by supporting the notion of key paths.
You can also access the values in other objects programmatically through

relationship references, as described in the chapter “Designing

Enterprise Objects” in the book Enterprise Objects Framework Developer’s
Guide.

The difference between flattening attributes and traversing the object

graph (either programmatically or by using key paths) is that the values of

flattened attributes are tied to the database rather than the object graph.

If an enterprise object in the object graph changes (for example, because

a user changed a value in another part of the application), a flattened

attribute can quickly get out of sync. For example, suppose that you

flatten a deptName attribute into an Employee object. If a user then

changes the employee’s department reference to a different department

or changes the name of the department itself, the flattened attribute

won’t reflect the change until the changes in the object graph are

committed to the database and the data is refetched. However, if you’re

using key paths in this scenario, a user of your application sees changes to

data as soon as they happen in the object graph. This ensures that your

application’s view of the data remains internally consistent.

Therefore, you should only use flattened attributes in the following cases:

• If you want to combine multiple tables joined by a one-to-one

relationship to form a logical unit. For example, you might have

employee data that’s spread across multiple tables such as Address,

Benefits, and so on. If you have no need to access these tables

individually (that is, if you’d never need to create an Address object

since the address data is always subsumed in Employee), then it

makes sense to flatten attributes from those entities into

Employee.

• If your application is read-only.
66

Flattened Attributes
• If you’re using vertical inheritance mapping (as described in

Enterprise Objects Framework Developer’s Guide’s chapter “Advanced

Enterprise Object Modeling”).

Flattening an Attribute
To flatten an attribute, the relationship you traverse must be a to-one

relationship.

To flatten an attribute:

1. In the browser mode of the Model Editor, select the relationship

that gives you access to the attribute you want to add to your entity

(you don’t have to use browser mode, it just makes it easier to see

the results of the operation).

For example, to add the name of an actor to MovieRole, you can

traverse a talent relationship (which represents MovieRole’s

relationship to Talent) and add the actor’s last name (lastName) to

MovieRole as a flattened attribute. This is a contrived example,

because in this case it would be better to use a key path than to

flatten an attribute.

2. Select the attribute you want to add (lastName), and choose

Property Flatten Property.

Figure 30. Adding a Flattened Attribute
67

Chapter 5 Adding Derived Properties
Alternatively, you can use the button in the toolbar.

The derived attribute (in this example, talent_lastName) appears

in the list of properties for MovieRole. The format of the name

reflects the traversal path: the attribute lastName is added to

MovieRole by traversing the talent relationship.

3. Examine the derived attribute (talent_lastName) in the Attribute

Inspector.

Figure 31. Examining a Flattened Attribute in the Attribute Inspector

In the Attribute Inspector, the pop-up list to the left of the

Definition field identifies the attribute as “Derived”.

4. Edit the Name text field to simplify the attribute name

(for example, to “lastName”).
68

Flattened Attributes
The Definition field (the second text field from the top of the

Attribute Inspector) must accurately reflect the attribute’s external

name and the table in which it resides. For example, if you edit its

text to be “Name” and change its mode to “Column,” it no longer

maps to an existing attribute. In other words, only edit this field if

you are sure you can predict the outcome.

To display this flattened attribute, use the Data Browser.

5. Select the flattened attribute along with another “native” attribute

for verification purposes.

To select multiple, non-contiguous attributes in the Model Editor

on Windows NT, hold down the Control key while you click on

each attribute. On Rhapsody, use the Shift key.

6. View the attributes in the Data Browser as shown in Figure 32

Figure 32. Using the Data Browser to Check Your Model

Click to open
the Data
Browser.
69

Chapter 5 Adding Derived Properties
Displaying data associated with your model in the Data Browser is a good

way to check that the model is synchronized with the database. If your

model is out of sync with the database (for example, if you try to

implement a relationship for which there is no corresponding relationship

in the database), attempting to display data in the Browser will fail. For

more discussion of the Data Browser, see the chapter “Interacting with a

Database” on page 117.

Flattened Relationships

In addition to flattening attributes, you can also flatten relationships.

Flattening a relationship gives a source entity access to relationships that

a destination entity has with other entities. It’s equivalent to performing

a multi-table join. Note that flattening either an attribute or a relationship

can result in degraded performance when the destination objects are

accessed, since traversing multiple tables makes fetches slower.

When Should You Use Flattened Relationships?
As discussed in “When Should You Use Flattened Attributes?” on

page 66, flattening is a technique you should only use under certain

conditions. Instead of flattening an attribute or a relationship, you can

instead directly traverse the object graph, either programmatically or by

using key paths. This ensures that your application has an internally

consistent view of the data.

There is one scenario in which you might want to use a flattened

relationship: if you’re modeling a many-to-many relationship and you

want to perform a multi-table hop to access a table that lies on the other

side of an intermediate table. For example, in the Movie database, the

Director table acts as an intermediate table between Movie and Talent.

It’s highly unlikely that you would ever need to fetch instances of

Director into your application. In this situation, it makes sense to specify

a relationship between Movie and Director, and flatten that relationship

to give Movie access to the Talent table.
70

Flattened Relationships
Flattening a Relationship
To flatten a relationship:

1. Add a relationship from one entity (entity_1) to a second entity

(entity_2).

For example, you can add a to-many relationship called toDirectors

from Movie to Director since a movie can have more than one

director.

2. Add a relationship from entity_2 to a third entity (entity_3).

For example, you can add a to-one relationship called talent from

Director to Talent. For each director a movie has, there is a

corresponding single entry in the Talent table.

3. From entity_1, select the relationship to entity_2 to display its

properties.

From Movie, select the relationship toDirectors to display the

properties of Director.

4. In the list of properties for entity_2, select the relationship (talent)

you want to flatten.

5. Choose Property Flatten Property.

Figure 33. Flattening a Relationship
71

Chapter 5 Adding Derived Properties
The flattened relationship (in this example, toDirectors_talent) appears in

the list of properties for Movie. The format of the name reflects the

traversal path: The relationship talent is added to Movie by traversing the

toDirectors relationship.
72

Working with EntitiesChapter 6

The work you do with entities falls into two basic categories:

• Using the Model Editor and the Entity Inspectors to set the

entity’s characteristics.

• Optionally, mapping the entity to a custom enterprise object

class and generating source files for it.

This chapter describes these tasks. It’s organized into the

following sections:

• “Changing an Entity’s Characteristics” (page 75)

• “Using the Entity Inspector” (page 77)

• “Specifying an Enterprise Object Class” (page 79)

• “Generating Source Files” (page 81)

• “Setting Other Information for an Entity” (page 86)

Changing an Entity’s Characteristics

To display a model’s entities in table mode, select the model (the first

icon) in the tree view.

Figure 34. Displaying an Entity’s Attributes
75

Chapter 6 Working with Entities
Each table column corresponds to a single characteristic of an entity, such

as its name or the name of its database table. By default, the columns

included in the table—Open Entity, Name, Table, and Class Name—

only represent a subset of the possible characteristics you can set for a

given entity. To add columns for additional characteristics, you use the

Add Column menu in the lower left corner of the table.

The following table describes the characteristics you can set for an entity

in the Model Editor.

Note: There are numerous other characteristics that you set using the

Entity Inspectors

Characteristic What it is

Class Name The name of the class that corresponds to the entity. If you
don’t define a custom enterprise object class for an entity, by
default its class is EOGenericRecord.

Client-Side Class
Name

The name of the class that corresponds to the entity in the
client-side of a Java Client application. If you don’t define a
client-side class, the Framework looks for a class in the
client with the same name as the server-side enterprise
object class. If no such class exists on the client, it uses
EOGenericRecord.

External Query Any SQL statement that will be executed as is—on Sybase,
this can be a stored procedure.

Name The name your application uses for the entity. By default,
EOModeler supplies a name based on the name of the
corresponding table in the database.

Open Entity Adds a column with the Open Entity icon, which you can
double-click on to display an entity’s attributes.

Parent Indicates an entity’s parent—used to model inheritance.

Read Only Indicates whether the entity is read-only or not.

Table The name of the database table that corresponds to the
entity.
76

Using the Entity Inspector
Using the Entity Inspector

You use the Entity Inspector to set an entity’s characteristics and specify

a mapping between the entity and an enterprise object class. You can also

accomplish the same tasks using the table mode of the Model Editor, but

this section focuses on the Entity Inspector.

To inspect an entity, select the entity in the Model Editor and open the

inspector (either with the button on the tool bar or by choosing

Tools Inspector).

Figure 35 shows the Entity Inspector for the Movie entity.

Figure 35. The Entity Inspector

Name and Table Name
The Name field lists the name your application uses for the entity.

The Table Name field contains the name of the root table in the

database. You can change the internal name (that is, the name as it
77

Chapter 6 Working with Entities
appears in the application), but you shouldn’t change the database table

name unless you have also changed the name in your database server.

Class
The Class field initially contains the text “EOGenericRecord”. This is

because the default enterprise object class is an EOGenericRecord. To

specify a custom class, type the name of the class in this field. For more

information on creating custom classes, see “Specifying an Enterprise

Object Class” on page 79.

Properties
The Properties area lets you specify the properties you want to include in

your enterprise object class and set characteristics for them.

There are three columns in this area. Each column displays the status of

a particular setting: Primary Key, Used For Locking, and Class Property.

Icons are used to indicate that a setting is enabled for a particular

property; the dash icon indicates that a setting is not applicable to a

property. You add and delete icons by clicking the appropriate column

next to the property.

The Primary Key column is used to declare whether a property is, or

is part of, the primary key for the enterprise object class. To specify a

compound primary key, you simply add a Primary Key icon to the column

for each property you want to include in the primary key.

Specifying a primary key for your enterprise object class is mandatory; the

primary key is the means by which an enterprise object is uniquely

identified within your application and mapped to the appropriate

database row.

Note: Enterprise Objects Framework doesn’t support modifiable

primary key values. You shouldn’t design your application so that users

can change a primary key’s value.

The Class Property column is used to indicate properties that meet

both of these criteria: You want to include them in your class definition,

and they can be fetched from the database. By default, the Entity

Inspector sets all of an entity’s properties as belonging to your class. You

can remove a property by clicking its Class Property icon. If you define an
78

Specifying an Enterprise Object Class
attribute that doesn’t exist in the database but is used by your application

(such as a computed value), you should remove its Class Property icon.

Note that generated source files won’t include instance variable

declarations for these attributes—you’ll have to type those in by hand

(this is a rare case). You also should not include primary and foreign keys

as class properties unless you need to display their values in the user

interface. If you don’t remove the Class Property icon for an attribute that

has no corresponding database value, it will result in a server error when

your application attempts to fetch the property from the database.

The Used For Locking column indicates whether an attribute should

be checked for changes before an update is allowed. This setting applies

when you’re using Enterprise Object Framework’s default update

strategy, optimistic locking. Under optimistic locking, the state of a row is

saved as a snapshot when you fetch it from the database. When you

perform an update, the snapshot is checked against the row to make sure

the row hasn’t changed. If you set Used For Locking for an attribute

whose data is a BLOB type, it can have an adverse effect on system

performance. By default, the Entity Inspector sets all of an entity’s

attributes to be used for locking.

In Figure 35, note that:

• In the Inspector, the property movieID has been designated as the

enterprise object class’s primary key.

• For the entity’s relationships, the Inspector automatically displays

the Not applicable icons in the Primary Key and Used For Locking

columns.

Specifying an Enterprise Object Class

Specifying an enterprise object class for an entity applies the mapping

defined in your model to your custom class, thereby enabling objects of

the class to be created from database rows.
79

Chapter 6 Working with Entities
To specify the enterprise object class for an entity:

1. Make sure that each of the properties you want to include in your

enterprise object class has a Class Property icon set for it in the

Inspector.

2. If the entity does not already have a primary key specified, add a

Primary Key icon for the property or properties that constitute the

entity’s primary key.

Remember that the primary key or keys you set for your

enterprise object class must mirror the primary key or keys

defined for the corresponding table in the database.

What you do after this point depends on how you plan to implement your

enterprise object class. In all cases, an enterprise object class must

conform to the EOKeyValueCoding interface (or informal protocol in

Objective-C), which specifies methods for accessing values by name, or

key (“keys” in this context relates to key-value pairs, not to primary keys).

But this can be accomplished very differently, depending on the approach

you use.

You can use either of the following approaches, depending on the needs

of your application:

• Use EOGenericRecord.

If you don’t edit the Class field to specify a name for a custom

class, the Framework uses EOGenericRecord as an enterprise

object class by default. A generic record uses a dictionary to store

key-value pairs that correspond to an entity’s properties and the

data associated with each property. Use EOGenericRecord when

you don’t need to define special behavior for your class.

• Create a custom class that uses the default implementation of key-

value coding. If you plan to create a custom class, you must type its

name in the Class field.

You can also use EOModeler to generate source code for your class; the

resulting source files include definitions of instance variables and accessor

methods that can be used by key-value coding. See “Generating Source

Files” on page 81.
80

Generating Source Files
For more information on key-value coding and implementing enterprise

object classes, see the chapter “Designing Enterprise Objects” in the

book Enterprise Objects Framework Developer’s Guide.

Generating Source Files

Once you finish specifying an enterprise object class, you can generate

source files for it. However, at this stage of the development process, you

may want to first create your project and design your application’s user

interface. Once you’ve created a project using Project Builder and

included a model file in it, you can generate your source files and save

them into the project.

You can create your enterprise object classes in either Objective-C or

Java. To create an Objective-C class, use Property Generate Obj-C

Files. To create a Java class, use Property Generate Java Files.

Additionally, there’s a Property Generate Client Java Files. This

command generates a Java class for use in the client-side of a Java Client

web application.

Each command is described in more detail in the following sections.

Generating Objective-C Source Files
To generate Objective-C code files for your enterprise object class:

1. In the Model Editor, select the entity for which you have specified

a class in the Entity Inspector.

EOModeler only permits you to create source files for entities for

which you have specified a custom enterprise object class. In other

words, you can’t generate source files for EOGenericRecord.

2. Choose Property Generate Obj-C Files or click the button

in the toolbar.

EOModeler displays a Choose Class Name panel. If the model file

is in a project, the Choose Class Name panel displays the project

as the default destination.
81

Chapter 6 Working with Entities
3. Choose a destination, supply a name for the files if you want, and

click Save.

If you don’t supply a name, the source files are named after the

enterprise object class for which they are being generated and are

given the appropriate extensions.

If you opened the model file from a project, an additional panel

appears, confirming that you want to insert the files in your project.

Also, if you generate source files for an entity and files of the same

name already exist, a panel is displayed asking if you want to

cancel, overwrite, or merge the files. If you choose merge, the File

Merge application starts with the old and new files displayed. You

can then merge the files.

The end result of the Generate Obj-C Files command is:

• A header (.h) file that declares instance variables for all of the

entity’s class properties and declares accessor methods for those

instance variables.

• An implementation (.m) file that provides basic implementations

for the accessor methods.

For example, suppose you define an enterprise object class Movie. The

instance variable declarations in the generated header file might

resemble the following:

NSString *category;
NSCalendarDate *dateReleased;
NSDecimalNumber *language;
NSString *posterName;
NSDecimalNumber *revenue;
NSString *title;
id plotSummary;
Studio *studio;
NSMutableArray *directors;
NSMutableArray *roles;

Note that:

• The name of the generated class is the name you specified for the

entity’s Class Name characteristic.
82

Generating Source Files
• Instance variables that correspond to attributes are declared to be

of the Objective-C value class specified in the model. For example,

revenue is declared as an NSDecimalNumber and dateReleased is

declared as an NSCalendarDate.

• Instance variables that represent to-one relationships are declared

to be of type id for destination objects represented with

EOGenericRecord (such as plotSummary) or as instances of the

custom class used to represent them (such as studio).

• Instance variables that represent to-many relationships (such as

directors) are NSMutableArrays.

The corresponding implementation (.m) file for Movie includes an

implementation for each of the accessor methods declared in the header

file. For example, the methods for setting and returning the value of the

instance variable title are:

- (void)setTitle:(NSString *)value
{

[self willChange];
[title autorelease];
title = [value retain];

}
- (NSString *)title { return title; }

Generating Java Source Files
Generate Java Files is similar to generating Objective-C files. To generate

a Java (.java) file for your enterprise object class, follow the steps in

“Generating Objective-C Source Files” on page 81, except that you

choose Property Generate Java Files or click the button in the

toolbar.

As with the Objective-C source files, a Java source file declares instance

variables and provides basic implementations of accessor methods for

those variables. And in Java:

• The name of the generated class is the name you specified for the

entity’s Class Name characteristic.

• Instance variables that correspond to attributes are declared to be

of the Java value class specified in the model, which can be String,
83

Chapter 6 Working with Entities
NSGregorianDate, Number, BigDecimal, NSData or a custom

value class that you specify.

• Instance variables representing to-one relationships are declared to

be of type EOEnterpriseObject for destination objects represented

with EOGenericRecord or as instance of the custom class used to

represent them. (EOEnterpriseObject is a Java interface defining

basic enterprise object behavior; for more information, see the

chapter “Designing Enterprise Objects” in the book Enterprise
Objects Framework Developer’s Guide or the EOEnterpriseObject

interface specification in Enterprise Objects Framework Reference).

• As with Objective-C, instance variables that represent to-many

relationships (such as directors) are NSMutableArrays.

Generate Client Java Files
Generate Client Java Files is similar to the other source generation

commands. However, you only use this command when you’re creating

enterprise object classes to run on the client-side of a Java Client web

application. (For a description of a Java Client application, see the chapter

“What’s Enterprise Objects Framework” in the book Enterprise Objects
Framework Developer’s Guide).

Using this and one of the other two source generation commands (either

Objective-C or Java), you can create two versions of your enterprise

object class. The different versions can have different class properties.

For example, for security reasons, you might want to include social

security number attribute in the server-side version of an enterprise

object but exclude it from the client-side version.

To enable this distinction, you can specify whether an attribute is a Class

Property () to be included in the server-side enterprise objects and also

whether an attribute is a Client-Side Class Property () to be included in

the client-side objects. For more information on setting these

characteristics, see the chapter “Working with Attributes” on page 37.

To generate a Java (.java) file for a client-side version of your enterprise

object class, follow the steps in “Generating Objective-C Source Files”

on page 81, except that you choose Property Generate Client Java

Files.
84

Creating a Subclass
As with the source files generated by the other commands, a Java source

file declares instance variables and provides basic implementations of

accessor methods for those variables. The client-side Java files are

generated exactly like the server-side Java files, except:

• The name of the generated class is the name you specified for the

entity’s Client-Side Class Name characteristic. If you haven’t

specified a Client-Side Class Name, it uses the name you specified

for the entity’s Class Name characteristic.

• If the model file is in a project, the default destination for the files

is the ClientSideJava.subproj. Consequently, you can name your

server-side and client-side enterprise object classes with the same

name. The two versions of your class reside in different name

spaces at runtime, too. Even if your server-side class is a Java class,

it descends from com.apple.yellow.eocontrol.EOCustomObject,

while the client-side class descends from

com.apple.client.eocontrol.EOCustomObject.

• Instance variables are generated only for attributes and

relationships that are set as Client-Side Class Properties.

Customizing Source File Generation
When you create a project with the type “EOApplication,” it inserts three

files into the project’s Supporting Files suitcase: EOInterfaceFile.template ,

EOImplementationFile.template , and EOJavaClass.template . You can use

these files to customize your .h, .m, and .java file output, respectively. In

their unmodified form these files match the source file generation scheme

used by EOModeler.

Creating a Subclass

Enterprise Objects Framework supports mapping database tables to

inheritance hierarchies of enterprise object classes using three different

approaches. For one of the approaches—single table mapping—

EOModeler provides support to help you model the mapping. In the

single table mapping, all the enterprise object classes in the inheritance

hierarchy map to the same database table; each class makes use, however,
85

Chapter 6 Working with Entities
of different sets of the tables columns. Consequently, you need to create

an entity for each enterprise object class in the hierarchy, and each of the

entities map to the same table.EOModeler facilitates this by creating

“subclass entities” and setting up the parent-child relationships for you.

To create a “subclass” entity, select the entity you want to use as the

parent and choose Property Create Subclass. A new entity is created

that maps to the same database table as the parent entity.

For more discussion of inheritance, see the chapter “Advanced

Enterprise Object Modeling” in the book Enterprise Objects Framework
Developer’s Guide.

Setting Other Information for an Entity

From the Entity Inspector you can navigate to other Inspectors to specify

additional information for your entity.

Figure 36. Icons for Navigating to Other Inspectors

Advanced Entity Inspector
The Advanced Entity Inspector lets you set more complex behavior for

your entity, such as that to support inheritance.

To display the Advanced Entity Inspector, select the Advanced Entity

Inspector icon at the top of the Entity Inspector.

Click here to display the Advance Entity

Here for the Stored Procedure Inspector.

Here for the UserInfo Ispector.
86

Setting Other Information for an Entity
Figure 37. Advanced Entity Inspector

Batch Faulting Size
The Batch Faulting Size field lets you set the number of EOFaults that

should be triggered when you first access an object of this type. By

default, only one object is fetched from the database when you trigger an

EOFault. By providing a number N in this field, you specify that N other

EOFaults of the same entity should be fetched from the database along

with the first one. This improves performance by minimizing round trips

to the database server. For more information, see the chapter “Answers to

Common Design Questions” in the book Enterprise Objects Framework
Developer’s Guide.

External Query
The External Query field allows you to specify any SQL statement that

will be executed as is (that is, you can’t perform any substitutions) when

EOF does an unqualified fetch. On Sybase this can be a stored procedure.

The columns selected by this SQL statement must be in alphabetical

order by internal name, and must match in number and type with the

class properties specified for the entity.
87

Chapter 6 Working with Entities
Qualifier
This field is used to specify a restricting qualifier. A restricting qualifier

maps an entity to a subset of rows in a table. Restricting qualifiers are

commonly used when you’re using single table inheritance mapping, in

which the data for a class and its subclasses is all stored in a single table.

When you add a restricting qualifier to an entity, it causes a fetch for that

entity to only retrieve objects of the appropriate type. For example, the

Rentals sample database has a MOVIE_MEDIA table that includes rows

for both the VideoTape and LaserDisk entities. VideoTape has the

restricting qualifier (media = ‘T’), and LaserDisk has the restricting

qualifier (media = ‘D’). When you fetch objects for the entity VideoTape,

only rows that have the value ‘T’ for the attribute media are fetched. For

more discussion of single table and other types of inheritance mapping,

see the chapter “Advanced Enterprise Object Modeling” in the book

Enterprise Objects Framework Developer’s Guide.

Parent
You use this field to specify a parent entity for the current entity.

This field is used to model inheritance relationships. For example, in the

Rentals database, the Customer entity is the parent of the Member and

Guest entities (since Members and Guests are types of Customers).

For more information, see the chapter “Advanced Enterprise Object

Modeling” in the book Enterprise Objects Framework Developer’s Guide.

Read Only
The Read Only checkbox indicates whether the data that’s represented

by the entity can be altered by your application.

Cache In Memory
The Cache In Memory checkbox lets you specify that the objects

associated with an entity should be cached in memory for quick access.

Caching an entity’s objects allows Enterprise Objects Framework to

evaluate queries in memory, thereby avoiding round trips to the database.

This is most useful for read-only entities, where there is no danger of the

cached data getting out of sync with database data. This technique should

only be used with small tables, since it fetches the entire table into

memory.
88

Setting Other Information for an Entity
Abstract
The Abstract checkbox indicates whether the entity is abstract. An

abstract entity is one for which no objects are ever instantiated in your

application. For example, in the Rentals database, the Customer entity is

abstract since Customer objects are never instantiated (though objects of

its sub-entities, Member and Guest, are). Like the Parent field, this

option is used to model inheritance. For more information, see the

chapter “Advanced Enterprise Object Modeling” in the book Enterprise
Objects Framework Developer’s Guide.

Stored Procedures Inspector
You use the Stored Procedures Inspector to specify stored procedures that

should be executed when a particular database operation (such as insert

or delete) occurs. You type the name of the stored procedure in the field

associated with the database operation. Stored procedures are read from

the database when you create a new model and included in its .eomodeld

file. You can also add stored procedures through EOModeler after the

fact.

Creating stored procedures and assigning them to entities is described in

detail in the chapter “Working with Stored Procedures” on page 91.

UserInfo Inspector
You use the UserInfo Inspector to add key-value pairs to the UserInfo

NSDictionary. The UserInfo dictionary provides a mechanism for

extending your model. You can use it to define custom behavior for an

entity. For example, you can put information in the UserInfo dictionary

to be used by delegate methods that perform operations on the entity.
89

Working with Stored ProceduresChapter 7

This chapter describes working with stored procedures in your model.

It covers adding stored procedures as well as assigning them to entities

for common operations in the sections:

• “Adding Stored Procedures” (page 93)

• “Assigning a Stored Procedure to an Entity” (page 96)

Adding Stored Procedures

If your stored procedure is defined in the database at the time you

create your model, you don’t have to do anything to define it in

your model. When you create a new model with EOModeler, the

application reads stored procedure definitions from the database’s data

dictionary and stores them in the model’s .eomodeld file. You can also

add a stored procedure definition to an existing model.

To add a stored procedure:

1. Select the Stored Procedures icon in the tree view.

2. Choose Property Add Stored Procedure.

3. Specify a name and external name for the stored procedure.
93

Chapter 7 Working with Stored Procedures
Figure 38. Adding a Stored Procedure

You must also define an argument for a stored procedure’s return value and

for each of its parameters. Add arguments to a stored procedure the same

way you add attributes to an entity. In fact, the arguments of a stored

procedure are represented with EOAttribute objects.

Note: The Advanced Attribute Inspector isn’t applicable to stored

procedure arguments. As a result, you can’t access it while editing a

stored procedure argument.

To define and display the attributes of a stored procedure:

1. Select the stored procedure in the tree view.

Alternatively, you can double-click the icon to the left of a

stored procedure in the Model Editor’s stored procedure table.

2. Choose Property Add Argument.

3. Specify the argument’s characteristics in the Model Editor’s table.

Type the name of the stored procedure as
you want to refer to it in your application.

Type the name of the stored procedure as
it's defined in the database.
94

Adding Stored Procedures
Minimally, you must provide values for the Name, Column,

Direction, External Type, and Value Class characteristics.

Each table column corresponds to a single characteristic of a stored

procedure argument. By default, the columns included in the table only

represent a subset of the possible characteristics you can set for a given

entity. To add columns for additional characteristics, use the Add Column

menu in the lower left corner of the table.

The following table describes the characteristics you can set for a stored

procedure argument.

Characteristic What it is

Allows Null Indicates whether the argument’s value can be NULL.

Column The name of a parameter as it is defined in the database (doesn’t
apply to a “returnValue” argument).

Direction In, InOut, Out, or Void. Don’t choose Void; it’s reserved for future
use.

External Type The data type of the argument as it’s defined in the database.

Name The name your application uses for the argument.

Precision The number of significant digits (applies to number data only).

Scale The number of digits to the right of the decimal point (applies to
number data only).

Value Class (Java) The Java type to which the argument value will be coerced in your
application.

Value Class (Obj-C) The Objective-C type to which the argument value will be
coerced in your application.

Value Type The format type for NSNumber classes such as “i” or “d”.

Width The maximum width (applies to string, raw, and binary data).
95

Chapter 7 Working with Stored Procedures
For example, to add arguments for the Sybase stored procedure

defined as:

create proc movie_by_date (@begin datetime, @end
datetime) as

begin

select

CATEGORY, DATE_RELEASED, LANGUAGE, MOVIE_ID, RATING,

REVENUE, STUDIO_ID, TITLE

from MOVIES

where DATE_RELEASED > @begin and DATE_RELEASED < @end

end

you would add an argument for @begin and @end with column names

“begin” and “end”, respectively.

Tip: If you’re using Oracle, you can define a stored procedure to

represent a function. Add an argument named “returnValue” and use

the EOAdaptorChannel method

returnValuesForLastStoredProcedureInvocation to get the function’s

result.

If the Framework invokes your stored procedure automatically, the

argument names of a stored procedure must match the name of a

corresponding EOAttribute object. For example, if you want to invoke a

stored procedure whenever the Framework fetches a Movie object by its

primary key, the stored procedure’s argument names must correspond to

the primary key attributes of the Movie entity. The following section

discusses this requirement more thoroughly.

Assigning a Stored Procedure to an Entity

You can assign stored procedures to entities to be used to perform the

following operations:

• Insert a new object.

• Delete an object.

• Fetch all the objects for an entity.

• Fetch an object by its primary key.

• Generate a primary key value for a new object.
96

Assigning a Stored Procedure to an Entity
If you associate a stored procedure with an entity’s operation, the

Framework invokes it automatically when the operation occurs.

For example, if you want to use a stored procedure to insert new

Customer objects:

1. Define the stored procedure in the database.

2. Define the stored procedure in the model as described in the

previous section.

3. Associate the stored procedure with the Customer entity’s insert

operation.

You can associate a stored procedure with an entity using EOModeler or

you can do it programmatically (see the chapter “Answers to Common

Design Questions” in the book Enterprise Objects Framework Developer’s
Guide).

To assign a stored procedure to an entity in EOModeler:

1. Select the entity with which you want to associate a stored

procedure.

2. Open the inspector.

3. Click the Stored Procedures Inspector icon.

4. Type the name of the stored procedure in the field associated with

the appropriate database operation.

Click here to display the
Stored Procedure Inspector.
97

Chapter 7 Working with Stored Procedures
Figure 39. The Stored Procedure Inspector

Requirements for Framework-Invoked Stored
Procedures
When Enterprise Objects Framework invokes a stored procedure for

an operation, the procedure must behave in an expected way. The

Framework specifies what a stored procedure’s arguments, results, and

return values should be. For more information on these requirements, see

the chapter “Answers to Common Design Questions” in the book

Enterprise Objects Framework Developer’s Guide.
98

Working with Fetch SpecificationsChapter 8

You can use EOModeler to create a query—called a fetch
specification—name it, and store it in the model file. You can then use

these pre-defined queries in your application—invoking them

programmatically or binding them to your application’s user

interface. This chapter describes creating fetch specifications in

EOModeler. It’s organized in the following sections:

• “Fetch Specifications” (page 101)

• “Creating a Fetch Specification” (page 101)

• “Building a Qualifier” (page 103)

• “Assigning a Sort Ordering” (page 108)

• “Specifying Prefetching and Other Options” (page 109)

• “Configuring Raw Row Fetching” (page 113)

• “Using Custom SQL and Stored Procedures” (page 115)

• “Testing a Fetch Specification” (page 116)

Fetch Specifications

To perform a query in an Enterprise Objects Framework application,

you use an EOFetchSpecification object. Fetch specifications have

associated with them an entity, a qualifier, a sort ordering, and several

other options. You can create fetch specifications programmatically,

or you can use EOModeler to create and store them. For more

information on the EOFetchSpecification class, see its specification

in the Enterprise Objects Framework Reference.

Creating a Fetch Specification

To create a fetch specification in EOModeler:

1. Select the entity with which the fetch specification will be

associated.

2. Choose Property Add Fetch Specification or click the

 button in the tool bar.
101

Chapter 8 Working with Fetch Specifications
Figure 40. Adding a Fetch Specification to an Entity

3. Type a name for the fetch specification in the Fetch Specification

Name field.

There are many different ways to configure the fetch specification. The

most common way is to build a qualifier for the fetch specification to fetch

with. For more information, see the section “Building a Qualifier” on

page 103. Alternatively, you can also configure a fetch specification to

fetch using custom SQL or a stored procedure. For more information, see

“Using Custom SQL and Stored Procedures” on page 115.

In addition to specifying how a fetch specification retrieves its data, you

can specify other options, such as sort orderings and performance tuning

settings. The following sections describe the possible configurations and

their uses.

Click here to create a new
fetch specification in the
selected entity.

Type a name
for the new
fetch
specification

A new fetch
specification
is added to
the entity, and
the Model
Editor switches
to the Fetch
Specification
Builder mode.
102

Building a Qualifier
Building a Qualifier

EOModeler’s Fetch Specification Builder mode provides an interface for

building a qualifier graphically. To use it, select your fetch specification,

and choose the Qualifier tab in the Fetch Specification Builder.

For example, a Movie has a Voting object that keeps a runningAverage of

how reviewers have voted on the movie. Suppose you want to create a

fetch specification for the Movie entity that fetches all movies whose

runningAverage is greater than eight. To build the qualifier for such a

query:

1. In the attribute browser, click Movie’s voting relationship.

2. In the second column of the browser, select the runningAverage

attribute.

The text field just under the browser is updated to display

the attribute as the left hand side of an expression. Note that

the runningAverage attribute is represented by a key path

(voting.runningAverage) that identifies the relationship

(voting) through which the attribute is accessed.
103

Chapter 8 Working with Fetch Specifications
Figure 41. Building an Expression.

3. Click the >= button.

EOModeler adds a greater than or equal to operator to the

expression.

4. In the text field, type “8” as the right hand side of the expression.

Instead of building the expression by choosing attributes in the attribute

browser and by clicking an operator button, you can type directly into the

text field for the expression.

Creating Compound Qualifiers
You can also use the Query Builder to create compound qualifiers made

up of multiple expressions. Click the And button to create a new

expression and AND it with the first one. Click the Or button to create a

new expression and OR it with the first.

Select an
attribute for
the left hand
side of the
query.

Click to
choose an
operation for
the query.
104

Building a Qualifier
For example, building on the example in the previous section, suppose

that you want to fetch movies with a runningAverage greater than or equal

to eight but that also have at least ten voters contributing to the average.

To further restrict the fetch specification:

1. Click the And button.

EOModeler adds a second expression and ANDs it to the first

expression.

2. Choose voting.numberOfVotes in the attribute browser.

3. Click the >= button.

4. Type 10 as the right hand side of the expression.

As you build up a complex query, the text field at the bottom of

the Query Builder updates to include the full text of the

compound qualifier. Instead of building up expressions one by one

with the And and Or buttons, you can type directly into this lower

text field. The Qualifier Builder parses the qualifier string and

displays the individual expressions.
105

Chapter 8 Working with Fetch Specifications
Figure 42. Creating a Compound Qualifier

To negate an expression, click in the text of the expression you want to

negate, and then click the Not button. Similarly, to remove an expression

click in the text of the expression you want to negate, and then click the

Remove button.

Using Qualifier Variables
You can specify absolute criteria for a fetch specification’s qualifier—

“voting.runningAverage >= 8”, for example. However, such a fetch

specification is of limited use. More frequently, you want to specify the

form of a qualifier and let users supply specific values when they run

the application. You can do this with qualifier variables.

You can type
the entire text
of a qualifier
into this text
field instead
of building up
the qualifier
an expression
at a time.

To remove an
expression, click in
it, then click remove.

To negate an
expression, click
in it, then click not.

Use these buttons
to create additional
expressions.
106

Building a Qualifier
You specify a qualifier variable using the dollar sign character ($), as in the

following:

dateReleased = $aDate

For example, suppose you want to allow users to search for movies by

title, date released, or studio. The query would look like this:

((title = $title) OR
(dateReleased = $date) OR
(studio.name = $studioName))

You can build this qualifier in EOModeler as specified in the previous

sections, and then bind its qualifier variables (title , date , studioName) to

your application’s user interface. When the application runs, Enterprise

Objects Framework automatically replaces the qualifier variables with

values supplied in the user interface. You can set this up as follows:

1. Create the fetch specification with EOModeler.

2. Use Query Builder’s user interface to set up a query on the title ,

date , and studio.name attributes.

On the right side of each expression, use the $ syntax to identify

the qualifier variables.

Depending on the type of graphical user interface your application

uses, you access the fetch specification’s query bindings differently. For

example, in WebObjects Builder, you access the query bindings in the

following way:

3. Use WebObjects builder to create a component that allows the user

to enter the query criteria.

You might create text fields for the title and date released and a

pop-up list for the studio name, for example.

4. Drag the fetch specification from EOModeler into your

component.

This has the effect of creating a new display group for your

specification’s entity.
107

Chapter 8 Working with Fetch Specifications
5. In the WebObjects Builder panel that opens, choose “Add and

Configure.”

6. Configure the new display group, setting its fetch specification to

the one you defined in your model.

7. In WebObjects Builder, bind the user interface elements to the

queryBindings.title , queryBindings.date , and

queryBindings.studioName keys of your display group

(movieDisplayGroup , for example).

In Interface Builder, the steps are similar except that you bind the user

interface elements to @bindings.title , @bindings.date , and

@bindings.studioName keys of your display group. The @bindings

syntax represents the value associated with the named qualifier

variable.

Assigning a Sort Ordering

To specify the order in which the fetch specification fetches its objects,

use the Sort Ordering tab in the Fetch Specification Builder, as shown in

Figure 43.
108

Specifying Prefetching and Other Options
Figure 43. Assigning a Sort Ordering

Simply choose an attribute to sort on, and click Add. The order in which

you add the attributes specifies the weight to assign to them. In

Figure 43, the fetch specification sorts first on title and then on category.

Additionally, for each attribute you sort on, you can specify an ascending

or descending order and whether to perform a case-sensitive or case-

insensitive comparison.

Specifying Prefetching and Other Options

There are numerous options you can configure to tune a fetch

specification’s behavior. This section describes the options on the

Prefetching and Options tabs.

Click here to
set the fetch
specification's
sort ordering.

Choose an
attribute to
sort on.....

...and click here
to add it.

Toggles
between
ascending and
descending.

Toggles
between
case-insensitive
and case-
sensitive.
109

Chapter 8 Working with Fetch Specifications
Configuring Prefetching
Use this tab to identify relationships that should be fetched along with

the objects specified by the fetch specification. For example, when

fetching Rental objects, you can prefetch associated Fees and Units.

Doing so forces a rental’s fees and unit to be retrieved along with the

rental itself (as opposed to having faults created for them).

Although prefetching increases the initial fetch cost, it can improve

overall performance by reducing the number of round trips made to the

database server.

To specify a relationship to prefetch, select the relationship in the Fetch

Specification Builder’s browser and click Add, as shown in Figure 44.

Figure 44. Specifying Relationships to Prefetch
110

Specifying Prefetching and Other Options
Setting a Fetch Limit

To specify the maximum number of objects to fetch with a fetch

specification, go to the Options tab of the Fetch Specification Builder, as

shown in Figure 45. There you can specify the maximum number of

objects to fetch. The default fetch limit is zero, indicating that there is no

fetch limit. Type a number in the Max Rows text field to specify a

maximum number.

Use the “Prompt on limit” box to specify what the Framework should do

when the fetch limit is reached. If the box is checked, the Framework

prompt the user about whether to continue fetching after the maximum

has been reached. If the box isn’t checked, the Framework simply stops

fetching when it reaches the limit.

For more information on managing fetch limits, see the

EOFetchSpecification class description and the EOEditingContext

EOMessageHandlers interface description in the Enterprise Objects
Framework Reference.

Figure 45. The Options Tab
111

Chapter 8 Working with Fetch Specifications
Other Options
The other options on the Options tabs are explained below:

Perform deep inheritance fetch
An indicator of whether to fetch deeply or not. This is used with

inheritance hierarchies when fetching for an entity with sub-entities. A

deep fetch produces all instances of the entity and its sub-entities, while

a shallow fetch produces instances only of the entity in the fetch

specification.

Fetch distinct rows
An indicator of whether to produce distinct results or not. Normally if a

record or object is selected several times, such as when forming a join, it

appears several times in the fetched results. A fetch specification that

fetches distinct rows filters out duplicates so that each record or object

selected appears exactly once in the result set.

Lock all fetched objects
If a fetch specification locks fetched objects, it locks each object as it

selects it.

Refresh refetched objects
If a fetch specification refreshes refetched objects, existing objects are

overwritten with newly fetched values when they’ve been updated or

changed. With fetch specifications that don’t refresh, existing objects

aren’t updated when their data is refetched (the fetched data is simply

discarded).

Require all variable bindings
Specifies whether a missing value for a qualifier variable is ignored or

whether the Framework requires that each qualifier variable have a value

assigned to it. If “Require all variable bindings” is checked, the

Framework throws an exception during variable substitution. If it isn’t

checked, any qualifier nodes for which there are no variable bindings are

pruned from the qualifier.
112

Configuring Raw Row Fetching
Configuring Raw Row Fetching

When you perform a fetch in an Enterprise Objects Framework

application, the information from the database is fetched and stored in

a graph of enterprise objects. This object graph provides many

advantages, but it can be large and complex. If you’re creating a simple

application, you may not need all of the benefits of the object graph.

For example, a WebObjects application that merely displays

information from a database without ever performing database updates

and without ever traversing relationships might be just as well served

by fetching the information into a set of dictionaries rather than a set of

enterprise objects.

Enterprise Objects Framework 3.0 supports this concept of a simplified

fetch, called raw row fetching. In raw row fetching, each row from the

database is fetched into an NSDictionary object.

When you use raw row fetching, you lose some important features:

• The NSDictionary objects are not uniqued.

• The NSDictionary objects aren’t tracked by an editing context.

• You can’t access to-many relationship information. (To access

to-one relationship information, you use key paths such as

“movie.dateReleased”.)
113

Chapter 8 Working with Fetch Specifications
To set up raw row fetching, go to the Raw Fetch tab of the Fetch

Specification Builder as shown in Figure 46.

Figure 46. Specifying a Raw Row Fetch
114

Using Custom SQL and Stored Procedures
Using Custom SQL and Stored Procedures

Instead of building a qualifier for the fetch specification to fetch with, you

can specify custom SQL or a stored procedure. To do so, use the SQL tab

of the Fetch Specification Builder, as shown in Figure 47.

Figure 47. Using a Custom SQL Expression or a Stored Procedure

To use custom SQL, check the “Use Raw SQL Expression” box, and

provide the SQL in the text field just below the box. If you’ve built a

qualifier in the Qualifier Builder, this text field is initialized with the

corresponding SQL. Checking the “Use Raw SQL Expression” box

enables this text field so you can modify the text. Note that the Fetch

Specification Builder isn’t able to parse arbitrary SQL to produce a

corresponding qualifier in the Qualifier Builder.

To use a stored procedure, check the “Use Stored Procedures” box, and

choose the stored procedure from the list just below the box. The stored

procedure must be defined in the model.
115

Chapter 8 Working with Fetch Specifications
Testing a Fetch Specification

You can test a fetch specification using EOModeler’s data browser. Click

the fetch specification in the Model Editor’s tree view, and then open the

Data Browser. EOModeler connects to the database, invokes the fetch

specification, and displays the results.

If the fetch specification includes qualifier variables, EOModeler displays

a Qualifier Bindings panel with which you can supply values to bind to

the variables ().
116

Interacting with a DatabaseChapter 9

This chapter describes the ways you can use EOModeler to interact

with your database.

Setting Adaptor Information

A model includes a connection dictionary, which contains the

information needed to connect to a database server. The keys of the

connection dictionary identify the information the server expects, and

the values associated with those keys are the values that the adaptor

tries when logging into the database.

When you initialize an adaptor from a model, any connection

information stored with the model is copied into the adaptor object.

The connection dictionary contains the last values you entered in the

login panel and saved as a part of your model (so long as you haven’t

manually edited the connection dictionary in your model file). You can

change the connection dictionary’s values from EOModeler; this is

called setting adaptor information.

To set adaptor information:

1. Choose Model m Set Adaptor Info.

EOModeler displays a login panel that contains values taken

from the model’s connection dictionary.

2. In the login panel, make the edits you want reflected in your

connection dictionary, and click OK.

For example, if you specified a user name and password to log into a

database and create your model, you can remove that information from

the connection dictionary by clearing those fields in the login panel.

Then, in your application, you can prompt the user for a user name and

password by sending a runLoginPanelAndValidateConnectionDictionary

message to your adaptor object.

You can also edit the connection dictionary in its raw form using the

Connection Dictionary Inspector. This provides you access to
119

Chapter 9 Interacting with a Database
connection dictionary entries that the login panel doesn’t configure. To

use the Connection Dictionary Inspector, select the model icon in the

Model Editor, and display the Inspector.

Figure 48. Connection Dictionary Inspector

For more discussion of how Enterprise Objects Framework manages

database connections and connection dictionaries, see the chapter

“Connecting to the Database” in the book Enterprise Objects Framework
Developer’s Guide.

Edit keys and values here.

You can use this field for editing
long values.

Use these buttons to add
and remove key-value pairs
from the connection dictionary.
120

Using the Data Browser
Switching Adaptors
You can change the database and adaptor your model is based on. To do

so:

1. Choose Model m Switch Adaptor.

This displays a New Model panel listing all the available adaptors.

2. Select the adaptor you want to switch to and click OK.

EOModeler displays the login panel for the database that

corresponds to the adaptor you selected.

3. Fill in the login panel and click OK.

When you switch adaptors, Enterprise Objects Framework automatically

updates the mapping between the internal and external (database) types

to work with the new adaptor’s database.

Using the Data Browser

You can use the Data Browser to display database records associated with

an entity in the Model Editor.

To display an entity’s records in the Data Browser, select an entity or a

fetch specification and choose Tools m Data Browser.

To browse the records associated with a different entity, select the entity

icon in the Model Editor and drag it into the Entity well of the Data

Browser.To view a subset of the attributes for an entity, select one or more

attributes and choose Tools m Data Browser.

You can rearrange the columns in the Browser by dragging their column

heads to new positions. You can also resize columns by selecting their

column heads and dragging the edges until the column is the desired size.
121

Chapter 9 Interacting with a Database
You can change the sorting order of the Browser by using the buttons in

the lower right corner. By default, the data is displayed according to how

it was returned from the database. You can sort on the first column in

either ascending or descending order by clicking the appropriate sort

button. So, for example, to sort the records alphabetically by the movie

name in the Movie database, drag the title column into the first column of

the Browser and click the ascending sort button. To restore the order of

the data as it was returned from the database, click the default order

button.

Generating SQL

You can use EOModeler to create a model from scratch (that is, to create

a model that’s not initialized from an existing database), and then use that

model to generate the SQL necessary to create a database. You can also

edit a model for an existing database and generate SQL statements from

the model that can be used to regenerate the database with the new

settings.

To generate SQL for one or more entities, select the entities and choose

Property m Generate SQL.
122

	Enterprise Objects Framework Tools And Techniques
	Introduction to Enterprise Objects Framework Tools and Techniques
	Introduction
	Creating a New Model
	About Models
	Starting EOModeler
	Creating a New Model
	Selecting an Adaptor
	Choosing What to Include in Your Model
	Choosing the Tables to Include
	Specifying Primary Keys
	Specifying Referential Integrity Rules
	Choosing Stored Procedures
	Saving the Model

	What a New Model Includes
	Updating Your Model
	Checking for Consistency

	Using the Model Editor
	The Model Editor in Table Mode
	Navigating a Model With the Tree View
	Displaying a Model’s Components in the Table Mode
	The Open Entity Icon
	Adding Columns with the Add Column Menu

	Using Other Display Modes
	Diagram View
	Browser Mode

	Working with Attributes
	Changing an Attribute’s Characteristics
	Using Table Mode
	Using the Attribute Inspector
	Using the Advanced Attribute Inspector

	Prototype Attributes
	Assigning a Prototype to an Attribute
	Creating Prototype Attributes

	Working with Relationships
	Creating Relationships
	Forming Relationships in the Diagram View
	Forming Relationships in the Relationship Inspector
	Forming Relationships Across Models and Databases
	Tips for Specifying Relationships
	Adding Referential Integrity Rules

	Adding Derived Properties
	Derived Attributes
	Adding a Derived Attribute

	Flattened Attributes
	When Should You Use Flattened Attributes?
	Flattening an Attribute

	Flattened Relationships
	When Should You Use Flattened Relationships?
	Flattening a Relationship

	Working with Entities
	Changing an Entity’s Characteristics
	Using the Entity Inspector
	Specifying an Enterprise Object Class
	Generating Source Files
	Generating Objective�C Source Files
	Generating Java Source Files
	Generate Client Java Files
	Customizing Source File Generation

	Creating a Subclass
	Setting Other Information for an Entity
	Advanced Entity Inspector
	Stored Procedures Inspector
	UserInfo Inspector

	Working with Stored Procedures
	Adding Stored Procedures
	Assigning a Stored Procedure to an Entity

	Working with Fetch Specifications
	Fetch Specifications
	Creating a Fetch Specification
	Building a Qualifier
	Creating Compound Qualifiers
	Using Qualifier Variables

	Assigning a Sort Ordering
	Specifying Prefetching and Other Options
	Configuring Prefetching
	Other Options

	Configuring Raw Row Fetching
	Using Custom SQL and Stored Procedures
	Testing a Fetch Specification

	Interacting with a Database
	Setting Adaptor Information
	Switching Adaptors

	Using the Data Browser
	Generating SQL

