g

Enterprise Objects
Framework
Tools And Techniques

Apple, NeXT, and the publishers have tried to make the information contained in
this manual as accurate and reliable as possible, but assume no responsibility for
errors or omissions. They disclaim any warranty of any kind, whether express or
implied, as to any matter whatsoever relating to this manual, including without
limitation the merchantability or fitness for any particular purpose. In no event shall
they be liable for any indirect, special, incidental, or consequential damages arising
out of purchase or use of this manual or the information contained herein. NeXT or
Apple will from time to time revise the software described in this manual and
reserves the right to make such changes without obligation to notify the purchaser.

Copyright 00 1998 by Apple Computer, Inc., 1 Infinite Loop, Cupertino, CA 95014.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher or
copyright owner. Printed in the United States of America. Published simultaneously
in Canada.

NeXT, the NeXT logo, OPENSTEP, Enterprise Objects, Enterprise Objects
Framework, Objective-C, WEBSCRIPT, and WEBOBJECTS are trademarks of
NeXT Software, Inc. Apple is a trademark of Apple Computer, Inc., registered in the
United States and other countries. PostScript is a registered trademark of Adobe
Systems, Incorporated. Windows NT is a trademark of Microsoft Corporation.
UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. ORACLE is a registered trademark
of Oracle Corporation, Inc. SYBASE is a registered trademark of Sybase, Inc. All
other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 [or, if
applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

This manual describes WebObijects 4.0.

Writing: Kelly Toshach

Graphic Design: Karin Stroud
Production: Terri Fitzmaurice
Release Control: Chona Reyes

Table of Contents

Table of Contents

Introduction 7

Introduction to Enterprise Objects Framework Tools and Techniques 9

Creating a New Model 11

About Models 13
Starting EOModeler 14
Creating a New Model 15
Selecting an Adaptor 15
Choosing What to Include in Your Model 17
Choosing the Tables to Include 19
Specifying Primary Keys 19
Specifying Referential Integrity Rules 20
Choosing Stored Procedures 22
Saving the Model 23
What a New Model Includes 23
Updating Your Model 24
Checking for Consistency 25

Using the Model Editor 27

The Model Editor in Table Mode 29
Navigating a Model With the Tree View 30
Displaying a Model's Components in the Table Mode 31
The Open Entity Icon 32
Adding Columns with the Add Column Menu 33
Using Other Display Modes 34
Diagram View 34
Browser Mode 35

Table of Contents

Working with Attributes 37

Changing an Attribute’s Characteristics 39
Using Table Mode 40
Using the Attribute Inspector 43
Using Custom Data Types 44
Using the Advanced Attribute Inspector 45
Prototype Attributes 45
Assigning a Prototype to an Attribute 46
Creating Prototype Attributes 47

Working with Relationships 49

Creating Relationships 51

Forming Relationships in the Diagram View 52

Forming Relationships in the Relationship Inspector 52
Forming Relationships Across Models and Databases 55
Tips for Specifying Relationships 56

Adding Referential Integrity Rules 58

Adding Derived Properties 61

Derived Attributes 63
Adding a Derived Attribute 63

Flattened Attributes 65
When Should You Use Flattened Attributes? 66
Flattening an Attribute 67

Flattened Relationships 70
When Should You Use Flattened Relationships? 70
Flattening a Relationship 71

Working with Entities 73

Changing an Entity’s Characteristics 75
Using the Entity Inspector 77
Specifying an Enterprise Object Class 79

Table of Contents

Generating Source Files 81
Generating Objective-C Source Files 81
Generating Java Source Files 83
Generate Client Java Files 84
Customizing Source File Generation 85
Creating a Subclass 85
Setting Other Information for an Entity 86
Advanced Entity Inspector 86
Stored Procedures Inspector 89
Userlnfo Inspector 89

Working with Stored Procedures 91

Adding Stored Procedures 93
Assigning a Stored Procedure to an Entity 96
Requirements for Framework-Invoked Stored Procedures 98

Working with Fetch Specifications 99

Fetch Specifications 101
Creating a Fetch Specification 101
Building a Qualifier 103
Creating Compound Qualifiers 104
Using Qualifier Variables 106
Assigning a Sort Ordering 108
Specifying Prefetching and Other Options 109
Configuring Prefetching 110
Other Options 112
Configuring Raw Row Fetching 113
Using Custom SQL and Stored Procedures 115
Testing a Fetch Specification 116

Interacting with a Database 117

Setting Adaptor Information 119
Switching Adaptors 121

Using the Data Browser 121

Generating SQL 122

Introduction

Introduction to Enterprise Objects Framework
Tools and Techniques

One of the ingredients in all Enterprise Objects Framework
applications is a model. A model defines, in entity-relationship terms,
the mapping between your enterprise objects and a relational database.
The EOModeler application, being the tool you use to create and
maintain models, has a prominent place in the suite of applications you
use to develop your Enterprise Objects Framework applications.

You use EOModeler to:

e Read the data dictionary from a database to create a default
model, which can then be tailored to suit the needs of your
application.

e Specify enterprise object classes for the entities in your model.

e Generate source code files for the enterprise object classes you
specify.

e Define fetch specifications (queries) that you can invoke by
name in your applications.

e (Create and drop databases and database tables.

"T'his book describes EOModeler and the techniques you use to define
models that work effectively in Enterprise Objects Framework
applications.

For more general information on Enterprise Objects Framework and
on creating applications that use it, see the book Enterprise Objects
Framework Developer’s Guide.

Chapter 1 Creating a New Model

About Models

"This chapter describes how to create a new model from an existing
database. It is organized into the following sections:

e “About Models” (page 13)

e “Starting EOModeler” (page 14)

o “Creating a New Model” (page 15)

o “What a New Model Includes” (page 23)
o “Updating Your Model” (page 24)

e “Checking for Consistency” (page 25)

Although a model can be generated dynamically at run time, you
typically create models using EOModeler and then add them to your
project as model files.

Models are designed to be loaded incrementally to maximize
performance. A model consists of one global file, with a separate file for
each entity. Entity descriptions are loaded in to an application as
needed. Models have an .eomodeld file wrapper (which is actually a
directory), and the individual entity files within the model are in ASCII
format. If you want to view the ASCII files in a model, open the
.eomodeld directory. This displays the individual entity, stored
procedure, and fetch specification files in the model. The entity files
have a .plist extension, indicating that the files’ contents are in ASCII
property list format. The stored procedure files have the extension
.storedProcedure . The fetch specification files have the extension
fspec .You can view the individual files in a text editor.

T'he global file has the name index.eomodeld . It contains the
connection dictionary, the adaptor name, and a list of all of the entities
in the model.

Models describe the database-to-enterprise object mapping by using
the modeling classes EOModel, EOEntity, EOAttribute, and
EORelationship (EORelationships include additional information in
the form of EOQJoin objects).

Chapter 1

Creating a New Model

"The following table describes the database-to-object mapping provided
in a model:

Database Element Model Object Object Mapping

Data Dictionary EOModel —

Table EOEntity Enterprise object class

Row — Enterprise object
instance

Column EOAttribute Enterprise object
instance variable (class
property)

Referential Constraint EORelationship Reference to another
object

While the modeling classes correspond to elements in a relational
database, a model represents a level of abstraction above the database.
Consequently, the mapping between modeling classes and database
components doesn’t have to be one-to-one. So, for example, while an
EOEntity object described in a model corresponds to a database table, in
reality it can contain references to multiple tables. In that sense, a model
is actually more analogous to a database view. Similarly, an EOActtribute
can either correspond directly to a column in the root entity, or it can be
derived or flattened. A derived attribute typically has no corresponding
database column, while a flattened attribute is added to one entity from
another entity. For more information, see the chapter “Adding Derived
Properties” on page 61.

You can store your model files anywhere, but to use a model in an
application you must copy it into your application’s project directory.

Starting EOModeler

14

To start EOModeler on Windows NI, launch EOModeler from the
WebObjects program group in the Start menu. On Rhapsody, locate
EOModeler in /System/Developer/Applications and double-click its icon
(shown in Figure 1).

Creating a New Model

Figure 1. EOModeler’s Application Icon

Alternatively, you can start EOModeler by double-clicking an existing
model file—from inside the Project Builder application or from the file
system.

Tip: On Windows N'T;, you open a model’s .eomodeld directory and
double-clicking the index.eomodeld file to open it in EOModeler.

Creating a New Model

To create a model, choose Model ™ New.

EOModeler starts the New Model Wizard, which assists you to configure
your new model. The following sections describe the wizard pages that
guide you through the model creation process.

Selecting an Adaptor

An adaptor is a mechanism that connects your application to a particular
database server. For each type of server you use, you need a separate
adaptor. Enterprise Objects Framework provides adaptors for Informix,
Oracle, and Sybase servers, and for any server that is ODBC compliant. It
also provides a sample adaptor for a flat-file data store and an adaptor for
OpenBase Lite—a database that ships with Enterprise Objects
Framework as an unsupported demo.

15

Chapter 1

Creating a New Model

16

S.ﬂ Chozee ihe asapior i your dataas e
fadabie £ Bt i1
FlaFit =
e rlLES
Harm
=
CparEmalin
B
Symania
i
Cancal | o

Figure 2. Selecting an Adaptor

After you select an adaptor, EOModeler displays the login panel for the
database that corresponds to the adaptor you selected. Fill in the login
panel and click OK.

e
OrRACLE

Sy 1D | OFCL
Ligke Name [fdnias

Figure 3. Oracle Login Panel

Different databases require different login information, so each
database’s login panel looks different. The examples in this chapter use
the Oracle version of the Movies database included with the Enterprise
Objects Framework; Figure 3 shows the Oracle login panel.

Creating a New Model

Choosing What to Include in Your Model

In this next wizard page, you can specify the degree to which the wizard
configures your model.

.'B Chosese whal 10 Inciure n your medal
/

Flragrgrmprybaye | Ao sy i i CoVL G SO OF LN e

[L)]3] Vi v poertiea o Lvisgos doen By Ascd rHean
R Ak
 Aababe) islaisnthgn AN A A Sl I sl s
R
= sk aboal e A o o DO RO Prrcadvis dadons’ 5 e
AR e CERT i PR) e A i RS N
= Uss Cenjam Eriepras NGRS SRRV eI e INEARCT i S B0 o W Y i
ObELlE Tl T il DO DO oot Skl oo Vs sl
e e e | e B cnalte e ol sen
Joamady
Concol eBack | s | Finisn

Figure 4. Choosing What to Include in the Model

How complete the model EOModeler creates is depends on how
completely the schema information is inside your database server.
For example, the wizard includes relationships in your model only
if the server’s schema information specifies foreign key definitions.

Using the options in this page, you can tell EOModeler that you want to
supplement the model with additional information. (Note that the wizard
doesn’t modify the underlying database.)

Assign primary keys to all entities

Enterprise Objects Framework uses primary keys to uniquely identify
enterprise objects and to map them to the appropriate database row.
Therefore, you must assign a primary key to each entity you use in your
application. The wizard automatically assigns primary keys to the model
if it finds primary key information in the database’s schema information.

17

Chapter 1

Creating a New Model

18

Checking this box causes the wizard to prompt you to choose primary
keys that aren’t defined in the database’s schema information. If your
database doesn’t define them, the wizard later prompts you to choose
primary keys.

Ask about relationships

If there are foreign key definitions in the database’s schema information,
the wizard includes the corresponding relationships in the model.
However, a definition in the schema information doesn’t provide enough
information for the wizard to set all of a relationship’s options. Checking
this box causes the wizard to prompt you to provide the additional
information it needs to complete the relationship configurations.

Ask about stored procedures

Checking this box causes the wizard to read stored procedures from the
database’s schema information, display them, and allow you to choose
which to include in your model.

Use custom enterprise objects

An entity maps a table to enterprise objects by storing the name of a
database table (MOVIE, for example) and the name of the corresponding
enterprise object class (a Java class, Movie, for example). When deciding
what class to map a table to, you have two choices: EOGenericRecord or
a custom class. EOGenericRecord is a class whose instances store key-
value pairs that correspond to an entity’s properties and the data
associated with each property.

If you don’t check the “Use custom enterprise objects” box, the wizard
maps all your database tables to EOGenericRecord. If you do check this
box, the wizard maps all your database tables to custom classes. The
wizard assumes that each entity is to be represented by a custom class
with the same name. For example, a table named MOVIE has an entity
named Movie, whose corresponding custom class is also named Movie.

Use a custom enterprise object class only when you need to add business
logic; otherwise use EOGenericRecord.

Creating a New Model

Choosing the Tables to Include

After specifying what additional information to include in your model,
the wizard prompts you to choose the tables to include in your model. By
default, all the tables are selected.

Chocsa he tabies in ncldn inyour mogdel

)
.B Control-shift-

click to select
and deselect

Tabd i

gawrsg L —L Click to select

Ly
all the tables.
S| Hone J—I- Click to deselect
= all the tables.
Cancel wgack || Heds ||

Figure 5. Choosing the Tables to Include

The wizard creates entities only for the tables you select. If you later
decide you want to include a table you didn’t select at this stage, you can
add it using the Model ®» New Updated Model command, as described
in “Updating Your Model” on page 24.

Specifying Primary Keys
If you are using a database that stores primary key information in its
database server’s schema information, the wizard skips this step. The

wizard has already successfully read primary key information from the
schema information and assigned primary keys to your model.

However, if primary key information isn’t specified in your database
server’s schema information or if the adaptor can’t read it (as with
Microsoft Access), the wizard now asks you to specify a primary key for
each entity.

19

Chapter 1 Creating a New Model

.%j Chocee the primary ey for Moy
SR | ; i S meve K
i gy 2l e seimticts e primagy ey
LETELEEESES # CONEpTRY
|‘I|_|I|-|_'.I-
vl
raang
EFHLs
T Control-Shift-
1w click to select
more than one
attribute.
|
Concel eBack | wwis |

Figure 6. Specifying an Entity’s Primary Key

If an entity’s primary key is compound, that is, if it’s composed of more
than one attribute, control-shift-click to select all of the attributes in the
primary key. You use a compound primary key when any single attribute
isn’t sufficient to uniquely identify a row. For example, in the MovieRole
entity, if requires the combination of the movield and talentld attributes to
uniquely identify a row.

Specifying Referential Integrity Rules

If foreign key definitions aren’t specified in your database server’s schema
information or the adaptor can’t read that information (as with Microsoft
Access), the wizard hasn’t created any relationships at all, and it skips this
step. You can add relationships later as described in the chapter “Working
with Relationships” on page 49.

On the other hand, if you’re using a database that stores foreign key
definitions in its database server’s schema information, the wizard reads
them and creates corresponding relationships in your model. For
example, Movie has a to-many relationship to MovieRole (that is, a
Movie has an array of MovieRoles), and "Talent has a to-many relationship
to MovieRole.

20

Creating a New Model

At this point, if you specified that the wizard ask about relationships (as
described in “Choosing What to Include in Your Model” on page 17), the
wizard now asks you to provide additional information about the
relationships so it can further configure them.

Hew Wl Wirasd

Spacly referrraal integrity ndes o Movie's modefnkedrmay ———— The name
.B.f reletinnshin assigned to the
relationship is
dependent on
& Mavie swm s et A fiw S oo St i B the 'adapt_or
MavieRpl# abjecis ExTn A Ay ATy, Ay Ame i dron e youre using.
SarmiLes
When bareie b dededel
r et o e ' Ao B o
e | e N ioe I ool odpect
I~ By St vt pavoot kw0 B Saeledt 8 Ay &Y
R ot
Cancal eBack | bwis | |

Figure 7. Specifying Referential Integrity Rules for a Relationship

Owns Destination

The checkbox in this page lets you specify whether the relationship’s
source ows its destination objects. When a source object owns its
destination objects and you remove a destination object from the source
object’s relationship array, this also has the effect of deleting it from the
database (alternatively, you can transfer it to a new owner). This is
because ownership implies that the owned object can’t exist without an
owner.

For example, in the relationship shown in Figure 7, Movie owns its
MovieRole objects. This means that a destination object (MovieRole)
can’t exist without its source (a Movie). Consequently, when a MovieRole
is removed from its Movie’s array of MovieRoles, the MovieRole is
deleted—deleted in memory and deleted in the database.

21

Chapter 1

Creating a New Model

22

Delete Rule

The radio button you choose in this page specifies what to do when the
relationship source is deleted: nullify, cascade, or delete. For example, in
the relationship shown in Figure 7, when a user tried to delete a Movie,
you could:

e Delete the Movie and set all it’s MovieRoles not to be associated
with a Movie (nullify).

e Delete the Movie and all its MovieRoles (cascade).

e Refuse the deletion if the Movie has MovieRoles (deny).

Choosing Stored Procedures

If you asked the wizard to include stored procedures in your model (as
described in “Choosing What to Include in Your Model” on page 17), the
wizard asks you to specify which stored procedures to include. By default,
all the stored procedures are selected.

Flexse sEir T sioned proceiunes thal yod wan o resd b he

.B'f dirnoase Control-shift-

click to select
and deselect
stored procedures.

S P T i 165

— Cick to select

TR T |
—I all the stored

procedures.

ﬂJ—— Cick to deselect
| all the stored
procedures.

Concol «Back | | [CFEns 1

Figure 8. Choosing the Stored Procedures to Include

What a New Model Includes

"T'he wizard includes stored procedure information only for the stored
procedures you select. If you later decide you want to include a

stored procedure you didn’t select at this stage, you can add it using the
Property » Add Stored Procedure command, as described in the chapter
“Working with Stored Procedures” on page 91.

Saving the Model

When you finish the wizard, EOModeler displays the new model. If
you’re planning to use your model in an application for which you’ve
already created a project, you should save the model into your project
folder. You will be prompted to add it to the project; click OK.

What a New Model Includes

When you create a new model, the information it includes depends on
how completely you’ve specified the underlying database. EOModeler
can read all of the following from a database and include it in a default

model:

e Table and column names

e (Column data types, including the width constraint of string
data types

® Primary keys

e User constraints, such as null constraints and uniqueness

e Foreign key definitions (which are expressed in a model as
relationships)

e Stored procedures

A model contains not only the information it reads from the database, but
values it derives from that information, including;

¢ Entity and attribute names

¢ A mapping between the data type of a database column and
a corresponding value class, such as String, Number, or
NSGregorianDate (NSString, NSNumber, or NSCalendarDate
in Objective-C). See the class specification for each adaptor for
a listing of the adaptor’s default database type to value class

mapping.

23

Chapter 1

Creating a New Model

EOModeler derives entity names by taking a database table name and
making all of it lowercase except for the first letter. It then removes
underbar (_) characters and capitalizes any characters following
underbars. For example:

Database Table Entity Name
EMPLOYEE Employee
EMPLOYEE_PHOTO EmployeePhoto
TEST_OF_SEVERAL_WORDS TestOfSeveralWords

Attribute names are based on corresponding database columns. They’re
derived in the same way as entities, except that EOModeler doesn’t
capitalize the first character. For example:

Database Column Attribute Name
NAME name
FIRST_NAME firstName
MOVIE_ID movield

Updating Your Model

24

When you create a new model in EOModeler, the New Model Wizard
prompts you to select the tables you want to include, as described in
“Choosing the Tables to Include” on page 19. But what if you decide at
a later point that you want your model to include tables you didn’t select
when you first created it? Or what if your database has been modified, and
you want your model to reflect the changes?

"To update an existing model, choose Model ™ New Updated Model.
"This creates a new model that you can use for cutting and pasting from.
Using the New Updated Model command doesn’t have a destructive
effect on your original model—it just gives you a second model to use for
“spare parts.”

Checking for Consistency

When you invoke New Updated Model, EOModeler opens a Select
"Tables panel (shown in Figure 9) that lets you specify the tables you want
in the “spare parts” model. By default, the Select Tables panel selects
only tables that aren’t represented in your working model; accepting the
selection creates a new, complementary model.

?,'9 Select Tables

[=]
KIZWIE_RTLE
PLOT_ SR RASF
AATHFG

REVIEW
STUDED
TALEMT
THLEHNT FHOTO

[ox] cmew |

Figure 9. Selecting Tables for the New Updated Model

Checking for Consistency

EOModeler provides consistency checking to confirm that your model is
valid. For example, a model that has entities without primary keys or
relationships without join components is not valid.

You can explicitly check your model at any point by choosing

Model » Check Consistency. Consistency checking is also invoked
automatically whenever you save your model. When a consistency check
occurs and inconsistencies are found, the Consistency Check panel
appears with a list of diagnostic messages, as shown in Figure 10.

25

Chapter 1 Creating a New Model

_—
9}5 Cansistency Check

Carmgency chack for model Mawise

E iy Bierd i= daea npl fave 5 primsry ke daliess|
Faistiong hi pdirsciar in anbily Basvie @ a lo- one meisSorechip, &
deginadan abvbeis§) daes nol maics tha priwary sy oftha desieation
aniky

Pt W s I o i v i e ISR d8erk falll R el | il
Felgiamahipdimciar iz anily Telenl ic 5 o-ars e slonekin, bl i
deglircemdan sfrihels) £) does nol maich He primary ey odfhe degiinabion
arkiy

LY S

i

Figure 10. Checking for Consistency

If you prefer for EOModeler not to run the consistency check when you
save, you can turn off this behavior with the Preferences panel.

26

Chaprer 2 Using the Model Editor

"This chapter describes the Model Editor—the window in which
EOModeler displays models and in which you view and edit them.
The chapter is organized into the following sections:

“The Model Editor in Table Mode” (page 29)
¢ “Navigating a Model With the Tree View” (page 30)

e “Displaying a Model’s Components in the Table Mode”
(page 31)

o “Using Other Display Modes” (page 34)

The Model Editor in Table Mode

EOModeler displays models in the Mode! Editor—the main window
in EOModeler. By default, EOModeler uses the 7able mode, as shown
in Figure 11. In this mode, the Model Editor has a #¢e view for
navigating a model, and a table for editing the model’s components
(entities, attributes, relationships, and so on).

Hadel [l Popedy Jook gircoss |sh
(3]]2l 110 01 311 s)] 6818 o
—_—j-j_r_m—n S11 quick access
q-n.mn- = Dirmclai SErCTE Flirariod = to common
1 i) Vires MR HOVE MEAR operations
i Wesifion = Wy ieRk MOVE_ROLE (MrsvieRoie
g:""i""‘“ - Pl ormary PLOT_SURMAGBAY PlElSurnity — Table for
L D:: Raling AL TING Fating viewing and
& i Bhacko o Revies FEVIEW Fawizw editing a
I Talarri T ETuls T model's
i TPl = Talermt TALENT Tabund components
= [Bmest Puakiss ! Tal el b TALEMT PHOTT TeleniPants
wu Fuimh W .
3 P Tree view
Aevababpind | =] for navigating
+| I ¥ TV pna— id K _'J the model

Figure 11. The Model Editor

29

Chapter 2

Using the Model Editor

There are two other modes you can use: the browser mode and the diagram
view. For more information on these, see the section “Using Other
Display Modes” on page 34.

Navigating a Model With the Tree View

30

You navigate a model by clicking icons in the Model Editor’s tree view. In
Figure 12, the icon labeled Movies (in the upper left corner of the tree
view) represents the model itself. You double-click this icon to expand
and contract the tree view. When the tree view is expanded, it shows the
model’s entities.

Double-click the model icon to 'Ei b=sa -]
expand and contract the tree view f gﬂ"ﬂ'-'
. Wi

I e fioe ey

3 Bl e b
1 riia

Click here to expand or contract ——— i i ¥owafic

{
i A EIEEEn

an icon. | i
| ¥ Ty
Z] means that the icon is already | "':'I"‘."’
expanded. Click to contract. F gl,‘:“
. i TPt
+| means that the icon can be _| L 53 -,..,'.q:ﬂ...u._,
expanded. 3 meP
:|:u'.'::l::
If an icon has neither a dash nor o mlubpls]

a plus, then it can't be expanded. Lil | LlJ
Figure 12. Expanding the Tree View

Similarly, you can expand a model’s entities and stored procedures folder.
As shown in Figure 12, expanding an entity displays the entity’s
relationships. A relationship in the tree view represents the relationship’s
destination entity. Expanding the relationship in the tree view in displays
the destination entity’s relationships, and so on. Expanding the stored
procedures folder displays the model’s stored procedures.

You control what’s displayed in the Model Editor’s table by selecting
icons in the tree view. When the model is selected (as shown in
Figure 13), the Model Editor displays the model’s entities in the table.

Displaying a Model's Components in the Table Mode

"To display an entity’s attributes and relationships in the table, select the
entity. Similarly, to display a stored procedure’s attributes, select it.

Modd [Praoeds [eck Wedem Hep

-1 s R 1 71 ot QNI R
-] B | BCT

[Taon [Cwn lams []
i + g Cracion Casxk RECTTR T =
Click an entry —_ - g s : h.,':"___" OVE ,_.;" B
to select it and T W P R gy = R ER R WOIWE_FTLE wirA B ks
to display it's I'::::"" ~ PictSammnsy FLOT_SUMIMARY FlolSumsary
attributes and 1 iy =AM "skng
relationships b e e Fira s, -:1-'-tr* Eoals
H i RO A DO LE Gl
in the table. g = Taler THUENT Tuimni
=R TaderFisdn THRLENT_PHITD Tasolsnk
1 i) Frada
+ i T
i Tt oty
. S | Prrwi Frogpriers
Click a stored —_— Frae
procedure to FEIETY
select it and - e :
to display it's | i _..rr i |3 _I—I
arguments in
the table.

Figure 13. Changing the Table’s Contents

You can also use the icons in the tree view in drag and drop operations—
for example, to drag an entity into the Data Browser (described in the
chapter “Interacting with a Database” on page 117) or into WebObjects
Builder (described in the chapter “Creating a WebObjects Database
Application” in the book Gerting Started with WebObjects).

Displaying a Model's Components in the Table Mode

The Model Editor’s table changes depending on what’s selected in the
tree view. When the model itself is selected, the table displays the
model’s entities, one entity per row. The columns of the table display
information about the entities—entity name, name of the corresponding
database table, and so on.

When an entity is selected, the display changes to show two tables: one
for the entity’s attributes and one for the entity’s relationships (shown in
Figure 14).

31

Chapter 2 Using the Model Editor

Hadel [t Popesy Jook weies Help
— & — il razell
) ol) 3| O 5] o] B i]
i" -I e Al b
20 Tirsotna [a=| | & | Finres | Wakie Clace ;DT | Exermal Typs:
- o33 & B CEEOY a5 VARCHARE BIE
iy e b iy & a desfersansd bl Cen ot e DaTE il
i iy oy & & bangu g Waecmabumter MUWEER =
i Y ATy - & rowisk WSCwcimeiumger WUWEER =
“é' SR ® @ poiirbars | hEEkag VRRCHARD |
O3 Pz Sy & & TR WEECacrautiumee MUKWEER =)
0 Farg & i rhstiad W e melMumaer HWUWEER =]
i3 Fevies » @ T KEEwiag YeRCHAFD =
v i Etada & @& relarkene | WESTieg vARCHAR: =]
+ i Teberrl El
G TistiPrato R L | ¥
) Bimred Pracedores kiesw Nasisniomms
.g""':"’" | # [arm | Cotetin picn | Saera Aa |C
;::mﬂl.l ¢ a ESACITTAIT ek el b =
& mRBERBATEY MopveRoie raywiakd n
"o TEN AT TR Hannaar L] m
. = BB S Thiia b tsg
1] | 1j_l A L I

Figure 14. Displaying an Entity’s Attributes and Relationships

The Open Entity Icon

When the model is selected in the tree view and the table is displaying
the model’s entities, the Model Editor displays an <7 icon to the left
each entity in the table. Double-clicking this icon gpens that entity,
selecting that entity and displaying its attributes and relationships in
the table. You can accomplish the same thing by selecting the entity

in the tree view.

32

Displaying a Model's Components in the Table Mode

M i sz idedd 0o,

Hadel [Bopasy Jook Wedes e

Eﬂl:ﬂ!ﬂ]ﬂﬂwﬂﬂﬂ

E ﬂl'l-n'm = Dirscin DORECTOR ek d
Double-click —Ll et 1. wpeg MOVE [FETT
here to open H i Mosifii = tdrainFale MOVE_ROLE MavieRoe
an entity. g:’:__':“"’" 5 Mo Sanmiiy PLOT_SUKSSNY Flalumnasy

= i Pvie o= Faling RATIHG Fatnp

¥ e Pl TS LT FEYIE® Fardia

+ R Talarri = Ehdn =T Shad i

) Teerri Pl = Tadent TALEMT Tabani
£ Bl Beaaiis = TeleriPhain TALEWT_FHOTD TalaniPapls
1] | _r|-l Ao =] _r|-|

Figure 15. Navigating from the Table View

Adding Columns with the Add Column Menu

You use the Add Column menu (shown in) to add columns to the table
view. The items in the menu depend on what modeling component the
table is displaying and on what columns the table contains. As you add
columns to the table, the corresponding menu items are removed from
the Add Column menu.

Badsl [Popesy Jook gedes Heg

MME&H@I@IM
mm

|Elsas Harw —F—— Toremove a
i q e iel - r.,-\.-r|;| i_'|r.\r|'1'_n Oirs=ln j column from
e S M B MOVE [T the table, click
HiGH :-""’h"" = by S MOVE_SOLE M pvieFoie the column's
gr._if'“' = PrlSorraany PLOT_EUKBAGRNY Pleusmnary heading and
B = Aalng RATING Feating press the
2 i i o Revigw FEVIEW Faviaw backspace key.
+ i Talarri = ShLElE =TS el
2 Tederri Pl | Taleart TALENT Taluni
=1 Eloesan Paeerds = TalmTP e TALEMT_FHOTD | Tel=riPanis
:J-phrﬁ
'Im'ftl
3 bl _I;‘ j
4] | ¥ f . e L1 | H
|

Use the Add Column menu to
add columns to the table view.

33

Chapter 2 Using the Model Editor

Using Other Display Modes

In addition to the table mode, the Model Editor has two other display
modes: browser mode and diagram view. You can switch between display
modes with the Change Display View pop-up button on the toolbar as
shown in Figure 16.

“x Movies_ eomodeld -- D\
Model Edit Property Tool: “windows F
|

Table mode

| MName

| Directo
| Movie

| MowvieF
| PlotSun

9

Diagram view

£ MovieRole
& FlotSurmmary

P Db

FFAEE

Figure 16. Changing the Model Editor’s Display Mode

Diagram View

The diagram view of the Model Editor is very useful for displaying and
printing your model graphically. As with the table mode, you can use the
diagram view to edit components of the model, but it’s editing
capabilities are more limited.

34

Using Other Display Modes

28 WFTEEEE I FL R
] e www Inily & 1| S Pelstrain _ bimm Tk s 7
+ il Dracicn :I
=" -] [T Darectar Tadesrv
- g v o [& FERARE = | LB T | law
ﬂ:l‘l"-" AFieHE Ensd e tRerid = & [T s L E s
=y
o arguue w0 CI-m— S
i e maawki - dreckrdnay |
) b LE LR RS] AL] e
O T Pcds takinciaa] LAE) A
i emwd FecsBrad iITE & W ihh'l'hnt
s - | mrARE - .
vadtams | & ls] | |[moaemin e
Ty Lt I N : et | & (e
maspFar T w !'_._I-:Hii -
A AT & Sk AR &
Ll & faa I:IHI'I %
CHasly
|maagrEi TR]
'_'Il"l | I | - H -
{oicid n-fa] |
| wiasdra & | =
- Sy TR S E -
| L] I— _flJ.!J | _'J"J

Figure 17. Model Editor Displaying Diagram View

Use the Show Entity and Show Relationship pop-up lists just under the
toolbar to specify the information you want to include in the diagram.
Click the Entity Chooser button to display the Entity Chooser panel,
where you can choose the entities you want to include in the diagram.

Browser Mode

"To display the attributes for a particular entity, such as Movie, select the
entity. The attributes appear in the column to the right of the entity along
with the entity’s relationships. You can traverse the model by clicking

relationships, as shown in Figure 18

35

Chapter 2

Using the Model Editor

36

Hadel [Popety Jook Wiedoes e

Bl)0l 20 o] 3l 53 5l 3lsgloe

e B

[ST 4 S R AR
4] 14
Cuiictis O | = | T =]
Kagwis L] rawia Aplefnsy 5
kiguisApl=] PRI
PRtiunmany " vlugia
Aading "
Hire mey L3
Taksn| F
Taks=iFtzia ¥

= = =

] 2

Figure 18. Model Editor in Browser Mode

Chapter 3 Working with Attributes

"This chapter describes setting an attribute’s characteristics.
It’s organized in the following sections:

e “Changing an Attribute’s Characteristics” (page 39) describes
attribute characteristics and the ways you can edit them: using
the table mode of the Model Editor, using the diagram view, and
using attribute inspectors.

e “Prototype Attributes” (page 45) describes how to assign a
prototype to an attribute, how to define your own prototype
attributes, and how to hide the prototypes provided by the
Framework.

Changing an Attribute’s Characteristics

EOModeler provides three mechanisms for viewing and modifying an
entity’s attributes: the table mode of the Model Editor, the diagram
view of the Model Editor, and the Attribute Inspector. You can use any
of the mechanisms to examine the characteristics of your model’s
attributes and to make refinements. Each has advantages over the
others and is useful in different circumstances.

® The Model Editor in table mode is most convenient for most
attribute editing, because you have access to all of but a few of
the possible attribute characteristics.

e Use the diagram view of the Model Editor for very limited
attribute editing when you’re already using the diagram view.
Because you can modify only a few of an attribute’s
characteristics in diagram view, you have to switch to another
mechanism for many tasks.

e Use the Attribute Inspector for editing attribute characteristics
that you can’t access in the Model Editor’s table mode.
Additionally, some attribute characteristics are easier to set in the
inspector.

The following sections provide more detail on what attribute
characteristics you can set with each mechanism.

39

Chapter 3

Working with Attributes

40

Using Table Mode

"To display an entity’s attributes in table mode, select the entity in the tree
View.

ilﬂn-n'm- |a=| | & | Finees | wabie Claneionpc | EderaiTipe | |
- oEa & i [y [E 5] WARCHARE wl s
+ gy e b ey & @ desfweansd W Caenoet el LaTE =1
i iy oy & & bangu g Walecmabumter MUWEER =
i iy ATy - & rowiskd WSCwrimpiumger WUWEER -:-l
..ﬂ‘&::::w * @ puliiMars | hESheg vaRChAR:
o & & TR WESCwcrautiumee MUWEER =
L) Pty & @ riugiaikd HSCmcimslMumgsr WUWEER =]
I Peaes * & il helfiiag veRCHaFz
v i B & @ ralariane K5 Giring BT A :J
& i Tkt .-
2 T Fraha saivoks . w|d] | ¥
] Bimred Pracedores Fie=w Naisniomm
- i | # [riars | Comabion | Sowca ad =8|
;::ﬂil + I CIET AT al il el i B -|_'|;
& mRBERIBATEY MopveRoie raywiakd n
"o TEN AT TR Hannaar L] m
. = BB S Thiia b Tog
1] 1 _rl_l i =|a] | ¥]

Figure 19. Displaying an Entity’s Attributes

Each table column corresponds to a single characteristic of the attribute,
such as its name or its external type (that is, the type by which it’s
represented in the database). By default, the columns included in this
view only represent a subset of the possible characteristics you can set for
a given attribute. 'To add columns for additional characteristics, you use
the Add Column menu in the lower left corner of the table.

"The following table describes the characteristics you can set for an
attribute. Unless otherwise specified, the instructions are for editing the
characteristic in the Model Editor’s table mode.

Characteristic What it is How you modify it
Allows Null Indicates whether the attribute can Click in the column to toggle the
have a NULL value. check on and off. (The column for

Allows Null is labeled “A”.)

Changing an Attribute’s Characteristics

Class Property

Indicates a property that meets both
of these criteria: you want to include
it in your class definition, and it can
be fetched from the database.

Click in the [#] column to toggle
class property off and on.

You can also edit this characteristic
in diagram view.

Client-Side
Class Property

Declares whether a property is a
class property in the entity’s client-
side class. Only applicable for Java
Client applications.

Click in the = column to toggle
locking off and on.

Column The database name of the column Edit the table cell.
that corresponds to the attribute.
Definition The definition for a derived attribute. Edit the table cell.

Note that Column and Definition are
mutually exclusive; you can't set
both. Setting one clears the other.

External Type

The data type of the attribute as it’s
understood by the database.

Choose a value from the pull-down
list

Locking Indicates whether an attribute Click in the (] column (shown in
should be used for locking when an Figure 19) to toggle locking off and
update is performed. on.

You can also edit this characteristic
in diagram view.

Name The name your application uses for Edit the table cell.
the attribute. EOModeler supplies You can also edit this characteristic
default names derived from the in diagram view.
name of the corresponding column
in the database. You can edit these
names if desired.

Precision The number of significant digits. Edit the table cell.

Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Primary Key Declares whether a property is, oris Click in the =l column to toggle the
part of, the primary key for the entity. primary key off and on.

You can also edit this characteristic
in diagram view.

Prototype A prototype attribute from which this Choose a value from the pull-down

attribute derives its characteristics.

list

41

Chapter 3

Working with Attributes

Read Format

The format string that's used to
format the attribute’s value for
SELECT statements. In the string,
%P is replaced by the attribute’s
external name. This string is used
whenever the attribute is referenced
in a select list or qualifier.

Edit the table cell.

Read Only

Indicates whether the attribute is
read only.

Use the Advanced Attribute
Inspector. You can't set this
characteristic in the Model Editor.

Scale

The number of digits to the right of
the decimal point. Can be negative.

Edit the table cell.

Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Value Class
(Java)

If your enterprise object is a Java
class, the Java type to which the
attribute will be coerced in your
application.

Edit the table cell.

Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Value Class
(Obj-C)

If your enterprise object is an
Objective-C class, the Objective-C
type to which the attribute will be
coerced in your application.

Edit the table cell.

Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Value Type

The conversion character (such as
“i” or “d") for the data type a
NSNumber attribute is converted to

and from in your application.

Edit the table cell.

Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Width

The maximum width (applies to
string and raw data only).

Edit the table cell.

Or use the Attribute Inspector as
described in “Using the Attribute
Inspector” on page 43.

Write Format

The format string that's used to
format the attribute’s value for
INSERT or UPDATE expressions. In
the string, %P is replaced by the
attribute’s external name.

Edit the table cell.

42

Changing an Attribute’s Characteristics

Using the Attribute Inspector

The Attribute Inspector is most useful for setting characteristics of an
attribute that are related to how the attribute is represented inside your
application. These characteristics are:

e Precision

e Scale

e Value Class (Java)

e Value Class (Obj-C)
e Value Type

e Width

The Attribute Inspector is particularly useful for editing these
characteristics because it manages the dependencies between them. For
example, EOModeler supplies a default mapping between an attribute’s
external type and internal type, both for Java and Objective-C. If you
change the Java value class, the Objective-C value class is automatically
updated correspondingly, and vice versa. Also, some of the attribute
characteristics are only applicable to attributes whose internal type is set
to a particular value class. For example, Precision and Scale are only
applicable to decimal number value classes—BigDecimal in Java and
NSDecimalNumber in Objective-C.

"The Attribute Inspector helps you keep track of these dependencies by
changing its user interface to match whatever internal data type you
choose (shown in Figure 20).

43

Chapter 3

Working with Attributes

44

Kane [reveue
cowan of [FEEniE
Esdwinal Type: |HULBES

—— il Cods Typs
Csacimal Hamhig #|—1 Sets both the Value
= e Class (Java) and
Exiamal Prociian | = Value Class (Obj-C)
BamsiSews]: | | characteristics.

Manages dependencies _|
between internal types
characteristics Depending on the
type you choose,

the rest of the

Internal Data Type
area changes to
display other
characteristics (if any)
that are appropriate
for that type.

Figure 20. Setting Internal Data Type Characteristics with he Attribute Inspector

"To view an attribute in the Attribute Inspector, select the attribute in the
Model Editor and open the inspector, either by clicking the ﬂ button
in the toolbar or by choosing Tools » Inspector.

Using Custom Data Types

Some attributes, such as TalentPhoto’s photo attribute, use custom value
classes to represent them inside your application. When you use a custom
data type, you are responsible for specifying how the data is read from and
written to the database. You can use the Attribute Inspector to specify a
custom data type. For a description of how to do this, see the chapter
“Advanced Enterprise Object Modeling” in the book Enterprise Objects
Framework Developer’s Guide. See the class specification for EOAttribute
in the Enterprise Objects Framework Reference for more discussion of custom
data types.

Prototype Attributes

Using the Advanced Attribute Inspector

The main reason you use the Advanced Attribute Inspector is to set an
attribute’s Read Only characteristic. By default, and attribute is read-
write. You only need to set it if you want it to be read-only. To do this, you
have to use the Advanced Attribute Inspector. Open the inspector panel,
and select the Advanced Attribute Inspector as shown in Figure 21.

Click this button to choose
the Advanced Attribute
Inspector

Cplars
— MemionyF Ao bl aus

Cusion Fomising
i |

wirke |

Figure 21. Displaying the Advanced Attribute Inspector

Prototype Attributes

"To allow easier model creation from scratch, EOModeler supports the
concept of prototype attributes. Prototype attributes are just what they
sound like — special attributes from which other attributes derive their
settings. A prototype can specify any of the characteristics you normally

45

Chapter 3

Working with Attributes

46

define for an attribute. When you create an attribute, you can associate it
with one of these prototypes, and the attribute’s characteristics are then
set from the prototype definition.

For example, suppose your adaptor contains a date prototype that defines
the value class to be NSGregorianDate (NSCalendarDate in
Objective-C) and the external type to be DATE. When you create an
attribute and associate it with this date prototype, the attribute’s value
class is dynamically resolved to NSGregorianDate and its external type is
dynamically resolved to DATE.

Assigning a Prototype to an Attribute

"To associate an attribute with a prototype, use the table mode of the
Model Editor. Simply choose a prototype from the combo box in the
Prototype column as shown in Figure 22. If EOModeler isn’t displaying
the Prototype column, activate it from the Add Column menu.

Choose a prototype
from this combo-box

The values = & Ermwy Imh e e
an attribute | &| 4] il 2 |ﬂ |] 5] = | o] o o
derives from i i
it's prototype | . i cwacis h— | simom Conmz ll:lh:'r.iTu- | | T |
are shown - HERD T Al HESTrg VARChAR: ®| o = =]
in brown. + i ik Eulsllnimnand # dan |
P FET— [oprr Hibwimathres HUWEER F] =
Q:'\-u TR HEDE el HiBSESR =] =|
Y gq: FEEE Fime= HEGTrE R B ik ek :l F s 1|
:u“". FEAETAR HICwcmal'brsbs HUIWOER :l :l_
3 T P ol k] HECwi rwltbrels HUWBER ;| -
e 14 £t na PihEy i By] amw 5|
Use this - _im it b |4 |r'l"l
menu to P il i
add the Do Jratoer [Dewratss [Sawma ax [4 |
prototype IC L] Casgelia ekl m -
column P T T PN LR [5
¥ 5 1 By 5 =
to the table. i i _.!J pismapseis] et " e

Figure 22. Assigning a Prototype to an Attribute

If any of the prototype information is incorrect for your attribute, you can
override it. Just set the property of the attribute to the value you want (see
Figure 23). The remaining attribute properties will still dynamically
resolve to the values set in the prototype.

Prototype Attributes

Values the
attribute doesn't
The asterisk indicates derive from it's
that one or more of the prototype, including
prototype's settings are overridden values,
overridden by the are displayed
attribute. in black text.

Ml [Proowy [oh B e

G5 il 2l o5 il G o o8 =

H " | e Ak
Gl = e
- i i A
0 P Byremry [T HECH vdMursts, HUWEER - =
-ﬂ‘:""‘\-l ST HED b raln HiFAEER - -
.LE,.: prERriwE HESTrE VARCHAR: | s =
1 maETIE HECwc s urshs HUWEER = =
i T Pcis saidid] HIDw malhrals HLIWEEH :| _r]
v+ Ly dmrmd Procesna u.-_ . K’ -:'I-\. 3 gD sy =l e I:];I
P e i
| @ | rairen | Deinranas BT Iﬂ -l
& R (s Bl 1] winigt] &) =
& EaH AT A s L] e
- & TRNEEsAILY Brasas LI] m .

Figure 23. Overriding Prototype Settings

Creating Prototype Attributes

"T'he prototypes you can assign to an attribute come from three places:

1. An entity named EO<AdaptorName>Prototypes , where
<AdaptorName> is the name of the adaptor for your model
(EOOraclePrototypes, for example)

2. An entity named EOPrototypes
3. 'The adaptor for your model

So to create your own prototype, create a prototype entity—an entity
named either EO<AdaptorName>Prototypes or EOPrototypes —and add
an attribute to it. Note that the EO<AdaptorName>Prototypes and
EOPrototypes entities can be defined in the current model or in another
model in the model group (all the models in your project are typically a
part of the same model group).

47

Chapter 3

Working with Attributes

48

When resolving a prototype name, Enterprise Objects Framework looks
for prototypes in EO<AdaptorName>Prototypes , then in EOPrototypes
and finally in the adaptor for your model. This search path allows you to
override the prototypes provided by each adaptor. Furthermore, if you
don’t want to use the adaptor-defined prototypes at all, you can hide
them. Create an entity named EOPrototypesToHide . For each prototype
you want to hide, create an attribute with that name; you don’t need to
specify other attribute properties.

Chapter 4 Working with Relationships

"This chapter describes creating and configuring relationships.
It’s organized in the following sections:

o “Creating Relationships” (page 51)
e “Forming Relationships in the Diagram View” (page 52)

e “Forming Relationships in the Relationship Inspector”
(page 52)

* “Forming Relationships Across Models and Databases”
(page 55)

e “Tips for Specifying Relationships” (page 56)

e “Adding Referential Integrity Rules” (page 58)

Creating Relationships

If the database on which your model is based includes definitions for
foreign keys, these definitions will automatically be expressed in your
model as ready-made relationships.

You can also explicitly form a relationship between entities if one
doesn’t already exist. This relationship must reflect an actual
relationship between the entities’ corresponding tables in the
database.

Forming a relationship allows you to access data in a destination table
that relates to data in a source table (it’s also possible to have a reflexive
relationship, in which the source and destination tables are the same).
For example, to find all of the roles in a particular movie, you can form
a relationship between the MovieRole and Movie entities.

EOModeler provides two mechanisms for forming relationships.

You can form them in the Model Editor’s diagram view or in the
Relationship Inspector. Using the diagram is the quickest way to create
a new relationship, but using the Relationship Inspector gives you
access to more relationship characteristics. Each mechanism is
discussed in the following sections.

51

Chapter 4

Working with Relationships

Forming Relationships in the Diagram View

"To create a relationship in diagram view, control-drag from a source
attribute to the destination attribute, as shown in Figure 24.

Mirain | Bt

calegary | g e .
dalalslaarai W nars | (AL}
I uag L RIS
e -

rlfig “BE

TOwEN I C K

therlird £ CRE

1 CRE

Figure 24. Control-Dragging to Create a Relationship

Control-dragging to create a relationship actually creates two
relationships: one in the source attribute’s entity and an inverse
relationship in the destination attribute’s entity. So in Figure 24, control-
dragging from the Movie entity’s studiold attribute to the Studio entity’s
studiold attribute creates the relationships:

® studio, a to-one relationship in Movie to Studio
® movies, a to-many relationship in Studio to Movie

You can view the new relationships in the Model Editor’s table mode and
you can further configure them in the Relationship Inspectors as
described in the next sections.

Forming Relationships in the Relationship Inspector

52

Creating a relationship with the Relationship Inspector is a more manual
process than creating one in the diagram view. The inspector provides
only the ability to configure a relationship that already exists.
Consequently, unlike with the diagram view, you have to create a
relationship before you can edit it with the Relationship Inspector.

Forming Relationships in the Relationship Inspector

1. Select a source entity in the Model Editor, such as Movie.

2. Choose Property » Add Relationship.

Socd £ Propew losh Wb Hele

i) A 1 T TS O

-
= e o i Y [k Clam o) | EoprnniTope [wim | |
(=" r ® @ DN LA CHAR ﬂ =
[=Tn s & @ dpeRspasd R CpETaNiTE DATETIEE =
'ﬁ'?““"'“? # B ‘srguoage FiSHamanr L =
g;‘: = m mreald FMIHaman LTS =
O it & W g MEEbT CHAK = L1}
i T — ® @ AR rEaDp malimbgi CURRERCY ﬂ
& @ Mk rdyHaENE i =
& § e RS Sinag CHAR = s

The new
relationship
is displayed

here.] W . _|_I

Figure 25. Adding a Relationship

Alternatively, you can click the ﬂ button in the toolbar. In either
case, the text “Relationship” appears in the relationship table at
the bottom of the window.

3. Select the new relationship in the Model Editor.

4. Open the Relationship Inspector, either from the toolbar or by
choosing Tools ™ Inspector.

Chapter 4

Working with Relationships

54

P

- |
Hank |II|.Iil|.||. fip
Esiidin sy
bame. pigvie l'i
Enbby: [Trariz)

Euo.-.q:.
Bt i
Pl Serray

= To Das

L Select a destination entity here.

Then select a source attribute...

[T
idslsAplamusc

| ... and a destination attribute.

L When you're done, click here.

Figure 26. The Relationship Inspector

5. In the Inspector, select the destination entity (Studio) in the
Destination browser.

"Typically, you form a relationship by connecting a primary key in
one entity and a corresponding foreign key in another entity. In a
to-one relationship, the source entity usually holds the foreign key,
while the destination entity holds the primary key. The opposite is
true for a to-many relationship. For example, studiold is a foreign
key for Movie, while it’s the primary key for Studio.

6. Select the source attribute (studiold) in the Source Attributes
browser.

7. Select the destination attribute (studiold) in the Destination
Attributes browser

8. Make sure the relationship has the proper cardinality (in this
example it should be set to To One since a movie has only one
Studio).

9. Click Connect.

Forming Relationships Across Models and Databases

EOModeler assigns the relationship a default name; in this
example it’s “studio.” You can edit this name if desired using
either the Inspector or the table view.

Forming Relationships Across Models and Databases

"The entities in one model can have relationships to the entities in another
model. You can form such relationships even if the models map to
different databases and different database servers.

When you add a model to a project, it becomes part of a model group,
even if the model group only contains that one model (for more
information on model groups, see the EOModelGroup class specification
in the Enterprise Objects Framework Reference). Each subsequent model
that you add to the project—either directly by adding the model to the
project’s Resources suitcase or indirectly by adding a framework that
includes a model—automatically becomes part of the group. Entity
names must be unique within a model group; you can’t use the same
entity name in two different models in the same group. Put another way,
all the entities used in an application must have unique names.

"To form a relationship from one model to another, use the Relationship
Inspector as follows:

1. Addarelationship to the entity you want to use as the source of the
relationship.

For example, you can form a to-one relationship between the
Movie entity in the Movies sample database and the VideoTape
entity in the Rentals sample database.

2. Inthe Relationship Inspector, use the Model pop-up list to choose
the model containing the entity you want to use as the destination
of the relationship.

55

Chapter 4 Working with Relationships

Mk |||I|l|l.ll.1|.|
D il ebion
Womel. Rpmiai #/—1— Use this pop-up list to choose
the model that contains the entity
you want to use as the destination
of the relationship.

Ra
Lia

Tl iivak
i

calrgary
dalaReierae
| WivgiiaEs

pealarkdwap
e
shiaikipd

ComriCl |

Figure 27. Creating a Relationship Across Models

3. Specify the relationship as you normally would.

Note: You can’t flatten properties across databases, nor can you map
inheritance hierarchies across databases (though you can do both of
these things across models that map to the same database).

Tips for Specifying Relationships

"T'he following tips are useful to keep in mind as you specify relationships
in your model:

e 'The relationships you define in your model must reflect a
corresponding implementation in the database, as well as the
features supported by your adaptor. EOModeler doesn’t know, for
example, if a relationship is to-one or to-many, or if your adaptor
supports left outer joins. You need to know your database and your
adaptor, and specify relationships accordingly.

56

Tips for Specifying Relationships

e Use the diagram view to quickly create pairs of inverse
relationships by control-dragging between source and destination
attributes.

e Use the Relationship Inspector to specify information about a
relationship, such as whether it’s to-one or to-many, its semantics
(that is, the type of join represented by the relationship), and the
name of the destination model (if the destination isn’t in the
current model).

e Relationships are created as to-one relationships. You need to
change this setting if the two entities have a to-many relationship
(for example, a movie has many roles).

e A relationship can be compound, meaning that it can consist of
multiple pairs of connected attributes. You can specify additional
pairs of attributes only in the Relationship Inspector. Simply select
a second source attribute and a second destination attribute, and
click Connect a second time.

® Ato-one relationship from one primary key to another primary key
must always have exactly one row in the destination entity—if this
isn’t guaranteed to be the case, use a to-many relationship. This
rule doesn’t apply to a foreign key to primary key relationship,
where a NULL value for the foreign key in the source row
indicates that no row exists in the destination.

e To-one relationships must join on the complete primary key of the
destination entity as the join component.

For more discussion about modeling relationships, see the chapter
“Advanced Enterprise Object Modeling” in the book Enterprise Objects
Framework Developer’s Guide.

57

Chapter 4 Working with Relationships

Adding Referential Integrity Rules
You can use the Advanced Relationship Inspector to add referential
integrity rules for a relationship.
"To add referential integrity rules:
1. Select the relationship for which you want to add rules.

2. In the Relationship Inspector, click the Advanced Relationship
Inspector icon as shown in Figure 28.

dclaowr i || aladed g B et

= Click this button to choose
g || the Advanced Relationship
% =1 'J'"l Inspector

akchFaulisg

'aﬁ'.ﬁ'il!l'.l b

Diphonaiiy
7 Cplonsl
T Wasdalory

T T
™Mby
& Z 3 0 B
I Dein
™ Mo AClos

Chivmil Dt s =

Figure 28. Advanced Relationship Inspector

You can use the fields in the Advanced Relationship Inspector to further

specify a relationship. The options in this inspector are described in the
following sections.

58

Adding Referential Integrity Rules

Batch Faulting

Normally when a fault is triggered, just that object (or array of objects for
a to-many relationship) is fetched from the database. You can take
advantage of this expensive round trip to the database by batching faults
together. The value you type in the Batch Size field indicates the number
of faults for the same relationship that should be triggered along with the
first fault. For more discussion of batch faulting, see the class specification
for EODatabaseContext in the Enterprise Objects Framework Reference.

Optionality

"This field lets you specify whether a relationship is optional or mandatory.
For example, you could require all departments to have a location
(mandatory), but not require every employee to have a manager
(optional).

Delete Rule

"This field lets you specify the delete rules that should be applied to an
entity that’s involved in a relationship. For example, you could have a
department with multiple employees. When a user tried to delete the
department, you could:

e Delete the department and remove any back reference the
employee has to the department (Nullify).

e Delete the department and all of the employees it contains
(Cascade).

e Refuse the deletion if the department contains employees (Deny).

e Allow the deletion and do nothing to the destination objects (No
Action).

T'he No Action rule is useful for tuning performance. However, you
should use this delete rule with great caution since it can result in
dangling references in your object graph. For more information, see the
class specification for EOClassDescription in the Enterprise Objects
Framework Reference.

59

Chapter 4

Working with Relationships

60

Owns Destination

The Owns Destination checkbox lets you set a source object as owning
its destination objects. When a source object owns its destination objects
and you remove a destination object from the source object’s relationship
array, this also has the effect of deleting it from the database (alternatively,
you can transfer it to a new owner). This is because ownership implies
that the owned object can’t exist without an owner—for example, line
items can’t exist outside of a purchase order.

Propagate Primary Key

"The Propagate Primary Key checkbox lets you specify that the primary
key of the source entity should be propagated to newly inserted objects
in the destination of the relationship. This is typically used for an owning
relationship, where the owned object has the same primary key as the
source. For example, in the Movies database the TalentPhoto entity has
the same primary key as the entity that owns it, Talent.

Chaprer 5 Adding Derived Properties

Derived Attributes

The Enterprise Objects Framework supports three different kinds of
attributes: simple, derived, and flattened. Simple attributes, which
correspond to a single column in the root table of the entity and can be
read or updated directly from or to the database, are described in the
chapter “Working with Attributes” on page 37. This chapter describes
the other two types.

Additionally, the Framework supports two kinds of relationships.
Simple relationships, which relate one table to another with a join, are
described in the chapter “Working with Relationships” on page 49.
T'he other kind, flattened relationships, are described in this chapter.

It’s organized into the following sections:

e “Derived Attributes” (page 63)
e “Flattened Attributes” (page 65)
e “Flattened Relationships” (page 70)

A derived attribute doesn’t map directly to a single column in the root
table of the entity. A derived attribute can be based on another
attribute that’s modified in some way, such as an bonus attribute that’s
the result of a calculation performed on a salary attribute. A derived
attribute can also be an aggregate consisting of more than one attribute;
for example, you can create a derived attribute fullName that is an
aggregate of lastName and firstName .

Derived attributes, since they don’t correspond to real values in the
database, are read-only; it makes no sense to write a derived value.

Adding a Derived Attribute

You can use the concept of derived attributes to add to an entity a new
attribute that doesn’t correspond to any database column. This
attribute can contain a computed value, for example, or an aggregate of
multiple attributes.

"To add a new attribute to your entity:

63

Chapter 5

Adding Derived Properties

64

1. Inthe Model Editor, select the entity (such as Talent) to which you
want to add an attribute.

2. Choose Property ® Add Attribute.

Alternatively, you can use the ﬂ button on the toolbar. In either
case, a new attribute with the name “Attribute” appears in the
entity’s list of attributes.

3. In the Attribute Inspector, edit the Name field to supply a new
name for the attribute.

For example, you can create an attribute called fullName that
combines the firstName and lastName attributes.

Note that this is a contrived example. A safer way to achieve the
same end would be to implement a method on your enterprise
object—this would ensure that if the firstName or lastName
attribute is modified, the derived attribute fullName will
immediately reflect the change.

4. Use the pop-up list to the left of the Definition field to change the
attribute type from Column to Derived.

5. Edit the Definition field to supply the SQL needed to specify the
derived attribute.

For example, to concatenate the firstName and lastName attributes
in Oracle, type the text:

firstName||' '||lastName
T'he Sybase equivalent is:
firstName+' '+lastName

6. In the External 'Type ficld, add the attribute’s data type
(VARCHAR?2). This should be the data type as it is in the database.

7. In the External Width field, type the width constraint for the
attribute (this only applies to string and data values).

Figure 29 shows the Attribute Inspector with the new attribute fullName
specified.

Flattened Attributes

s L TR R o)
Carrssrd II fireBimre || ' ') taefhlars
Exdginial Ty | VARCHARE

iniem sl Cola T pm
Siirg £
Exermial 'Mil.ll:l'l

Figure 29. Adding a Derived Attribute

"The text you supply in the Definition field must be valid SQL for your
database. While you can use either the internal or external names for
simple attributes in this field, for derived and flattened attributes you
have to use the internal names (flattened and derived attributes have no
external names). For consistency’s sake, you may want to use only
internal names in this field.

Flattened Attributes

A flattened attribute is a special kind of attribute that you effectively add
from one entity to another by traversing a relationship. When you form a
to-one relationship between two tables (such as MovieRole and Talent),
you can add attributes from the destination entity to the source entity—
for example, you can add a lastName attribute to MovieRole to identify
the actor who played a particular role. 'This is called “flattening” an

65

Chapter 5

Adding Derived Properties

66

attribute. Flattening an attribute is equivalent to creating a joined
column; it allows you to create objects that extend across tables.

When Should You Use Flattened Attributes?

Flattening attributes is just one way to conceptually “add” an attribute
from one entity to another. A generally better approach is to traverse the
object graph directly through relationships. Both WebObjects Builder
and Interface Builder make this easy by supporting the notion of £ey patis.
You can also access the values in other objects programmatically through
relationship references, as described in the chapter “Designing
Enterprise Objects” in the book Enterprise Objects Framework Developer’s
Guide.

The difference between flattening attributes and traversing the object
graph (either programmatically or by using key paths) is that the values of
flattened attributes are tied to the database rather than the object graph.
If an enterprise object in the object graph changes (for example, because
a user changed a value in another part of the application), a flactened
attribute can quickly get out of sync. For example, suppose that you
flatten a deptName attribute into an Employee object. If a user then
changes the employee’s department reference to a different department
or changes the name of the department itself, the flattened attribute
won’t reflect the change until the changes in the object graph are
committed to the database and the data is refetched. However, if you’re
using key paths in this scenario, a user of your application sees changes to
data as soon as they happen in the object graph. This ensures that your
application’s view of the data remains internally consistent.

Therefore, you should only use flattened attributes in the following cases:

e [f you want to combine multiple tables joined by a one-to-one
relationship to form a logical unit. For example, you might have
employee data that’s spread across multiple tables such as Address,
Benefits, and so on. If you have no need to access these tables
individually (that s, if you’d never need to create an Address object
since the address data is always subsumed in Employee), then it
makes sense to flatten attributes from those entities into
Employee.

e Ifyour application is read-only.

Flattened Attributes

If you’re using vertical inheritance mapping (as described in
Enterprise Objects Framework Developer’s Guide’s chapter “Advanced
Enterprise Object Modeling”).

Flattening an Attribute

"To flatten an attribute, the relationship you traverse must be a to-one
relationship.

"To flatten an attribute:

1.

o " Hoes e stmsdealid 0%

Hadel [Popssy Jook Wiedoss [

In the browser mode of the Model Editor, select the relationship
that gives you access to the attribute you want to add to your entity

(you don’t have to use browser mode, it just makes it easier to sce
the results of the operation).

For example, to add the name of an actor to MovieRole, you can
traverse a talent relationship (which represents MovieRole’s
relationship to Talent) and add the actor’s last name (lastName) to
MovieRole as a flattened attribute. This is a contrived example,
because in this case it would be better to use a key path than to
flatten an attribute.

Select the attribute you want to add (lastName), and choose
Property ® Flatten Property.

= A P eI s s
8 o %@

ke ke mFge ol e (L1 f5T]
4] B
[i b Sy il d _] [I vl _]
kKawis

mb=riicd

Ploiummany drecior A ey
Aedireg i ER AT
Hird sy
1 1]t =]
4] 2

Figure 30. Adding a Flattened Attribute

67

Chapter 5

Adding Derived Properties

68

Alternatively, you can use the ﬂ button in the toolbar.

The derived attribute (in this example, talent_lastName) appears
in the list of properties for MovieRole. The format of the name
reflects the traversal path: the attribute lastName is added to
MovieRole by traversing the talent relationship.

3. Examine the derived attribute (talent_lastName) in the Attribute
Inspector.

o " Howse somsdald %

ioddl it Eopesty Toch (grors [isl

) ST A Y 2 e 0 1

[lak] RigamFghs tedank_lasid g .@ Lj"'l
4] 1] |
::-Ill-l;"l.l : | s mal] _] K |iert inaFizne
Cereesr I|I telent | g s
Phrfsumsmany " - -
FAading C Esiuinal Type: | vARCHARE
Hiresnayr [T
-1 T F .:l i prT ;J o Dl Type
B Siing t]
Estirmial “1-."!&

Figure 31. Examining a Flattened Attribute in the Attribute Inspector

In the Attribute Inspector, the pop-up list to the left of the
Definition field identifies the attribute as “Derived”.

4. Edit the Name text field to simplify the attribute name

(for example, to “lastName”).

Flattened Attributes

The Definition field (the second text field from the top of the
Attribute Inspector) must accurately reflect the attribute’s external
name and the table in which it resides. For example, if you edit its
text to be “Name” and change its mode to “Column,” it no longer
maps to an existing attribute. In other words, only edit this field if
you are sure you can predict the outcome.

"To display this flattened attribute, use the Data Browser.

5. Select the flattened attribute along with another “native” attribute
for verification purposes.

"To select multiple, non-contiguous attributes in the Model Editor
on Windows NI} hold down the Control key while you click on
each attribute. On Rhapsody, use the Shift key.

6. View the attributes in the Data Browser as shown in Figure 32

o " EHorme somadal] {1

Hadd [Popesy Jook edoes Heg t(;Iicll(jt? open
5 o T 7 Y |=4; cllel] SISISSR | erowser
Q' Oy

[F ILE] 3 iy mFals Eisre
L b &
L B
e y l:rr-_p.rim ainfiole Qo ||
¥ laetlars it B e
B -
Rirdmns ¥ Ford Indiand ey
Sty - || B W CIws W
K| FaLinD Michal
Prasdd Th e 0 reial e
H Lij ki Shosavadiagi
L raTe | gt
=k gl HEEL Hiars
i Fj Il BimiLind
L rare Frenr Beckes:
L [LhiarkilE Ml =
_.’ 5 I I!Iﬂ i |

Figure 32. Using the Data Browser to Check Your Model

69

Chapter 5

Adding Derived Properties

Displaying data associated with your model in the Data Browser is a good
way to check that the model is synchronized with the database. If your
model is out of sync with the database (for example, if you try to
implement a relationship for which there is no corresponding relationship
in the database), attempting to display data in the Browser will fail. For
more discussion of the Data Browser, see the chapter “Interacting with a
Database” on page 117.

Flattened Relationships

70

In addition to flattening attributes, you can also flatten relationships.
Flattening a relationship gives a source entity access to relationships that
a destination entity has with other entities. It’s equivalent to performing
a multi-table join. Note that flattening either an attribute or a relationship
can result in degraded performance when the destination objects are
accessed, since traversing multiple tables makes fetches slower.

When Should You Use Flattened Relationships?

As discussed in “When Should You Use Flattened Attributes?” on
page 66, flattening is a technique you should only use under certain
conditions. Instead of flattening an attribute or a relationship, you can
instead directly traverse the object graph, either programmatically or by
using key paths. This ensures that your application has an internally
consistent view of the data.

There is one scenario in which you might want to use a flattened
relationship: if you’re modeling a many-to-many relationship and you
want to perform a multi-table hop to access a table that lies on the other
side of an intermediate table. For example, in the Movie database, the
Director table acts as an intermediate table between Movie and Talent.
It’s highly unlikely that you would ever need to fetch instances of
Director into your application. In this situation, it makes sense to specify
a relationship between Movie and Director, and flatten that relationship
to give Movie access to the Talent table.

Flattened Relationships

Flattening a Relationship

"To flatten a relationship:

1.

Add a relationship from one entity (enzizy_I) to a second entity
(entity_2).

For example, you can add a to-many relationship called toDirectors
from Movie to Director since a movie can have more than one
director.

Add a relationship from entizy_2 to a third entity (entity_3).

For example, you can add a to-one relationship called talent from
Director to Talent. For each director a movie has, there is a
corresponding single entry in the Talent table.

From entity_1, select the relationship to entity_2 to display its
properties.

From Movie, select the relationship toDirectors to display the
properties of Director.

In the list of properties for entity_2, select the relationship (talent)
you want to flatten.

Choose Property » Flatten Property.

. " Horse somadalk]

g wi=Rpls

¥
Pirfiumseany]
58]
Fakasd]]
Tale=Fhela L]
L2 |
[a1 | LI

Figure 33. Flattening a Relationship

71

Chapter 5

Adding Derived Properties

72

The flattened relationship (in this example, toDirectors_talent) appears in
the list of properties for Movie. The format of the name reflects the
traversal path: The relationship talent is added to Movie by traversing the
toDirectors relationship.

Chapter 6 Working with Entities

The work you do with entities falls into two basic categories:

e Using the Model Editor and the Entity Inspectors to set the
entity’s characteristics.

e Optionally, mapping the entity to a custom enterprise object
class and generating source files for it.

"This chapter describes these tasks. It’s organized into the
following sections:

e “Changing an Entity’s Characteristics” (page 75)

e “Using the Entity Inspector” (page 77)

e “Specifying an Enterprise Object Class” (page 79)
e “Generating Source Files” (page 81)

e “Setting Other Information for an Entity” (page 86)

Changing an Entity’s Characteristics

"To display a model’s entities in table mode, select the model (the first
icon) in the tree view.

mmm:mmun

_=I§|l A I I TR e R
j | | 1n-lm.l'- I |
qru-m- = Dirachar ORECTOR Dirsciar =l
g::ﬂm A OVE [T TS
f o lebres iRl W OVE_ROLE MpipFoie
ﬂ:ns““‘ = PidSormany FLOT_SUKRASAY FlelZurmnary
L g,_‘::_ = Rakrg ALETING Faif g
¥ i3 Gl oo Ravipw FEWIEW Fomw by
+ I Tl - T STUdS Sledi
I Tt Fharia o Talem TALENT Taiuni
= Elaet Py ¥ TalerdP hom TALEMT FHOTD TeieniPanin
wu b
ll'qnh-'#l
jﬂ‘hm 1 ‘J;J j
+| | 3 A L bd Bl _:J

Figure 34. Displaying an Entity’s Attributes

Chapter 6

Working with Entities

76

Each table column corresponds to a single characteristic of an entity, such
as its name or the name of its database table. By default, the columns
included in the table—Open Entity, Name, Table, and Class Name—
only represent a subset of the possible characteristics you can set for a
given entity. To add columns for additional characteristics, you use the
Add Column menu in the lower left corner of the table.

"T'he following table describes the characteristics you can set for an entity
in the Model Editor.

Characteristic What it is

Class Name The name of the class that corresponds to the entity. If you
don't define a custom enterprise object class for an entity, by
default its class is EOGenericRecord.

Client-Side Class The name of the class that corresponds to the entity in the

Name client-side of a Java Client application. If you don’t define a
client-side class, the Framework looks for a class in the
client with the same name as the server-side enterprise
object class. If no such class exists on the client, it uses
EOGenericRecord.

External Query Any SQL statement that will be executed as is—on Sybase,
this can be a stored procedure.

Name The name your application uses for the entity. By default,
EOModeler supplies a name based on the name of the
corresponding table in the database.

Open Entity Adds a column with the Open Entity icon, which you can
double-click on to display an entity’s attributes.

Parent Indicates an entity’s parent—used to model inheritance.

Read Only Indicates whether the entity is read-only or not.

Table The name of the database table that corresponds to the
entity.

Note: There are numerous other characteristics that you set using the
Entity Inspectors

Using the Entity Inspector

Using the Entity Inspector

You use the Entity Inspector to set an entity’s characteristics and specify
a mapping between the entity and an enterprise object class. You can also
accomplish the same tasks using the table mode of the Model Editor, but
this section focuses on the Entity Inspector.

"To inspect an entity, select the entity in the Model Editor and open the
inspector (either with the E button on the tool bar or by choosing
"Tools ™ Inspector).

Figure 35 shows the Entity Inspector for the Movie entity.

HIII-l'\-'w-.-

Tabdi th-|'\-'u'.-|-.

I:Ild:'l'\-'w-a

Preparien

cal=gara
daleRelgraa
[E S [T

mEYIEE

pEdba N
T L
therlicl g
fiie
hpiprhisres)
e i ey

i R Ay |

® & & & & & &

Figure 35. The Entity Inspector

Name and Table Name

The Name field lists the name your application uses for the entity.
"T'he Table Name field contains the name of the root table in the
database. You can change the internal name (that is, the name as it

1

Chapter 6

Working with Entities

78

appears in the application), but you shouldn’t change the database table
name unless you have also changed the name in your database server.

Class

T'he Class field initially contains the text “EOGenericRecord”. This is
because the default enterprise object class is an EOGenericRecord. To
specify a custom class, type the name of the class in this field. For more
information on creating custom classes, see “Specifying an Enterprise
Object Class” on page 79.

Properties
"The Properties area lets you specify the properties you want to include in
your enterprise object class and set characteristics for them.

There are three columns in this area. Each column displays the status of
a particular setting: Primary Key, Used For Locking, and Class Property.
Icons are used to indicate that a setting is enabled for a particular
property; the dash icon indicates that a setting is not applicable to a
property. You add and delete icons by clicking the appropriate column
next to the property.

[=] The Primary Key column is used to declare whether a property is, or
is part of, the primary key for the enterprise object class. To specify a
compound primary key, you simply add a Primary Key icon to the column
for each property you want to include in the primary key.

Specifying a primary key for your enterprise object class is mandatory; the
primary key is the means by which an enterprise object is uniquely
identified within your application and mapped to the appropriate
database row.

Note: Enterprise Objects Framework doesn’t support modifiable
primary key values. You shouldn’t design your application so that users
can change a primary key’s value.

[#] The Class Property column is used to indicate properties that meet
both of these criteria: You want to include them in your class definition,
and they can be fetched from the database. By default, the Entity
Inspector sets all of an entity’s properties as belonging to your class. You
can remove a property by clicking its Class Property icon. If you define an

Specifying an Enterprise Object Class

attribute that doesn’t exist in the database but is used by your application
(such as a computed value), you should remove its Class Property icon.
Note that generated source files won’t include instance variable
declarations for these attributes—ryou’ll have to type those in by hand
(this is a rare case). You also should not include primary and foreign keys
as class properties unless you need to display their values in the user
interface. If you don’t remove the Class Property icon for an attribute that
has no corresponding database value, it will result in a server error when
your application attempts to fetch the property from the database.

[&] The Used For Locking column indicates whether an attribute should
be checked for changes before an update is allowed. This setting applies
when you’re using Enterprise Object Framework’s default update
strategy, optimistic locking. Under optimistic locking, the state of a row is
saved as a snapshot when you fetch it from the database. When you
perform an update, the snapshot is checked against the row to make sure
the row hasn’t changed. If you set Used For Locking for an attribute
whose data is a BLLOB type, it can have an adverse effect on system
performance. By default, the Entity Inspector sets all of an entity’s
attributes to be used for locking.

In Figure 35, note that:

¢ In the Inspector, the property movielD has been designated as the
enterprise object class’s primary key.

e For the entity’s relationships, the Inspector automatically displays
the Notapplicable icons in the Primary Key and Used For Locking
columns.

Specifying an Enterprise Object Class

Specifying an enterprise object class for an entity applies the mapping
defined in your model to your custom class, thereby enabling objects of
the class to be created from database rows.

79

Chapter 6

Working with Entities

80

"To specify the enterprise object class for an entity:

1. Make sure that each of the properties you want to include in your
enterprise object class has a Class Property icon set for it in the
Inspector.

2. If the entity does not already have a primary key specified, add a
Primary Key icon for the property or properties that constitute the
entity’s primary key.

Remember that the primary key or keys you set for your
enterprise object class must mirror the primary key or keys
defined for the corresponding table in the database.

What you do after this point depends on how you plan to implement your
enterprise object class. In all cases, an enterprise object class must
conform to the EOKeyValueCoding interface (or informal protocol in
Objective-C), which specifies methods for accessing values by name, or
key (“keys” in this context relates to key-value pairs, not to primary keys).
But this can be accomplished very differently, depending on the approach
you use.

You can use either of the following approaches, depending on the needs
of your application:

e Use EOGenericRecord.

If you don’t edit the Class field to specify a name for a custom
class, the Framework uses EOGenericRecord as an enterprise
object class by default. A generic record uses a dictionary to store
key-value pairs that correspond to an entity’s properties and the
data associated with each property. Use EOGenericRecord when
you don’t need to define special behavior for your class.

e (Create a custom class that uses the default implementation of key-
value coding. If you plan to create a custom class, you must type its
name in the Class field.

You can also use EOModeler to generate source code for your class; the
resulting source files include definitions of instance variables and accessor
methods that can be used by key-value coding. See “Generating Source
Files” on page 81.

Generating Source Files

For more information on key-value coding and implementing enterprise
object classes, see the chapter “Designing Enterprise Objects” in the
book Enterprise Objects Framework Developer’s Guide.

Generating Source Files

Once you finish specifying an enterprise object class, you can generate
source files for it. However, at this stage of the development process, you
may want to first create your project and design your application’s user
interface. Once you've created a project using Project Builder and
included a model file in it, you can generate your source files and save
them into the project.

You can create your enterprise object classes in either Objective-C or
Java. To create an Objective-C class, use Property ®» Generate Obj-C
Files. To create a Java class, use Property ® Generate Java Files.

Additionally, there’s a Property » Generate Client Java Files. This
command generates a Java class for use in the client-side of a Java Client
web application.

Each command is described in more detail in the following sections.

Generating Objective-C Source Files

"To generate Objective-C code files for your enterprise object class:

1. Inthe Model Editor, select the entity for which you have specified
a class in the Entity Inspector.

EOModeler only permits you to create source files for entities for
which you have specified a custom enterprise object class. In other
words, you can’t generate source files for EOGenericRecord.

2. Choose Property ® Generate Obj-C Files or click the =l| button
in the toolbar.

EOModeler displays a Choose Class Name panel. If the model file
is in a project, the Choose Class Name panel displays the project
as the default destination.

81

Chapter 6 Working with Entities

3. Choose a destination, supply a name for the files if you want, and
click Save.

If you don’t supply a name, the source files are named after the
enterprise object class for which they are being generated and are
given the appropriate extensions.

If you opened the model file from a project, an additional panel
appears, confirming that you want to insert the files in your project.

Also, if you generate source files for an entity and files of the same
name already exist, a panel is displayed asking if you want to
cancel, overwrite, or merge the files. If you choose merge, the File
Merge application starts with the old and new files displayed. You
can then merge the files.

"The end result of the Generate Obj-C Files command is:

e A header (.h) file that declares instance variables for all of the
entity’s class properties and declares accessor methods for those
instance variables.

e An implementation (.m) file that provides basic implementations
for the accessor methods.

For example, suppose you define an enterprise object class Movie. The
instance variable declarations in the generated header file might
resemble the following:

NSString *category;
NSCalendarDate *dateReleased;
NSDecimalNumber *language;
NSString *posterName;
NSDecimalNumber *revenue;
NSString *title;

id plotSummary;

Studio *studio;

NSMutableArray *directors;
NSMutableArray *roles;

Note that:

e The name of the generated class is the name you specified for the
entity’s Class Name characteristic.

82

Generating Source Files

e Instance variables that correspond to attributes are declared to be
of the Objective-C value class specified in the model. For example,
revenue is declared as an NSDecimalNumber and dateReleased is
declared as an NSCalendarDate.

e Instance variables that represent to-one relationships are declared
to be of type id for destination objects represented with
EOGenericRecord (such as plotSummary) or as instances of the
custom class used to represent them (such as studio).

¢ Instance variables that represent to-many relationships (such as
directors) are NSMutableArrays.

The corresponding implementation (.m) file for Movie includes an
implementation for each of the accessor methods declared in the header
file. For example, the methods for setting and returning the value of the
instance variable title are:

- (void)setTitle:(NSString *)value

[self willChange];
[title autorelease];
title = [value retain];

}
- (NSString *)title { return title; }

Generating Java Source Files

Generate Java Files is similar to generating Objective-C files. To generate
a Java (.java) file for your enterprise object class, follow the steps in
“Generating Objective-C Source Files” on page 81, except that you
choose Property ® Generate Java Files or click the ﬂ button in the
toolbar.

As with the Objective-C source files, a Java source file declares instance
variables and provides basic implementations of accessor methods for
those variables. And in Java:

e 'The name of the generated class is the name you specified for the
entity’s Class Name characteristic.

e Instance variables that correspond to attributes are declared to be
of the Java value class specified in the model, which can be String,

83

Chapter 6

Working with Entities

84

NSGregorianDate, Number, BigDecimal, NSData or a custom
value class that you specify.

¢ Instance variables representing to-one relationships are declared to
be of type EOEnterpriseObject for destination objects represented
with EOGenericRecord or as instance of the custom class used to
represent them. (EOEnterpriseObject is a Java interface defining
basic enterprise object behavior; for more information, see the
chapter “Designing Enterprise Objects” in the book Enzerprise
Obyjects Framework Developer’s Guide or the EOEnterpriseObject
interface specification in Enterprise Objects Framework Reference).

* As with Objective-C, instance variables that represent to-many
relationships (such as directors) are NSMutableArrays.

Generate Client Java Files

Generate Client Java Files is similar to the other source generation
commands. However, you only use this command when you’re creating
enterprise object classes to run on the client-side of a Java Client web
application. (For a description of a Java Client application, see the chapter
“What’s Enterprise Objects Framework” in the book Enterprise Objects
Framework Developer’s Guide).

Using this and one of the other two source generation commands (either
Objective-C or Java), you can create two versions of your enterprise
object class. The different versions can have different class properties.
For example, for security reasons, you might want to include social
security number attribute in the server-side version of an enterprise
object but exclude it from the client-side version.

"To enable this distinction, you can specify whether an attribute is a Class
Property (#]) to be included in the server-side enterprise objects and also
whether an attribute is a Client-Side Class Property (&) to be included in
the client-side objects. For more information on setting these
characteristics, see the chapter “Working with Attributes” on page 37.

"To generate a Java (java) file for a client-side version of your enterprise
object class, follow the steps in “Generating Objective-C Source Files”
on page 81, except that you choose Property ®» Generate Client Java
Files.

Creating a Subclass

As with the source files generated by the other commands, a Java source
file declares instance variables and provides basic implementations of
accessor methods for those variables. The client-side Java files are
generated exactly like the server-side Java files, except:

e The name of the generated class is the name you specified for the
entity’s Client-Side Class Name characteristic. If you haven’t
specified a Client-Side Class Name, it uses the name you specified
for the entity’s Class Name characteristic.

e Ifthe model file is in a project, the default destination for the files
is the ClientSide]Java.subproj. Consequently, you can name your
server-side and client-side enterprise object classes with the same
name. The two versions of your class reside in different name
spaces at runtime, too. Even if your server-side class is a Java class,
it descends from com.apple.ye/low.cocontrol. EOCustomObject,
while the client-side class descends from
com.apple.client.ecocontrol. EOCustomObject.

e Instance variables are generated only for attributes and
relationships that are set as Client-Side Class Properties.

Customizing Source File Generation

When you create a project with the type “EOApplication,” it inserts three
files into the project’s Supporting Files suitcase: EOInterfaceFile.template ,
EOImplementationFile.template , and EOJavaClass.template . You can use

these files to customize your .h, .m, and .java file output, respectively. In

their unmodified form these files match the source file generation scheme
used by EOModeler.

Creating a Subclass

Enterprise Objects Framework supports mapping database tables to
inheritance hierarchies of enterprise object classes using three different
approaches. For one of the approaches—single table mapping—
EOModeler provides support to help you model the mapping. In the
single table mapping, all the enterprise object classes in the inheritance
hierarchy map to the same database table; each class makes use, however,

85

Chapter 6

Working with Entities

of different sets of the tables columns. Consequently, you need to create
an entity for each enterprise object class in the hierarchy, and each of the
entities map to the same table. EOModeler facilitates this by creating

“subclass entities” and setting up the parent-child relationships for you.

"To create a “subclass” entity, select the entity you want to use as the
parent and choose Property ® Create Subclass. A new entity is created
that maps to the same database table as the parent entity.

For more discussion of inheritance, see the chapter “Advanced
Enterprise Object Modeling” in the book Enzerprise Objects Framework
Developer’s Guide.

Setting Other Information for an Entity

86

From the Entity Inspector you can navigate to other Inspectors to specify
additional information for your entity.

Click here to display the Advance Entity

Here for the Stored Procedure Inspector.

Here for the UserInfo Ispector.

Q|31

Figure 36. Icons for Navigating to Other Inspectors

Advanced Entity Inspector
The Advanced Entity Inspector lets you set more complex behavior for

your entity, such as that to support inheritance.

"To display the Advanced Entity Inspector, select the Advanced Entity
Inspector icon at the top of the Entity Inspector.

Setting Other Information for an Entity

E=garad I]'l.lllrr.l

Ll Ermat i e

THrCiar T il £ o o
Cap Frs
TR i e e d
Ao L i BT ot P Lrnd
e e ————
Sl Paranl
LT

[Msaad Oy

™ Cachein kason

™ Abstract

Figure 37. Advanced Entity Inspector

Batch Faulting Size

T'he Batch Faulting Size field lets you set the number of EOFaults that
should be triggered when you first access an object of this type. By
default, only one object is fetched from the database when you trigger an
EOFault. By providing a number /V in this field, you specify that N other
EOFaults of the same entity should be fetched from the database along
with the first one. This improves performance by minimizing round trips
to the database server. For more information, see the chapter “Answers to
Common Design Questions” in the book Enterprise Objects Framework
Developer’s Guide.

External Query

The External Query field allows you to specify any SQL statement that
will be executed as is (that is, you can’t perform any substitutions) when
EOF does an unqualified fetch. On Sybase this can be a stored procedure.
"The columns selected by this SQL statement must be in alphabetical
order by internal name, and must match in number and type with the
class properties specified for the entity.

87

Chapter 6

Working with Entities

88

Qualifier

"This field is used to specify a restricting qualifier. A restricting qualifier
maps an entity to a subset of rows in a table. Restricting qualifiers are
commonly used when you’re using single table inheritance mapping, in
which the data for a class and its subclasses is all stored in a single table.
When you add a restricting qualifier to an entity, it causes a fetch for that
entity to only retrieve objects of the appropriate type. For example, the
Rentals sample database has a MOVIE_MEDIA table that includes rows
for both the VideoTape and LaserDisk entities. VideoTape has the
restricting qualifier (media = “I”), and LaserDisk has the restricting
qualifier (media = ‘D’). When you fetch objects for the entity VideoTape,
only rows that have the value “I” for the attribute media are fetched. For
more discussion of single table and other types of inheritance mapping,
see the chapter “Advanced Enterprise Object Modeling” in the book
Enterprise Objects Framework Developer’s Guide.

Parent

You use this field to specify a parent entity for the current entity.

"This field is used to model inheritance relationships. For example, in the
Rentals database, the Customer entity is the parent of the Member and
Guest entities (since Members and Guests are types of Customers).

For more information, see the chapter “Advanced Enterprise Object
Modeling” in the book Euzerprise Objects Framework Developer’s Guide.

Read Only
The Read Only checkbox indicates whether the data that’s represented
by the entity can be altered by your application.

Cache In Memory

The Cache In Memory checkbox lets you specify that the objects
associated with an entity should be cached in memory for quick access.
Caching an entity’s objects allows Enterprise Objects Framework to
evaluate queries in memory, thereby avoiding round trips to the database.
"T'his is most useful for read-only entities, where there is no danger of the
cached data getting out of sync with database data. This technique should
only be used with small tables, since it fetches the entire table into
memory.

Setting Other Information for an Entity

Abstract

The Abstract checkbox indicates whether the entity is abstract. An
abstract entity is one for which no objects are ever instantiated in your
application. For example, in the Rentals database, the Customer entity is
abstract since Customer objects are never instantiated (though objects of
its sub-entities, Member and Guest, are). Like the Parent field, this
option is used to model inheritance. For more information, see the
chapter “Advanced Enterprise Object Modeling” in the book Enterprise
Obyects Framework Developer’s Guide.

Stored Procedures Inspector

You use the Stored Procedures Inspector to specify stored procedures that
should be executed when a particular database operation (such as insert
or delete) occurs. You type the name of the stored procedure in the field
associated with the database operation. Stored procedures are read from
the database when you create a new model and included in its .eomodeld
file. You can also add stored procedures through EOModeler after the
fact.

Creating stored procedures and assigning them to entities is described in
detail in the chapter “Working with Stored Procedures” on page 91.

Userlnfo Inspector

You use the Userlnfo Inspector to add key-value pairs to the UserInfo
NSDictionary. The Userlnfo dictionary provides a mechanism for
extending your model. You can use it to define custom behavior for an
entity. For example, you can put information in the UserInfo dictionary
to be used by delegate methods that perform operations on the entity.

89

Chaprer 7 Working with Stored Procedures

"This chapter describes working with stored procedures in your model.
It covers adding stored procedures as well as assigning them to entities
for common operations in the sections:

¢ “Adding Stored Procedures” (page 93)
e “Assigning a Stored Procedure to an Entity” (page 96)

Adding Stored Procedures

If your stored procedure is defined in the database at the time you
create your model, you don’t have to do anything to define it in

your model. When you create a new model with EOModeler, the
application reads stored procedure definitions from the database’s data
dictionary and stores them in the model’s .eomodeld file. You can also
add a stored procedure definition to an existing model.

"To add a stored procedure:
1. Select the Stored Procedures icon in the tree view.

2. Choose Property ® Add Stored Procedure.

3. Specify a name and external name for the stored procedure.

93

Chapter 7

Working with Stored Procedures

o " Horme somadald =%

el i Popssy Jook indoes

i] S A R ()
[@e= 9

L e e R

Estirmial hami

= delelekiovis

OFLETE_MOYIE

= i D' iR P i MOV IE_FROCEDILRER FETOH_pl

o tedr b el
= mmEdharia
= 8 el T

MOVE _FROCEDURES FETCH_MD
IREENT_FACE
HEST_MOVE_FRikiARY_KEY

.-_|d|l-|||-u-1.'u
= frichionw' i hPrireey Ty

FRLL ST
oL 4 A

3 s | el
4 receiieri Fravary ey

Type the name of the stored procedure as
it's defined in the database.

LI —

Type the name of the stored procedure as
you want to refer to it in your application.

Figure 38. Adding a Stored Procedure

You must also define an argument for a stored procedure’s return value and
for each of its parameters. Add arguments to a stored procedure the same
way you add attributes to an entity. In fact, the arguments of a stored
procedure are represented with EOAttribute objects.

Note: The Advanced Attribute Inspector isn’t applicable to stored
procedure arguments. As a result, you can’t access it while editing a
stored procedure argument.

"To define and display the attributes of a stored procedure:

1. Select the stored procedure in the tree view.

stored procedure in the Model Editor’s stored procedure table.
2. Choose Property » Add Argument.

3. Specify the argument’s characteristics in the Model Editor’s table.

94

Adding Stored Procedures

Minimally, you must provide values for the Name, Column,
Direction, External Type, and Value Class characteristics.

Each table column corresponds to a single characteristic of a stored
procedure argument. By default, the columns included in the table only
represent a subset of the possible characteristics you can set for a given
entity. To add columns for additional characteristics, use the Add Column
menu in the lower left corner of the table.

"The following table describes the characteristics you can set for a stored
procedure argument.

Characteristic What it is

Allows Null Indicates whether the argument’s value can be NULL.

Column The name of a parameter as it is defined in the database (doesn’t
apply to a “returnValue” argument).

Direction In, InOut, Out, or Void. Don’t choose Void; it's reserved for future

use.

External Type

The data type of the argument as it's defined in the database.

Name The name your application uses for the argument.
Precision The number of significant digits (applies to number data only).
Scale The number of digits to the right of the decimal point (applies to

number data only).

Value Class (Java)

The Java type to which the argument value will be coerced in your
application.

Value Class (Obj-C)

The Objective-C type to which the argument value will be
coerced in your application.

Value Type

The format type for NSNumber classes such as “i" or “d".

Width

The maximum width (applies to string, raw, and binary data).

95

Chapter 7 Working with Stored Procedures

For example, to add arguments for the Sybase stored procedure
defined as:

create proc movie_by_date (@begin datetime, @end
datetime) as

begin
select
CATEGORY,DATE_RELEASED, LANGUAGE, MOVIE_ID, RATING,
REVENUE, STUDIO_ID, TITLE
from MOVIES
where DATE_RELEASED > @begin and DATE_RELEASED < @end
end

you would add an argument for @begin and @end with column names
“begin” and “end”, respectively.

Tip: If you’re using Oracle, you can define a stored procedure to
represent a function. Add an argument named “returnValue” and use
the EOAdaptorChannel method
returnValuesForLastStoredProcedurelnvocation to get the function’s
result.

If the Framework invokes your stored procedure automatically, the
argument names of a stored procedure must match the name of a
corresponding EOAttribute object. For example, if you want to invoke a
stored procedure whenever the Framework fetches a Movie object by its
primary key, the stored procedure’s argument names must correspond to
the primary key attributes of the Movie entity. The following section
discusses this requirement more thoroughly.

Assigning a Stored Procedure to an Entity

You can assign stored procedures to entities to be used to perform the
following operations:

® Insert a new object.

e Delete an object.

e Fetch all the objects for an entity.

e Fetch an object by its primary key.

® Generate a primary key value for a new object.

96

Assigning a Stored Procedure to an Entity

If you associate a stored procedure with an entity’s operation, the
Framework invokes it automatically when the operation occurs.
For example, if you want to use a stored procedure to insert new
Customer objects:

1. Define the stored procedure in the database.

2. Define the stored procedure in the model as described in the
previous section.

3. Associate the stored procedure with the Customer entity’s insert
operation.

You can associate a stored procedure with an entity using EOModeler or
you can do it programmatically (see the chapter “Answers to Common
Design Questions” in the book Enterprise Objects Framework Developer's
Guide).

"To assign a stored procedure to an entity in EOModeler:

1. Select the entity with which you want to associate a stored
procedure.

2. Open the inspector.

3. Click the Stored Procedures Inspector icon.

Click here to display the
Stored Procedure Inspector.

Q& |

4. 'Type the name of the stored procedure in the field associated with
the appropriate database operation.

97

Chapter 7

Working with Stored Procedures

98

Shread Mincedas Inperes

Figure 39. The Stored Procedure Inspector

Requirements for Framework-Invoked Stored

Procedures

When Enterprise Objects Framework invokes a stored procedure for

an operation, the procedure must behave in an expected way. The
Framework specifies what a stored procedure’s arguments, results, and
return values should be. For more information on these requirements, see
the chapter “Answers to Common Design Questions” in the book
Enterprise Objects Framework Developer’s Guide.

Chapter 8 Working with Fetch Specifications

You can use EOModeler to create a query—called a fezch
specification—name it, and store it in the model file. You can then use
these pre-defined queries in your application—invoking them
programmatically or binding them to your application’s user
interface. This chapter describes creating fetch specifications in
EOModeler. It’s organized in the following sections:

e “Fetch Specifications” (page 101)

o “Creating a Fetch Specification” (page 101)

e “Building a Qualifier” (page 103)

e “Assigning a Sort Ordering” (page 108)

e “Specifying Prefetching and Other Options” (page 109)
e “Configuring Raw Row Fetching” (page 113)

e “Using Custom SQL. and Stored Procedures” (page 115)
e “Testing a Fetch Specification” (page 116)

Fetch Specifications

"To perform a query in an Enterprise Objects Framework application,
you use an EOFetchSpecification object. Fetch specifications have
associated with them an entity, a qualifier, a sort ordering, and several
other options. You can create fetch specifications programmatically,
or you can use EOModeler to create and store them. For more
information on the EOFetchSpecification class, see its specification
in the Enterprise Objects Framework Reference.

Creating a Fetch Specification

"To create a fetch specification in EOModeler:

1. Select the entity with which the fetch specification will be
associated.

2. Choose Property ®» Add Fetch Specification or click the
ﬂ button in the tool bar.

101

Chapter 8 Working with Fetch Specifications

Click here to create a new
fetch specification in the
selected entity.

, e il e e el L etk mvhos i b w bl
Mokl E Praedy ook (e fob

i e 4 N P P B

e -1 Fwirh Spacficimn M | <51 Spe —— Type a name
+ i Do for the new
T iyt Cudiber | SoriOdeing | Prefwctig | SmFeich | optom |50 fetch
L] Hallla specification
R A [T ey a _I
¥ ks FLhS P A
i ¥im b il a_|
P %-\..:“u. Lerapangs
' VI weypd
*" AIEC By = —L— Anew fetch
e peer - specification
i & is added to
0 v i TS 5 IS e | the ent
+ i S B e entity, and
+ i T the Model
3 SN Tl . .
- Editor switches
i s Frisra e to the Fetch
Specification
Builder mode.
= |
|
i g s s oo | me | Aemw |

Figure 40. Adding a Fetch Specification to an Entity

3. "Type a name for the fetch specification in the Fetch Specification
Name field.

There are many different ways to configure the fetch specification. The
most common way is to build a qualifier for the fetch specification to fetch
with. For more information, see the section “Building a Qualifier” on
page 103. Alternatively, you can also configure a fetch specification to
fetch using custom SQL or a stored procedure. For more information, see
“Using Custom SQL and Stored Procedures” on page 115.

In addition to specifying how a fetch specification retrieves its data, you
can specify other options, such as sort orderings and performance tuning
settings. The following sections describe the possible configurations and
their uses.

102

Building a Qualifier

Building a Qualifier

EOModeler’s Fetch Specification Builder mode provides an interface for
building a qualifier graphically. To use it, select your fetch specification,
and choose the Qualifier tab in the Fetch Specification Builder.

For example, a Movie has a Voting object that keeps a runningAverage of
how reviewers have voted on the movie. Suppose you want to create a
fetch specification for the Movie entity that fetches all movies whose
runningAverage is greater than eight. "To build the qualifier for such a

query:
1. In the attribute browser, click Movie’s voting relationship.

2. In the second column of the browser, select the runningAverage
attribute.

The text field just under the browser is updated to display
the attribute as the left hand side of an expression. Note that
the runningAverage attribute is represented by a ey path
(voting.runningAverage) that identifies the relationship
(voting) through which the attribute is accessed.

103

Chapter 8 Working with Fetch Specifications

o " Hovasiad 51 seecdeld L g s 0 i b A ndisde

il i Bopsly Jook iincees sy

i T) O T

g M et Z | Felch Specificolion Name: | B olerpioae
[OF = N Ed]
T e Quse | oot Orereng | Pratesciing | R Facs | Omioes | 2L |
i, e bt : s e - Select an
i o e attribute for
i shima e *Zl the left hand
: "....:. ETET) ek b S side of the
+1 iigh, Folwurion — query.
%
v i ok
+ N Pl By
0 Fevies Click to
P Bt choose an
: g :':.:h W operation for
e b
W I g the query.
=] Bored Frocmduran
]
I
1]] _.rl ad | or pat | Feacen |

Figure 41. Building an Expression.

3. Click the >= button.

EOModeler adds a greater than or equal to operator to the
expression.

4. In the text field, type “8” as the right hand side of the expression.

Instead of building the expression by choosing attributes in the attribute
browser and by clicking an operator button, you can type directly into the
text field for the expression.

Creating Compound Qualifiers

You can also use the Query Builder to create compound qualifiers made
up of multiple expressions. Click the And button to create a new
expression and AND it with the first one. Click the Or button to create a
new expression and OR it with the first.

104

Building a Qualifier

For example, building on the example in the previous section, suppose
that you want to fetch movies with a runningAverage greater than or equal
to eight but that also have at least ten voters contributing to the average.

"To further restrict the fetch specification:

1.

Click the And button.

EOModeler adds a second expression and ANDs it to the first
expression.

Choose voting.numberOfVotes in the attribute browser.
Click the >= button.
"Iype 10 as the right hand side of the expression.

As you build up a complex query, the text field at the bottom of
the Query Builder updates to include the full text of the
compound qualifier. Instead of building up expressions one by one
with the And and Or buttons, you can type directly into this lower
text field. The Qualifier Builder parses the qualifier string and
displays the individual expressions.

105

Chapter 8 Working with Fetch Specifications

* Moy el e e bl L sk bmvbuw b by whels

Mool B Pty [k \erien fon
ol sl afded 0] 314 5o of o
[oomidss 2] Pebch Bpmcticaton M| =-cs briviras:

il il
T gk Custie | 5eri Oang | Profezsing | R wich | Gt | 561
it g Wi |
(L] CkEgay ﬂ _I
I ke PR Pl A
i sl o L]
i i'ﬁ.l-l\.lh LEping e
' L] ru:'_-
- =T my B
B eerivie 2l =
+ i "o Burerary I;I J
G e it ET3 35 0 IS0 s " |
'g: T LR LR '-_t
-al.i-n'"ull I
(o = BT
_|-|'|.|-II||'lr|I-r|-
=
|-_|l::'r1 EETETEAETIEE ~ i - You Can type
s the entire text
al i o S | d | | [| of a qualifier
| | | into this text
To remove an field instead
Use these buttons expression, click in of building up
to create additional it, then click remove. the qualifier
expressions. an expression
at a time.

To negate an
expression, click
in it, then click not.

Figure 42. Creating a Compound Qualifier

"To negate an expression, click in the text of the expression you want to
negate, and then click the Not button. Similarly, to remove an expression
click in the text of the expression you want to negate, and then click the
Remove button.

Using Qualifier Variables

You can specify absolute criteria for a fetch specification’s qualifier—
“voting.runningAverage >= 8", for example. However, such a fetch
specification is of limited use. More frequently, you want to specify the
form of a qualifier and let users supply specific values when they run
the application. You can do this with gualifier variables.

106

Building a Qualifier

You specify a qualifier variable using the dollar sign character ($), as in the

following:

dateReleased = $aDate

For example, suppose you want to allow users to search for movies by
title, date released, or studio. The query would look like this:

((title = $title) OR
(dateReleased = $date) OR
(studio.name = $studioName))

You can build this qualifier in EOModeler as specified in the previous
sections, and then bind its qualifier variables (title , date, studioName) to
your application’s user interface. When the application runs, Enterprise
Objects Framework automatically replaces the qualifier variables with
values supplied in the user interface. You can set this up as follows:

1. Create the fetch specification with EOModeler.

2. Use Query Builder’s user interface to set up a query on the title,
date, and studio.name attributes.

On the right side of each expression, use the $ syntax to identify
the qualifier variables.

Depending on the type of graphical user interface your application
uses, you access the fetch specification’s query bindings differently. For
example, in WebObjects Builder, you access the query bindings in the
following way:

3. Use WebObjects builder to create a component that allows the user
to enter the query criteria.

You might create text fields for the title and date released and a
pop-up list for the studio name, for example.

4. Drag the fetch specification from EOModeler into your
component.

"This has the effect of creating a new display group for your
specification’s entity.

107

Chapter 8

Working with Fetch Specifications

5. In the WebObjects Builder panel that opens, choose “Add and
Configure.”

6. Configure the new display group, setting its fetch specification to
the one you defined in your model.

7. In WebObjects Builder, bind the user interface elements to the
queryBindings.title , queryBindings.date , and
queryBindings.studioName keys of your display group
(movieDisplayGroup , for example).

In Interface Builder, the steps are similar except that you bind the user
interface elements to @bindings.title , @bindings.date , and
@bindings.studioName keys of your display group. The @bindings
syntax represents the value associated with the named qualifier
variable.

Assigning a Sort Ordering

108

"To specify the order in which the fetch specification fetches its objects,
use the Sort Ordering tab in the Fetch Specification Builder, as shown in
Figure 43.

Specifying Prefetching and Other Options

o " E vl Sy pomssickd L vmmirikinrhack il odeh
Mol W Prasds [eok edo b
e 4 T T = s T
(@i rweeemiss | Fikoh Speceicaen Hasse:| - i1 opec set the fetch
G Dt specification's
= i sort ordering.
'?-ﬁ:.w.. Gasaifior Zorl Drdusing | Frefekcning | FawFHOY | Opi | 508 | 9
. ek ol ey W
o i | —1 1| Choose an
12 g S attribute to
: §m"—_m ..”;“ . sort on.....
T g seD .
" EEER |||'é|-.:.'.|..|. wy g il — ...and click here
o = LU isirerplenr . =1 = to add it.
3 i Mot Terarary [«] = |
= LErd
. I | Rewern | Toggles
. Qe FT— 7 oo
+ ih Tl P .
- i g ey Als ascendlqg and
e P]" descending.
Toggles
between
case-insensitive
W and case-
N | Ll_l 1] 2 sensitive.

Figure 43. Assigning a Sort Ordering

Simply choose an attribute to sort on, and click Add. The order in which
you add the attributes specifies the weight to assign to them. In
Figure 43, the fetch specification sorts first on title and then on category.

Additionally, for each attribute you sort on, you can specify an ascending
or descending order and whether to perform a case-sensitive or case-
insensitive comparison.

Specifying Prefetching and Other Options

There are numerous options you can configure to tune a fetch
specification’s behavior. This section describes the options on the
Prefetching and Options tabs.

109

Chapter 8

Working with Fetch Specifications

110

Configuring Prefetching

Use this tab to identify relationships that should be fetched along with
the objects specified by the fetch specification. For example, when
fetching Rental objects, you can prefetch associated Fees and Units.
Doing so forces a rental’s fees and unit to be retrieved along with the
rental itself (as opposed to having faults created for them).

Although prefetching increases the initial fetch cost, it can improve
overall performance by reducing the number of round trips made to the
database server.

"To specify a relationship to prefetch, select the relationship in the Fetch
Specification Builder’s browser and click Add, as shown in Figure 44.

gl e vasiogad . s sl 20 s p ol | bpnct o0 smese. . [[=]ED

Hadsl [Propety Jook Wiedoes |eg
e o S W T T 5 R
m_j Firlchy Specinication Hamw: [F oo 2o
0 Cramilaea
Yo Guaiifar | Sot Oroarey Preeeciing | Raw Faice | Ogiom | 500 |
£ Feshe Prrtal ure
= i Parisl [CeaFimaall .] - ~
. oy -\]l;lll-:l-l :J :::::::'J: o, _I J
§ Prts delaArkirmesd rariah [
i .03 4
L3 rriail ',':,r_:z]
= i) FmiTars
i Al [_J _'J
+ AN Lha 4 !
CF - R _J J
] Siored Frocmdars B | Airmava]
e ______ I
e
. - |
SR B

Figure 44. Specifying Relationships to Prefetch

Specifying Prefetching and Other Options

Setting a Fetch Limit

"To specify the maximum number of objects to fetch with a fetch
specification, go to the Options tab of the Fetch Specification Builder, as
shown in Figure 45. There you can specify the maximum number of
objects to fetch. The default fetch limit is zero, indicating that there is no
fetch limit. 'Iype a number in the Max Rows text field to specify a

maximum number.

Use the “Prompt on limit” box to specify what the Framework should do
when the fetch limit is reached. If the box is checked, the Framework

prompt the user about whether to continue fetching after the maximum
has been reached. If the box isn’t checked, the Framework simply stops

fetching when it reaches the limit.

For more information on managing fetch limits, see the
EOFetchSpecification class description and the EOEditingContext
EOMessageHandlers interface description in the Enterprise Objects

Framework Reference.

o " Hovssiad 5 sesaodeld L wps Wl hachib ndnle

Hadel [Pepsty Jok Wedea Heg

O = N L]
= ik b
t el
i Py
AT
I ‘lq,h|
¥ i
' el
'
=]
H AL M| Barwrery
o i b
1 i S
+ i Tl
g T | Frag s
= ALt
) Horvd Frxmduraa

ey o

i e O A T R W BT B S R
- g e

i MeridseF i I Feslchy Bpecificolion Heame: | Frion Soo

i | St Oy | Perkeching | Raw Faics [Dpiom] sai |

Faca L
bt Apsrs: E

[~ Prampkan i

F Pariors deep inhasiancs fsich
[~ Faks dkin s

[Lok alldeiched ohyech

I~ Wi refele fra o 8l st

™ Fagsre ol v miabie Dindinga

Figure 45. The Options Tab

111

Chapter 8

Working with Fetch Specifications

112

Other Options

"The other options on the Options tabs are explained below:

Perform deep inheritance fetch

An indicator of whether to fetch deeply or not. This is used with
inheritance hierarchies when fetching for an entity with sub-entities. A
deep fetch produces all instances of the entity and its sub-entities, while
a shallow fetch produces instances only of the entity in the fetch
specification.

Fetch distinct rows

An indicator of whether to produce distinct results or not. Normally if a
record or object is selected several times, such as when forming a join, it
appears several times in the fetched results. A fetch specification that
fetches distinct rows filters out duplicates so that each record or object
selected appears exactly once in the result set.

Lock all fetched objects
If a fetch specification locks fetched objects, it locks each object as it
selects it.

Refresh refetched objects

If a fetch specification refreshes refetched objects, existing objects are
overwritten with newly fetched values when they’ve been updated or
changed. With fetch specifications that don’t refresh, existing objects
aren’t updated when their data is refetched (the fetched data is simply
discarded).

Require all variable bindings

Specifies whether a missing value for a qualifier variable is ignored or
whether the Framework requires that each qualifier variable have a value
assigned to it. If “Require all variable bindings” is checked, the
Framework throws an exception during variable substitution. If it isn’t
checked, any qualifier nodes for which there are no variable bindings are
pruned from the qualifier.

Configuring Raw Row Fetching

Configuring Raw Row Fetching

When you perform a fetch in an Enterprise Objects Framework
application, the information from the database is fetched and stored in
a graph of enterprise objects. This object graph provides many
advantages, but it can be large and complex. If you’re creating a simple
application, you may not need all of the benefits of the object graph.
For example, a WebObjects application that merely displays
information from a database without ever performing database updates
and without ever traversing relationships might be just as well served
by fetching the information into a set of dictionaries rather than a set of
enterprise objects.

Enterprise Objects Framework 3.0 supports this concept of a simplified
fetch, called raw row fetching. In raw row fetching, each row from the
database is fetched into an NSDictionary object.

When you use raw row fetching, you lose some important features:
e The NSDictionary objects are not uniqued.
e 'The NSDictionary objects aren’t tracked by an editing context.

® You can’t access to-many relationship information. ('To access
to-one relationship information, you use key paths such as
“movie.dateReleased”.)

113

Chapter § Working with Fetch Specifications

"To set up raw row fetching, go to the Raw Fetch tab of the Fetch
Specification Builder as shown in Figure 46.

Ml sfand G eamadels 12 i 08K i b oo el

Hadd [di Popesy Jook edes [fee
1 el 21> o) O] 91413 S8l =
i M et | Flu--:-_n|nkh5-:o-:
OF = JL L]
i e Gusiion | Seot Orareg | Prakching Bow ekt | Ogions | 2L |
§ 1 oty Fakch B Capch
i 7 Fais Al AniBUlEs a8 R Rows
4 o 7 Fakn Spacibed ANBs A Mo Now
£ i vl P!
%& [asie [t |
v i Wik o r= =
£ N Pl Brwrery :'ﬂ e h'-l -I
e Lt
i B ahard il] [etuntiid 3 H |
= ik Telerrl T
£ Tt Py I |
O [i
e B o S
culagosy -
duk Ak e '-I
LBl
[E 2
thadli p e
4 * ; 'LI
£ F— |

Figure 46. Specifying a Raw Row Fetch

114

Using Custom SQL and Stored Procedures

Using Custom SQL and Stored Procedures

Instead of building a qualifier for the fetch specification to fetch with, you
can specify custom SQL or a stored procedure. To do so, use the SQL tab

of the Fetch Specification Builder, as shown in Figure 47.

o " Hovssiad 5 sesaodeld

L i 0V s U ndied

Hodd [Propsdy ook wiedes Heg
o 4 T 3 T e I s
I Mo - Flumr-'rm|rllrn5-:l¢-c
O = N L]
- i Vs
TR i i | Sort Oy | Perkeaching | Raw Faice | Do 501 |
i o Sy I Rbin Gusifar Buiksr
L Lt F.! E E_E_Ii """ —l
I ‘lq,ﬁ|
12 g, ks SELECT BCATEGCEY, I DATE FELEASED, -
1 i, Selearior ¥ LAHGUAGE, ¥ MOVIE_ID, M PCESTER_MAME,
7 i votirg 10 AEVEMLUE, i TUD D D, m TITLE, m TRalLER_MAKE
[y FRSRA WOTIREG 11, MOWRE i WHERE 0 CATEGORY = |
H i VimeiePiola o0 DA TE_FELEASED >= 7 OR K TITLE = T) AKD
b " 11 AUNHKIKG_ANERAGE = T) AHD HMOYE_ID =
i g::'__' 11 WAWIF I CHRNE R R i TITF T aoe =
" g r:: T s Siores Pro? eders
£ Tuewi Fraia Sired Fropedus FerFeen
o = ALt J
= |7 Hzad Frocmdraa
= e R A
al | _*.I_I -

Figure 47. Using a Custom SQL Expression or a Stored Procedure

"To use custom SQL,, check the “Use Raw SQL Expression” box, and
provide the SQL in the text field just below the box. If you’ve built a
qualifier in the Qualifier Builder, this text field is initialized with the
corresponding SQL. Checking the “Use Raw SQL. Expression” box
enables this text field so you can modify the text. Note that the Fetch
Specification Builder isn’t able to parse arbitrary SQL. to produce a
corresponding qualifier in the Qualifier Builder.

"To use a stored procedure, check the “Use Stored Procedures” box, and
choose the stored procedure from the list just below the box. The stored
procedure must be defined in the model.

115

Chapter 8

Working with Fetch Specifications

Testing a Fetch Specification

116

You can test a fetch specification using EOModeler’s data browser. Click
the fetch specification in the Model Editor’s tree view, and then open the
Data Browser. EOModeler connects to the database, invokes the fetch
specification, and displays the results.

If the fetch specification includes qualifier variables, EOModeler displays
a Qualifier Bindings panel with which you can supply values to bind to

the variables ().

antabie Fams [Vaium

[L
vudinkisn e
e

]

Aemave &l @ndngs |

Chand v adpes

o
|

Chaprer 9 Interacting with a Database

"This chapter describes the ways you can use EOModeler to interact
with your database.

Setting Adaptor Information

A model includes a connection dictionary, which contains the
information needed to connect to a database server. The keys of the
connection dictionary identify the information the server expects, and
the values associated with those keys are the values that the adaptor
tries when logging into the database.

When you initialize an adaptor from a model, any connection
information stored with the model is copied into the adaptor object.

The connection dictionary contains the last values you entered in the
login panel and saved as a part of your model (so long as you haven’t
manually edited the connection dictionary in your model file). You can
change the connection dictionary’s values from EOModeler; this is
called setting adaptor information.

"To set adaptor information:
1. Choose Model » Set Adaptor Info.

EOModeler displays a login panel that contains values taken
from the model’s connection dictionary.

2. In the login panel, make the edits you want reflected in your
connection dictionary, and click OK.

For example, if you specified a user name and password to log into a
database and create your model, you can remove that information from
the connection dictionary by clearing those fields in the login panel.
"Then, in your application, you can prompt the user for a user name and
password by sending a runLoginPanelAndValidateConnectionDictionary
message to your adaptor object.

You can also edit the connection dictionary in its raw form using the
Connection Dictionary Inspector. This provides you access to

119

Chapter 9

Interacting with a Database

120

connection dictionary entries that the login panel doesn’t configure. To
use the Connection Dictionary Inspector, select the model icon in the
Model Editor, and display the Inspector.

Comress | i ki iy et

= | wriem |
DATAEAZEMAME MavisinAnfance — Edit keys and values here.
LT _ALL im i
RLE_LamG ArAERIC AN _APAESIC A WERIEDapsaP 1
PaTH
dalshEsintmding [SOLAN-1
e nia [
|
aErysik ==l
T o e [
1 s kiawise
Wiguiag ——— You can use this field for editing
long values.
i
Nermye I Aud |
| |

I_I_l

Use these buttons to add
and remove key-value pairs
from the connection dictionary.

Figure 48. Connection Dictionary Inspector

For more discussion of how Enterprise Objects Framework manages
database connections and connection dictionaries, see the chapter
“Connecting to the Database” in the book Enterprise Objects Framework
Developer’s Guide.

Using the Data Browser

Switching Adaptors

You can change the database and adaptor your model is based on. To do
so:

1. Choose Model » Switch Adaptor.
"This displays a New Model panel listing all the available adaptors.
2. Select the adaptor you want to switch to and click OK.

EOModeler displays the login panel for the database that
corresponds to the adaptor you selected.

3. Fillin the login panel and click OK.

When you switch adaptors, Enterprise Objects Framework automatically
updates the mapping between the internal and external (database) types
to work with the new adaptor’s database.

Using the Data Browser

You can use the Data Browser to display database records associated with
an entity in the Model Editor.

"To display an entity’s records in the Data Browser, select an entity or a
fetch specification and choose Tools » Data Browser.

"To browse the records associated with a different entity, select the entity
icon in the Model Editor and drag it into the Entity well of the Data
Browser. To view a subset of the attributes for an entity, select one or more
attributes and choose Tools » Data Browser.

You can rearrange the columns in the Browser by dragging their column
heads to new positions. You can also resize columns by selecting their
column heads and dragging the edges until the column is the desired size.

121

Chapter 9

Interacting with a Database

Generating SQL

122

You can change the sorting order of the Browser by using the buttons in
the lower right corner. By default, the data is displayed according to how
it was returned from the database. You can sort on the first column in
either ascending or descending order by clicking the appropriate sort
button. So, for example, to sort the records alphabetically by the movie
name in the Movie database, drag the titte column into the first column of
the Browser and click the ascending sort button. To restore the order of
the data as it was returned from the database, click the default order
button.

You can use EOModeler to create a model from scratch (that is, to create
amodel that’s not initialized from an existing database), and then use that
model to generate the SQL necessary to create a database. You can also
edit a model for an existing database and generate SQL. statements from
the model that can be used to regenerate the database with the new
settings.

"To generate SQL for one or more entities, select the entities and choose
Property » Generate SQL.

	Enterprise Objects Framework Tools And Techniques
	Introduction to Enterprise Objects Framework Tools and Techniques
	Introduction
	Creating a New Model
	About Models
	Starting EOModeler
	Creating a New Model
	Selecting an Adaptor
	Choosing What to Include in Your Model
	Choosing the Tables to Include
	Specifying Primary Keys
	Specifying Referential Integrity Rules
	Choosing Stored Procedures
	Saving the Model

	What a New Model Includes
	Updating Your Model
	Checking for Consistency

	Using the Model Editor
	The Model Editor in Table Mode
	Navigating a Model With the Tree View
	Displaying a Model’s Components in the Table Mode
	The Open Entity Icon
	Adding Columns with the Add Column Menu

	Using Other Display Modes
	Diagram View
	Browser Mode

	Working with Attributes
	Changing an Attribute’s Characteristics
	Using Table Mode
	Using the Attribute Inspector
	Using the Advanced Attribute Inspector

	Prototype Attributes
	Assigning a Prototype to an Attribute
	Creating Prototype Attributes

	Working with Relationships
	Creating Relationships
	Forming Relationships in the Diagram View
	Forming Relationships in the Relationship Inspector
	Forming Relationships Across Models and Databases
	Tips for Specifying Relationships
	Adding Referential Integrity Rules

	Adding Derived Properties
	Derived Attributes
	Adding a Derived Attribute

	Flattened Attributes
	When Should You Use Flattened Attributes?
	Flattening an Attribute

	Flattened Relationships
	When Should You Use Flattened Relationships?
	Flattening a Relationship

	Working with Entities
	Changing an Entity’s Characteristics
	Using the Entity Inspector
	Specifying an Enterprise Object Class
	Generating Source Files
	Generating Objective�C Source Files
	Generating Java Source Files
	Generate Client Java Files
	Customizing Source File Generation

	Creating a Subclass
	Setting Other Information for an Entity
	Advanced Entity Inspector
	Stored Procedures Inspector
	UserInfo Inspector

	Working with Stored Procedures
	Adding Stored Procedures
	Assigning a Stored Procedure to an Entity

	Working with Fetch Specifications
	Fetch Specifications
	Creating a Fetch Specification
	Building a Qualifier
	Creating Compound Qualifiers
	Using Qualifier Variables

	Assigning a Sort Ordering
	Specifying Prefetching and Other Options
	Configuring Prefetching
	Other Options

	Configuring Raw Row Fetching
	Using Custom SQL and Stored Procedures
	Testing a Fetch Specification

	Interacting with a Database
	Setting Adaptor Information
	Switching Adaptors

	Using the Data Browser
	Generating SQL

