

EOInterface Framework

API Reference

Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and WebObjects are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Enterprise Objects is a trademark of
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
Objective–C, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
ORACLE is a registered trademark of
Oracle Corporation, Inc.
SYBASE is a registered trademark of
Sybase, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.
Windows NT is a trademark of
Microsoft Corporation.
All other trademarks mentioned
belong to their respective owners.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

F R A M E W O R K

The EOInterface Framework
Package: com.apple.client.eocontrol (com.apple.client.eointerface)
com.apple.yellow.eointerface (com.apple.yellow.eointerface)

Introduction
The EOInterface framework defines one of the layers of the Enterprise Objects Framework
architecture—the interface layer.

The relationship between user interface objects and enterprise objects is managed by an instance
of the EODisplayGroup class. EODisplayGroups are used by EOAssociation objects to mediate
between enterprise objects and the user interface. EOAssociations link a single user interface
object to one ore more class properties (keys) of the objects managed by an EODisplayGroup.
The properties’ values are displayed in the association’s user interface object.

In the Interface layer, EOAssociation objects “observe” EODisplayGroups to make sure that the
data displayed in the user interface remains consistent with enterprise object data.
EODisplayGroups interact with a data source, which supplies them with enterprise objects.
3

F R A M E W O R K T h e E O I n t e r f a c e F r a m e w o r k

The interface layer’s associations are listed in the following table:

Association com.ap
ple.yell
ow.eoin
terface

com.ap
ple.clie
nt.eoint
erface

Description

EOActionAssociation Yes Yes Allows you to set up an interface
object, such as a button, to send a
message to the objects selected in the
association’s display group when the
interface object is acted on

EOActionCellAssociation Yes No The default association class for use
with NSActionCells

EOActionInsertionAssociation Yes Yes Inserts objects from one display group
into another.

EOAssociation Yes Yes Defines the mechanism that transfers
values between EODisplayGroups
and the user interface of an
application.

EOColumnAssociation Yes No Cooperates with an
EOTableViewAssociation to display
values in a column of an NSTableView

EOComboBoxAssociation Yes Yes Displays an attribute or to-one
relationship value in a combo box

EOControlAssociation Yes No The default EOAssociation subclass
for use with NSControl objects

EODetailSelectionAssociation Yes No Binds two EODisplayGroups together
through a relationship, so that the
destination display group acts as an
editor for that relationship.

EOGenericControlAssociation Yes No the abstract superclass of
EOControlAssociation and
EOActionCellAssociation.
4

F R A M E W O R K T h e E O I n t e r f a c e F r a m e w o r k

EOMasterCopyAssociation Yes No Synchronizes two EODisplayGroups
that share the same data source but
have different qualifiers.

EOMasterDetailAssociation Yes Yes Binds one EODisplayGroup (the
detail) to a relationship in another (the
master), so that the detail display
group contains the destination objects
for the object selected in the master.

EOMasterPeerAssociation Yes No Binds two EODisplayGroups together
in a master-detail relationship, where
the detail EODisplayGroup shows the
destination objects for the relationship
of the master EODisplayGroup.

EOMatrixAssociation Yes No Allows you to populate an
NSMatrix’s cells.

EOPickTextAssociation Yes No Allows the user to perform a
similarity search based on whole or
partial values.

EOPopUpAssociation Yes No Displays an attribute or to-one
relationship value in an
NSPopUpButton

EORadioMatrixAssociation Yes No Displays a string or an integer in an
NSMatrix.

EORecursiveBrowserAssociation Yes No The default association for use with a
multi-column NSBrowser.

EOTableAssociation No Yes Associates a display group with a
Swing JTable.

Association com.ap
ple.yell
ow.eoin
terface

com.ap
ple.clie
nt.eoint
erface

Description
5

F R A M E W O R K T h e E O I n t e r f a c e F r a m e w o r k

EOTableColumnAssociation No Yes Associates a single attribute of all
enterprise objects in a display group
with a Swing JTable TableColumn.

EOTableViewAssociation Yes No Manages the individual
EOColumnAssociations between an
NSTableView (Application Kit) and
an EODisplayGroup.

EOTextAssociation Yes Yes Displays a plain or rich text attribute
in an NSText object (Application Kit)
or an EOTextField, EOTextArea, or
EOFormCell
(com.apple.client.eointerface) by
binding the text object to a string or
NSData attribute.

Association com.ap
ple.yell
ow.eoin
terface

com.ap
ple.clie
nt.eoint
erface

Description
6

C L A S S

EOActionAssociation
Inherits from: (com.apple.client.eointerface)
EOAssociation :
EODelayedObserver (EOControl) :
Object

(com.apple.yellow.eointerface)
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Implements: EOObserving (EODelayedObserver)
(com.apple.client.eointerface only) java.awt.event.ActionListener
(com.apple.client.eointerface only) NSDisposable (EOAssociation)

Package: com.apple.client.eointerface
com.apple.yellow.eointerface
7

C L A S S E O A c t i o n A s s o c i a t i o n

Class Description

An EOActionAssociation object allows you to set up an interface object, such as a button, to send
a message to the objects selected in the association’s display group when the interface object is
acted on.

Examples
Suppose you have an application that manages member accounts, each of which has a restriction
on the outstanding balance allowed. You want a user to be able to increase the restriction limit
by selecting one or more members and then clicking a button. To do this, you define a

Usable With

(com.apple.client.eointerface) Any object that implements the method addActionListener
(javax.swing.JButton and javax.swing.JMenuItem, for example)

(com.apple.yellow.eointerface) NSControl, NSActionCell, and their subclasses

Aspects

action Bound to a key that names the method to invoke on the selected objects. If the
argument aspect isn’t bound, the method must take no arguments. If the argument
aspect is bound, then the method must take exactly one argument.

argument An object attribute or relationship of the selected object, passed as an argument to
the action method. (Usually bound to a different EODisplayGroup than the one
bound to action.)

enabled A boolean attribute of the selected object, which determines whether the display
object is enabled.

Object Keys Taken

target On receiving an action message from the display object, an EOActionAssocation
sends its action to the selected objects.
8

C L A S S E O A c t i o n A s s o c i a t i o n

boostRestrictions method in the Member class that increases the limit by 20%. In Interface
Builder, control-drag a connection from the button to the Member display group. Select
EOActionAssociation in the Connections inspector, and bind the association’s action aspect to
the “boostRestrictions” key.

In another scenario, one EODisplayGroup shows Members, while another shows video tapes
available for rent. Here, you want a user to be able to select a member, select a video tape, and
then click a Rent button that checks the selected tape out to the selected member. To do this,
define a rentVideoTape method in the Member class that takes a VideoTape as an argument and
handles the accounting involved in a video rental. Then, in Interface Builder, control-drag a
connection from the button to the Members display group. Select EOActionAssociation in the
Connections inspector, and bind the association’s action aspect to Member’s rentVideoTape
action. Similarly, control-drag a connection from the button to the VideoTape display group.
Select EOActionAssociation in the Connections inspector, and bind the association’s argument
aspect to the VideoTape display group. Now, when the user selects a Member, selects a
VideoTape, and clicks the button, the selected Member is sent a rentVideoTape message with the
selected VideoTape.

Constructors

EOActionAssociation

public EOActionAssociation(Object aDisplayObject)

Creates a new EOActionAssociation to monitor and update the value in aDisplayObject,
typically a button or menu item.

You normally set up associations in Interface Builder, in which case you don’t need to create
them programmatically. However, if you do create them up programmatically, setting them up
is a multi-step process. After creating an association, you must bind its aspects and establish its
connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)
9

C L A S S E O A c t i o n A s s o c i a t i o n

Instance Methods

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent anActionEvent)

(com.apple.client.eointerface) Invoked when the receiver’s display object is acted upon. Sends
the method identified by the receiver’s action aspect (with an argument, if the argument aspect
is bound) to the selected objects.

breakConnection

public void breakConnection()

See the breakConnection method description in the superclass EOAssociation.

establishConnection

public void establishConnection()

See the establishConnection method description in the superclass EOAssociation.

isUsableWithObject

public boolean isUsableWithObject(Object aDisplayObject)

(com.apple.client.eointerface) Returns true if aDisplayObject implements the method
addActionListener, false otherwise.

See Also: isUsableWithObject (EOAssociation)
10

C L A S S E O A c t i o n A s s o c i a t i o n

primaryAspect

public String primaryAspect()

(com.apple.client.eointerface) Returns EOAssociation.ActionAspect.

See Also: primaryAspect (EOAssociation)

subjectChanged

public void subjectChanged()

See the subjectChanged method description in the superclass EOAssociation.
11

C L A S S E O A c t i o n A s s o c i a t i o n
12

C L A S S

EOActionCellAssociation
Inherits from: EOGenericControlAssociation :
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

EOActionCellAssociation is the default association class for use with NSActionCells
(Application Kit).

An EOActionCellAssociation object displays the value of the selected object in its NSActionCell,
and updates the object when the NSActionCell’s value changes. A sibling class,
EOControlAssociation, can be used with independent controls such as NSButtons and
NSTextFields. Other associations, such as EOPopUpAssociation and EOColumnAssociation,
supersede these classes for more specialized behavior.

When multiple EOActionCellAssociations are bound to cells in the same control (such as in an
Application Kit NSMatrix), one of them becomes the delegate of the control and forwards
appropriate messages, such as controlIsValidObject, to the others. This eliminates the need to
add an EOControlAssociation just to handle delegate messages.

Note: This class doesn’t exist in the com.apple.client.eointerface package.
13

C L A S S E O A c t i o n C e l l A s s o c i a t i o n

EOActionCellAssociations access values using NSActionCell’s setObjectValue method, which
allows values with non-string representations to be displayed. An EOActionCellAssociation can
be bound to an NSImageCell, for example, with an attribute whose class is NSImage.

Examples
To display a movie’s budget in an NSTextFieldCell, in Interface Builder, control-drag a
connection from the text field to the Movie display group. Select EOActionCellAssociation in the
Connections inspector, and bind the value aspect to the “budget” key. Then, if the
NSTextFieldCell is editable, when the user types a new value and presses Enter or Tab, the
selected movie’s budget attribute is changed.

Assuming that Movie objects implement an isBudgetNegotiable method, you can make the
NSTextFieldCell uneditable depending on the selected movie. To do so, bind the enabled aspect
to the “isBudgetNegotiable” key.

Usable With

Any NSActionCell

Aspects

value An attribute of the selected object, displayed in the NSActionCell.

enabled A boolean attribute of the selected object, which determines whether the
NSActionCell is enabled.

Object Keys Taken

target On receiving an action message from the NSActionCell, an
EOActionCellAssociation sends the NSActionCell’s value to the
EODisplayGroup.

delegate See the class description.
14

C L A S S E O A c t i o n C e l l A s s o c i a t i o n

Constructors

EOActionCellAssociation

public EOActionCellAssociation(Object aDisplayObject)

Creates a new EOActionCellAssociation to monitor and update the value in aDisplayObject,
which is typically an Application Kit NSActionCell.

You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)
15

C L A S S E O A c t i o n C e l l A s s o c i a t i o n
16

C L A S S

EOActionInsertionAssociation
Inherits from: (com.apple.client.eointerface)
EOAssociation :
EODelayedObserver (EOControl) :
Object

(com.apple.yellow.eointerface)
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Implements: EOObserving (EODelayedObserver)
(com.apple.client.eointerface only) java.awt.event.ActionListener
(com.apple.client.eointerface only) NSDisposable (EOAssociation)

Package: com.apple.client.eointerface
com.apple.yellow.eointerface
17

C L A S S E O A c t i o n I n s e r t i o n A s s o c i a t i o n

Class Description

An EOActionInsertionAssociation object inserts objects from one display group into another.

Example
Suppose an application shows Talent in one display group and Movies in another. You want a
user to be able to select a talent, select a movie, and then click an Assign Director button that
assigns the selected talent as one of the movie’s directors. To do this, in Interface Builder,
control-drag a connection from the button to the Talent display group. Select
EOActionInsertionAssociation in the Connections inspector, and double-click the association’s

Usable With

(com.apple.client.eointerface) Any object that implements the method addActionListener
(javax.swing.JButton and javax.swing.JMenuItem, for example)

(com.apple.yellow.eointerface) Any object that responds to setAction, typically an NSControl

Aspects

source Bound to the EODisplayGroup containing objects to insert. This aspect doesn’t
use a key.

destination A relationship of the selected object into which objects from the source
EODisplayGroup are inserted. Usually bound to a different EODisplayGroup
than source.

enabled A boolean attribute of the selected object (usually in the destination
EODisplayGroup), which determines whether the NSControl is enabled.

Object Keys Taken

target On receiving an action message from the display object, an
EOActionInsertionAssociation inserts objects from the source EODisplayGroup
into the destination EODisplayGroup.
18

C L A S S E O A c t i o n I n s e r t i o n A s s o c i a t i o n

source aspect, binding it to the Talent display group. Similarly, control-drag a connection from
the button to the Movie display group. Select EOActionAssociation in the Connections
inspector, and bind the association’s destination aspect to the “directors” key. Now, when the
user clicks the button, the selected Talent is added to the directors relationship of the selected
Movie. If more than one talent is selected, both are added to the relationship. If more than one
Movie is selected, the selected talent are added to the relationship of the first Movie in the
selection.

Constructors

EOActionInsertionAssociation

public EOActionInsertionAssociation(Object aDisplayObject)

Creates a new EOActionInsertionAssociation to monitor and update the value in
aDisplayObject.

You normally set up associations in Interface Builder, in which case you don’t need to create
them programmatically. However, if you do create them up programmatically, setting them up
is a multi-step process. After creating an association, you must bind its aspects and establish its
connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Instance Methods

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent event)

(com.apple.client.eointerface) Invoked when the receiver’s display object is acted upon. Sends
the method identified by the receiver’s action aspect (with an argument, if the argument aspect
is bound) to the selected objects.
19

C L A S S E O A c t i o n I n s e r t i o n A s s o c i a t i o n
breakConnection

public void breakConnection()

(com.apple.client.eointerface) See the breakConnection method description in the superclass
(EOAssociation).

establishConnection

public void establishConnection()

(com.apple.client.eointerface) See the establishConnection method description in the superclass
(EOAssociation).

isUsableWithObject

public boolean isUsableWithObject(Object aDisplayObject)

(com.apple.client.eointerface) Returns true if aDisplayObject implements the method
addActionListener, false otherwise.

See Also: isUsableWithObject (EOAssociation)

primaryAspect

public String primaryAspect()

(com.apple.client.eointerface) Returns EOAssociation.SourceAspect.

See Also: primaryAspect (EOAssociation)

subjectChanged

public void subjectChanged()

(com.apple.client.eointerface) See the subjectChanged method description in the superclass
(EOAssociation).
20

C L A S S
EOAssociation
Inherits from: (com.apple.client.eointerface)
EODelayedObserver (EOControl) :
Object

(com.apple.yellow.eointerface)
EODelayedObserver (EOControl) :
NSObject

Implements: EOObserving (EODelayedObserver)
(com.apple.client.eointerface only) NSDisposable

Package: com.apple.client.eointerface
com.apple.yellow.eointerface

Class at a Glance

An EOAssociation maintains a two-way binding between the properties of a display object, such
as a text field or combo box, and the properties of one or more enterprise objects contained in
one or more EODisplayGroups. You typically create and configure associations in Interface
Builder, using the programmatic interface only when you write your own EOAssociation
subclasses.

Principal Attributes

� A display object (such as a text field or combo box)
21

C L A S S E O A s s o c i a t i o n
� Aspects that control different parameters of the display object (such as value and enabled)

� One or more EODisplayGroups (no more than one per aspect)

� One or more keys (enteprise object properties) (as many as one key per aspect)

Class Description

EOAssociation defines the mechanism that transfers values between EODisplayGroups and the
user interface of an application. An EOAssociation instance is tied to a single display object, a
user interface object or other kind of object that manages values intended for display. The
EOAssociation takes over certain outlets of the display object and sets its value according to the
selection in the EODisplayGroup. An EOAssociation also has various aspects, which define the
different parameters of the display object that it controls, such as the value or values displayed
and whether the display object is enabled or editable. Each aspect can be bound to an
EODisplayGroup with a key denoting a property of the enterprise objects in the
EODisplayGroup. The value or values of this property determine the value for the
EOAssociation’s aspect.

EOAssociation is an abstract class, defining only the general mechanism for binding display
objects to EODisplayGroups. You always create instances of its various subclasses, which define
behavior specific to different kinds of display objects. For information on the different
EOAssociation subclasses you can use, see the following subclass specifications:

com.apple.client.eointerface Associations

EOActionAssociation EOActionInsertionAssociation

EOComboBoxAssociation EOMasterDetailAssociation

EOTableAssociation EOTableColumnAssociation

EOTableViewAssociation EOTextAssociation
22

C L A S S E O A s s o c i a t i o n
You normally set up EOAssociations using Interface Builder; each of the class specifications for
EOAssociation’s subclasses provide an example using Interface Builder to set them up.
EOAssociation’s programmatic interface is more important when defining custom
EOAssociation subclasses. For more information on EOAssociations, see the sections:

� “How EOAssociations Work” (page 39)

� “Setting up an EOAssociation Programmatically” (page 41)

� “Creating a Subclass of EOAssociation” (page 42)

Constants

(com.apple.client.eointerface only) EOAssociation defines the following String constants to
identify the names of association aspects:

com.apple.yellow.eointerface Associations

EOActionAssociation EOActionCellAssociation

EOActionInsertionAssociation EOColumnAssociation

EOComboBoxAssociation EOControlAssociation

EODetailSelectionAssociation EOGenericControlAssociation

EOMasterCopyAssociation EOMasterDetailAssociation

EOMasterPeerAssociation EOMatrixAssociation

EOPickTextAssociation EOPopUpAssociation

EORadioMatrixAssociation EORecursiveBrowserAssociation

EOTableViewAssociation EOTextAssociation

ActionAspect EnabledAspect SourceAspect

ArgumentAspect ParentAspect TitlesAspect
23

C L A S S E O A s s o c i a t i o n
(com.apple.client.eointerface only) The class defines additional String constants to identify
association signatures (see the method description aspectSignatures for more information):

Interfaces Implemented

NSDisposable

dispose

Method Types

Declaring capabilities

aspects (com.apple.yellow.eointerface static method)

aspects (com.apple.client.eointerface instance method)

aspectSignatures (com.apple.yellow.eointerface static method)

aspectSignatures (com.apple.client.eointerface instance method)

objectKeysTaken (com.apple.yellow.eointerface)

isUsableWithObject (com.apple.yellow.eointerface static method)

isUsableWithObject (com.apple.client.eointerface instance method)

BoldAspect SelectedObjectAspect ValueAspect

DestinationAspect SelectedTitleAspect URLAspect

ItalicAspect

AttributeAspectSignature NullAspectSignature

AttributeToOneAspectSignature ToOneAspectSignature

AttributeToOneToManyAspectSignature ToOneToManyAspectSignature

AttributeToManyAspectSignature ToManyAttributeSignature
24

C L A S S E O A s s o c i a t i o n
associationClassesSuperseded (com.apple.yellow.eointerface static method)

associationClassesSuperseded (com.apple.client.eointerface instance method)

displayName (com.apple.yellow.eointerface static method)

displayName (com.apple.client.eointerface instance method)

primaryAspect (com.apple.yellow.eointerface static method)

primaryAspect (com.apple.client.eointerface instance method)

canBindAspect

Getting all possible EOAssociations for a display object

associationClassesForObject:

Getting the display object

object

Examining bindings

displayGroupForAspect

displayGroupKeyForAspect

Updating values

subjectChanged

endEditing

Accessing enterprise object values

setValueForAspect

setValueForAspectAtIndex

valueForAspect

valueForAspectAtIndex

Handling validation errors

shouldEndEditing

shouldEndEditingAtIndex
25

C L A S S E O A s s o c i a t i o n
Constructors

EOAssociation

public EOAssociation(Object aDisplayObject)

Never use this method to create an EOAssociation. EOAssociation is conceptually an abstract
class, and you’d never use instances of it. Instead, use subclasses of EOAssociation. Instances of
the subclasses can be created programmatically with a constructor of this same form. For more
information, see the constructor description for the subclass you want to use. For a list of the
subclasses, see the “Class Description” (page 22).

Static Methods

aspects

public static NSArray aspects()

(com.apple.yellow.eointerface only) Overridden by subclasses to return the names of the
receiving class’s aspects as an array of string objects. Subclasses should include their superclass’s
aspects and add their own when overriding this method.

See Also: aspects instance method
26

C L A S S E O A s s o c i a t i o n
aspectSignatures

public static NSArray aspectSignatures()

(com.apple.yellow.eointerface only) Overridden by subclasses to return the signatures of the
receiver’s aspects, an array of string objects matching its aspects array index for index. Each
signature string can contain the following characters:

An aspect signature string of “A1”, for example, means the corresponding aspect can be bound
to either attributes or to-one relationships. An empty signature indicates that the corresponding
aspect can be bound to an EODisplayGroup without a key (that is, the key is irrelevant). Interface
Builder uses aspect signatures to enable and disable keys in its Connections inspectors.

EOAssociation’s implementation of this method returns an array of “A1M” of the length of its
aspects array.

See Also: aspectSignatures instance method

associationClassesForObject:

public static NSArray associationClassesForObject(Object aDisplayObject)

Returns the subclasses of EOAssociation usable with aDisplayObject. Sends isUsableWithObject
to every loaded subclass of EOAssociation, adding those that respond true to the array.
Subclasses shouldn’t override this method; override isUsableWithObject instead.

associationClassesSuperseded

public static NSArray associationClassesSuperseded()

(com.apple.yellow.eointerface only) Overridden by subclasses to return the other
EOAssociation classes that the receiver supplants. This allows a subclass to mask its superclasses
from the Connection Inspector’s pop-up list in Interface Builder, since the subclass always

Signature Character Meaning

A The aspect can be bound to attributes.

1 (one) The aspect can be bound to to-one relationships.

M The aspect can be bound to to-many relationships.
27

C L A S S E O A s s o c i a t i o n
includes the aspects and functionality of its superclasses. For example, EOPopUpAssociation
supersedes EOControlAssociation, because EOPopUpAssociation is always more appropriate to
use with pop-up buttons.

See Also: associationClassesSuperseded instance method

displayName

public static String displayName()

(com.apple.yellow.eointerface only) Returns the name used by Interface Builder in the
Connection Inspector’s pop-up list. EOAssociation’s implementation simply returns the name of
the receiving class.

See Also: displayName instance method

isUsableWithObject

public static boolean isUsableWithObject(Object aDisplayObject)

(com.apple.yellow.eointerface only) Overridden by subclasses to return true if instances of the
receiving class are usable with aDisplayObject, false if they aren’t. The receiving class can
examine any relevant characteristic of aDisplayObject—its class, configuration (such as
whether an NSMatrix operates in radio mode), and so on.

See Also: isUsableWithObject instance method

objectKeysTaken

public static NSArray objectKeysTaken()

(com.apple.yellow.eointerface only) Overridden by subclasses to return the names of display
object outlets that instances assume control of, such as “target” and “delegate”. Interface Builder
uses this information to disable connections from these outlets in its Connections Inspector.

See Also: objectKeysTaken instance method
28

C L A S S E O A s s o c i a t i o n
primaryAspect

public static String primaryAspect()

(com.apple.yellow.eointerface only) Overridden by subclasses to return the default aspect,
usually one denoting the displayed value, which by convention is named “value”.
EOAssociation’s implementation returns null.

See Also: primaryAspect instance method

Instance Methods

aspects

public NSArray aspects()

(com.apple.client.eointerface only) Overridden by subclasses to return the names of the
receiving class’s aspects, as string objects. Subclasses should include their superclass’s aspects
and add their own when overriding this method.

See Also: aspects static method

aspectSignatures

public NSArray aspectSignatures()

(com.apple.client.eointerface only) Overridden by subclasses to return the signatures of the
receiver’s aspects, an array of string objects matching its aspects array index for index. The
signature strings can be any of:

Constant The Aspect Can Be Bound to

AttributeAspectSignature Attributes

AttributeToOneAspectSignature Attributes and to-one relationships

AttributeToManyAspectSignature Attributes and to-many relationships

AttributeToOneToManyAspectSignature Attributes, to-one relationships, and to-many
relationships
29

C L A S S E O A s s o c i a t i o n
Interface Builder uses aspect signatures to enable and disable keys in its Connections inspectors.

EOAssociation’s implementation of this method returns an array of
AttributeToOneToManyAspectSignature strings.

See Also: aspectSignatures static method

associationClassesSuperseded

public NSArray associationClassesSuperseded()

(com.apple.client.eointerface only) Overridden by subclasses to return the other EOAssociation
classes that the receiver supplants. This allows a subclass to mask its superclasses from the
Connection Inspector’s pop-up list in Interface Builder, since the subclass always includes the
aspects and functionality of its superclasses. For example, EOPopUpAssociation supersedes
EOControlAssociation, because EOPopUpAssociation is always more appropriate to use with
pop-up buttons.

See Also: associationClassesSuperseded static method

ToOneAspectSignature To-one relationships

ToOneToManyAspectSignature To-one and to-many relationships

ToManyAttributeSignature To-many relationships

NullAspectSignature An EODisplayGroup without a key (the key is
irrelevant).

Constant The Aspect Can Be Bound to
30

C L A S S E O A s s o c i a t i o n
bindAspect

public void bindAspect(
String aspectName,
EODisplayGroup aDisplayGroup,
String key)

Defines the receiver’s link between its display object and aDisplayGroup. aspectName is the name
of the aspect it observer in its display object, and key is the name of the property it observes in
aDisplayGroup. Invoke establishConnection after this method to finish setting up the binding.
See “Setting up an EOAssociation Programmatically” (page 41) in the class description for more
information.

See Also: establishConnection

breakConnection

public void breakConnection()

Removes the receiver from its EODisplayGroup and display object. Subclasses should override
this method to remove the receiver from any outlets of the display object and invoke super’s
implementation at the end.

See Also: establishConnection

canBindAspect

public boolean canBindAspect(
String aspectName,
EODisplayGroup aDisplayGroup,
String key)

Overridden by subclasses to return true if the receiver can tie an aspect named aspectName from
its display object to the property identified by key in aDisplayGroup, false if it can’t. aspectName
should name an aspect supported by the receiver’s class.

Interface Builder uses this information to disable aspects in its Connections Inspector. Subclasses
can override this method to base their answers on other binds already made, or on characteristics
of the receiver’s display object or of aDisplayGroup. EOAssociation’s implementation always
returns true.

See Also: localKeys (EODisplayGroup), attributeKeys (EOClassDescription),
toOneRelationshipKeys (EOClassDescription), toManyRelationshipKeys (EOClassDescription)
31

C L A S S E O A s s o c i a t i o n
copyMatchingBindingsFromAssociation

public void copyMatchingBindingsFromAssociation(EOAssociation anAssociation)

Duplicates the bindings of anAssociation in the receiver. For each aspect of anAssociation that
has an EODisplayGroup, invokes bindAspect with the EODisplayGroup and key for that aspect.

displayGroupForAspect

public EODisplayGroup displayGroupForAspect(String aspectName)

Returns the EODisplayGroup bound to the receiver for aspectName, or null if there’s no such
object.

See Also: displayGroupKeyForAspect

displayGroupKeyForAspect

public String displayGroupKeyForAspect(String aspectName)

Returns the EODisplayGroup key bound to the receiver for aspectName, or null if there’s no
EODisplayGroup.

See Also: displayGroupForAspect

displayName

public String displayName()

(com.apple.client.eointerface only) Returns the name used for display purposes.
EOAssociation’s implementation simply returns the name of the receiver’s class.

See Also: displayName static method
32

C L A S S E O A s s o c i a t i o n
endEditing

public boolean endEditing()

Overridden by subclasses to pass the value of the receiver’s display object to the
EODisplayGroup, by invoking setValueForAspect with the display object’s value and the
appropriate aspect (typically “value”). Returns true if successful, false if not—specifically if
setValueForAspect returns false. The receiver should also send an associationDidEndEditing:
message to its EODisplayGroup.

Subclasses whose display objects immediately pass their changes back to the EOAssociation—
such as a button or pop-up list—need not override this method. It’s only needed when the
display object’s value is edited rather than simply set.

EOAssociation’s implementation does nothing but return true.

establishConnection

public void establishConnection()

Overridden by subclasses to attach the receiver to the outlets of its display object, and to
otherwise configure the display object (such as by setting its action method). EOAssociation’s
implementation subscribes the receiver as an observer of its EODisplayGroups. Subclasses
should invoke super’s implementation after establishing their own connections.

See “Setting up an EOAssociation Programmatically” (page 41) in the class description for more
information.

See Also: breakConnection

“Setting up an EOAssociation Programmatically” (page 41)

isEnabled

protected boolean isEnabled()

(com.apple.client.eointerface only) Returns false if the receiver has explicitly disabled its
display object or if the receiver’s EnabledAspect (if bound) resolves to false; true otherwise.
33

C L A S S E O A s s o c i a t i o n
isEnabledAtIndex

protected boolean isEnabledAtIndex(int index)

(com.apple.client.eointerface only) Returns false if the receiver has explicitly disabled its
display object or if the receiver’s EnabledAspect (if bound) resolves to false for index; true
otherwise.

isExplicitlyDisabled

public boolean isExplicitlyDisabled()

(com.apple.client.eointerface only) Returns true if the receiver has explicitly disabled its display
object, false otherwise.

isUsableWithObject

public boolean isUsableWithObject(Object aDisplayObject)

(com.apple.client.eointerface only) Overridden by subclasses to return true if instances of the
receiving class are usable with aDisplayObject, false if they aren’t. The receiving class can
examine any relevant characteristic of aDisplayObject—its class, configuration, and so on.
EOAssociation’s implementation returns false.

See Also: isUsableWithObject static method

object

public Object object()

Returns the receiver’s display object.

See Also:
34

C L A S S E O A s s o c i a t i o n
objectKeysTaken

public NSArray objectKeysTaken()

(com.apple.client.eointerface only) Overridden by subclasses to return the names of display
object outlets that instances assume control of. Interface Builder uses this information to disable
connections from these outlets in its Connections Inspector.

See Also: objectKeysTaken static method

primaryAspect

public String primaryAspect()

(com.apple.client.eointerface only) Overridden by subclasses to return the default aspect,
usually one denoting the displayed value, which by convention is named “value”.
EOAssociation’s implementation returns null.

See Also: primaryAspect static method

priority

public int priority()

Returns the receiver’s change notification priority. For more information, see the
EODelayedObserver class specification (EOControl).

setAutoCreated

public void setAutoCreated(boolean aBoolean)

(com.apple.client.eointerface only) This method is provided for internal use and is intentionally
undocumented. You should never need to invoke or customize this method.
35

C L A S S E O A s s o c i a t i o n
setExplicitlyDisabled

public void setExplicitlyDisabled(boolean flag)

(com.apple.client.eointerface only) Sets according to flag whether or not the association is
explicitly disabled. This method and its counterpart isExplicitlyDisabled are used by objects in
the com.apple.client.eoapplication and com.apple.client.eogeneration packages for Direct to
Java Client applications. An association is “explicitly disabled” when the display object
shouldn’t be editable, such as in the case where the display object simply displays the results of
a search.

setValueForAspect

public boolean setValueForAspect(
Object value,
String aspectName)

Sets a value of the selected enterprise object in the EODisplayGroup bound to aspectName.
Retrieves the display group and key bound to aspectName, and sends the display group a
setSelectedObjectValue message with value and the key as arguments. Returns true if
successful, or if there’s no display group bound to aspectName. Returns false if there’s an display
group and it doesn’t accept the new value.

See Also: valueForAspect

setValueForAspectAtIndex

public boolean setValueForAspectAtIndex(
Object value,
String aspectName,
int index)

Sets a value of the enterprise object at index in the EODisplayGroup bound to aspectName.
Retrieves the display group and key bound to aspectName, and sends the display group a
setValueForObjectAtIndex message with value, index, and the key as arguments. Returns true if
successful, or if there’s no display group bound to aspectName. Returns false if there’s a display
group and it doesn’t accept the new value.

See Also: valueForAspectAtIndex
36

C L A S S E O A s s o c i a t i o n
shouldEndEditing

public boolean shouldEndEditing(
String aspectName,
String inputString,
String errorDescription)

Invoked by subclasses when the display object fails to validate its input, this method informs the
EODisplayGroup bound to aspectName with an associationFailedToValidateValue message,
using the display group’s selected object. Returns the result of that message, or true if there’s no
display group.

For example, an association bound to an NSControl object (Application Kit) receives a
controlDidFailToFormatStringErrorDescription delegate message when the control’s formatter
fails to format the input string. Its implementation of that method invokes shouldEndEditing.

See Also: shouldEndEditingAtIndex

shouldEndEditingAtIndex

public boolean shouldEndEditingAtIndex(
String aspectName,
String inputString,
String errorDescription,
int index)

Works in the same manner as shouldEndEditing, but allows you to specify a particular object by
index rather than implicitly specifying the selected object.

subjectChanged

public void subjectChanged()

Overridden by subclasses to update state based when an EODisplayGroup’s selection or
contents changes. This method is invoked automatically anytime a display group that’s bound
to the receiver changes. The receiver can query its display group with selectionChanged and
contentsChanged messages to determine how it needs to update.
37

C L A S S E O A s s o c i a t i o n
valueForAspect

public Object valueForAspect(String aspectName)

Returns a value of the selected enterprise object in the EODisplayGroup bound to aspectName.
Retrieves the display group and key bound to aspectName, and sends the display group a
selectedObjectValueForKey message with the key. Returns null if there’s no display group or
key bound to aspectName.

See Also: setValueForAspect

valueForAspectAtIndex

public Object valueForAspectAtIndex(
String aspectName,
int index)

Returns a value of the enterprise object at index in the EODisplayGroup bound to aspectName.
Retrieves the display group and key bound to aspectName, and sends the display group a
valueForObjectAtIndex message with index and the key. Returns null if there’s no display group
or key bound to aspectName.

See Also: setValueForAspectAtIndex
38

O T H E R R E F E R E N C E
EOAssociation
How EOAssociations Work

An EOAssociation monitors its display object for user input or other events while also observing
changes in the selection or contents of its EODisplayGroups. The basic purpose of an
EOAssociation is to assure that changes at one end are reflected on the other. When the selection
in a display group changes, for example, the association updates the state of its display object to
reflect this new selection. The following sections describe this process in detail.

The Display Object
In the com.apple.yellow.eointerface package, an EOAssociation is tied to a single display object.
Each EOAssociation assumes the roles defined for one or more outlets of this object. An
EOControlAssociation, for example, appropriates the target and action outlets of the NSControl
it is bound to. When the user activates the control or changes its value, the action is fired and the
EOAssociation correspondingly updates a property of the display group's selected enterprise
object. An EOControlAssociation also sets itself as the control’s delegate in order to receive
various editing and validation messages.

In the com.apple.yellow.eointerface package, any outlets an association claims cannot be used
for other purposes. The class method objectKeysTaken returns the names of any outlets a given
EOAssociation subclass appropriates, and InterfaceBuilder disables them in its Connections
Inspector if the inspected object has been associated. A button acting as an
EOControlAssociation's display object, for example, has its target outlet dimmed.
39

O T H E R R E F E R E N C E E O A s s o c i a t i o n
Although display objects are typically user-interface controls such as text fields and pop-up
menus, they can be any kind of object. A notable example of this is an
EOMasterDetailAssociation, where the display object is a “detail” EODisplayGroup populated
with the destination enterprise objects of a relationship in the “master” display group. See the
EOMasterDetailAssociation class specification for more information on master-detail
configurations.

Bindings: Aspects, EODisplayGroups, and Keys
Although an EOAssociation has only one display object it may have any number of aspects.
Aspects define the EODisplayGroup characteristics that the association observes. Aspects are
bound to a display group by a key of the enterprise objects contained by the association.
Depending upon a given EOAssociation subclass, aspects may be optional or mandatory. They
might all have to be bound to a single EODisplayGroup or they may span several. Some aspects
can be mutually exclusive.

On the display side, aspects are typically bound to visible facets of the EOAssociation’s display
object, such as the value or values it displays and any interactive state. Each aspect’s value is
determined by the contents of the enterprise-object property in the EODisplayGroup that the
aspect is bound to. This value may be taken from all enterprise objects in the EODisplayGroup
or only those in the current selection. Some aspects are “read-only” in that they merely reflect
the contents of the display group, but others change enterprise-object values when the display
object is manipulated.

An EOControlAssociation, for example, defines “value” and “enabled” aspects. To configure a
text field to display the salary for the selected enterprise object you must create an
EOControlAssociation with the text field as its display object and bind the
EOControlAssociation’s “value” aspect to the appropriate display group’s “salary” key. You
might also bind the EOControlAssociation’s “enabled” aspect to some key such as
“eligibleForRaise” so that the text field is made editable if this property evaluates to non-zero.
When focus leaves the text field, the newly entered value is sent to the EODisplayGroup.

A multi-valued aspect can represent the destination of a to-many relationship or it can define a
range of possible values for an enterprise object’s property. EOComboBoxAssociation, for
example, has a “titles” aspect that defines all possible values for a key, and all these values then
appear in the pop-up menu. If, for example, you bind the “titles” aspect to the “name” key of an
EODisplayGroup containing Departments, you get a pop-up menu containing the names of all
departments. EOComboBoxAssociation also has a “selectedObject” aspect which, when bound
to a relationship property of an enterprise object, determines the selection in the “titles” display
group.
40

O T H E R R E F E R E N C E E O A s s o c i a t i o n
As EODelayedObservers, EOAssociations add themselves to the list of objects observing the
display groups they are bound to. When a display group changes its selection or contents,
observing EOAssociations are sent a subjectChanged message. This message does not indicate
which EODisplayGroup has changed, so the receiver must query each one. When an
EOAssociation wishes to modify the contents of a EODisplayGroup, it typically does so through
the setValueForAspect. This process and the querying of display groups are described under
“Monitoring Changes from the Display Object” (page 45).

Setting up an EOAssociation Programmatically

Although you normally use the Interface Builder application (and the EOPalette palette) to set
up EOAssociations, you can do so programmatically as well. Because EOAssociation
coordinates the actions of many objects, linking a display object to a display group is a multi-step
process, as shown by the following code fragment; this fragment assumes that salaryText and
employeeGroup already exist.

JTextComponent salaryText;
EODisplayGroup employeeGroup;
EOTextAssociation association;

association = new EOTextAssociation(salaryText);
association.bindAspect(EOTextAssociation.ValueAspect, employeeGroup, “salary”);
association.bindAspect(
 EOTextAssociation.EnabledAspect, employeeGroup, “eligibleForRaise“);
association.establishConnection();

Although an association is initialized with the display object it monitors, this really represents
only half of the required initialization; the association and therefore the display object have yet
to be bound to any display group. The two invocations of bindAspect define the specifics of the
field’s interaction with employeeGroup. Once these aspects have been bound,
establishConnection causes the association to register as an observer of employeeGroup and
complete its internal initialization. Note that when using the com.apple.yellow.eointerface APIs
you can safely release a newly instantiated association once you invoke establishConnection
because this method retains the association for the lifespan of the display object.
41

O T H E R R E F E R E N C E E O A s s o c i a t i o n
Creating a Subclass of EOAssociation

If none of the standard EOAssociation subclasses meets your needs, you can create a new one
without much effort. To do so, you need to define four areas of functionality:

� What your subclass monitors and which display objects it can work with.

� How your subclass establishes its connections with its display object and its
EODisplayGroups

� How it updates the display object to reflect display group changes.

� How it monitors the display object and updates the EODisplayGroups.

The following four sections describe how to do each of these.

Defining Capabilities
If you’re creating a com.apple.yellow.eointerface.EOAssociation subclass, a significant part of
creating an EOAssociation subclass is defining and advertising what the subclass works with.
The characteristics that your subclass should define are:

Aspects (required)
Your EOAssociation subclass must define an aspects class method that returns an
NSArray of aspect names, as Strings. Some standard aspects are:value, the value of
an attribute or relationship; enabled, whether the control should be enabled; titles, all
existing values for an attribute; and selectedTitle, the value of the selected attribute
(bound to the same key as “titles”).

What the subclass works with (required)
Interface Builder asks each EOAssociation subclass if it can work with a given object
when it displays its Connections Inspector. Your subclass should implement the
isUsableWithObject class method to examine the object provided and return true if
it can work with that object. This method can examine the class of the object
provided, or any of its attributes, to determine whether it can work with the object.
For example, EOPopUpAssociation verifies that the object is an NSPopUpButton,
while EOMasterDetailAssociation checks that the object is an EODisplayGroup
whose data source is an EODetailDataSource.
42

O T H E R R E F E R E N C E E O A s s o c i a t i o n
Aspect signatures (optional)
Aspects by default are made available for any kind of property—single-valued
attributes, to-one relationships, and to-many relationships. If your subclass has
aspects that only have meaning for one or two of these, it should define an
aspectSignatures class method that returns an NSArray of Strings corresponding to
the aspects defined for the class. Each string should contain a subset of the string
“A1M”, where “A” indicates that the aspect can be used with attributes (where the
value is a value-bearing object such as String or Number), “1” that it can be used with
to-one relationships (where the value is an enterprise object), and “M” indicates that
the aspect can be used with to-many relationships (where the value is an array of
enterprise objects). EOControlAssociation only displays single attributes, so its
aspect signature for “value” and “enabled” is the array (“A”, “A”).
EOMasterDetailAssociation only works with relationships, so the aspect signature
for its aspect “parent” is the array (“1M”).

Which outlets it uses (optional)
Interface Builder disables connections to outlets used by an EOAssociation, so if your
subclass uses any it should advertise them by defining the objectKeysTaken class
method to return an NSArray containing the names of the outlets. These are typically
the standard “target”, “delegate”, “dataSource”, and so on.

EOAssociation classes superseded (optional)
If your EOAssociation subclass applies uniquely to display objects that other kinds
of EOAssociations simply happen to work with, it should implement the
associationClassesSuperseded class method to return an array of these classes.
EOPopUpAssociation, for example, works with EOPopUpButton, which as a
subclass of NSControl is also eligible for the EOControlAssociation. Since this isn’t a
meaningful or useful EOAssociation for a pop-up button, EOPopUpAssociation
supersedes it, and Interface Builder doesn’t present it in its Connections Inspector
when a pop-up button is selected.

Display name (optional)
If you want your subclass to be listed in Interface Builder’s Associations pop-up list
with a name other than that of its class, it can override the displayName to return that
name. This is often done to truncate long names so they fit in the pop-up button.

Primary aspect (optional)
If your subclass implements the primaryAspect class method, Interface Builder
automatically selects it the first time the user drags a connection from the display
object and chooses your EOAssociation subclass in the Connections Inspector.
43

O T H E R R E F E R E N C E E O A s s o c i a t i o n
Binding ability (optional)
 If your subclass defines aspects that are mutually exclusive, available only for a
particular kind of display object, or are otherwise not always available, you might
want to implement the instance method canBindAspect to check these types of
conditions. Interface Builder uses this information to enable and disable aspects, to
guide the user in property setting up EOAssociations.

Priority (optional)
EOAssociation uses the default EODelayedObserver priority of
EODelayedObserverPriorityThird. If your subclass need a higher or lower priority,
it should override the priority method appropriately. EOMasterDetailAssociation,
for example, uses EODelayedObserverPrioritySecond to catch updates before other
EOAssociations based on it.

Setting Up
EOAssociation’s constructor is

public EOAssociation(Object object)

but you rarely need to write custom initialization code in this method. Instead, you override
establishConnection, which is where the real initialization takes place, as described above in
“Setting up an EOAssociation Programmatically” (page 41).

Your subclass’s implementation of establishConnection should first invoke the superclass
implementation to initialize the observation of bound EODisplayGroups and then establish their
notification relationship with the display object. Once the association has been bound to its
display groups and appropriately attached to its display object it is ready to perform real work.

Monitoring Changes from the EODisplayGroup
An EOAssociation is notified of changes in EODisplayGroup selections and changes through
EODelayedObserver’s subjectChanged method. An EOAssociation sublcass, in its
implementation of this method, propagates these changes to the display object. Because
subjectChanged provides no additional information about the change that triggered its
invocation, associations must query their bound display groups for details. The EOAssociation
method displayGroupForAspect, in conjunction with EODisplayGroup’s contentsChanged and
selectionChanged, faciliate efficient aspect-by-aspect change analysis. Once you have
44

O T H E R R E F E R E N C E E O A s s o c i a t i o n
determined the set of affected aspects, your subclass must update its display object to reflect
their new values. How this is done is specific to the class of display object and to the aspects your
EOAssocation subclass supports.

Monitoring Changes from the Display Object
When an EOAssociation is notified of a change to the state of its display object, it must update
the affected display groups so that they reflect the new state. Updating can involve changing a
display-group value, sending messages to the display group, or sending messages to some set
of the enterprise objects the display group contains. As a simple example, an association with a
“value” aspect would update the value of the bound display group’s selected enterprise object
by invoking setValueForAspect with the display object's new contents. Complex associations
might set enterprise object values more directly via EODisplayGroup's setSelectedObjectValue
, setValueForObject, or setValueForObjectAtIndex in conjunction with EOAssocation”s
displayGroupKeyForAspect. An association with a button as its display object might go even
further, sending the message defined by its “action” aspect to the enterprise objects selected in
a display group whenever the button is clicked.

For display objects that support editing, such as text fields, an association must observe events
signifying the beginning or end of an editing operation and then inform the appropriate display
groups using EODisplayGroup's associationDidBeginEditing and associationDidEndEditing.
This operation is important because a display group requests an end to editing when it is asked
to perform tasks such as the insertion of a new enterprise object or a save. It requests and end to
editing by sending an endEditing message to the association it believes currently has an edit in
progress. Implementations of endEditing should attempt to propagate the current state of the
display object to the receiver’s display groups and return false if this attempt fails, indicating
that the request has been disallowed. EOAssociations that support the display of multiple values
and the notion of a selection must also propagate changes in this selection to the appropriate
display groups using EODisplayGroup’s setSelectionIndexes.

Validation
Although validation of values entered by the user can happen in several places, EOAssociations
generally concern themselves only with data entry errors. These errors are typically caught by
the display object or an NSFormatter, and result in a message to the delegate of the display
object. For example, an NSControl sends controlIsValidObject and
controlDidFailToFormatStringErrorDescription to its delegate, allowing the delegate to validate
values itself or to handle errors caught by an NSFormatter. Your implementation of a method
such as controlIsValidObject should simply try to save the new value, using EOAssociation’s
45

O T H E R R E F E R E N C E E O A s s o c i a t i o n
setValueForAspect or setValueForAspectAtIndex, returning true or false as that message does.
For controlDidFailToFormatStringErrorDescription, the typical response should be to invoke
shouldEndEditing or shouldEndEditingAtIndex.
46

C L A S S
EOColumnAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

An EOColumnAssociation object cooperates with an EOTableViewAssociation to display values
in a column of an NSTableView (Application Kit).

A column association links an NSTableColumn (Application Kit) to a single attribute of all
displayed objects in an EODisplayGroup. The value of each object is displayed in its
corresponding row.

Column associations provide values for the cells of each NSTableColumn, and also accept edited
values to set in their display groups. The EOTableViewAssociation receives target, delegate, and
data source messages from the table view, and forwards them as needed to the appropriate
column association.

Note: This class doesn’t exist in the com.apple.client.eointerface package.
47

C L A S S E O C o l u m n A s s o c i a t i o n
EOColumnAssociations provide values using NSTableView’s DataSource methods
tableViewSetObjectValueForLocation and tableViewObjectValueForLocation. This allows values
with non-string representations to be displayed. For example, if an NSImageCell (Application
Kit) is used as an NSTableColumn’s data cell, an EOColumnAssociation can be used to display
NSImages (Application Kit) in the NSTableView.

Example
To display the last and first names of objects in a Talent display group, in Interface Builder,
Control-drag a connection from the last name column to the display group. Select
EOColumnAssociation in the Connections inspector, and bind the value aspect to the
“lastName” key (this automatically creates an EOTableViewAssociation to manage the
individual columns). Repeat to set up a column association for the first name. Now when you
run the application, the last and first names of each Talent object in the display group’s
displayedObjects array are put in the corresponding row.

Usable With

NSTableColumn (Application Kit)

Aspects

value An attribute of the objects, displayed in each row of the NSTableColumn.

enabled A boolean attribute of the objects, which determines whether each object’s value
cell is editable. Note that because EOTableViewAssociation also uses this aspect,
you can use it with different keys to limit editability to the whole row or to an
individual cell (column) in that row.

Object Keys Taken

identifier An EOColumnAssociations sets itself as the identifier of its NSTableColumn.
(Note: This key isn’t formally reserved by the objectKeysTaken method, as
Interface Builder doesn’t treat it as an outlet.)
48

C L A S S E O C o l u m n A s s o c i a t i o n
Method Types

Sorting rows

setSortingSelector

sortingSelector

Table view data source methods

tableViewSetObjectValueForLocation

tableViewObjectValueForLocation

Table view delegate methods

tableViewShouldEditLocation

tableViewWillDisplayCell

Control delegate methods

controlDidFailToFormatStringErrorDescription

controlIsValidObject

controlTextShouldBeginEditing

Constructors

EOColumnAssociation

public EOColumnAssociation(Object aDisplayObject)

Creates a new EOColumnAssociation to monitor and update the row values in aDisplayObject,
an NSTableColumn (Application Kit).
49

C L A S S E O C o l u m n A s s o c i a t i o n
You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Instance Methods

controlDidFailToFormatStringErrorDescription

public boolean controlDidFailToFormatStringErrorDescription(
com.apple.yellow.application.NSControl aTableView,
String aString,
String errorDescription)

Invokes shouldEndEditing (defined by EOAssociation) and returns the result.

controlIsValidObject

public boolean controlIsValidObject(
com.apple.yellow.application.NSControl aControl,
Object anObject)

Saves the value of any cell being edited using setValueForAspect, and if successful sends an
associationDidEndEditing message to the receiver’s EODisplayGroup. Returns true if successful
(or if no changes need be saved), false if unsuccessful.

controlTextShouldBeginEditing

public boolean controlTextShouldBeginEditing(
com.apple.yellow.application.NSControl aControl,
com.apple.yellow.application.NSText text)

Sends an associationDidBeginEditing message to the receiver’s EODisplayGroup and returns
true.
50

C L A S S E O C o l u m n A s s o c i a t i o n
establishConnection

public void establishConnection()

Attaches the receiver to the outlets of its display object and otherwise configures the display
object (such as by setting its action method). See “Setting up an EOAssociation
Programmatically” (page 41) in the class description for more information.

See Also: breakConnection (EOAssociation)

setSortingSelector

public void setSortingSelector(NSSelector aSelector)

Sets the method selector used to sort rows to aSelector, one of (defined in EOControl):

� EOSortOrdering.CompareAscending

� EOSortOrdering.CompareDescending

� EOSortOrdering.CompareCaseInsensitiveAscending

� EOSortOrdering.CompareCaseInsensitiveDescending

� null (to tell the receiver not to sort)

For more information on these selectors, see the section “Comparison Methods” in the
EOSortOrdering class specification (EOControl).

If the EOTableViewAssociation for the receiver’s NSTableView (Application Kit) sorts its rows,
it applies this method as needed to sort them. The default sorting selector is CompareAscending.

sortingSelector

public NSSelector sortingSelector()

Returns the method selector used to sort rows, or null if the column isn’t sorted.
51

C L A S S E O C o l u m n A s s o c i a t i o n
tableViewObjectValueForLocation

public Object tableViewObjectValueForLocation(
com.apple.yellow.application.NSTableView tableView,
com.apple.yellow.application.NSTableColumn tableColumn,
int rowIndex)

Returns the value of the property of the object at rowIndex bound to the value aspect.

tableViewSetObjectValueForLocation

public void tableViewSetObjectValueForLocation(
com.apple.yellow.application.NSTableView tableView,
Object value,
com.apple.yellow.application.NSTableColumn tableColumn,
int rowIndex)

Sets the property of the object at rowIndex bound to the value aspect to value.

tableViewShouldEditLocation

public boolean tableViewShouldEditLocation(
com.apple.yellow.application.NSTableView tableView,
com.apple.yellow.application.NSTableColumn tableColumn,
int rowIndex)

Returns false if the enabled aspect is bound and its value for the object at rowIndex is false.
Otherwise returns true. Note that because the enabled aspects of EOTableViewAssociation and
EOColumnAssociation can be bound to different keys, you can limit editability to the whole row
or to an individual cell (column) in that row.

tableViewWillDisplayCell

public void tableViewWillDisplayCell(
com.apple.yellow.application.NSTableView tableView,
Object aCell,
com.apple.yellow.application.NSTableColumn tableColumn,
int rowIndex)

Alters the display characteristics for aCell according to the values for the enabled aspect of the
object at rowIndex.
52

C L A S S
EOColumnEditor
Inherits from: Object

Implements: javax.swing.table.TableCellEditor
javax.swing.CellEditor (javax.swing.table.TableCellEditor)

Package: com.apple.client.eointerface

Class Description

EOColumnEditor is an abstract class that implements generalized cell editing management for
javax.swing.JTables. Swing specifies that JTable cell editing is performed by an object
implementing the javax.swing.table.TableCellEditor interface. EOColumnEditor implements
this interface in a generalized way, and concrete subclasses such as EOTextColumnEditor
perform component-specific instantiation and event communication.

The most important function of an EOColumnEditor instance is mediating between its
Component and the EOTableColumnAssociation that’s bound to the edited column. This
mediation enables the validation of edited values that associations are required to perform.

Create a subclass of EOColumnEditor if you want to use a Component for JTable editing for
which no EOColumnEditor is implemented.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
53

C L A S S E O C o l u m n E d i t o r
Interfaces Implemented

javax.swing.table.TableCellEditor

addCellEditorListener (javax.swing.CellEditor)

cancelCellEditing (javax.swing.CellEditor)

getCellEditorValue

getTableCellEditorComponent

isCellEditable

removeCellEditorListener (javax.swing.CellEditor)

shouldSelectCell

stopCellEditing

Method Types

Instantiation

createEditorComponent

editingTableColumnAssociation

editorComponent

setCellEditorValue

setEditorComponent

Event handling

beginEditing

endEditing
54

C L A S S E O C o l u m n E d i t o r
Instance Methods

beginEditing

protected void beginEditing()

Invoked from shouldSelectCell and getTableCellEditorComponent to inform the receiver that
editing has been requested and should begin (shouldSelectCell is invoked only by mouse
clicks). EOColumnEditor's implementation sends associationDidBeginEditing to the
EODisplayGroup of the EOTableColumnAssociation that’s bound to the receiver’s
TableColumn; so subclasses should invoke super’s implementation before activating their
Component.

createEditorComponent

protected abstract java.awt.Component createEditorComponent()

Creates and returns a Component to perform the editing—a JTextField or JComboBox, for
example. Invoked in EOColumnEditor's constructor, this method must be overridden by every
subclass in order to create and return the Component it manages.

editingTableColumnAssociation

protected com.apple.client.eointerface.EOTableColumnAssociation
editingTableColumnAssociation()

Returns the EOTableColumnAssociation that’s bound to the column being edited, which is
cached in EOColumnEditor’s implementation of shouldSelectCell and
getTableCellEditorComponent.
55

C L A S S E O C o l u m n E d i t o r
editorComponent

public java.awt.Component editorComponent()

Returns the receiver’s Component—a user interface control that implements the editing
mechanism. EOColumnEditor caches the Component in the constructor (in the method
createEditorComponent, which is invoked from the constructor).

endEditing

protected void endEditing()

Invoked from cancelCellEditing and stopCellEditing to inform the receiver that it should end
editing. EOColumnEditor’s implementation sends associationDidEndEditing to the
EODisplayGroup of the EOTableColumnAssociation that’s bound to the receiver's
TableColumn. Subclasses should invoke super’s implementation after deactivating their
Component.

getCellEditorValue

public Object getCellEditorValue()

Returns the receiver's editorComponent. EOColumnEditor’s implementation simply returns null,
so subclasses must override this method.

isCellEditable

public boolean isCellEditable(java.util.EventObject event)

Returns true if event is an event that should trigger editing, false otherwise. EOColumnEditor’s
implementation simply returns false. Subclasses must override this method.

setCellEditorValue

protected abstract void setCellEditorValue(Object initialValue)

Invoked from getTableCellEditorComponent to assign initialValue as the receiver’s
editorComponent. Subclasses must override this method.
56

C L A S S E O C o l u m n E d i t o r
setEditorComponent

public void setEditorComponent(java.awt.Component editorComponent)

Sets the receiver’s editor component to editorComponent. Invoked by the constructor, where
editorComponent is the Component returned from createEditorComponent.

shouldSelectCell

public boolean shouldSelectCell(java.util.EventObject event)

Returns true if event represents a legitimate selection trigger, or false otherwise.
EOColumnEditor's implementation invokes beginEditing and returns true.

stopCellEditing

public boolean stopCellEditing()

Informs the receiver that it should stop editing. EOColumnEditor’s implementation invokes
endEditing and returns true.

Note: Validation failures aren’t handled with this method. The boolean return value is
ignored.
57

C L A S S E O C o l u m n E d i t o r
58

C L A S S
EOComboBoxAssociation
Inherits from: (com.apple.client.eointerface)
EOAssociation :
EODelayedObserver (EOControl) :
Object

(com.apple.yellow.eointerface)
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Implements: EOObserving (EODelayedObserver)
(com.apple.client.eointerface only) java.awt.event.ActionListener
(com.apple.client.eointerface only) NSDisposable (EOAssociation)

Package: com.apple.client.eointerface
com.apple.yellow.eointerface
59

C L A S S E O C o m b o B o x A s s o c i a t i o n
Class Description

An EOComboBoxAssociation object displays an attribute or to-one relationship value in an
NSComboBox (Application Kit), or javax.swing.JComboBox. The items in the combo box can be
entered manually, or for a relationship, constructed dynamically from values supplied by an
EODisplayGroup. EOComboBoxAssociation is very similar to the EOPopUpAssociation
(com.apple.yellow.eointerface only).

Usable With

(com.apple.client.eointerface) javax.swing.JComboBox

(com.apple.yellow.eointerface) NSComboBox (Application Kit)

Aspects

titles Property of the enterprise objects in an EODisplayGroup that
supplies the titles for the items in the combo box list.

selectedTitle String property of the enterprise object supplying the title to
display in the combo box. When the value of the combo box
changes either because a new value is typed in or a selection
is made using the pop up menu, the new text value is
assigned to this property.

selectedObject Relationship property of the enterprise object containing the
enterprise object to select from the titles EODisplayGroup.
selectedObject is usually mutually exclusive with
selectedTitle. When the value of the combo box changes, the
association updates the relationship to point to the new
object.

enabled A boolean attribute of the selected object that determines
whether the combo box is enabled.
60

C L A S S E O C o m b o B o x A s s o c i a t i o n
Examples
There are three basic ways to configure a combo box and it’s association. Each is described
below.

Selecting a String from a Static List

Suppose you have a Movie display group and you want to provide a combo box for setting the
rating from a static list of strings. In this example, a Movie object’s rating is a string property
rather than a relationship to a Rating object). To do this, in Interface Builder, type the list of
ratings into the combo box. Control-drag a connection from the combo box to the Movie display
group. Choose EOComboBoxAssociation in the Connections inspector, and bind the
selectedTitle aspect to the “rating” key.

Selecting a String from a Dynamic List

This example is similar to the previous one, except in this example, a Movie object’s rating is
chosen from strings in a Rating database table. There’s a Rating EODisplayGroup that fetches
the ratings into Rating objects, and the combo box is filled from the “ratingString” property of
the rating display group’s Rating objects. To do this, in Interface Builder, control-drag a
connection from the combo box to the Ratings display group. Choose EOComboBoxAssociation
in the Connections inspector, and bind the titles aspect to the “ratingString” key. Similarly,
control-drag a connection from the combo box to the Movie display group. Again choose
EOComboBoxAssociation in the Connections inspector, and bind the selectedTitle aspect to the
“rating” key.

Object Keys Taken

(com.apple.yellow.eointerface
only) target

When the user chooses an item in the pop-up menu, the
EOComboBoxAssociation updates the selected object’s
property with the item’s title or object.

(com.apple.yellow.eointerface
only) dataSource

When the NSComboBox requests values for its list, the
EOComboBoxAssociation provides them by querying the
appropriate EODisplayGroup or groups.

(com.apple.yellow.eointerface
only) delegate

An EOComboBoxAssociation accepts the message
comboBoxSelectionDidChange.
61

C L A S S E O C o m b o B o x A s s o c i a t i o n
Selecting the Destination of a To-One Relationship

Suppose you have a list of employees and want to assign each employee a department. In terms
of the object model, you want to assign a Department object as the destination of an Employee
object’s department relationship. To do this, in Interface Builder, control-drag a connection from
the combo box to a Department display group. Choose EOComboBoxAssociation in the
Connections inspector, and bind the titles aspect to the “name” key. Similarly, control-drag a
connection from the combo box to the Employee display group. Again choose
EOComboBoxAssociation in the Connections inspector, and bind the selectedObject to the
“department” key.

If the selectedObject aspect is bound and the user types a value that doesn’t match any of those
currently in the list, an error panel is displayed.

Constructors

EOComboBoxAssociation

public EOComboBoxAssociation(Object aDisplayObject)

Creates a new EOComboBoxAssociation to monitor and update the values in aDisplayObject, a
combo box (using the com.apple.yellow.eointerface APIs, it’s a
com.apple.yellow.application.NSComboBox; using com.apple.client.eointerface APIs, it’s a
javax.swing.JComboBox).

You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)
62

C L A S S E O C o m b o B o x A s s o c i a t i o n
Instance Methods

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent anActionEvent)

(com.apple.client.eointerface only) Invoked when the receiver’s display object is acted upon.
Sends the method identified by the receiver’s action aspect (with an argument, if the argument
aspect is bound) to the selected objects.

breakConnection

public void breakConnection()

(com.apple.client.eointerface) Causes the association to remove itself from the list of listeners of
the JComboBox, and then calls super.

(com.apple.yellow.eointerface) See the breakConnection method description in the superclass
(EOAssociation).

endEditing

public boolean endEditing()

See the endEditing method description in the superclass (EOAssociation).

establishConnection

public void establishConnection()

(com.apple.client.eointerface) Causes the association to add itself as a listener of the JComboBox.

(com.apple.yellow.eointerface) See the establishConnection method description in the
superclass (EOAssociation).
63

C L A S S E O C o m b o B o x A s s o c i a t i o n
isUsableWithObject

public boolean isUsableWithObject(Object aDisplayObject)

See the isUsableWithObject method description in the superclass (EOAssociation).

primaryAspect

public String primaryAspect()

See the primaryAspect method description in the superclass (EOAssociation).

subjectChanged

public void subjectChanged()

See the subjectChanged method description in the superclass (EOAssociation).
64

C L A S S
EOControlActionAdapter
Inherits from: Object

Implements: java.awt.event.ActionListener
NSDisposable

Package: com.apple.client.eointerface

Class Description

The EOControlActionAdapter class is used to connect user interface controls to the objects that
respond to actions performed on those controls. They are usually generated automatically to
represent connections made in Interface Builder. For example, suppose you control-drag a
connection from a “Fetch” button to a display group and that you connect the button to the
display group’s fetch method. At runtime, an EOControlActionAdapter object is used to invoke
the display group’s fetch method when a user clicks the Fetch button. In this example, the
display group is the EOControlActionAdapter’s target, “fetch” is the name of the action
(method) to perform on the target, and the button is the listenee. An EOControlActionAdapter
listens for the listenee (the button) to be acted upon (to be pushed). When the listenee is acted
upon, the EOControlActionAdapter performs the action on its target (invokes the display
group’s fetch method).

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
65

C L A S S E O C o n t r o l A c t i o n A d a p t e r
Interfaces Implemented

NSDisposable

dispose

Constructors

EOControlActionAdapter

public EOControlActionAdapter(
Object target,
String actionName,
Object listenee)

public EOControlActionAdapter(
String actionName,
Object listenee)

Creates and returns a new EOControlActionAdapter object that performs the method identified
by actionName on target when listenee is acted upon. Raises and llegalStateException if
listenee is null.

Instance Methods

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent event)

Performs the receiver’s action on its target. If target is null, this method simply returns. If the
target doesn’t implement the action method, this method prints an error message and returns.
66

C L A S S E O C o n t r o l A c t i o n A d a p t e r
setTarget

public void setTarget(Object target)

Sets the receiver’s target to target.
67

C L A S S E O C o n t r o l A c t i o n A d a p t e r
68

C L A S S
EOControlAssociation
Inherits from: EOGenericControlAssociation :
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

EOControlAssociation is the default EOAssociation subclass for use with NSControl objects
(Application Kit).

A control association displays the value of the selected object in its control, and updates the
object when the control’s value changes. A sibling class, EOActionCellAssociation, can be used
with individual cells in an NSMatrix or NSForm (both defined in the Application Kit). Some
other subclasses of EOAssociation, such as EOPopUpAssociation and EOColumnAssociation,
supersede these classes for more specialized behavior.

Note: This class doesn’t exist in the com.apple.client.eointerface package.
69

C L A S S E O C o n t r o l A s s o c i a t i o n
EOControlAssociations access values using NSControl’s setObjectValue method, which allows
values with non-string representations to be displayed. An EOControlAssociation can be bound
to an NSImageView, for example, with an attribute whose class is NSImage (both NSImageView
and NSImage are defined in the Application Kit).

Examples
To display a movie’s budget in an NSTextField, in Interface Builder, control-drag a connection
from the text field and a Movie display group. In the Connections inspector, choose
EOControlAssociation, and bind the value aspect to the “budget” key. Then, if the NSTextField
is editable, when the user types a new value and presses Enter or Tab, the selected movie’s
budget attribute is changed.

Assuming that Movie objects implement an isBudgetNegotiable method, you can make the
NSTextField uneditable depending on the selected movie. To do so, bind the enabled aspect to
the “isBudgetNegotiable” key.

Usable With

Any NSControl (Application Kit)

Aspects

value An attribute of the selected object, displayed in the NSControl.

enabled A boolean attribute of the selected object, which determines whether the
NSControl is enabled.

Object Keys Taken

target On receiving an action message from the NSControl, an EOControlAssociation
sends the NSControl’s value to the EODisplayGroup.

delegate An EOControlAssociation accepts messages related to editing and validation of
text, such as controlTextShouldBeginEditing and
controlDidFailToFormatStringErrorDescription.
70

C L A S S E O C o n t r o l A s s o c i a t i o n
Constructors

EOControlAssociation

public EOControlAssociation(Object aDisplayObject)

Creates a new EOControlAssociation to monitor and update the row values in aDisplayObject,
an NSControl object (Application Kit).

You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)
71

C L A S S E O C o n t r o l A s s o c i a t i o n
72

C L A S S
EODetailSelectionAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

An EODetailSelectionAssociation binds two EODisplayGroups together through a relationship,
so that the destination display group acts as an editor for that relationship.

The destination display group shows all possible values for the relationship and indicates the
actual members of the relationship by selecting them. The user can change the objects included
in the relationship of the source by selecting and deselecting them in the destination.

EODetailSelectionAssociation is a useful alternative to EOMasterDetailAssociation and
EOMasterPeerAssociation when it’s more important to add and remove objects from a
relationship than it is to edit the attributes of those objects.

Note: This class doesn’t exist in the com.apple.client.eointerface package.

Usable With

EODisplayGroup
73

C L A S S E O D e t a i l S e l e c t i o n A s s o c i a t i o n
Example
Suppose that an employee can be assigned any number of projects. Your application displays
employees in one table view and projects in another. When an employee is selected in the first
table view, the employee’s assigned projects are selected in the other. To change the employee’s
project assignments, a user changes the selection in the project table view: to add a project to the
set, the user selects it, and to remove a project from the set, the user deselects it. To do this, in
Interface Builder control-drag a connection from the Projects display group to the Employee
display group. Choose EODetailSelectionAssociation in the Connections inspector, and bind the
selectedObjects aspect to the “projects” key.

Constructors

EODetailSelectionAssociation

public EODetailSelectionAssociation(Object aDisplayObject)

Creates a new EODetailSelectionAssociation to monitor and update the value in aDisplayObject,
an EODisplayGroup.

You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Aspects

selectedObjects A relationship from objects in the source EODisplayGroup.

Object Keys Taken

None
74

C L A S S
EODisplayGroup
Inherits from: (com.apple.client.eointerface) Object
(com.apple.yellow.eointerface) NSObject

Implements: (com.apple.client.eointerface only) NSDisposable
(com.apple.client.eointerface only) NSInlineObservable

Package: com.apple.client.eointerface
com.apple.yellow.eointerface

Class at a Glance

An EODisplayGroup collects an array of objects from an EODataSource, and works with a group
of EOAssociation objects to display and edit the properties of those objects.

Principal Attributes

� Array of objects supplied by an EODataSource

� EOQualifier and EOSortOrderings to filter the objects for display

� Array of selection indexes

� Delegate
75

C L A S S E O D i s p l a y G r o u p
Commonly Used Methods

Class Description

An EODisplayGroup is the basic user interface manager for an Enterprise Objects Framework or
Java Client application. It collects objects from an EODataSource, filters and sorts them, and
maintains a selection in the filtered subset. It interacts with user interface objects and other
display objects through EOAssociations, which bind the values of objects to various aspects of
the display objects.

An EODisplayGroup manipulates its EODataSource by sending it fetchObjects, insertObject,
and other messages, and registers itself as an editor and message handler of the EODataSource’s
EOEditingContext. The EOEditingContext allows the EODisplayGroup to intercede in certain
operations, as described in the EOEditingContext.Editor and
EOEditingContext.MessageHandler interface specifications (both interfaces are defined in
EOControl). EODisplayGroup implements all the methods of these informal protocols; see their
specifications for more information.

Most of an EODisplayGroup’s interactions are with its associations, its EODataSource, and its
EOEditingContext. See the EOAssociation, EODataSource, and EOEditingContext class
specifications for more information on these interactions.

allObjects Returns all objects in the EODisplayGroup.

displayedObjects Returns the subset of all objects made available for
display.

selectedObjects Returns the selected objects.

setQualifier Sets a filter that limits the objects displayed.

setSortOrderings Sets the ordering used to sort the objects.

updateDisplayedObjects Filters, sorts, and redisplays the objects.

insertNewObjectAtIndex Creates a new object and inserts it into the
EODataSource.
76

C L A S S E O D i s p l a y G r o u p
Creating an EODisplayGroup
You create most EODisplayGroups in Interface Builder, by dragging an entity icon from the
EOModeler application, which creates an EODisplayGroup with an EODatabaseDataSource
(EODistributedDataSource, for Java Client applications), or by dragging an EODisplayGroup
with no EODataSource from the EOPalette. EODisplayGroups with EODataSources operate
independent of other EODisplayGroups, while those without EODataSources must be set up in
a master-detail association with another EODisplayGroup.

To create an EODisplayGroup programmatically, simply initialize it and set its EODataSource:

EODistributedDataSource dataSource; /* Assume this exists. */
EODisplayGroup displayGroup;

displayGroup = new EODisplayGroup();
displayGroup.setDataSource(dataSource);

After creating the EODisplayGroup, you can add associations as described in the EOAssociation
class specification.

Getting Objects
Since an EODisplayGroup isn’t much use without objects to manage, the first thing you do with
an EODisplayGroup is send it a fetch message. You can use the basic fetch method or you can
configure the EODisplayGroup in Interface Builder to fetch automatically when its nib file is
loaded. These methods all ask the EODisplayGroup’s EODataSource to fetch from its persistent
store with a fetchObjects message.

Filtering and Sorting

An EODisplayGroup’s fetched objects are available through its allObjects method. These
objects are treated only as candidates for display, however. The array of objects actually
displayed is filtered and sorted by the EODisplayGroup’s delegate, or by a qualifier and sort
ordering array. You set the qualifier and sort orderings using the setQualifier and
setSortOrderings methods. The displayedObjects method returns this filtered and sorted array;
index arguments to other EODisplayGroup methods are defined in terms of this array.

If the EODisplayGroup has a delegate that responds to displayGroupDisplayArrayForObjects, it
invokes this method rather than using its own qualifier and sort ordering array. The delegate is
then responsible for filtering the objects and returning a sorted array. If the delegate only needs
77

C L A S S E O D i s p l a y G r o u p
to perform one of these steps, it can get the qualifier or sort orderings from the EODisplayGroup
and apply either itself using EOQualifier’s filteredArrayUsingQualifier and EOSortOrdering’s
sortedArrayUsingKeyOrderArray methods, which are added by the control layer.

If you change the qualifier or sort ordering, or alter the delegate in a way that changes how it
filters and sorts the EODisplayGroup’s objects, you can send updateDisplayedObjects to the
EODisplayGroup to get it to refilter and resort its objects. Note that this doesn’t cause the
EODisplayGroup to refetch.

Changing and Examining the Selection
An EODisplayGroup keeps a selection in terms of indexes into the array of displayed objects.
EOAssociations that display values for multiple objects are responsible for updating the
selection in their EODisplayGroups according to user actions on their display objects. This is
typically done with the setSelectionIndexes method. Other methods available for indirect
manipulation of the selection are the action methods selectNext and selectPrevious, as well as
selectObjectsIdenticalTo and selectObjectsIdenticalTo.

To get the selection, you can use the selectionIndexes method, which returns an array of
NSNumbers, or selectedObjects, which returns an array containing the selected objects
themselves. Another method, selectedObject, returns the first selected object if there is one.

The Delegate
EODisplayGroup offers a number of methods for its delegate to implement; if the delegate does,
it invokes them as appropriate. Besides the aforementioned
displayGroupDisplayArrayForObjects, there are methods that inform the delegate that the
EODisplayGroup has fetched, created an object (or failed to create one), inserted or deleted an
object, changed the selection, or set a value for a property. There are also methods that request
permission from the delegate to perform most of these same actions. The delegate can return
true to permit the action or false to deny it. For more information, see each method’s description
in the EODisplayGroup.Delegate interface specification.

Methods for Use by EOAssociations
While most of your application code interacts with objects directly, EODisplayGroup also
defines methods for its associations to access properties of individual objects without having to
know anything about which methods they implement. Accessing properties through the
EODisplayGroup offers associations the benefit of automatic validation, as well.
78

C L A S S E O D i s p l a y G r o u p
Associations access objects by index into the displayed objects array, or by object identifier.
valueForObjectAtIndex returns the value of a named property for the object at a given index, and
setValueForObjectAtIndex sets it. Similarly, valueForObject and setValueForObjectaccess the
objects by object identifier. EOAssociations can also get and set values for the first object in the
selection using selectedObjectValueForKey and setSelectedObjectValue.

Constants

(com.apple.client.eointerface only) EODisplayGroup defines String constants for the names of
the notifications it posts. For more information, see “Notifications” (page 110).

Interfaces Implemented

NSInlineObservable (com.apple.client.eointerface only)

observerData

setObserverData

NSDisposable (com.apple.client.eointerface only)

dispose

Method Types

Configuring behavior

defaultStringMatchFormat

defaultStringMatchOperator

fetchesOnLoad
79

C L A S S E O D i s p l a y G r o u p
queryBindingValues

queryOperatorValues

selectsFirstObjectAfterFetch

setDefaultStringMatchFormat

setDefaultStringMatchOperator

setFetchesOnLoad

setQueryBindingValues

setQueryOperatorValues

setSelectedObject

setSelectedObjects

setSelectsFirstObjectAfterFetch

setUsesOptimisticRefresh

setValidatesChangesImmediately

usesOptimisticRefresh

validatesChangesImmediately

Setting the data source

setDataSource

dataSource

Setting the qualifier and sort ordering

setQualifier

qualifier

setSortOrderings

sortOrderings

Managing queries

qualifierFromQueryValues

setEqualToQueryValues

equalToQueryValues
80

C L A S S E O D i s p l a y G r o u p
setGreaterThanQueryValues

greaterThanQueryValues

setLessThanQueryValues

lessThanQueryValues

qualifyDisplayGroup

qualifyDataSource

enterQueryMode

inQueryMode

setInQueryMode

enabledToSetSelectedObjectValueForKey

Fetching objects from the data source

fetch

Getting the objects

allObjects

displayedObjects

Updating display of values

redisplay

updateDisplayedObjects

Setting the objects

setObjectArray

Changing the selection

setSelectionIndexes

selectObjectsIdenticalTo

selectObject

clearSelection

selectNext

selectPrevious
81

C L A S S E O D i s p l a y G r o u p
Examining the selection

selectionIndexes

selectedObject

selectedObjects

Adding keys

setLocalKeys

localKeys

Getting the associations

observingAssociations

Setting the delegate

setDelegate

delegate

Changing values from associations

setSelectedObjectValue

selectedObjectValueForKey

setValueForObject

valueForObject

setValueForObjectAtIndex

valueForObjectAtIndex

Editing by associations

associationDidBeginEditing

associationFailedToValidateValue

associationDidEndEditing

editingAssociation

endEditing

Querying changes for associations

contentsChanged
82

C L A S S E O D i s p l a y G r o u p
selectionChanged

updatedObjectIndex

Interacting with the EOEditingContext

editorHasChangesForEditingContext

editingContextWillSaveChanges

editingContextPresentErrorMessage

Constructors

EODisplayGroup

public EODisplayGroup()

Creates a new EODisplayGroup. The new display group needs to have an EODataSource set
with setDataSource.

See Also: bindAspect (EOAssociation)

Static Methods

globalDefaultForValidatesChangesImmediately

public static boolean globalDefaultForValidatesChangesImmediately()

Returns true if the default behavior for new display group instances is to immediately handle
validation errors, or false if the default behavior leaves errors for the EOEditingContext to
handle when saving changes.

See Also: validatesChangesImmediately
83

C L A S S E O D i s p l a y G r o u p
globalDefaultStringMatchFormat

public static String globalDefaultStringMatchFormat()

Returns the default string match format string used by display group instances.

See Also: defaultStringMatchFormat

globalDefaultStringMatchOperator

public static String globalDefaultStringMatchOperator()

Returns the default string match operator used by display group instances.

See Also: defaultStringMatchOperator

setGlobalDefaultForValidatesChangesImmediately

public static void setGlobalDefaultForValidatesChangesImmediately(boolean flag)

Sets the default behavior display group instances use when they encounter a validation error. If
flag is true, the default behavior is for display groups to immediately present an attention panel
indicating a validation error. If flag is false, the default behavior if for display groups to leave
validation errors to be handled when changes are saved. By default, display groups don’t
validate changes immediately.

See Also: – saveChanges (EOEditingContext), setValidatesChangesImmediately

setGlobalDefaultStringMatchFormat

public static void setGlobalDefaultStringMatchFormat(String format)

Sets the default string match format to be used by display group instances. The default format
string for pattern matching is “%@*”.

See Also: setDefaultStringMatchFormat
84

C L A S S E O D i s p l a y G r o u p
setGlobalDefaultStringMatchOperator

public static void setGlobalDefaultStringMatchOperator(String op)

Sets the default string match operator to be used by display group instances. The default
operator is case insensitive like.

See Also: setDefaultStringMatchOperator

Instance Methods

allObjects

public NSArray allObjects()

Returns all of the objects collected by the receiver.

See Also: displayedObjects, fetch

associationDidBeginEditing

public void associationDidBeginEditing(EOAssociation anAssociation)

Invoked by anAssociation when its display object begins editing to record that EOAssociation
as the editing association.

See Also: editingAssociation, endEditing, associationFailedToValidateValue

associationDidEndEditing

public void associationDidEndEditing(EOAssociation anAssociation)

Invoked by anAssociation to clear the editing association. If anAssociation is the receiver’s
editing association, clears the editing association. Otherwise does nothing.

See Also: editingAssociation, endEditing, associationFailedToValidateValue
85

C L A S S E O D i s p l a y G r o u p
associationFailedToValidateValue

public boolean associationFailedToValidateValue(
EOAssociation anAssociation,
String value,
String key,
Object anObject,
String errorDescription)

Invoked by anAssociation from its shouldEndEditingAtIndex method to let the receiver handle a
validation error. This method opens an attention panel with errorDescription as the message
and returns false.

See Also: displayGroupShouldDisplayAlert (EODisplayGroup.Delegate)

awakeFromNib

public void awakeFromNib()

(com.apple.client.eointerface only) Invoked when the receiver is unarchived from a nib file to
prepare it for use in an application. You should never invoke this method directly. Finishes
initializing the receiver and updates the display.

See Also: finishInitialization, redisplay

clearSelection

public boolean clearSelection()

Invokes setSelectionIndexes to clear the selection, returning true on success and false on
failure.

contentsChanged

public boolean contentsChanged()

Returns true if the receiver’s array of objects has changed and not all observers have been
notified, false otherwise. EOAssociations use this in their subjectChanged methods to determine
what they need to update.

See Also: selectionChanged, updatedObjectIndex
86

C L A S S E O D i s p l a y G r o u p
dataSource

public EODataSource dataSource()

Returns the receiver’s EODataSource.

See Also: setDataSource

defaultStringMatchFormat

public String defaultStringMatchFormat()

Returns the format string that specifies how pattern matching will be performed on string values
in the query dictionaries (equalToQueryValues, greaterThanQueryValues, and
lessThanQueryValues). If a key in the queryMatch dictionary does not have an associated operator
in the queryOperatorValues dictionary, then its value is matched using pattern matching, and the
format string returned by this method specifies how it will be matched.

See Also: defaultStringMatchOperator, setDefaultStringMatchFormat

defaultStringMatchOperator

public String defaultStringMatchOperator()

Returns the operator used to perform pattern matching for string values in the query
dictionaries (equalToQueryValues, greaterThanQueryValues, and lessThanQueryValues). If a key in
one of the query dictionaries does not have an associated operator in the queryOperatorValues
dictionary, then the operator returned by this method is used to perform pattern matching.

See Also: defaultStringMatchFormat, setDefaultStringMatchOperator

delegate

public Object delegate()

Returns the receiver’s delegate.

See Also: setDelegate
87

C L A S S E O D i s p l a y G r o u p
delete

public void delete(Object anObject)

(com.apple.client.eointerface only) This action method invokes deleteSelection.

deleteObjectAtIndex

public boolean deleteObjectAtIndex(int index)

Attempts to delete the object at index, returning true if successful and false if not. Checks with
the delegate using displayGroupShouldDeleteObject. If the delegate returns false, this method
fails and returns false. If successful, sends the delegate a displayGroupDidDeleteObject message.

This method performs the delete by sending deleteObject to the EODataSource. If that message
throws an exception, this method fails and returns false.

deleteSelection

public boolean deleteSelection()

Attempts to delete the selected objects, returning true if successful and false if not.

displayedObjects

public NSArray displayedObjects()

Returns the objects that should be displayed or otherwise made available to the user, as filtered
by the receiver’s delegate or by its qualifier and sort ordering.

See Also: allObjects, updateDisplayedObjects,
displayGroupDisplayArrayForObjects (EODisplayGroup.Delegate), qualifier, sortOrderings

editingAssociation

public EOAssociation editingAssociation()

Returns the EOAssociation editing a value if there is one, false if there isn’t.

See Also: associationDidBeginEditing, associationDidEndEditing
88

C L A S S E O D i s p l a y G r o u p
editingContextPresentErrorMessage

public void editingContextPresentErrorMessage(
EOEditingContext anEditingContext,
String errorMessage)

Invoked by anEditingContext as part of the EOEditingContext.MessageHandlers interface, this
method presents an attention panel with errorMessage as the message to display.

editingContextShouldContinueFetching

public boolean editingContextShouldContinueFetching(
com.apple.client.eocontrol.EOEditingContext anEditingContext,

(com.apple.client.eointerface only) Invoked by anEditingContext as part of the
EOEditingContext.MessageHandlers interface, this method presents an attention panel
prompting the user about whether or not to continue fetching the current result set.

editingContextWillSaveChanges

public void editingContextWillSaveChanges(EOEditingContext anEditingContext)

Invoked by anEditingContext in its saveChanges method as part of the EOEditors informal
protocol, this method allows the EODisplayGroup to prohibit a save operation.
EODisplayGroup’s implementation of this method invokes endEditing, and throws an exception
if it returns false. Thus, if there’s an association that refuses to end editing, anEditingContext
doesn’t save changes.

editorHasChangesForEditingContext

public boolean editorHasChangesForEditingContext(EOEditingContext anEditingContext)

Invoked by anEditingContext as part of the EOEditors interface, this method returns false if any
association is editing, true otherwise.

See Also: editingAssociation, associationDidBeginEditing, associationDidEndEditing
89

C L A S S E O D i s p l a y G r o u p
enabledToSetSelectedObjectValueForKey

public boolean enabledToSetSelectedObjectValueForKey(String key)

Returns true to indicate that a single value association (such as an EOControlAssociation for a
NSTextField) should be enabled for setting key, false otherwise. Normally this is the case if the
receiver has a selected object. However, if key is a special query key (for example,
“@query=.name”), then the control should be enabled even without a selected object.

endEditing

public boolean endEditing()

Attempts to end any editing taking place. If there’s no editing association or if the editing
association responds true to an endEditing message, returns true. Otherwise returns false.

See Also: editingAssociation

enterQueryMode

public void enterQueryMode(Object sender)

This action method invokes setInQueryMode with an argument of true.

equalToQueryValues

public NSDictionary equalToQueryValues()

Returns the receiver’s dictionary of equalTo query values. This dictionary is typically
manipulated by associations bound to keys of the form @query=.propertyName. The
qualifierFromQueryValues method uses this dictionary along with the lessThan and greaterThan
dictionaries to construct qualifiers.

See Also: setEqualToQueryValues, greaterThanQueryValues, lessThanQueryValues,

fetch

public boolean fetch()

Attempts to fetch objects from the EODataSource, returning true on success and false on failure.
90

C L A S S E O D i s p l a y G r o u p
Before fetching, invokes endEditing and sends displayGroupShouldFetch to the delegate,
returning false if either of these methods does. If both return true, sends a fetchObjects
message to the receiver’s EODataSource to replace the object array, and if successful sends the
delegate a displayGroupDidFetchObjects message.

fetch

public void fetch(Object anObject)

(com.apple.client.eointerface only) This action method invokes fetch.

fetchesOnLoad

public boolean fetchesOnLoad()

Returns true if the receiver fetches automatically after being loaded from a nib file, false if it
must be told explicitly to fetch. The default is false. You can set this behavior in Interface Builder
using the Inspector panel.

See Also: fetch, setFetchesOnLoad

finishInitialization

public void finishInitialization()

(com.apple.client.eointerface only) Invoked from the EODisplayGroup constructor and from
awakeFromNib to finish initializing a newly created display group. You should never invoke this
method directly. Sets the receiver’s editing context to it’s data source’s editing context (if
available), registers the receiver for ObjectsChangedInEditingContextNotifications and
InvalidatedAllObjectsInStoreNotifications, establishes the receiver as an editor for the editing
context, and establishes the receiver as the editing context’s message handler (unless the editing
context already has a message handler).
91

C L A S S E O D i s p l a y G r o u p
greaterThanQueryValues

public NSDictionary greaterThanQueryValues()

Returns the receiver’s dictionary of greaterThan query values. This dictionary is typically
manipulated by associations bound to keys of the form @query>.propertyName. The
qualifierFromQueryValues method uses this dictionary along with the lessThan and equalTo
dictionaries to construct qualifiers.

See Also: setGreaterThanQueryValues, lessThanQueryValues, equalToQueryValues

inQueryMode

public boolean inQueryMode()

Returns true to indicate that the receiver is in query mode, false otherwise. In query mode, user
interface controls that normally display values become empty, allowing users to type queries
directly into them (this is also known as a “Query By Example” interface). In effect, the receiver’s
“displayedObjects” are replaced with an empty equalTo query values dictionary. When
qualifyDisplayGroup or qualifyDataSource is subsequently invoked, the query is performed and
the display reverts to displaying values—this time, the objects returned by the query.

See Also: setInQueryMode, enterQueryMode

insert

public void insert(Object sender)

(com.apple.client.eointerface only) This action method invokes insertNewObjectAtIndex with an
index just past the first index in the selection, or 0 if there’s no selection.

insertedObjectDefaultValues

public NSDictionary insertedObjectDefaultValues()

Returns the default values to be used for newly inserted objects. The keys into the dictionary are
the properties of the entity that the display group manages. If the dictionary returned by this
method is empty, the insert... method adds an object that is initially empty. Because the object
is empty, the display group has no value to display on the HTML page for that object, meaning
that there is nothing for the user to select and modify. Use the setInsertedObjectDefaultValues
method to set up a default value so that there is something to display on the page.
92

C L A S S E O D i s p l a y G r o u p
insertNewObjectAtIndex

public Object insertNewObjectAtIndex(int anIndex)

(com.apple.yellow.eointerface only) Asks the receiver’s EODataSource to create a new object by
sending it a createObject message, then inserts the new object using insertObjectAtIndex. The
EODataSource createObject method has the effect of inserting the object into the
EOEditingContext.

If a new object can’t be created, this method sends the delegate a
displayGroupCreateObjectFailed message or, if the delegate doesn’t respond, opens an attention
panel to inform the user of the error.

See Also: insert

insertObjectAtIndex

public void insertObjectAtIndex(
Object anObject,
int index)

Inserts anObject into the receiver’s EODataSource and displayedObjects array at index, if
possible. This method checks with the delegate before actually inserting, using
displayGroupShouldInsertObject. If the delegate refuses, anObject isn’t inserted. After
successfully inserting the object, this method informs the delegate with a
displayGroupDidInsertObject message, and selects the newly inserted object. Throws an
exception if index is out of bounds.

Unlike the insertNewObjectAtIndex method, this method does not insert the object into the
EOEditingContext. If you use this method, you’re responsible for inserting the object into the
EOEditingContext yourself.

public Object insertNewObjectAtIndex(int anIndex)

(com.apple.client.eointerface only) Asks the receiver’s EODataSource to create a new object by
sending it a createObject message, then inserts the new object using insertObjectAtIndex. The
EODataSource createObject method has the effect of inserting the object into the
EOEditingContext.

If a new object can’t be created, this method sends the delegate a
displayGroupCreateObjectFailed message or, if the delegate doesn’t respond, opens an attention
panel to inform the user of the error.
93

C L A S S E O D i s p l a y G r o u p
lessThanQueryValues

public NSDictionary lessThanQueryValues()

Returns the receiver’s dictionary of lessThan query values. This dictionary is typically
manipulated by associations bound to keys of the form @query<.propertyName. The
qualifierFromQueryValues method uses this dictionary along with the greaterThan and equalTo
dictionaries to construct qualifiers.

See Also: setLessThanQueryValues, greaterThanQueryValues, equalToQueryValues

localKeys

public NSArray localKeys()

Returns the additional keys that EOAssociations can be bound to. An EODisplayGroup’s basic
keys are typically those of the attributes and relationships of its objects, as defined by their
EOClassDescription through an EOEntity in the model. Local keys are typically used to form
associations with key paths, with arbitrary methods of objects, or with properties of objects not
associated with an EOEntity. Interface Builder allows the user to add and remove local keys in
the EODisplayGroup Attributes Inspector panel.

See Also: setLocalKeys

observingAssociations

public NSArray observingAssociations()

Returns all EOAssociations that observe the receiver’s objects.

qualifier

public EOQualifier qualifier()

Returns the receiver’s qualifier, which it uses to filter its array of objects for display when the
delegate doesn’t do so itself.

See Also: updateDisplayedObjects, displayedObjects, setQualifier
94

C L A S S E O D i s p l a y G r o u p
qualifierFromQueryValues

public EOQualifier qualifierFromQueryValues()

Builds a qualifier constructed from entries in the three query dictionaries: equalTo, greaterThan,
and lessThan. These, in turn, are typically manipulated by associations bound to keys of the
form @query=.firstName, @query>.budget, @query<.budget.

See Also: qualifyDisplayGroup, qualifyDataSource

qualifyDataSource

public void qualifyDataSource()

Takes the result of qualifierFromQueryValues and applies to the receiver's data source. The
receiver then sends itself a fetch message. If the receiver is in query mode, query mode is exited.
This method differs from qualifyDisplayGroup as follows: whereas qualifyDisplayGroup
performs in-memory filtering of already fetched objects, qualifyDataSource triggers a new
qualified fetch against the database.

public void qualifyDataSource(Object sender)

(com.apple.client.eointerface only) This action method simply invokes the no argument version.

qualifyDisplayGroup

public void qualifyDisplayGroup()

Takes the result of qualifierFromQueryValues and applies to the receiver using setQualifier. The
method updateDisplayedObjects is invoked to refresh the display. If the receiver is in query
mode, query mode is exited.

public void qualifyDisplayGroup(Object sender)

(com.apple.client.eointerface only) This action method simply invokes the no argument version.
95

C L A S S E O D i s p l a y G r o u p
queryBindingValues

public NSDictionary queryBindingValues()

Returns a dictionary containing the actual values that the user wants to query upon. You use this
method to perform a query stored in the model file. Bind keys in this dictionary to elements on
your component that specify query values, then pass this dictionary to the fetch specification
that performs the fetch.

queryOperatorValues

public NSDictionary queryOperatorValues()

Returns a dictionary of operators to use on items in the query dictionaries (equalToQueryValues,
greaterThanQueryValues, and lessThanQueryValues). If a key in a query dictionary also exists in
queryOperatorValues, that operator for that key is used.

See Also: qualifierFromQueryValues

redisplay

public void redisplay()

Notifies all observing associations to redisplay their values.

See Also: observingAssociations

selectedObject

public Object selectedObject()

Returns the first selected object in the displayed objects array, or null if there’s no such object.

See Also: displayedObjects, selectionIndexes
96

C L A S S E O D i s p l a y G r o u p
selectedObjects

public NSArray selectedObjects()

Returns the objects selected in the receiver’s displayed objects array.

See Also: displayedObjects, selectionIndexes

selectedObjectValueForKey

public Object selectedObjectValueForKey(String key)

Returns the value corresponding to key for the first selected object in the receiver’s displayed
objects array, or null if exactly one object isn’t selected.

See Also: valueForObjectAtIndex

selectionChanged

public boolean selectionChanged()

Returns true if the selection has changed and not all observers have been notified, false
otherwise. EOAssociations use this in their subjectChanged methods to determine what they
need to update.

See Also: contentsChanged

selectionIndexes

public NSArray selectionIndexes()

Returns the indexes of the receiver’s selected objects as Numbers, in terms of its displayed
objects array.

See Also: displayedObjects, selectedObjects, selectedObject, setSelectionIndexes
97

C L A S S E O D i s p l a y G r o u p
selectNext

public boolean selectNext()

Attempts to select the object just after the currently selected one, returning true if successful and
false if not. The selection is altered in this way:

� If there are no objects, does nothing and returns false.

� If there’s no selection, selects the object at index zero and returns true.

� If the first selected object is the last object in the displayed objects array, selects the first object
and returns true.

� Otherwise selects the object after the first selected object.

public void selectNext(Object sender)

(com.apple.client.eointerface only) This action method simply invokes the no argument version.

selectObject

public boolean selectObject(Object anObject)

Returns true to indicate that the receiver has found and selected anObject, false if it can’t find a
match for anObject (in which case it clears the selection). The selection is performed on the
receiver’s displayedObjects, not on allObjects.

selectObjectsIdenticalTo

public boolean selectObjectsIdenticalTo(NSArray objects)

Attempts to select the objects in the receiver’s displayed objects array which are equal to those
of objects, returning true if successful and false otherwise.
98

C L A S S E O D i s p l a y G r o u p
selectObjectsIdenticalToSelectFirstOnNoMatch

public boolean selectObjectsIdenticalTo(
NSArray objects,
boolean flag)

(com.apple.client.eointerface only) Selects the objects in the receiver’s displayed objects array
that are equal to those of objects, returning true if successful and false otherwise. If no objects
in the displayed objects array match objects and flag is true, attempts to select the first object
in the displayed objects array.

See Also: setSelectionIndexes

selectPrevious

public boolean selectPrevious()

Attempts to select the object just before the presently selected one, returning true if successful
and false if not. The selection is altered in this way:

� If there are no objects, does nothing and returns false.

� If there’s no selection, selects the object at index zero and returns true.

� If the first selected object is at index zero, selects the last object and returns true.

� Otherwise selects the object before the first selected object.

public void selectPrevious(Object anObject)

(com.apple.client.eointerface only) This action method simply invokes the no argument version.

selectsFirstObjectAfterFetch

public boolean selectsFirstObjectAfterFetch()

Returns true if the receiver automatically selects its first displayed object after a fetch if there was
no selection, false if it leaves an empty selection as-is.

See Also: displayedObjects, fetch, setSelectsFirstObjectAfterFetch
99

C L A S S E O D i s p l a y G r o u p
setDataSource

public void setDataSource(EODataSource aDataSource)

Sets the receiver’s EODataSource to aDataSource. In the process, it performs these actions:

� Unregisters self as an editor and message handler for the previous EODataSource’s
EOEditingContext, if necessary, and registers self with aDataSource’s editing context. If the
new editing context already has a message handler, however, the receiver doesn’t assume
that role.

� Registers self for ObjectsChangedInEditingContextNotification and
InvalidatedAllObjectsInStoreNotification from the new editing context.

� Clears the receiver’s array of objects.

� Sends displayGroupDidChangeDataSource to the delegate if there is one.

See Also: dataSource

setDefaultStringMatchFormat

public void setDefaultStringMatchFormat(String format)

Sets how pattern matching will be performed on String values in the query dictionaries
(equalToQueryValues, greaterThanQueryValues, and lessThanQueryValues). This format is used for
query dictionary properties that have String values and that do not have an associated entry in
the queryOperatorValues dictionary. In these cases, the value is matched using pattern matching
and format specifies how it will be matched.

The default format string for pattern matching is “%@*” which means that the string value in the
queryMatch dictionary is used as a prefix. For example, if the query dictionary contains a value
“Jo” for the key “Name”, the query returns all records whose name values begin with “Jo”.

See Also: defaultStringMatchFormat, setDefaultStringMatchOperator
100

C L A S S E O D i s p l a y G r o u p
setDefaultStringMatchOperator

public void setDefaultStringMatchOperator(String matchOperator)

Sets the operator used to perform pattern matching for String values in the queryMatch
dictionary. This operator is used for properties listed in the query dictionaries
(equalToQueryValues, greaterThanQueryValues, and lessThanQueryValues) that have String values
and that do not have an associated entry in the queryOperatorValues dictionary. In these cases,
the operator matchOperator is used to perform pattern matching.

The default value for the query match operator is caseInsensitiveLike, which means that the
query does not consider case when matching letters. The other possible value for this operator
is like, which matches the case of the letters exactly.

See Also: defaultStringMatchOperator, setDefaultStringMatchFormat

setDelegate

public void setDelegate(Object anObject)

Sets the receiver’s delegate to anObject.

See Also: delegate

setEqualToQueryValues

public void setEqualToQueryValues(NSDictionary values)

Sets to values the receiver’s dictionary of equalTo query values. The qualifierFromQueryValues
method uses this dictionary along with the lessThan and greaterThan dictionaries to construct
qualifiers.

See Also: equalToQueryValues, setLessThanQueryValues, setGreaterThanQueryValues
101

C L A S S E O D i s p l a y G r o u p
setFetchesOnLoad

public void setFetchesOnLoad(boolean flag)

Controls whether the receiver automatically fetches its objects after being loaded from a nib file.
If flag is true it does; if flag is false the receiver must be told explicitly to fetch. The default is
false. You can also set this behavior in Interface Builder using the Inspector panel.

See Also: fetch, fetchesOnLoad

setGreaterThanQueryValues

public void setGreaterThanQueryValues(NSDictionary values)

Sets to values the receiver’s dictionary of greaterThan query values. The
qualifierFromQueryValues method uses this dictionary along with the lessThan and equalTo
dictionaries to construct qualifiers.

See Also: greaterThanQueryValues, setLessThanQueryValues, setEqualToQueryValues

setInQueryMode

public void setInQueryMode(boolean flag)

Sets according to flag whether the receiver is in query mode.

See Also: inQueryMode, enterQueryMode

setInsertedObjectDefaultValues

public void setInsertedObjectDefaultValues(NSDictionary defaultValues)

Sets default values to be used for newly inserted objects. When you use the insert... method
to add an object, that object is initially empty. Because the object is empty, there is no value to be
displayed on the HTML page, meaning there is nothing for the user to select and modify. You
use this method to provide at least one field that can be displayed for the newly inserted object.
The possible keys into the dictionary are the properties of the entity managed by this display
group.

See Also: insertedObjectDefaultValues
102

C L A S S E O D i s p l a y G r o u p
setLessThanQueryValues

public void setLessThanQueryValues(NSDictionary values)

Sets to values the receiver’s dictionary of lessThan query values. The qualifierFromQueryValues
method uses this dictionary along with the greaterThan and equalTo dictionaries to construct
qualifiers.

See Also: lessThanQueryValues, setGreaterThanQueryValues, setEqualToQueryValues

setLocalKeys

public void setLocalKeys(NSArray keys)

Sets the additional keys to which EOAssociations can be bound to the strings in keys. Instead of
invoking this method programmatically, you can use Interface Builder to add and remove local
keys in the EODisplayGroup Attributes Inspector panel.

See Also: localKeys

setObjectArray

public void setObjectArray(NSArray objects)

Sets the receiver’s objects to objects, regardless of what its EODataSource provides. This method
doesn’t affect the EODataSource’s objects at all; specifically, it results in neither inserts or deletes
of objects in the EODataSource. objects should contain objects with the same property names or
methods as those accessed by the receiver. This method is used by fetch to set the array of
fetched objects; you should rarely need to invoke it directly.

After setting the object array, this method restores as much of the original selection as possible
by invoking selectObjectsIdenticalTo. If there’s no match and the receiver selects after fetching,
then the first object is selected.

See Also: allObjects, displayedObjects, selectsFirstObjectAfterFetch
103

C L A S S E O D i s p l a y G r o u p
setQualifier

public void setQualifier(EOQualifier aQualifier)

Sets the receiver’s qualifier to aQualifier. This qualifier is used to filter (in memory) the
receiver’s array of objects for display when the delegate doesn’t do so itself. Use
updateDisplayedObjects to apply the qualifier.

If the receiver’s delegate responds to displayGroupDisplayArrayForObjects, that method is used
instead of the qualifier to filter the objects.

See Also: displayedObjects, qualifier, qualifierFromQueryValues, setAuxil iaryQualif ier
(EODatabaseDataSource in EOAccess)

setQueryBindingValues

public void setQueryBindingValues(NSDictionary values)

Sets the dictionary of values that a user wants to query on. You use this method to perform a
query stored in the model file. Bind keys in the queryBindingValues dictionary to elements of
your component that specify query values.

setQueryOperatorValues

public void setQueryOperatorValues(NSDictionary values)

Sets the dictionary of operators to use on items in the query dictionaries (equalToQueryValues,
greaterThanQueryValues, and lessThanQueryValues). If a key in a query dictionary also exists in
queryOperatorValues, that operator for that key is used.

setSelectedObject

public void setSelectedObject(Object anObject)

Sets the selected objects to anObject.

Note: To set the qualifier used to fetch objects from the database, set the qualifier of the
display group’s dataSource (assuming that the data source is an EODatabaseDataSource).
104

C L A S S E O D i s p l a y G r o u p
setSelectedObjects

public void setSelectedObjects(NSArray objects)

Sets the selected objects to objects.

setSelectedObjectValue

public boolean setSelectedObjectValue(
Object value,
String key)

Invokes setValueForObject with the first selected object, returning true if successful and false
otherwise. This method should be invoked only by EOAssociation objects to propagate changes
from display objects.

See Also: setValueForObjectAtIndex, valueForObject

setSelectionIndexes

public boolean setSelectionIndexes(NSArray indexes)

Selects the objects at indexes in the receiver’s array if possible, returning true if successful and
false if not (in which case the selection remains unaltered). indexes is an array of Numbers. This
method is the primitive method for altering the selection; all other such methods invoke this one
to make the change.

This method invokes endEditing to wrap up any changes being made by the user. If endEditing
returns false, this method fails and returns false. This method then checks the delegate with a
displayGroupShouldChangeSelection message. If the delegate returns false, this method also fails
and returns false. If the receiver successfully changes the selection, its observers (typically
EOAssociations) each receive a subjectChanged message.
105

C L A S S E O D i s p l a y G r o u p
setSelectsFirstObjectAfterFetch

public void setSelectsFirstObjectAfterFetch(boolean flag)

Controls whether the receiver automatically selects its first displayed object after a fetch when
there were no selected objects before the fetch. If flag is true it does; if flag is false then no
objects are selected. By default, display groups select the first object after a fetch when there was
no previous selection.

See Also: displayedObjects, fetch, selectsFirstObjectAfterFetch

setSortOrderings

public void setSortOrderings(NSArray orderings)

Sets the EOSortOrdering objects that updateDisplayedObjects uses to sort the displayed objects
to orderings. Use updateDisplayedObjects to apply the sort orderings.

If the receiver’s delegate responds to displayGroupDisplayArrayForObjects, that method is used
instead of the sort orderings to order the objects.

See Also: displayedObjects, sortOrderings

setUsesOptimisticRefresh

public void setUsesOptimisticRefresh(boolean flag)

Controls how the receiver redisplays on changes to objects. If flag is true it redisplays only when
elements of its displayed objects array change; if flag is false it redisplays on any change in its
EOEditingContext. Because changes to other objects can affect the displayed objects (through
flattened attributes or custom methods, for example), EODisplayGroups by default use the more
pessimistic refresh technique of redisplaying on any change in the EOEditingContext. If you
know that none of the EOAssociations for a particular EODisplayGroup display derived values,
you can turn on optimistic refresh to reduce redisplay time.

The default is false. You can also change this setting in Interface Builder’s Inspector panel using
the Refresh All check box.

See Also: usesOptimisticRefresh
106

C L A S S E O D i s p l a y G r o u p
setValidatesChangesImmediately

public void setValidatesChangesImmediately(boolean flag)

Controls the receiver’s behavior on encountering a validation error. Whenever an
EODisplayGroup sets a value in an object, it sends the object a validateValueForKey message,
allowing the object to coerce the value’s type to a more appropriate one or to return an exception
indicating that the value isn’t valid. If this method is invoked with a flag of true, the receiver
immediately presents an attention panel indicating the validation error. If this method is
invoked with a flag of false, the receiver leaves validation errors to be handled when changes
are saved. By default, display groups don’t validate changes immediately.

See Also: – saveChanges (EOEditingContext), validatesChangesImmediately

setValueForObject

public boolean setValueForObject(
Object value,
Object anObject,
String key)

Sets a property of anObject, identified by key, to value. Returns true if successful and false
otherwise. If a new value is set, sends the delegate a displayGroupDidSetValueForObject
message.

This method should be invoked only by EOAssociation objects to propagate changes from
display objects. Other application code should interact with the objects directly.

If the receiver validates changes immediately, it sends anObject a validateValueForKey message,
returning false if the object refuses to validate value. Otherwise, validation errors are checked
by the EOEditingContext when it attempts to save changes.

See Also: setValueForObjectAtIndex, setSelectedObjectValue, valueForObject,
validatesChangesImmediately
107

C L A S S E O D i s p l a y G r o u p
setValueForObjectAtIndex

public boolean setValueForObjectAtIndex(
Object value,
int index,
String key)

Invokes setValueForObject with the object at index, returning true if successful and false
otherwise. This method should be invoked only by EOAssociation objects to propagate changes
from display objects.

See Also: setSelectedObjectValue,valueForObjectAtIndex

sortOrderings

public NSArray sortOrderings()

Returns an array of EOSortOrdering objects that updateDisplayedObjects uses to sort the
displayed objects, as returned by the displayedObjects method.

See Also: setSortOrderings

undoManager

public NSUndoManager undoManager()

(com.apple.client.eointerface only) Returns the receiver’s undo manager.

updateDisplayedObjects

public void updateDisplayedObjects()

Recalculates the receiver’s displayed objects array and redisplays. If the receiver’s delegate
responds to displayGroupDisplayArrayForObjects, it’s sent this message and the returned array
is set as the display group’s displayed object. Otherwise, the receiver applies its qualifier and
sort ordering to its array of objects. In either case, any objects that were selected before remain
selected in the new displayed objects array.

See Also: redisplay, displayedObjects, selectedObjects, qualifier, sortOrderings
108

C L A S S E O D i s p l a y G r o u p
updatedObjectIndex

public int updatedObjectIndex()

Returns the index in the displayed objects array of the most recently updated object, or –1 if more
than one object has changed. The return value is meaningful only when contentsChanged returns
true. EOAssociations can use this method to optimize redisplay of their user interface objects.

usesOptimisticRefresh

public boolean usesOptimisticRefresh()

Returns true if the receiver redisplays only when its displayed objects change, false if it
redisplays on any change in its EOEditingContext.

See Also: setUsesOptimisticRefresh

validatesChangesImmediately

public boolean validatesChangesImmediately()

Returns true if the receiver immediately handles validation errors, or false if it leaves errors for
the EOEditingContext to handle when saving changes.

See Also: setValidatesChangesImmediately

valueForKeyObject

public Object valueForKeyObject(
String key,
com.apple.client.eocontrol.EOKeyValueCodingAdditions anObject)

(com.apple.client.eointerface only) Do not use this method. Use valueForObjectKey instead.

valueForObject

public Object valueForObject(
Object anObject,
String key)

(com.apple.yellow.eointerface only) Returns anObject’s value for the property identified by key.
109

C L A S S E O D i s p l a y G r o u p
valueForObjectKey

public Object valueForObjectKey(
com.apple.yellow.eocontrol.EOKeyValueAdditions anObject,
String key)

(com.apple.client.eointerface only) Returns anObject’s value for the property identified by key.

valueForObjectAtIndex

public Object valueForObjectAtIndex(
int index,
String key)

Returns the value of the object at index for the property identified by key.

willChange

public void willChange()

Notifies observers that the receiver will change.

Notifications

DisplayGroupWillFetchNotification

public static final String DisplayGroupWillFetchNotification

Posted whenever an EODisplayGroup receives a fetch message. The notification contains:

Notification Object The EODisplayGroup that received the fetch message.

Userinfo None
110

C L A S S
EOForm
Inherits from: EOMatrix :
EOView :
javax.swing.JPanel :
javax.swing.JComponent :
java.awt.Container :
java.awt.Component
Object

Implements: java.awt.LayoutManager
NSDisposable (EOView)

Package: com.apple.client.eointerface

Class Description

The EOForm class is a subclass of EOMatrix that manages a collection of titled text fields laid out
on a grid. Each title/text field pair is an EOFormCell.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
111

C L A S S E O F o r m
Interfaces Implemented

java.awt.LayoutManager

addLayoutComponent

layoutContainer

minimumLayoutSize

preferredLayoutSize

removeLayoutComponent

Method Types

Constructor

EOForm

Adding form cells

add

Constructors

EOForm

public EOForm(
String debuggingHint,
int rows,
112

C L A S S E O F o r m
int cols,
int rowSpacing,
int colSpacing)

Returns a new EOForm object. The debuggingHint argument is a string you can use to uniquely
identify the view. When the form is instantiated from a nib file, the debuggingHint is a string
generated by Interface Builder.

Instance Methods

add

public java.awt.Component add(java.awt.Component formCell)

Adds formCell, an EOFormCell, to the receiver’s collection of form cells.

addLayoutComponent

public void addLayoutComponent(String name, java.awt.Component component)

Simply returns.

layoutContainer

public void layoutContainer(java.awt.Container formCell)

Lays out the title and text field of formCell.

minimumLayoutSize

public java.awt.Dimension minimumLayoutSize(java.awt.Container aContainer)

Returns the value returned from aContainer’s getMinimumSize.
113

C L A S S E O F o r m
preferredLayoutSize

public java.awt.Dimension preferredLayoutSize(java.awt.Container aContainer)

Returns the value returned from aContainer’s getPreferredSize.

removeLayoutComponent

public void removeLayoutComponent(java.awt.Component aComponent)

Simply returns.
114

C L A S S
EOFormCell
Inherits from: javax.swing.JComponent :
java.awt.Container :
java.awt.Component
Object

Implements: EOTextAssociation.JTextComponentAccess
NSDisposable

Package: com.apple.client.eointerface

Class Description

EOFormCell objects implement entries in EOForms.An EOFormCell has a field component, an
editable EOTextField into which users enter data; and a title component, an uneditable
EOTextField that identifies the purpose of the form cell’s field component.

For more information on forms and form cells, see the EOForm class specification.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
115

C L A S S E O F o r m C e l l
Interfaces Implemented

EOTextAssociation.JTextComponentAccess

jTextComponent

NSDisposable

dispose

Method Types

Accessing the field component

fieldComponent

jTextComponent

Accessing the title and title component

titleComponent

title

setTitle

setTitleWidth

titleWidth
116

C L A S S E O F o r m C e l l
Instance Methods

fieldComponent

public EOTextField fieldComponent()

Returns the receiver’s field component, the editable text field into which users enter data.

jTextComponent

public javax.swing.text.JTextComponent jTextComponent()

Returns the receiver’s field component, the editable text field into which users enter data.

setTitle

public void setTitle(String aString)

Sets the receiver’s title to aString. This is a convenience method for setting the text value of the
receiver’s titleComponent.

setTitleWidth

public void setTitleWidth(int width)

Sets the width of the receiver’s titleComponent. Typically the width of the title component is
handled automatically. You should never need to invoke this method.

title

public String title()

Returns the receiver’s title. This is a convenience method for setting the text value of the
receiver’s titleComponent.
117

C L A S S E O F o r m C e l l
titleComponent

public EOTextField titleComponent()

Returns the receiver’s title component, the uneditable text field that identifies the purpose of the
fieldComponent.

titleWidth

public int titleWidth()

Returns the width of the receiver’s titleComponent.
118

C L A S S
EOFrame
Inherits from: javax.swing.JFrame :
java.awt.Frame :
java.awt.Window :
java.awt.Container :
java.awt.Component :
Object

Implements: NSDisposable

Package: com.apple.client.eointerface

Class Description

An EOFrame is a window that uses an EOViewLayout to manage layout geometry.

For more information on EOFrame’s layout management, see the EOViewLayout class
specification.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
119

C L A S S E O F r a m e
Interfaces Implemented

NSDisposable

dispose

Constructors

EOFrame

public EOFrame(String debuggingHint)

Creates a new EOFrame object. The debuggingHint argument is a string you can use to uniquely
identify the view. When the form is instantiated from a nib file, the debuggingHint is a string
generated by Interface Builder.

Instance Methods

setSize

public void setSize(int width, int height)

Sets the receiver’s width and height.
120

C L A S S
EOGenericControlAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

EOGenericControlAssociation is the abstract superclass of EOControlAssociation and
EOActionCellAssociation. You never use instances of this class directly; its isUsableWithObject
method always returns false. See the subclass specifications for more information.

Note: This class doesn’t exist in the com.apple.client.eointerface package.

Usable With Aspects Object Keys Taken

Nothing value target

enabled delegate
121

C L A S S E O G e n e r i c C o n t r o l A s s o c i a t i o n
Instance Methods

control

public com.apple.yellow.application.NSControl control()

Overridden by subclasses to return the receiver’s display object—an NSControl (Application
Kit).

editingAssociation

public EOGenericControlAssociation editingAssociation()

Overridden by subclasses to return the association responsible for handling text delegation
messages. For example, if the display object is a NSMatrix or NSTableView (Application Kit),
this method returns the association for the cell being edited.
122

C L A S S
EOImageAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : Object

Implements: EOObserving (EODelayedObserver)

Package: com.apple.client.eointerface

Class Description

EOImageAssociation associates the contents of its ValueAspect's display group with an
EOImageView.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.

Usable With

EOImageView

Aspects

ValueAspect An NSData containing the image data

URLAspect A URL from which to retrieve the image
123

C L A S S E O I m a g e A s s o c i a t i o n
Constructors

EOImageAssociation

public EOImageAssociation(Object aDisplayObject)

Creates a new EOImageAssociation to monitor and update the value in aDisplayObject, an
EOImageView.

You normally set up associations in Interface Builder, in which case you don’t need to create
them programmatically. However, if you do create them up programmatically, setting them up
is a multi-step process. After creating an association, you must bind its aspects and establish its
connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Instance Methods

establishConnection

public void establishConnection()

See the establishConnection method description in the superclass EOAssociation.

image

public java.awt.Image image()

Returns the receiver’s EOImageView’s image.
124

C L A S S E O I m a g e A s s o c i a t i o n
imageWithData

public java.awt.Image imageWithData(NSData data)

Creates an Image from the data in data.

isUsableWithObject

public boolean isUsableWithObject(Object aDisplayObject)

Returns true if aDisplayObject is an instance of EOImageView, false otherwise.

See Also: isUsableWithObject (EOAssociation)

primaryAspect

public String primaryAspect()

Returns EOAssociation.ValueAspect.

See Also: primaryAspect (EOAssociation)

subjectChanged

public void subjectChanged()

See the subjectChanged method description in the superclass EOAssociation.
125

C L A S S E O I m a g e A s s o c i a t i o n
126

C L A S S
EOImageView
Inherits from: javax.swing.JComponent
java.awt.Container :
java.awt.Component
Object

Package: com.apple.client.eointerface

Class Description

The EOImageView class is used to display images (java.awt.Image objects) in Java Client
applications.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
127

C L A S S E O I m a g e V i e w
Constants

EOImageView defines the following int constants to specify the scaling behavior of an
EOImageView:

Method Types

Accessing the image

image

setImage

Configuring scaling behavior

setImageScaling

imageScaling

setScalingHints

scalingHints

Constant Scaling Behavior

ScaleNone No scaling

ScaleProportionally Scales in proportion to the image size

ScaleToFit Scales to fit the portion of the user interface the image view
occupies

ScaleProportionallyIfTooLarge Scales in proportion to the image size, but only if the image is
too large to fit its portion of the user interface (the image view
never scales the image to be larger)
128

C L A S S E O I m a g e V i e w
Painting

imageUpdate

paint

setBorder

setBounds

Instance Methods

image

public java.awt.Image image()

Returns the receiver’s image.

imageScaling

public int imageScaling()

Returns the type of scaling the receiver uses. The return value is one of:

� ScaleNone

� ScaleProportionally

� ScaleToFit

� ScaleProportionallyIfTooLarge

imageUpdate

public boolean imageUpdate(
java.awt.Image image,
int flags,
int x,
129

C L A S S E O I m a g e V i e w
int y,
int width,
int height)

See the method description for imageUpdate in Sun’s JComponent class documentation.

paint

public void paint(java.awt.Graphics g)

See the method description for setBorder in Sun’s JComponent class documentation.

scalingHints

public int scalingHints()

Returns the receiver’s scaling hints—a constant identifying the algorithm the receiver uses to
scale its image.

setBorder

public void setBorder(javax.swing.border.Border border)

See the method description for setBorder in Sun’s JComponent class documentation.

setBounds

public void setBounds(
int x,
int y,
int width,
int height)

See the method description for setBounds in Sun’s Component class documentation.
130

C L A S S E O I m a g e V i e w
setImage

public void setImage(java.awt.Image image)

Sets the receiver’s image to image and repaints (only if image is different from the receiver’s old
image).

setImageScaling

public void setImageScaling(int imageScaling)

Sets the scaling behavior of the receiver; that is, identifies the circumstances under which the
receiver scales. The imageScaling argument should be one of the following constants (defined in
EOImageView):

� ScaleNone

� ScaleProportionally

� ScaleToFit

� ScaleProportionallyIfTooLarge

The default scaling behavior is ScaleProportionallyIfTooLarge. For more information on these
constants, see “Constants” (page 128).

setScalingHints

public void setScalingHints(int scalingHints)

Sets the algorithm the receiver uses to scale it’s image.The scalingHints argument should be one
of the following constants (defined in java.awt.Image):

� SCALE_DEFAULT

� SCALE_FAST

� SCALE_SMOOTH

� SCALE_REPLICATE

� SCALE_AREA_AVERAGING

The default is SCALE_SMOOTH. For more information on the algorithms identified by these
constants, see Sun’s Image class documentation
131

C L A S S E O I m a g e V i e w
132

C L A S S
EOMasterCopyAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

An EOMasterCopyAssociation object synchronizes two EODisplayGroups that share the same
data source but have different qualifiers.

By binding two display groups with an EOMasterCopyAssociation, any changes performed in
one display group are immediately reflected in the other. Similarly, changing the selection in one
display group immediately changes it in the other one.

Note: This class doesn’t exist in the com.apple.client.eointerface package.

Usable With

EODisplayGroup

Aspects

parent An EODisplayGroup with which the association’s display group should be
synchronized.
133

C L A S S E O M a s t e r C o p y A s s o c i a t i o n
Examples
Suppose you have an EODisplayGroup for displaying Talent objects (actors and directors) and
another display group for displaying the pictures of the Talents who are actors. When a Talent
is selected in the first display group, you want the “actor” display group to select that Talent’s
picture if the selected Talent is an actor. Since both display groups manage Talent objects, they
can share the same EODataSource. However, the first display group is unqualified—it fetches
all Talent objects; the second display group is qualified to fetch only the Talents who are actors.

To do this, in Interface Builder, start with an unqualified display group for displaying all the
Talents. Drag a second display group from the Enterprise Objects palette into your nib.
Control-drag a connection from the new display group to the unqualified Talent display group.
In the Connections inspector, choose EOMasterCopyAssociation, select the parent aspect, and
click Connect. This action automatically sets the second display group’s data source. Initially,
the data source is set to an EODetailDataSource—that’s what you’ll see in Interface Builder.
However, at runtime, the association switches the second display group’s data source to that of
the parent display group.

Now when you run the application, the display groups will be synchronized with one another.
(You’ll programmatically assign a qualifier to the second display group so that it filters out
non-actor Talents.)

Constructors

EOMasterCopyAssociation

public EOMasterCopyAssociation(Object aDisplayObject)

Creates a new EOMasterCopyAssociation to monitor and update the value in aDisplayObject,
an EODisplayGroup.

Object Keys Taken

None
134

C L A S S E O M a s t e r C o p y A s s o c i a t i o n
You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)
135

C L A S S E O M a s t e r C o p y A s s o c i a t i o n
136

C L A S S
EOMasterDetailAssociation
Inherits from: (com.apple.client.eointerface)
EOAssociation :
EODelayedObserver (EOControl) :
Object

(com.apple.yellow.eointerface)
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Implements: EOObserving (EODelayedObserver)
(com.apple.client.eointerface only) NSDisposable (EOAssociation)

Package: com.apple.client.eointerface
com.apple.yellow.eointerface

Class Description

An EOMasterDetailAssociation object binds one EODisplayGroup (the detail) to a relationship
in another (the master), so that the detail display group contains the destination objects for the
object selected in the master. The display groups’ data sources also operate in a master-detail
arrangement, meaning changes to one are immediately reflected in the other. In this
arrangement, the detail EODisplayGroup’s data source must be an EODetailDataSource. The
detail objects are taken directly from the selected object in the master EODisplayGroup, so that
changes to the objects in one EODisplayGroup are instantly reflected in the other.
137

C L A S S E O M a s t e r D e t a i l A s s o c i a t i o n
In com.apple.yellow.eointerface, by contrast, with an EOMasterPeerAssociation, the two
EODisplayGroups are independent of each other (EOMasterPeerAssociation is not a
com.apple.client.eointerface class). In a master-peer setup, insertions and deletions in the detail
EODisplayGroup don’t affect the corresponding relationship property of the selected object in
the master EODisplayGroup. Master-peer setups are more appropriate when no insertions or
deletions will be made in the detail EODisplayGroup. See the EOMasterPeerAssociation class
specification for more information.

Example
Suppose you have a master EODisplayGroup displaying Movie objects and a detail display
group displaying Talent objects. The two display groups are bound to one another through
Movie’s directors relationship—a to-many relationship from Movie to Talent. When a Movie is
selected, you want the Talent display group to display the Talents who directed the Movie.
Inserting a new director into the Talent display group should add the director to the selected
Movie’s directors relationship; and similarly, deleting a director from the Talent display group
should remove the director from the selected Movie’s directors relationship.

To do this, in Interface Builder, control-drag a connection from the Talent display group to the
Movie display group. In the Connections inspector, choose EOMasterDetailAssociation, and
bind parent aspect to the “directors” key.

Usable With

EODisplayGroups whose data sources are EODetailDataSources

Aspects

parent A relationship from the master EODisplayGroup.
138

C L A S S E O M a s t e r D e t a i l A s s o c i a t i o n
Constructors

EOMasterDetailAssociation

public EOMasterDetailAssociation(Object aDisplayObject)

Creates a new EOMasterDetailAssociation to monitor and update the value in aDisplayObject,
an EODisplayGroup.

You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Instance Methods

isUsableWithObject

public boolean isUsableWithObject(Object aDisplayObject)

(com.apple.client.eointerface) Returns true if aDisplayObject is an instance of EODisplayGroup
and its dataSource is either null or an EODetailDataSource (EOControl).

See Also: isUsableWithObject (EOAssociation)

primaryAspect

public String primaryAspect()

(com.apple.client.eointerface) Returns EOAssociation.ParentAspect.

See Also: primaryAspect (EOAssociation)
139

C L A S S E O M a s t e r D e t a i l A s s o c i a t i o n
priority

public int priority()

Returns EOObserverPrioritySecond (one notch above the default priority). This guarantees that
changes in the master are propagated to the detail before any other updates are made.

subjectChanged

public void subjectChanged()

See the subjectChanged method description in the superclass EOAssociation.
140

C L A S S
EOMasterPeerAssociation
Inherits from: EOMasterDetailAssociation :
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

An EOMasterPeerAssociation binds two EODisplayGroups together in a master-detail
relationship, where the detail EODisplayGroup shows the destination objects for the
relationship of the master EODisplayGroup.

In a master-peer arrangement, the detail display group’s data source is independent. Detail
objects are fetched independently from the detail’s data source, which means that changes to one
display group aren’t automatically reflected in the other. To update the other display group, it’s
necessary to save the changes made and then have the other display group fetch its objects anew.

Contrast this with a master-detail setup using an EOMasterDetailAssociation. With an
EOMasterDetailAssociation, the display groups’ data sources also operate in a master-detail
arrangement, meaning changes to one are immediately reflected in the other. The detail objects

Note: This class doesn’t exist in the com.apple.client.eointerface package.
141

C L A S S E O M a s t e r P e e r A s s o c i a t i o n
are taken directly from the selected object in the master display group, so that changes to the
objects in one display group are instantly reflected in the other. Master-peer setups display these
advantages over master-detail setups:

� You can use them to display the destination objects for relationships that are defined in the
model but not declared as class properties. This is typically done for rarely accessed
information—or information that’s costly to access. By not defining the relationship as a class
property, the destination objects aren’t stored as instance variables in the source objects,
which saves memory and the cost of constructing faults for the relationship.

� Because the detail display group fetches objects with its own data source, you can configure
the detail data source with an auxiliary EOQualifier to limit the objects fetched. This further
reduces the cost of fetching data.

� You can use an EOMasterPeerAssociation to fetch detail information that may be updated in
another editing context or even in another application; thus this association helps you to
remain “up to date” with the database.

Generally, master-peer setups are only appropriate when no insertions or deletions will be made
in the detail display group. For a master-detail relationship that reflects changes between two
display groups, including insertions and deletions, use an EOMasterDetailAssociation.

Example
Suppose you have a database of salesmen and their associated sales. Each salesman has a city
ID. The sales are related to the salesmen by salesman ID, but also have a city ID. You want a list
of all the sales in a salesman’s city so you could evaluate it against other salesmen. For this, you
create a relationship between salesman and sales based on city ID (the relationship is not a class
property). You can then display that information using an EOMasterPeerAssociation.

Usable With

EODisplayGroups whose data sources are not EODetailDataSources

Aspects

parent A relationship from the master EODisplayGroup.

Object Keys Taken

None
142

C L A S S E O M a s t e r P e e r A s s o c i a t i o n
Constructors

EOMasterPeerAssociation

public EOMasterPeerAssociation(Object aDisplayObject)

Creates a new EOMasterDetailAssociation to monitor and update the value in aDisplayObject,
an EODisplayGroup.

You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)
143

C L A S S E O M a s t e r P e e r A s s o c i a t i o n
144

C L A S S
EOMatrix
Inherits from: EOView :
javax.swing.JPanel :
javax.swing.JComponent :
java.awt.Container :
java.awt.Component
Object

Implements: NSDisposable (EOView)

Package: com.apple.client.eointerface

Class Description

EOMatrix is a class used to group collections of mutually exclusive JRadioButtons and to lay
them out on a grid. It is a subclass of EOView that uses a java.awt.GridLayout.

For more information on the way a matrix of JRadioButtons behaves, see the Sun class
documentation for javax.swing.ButtonGroup.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
145

C L A S S E O M a t r i x
Constructors

EOMatrix

public EOMatrix(String debuggingHint,
int rows,
int cols,
int rowSpacing,
int colSpacing)

Creates and returns a new EOMatrix object. The debuggingHint argument is a string you can use
to uniquely identify the view. When the form is instantiated from a nib file, the debuggingHint is
a string generated by Interface Builder.

Instance Methods

add

public java.awt.Component add(java.awt.Component radioButton)

Adds radioButton if it’s an instance of javax.swing.JRadioButton, otherwise simply returns.
146

C L A S S
EOMatrixAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

An EOMatrixAssociation allows you to populate an NSMatrix’s cells (Application Kit).
EOMatrixAssociation supports connections for both cell titles and icons, depending on the
matrix’s prototype cell. You define the prototype in Interface Builder (to display an icon only,
text only, or both).

Note: This class doesn’t exist in the com.apple.client.eointerface package.

Usable With

NSMatrix (Application Kit)

Aspects

enabled A boolean attribute of the objects, which determines whether the matrix is
enabled.

image An NSImage attribute of the objects to display in the cell.

title An attribute of the objects to display in the cell.
147

C L A S S E O M a t r i x A s s o c i a t i o n
Examples
Suppose that you want to display actors’ names and pictures in an NSMatrix. Start with a
TalentPhoto display group (where a TalentPhoto object has a relationship to its Talent object). In
interface builder, create a button containing both an image and text. Then, alternate-drag to
create a matrix of buttons. Control-drag from the matrix to the photo display group. In the
Connections inspector, choose EOMatrixAssociation, and bind the image aspect to the photo
attribute. Repeat, binding the title aspect to the talent.lastName attribute.

Note that you can group the matrix in a scroll view. An EOMatrixAssociation will automatically
manage the size of the matrix for this (for vertical scrolling only).

Constructors

EOMatrixAssociation

public EOMatrixAssociation(Object aDisplayObject)

Creates a new EOMatrixAssociation to monitor and update the value in aDisplayObject, an
NSMatrix (Application Kit).

You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Object Keys Taken

target On receiving an action message from the matrix, an EOMatrixAssociation
updates its display group’s selection.
148

C L A S S
EOPickTextAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

An EOPickTextAssociation takes the value of its display object, an NSControl (Application Kit),
and uses it to form a qualifier with up to three LIKE operators, each compared to a different key
of the EODisplayGroup. This allows the user to perform a similarity search based on whole or
partial values.

EOPickTextAssociations are most often used with a table view to qualify a list of fetched objects
that is too long for convenient scrolling.

Note: This class doesn’t exist in the com.apple.client.eointerface package.

Usable With

Any NSControl
149

C L A S S E O P i c k Te x t A s s o c i a t i o n
Example
Make an EOPickTextAssociation between an NSTextField and an EODisplayGroup of People
objects. Bind the matchKey1 and matchKey2 aspects to the “lastName” and “firstName” keys. If the
user types “Bi” in the field, the EOPickTextAssociation applies the following qualifier to the
EODisplayGroup:

(lastName like “*Bi*“) OR (firstName like “*Bi*“)

which matches names like “Bill Smith” and “Joe Biggs”. The list of objects displayed in the
display group is restricted to those that match the qualifier.

Constructors

EOPickTextAssociation

public EOPickTextAssociation(Object aDisplayObject)

Creates a new EOPickTextAssociation to monitor and update the row values in aDisplayObject,
an NSControl (Application Kit) which has a text as an attribute.

Aspects

matchKey1 An attribute to match using a LIKE qualifier.

matchKey2 An attribute to match using a LIKE qualifier.

matchKey3 An attribute to match using a LIKE qualifier.

Object Keys Taken

target The EOPickTextAssociation applies its qualifier when sent an action message
from the NSControl.

delegate The EOPickTextAssociation applies its qualifier when sent a
controlTextDidChange message, causing dynamic update as the user types.
150

C L A S S E O P i c k Te x t A s s o c i a t i o n
You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)
151

C L A S S E O P i c k Te x t A s s o c i a t i o n
152

C L A S S
EOPopUpAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

An EOPopUpAssociation object displays an attribute or to-one relationship value in an
NSPopUpButton (Application Kit).

The items in the NSPopUpButton can be entered manually, or for a relationship, constructed
dynamically from values supplied by the destination entity’s EODisplayGroup. The value
displayed by the NSPopUpButton can be bound by one of three aspects: selectedTitle, which
is useful for values representable as strings; selectedTag, for integer values; and selectedObject,
for the destination object of a relationship.

Note: This class doesn’t exist in the com.apple.client.eointerface package.

Usable With

NSPopUpButton (Application Kit)
153

C L A S S E O P o p U p A s s o c i a t i o n
Examples
There are several basic ways to configure a combo box and it’s association. They are described
below.

Selecting a String from a Static List

Suppose you have a Movie display group and you want to provide a pop-up list for setting the
rating from a static list of strings. In this example, a Movie object’s rating is a string property
rather than a relationship to a Rating object. To do this, in Interface Builder, type the list of
ratings into the pop-up list. Control-drag a connection from the pop-up list to the Movie display
group. Choose EOPopUpAssociation in the Connections inspector, and bind the selectedTitle
aspect to the “rating” key. With this configuration, if an object’s string attribute value isn’t in the
pop-up list, it’s temporarily added while the object is selected.

Selecting a String from a Dynamic List

This example is similar to the previous one, except in this example, a Movie object’s rating is
chosen from strings in a Rating database table. There’s a Rating EODisplayGroup that fetches
the ratings into Rating objects, and the pop-up list is filled from the “ratingString” property of

Aspects

titles An attribute of the objects in an EODisplayGroup whose values can be
represented as strings.

selectedTitle An attribute of the selected object whose values can be represented as
strings.

selectedTag An integer attribute of the selected object.

selectedObject A to-one relationship of the selected object; the value displayed is that for
the attribute bound to the titles aspect.

enabled A boolean attribute of the selected object, which determines whether the
NSPopUpButton is enabled.

Object Keys Taken

target When the user chooses an item in the pop-up list, the EOPopUpAssociation
updates the selected object’s property with the item’s title, tag, or object.
154

C L A S S E O P o p U p A s s o c i a t i o n
the rating display group’s Rating objects. To do this, in Interface Builder, control-drag a
connection from the pop-up list to the Ratings display group. Choose EOPopUpAssociation in
the Connections inspector, and bind the titles aspect to the “ratingString” key. Similarly,
control-drag a connection from the pop-up list to the Movie display group. Again choose
EOComboBoxAssociation in the Connections inspector, and bind the selectedTitle aspect to the
“rating” key.

Selecting an Integer Tag from a Static List

Suppose you have a Customer enterprise object whose credit card type (Visa, MasterCard, and
so on) is indicated by an integer tag. You want a user to be able to choose a customer’s card type
from a pop-up list. To do this, in Interface Builder, set the credit card names and tags for the
pop-up list. Control-drag a connection from the pop-up list to the Customer display group.
Choose EOPopUpAssociation in the Connections inspector, and bind the selectedTag aspect to
the “cardType” key. You can also allow for a general “other” value by defining a special tag and
setting it in the EOPopUpAssociation using setTagValueForOther. Credit card tags from the
database not matching any in the pop-up list are then displayed as the “other” value. (It would
also make sense to disable the pop-up list in this case, to avoid writing the meaningless tag back
to the database.)

Selecting the Destination of a To-One Relationship

Suppose you have a list of employees and want to assign each employee a department. In terms
of the object model, you want to assign a Department object as the destination of an Employee
object’s department relationship. To do this, in Interface Builder, control-drag a connection from
the pop-up list to a Department display group. Choose EOComboBoxAssociation in the
Connections inspector, and bind the titles aspect to the “name” key. Similarly, control-drag a
connection from the pop-up list to the Employee display group. Again choose
EOComboBoxAssociation in the Connections inspector, and bind the selectedObject to the
“department” key. This fills the pop-up list with the names of departments, and causes the name
of the selected Employee’s Department to be selected in the pop-up list.
155

C L A S S E O P o p U p A s s o c i a t i o n
Constructors

EOPopUpAssociation

public EOPopUpAssociation(Object aDisplayObject)

Creates a new EOPopUpAssociation to monitor and update the values in aDisplayObject, an
NSPopUpList (Application Kit).

You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Instance Methods

setTagValueForOther

public void setTagValueForOther(int tag)

Records tag as the “unknown” tag. When a property value doesn’t match any other tag in the
pop-up list, the EOPopUpAssociation automatically selects the item for this tag. If there’s no
item for this tag, the pop-up list’s selection isn’t changed. This tag value is by default –1.

tagValueForOther

public int tagValueForOther()

Returns the “unknown” tag.
156

C L A S S
EOQuickTimeAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : Object

Implements: EOObserving (EODelayedObserver)

Package: com.apple.client.eointerface

Class Description

EOQuickTimeAssociation associates the contents of its URLAspect's display group with an
EOQuickTimeView.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.

Usable With

EOQuickTimeView

Aspects

URLAspect A URL for the location of the QuickTime movie.
157

C L A S S E O Q u i c k T i m e A s s o c i a t i o n
Constructors

EOQuickTimeAssociation

public EOQuickTimeAssociation(Object aDisplayObject)

Creates a new EOQuickTimeAssociation to monitor and update the value in aDisplayObject, an
EOQuickTimeView.

You normally set up associations in Interface Builder, in which case you don’t need to create
them programmatically. However, if you do create them up programmatically, setting them up
is a multi-step process. After creating an association, you must bind its aspects and establish its
connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Instance Methods

breakConnection

public void breakConnection()

See the breakConnection method description in the superclass EOAssociation.

isUsableWithObject

public boolean isUsableWithObject(Object aDisplayObject)

Returns true if aDisplayObject is an instance of EOQuickTimeView, false otherwise.

See Also: isUsableWithObject (EOAssociation)
158

C L A S S E O Q u i c k T i m e A s s o c i a t i o n
primaryAspect

public String primaryAspect()

Returns EOAssociation.URLAspect.

See Also: primaryAspect (EOAssociation)

subjectChanged

public void subjectChanged()

See the subjectChanged method description in the superclass EOAssociation.
159

C L A S S E O Q u i c k T i m e A s s o c i a t i o n
160

C L A S S
EOQuickTimeView
Inherits from: javax.swing.JPanel
javax.swing.JComponent
java.awt.Container :
java.awt.Component
Object

Package: com.apple.client.eointerface

Class Description

The EOQuickTimeView class is used to display QuickTime movies in Java Client applications.

Constants

EOQuickTimeView defines the following int constants to identify resizing behavior:

� QuickTimeCanvasNoResizing

� QuickTimeCanvasAspectResizing

� QuickTimeCanvasFreeResizing

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
161

C L A S S E O Q u i c k T i m e V i e w
� QuickTimeCanvasIntegralResizing

� QuickTimeCanvasPerformanceResizing

� QuickTimeCanvasHorizontalResizing

� QuickTimeCanvasVerticalResizing

These same constants are also defined in quicktime.app.display.QTCanvas. They are duplicated
in EOQuickTimeView for convenience. For information on the resizing behavior associated with
these constants, see the QTCanvas documentation.

Method Types

Determining if the QuickTime system is available

isQuickTimeAvailable

Setting the QuickTime movie and player

movie

setMovie

setMovieFromURL

player

setPlayer

Configuring resizing behavior

setCanvasResizing

canvasResizing

Painting

getPreferredSize

setBounds
162

C L A S S E O Q u i c k T i m e V i e w
Static Methods

isQuickTimeAvailable

public static boolean isQuickTimeAvailable()

Returns true if the QuickTime for Java classes are in the class path and are loaded; false
otherwise. If the classes are in the class path but aren’t loaded, this method attempts to load
them.

Instance Methods

canvasResizing

public int canvasResizing()

Returns an integer that identifies the receiver’s resizing behavior. The return value is one of the
following constants (defined in EOQuickTimeView):

� QuickTimeCanvasNoResizing

� QuickTimeCanvasAspectResizing

� QuickTimeCanvasFreeResizing

� QuickTimeCanvasIntegralResizing

� QuickTimeCanvasPerformanceResizing

� QuickTimeCanvasHorizontalResizing

� QuickTimeCanvasVerticalResizing

For more information on the resizing constants, see “Constants” (page 161).
163

C L A S S E O Q u i c k T i m e V i e w
getPreferredSize

public java.awt.Dimension getPreferredSize()

See the method description for getPreferredSize in Sun’s JComponent class documentation.

movie

public Object movie()

Returns the receiver’s QuickTime movie, a quicktime.std.movies.Movie.

player

public Object player()

Returns the receiver’s QuickTime player, a quicktime.app.players.QTPlayer.

setBounds

public void setBounds(
int x,
int y,
int width,
int height)

See the method description for setBounds in Sun’s Component class documentation.

setCanvasResizing

public void setCanvasResizing(int canvasResizing)

Sets the resizing behavior of the receiver. The canvasResizing argument should be one of the
following constants (defined in EOQuickTimeView):

� QuickTimeCanvasNoResizing

� QuickTimeCanvasAspectResizing

� QuickTimeCanvasFreeResizing

� QuickTimeCanvasIntegralResizing
164

C L A S S E O Q u i c k T i m e V i e w
� QuickTimeCanvasPerformanceResizing

� QuickTimeCanvasHorizontalResizing

� QuickTimeCanvasVerticalResizing

The default resizing behavior is QuickTimeCanvasAspectResizing. For more information on these
constants, see “Constants” (page 161).

setMovie

public void setMovie(Object movie)

Sets the receiver’s QuickTime movie to movie, a quicktime.std.movies.Movie.

setMovieFromURL

public void setMovieFromURL(String url)

Sets the receiver’s QuickTime movie to the movie at url.

setPlayer

public void setPlayer(Object player)

Sets the receiver’s QuickTime player to player, a quicktime.app.players.QTPlayer.
165

C L A S S E O Q u i c k T i m e V i e w
166

C L A S S
EORadioMatrixAssociation
Inherits from: EOAssociation : EODelayedObserver : NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

EORadioMatrixAssociation displays a string or an integer in an NSMatrix.
EORadioMatrixAssociation includes three aspects: selectedTitle, which is useful for values
representable as strings; selectedTag, for integer values; and enabled for enabling and disabling
the NSMatrix.

Note: This class doesn’t exist in the com.apple.client.eointerface package.

Usable With

NSMatrix

Aspects

selectedTitle An attribute of the selected object whose values can be represented as strings.

selectedTag An integer attribute of the selected object.

enabled A boolean attribute of the selected object, which determines whether the matrix is
enabled.
167

C L A S S E O R a d i o M a t r i x A s s o c i a t i o n
Instance Methods

setTagValueForOther

public void setTagValueForOther(int tag)

Records tag as the “unknown” tag. When a property value doesn’t match any other tag in the
matrix, the EORadioMatrixAssociation automatically selects the item for this tag. If there’s no
item for this tag, the radio button selection isn’t changed. This tag value is by default –1.

tagValueForOther

public int tagValueForOther()

Returns the “unknown” tag.

Object Keys Taken

target When the user chooses an item in the matrix, the EORadioMatrixAssociation
updates the selected object’s property with the item’s title or tag.
168

C L A S S
EORecursiveBrowserAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

An EORecursiveBrowserAssociation is the default association for use with a multi-column
NSBrowser (Application Kit).

EORecursiveBrowserAssociation manages hierarchical structures, such as a company’s
management chain—the first column is filled with top-level managers, the second column is
filled with the employees who report directly to the selected top-level manager, and so on.

Note: This class doesn’t exist in the com.apple.client.eointerface package.

Usable With

NSBrowser (Application Kit)
169

C L A S S E O R e c u r s i v e B r o w s e r A s s o c i a t i o n
Example
Suppose you want to display a company’s management structure in a browser. Start with a
display group for Employee objects. Programmatically qualify this display group to fetch only
the top-level management (the Employees with which to fill the browser’s first column).

Drag a browser into a window. Be sure to set it to “Allow branch selection.” Control-drag from
the browser to your Employee display group. In the Interface Builder’s Connections Inspector
(EORecursiveBrowserAssociation—labeled EORecBrowser—is chosen by default), bind the
rootChildren aspect to Employee’s directReports relationship (a recursive, to-many
relationship). Making this binding has the effect of:

� Creating a new display group named “LastEmployeeColumn.” More generally, the new
display group has a name of the form, “LastNameOfFirstDisplayGroupColumn.”

� Preconnecting the new display group to a data source.

� Binding the EORecursiveBrowserAssociation’s children aspect to the directReports
relationship—the same relationship used for the rootChildren aspect.

Now bind the title and isLeaf aspects. (Note that if you try to bind these aspects before you
bind the rootChildren aspect, you’ll bypass work that the association can do for you
automatically.) Control-drag from the browser to either of the display groups, and bind the

Aspects

rootChildren An array of objects with which to fill the browser’s first column.

title An attribute of objects to display in the browser’s cells.

isLeaf A boolean attribute of objects that determines whether the corresponding
browser cell is a leaf (true) or a branch (false).

children An NSArray attribute of the selected object, with which to fill the next column.
This aspect is only used when the selected object is a branch (responds false to
isLeaf).

Object Keys Taken

target used to handle user click actions within the browser. The association sends the
proper synchronization msg to the DG.

delegate used to fill in the values of the browser
170

C L A S S E O R e c u r s i v e B r o w s e r A s s o c i a t i o n
association’s title aspect to the fullName key and the isLeaf aspect to the
isIndividualContributor key (a method that returns false if the Employee is a manager with
direct reports). It doesn’t matter what display group you make these bindings to, because the
association expects rootChildren and children to reference the same kind of objects (have the
same keys).

Now the association populates the browser’s columns based on the selection in the previous
column. You might want to create a master-detail association between the LastColumn display
group and another display group. For example, the Employees application might display
information about the employee selected in the browser’s right-most column.

The rootChildren Aspect
When you bind an EORecursiveBrowserAssociation’s rootChildren aspect, the association
assumes that children will be bound to the same key. However, it’s possible for you to bind
these aspects to different keys. If you want to do this, you’ll have to disconnect the children
binding that the association creates automatically, and then rebind it to the key you want to use.
Note that you only have this freedom with the first column. Subsequent columns must all use
the same key to satisfy the children aspect.

Constructors

EORecursiveBrowserAssociation

public EORecursiveBrowserAssociation(Object aDisplayObject)

Creates a new EORecursiveBrowserAssociation to monitor and update the values in
aDisplayObject, an NSBrowser (Application Kit).

You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)
171

C L A S S E O R e c u r s i v e B r o w s e r A s s o c i a t i o n
172

C L A S S
EOTable
Inherits from: javax.swing.JScrollPane :
javax.swing.JComponent :
java.awt.Container :
java.awt.Component
Object

Implements: NSDisposable

Package: com.apple.client.eointerface

Class Description

The EOTable class is used to represent tables of data. An EOTable object uses a JTable to do its
work. As a subclass of JScrollPane, an EOTable wraps its JTable in a scroll view and adds the
JTable’s JTableHeader to the EOTable’s column header. If you want to configure or message an
EOTable’s JTable, you can access the it with the method jTable.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
173

C L A S S E O Ta b l e
Interfaces Implemented

NSDisposable

dispose

Instance Methods

debuggingHint

public String debuggingHint()

Returns the receiver’s debugging hint.

jTable

public javax.swing.JTable jTable()

Returns the receiver’s JTable.

setDebuggingHint

public void setDebuggingHint(String hint)

Sets the receiver’s debugging hint to hint.
174

C L A S S
EOTableAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : Object

Implements: javax.swing.event.ListSelectionListener
EOObserving (EODelayedObserver)
NSDisposable (EOAssociation)

Package: com.apple.client.eointerface

Class Description

EOTableAssociation associates the contents of its SourceAspect’s display group with an EOTable
(an object that places a javax.swing.JTable in a scroll view). In general use, it should never be
necessary to explicitly instantiate this class, as EOTableColumnAssociation’s setTable assures
that an instance exists for its table.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.

Usable With

EOTable

Aspects

EOAssociation.EnabledAspect

EOAssociation.SourceAspect
175

C L A S S E O Ta b l e A s s o c i a t i o n
Interfaces Implemented

javax.swing.event.ListSelectionListener

valueChanged

Constructors

EOTableAssociation

public EOTableAssociation(Object aDisplayObject)

Creates a new EOTableAssociation to monitor and update the value in aDisplayObject, an
EOTable.

In general use, it should never be necessary to explicitly instantiate this class, as
EOTableColumnAssociation’s setTable assures that an instance exists for its table.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Static Methods

instanceForTable

public static EOTableAssociation instanceForTable(Object table)

Invoked from EOTableColumnAssociation’s setTable to ensure that an EOTableAssociation has
been created for table.
176

C L A S S E O Ta b l e A s s o c i a t i o n
Instance Methods

addColumnAssociation

public void addColumnAssociation(EOTableColumnAssociation aTableColumnAssociation)

Adds aTableColumnAssociation to the receiver’s set of EOTableColumnAssociations. If the
receiver’s SourceAspect is unbound, this method binds it to aTableColumnAssociation’s display
group and then invokes establishConnection.

breakConnection

public void breakConnection()

See the breakConnection method description in the superclass EOAssociation.

editingAssociation

public EOTableColumnAssociation editingAssociation()

Returns the EOTableColumnAssociation bound to the column being edited in the receiver’s
display object, if any.

establishConnection

public void establishConnection()

See the establishConnection method description in the superclass EOAssociation.
177

C L A S S E O Ta b l e A s s o c i a t i o n
isUsableWithObject

public boolean isUsableWithObject(Object candidate)

Returns true if candidate is an instance of EOTable and its jTable is an instance of JTable, false
otherwise.

See Also: isUsableWithObject (EOAssociation)

primaryAspect

public String primaryAspect()

Returns SourceAspect.

See Also: primaryAspect (EOAssociation)

removeColumnAssociation

public void removeColumnAssociation(EOTableColumnAssociation aTableColumnAssociation)

Removes aTableColumnAssociation from the receiver’s set of EOTableColumnAssociations. If
aTableColumnAssociation is the last of the receiver’s column associations, it prepares itself for
garbage collection.

subjectChanged

public void subjectChanged()

See the subjectChanged method description in the superclass EOAssociation.

valueChanged

public void valueChanged(com.sun.java.swing.event.ListSelectionEvent event)

EOTableAssociation listens to its display object’s TableModel in order to synchronize the
selection indices of its SourceAspect’s EODisplayGroup with those of the model. This method
represents the association’s implementation of the ListSelectionListener interface.
178

C L A S S
EOTableColumnAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : Object

Implements: javax.swing.event.ListSelectionListener
EOObserving (EODelayedObserver)
NSDisposable (EOAssociation)

Package: com.apple.client.eointerface

Class Description

An EOTableColumnAssociation associates a single attribute of all enterprise objects in its
ValueAspect’s EODisplayGroup with a Swing JTable TableColumn. The value of each object’s
attribute is displayed in its corresponding row.

By far the easiest way to configure EOTableColumnAssociations is in Interface Builder, but they
may also be instantiated programmatically. Because Swing’s TableColumn maintains no
reference to its containing JTable, this relationship must be explicitly specified via setTable
before establishConnection is invoked.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.

Usable With

javax.swing.table.TableColumn
179

C L A S S E O Ta b l e C o l u m n A s s o c i a t i o n
Constructors

EOTableColumnAssociation

public EOTableColumnAssociation(Object aDisplayObject)

Creates a new EOTableAssociation to monitor and update the value in aDisplayObject, a
javax.swing.table.TableColumn.

You normally set up associations in Interface Builder, in which case you don’t need to create
them programmatically. However, if you do create them up programmatically, setting them up
is a multi-step process. After creating an association, you must bind its aspects and establish its
connections. Because Swing’s TableColumn maintains no reference to its containing JTable, this
relationship must be explicitly specified via setTable before establishConnection is invoked

See Also: bindAspect (EOAssociation)

Aspects

BoldAspect

EnabledAspect A boolean attribute of the objects, which determines whether each object’s
value cell is editable. Note that because EOTableViewAssociation also uses
this aspect, you can use it with different keys to limit editability to the
whole row or to an individual cell (column) in that row.

ItalicAspect

ValueAspect An attribute of the objects, displayed in each row of the TableColumn.
180

C L A S S E O Ta b l e C o l u m n A s s o c i a t i o n
Static Methods

setTableColumnCustomizer

public static void setTableColumnCustomizer(TableColumnCustomizer tableColumnCustomizer)

Sets tableColumnCustomizer as the object that determines associations’ editors and renderers. By
default, an EOTableColumnAssociation’s editor is the corresponding TableColumn’s editor; or,
if the TableColumn doesn’t have an editor, an EOTextColumnEditor is used. Similarly, an
EOTableColumnAssociation’s renderer is the corresponding TableColumn’s renderer; or, if the
TableColumn doesn’t have an editor, a javax.swing.table.DefaultTableCellRenderer is used.

tableColumnCustomizer

public static TableColumnCustomizer tableColumnCustomizer()

Returns the object that specifies editors and renderers for associations.

Instance Methods

format

public java.text.Format format()

Returns the java.lang.text.Format used to format values bound to the receiver’s ValueAspect for
display and editing.
181

C L A S S E O Ta b l e C o l u m n A s s o c i a t i o n
isEditableAtRow

public boolean isEditableAtRow(int row)

Returns whether or not the property bound to the receiver’s ValueAspect is editable at row, as
determined by the EnabledAspect. If this aspect is bound, a non-zero value at row indicates that
the property may be edited. If the EnabledAspect is unbound all rows are considered editable.

primaryAspect

public String primaryAspect()

Returns ValueAspect.

setFormat

public void setFormat(java.text.Format aFormat)

Sets the java.lang.text.Format object to use in formatting values bound to the receiver’s
ValueAspect for display and editing.

setTable

public void breakConnection()

Because TableColumn maintains no reference to its containing JTable, the consumer must
explicitly specify this relationship by invoking setTable before establishConnection. This
method also assures that an instance of EOTableAssociation exists for table.
182

C L A S S
EOTableViewAssociation
Inherits from: EOAssociation : EODelayedObserver (EOControl) : NSObject

Implements: EOObserving (EODelayedObserver)

Package: com.apple.yellow.eointerface

Class Description

An EOTableViewAssociation object manages the individual EOColumnAssociations between
an NSTableView (Application Kit) and an EODisplayGroup.

An EOTableViewAssociation can sort the objects in the display group by the left-to-right order
of the table columns. The first EOColumnAssociation to be bound to a table view automatically
creates the EOTableViewAssociation; you should rarely need to do so yourself.

An EOTableViewAssociation receives data source and delegate messages from the table view,
some of which it handles itself, and some of which it forwards to the appropriate
EOColumnAssociations. For more information, see the EOColumnAssociation class
specification.

Note: This class doesn’t exist in the com.apple.client.eointerface package.

Usable With

NSTableView
183

C L A S S E O Ta b l e V i e w A s s o c i a t i o n
Example
For an example of using an EOTableViewAssociation, see the EOColumnAssociation class
specification.

Method Types

Setting up a table view association

bindToTableView

Aspects

source Bound to the EODisplayGroup providing objects. This aspect doesn’t use a key.

enabled A boolean attribute of the objects, which determines whether each object’s row is
editable. Note that because EOColumnAssociation also uses this aspect, you can
use it with different keys to limit editability to the whole row or to an individual
cell (column) in that row.

textColor An NSColor attribute of the objects, which determines the color of text for each
object’s row in the NSTableView.

bold A boolean attribute of the objects, which determines whether each objects row is
displayed in bold or regular weight text.

italic A boolean attribute of the objects, which determines whether each objects row is
displayed in italic or normal angle text.

Object Keys Taken

dataSource An EOTableViewAssociation responds to some data source messages and
forwards others to the appropriate EOColumnAssociation.

delegate An EOTableViewAssociation forwards delegate messages to the appropriate
EOColumnAssociations.

target Reserved, but not used.
184

C L A S S E O Ta b l e V i e w A s s o c i a t i o n
Sorting

setSortsByColumnOrder

sortsByColumnOrder

Accessing the active EOColumnAssociation

editingAssociation

Table view data source methods

numberOfRowsInTableView

tableViewSetObjectValueForLocation

tableViewObjectValueForLocation

Table view delegate methods

tableViewShouldEditLocation

tableViewWillDisplayCell

Table view notification methods

tableViewSelectionDidChange

Control delegate methods

controlDidFailToFormatStringErrorDescription

controlIsValidObject

controlTextShouldBeginEditing

Constructors

EOTableViewAssociation

public EOTableViewAssociation(Object aDisplayObject)

Creates a new EOTableViewAssociation to manage EOColumnAssociations associated with
aDisplayObject, an NSTableView (Application Kit).
185

C L A S S E O Ta b l e V i e w A s s o c i a t i o n
You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Static Methods

bindToTableView

public static void bindToTableView(
com.apple.yellow.application.NSTableView aTableView,
EODisplayGroup aDisplayGroup)

Creates an EOTableViewAssociation, binding aTableView to aDisplayGroup, if there isn’t already
a table view association for aTableView. EOColumnAssociation’s establishConnection invokes
this method to guarantee the presence of a coordinating EOTableViewAssociation.

Instance Methods

controlDidFailToFormatStringErrorDescription

public boolean controlDidFailToFormatStringErrorDescription(
com.apple.yellow.application.NSControl aTableView,
String aString,
String errorDescription)

Forwards the message to the receiver’s editing association.

See Also: editingAssociation
186

C L A S S E O Ta b l e V i e w A s s o c i a t i o n
controlIsValidObject

public boolean controlIsValidObject(
com.apple.yellow.application.NSControl aTableView,
Object anObject)

Forwards the message to the receiver’s editing association.

See Also: editingAssociation

controlTextShouldBeginEditing

public boolean controlTextShouldBeginEditing(
com.apple.yellow.application.NSControl aTableView,
com.apple.yellow.application.NSText fieldEditor)

Forwards the message to the receiver’s editing association.

See Also: editingAssociation

editingAssociation

public EOColumnAssociation editingAssociation()

Returns the EOColumnAssociation for the NSTableView cell being edited, or null if no cell is
being edited.

numberOfRowsInTableView

public int numberOfRowsInTableView(com.apple.yellow.application.NSTableView aTableView)

Returns the number of displayed objects in the receiver’s EODisplayGroup.

See Also: displayedObjects (EODisplayGroup)
187

C L A S S E O Ta b l e V i e w A s s o c i a t i o n
setSortsByColumnOrder

public void setSortsByColumnOrder(boolean flag)

Controls whether the receiver applies a sort ordering to its EODisplayGroup. If flag is true, it
builds EOSortOrderings (EOControl) for each of the EOColumnAssociations, collects them into
an NSArray based on the left-to-right order of the columns, and assigns them to the display
group with setSortOrderings. If flag is false, it doesn’t alter the sort ordering of the display
group.

An EOTableViewAssociation assigns sort orderings based on the left to right order of the table
columns, and reassigns them whenever the user moves a column.

See Also: sortingSelector (EOColumnAssociation)

sortsByColumnOrder

public boolean sortsByColumnOrder()

Returns true if the receiver assigns EOSortOrderings (EOControl) to its EODisplayGroup based
on the sorting selectors of its EOColumnAssociations, false if it doesn’t alter the display group’s
sort ordering.

tableViewObjectValueForLocation

public Object tableViewObjectValueForLocation(
com.apple.yellow.application.NSTableView aTableView,
com.apple.yellow.application.NSTableColumn aTableColumn,
int rowIndex)

Forwards the message to aTableColumn’s identifier—assumed to be the EOColumnAssociation
bound to that column—so that it can provide the value.

tableViewSelectionDidChange

public void tableViewSelectionDidChange(NSNotification aNotification)

Updates the receiver’s EODisplayGroup based on the new selection in the table view.

See Also: setSelectionIndexes (EODisplayGroup)
188

C L A S S E O Ta b l e V i e w A s s o c i a t i o n
tableViewSetObjectValueForLocation

public void tableViewSetObjectValueForLocation(
com.apple.yellow.application.NSTableView aTableView,
Object value,
com.apple.yellow.application.NSTableColumn aTableColumn,
int rowIndex)

Forwards the message to aTableColumn’s identifier—assumed to be the EOColumnAssociation
bound to that column—so that it can set the value.

tableViewShouldEditLocation

public boolean tableViewShouldEditLocation(
com.apple.yellow.application.NSTableView aTableView,
com.apple.yellow.application.NSTableColumn aTableColumn,
int rowIndex)

Returns false if the enabled aspect is bound and its value for the object at rowIndex is 0.
Otherwise forwards the message to aTableColumn’s identifier—assumed to be the
EOColumnAssociation bound to that column—and returns its response. Note that because the
two associations’ enabled aspects can be bound to different keys, you can limit editability to the
whole row or to an individual cell (column) in that row.

tableViewWillDisplayCell

public void tableViewWillDisplayCell(
com.apple.yellow.application.NSTableView aTableView,
Object aCell,
com.apple.yellow.application.NSTableColumn aTableColumn,
int rowIndex)

Alters the display characteristics for aCell according to the values for the enabled, textColor,
bold, and italic aspects of the object at rowIndex. Then forwards the message to aTableColumn’s
identifier—assumed to be the EOColumnAssociation bound to that column—allowing it to
adjust aCell based on its own enabled aspect.
189

C L A S S E O Ta b l e V i e w A s s o c i a t i o n
190

C L A S S
EOTextArea
Inherits from: javax.swing.JScrollPane :
javax.swing.JComponent :
java.awt.Container :
java.awt.Component
Object

Implements: EOTextAssociation.JTextComponentAccess

Package: com.apple.client.eointerface

Class Description

EOTextArea, a subclass of javax.swing.JScrollPane, is used to represent scrolling text regions. An
EOTextArea object uses a JTextArea to do its work. The main business of an EOTextArea is to
configure the JTextArea’s behavior and appearance. An EOTextArea’s JTextArea has a vertical
scroll bar but not a horizontal scroll bar and it wraps its lines of text. If you want to perform
additional configuration on an EOTextArea’s JTextArea, you can access the JTextArea with the
method jTextArea.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
191

C L A S S E O Te x t A r e a
Interfaces Implemented

EOTextAssociation.JTextComponentAccess

jTextComponent

Method Types

Accessing the text area’s JTextArea

jTextArea

Methods forwarded to the text area’s JTextArea

setEditable

setOpaque

setSize

setText

Instance Methods

jTextArea

public javax.swing.JTextArea jTextArea()

Returns the receiver’s JTextArea.
192

C L A S S E O Te x t A r e a
jTextComponent

public javax.swing.text.JTextComponent jTextComponent()

Returns the receiver’s JTextArea.

setEditable

public void setEditable(boolean flag)

Sets the receiver’s editability (by setting its JTextArea’s editability).

setOpaque

public void setOpaque(boolean flag)

Sets whether or not the receiver is opaque (by setting its JTextArea to be opaque or not).

setSize

public void setSize(java.awt.Dimension aDimension)

public void setSize(int width, int height)

Sets the size of the receiver’s JTextArea to aDimension or to width and height, and then resizes the
text area to accommodate the vertical scroll bar.

setText

public void setText(String aString)

Sets the receiver’s text value to aString by setting the receiver’s JTextArea’s text.
193

C L A S S E O Te x t A r e a
194

C L A S S
EOTextAssociation
Inherits from: (com.apple.client.eointerface)
EOAssociation :
EODelayedObserver (EOControl) :
Object

(com.apple.yellow.eointerface)
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Implements: EOObserving (EODelayedObserver)
(com.apple.client.eointerface only) java.awt.event.FocusListener
(com.apple.client.eointerface only) NSDisposable (EOAssociation)

Package: com.apple.client.eointerface
com.apple.yellow.eointerface

Class Description

In a Java Client application (using com.apple.client.eointerface), an EOTextAssociation object
displays a plain text attribute in an EOTextField, EOTextArea, or EOFormCell by binding the
text object to a string. Text is written back to the object as a String.

In a com.apple.yellow.eointerface application, an EOTextAssociation object displays a plain or
rich text attribute in an NSText object (Application Kit) by binding the text object to a string or
NSData attribute. It determines the kind of text received from an object by examining the
195

C L A S S E O Te x t A s s o c i a t i o n
beginning for signature codes specific to RTF and RTFD. When writing text back to the object,
the association examines the configuration of the NSText object to determine the type to use
according to the following table:

The following tables describe the display objects an EOTextAssociation can be used with, the
aspects of an EOTextAssociation, and the object keys it takes.

Multiple Fonts Allows Graphics Type Written to Object

NO NO NSString text

YES NO NSData containing RTF

YES YES NSData containing RTFD

Usable With

(com.apple.client.eointerface) EOTextField, EOTextArea, EOFormCell

(com.apple.yellow.eointerface) NSText, NSTextView

Aspects

value A text attribute of the selected object.

(com.apple.yellow.eointerface
only) editable

A boolean attribute of the selected object, which determines
whether the text object is editable.

(com.apple.client.eointerface
only) enabled

A boolean attribute of the selected object, which determines
whether the text object is enabled.

Object Keys Taken

(com.apple.yellow.eointerface
only) delegate

An EOTextAssociation accepts delegate messages related to the
editing and validation of text; see the NSText and NSTextView
class specifications for more information.
196

C L A S S E O Te x t A s s o c i a t i o n
Constructors

EOTextAssociation

public EOTextAssociation(Object aDisplayObject)

Creates a new EOTextAssociation to monitor and update the value in aDisplayObject, which is
typically an Application Kit NSActionCell or, in com.apple.client.eointerface applications, an
EOFormCell.

You normally set up associations with the Interface Builder application, in which case you don’t
need to create them programmatically. However, if you do create them up programmatically,
setting them up is a multi-step process. After creating an association, you must bind its aspects
and establish its connections.

See Also: bindAspect (EOAssociation), establishConnection (EOAssociation)

Instance Methods

breakConnection

public void breakConnection()

See the breakConnection method description in the superclass EOAssociation.

endEditing

public void endEditing()

See the endEditing method description in the superclass EOAssociation.
197

C L A S S E O Te x t A s s o c i a t i o n
establishConnection

public void establishConnection()

See the establishConnection method description in the superclass EOAssociation.

focusGained

public void focusGained(java.awt.event.FocusEvent aFocusEvent)

(com.apple.client.eointerface only) EOTextAssociation listens to its display object’s focus state
changes in order to notify the display group when the user starts editing in the display object.
focusGained is invoked when the user selected the display object in order to edit its value.

focusLost

public void focusLost(java.awt.event.FocusEvent aFocusEvent)

(com.apple.client.eointerface only) Invoked when a user leaves the display object, having
finished editing its value.

format

public java.text.Format format()

(com.apple.client.eointerface only) Returns the java.lang.text.Format used to format values
bound to the receiver’s ValueAspect for display and editing.

isUsableWithObject

public boolean isUsableWithObject(Object aDisplayObject)

(com.apple.client.eointerface only) Returns true if aDisplayObject implements the
EOTextAssociation.JTextComponentAccess interface and if its jTextComponent is non null, false
otherwise.

See Also: isUsableWithObject (EOAssociation)
198

C L A S S E O Te x t A s s o c i a t i o n
primaryAspect

public String primaryAspect()

(com.apple.client.eointerface only) Returns ValueAspect.

setFormat

public void setFormat(java.text.Format aFormat)

(com.apple.client.eointerface only) Sets the java.lang.text.Format object to use in formatting
values bound to the receiver’s ValueAspect for display and editing.

subjectChanged

public void subjectChanged()

See the subjectChanged method description in the superclass EOAssociation.
199

C L A S S E O Te x t A s s o c i a t i o n
200

C L A S S
EOTextColumnEditor
Inherits from: EOColumnEditor

Implements: java.awt.event.ActionListener
java.awt.event.FocusListener
javax.swing.table.TableCellEditor (EOColumnEditor)
javax.swing.CellEditor (javax.swing.table.TableCellEditor)

Package: com.apple.client.eointerface

Class Description

EOTextColumnEditor is a concrete subclass of EOColumnEditor whose instances mediate
between EOTextColumnAssociations and EOTextFields (an EOTextColumnEditor’s
editorComponent is an EOTextField).

For more information on the purpose of EOTextColumnEditors, see the EOColumnEditor class
specification.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
201

C L A S S E O Te x t C o l u m n E d i t o r
Interfaces Implemented

java.awt.event.ActionListener

actionPerformed

java.awt.event.FocusListener

focusGained

focusLost

Method Types

Instantiation

createEditorComponent

Handling events

actionPerformed

beginEditing

endEditing

Accessing the text field

getCellEditorValue

isCellEditable

setCellEditorValue
202

C L A S S E O Te x t C o l u m n E d i t o r
Instance Methods

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent event)

Invokes stopCellEditing.

See Also: stopCellEditing (EOColumnEditor)

beginEditing

protected void beginEditing()

Adds the receiver to its editor component as a java.awt.event.FocusListener and as a
java.awt.event.ActionListener, and invokes super’s implementation.

See Also: beginEditing (EOColumnEditor)

createEditorComponent

protected abstract java.awt.Component createEditorComponent()

Returns a newly instantiated javax.swing.JTextField with a black
javax.swing.border.LineBorder.

See Also: createEditorComponent (EOColumnEditor)

endEditing

protected void endEditing()

Removes the receiver from its editor component’s focus and action listener lists, and invokes
super’s implementation.

See Also: endEditing (EOColumnEditor)
203

C L A S S E O Te x t C o l u m n E d i t o r
focusLost

public void focusLost(java.awt.event.FocusEvent event)

Invokes stopCellEditing.

See Also: stopCellEditing (EOColumnEditor)

getCellEditorValue

public Object getCellEditorValue()

Overrides super’s implementation to return the text value of the receiver’s editorComponent, an
EOTextField.

isCellEditable

public boolean isCellEditable(java.util.EventObject event)

Overrides super’s implementation to return true as long as event is not a
java.awt.event.MouseEvent with a click count of less than two.

setCellEditorValue

public void setCellEditorValue(Object initialValue)

Sets the value of the receiver’s editor component, an EOTextField by default, to initialValue
using the method setText.
204

C L A S S
EOTextField
Inherits from: javax.swing.JTextField :
javax.swing.JTextComponent :
javax.swing.JComponent :
java.awt.Container :
java.awt.Component
Object

Package: com.apple.client.eointerface

Class Description

EOTextField is a subclass of javax.swing.JTextField that adds the notion of selectability.

When an EOTextField object is selectable, it behaves in every way as a JTextField. However,
when an EOTextField is not selectable, its text can’t be selected. An EOTextField is selectable by
default. To set it so it’s not selectable, invoke setSelectable with false.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
205

C L A S S E O Te x t F i e l d
Instance Methods

isFocusTraversable

public boolean isFocusTraversable()

Returns the result of the super’s implementation if the receiver is selectable, false otherwise.

setSelectable

public void setSelectable(boolean flag)

Sets the receiver as selectable if flag is true, or as unselectable otherwise.
206

C L A S S
EOView
Inherits from: javax.swing.JPanel :
javax.swing.JComponent :
java.awt.Container :
java.awt.Component
Object

Implements: NSDisposable

Package: com.apple.client.eointerface

Class Description

EOView is a subclass of javax.swing.JPanel that uses an EOViewLayout object to provide its
layout logic.

For more information on the layout behavior of EOView objects, see the EOViewLayout class
specification.

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
207

C L A S S E O V i e w
Interfaces Implemented

NSDisposable

dispose

Constructors

EOView

public EOView(String debuggingHint)

Creates and returns a new EOView object. The debuggingHint argument is a string you can use
to uniquely identify the view. When the form is instantiated from a nib file, the debuggingHint is
a string generated by Interface Builder.

See Also: debuggingHint

Instance Methods

add

public java.awt.Component add(java.awt.Component aComponent)

Adds aComponent to the receiver and returns it.
208

C L A S S E O V i e w
debuggingHint

public String debuggingHint()

Returns the receiver’s debugging hint, a string that uniquely identifies the EOView.

See Also: EOView constructor

setBounds

public void setBounds(int x, int y, int width, int height)

See the method description for setBounds in Sun’s JPanel class documentation.

toString

public String toString()

Returns the receiver’s debuggingHint.
209

C L A S S E O V i e w
210

C L A S S
EOViewLayout
Inherits from: Object

Implements: java.awt.LayoutManager2
java.awt.LayoutManager (java.awt.LayoutManager2)
java.io.Serializable

Package: com.apple.client.eointerface

Class Description

EOViewLayout is an AWT LayoutManager for use in Java Client application (using
com.apple.client.eointerface). It implements the geometry options available in Interface
Builder’s Size inspector. The size of a Component embedded in a Container using this layout
will be a function of both its autosizing mask and its initial size (see setAutosizingMask for
details).

Constants

EOViewLayout defines the following int constants:

Note: This class doesn’t exist in the com.apple.yellow.eointerface package.
211

C L A S S E O V i e w L a y o u t
� MaxXMargin

� MinXMargin

� MaxYMargin

� MinYMargin

� WidthSizable

� HeightSizable

� BothSizable

For more information on what these constants are and how they’re used, see the method
description for setAutosizingMask.

Constructors

EOViewLayout

public EOViewLayout()

Any consumers of EOViewLayout should use the defaultInstance.

Static Methods

defaultInstance

public static EOViewLayout defaultInstance()

Returns that single instance of the receiver used to lay out all InterfaceBuilder-generated
Containers.
212

C L A S S E O V i e w L a y o u t
Instance Methods

setAutosizingMask

public void setAutosizingMask(
java.awt.Component component,
int mask)

Sets the autosizing mask of component to mask. This information is subsequently used by the
receiver to calculate the new location and dimensions of component whenever its parent is
resized. The mask should be some bitwise combination of the following:

Note that unless mask is 0 (zero), the default mask, component’s adjusted size is a factor of its size
when setAutosizingMask was invoked.

Constant Description

MaxXMargin the distance between component’s right edge and that of its parent may be
adjusted

MinXMargin component’s left edge distance may be adjusted

MaxYMargin the distance between component’s bottom edge and that of its parent may
be adjusted

MinYMargin component’s top edge distance may be adjusted

WidthSizable component’s width may be adjusted

HeightSizable component’s height may be adjusted

BothSizable both width and height may be adjusted
213

C L A S S E O V i e w L a y o u t
214

I N T E R F A C E
EODisplayGroup.Delegate
(informal interface)

Package: com.apple.client.eointerface
com.apple.yellow.eointerface

Interface Description

The EODisplayGroup.Delegate interface defines methods that an EODisplayGroup can invoke
in its delegate. Delegates are not required to provide implementations for all of the methods in
the interface, and you don’t have to use the implements keyword to specify that the object
implements the Delegates interface. Instead, declare and implement any subset of the methods
declared in the interface that you need, and use the EODisplayGroup method setDelegate
method to assign your object as the delegate. A display group can determine if the delegate
doesn’t implement a delegate method and only attempts to invoke the methods the delegate
actually implements.

Method Types

Fetching objects

displayGroupShouldFetch

displayGroupDidFetchObjects
215

I N T E R F A C E E O D i s p l a y G r o u p . D e l e g a t e
displayGroupShouldRefetch

Inserting, updating, and deleting objects

displayGroupShouldInsertObject

displayGroupDidInsertObject

displayGroupCreateObjectFailed

displayGroupDidSetValueForObject

displayGroupShouldDeleteObject

displayGroupDidDeleteObject

Managing the display

displayGroupShouldDisplayAlert

displayGroupShouldRedisplay

displayGroupDisplayArrayForObjects

Managing the selection

displayGroupShouldChangeSelection

displayGroupDidChangeSelection

displayGroupDidChangeSelectedObjects

Changing the data source

displayGroupDidChangeDataSource
216

I N T E R F A C E E O D i s p l a y G r o u p . D e l e g a t e
Instance Methods

displayGroupCreateObjectFailed

public abstract void displayGroupCreateObjectFailed(
EODisplayGroup aDisplayGroup,
com.apple.yellow.eocontrol.EODataSource aDataSource)

Invoked from insertNewObjectAtIndex to inform the delegate that aDisplayGroup has failed to
create a new object for aDataSource. If the delegate doesn’t implement this method, the
EODisplayGroup instead runs an alert panel to inform the user of the failure.

displayGroupDidChangeDataSource

public abstract void displayGroupDidChangeDataSource(EODisplayGroup aDisplayGroup)

Informs the delegate that aDisplayGroup’s EODataSource has changed.

displayGroupDidChangeSelectedObjects

public abstract void displayGroupDidChangeSelectedObjects(EODisplayGroup aDisplayGroup)

Informs the delegate that aDisplayGroup’s set of selected objects has changed, regardless of
whether the selection indexes have changed.

displayGroupDidChangeSelection

public abstract void displayGroupDidChangeSelection(EODisplayGroup aDisplayGroup)

Informs the delegate that aDisplayGroup’s selection has changed.
217

I N T E R F A C E E O D i s p l a y G r o u p . D e l e g a t e
displayGroupDidDeleteObject

public abstract void displayGroupDidDeleteObject(
EODisplayGroup aDisplayGroup,
Object anObject)

Informs the delegate that aDisplayGroup has deleted anObject.

displayGroupDidFetchObjects

public abstract void displayGroupDidFetchObjects(
EODisplayGroup aDisplayGroup,
NSArray objects)

Informs the delegate that aDisplayGroup has fetched objects.

displayGroupDidInsertObject

public abstract void displayGroupDidInsertObject(
EODisplayGroup aDisplayGroup,
Object anObject)

Informs the delegate that aDisplayGroup has inserted anObject.

displayGroupDidSetValueForObject

public abstract void displayGroupDidSetValueForObject(
EODisplayGroup aDisplayGroup,
Object value,
Object anObject,
String key)

Informs the delegate that aDisplayGroup has altered a property value of anObject. key identifies
the property, and value is its new value.
218

I N T E R F A C E E O D i s p l a y G r o u p . D e l e g a t e
displayGroupDisplayArrayForObjects

public abstract NSArray displayGroupDisplayArrayForObjects(
EODisplayGroup aDisplayGroup,
NSArray objects)

Invoked from updateDisplayedObjects, this method allows the delegate to filter and sort
aDisplayGroup’s array of objects to limit which ones get displayed. objects contains all of
aDisplayGroup’s objects. The delegate should filter any objects that shouldn’t be shown and sort
the remainder, returning a new array containing this group of objects. You can use EOQualifier’s
filteredArrayUsingQualifier and EOSortOrdering’s sortedArrayUsingKeyOrderArray methods
in EOControl to create the new array.

If the delegate doesn’t implement this method, the EODisplayGroup uses its own qualifier and
sort ordering to update its displayed objects array.

See Also: sortOrderings, qualifier, displayedObjects

displayGroupShouldChangeSelection

public abstract boolean displayGroupShouldChangeSelection(
EODisplayGroup aDisplayGroup,
NSArray newIndexes)

Allows the delegate to prevent a change in selection by aDisplayGroup. newIndexes is the
proposed new selection, an array of Numbers. If the delegate returns true, the selection changes;
if the delegate returns false, the selection remains as it is.

displayGroupShouldDeleteObject

public abstract boolean displayGroupShouldDeleteObject(
EODisplayGroup aDisplayGroup,
Object anObject)

Allows the delegate to prevent aDisplayGroup from deleting anObject. If the delegate returns
true, anObject is deleted; if the delegate returns false, the deletion is abandoned.
219

I N T E R F A C E E O D i s p l a y G r o u p . D e l e g a t e
displayGroupShouldDisplayAlert

public abstract boolean displayGroupShouldDisplayAlert(
EODisplayGroup aDisplayGroup,
String title,
String message)

Allows the delegate to prevent aDisplayGroup from displaying an attention panel with title and
message. The delegate can return true to allow aDisplayGroup to display the panel, or false to
prevent it from doing so (perhaps displaying a different attention panel).

displayGroupShouldFetch

public abstract boolean displayGroupShouldFetch(EODisplayGroup aDisplayGroup)

Allows the delegate to prevent aDisplayGroup from fetching. If the delegate returns true,
aDisplayGroup performs the fetch; if the delegate returns false, aDisplayGroup abandons the
fetch.

displayGroupShouldInsertObject

public abstract boolean displayGroupShouldInsertObject(
EODisplayGroup aDisplayGroup,
Object anObject,
int anIndex)

Allows the delegate to prevent aDisplayGroup from inserting anObject at anIndex. If the delegate
returns true, anObject is inserted; if the delegate returns false, the insertion is abandoned.

displayGroupShouldRedisplay

public abstract boolean displayGroupShouldRedisplay(
EODisplayGroup aDisplayGroup,
NSNotification aNotification)

Invoked whenever aDisplayGroup receives an ObjectsChangedInEditingContextNotification,
this method allows the delegate to suppress redisplay based on the nature of the change that has
occurred. If the delegate returns true, aDisplayGroup redisplays; if it returns false, aDisplayGroup
220

I N T E R F A C E E O D i s p l a y G r o u p . D e l e g a t e
doesn’t. aNotification supplies the EOEditingContext that has changed, as well as which objects
have changed and how. See the EOEditingContext class specification for information on
ObjectsChangedInEditingContextNotification.

See Also: redisplay

displayGroupShouldRefetch

public abstract boolean displayGroupShouldRefetch(
EODisplayGroup aDisplayGroup,
NSNotification aNotification)

Invoked whenever aDisplayGroup receives an InvalidatedAllObjectsInStoreNotification, this
method allows the delegate to suppress refetching of the invalidated objects. If the delegate
returns true, aDisplayGroup immediately refetches its objects. If the delegate returns false,
aDisplayGroup doesn’t immediately fetch, instead delaying until absolutely necessary.
aNotification is an NSNotification. See the EOObjectStore and EOEditingContext class
specifications for information on this notification.
221

I N T E R F A C E E O D i s p l a y G r o u p . D e l e g a t e
222

I N T E R F A C E
EOTextAssociation.JTextComponentA
ccess
Package: com.apple.client.eointerface

Interface Description

EOTextAssociation.JTextComponentAccess is an interface that specifies the way an
EOTextAssociation accesses its display object’s underlying javax.swing.text.JTextComponent.

Instance Methods

jTextComponent

public abstract javax.swing.text.JTextComponent jTextComponent()

Returns the receiver’s JTextComponent.

Note: This interface doesn’t exist in the com.apple.yellow.eointerface package.
223

I N T E R F A C E E O Te x t A s s o c i a t i o n . J Te x t C o m p o n e n t A c c e s s
224

I N T E R F A C E
EOTableColumnAssociation.TableCol
umnCustomizer
Package: com.apple.client.eointerface

Interface Description

EOTableColumnAssociation.TableColumnCustomizer is an interface the API an object uses to
specify custom editors and renderers for an EOTableColumnAssociation.

To use your own editor or renderer in the JTable of an EOTable, you define a class that
implements EOTableColumnAssociation.TableColumnCustomizer’s two methods:
editorForAssociation, which should return an editor for the specified association, and
rendererForAssociation, which should return a renderer for the specified association. Register
an instance of your TableColumnCustomizer using EOTableColumnAssociation’s static method
setTableColumnCustomizer.

For more information on how TableColumnCustomizers are used, see the
EOTableColumnAssociation class specification.

Note: This interface doesn’t exist in the com.apple.yellow.eointerface package.
225

I N T E R F A C E E O Ta b l e C o l u m n A s s o c i a t i o n . Ta b l e C o l u m n C u s t o m i z e r
Instance Methods

editorForAssociation

public abstract EOColumnEditor
editorForAssociation(EOTableColumnAssociation tableColumnAssociation)

Returns the EOColumnEditor to be used for tableColumnAssociation’s display object (a
javax.swing.table.TableColumn).

rendererForAssociation

public abstract javax.swing.table.TableCellRenderer
rendererForAssociation(EOTableColumnAssociation tableColumnAssociation)

Returns the TableCellRenderer to be used for tableColumnAssociation’s display object (a
javax.swing.table.TableColumn).
226

C L A S S
Deprecated API
This file enumerates those EOInterface classes and methods that have been deprecated
and should no longer be used. Wherever possible, notes have been included to indicate
what API should be used in place of the deprecated class or method.

EOTableAssociation

isEditableAtRow

public boolean isEditableAtRow(int row)

Returns whether or not the display object bound to the receiver is editable at row as determined
by the EnabledAspect. If this aspect is bound, a non-zero value at row indicates that the property
can be edited. If the EnabledAspect is unbound all rows are considered editable.
227

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited, and composed on a desktop publishing system
using Apple Macintosh computers and FrameMaker software.

Line art was created using Adobe™ Illustrator and Adobe Photoshop.

Text type is Palatino® and display type is Helvetica®. Bullets are ITC Zapf Dingbats®. Some
elements, such as program listings, are set in Adobe Letter Gothic.

	SybaseAdaptor class:specification
	EOActionAssociation class:specification
	EOActionCellAssociation class:specification
	EOActionInsertionAssociation class:specification
	EOAssociation class:specification
	EOAssociation class:specification
	EOColumnAssociation class:specification
	EOColumnEditor
	EOComboBoxAssociation class:specification
	EOControlActionAdapter
	EOControlAssociation class:specification
	EODetailSelectionAssociation class:specification
	EODisplayGroup class:specification
	EOForm
	EOFormCell
	EOFrame
	EOGenericControlAssociation class:specification
	EOImageAssociation
	EOImageView
	EOMasterCopyAssociation
	EOMasterDetailAssociation class:specification
	EOMasterPeerAssociation class:specification
	EOMatrix
	EOMatrixAssociation
	EOPickTextAssociation class:specification
	EOPopUpAssociation class:specification
	EOQuickTimeAssociation
	EOQuickTimeView
	EORadioMatrixAssociation class:specification
	EORecursiveBrowserAssociation
	EOTable
	EOTableAssociation
	EOTableColumnAssociation
	EOTableViewAssociation class:specification
	EOTextArea
	EOTextAssociation class:specification
	EOTextColumnEditor
	EOTextField
	EOView
	EOViewLayout
	EODisplayGroup.Delegate
	EOTextAssociation.JTextComponentA ccess
	EOTableColumnAssociation.TableCol umnCustomizer
	Deprecated API

