

C H A P T E R 3

3

Introduction to A
pple E

vents

Introduction to Apple Events 3

This chapter introduces Apple events and the Apple Event Manager. Later chapters
describe how your application can use the Apple Event Manager to respond to and send
Apple events, locate Apple event objects, and record Apple events.

The interapplication communication (IAC) architecture for Macintosh computers
consists of five parts: the Edition Manager, the Open Scripting Architecture (OSA),
the Apple Event Manager, the Event Manager, and the Program-to-Program
Communications (PPC) Toolbox. The chapter “Introduction to Interapplication
Communication” in this book provides an overview of the relationships among
these parts.

The Apple Event Registry: Standard Suites defines both the actions performed by the
standard Apple events, or “verbs,” and the standard Apple event object classes, which
can be used to create “noun phrases” describing objects on which Apple events act. If
your application uses the Apple Event Manager to respond to some of these standard
Apple events, you can make it scriptable—that is, capable of responding to scripts
written in a scripting language such as AppleScript. In addition, your application can
use the Apple Event Manager to create and send Apple events and to allow user actions
in your application to be recorded as Apple events.

Before you use this chapter or any of the other chapters about the Apple Event Manager,
you should be familiar with the chapters “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials and “Process Manager” in Inside Macintosh: Processes.

This chapter begins by describing Apple events and some of the data structures they
contain. The rest of the chapter introduces the use of the Apple Event Manager to

■ respond to Apple events

■ send Apple events to request services or information

■ work with object specifier records

■ classify Apple event objects

■ locate Apple event objects

Finally, this chapter summarizes the tasks you can perform with the Apple Event
Manager and explains where to locate information you need to perform those tasks.

About Apple Events 3

An Apple event is a high-level event that conforms to the Apple Event Interprocess
Messaging Protocol. The Apple Event Manager uses the services of the Event Manager to
send Apple events between applications on the same computer, between applications on
remote computers, or from an application to itself.
About Apple Events 3-3

C H A P T E R 3

Introduction to Apple Events

Applications typically use Apple events to request services and information from other
applications or to provide services and information in response to such requests.
Communication between two applications that support Apple events is initiated by a
client application, which sends an Apple event to request a service or information.
The application providing the service or the requested information is called a server
application. The client and server applications can reside on the same local computer or
on remote computers connected to a network. An application can also send Apple events
to itself, thus acting as both client and server.

Figure 3-1 shows a common Apple event, the Open Documents event. The Finder is
the client; it requests that the SurfWriter application open the documents named
“Dec. Invoice” and “Nov. Invoice.” The SurfWriter application responds to the Finder’s
request by opening windows for the specified documents.

Figure 3-1 An Open Documents event

The Finder is considered the client application for the Open Documents event shown in
Figure 3-1 because the Finder initiates the request for a service. The Finder can also be
considered the source application for the same Open Documents event. A source
application for an Apple event is one that sends an Apple event to another application
or to itself. Similarly, the SurfWriter application can be described as either the server
application or the target application for the Open Documents event shown in Figure 3-1.
A target application for an Apple event is the one addressed to receive the Apple event.
The terms client application and source application are not always synonymous, nor are the
terms server application and target application. Typically, an Apple event client application
sends an Apple event requesting a service to an Apple event server application;

Dec. Invoice

Server
application

Client
application

Finder

Apple event

Open Documents

Dec. Invoice
Nov. Invoice

SurfWriter

Nov. Invoice

Bill to:
My Company
San Francisco, CA

Design
Art
Film
TOTAL

$200
$500
$200
$900
3-4 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3

Introduction to A
pple E

vents

in this case, the server application is the target application for the Apple event. A server
application may return information to the client in a reply Apple event—in which case,
the client application is the target application for the reply.

To perform the requested service—that is, to open the specified documents—the
SurfWriter application shown in Figure 3-1 first uses the Apple Event Manager to
identify the event (the Open Documents event) and to dispatch the event to SurfWriter’s
handler for that Apple event. An Apple event handler is an application-defined function
that extracts pertinent data from an Apple event, performs the requested action, and
(usually) returns a result. In this case, SurfWriter’s Open Documents event handler
examines the Apple event to determine which documents to open (Dec. Invoice and
Nov. Invoice), then opens them as requested.

To identify Apple events and respond appropriately, every application can rely on a
vocabulary of standard Apple events that developers and Apple have established for all
applications to use. These events are defined in the Apple Event Registry: Standard Suites.
The standard suites, or groups of related Apple events that are usually implemented
together, include the Required suite, the Core suite, and functional-area suites such as
the Text suite and the Database suite. To function as a server application, your
application should be able to respond to all the Apple events in the Required suite and
any of those in the Core and functional-area suites that it is likely to receive. For
example, most word-processing applications should be capable of responding to the
Apple events in the Text suite, and most database applications should be capable of
responding to those in the Database suite.

If necessary, you can extend the definitions of the standard Apple events to
match specific capabilities of your application. You can also define your own custom
Apple events; however, before defining custom events, you should check with
the Apple Event Registrar to find out whether you can adapt existing Apple event
definitions or definitions still under development to the needs of your application.

By supporting the standard Apple events in your application, you ensure that your
application can communicate effectively with other applications that also support them.
Instead of supporting many different custom events for a limited number of
applications, you can support a relatively small number of standard Apple events that
can be used by any number of applications.

You can begin supporting Apple events by making your application a reliable server
application: first for the required Apple events, then for the core and functional-area
Apple events as appropriate. Once your application can respond to the appropriate
standard Apple events, you can make it scriptable, or capable of responding to
instructions written in a system-wide scripting language such as AppleScript. If
necessary, your application can also send Apple events to itself or to other applications.

“About the Apple Event Manager,” which begins on page 3-48, provides more
information about the steps you need to take to support Apple events in your
application.
About Apple Events 3-5

C H A P T E R 3

Introduction to Apple Events

The next section, “Apple Events and Apple Event Objects,” describes how Apple events
can describe data and other items within an application or its documents. Subsequent
sections describe the basic organization of Apple events and the data structures from
which they are constructed.

Apple Events and Apple Event Objects 3
The Open Documents event shown in Figure 3-1, like the other three required events,
specifies an action and the applications or documents to which that action applies.
The Apple Event Registry: Standard Suites provides a vocabulary of actions for use by
all applications. In addition to a vocabulary of actions, effective communication between
applications requires a method of referring to windows, data (such as words or graphic
elements), files, folders, volumes, zones, and other discrete items on which actions can
be performed. The Apple Event Manager includes routines that allow any application to
construct or interpret “noun phrases” that describe the objects on which Apple events act.

Most of the Apple event definitions in the Apple Event Registry: Standard Suites include
definitions of Apple event object classes, which are simply names for objects that can be
acted upon by each kind of Apple event. An Apple event object is any distinct item
supported by an application that can be described within an Apple event. Apple event
objects can be anything that an application can locate on the basis of such a description,
including items that a user can differentiate and manipulate while using an application,
such as words, paragraphs, shapes, windows, or style formats.

The definition for each Apple event object class in the Apple Event Registry:
Standard Suites determines only how that kind of Apple event object should be
described within an Apple event, not how it should be represented internally by an
individual application. You do not have to write your application in an object-oriented
programming language to support Apple event objects. Instead, you need to organize
your application so that it can interpret a request for specific Apple event objects, locate
the objects, and perform the requested action on them.

Figure 3-2 shows a common Apple event, the Get Data event from the Core suite. In this
example, the SurfCharter application is the client application; it requests data contained
in a specific table in a SurfWriter document. To obtain the data it wants, the SurfCharter
application must include a description of the data in the Get Data event it sends to
SurfWriter. This description identifies the requested data as an Apple event object called
a table. The table is named “Summary of Sales” and is located in a document named
“Sales Report.”

The SurfWriter application’s Get Data handler extracts information about the request,
locates the specified table, and returns a result. The Apple Event Manager provides a
reply Apple event to which the SurfWriter application adds the requested information in
the form requested by the Get Data event. The Apple Event Manager sends the reply
event back to the SurfCharter application, which can use the requested data in whatever
way is appropriate—in this case, displaying it as a pie chart.
3-6 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3

Introduction to A
pple E

vents

Figure 3-2 A Get Data event

Apple Event Attributes and Parameters 3
When an application creates and sends an Apple event, the Apple Event Manager uses
arguments passed to Apple Event Manager routines to construct the data structures that
make up the Apple event. An Apple event consists of attributes (which identify the
Apple event and denote its task) and, often, parameters (which contain information to be
used by the target application).

An Apple event attribute is a record that identifies the event class, event ID, target
application, or some other characteristic of an Apple event. Taken together, the attributes
of an Apple event denote the task to be performed on any data specified in the Apple
event’s parameters. A client application can use Apple Event Manager routines to add
attributes to an Apple event. After receiving an Apple event, a server application can use
Apple Event Manager routines to extract and examine its attributes.

Apple event

Get Data

The table named
“Summary of Sales”
in the document named
“Sales Report”

Apple event

Reply

Summary of Sales
300 788 500 825

Apple event
object

Server
application

SurfWriter

Sales Report

This table
shows the
sales data:

Summary of
Sales

788

825

Client
application

Data retrieved
from Apple
event object

Chart of sales
by product area:

300

788

Sales Chart

500 825

Summary of
Sales

SurfCharter

300

500
About Apple Events 3-7

C H A P T E R 3

Introduction to Apple Events

An Apple event parameter is a record containing data that the target application uses.
Unlike Apple event attributes (which contain information that can be used by both the
Apple Event Manager and the target application), Apple event parameters contain data
used only by the target application. For example, the Apple Event Manager uses the
event class and event ID attributes to identify the server application’s handler for a
specific Apple event, and the server application must have a handler to process the event
identified by those attributes. By comparison, the list of documents contained in a
parameter to an Open Documents event is used only by the server application. As with
attributes, a client application can use Apple Event Manager routines to add parameters
to an Apple event, and a server application can use Apple Event Manager routines to
extract and examine the parameters of an Apple event it has received.

Note that Apple event parameters are different from the parameters of Apple
Event Manager functions. Apple event parameters are records used by the Apple Event
Manager; function parameters are arguments you pass to the function or that the
function returns to you. You can specify both Apple event parameters and Apple event
attributes in parameters to Apple Event Manager functions. For example, the
AEGetParamPtr function uses a buffer to return the data contained in an Apple event
parameter. You can specify the Apple event parameter whose data you want in one of
the parameters of the AEGetParamPtr function.

Apple Event Attributes 3

Apple events are identified by their event class and event ID attributes. The event class
is the attribute that identifies a group of related Apple events. The event class appears in
the message field of the event record for an Apple event. For example, the four required
Apple events have the value 'aevt' in the message fields of their event records. The
value 'aevt' can also be represented by the kCoreEventClass constant. Several
event classes are shown here:

The event ID is the attribute that identifies the particular Apple event within its event
class. In conjunction with the event class, the event ID uniquely identifies the Apple
event and communicates what action the Apple event should perform. (The event IDs
appear in the where field of the event record for an Apple event. For more information
about event records, see the chapter “Event Manager” in Inside Macintosh: Macintosh
Toolbox Essentials.) For example, the event ID of an Open Documents event has the value
'odoc' (which can also be represented by the kAEOpenDocuments constant). The
kCoreEventClass constant in combination with the kAEOpenDocuments constant
identifies the Open Documents event to the Apple Event Manager.

Event class Value Description

kCoreEventClass 'aevt' A required Apple event

kAECoreSuite 'core' A core Apple event

kAEFinderEvents 'FNDR' An event that the Finder accepts

kSectionEventMsgClass 'sect' An event sent by the Edition Manager
3-8 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3

Introduction to A
pple E

vents

Here are the event IDs for the four required Apple events:

In addition to the event class and event ID attributes, every Apple event must include an
attribute that specifies the target application’s address. Remember that the target
application is the one addressed to receive the Apple event. Your application can send an
Apple event to itself or to another application (on the same computer or on a remote
computer connected to the network).

Every Apple event must include event class, event ID, and target address attributes.
Some Apple events can include other attributes; see “Keyword-Specified Descriptor
Records,” which begins on page 3-15, for a complete list.

Apple Event Parameters 3

As with attributes, there are various kinds of Apple event parameters. A direct
parameter usually specifies the data to be acted upon by the target application. For
example, the direct parameter of the Print Documents event contains a list of documents.
Some Apple events also take additional parameters, which the target application uses in
addition to the data specified in the direct parameter. Thus, an Apple event for
arithmetic operations might include additional parameters that specify operands in an
equation.

The Apple Event Registry: Standard Suites describes all parameters as either required or
optional. A required parameter is one that must be present for the target application to
carry out the task denoted by the Apple event. An optional parameter is a supplemental
Apple Event parameter that also can be used to specify data to the target application.
Optional parameters need not be included in an Apple event; default values for optional
parameters are part of the event definition. The target application that handles the event
must supply default values if the optional parameters are omitted.

Direct parameters are usually defined as required parameters in the Apple Event Registry:
Standard Suites; additional parameters may be defined as either required or optional.
However, the Apple Event Manager does not enforce the definitions of required and
optional events. Instead, the source application specifies, when it sends the event, which
Apple event parameters the target can treat as if they were optional.

For more information about optional parameters, see “Specifying Optional Parameters
for an Apple Event,” which begins on page 5-7.

Event ID Value Description

kAEOpenApplication 'oapp' Perform tasks required when a user opens your
application without opening or printing any
documents

kAEOpenDocuments 'odoc' Open documents

kAEPrintDocuments 'pdoc' Print documents

kAEQuitApplication 'quit' Quit your application
About Apple Events 3-9

C H A P T E R 3

Introduction to Apple Events

Interpreting Apple Event Attributes and Parameters 3

Figure 3-3 shows the major Apple event attributes and direct parameter for the
Open Documents event introduced in Figure 3-1.

Figure 3-3 Major attributes and direct parameter of an Open Documents event

When the SurfWriter application receives any high-level event, it calls the
AEProcessAppleEvent function to process the event. For an Apple event such as the
Open Documents event shown in Figure 3-3, the AEProcessAppleEvent function uses
the event class and event ID attributes to dispatch the event to the SurfWriter
application’s Open Documents handler. In response, the Open Documents handler opens
the documents specified in the direct parameter.

The definition of a given Apple event in the Apple Event Registry: Standard Suites suggests
how the source application can organize the data in the Apple event’s parameters
and how the target application interprets that data. The data in an Apple event
parameter may use standard or private data types and may include a description of an
Apple event object. Each Apple event handler provided by an application should be
written with the format of the expected data in mind.

Apple events can use standard data types, such as strings of text, long integers,
Boolean values, and alias records, for the corresponding data in Apple event parameters.
For example, the Get Data event can contain an optional parameter specifying the form
in which the requested data should be returned. This optional parameter always consists
of a list of four-character codes denoting desired descriptor types in order of preference.
Apple events can also use special data types defined by the Apple Event Manager.

Apple event parameters often contain descriptions of Apple event objects. These
descriptions make use of a standard classification scheme summarized in “The
Classification of Apple Event Objects,” which begins on page 3-39.

Server
application

Apple event

Open Documents

Event class attribute:
kCoreEventClass

SurfWriter
Event ID attribute:
kAEOpenDocument

Target address attribute:
application with the
signature 'Wave'

Direct parameter—
list of files
(Dec. Invoice
 Nov. Invoice)

Dec. Invoice

Nov. Invoice

Bill to:
My Company
San Francisco, CA

Design
Art
Film
TOTAL

$200
$500
$200
$900

Client
application

Finder
3-10 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3

Introduction to A
pple E

vents

For example, every Get Data event includes a required parameter that describes the
Apple event object containing the data requested by the client application. Thus, one
application can send a Get Data event to another application, requesting, for instance,
one paragraph of a document, the first and last paragraphs of a document, all pictures in
the document, all paragraphs containing the word “sales,” or pages 10 through 12 of the
document.

Figure 3-4 shows the Apple event attributes and direct parameter for the Get Data event
introduced in Figure 3-2. The direct parameter for the Get Data event sent by the
SurfCharter application describes the requested Apple event object as a table called
“Summary of Sales” in the document “Sales Report.” Both the table and the document
are Apple event objects. The description of an Apple event object always includes a
description of its location. In most cases, Apple event objects are located inside other
Apple event objects.

Figure 3-4 Major attributes and direct parameter of a Get Data event

Apple event

Get Data

Event class attribute:
kAECoreSuite

Apple event

Reply

Summary of Sales
300 788 500 825

Table
object

Data retrieved
from table object

Event ID attribute:
kAEGetData

Target address attribute:
application with the
signature 'Wave'

Direct parameter—
a description of
an Apple event object:
a table named
“Summary of Sales”
in the document named
“Sales Report”

Paragraph
object

Document
object

Sales Report

This table
shows the
sales data:

Summary of
Sales

300

500

788

825

Chart of sales
by product area:

300

788

Sales Chart

500 825

Summary of
Sales

Client
application

SurfCharter

Server
application

SurfWriter
About Apple Events 3-11

C H A P T E R 3

Introduction to Apple Events

To process the information in the Get Data event, the SurfWriter application calls the
AEProcessAppleEvent function. The AEProcessAppleEvent function uses the
event class and event ID attributes to dispatch the event to the SurfWriter application’s
handler for the Get Data Apple event. The SurfWriter application responds to the Get
Data event by resolving the description of the Apple event object—that is, by using the
AEResolve function, other Apple Event Manager routines, and its own
application-defined functions to locate the table named “Summary of Sales.” After
locating the table, SurfWriter adds a copy of the table’s data to the reply event, which the
Apple Event Manager then sends to the SurfCharter application. The SurfCharter
application then displays the data in its active window.

The next section, “Data Structures Within Apple Events,” describes the data structures
the Apple Event Manager uses for Apple event attributes and parameters.

Data Structures Within Apple Events 3
The Apple Event Manager constructs its own internal data structures to contain the
information in an Apple event. Neither the sender nor the receiver of an Apple event
should manipulate data directly after it has been added to an Apple event; each should
rely on Apple Event Manager functions to do so.

This section describes the most important data structures used by the Apple event
Manager to construct Apple events. The first structure described is the descriptor record,
a data structure of type AEDesc. Applications may access the data in an individual
descriptor record directly if it is not part of another Apple Event Manager data structure.

In some cases it is convenient for the Apple Event Manager to describe descriptor
records by data types that indicate their contents; thus, it also defines data structures
such as type AEAddressDesc, AEDescList, and AERecord, which are descriptor
records used to hold addresses, lists of other descriptor records, and Apple event
parameters, respectively. These and most of the other data structures described in this
section are formally defined as data structures of type AEDesc; they differ only in the
purposes for which they are used.

Descriptor Records 3

Descriptor records are the building blocks used by the Apple Event Manager to construct
Apple event attributes and parameters. A descriptor record is a data structure of type
AEDesc; it consists of a handle to data and a descriptor type that identifies the type of
the data to which the handle refers.

TYPE AEDesc =

RECORD {descriptor record}

descriptorType: DescType; {type of data}

dataHandle: Handle; {handle to data}

END;
3-12 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
If a descriptor record exists separately from other Apple Event Manager data structures,
it is possible to retrieve the data associated with its handle by dereferencing the handle
twice. After a descriptor record has been added to any other Apple Event Manager data
structure, you must use Apple Event Manager routines to extract data from the
descriptor record.

The descriptor type is a structure of type DescType, which in turn is of data type
ResType—that is, a four-character code. Constants are usually used in place of these
four-character codes when referring to descriptor types. Descriptor types represent
various data types. Here are some of the major descriptor type constants, their values,
and the kinds of data they identify.

For a complete list of the basic descriptor types used by the Apple Event Manager, see
Table 4-2 on page 4-57.

Figure 3-5 illustrates the logical arrangement of a descriptor record with a descriptor
type of typeChar, which specifies that the data handle refers to an unterminated string
(in this case, the text “Summary of Sales”).

Figure 3-5 A descriptor record whose data handle refers to an unterminated string

Descriptor type Value Description of data

typeBoolean 'bool' 1-byte Boolean value

typeChar 'TEXT' Unterminated string

typeLongInteger 'long' 32-bit integer

typeShortInteger 'shor' 16-bit integer

typeMagnitude 'magn' Unsigned 32-bit integer

typeAEList 'list' List of descriptor records

typeAERecord 'reco' List of keyword-specified descriptor records

typeAppleEvent 'aevt' Apple event record

typeEnumerated 'enum' Enumerated data

typeType 'type' Four-character code

typeFSS 'fss ' File system specification

typeKeyword 'keyw' Apple event keyword

typeNull 'null' Nonexistent data (handle whose value is NIL)

Data type AEDesc

Descriptor type: typeChar

Data: "Summary of Sales"
About Apple Events 3-13

C H A P T E R 3

Introduction to Apple Events
Figure 3-6 illustrates the logical arrangement of a descriptor record with a descriptor
type of typeType, which specifies that the data handle refers to a four-character code
(in this case the constant kCoreEventClass, whose value is 'aevt'). This descriptor
record can be used in an Apple event attribute that identifies the event class for any
Apple event in the Core suite.

Figure 3-6 A descriptor record whose data handle refers to event class data

Every Apple event includes an attribute specifying the address of the target application.
A descriptor record that contains an application’s address is called an address descriptor
record.

TYPE AEAddressDesc = AEDesc; {address descriptor record}

The address in an address descriptor record can be specified as one of these four basic
types (or as any other descriptor type you define that can be coerced to one of
these types):

Like several of the other data structures defined by the Apple Event Manager for use in
Apple event attributes and Apple event parameters, an address descriptor record is
identical to a descriptor record of data type AEDesc; the only difference is that the data
for an address descriptor record must always consist of an application’s address.

Descriptor type Value Description

typeApplSignature 'sign' Application signature

typeSessionID 'ssid' Session reference number

typeTargetID 'targ' Target ID record

typeProcessSerialNumber 'psn ' Process serial number

Data type AEDesc

Descriptor type: typeType

Data: Event class
(kCoreEventClass)
3-14 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Keyword-Specified Descriptor Records 3

After the Apple Event Manager has assembled the necessary descriptor records as the
attributes and parameters of an Apple event, your application cannot examine the
contents of the Apple event directly. Instead, your application must use Apple Event
Manager routines to request each attribute and parameter by keyword. Keywords are
arbitrary names used by the Apple Event Manager to keep track of various descriptor
records. The AEKeyword data type is defined as a four-character code.

TYPE AEKeyword = PACKED ARRAY[1..4] OF Char; {keyword for a }

 { descriptor record}

Constants are typically used for keywords. Here is a list of the keyword constants for
Apple event attributes:

Here is a list of the keyword constants for commonly used Apple event parameters:

Attribute keyword Value Description

keyAddressAttr 'addr' Address of target or client application

keyEventClassAttr 'evcl' Event class of Apple event

keyEventIDAttr 'evid' Event ID of Apple event

keyEventSourceAttr 'esrc' Nature of the source application

keyInteractLevelAttr 'inte' Settings for allowing the Apple Event
Manager to bring a server application to
the foreground, if necessary, to interact
with the user

keyMissedKeywordAttr 'miss' Keyword for first required parameter
remaining in an Apple event

keyOptionalKeywordAttr 'optk' List of keywords for parameters of the
Apple event that should be treated as
optional by the target application

keyOriginalAddressAttr 'from' Address of original source of Apple event
if the event has been forwarded (available
only in version 1.01 or later versions of
the Apple Event Manager)

keyReturnIDAttr 'rtid' Return ID for reply Apple event

keyTimeoutAttr 'timo' Length of time, in ticks, that the client
will wait for a reply or a result from the
server

keyTransactionIDAttr 'tran' Transaction ID identifying a series of
Apple events

Parameter keyword Value Description

keyDirectObject '----' Direct parameter

keyErrorNumber 'errn' Error number parameter

keyErrorString 'errs' Error string parameter
About Apple Events 3-15

C H A P T E R 3

Introduction to Apple Events
The Apple Event Registry: Standard Suites defines additional keyword constants for
Apple event parameters that can be used with specific Apple events.

The Apple Event Manager associates keywords with specific descriptor records by
means of a keyword-specified descriptor record, a data structure of type AEKeyDesc
that consists of a keyword and a descriptor record.

TYPE AEKeyDesc = {keyword-specified descriptor record}

RECORD

descKey: AEKeyword; {keyword}

descContent: AEDesc; {descriptor record}

END;

Figure 3-7 illustrates a keyword-specified descriptor record with the keyword
keyEventClassAttr—the keyword that identifies an event class attribute. The figure
shows the logical arrangement of the event class attribute for the Open Documents
event shown in Figure 3-3 on page 3-10. The descriptor record in Figure 3-7 is identical to
the one in Figure 3-6; its descriptor type is typeType, and the data to which its handle
refers identifies the event class as kCoreEventClass.

Figure 3-7 A keyword-specified descriptor record for the event class attribute of an
Open Documents event

Descriptor Lists 3

When extracting data from an Apple event, you use Apple Event Manager functions to
copy data to a buffer specified by a pointer, or to return a descriptor record whose data
handle refers to a copy of the data, or to return lists of descriptor records (called
descriptor lists).

Data type AEKeyDesc

Descriptor type: typeType

Data: Event class
(kCoreEventClass)

Descriptor record:

Keyword: keyEventClassAttr
3-16 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
As previously noted, the descriptor record (of data type AEDesc) is the fundamental
structure in Apple events, and it consists of a descriptor type and a handle to data. A
descriptor list is a data structure of type AEDescList defined by the data type
AEDesc—that is, a descriptor list is a descriptor record whose data handle refers to a list
of other descriptor records (unless it is an empty list).

TYPE AEDescList = AEDesc; {list of descriptor records}

Like several other Apple Event Manager data structures, a descriptor list is identical to a
descriptor record of data type AEDesc; the only difference is that the data in a descriptor
list must always consist of a list of other descriptor records.

Figure 3-8 illustrates the logical arrangement of the descriptor list that specifies the direct
parameter of the Open Documents event shown in Figure 3-3 on page 3-10. This
descriptor list consists of a list of descriptor records that contain alias records to
filenames. (See the chapter “Alias Manager” in Inside Macintosh: Files for a detailed
description of alias records.)

Figure 3-8 A descriptor list for a list of aliases

The descriptor list in Figure 3-8 provides the data for a keyword-specified descriptor
record. Keyword-specified descriptor records for Apple event parameters can in turn be
combined in an AE record, which is a descriptor list of data type AERecord.

TYPE AERecord = AEDescList; {list of keyword-specified }

{ descriptor records}

List of descriptor records:

Data type AEDescList

Descriptor type:

Data:

Descriptor type: typeAlias

Data: Alias record for filename
(Nov. Invoice)

Descriptor type: typeAlias

Data: Alias record for filename
(Dec. Invoice)

typeAEList
About Apple Events 3-17

C H A P T E R 3

Introduction to Apple Events
The handle for a descriptor list of data type AERecord refers to a list of
keyword-specified descriptor records that can be used to construct Apple event
parameters. The Apple Event Manager provides routines that allow your application
to create AE records and extract data from them when creating or responding to
Apple events.

An AE record has the descriptor type typeAERecord and can be coerced to several
other descriptor types. An Apple event record , which is different from an AE record,
is another special descriptor list of data type AppleEvent and descriptor type
typeAppleEvent.

TYPE AppleEvent = AERecord; {list of attributes and }

{ parameters necessary for }

{ an Apple event}

An Apple event record describes a full-fledged Apple event. Like the data for an
AE record, the data for an Apple event record consists of a list of keyword-specified
descriptor records. Unlike an AE record, the data for an Apple event record is divided
into two parts, one for attributes and one for parameters. This division within the Apple
event record allows the Apple Event Manager to distinguish between an Apple event’s
attributes and its parameters.

Descriptor lists, AE records, and Apple event records are all descriptor records whose
handles refer to a nested list of other descriptor records. The data associated with each
data type may be organized differently and is used by the Apple Event Manager
for different purposes. In each case, however, the data is identified by a handle in a
descriptor record. This means that you can pass an Apple event record to any
Apple Event Manager function that expects an AE record. Similarly, you can pass Apple
event records and AE records, as well as descriptor lists and descriptor records, to any
Apple Event Manager functions that expect records of data type AEDesc.

When you use the AECreateAppleEvent function, the Apple Event Manager creates
an Apple event record containing the attributes for an Apple event’s event class,
event ID, target address, return ID, and transaction ID. You then use Apple Event
Manager functions such as AEPutParamDesc and AEPutAttributeDesc to add or
modify attributes and to add any necessary parameters to the Apple event.

Figure 3-9 shows an example of a complete Apple event—a data structure of type
AppleEvent containing a list of keyword-specified descriptor records that name the
attributes and parameters of an Open Documents event. The figure includes the event
class attribute shown in Figure 3-7 and the descriptor list shown in Figure 3-8, which
forms the direct parameter—the keyword-specified descriptor record with the keyword
keyDirectObject. The entire figure corresponds to the Open Documents event shown
in Figure 3-3 on page 3-10.

The next two sections, “Responding to Apple Events” and “Creating and Sending Apple
Events,” provide a quick overview of the steps your application must take to respond to
and send Apple events.
3-18 About Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Figure 3-9 Data structures within an Open Documents event

List of attributes and parameters

Data type AppleEvent

Descriptor type:

Data:

typeAppleEvent

Event class attribute

Event ID attribute

Direct parameter

Descriptor type: typeAlias

Data: Alias record for filename
(Nov. Invoice)

Descriptor type: typeAlias

Data: Alias record for filename
(Dec. Invoice)

Keyword:

Descriptor type: typeAEList

Data: List of descriptor
records:

keyDirectObject

Target application attribute

Descriptor type: typeApplSignature

Data: Target application’s
address ('Wave')

Keyword: keyAddressAttr

Data: Event ID
(kAEOpenDocuments)

Keyword: keyEventIDAttr

Descriptor type: typeType

Descriptor type: typeType

Data: Event class
(kCoreEventClass)

Keyword: keyEventClassAttr
About Apple Events 3-19

C H A P T E R 3

Introduction to Apple Events
Responding to Apple Events 3

A client application typically uses the Apple Event Manager to create and send an Apple
event requesting a service or information. A server application responds by using the
Apple Event Manager to process the Apple event, extract data from the attributes and
parameters of the Apple event, and if necessary add requested data to the reply event
returned by the Apple Event Manager to the client application. The server usually
provides its own Apple event handler for performing the action requested by the client’s
Apple event.

As its first step in supporting Apple events, your application should support the
required Apple events sent by the Finder. If you plan to implement publish and
subscribe capabilities, your application must also respond to the Apple events sent by
the Edition Manager. Your application should also be able to respond to the standard
Apple events that other applications are likely to send to it or that it can send to itself.
This section provides a quick overview of the tasks your application must perform in
responding to Apple events.

To respond to Apple events, your application must

■ set the appropriate flags in its 'SIZE' resource

■ test for high-level events in its event loop

■ provide Apple event handlers for the Apple events it supports

■ use the AEInstallEventHandler function to install its Apple event handlers

■ use the AEProcessAppleEvent function to process Apple events

Before your application can respond to Apple events sent from remote computers, the
user of your application must allow network users to link to your application. To do this,
the user selects your application in the Finder, chooses Sharing from the File menu, and
then clicks the Allow Remote Program Linking checkbox. If the user has not yet started
program linking, the Sharing command offers to display the Sharing Setup control panel
so that the user can start program linking. The user must also authorize remote users for
program linking by using the Users & Groups control panel. Program linking and setting
up authenticated sessions are described in the chapter “Program-to-Program
Communications Toolbox” in this book.

Accepting and Processing Apple Events 3
To accept or send Apple events (or any other high-level events), you must set the
appropriate flags in your application’s 'SIZE' resource and include code to handle
high-level events in your application’s main event loop.
3-20 Responding to Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Two flags in the 'SIZE' resource determine whether an application receives high-level
events:

■ The isHighLevelEventAware flag must be set for your application to receive any
high-level events.

■ The localAndRemoteHLEvents flag must be set for your application to receive
high-level events sent from another computer on the network.

An Apple event (like all high-level events) is identified by a message class of
kHighLevelEvent in the what field of the event record. You test the what field of
the event record to determine whether it contains the value represented by the
kHighLevelEvent constant; if your application defines any high-level events other
than Apple events, you should also test the message field of the event record to
determine whether the high-level event is something other than an Apple event. If the
high-level event is not one that you’ve defined for your application, assume that it is an
Apple event. (You are encouraged to use Apple events instead of defining your own
high-level events whenever possible.)

After determining that an event is an Apple event, use the AEProcessAppleEvent
function to let the Apple Event Manager identify the event. Figure 3-10 shows how the
SurfWriter application accepts and begins to process an Apple event sent by the Finder.

Figure 3-10 Accepting and processing an Open Documents event

DoHighLevelEvent(event)

CASE event.message OF
 myHighLevelEvent1: . . .
 myHighLevelEvent2: . . .
OTHERWISE
 AEProcessAppleEvent(event)

Client
application

Finder

Apple event

Open Documents

Dec. Invoice
Nov. Invoice

SurfWriter

Apple Event Manager

Event loop

CASE event.what OF
 kHighLevelEvent:
 DoHighLevelEvent(event)

Server
application
Responding to Apple Events 3-21

C H A P T E R 3

Introduction to Apple Events
The AEProcessAppleEvent function first identifies the Apple event by examining the
data in the event class and event ID attributes. The function then uses that data to call
the Apple event handler that your application provides for that event. The Apple event
handler extracts the pertinent data from the Apple event, performs the requested action,
and returns a result. For example, if the event has an event class of kCoreEventClass
and an event ID of kAEOpenDocuments, the AEProcessAppleEvent function calls
your application’s handler for the Open Documents event.

Before your application attempts to accept or process any Apple events, it must use the
AEInstallEventHandler function to install Apple event handlers. This function
installs handlers in an Apple event dispatch table for your application; the Apple Event
Manager uses this table to map Apple events to handlers in your application. When your
application calls the AEProcessAppleEvent function to process an Apple event, the
Apple Event Manager checks the Apple event dispatch table and, if your application has
installed a handler for that Apple event, calls that handler. Figure 3-11 shows how the
flow of control passes from your application to the Apple Event Manager and back to
your application.

Figure 3-11 The Apple Event Manager calling the handler for an Open Documents event

Apple event dispatch table

@MyHandleODoc

@MyHandlePDoc

Handler

MyHandleODoc (anAppleEvent)

Extract list of documents
from direct parameter
Open each document in a
window
Return function result and,
if appropriate, error string

•

•

•

Open Documents

Print Documents

Apple Event Manager

AEProcessAppleEvent

Call handler for Open Documents
event

•

AEProcessAppleEvent (event)

SurfWriter

Server
application

Event
3-22 Responding to Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
About Apple Event Handlers 3
Your Apple event handlers must generally perform the following tasks:

■ extract the parameters and attributes from the Apple event

■ check that all the required parameters have been extracted

■ locate any Apple event objects specified by object specifier records in the Apple event
parameters

■ if your application needs to interact with the user, use the AEInteractWithUser
function to bring it to the foreground

■ perform the action requested by the Apple event

■ dispose of any copies of descriptor records that have been created

■ add information to the reply Apple event if requested

This section describes how your application’s Apple event handlers can use
the Apple Event Manager to accomplish some of these tasks. The chapter
“Responding to Apple Events” in this book provides detailed information
about handling Apple events and interacting with the user.

Extracting and Checking Data 3

You must use Apple Event Manager functions to extract the data from Apple events.
You can also use Apple Event Manager functions to extract data from descriptor records,
descriptor lists, and AE records. Most of these routines are available in two forms: they
either return a copy of the data in a buffer or return a copy of the descriptor record for
the data, including a copy of the data.

The following list shows the main functions you can use to access the data of an
Apple event:

Function Description

AEGetParamPtr Uses a buffer to return a copy of the data contained in an
Apple event parameter. Usually used to extract data of fixed
length or known maximum length; for example, to extract
the result code from the keyErrorNumber parameter of a
reply Apple event.

AEGetParamDesc Returns a copy of the descriptor record or descriptor list for
an Apple event parameter. Usually used to extract data of
variable length; for example, to extract the descriptor list for
a list of alias records specified in the direct parameter of the
Open Documents event.

AEGetAttributePtr Uses a buffer to return a copy of the data contained in an
Apple event attribute. Used to extract data of fixed length or
known maximum length; for example, to determine the
source of an Apple event by extracting the data from the
keyEventSourceAttr attribute.

continued
Responding to Apple Events 3-23

C H A P T E R 3

Introduction to Apple Events
You can specify the descriptor type of the resulting data for these functions; if this type is
different from the descriptor type of the attribute or parameter, the Apple Event
Manager attempts to coerce it to the specified type. In the direct parameter of the
Open Documents event, for example, each descriptor record in the descriptor list is an
alias record; each alias record specifies a document to be opened. As explained in the
chapter “Introduction to File Management” of Inside Macintosh: Files, all your application
usually needs is the file system specification (FSSpec) record of the document. When
you extract the descriptor record from the descriptor list, you can request that the Apple
Event Manager return the data to your application as a file system specification record
instead of an alias record.

After extracting all known Apple event parameters, your handler should check that it
retrieved all the parameters that the source application considered to be required. To do
so, determine whether the keyMissedKeywordAttr attribute exists. If so, your handler
has not retrieved all the required parameters, and it should return an error.

Although the Apple Event Registry: Standard Suites defines Apple event parameters as
either required or optional, the Apple Event Manager does not enforce the definitions of
required and optional events. Instead, the source application specifies, when it sends the
event, which Apple event parameters the target can treat as if they were optional. For
more information about optional parameters, see “Specifying Optional Parameters for an
Apple Event,” which begins on page 5-7.

If any of the Apple event parameters include object specifier records, your handler
should use the AEResolve function, other Apple Event Manager routines, and your
own application-defined functions to locate the corresponding Apple event objects. For
more information about locating Apple event objects, see “Working With Object Specifier
Records,” which begins on page 3-32.

AEGetAttributeDesc Returns a copy of the descriptor record for an attribute.
Used to extract data of variable length; for example, to make
a copy of a descriptor record containing the address of an
application.

AECountItems Returns the number of descriptor records in a descriptor list.
Used, for example, to determine the number of alias records
for documents specified in the direct parameter of the
Open Documents event.

AEGetNthPtr Uses a buffer to return a copy of the data for a descriptor
record contained in a descriptor list. Used to extract data of
fixed length or known maximum length; for example, to
extract the name and location of a document from the
descriptor list specified in the direct parameter of the
Open Documents event.

AEGetNthDesc Returns a copy of a descriptor record from a descriptor list.
Used to extract data of variable length; for example, to get
the descriptor record containing an alias record from the list
specified in the direct parameter of the Open Documents
event.

Function Description (continued)
3-24 Responding to Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Interacting With the User 3

In some cases, the server may need to interact with the user when it handles an Apple
event. For example, your handler for the Print Documents event may need to display a
print options dialog box and get settings from the user before printing. By specifying
flags to the AESetInteractionAllowed function, you can set preferences to allow
user interaction with your application (a) only when your application is sending the
Apple event to itself, (b) only when the client application is on the same computer as
your application, or (c) for any event sent by any client application on any computer. In
addition, your handler should always use the AEInteractWithUser function before
displaying a dialog box or alert box or otherwise interacting with the user. The
AEInteractWithUser function determines whether user interaction can occur and
takes appropriate action depending on the circumstances.

Both the client and server specify their preferences for user interaction: the client
specifies whether the server should be allowed to interact with the user, and the
server specifies when it allows user interaction while processing an Apple event.
The Apple Event Manager does not allow a server application to interact with the user in
response to a client application’s Apple event unless at least two conditions are met:
First, the client application must set flags in the sendMode parameter of the AESend
function indicating that user interaction is allowed. Second, the server application must
either set no user interaction preferences, in which case AEInteractWithUser
assumes that only interaction with a client on the local computer is allowed; or it must
set flags to the AESetInteractionAllowed function indicating that user interaction
is allowed.

If these two conditions are met and if AEInteractWithUser determines that both the
client and server applications allow user interaction under the current circumstances,
AEInteractWithUser brings your application to the foreground if it isn’t already in
the foreground. Your application can then display its dialog box or alert box or otherwise
interact with the user. The AEInteractWithUser function brings your server
application to the front either directly or after the user responds to a notification request.

For detailed information about how to specify flags to the
AESetInteractionAllowed function and how the Apple Event Manager
determines whether user interaction is allowed, see the section
“Interacting With the User,” which begins on page 4-45.

Performing the Requested Action and Returning a Result 3

When your application responds to an Apple event, it should perform the standard
action requested by that event. For example, your application should respond to the
Open Documents event by opening the specified documents in titled windows just as if
the user had selected each document from the Finder and then chosen Open from the
File menu.
Responding to Apple Events 3-25

C H A P T E R 3

Introduction to Apple Events
Many Apple events can ask your application to return data. For instance, if your
application is a spelling checker, the client application might expect your application to
return data in the form of a list of misspelled words. Figure 3-14 on page 3-38 shows a
similar example: a Get Data event that asks the server application to locate a specific
Apple event object and return the data associated with it.

If the client application requests a reply, the Apple Event Manager prepares a reply
Apple event by passing a default reply Apple event to your handler. If the client
application does not request a reply, the Apple Event Manager passes a null descriptor
record—that is, a descriptor record of type typeNull whose data handle has the value
NIL—to your handler instead of a default reply Apple event. The default reply Apple
event has no parameters when it is passed to your handler, but your handler can add
parameters to it. If your application is a spelling checker, for example, you can return a
list of misspelled words in a parameter. However, your handler should check whether
the reply Apple event exists before attempting to add any attributes or parameters to it.
Any attempt to add an Apple event attribute or parameter to a null descriptor record
generates an error.

When you extract a descriptor record using the AEGetParamDesc,
AEGetAttributeDesc, AEGetNthDesc, or AEGetKeyDesc function, the Apple Event
Manager creates a copy of the descriptor record for you to use. When your handler is
finished using a copy of a descriptor record, you should dispose of it—and thereby
deallocate the memory used by its data—by calling the AEDisposeDesc function.

Note
Outputs from functions such as AEGetKeyPtr and other routines
whose names end in -Ptr use a buffer rather than a descriptor record to
return data. Because these functions don’t require the use of
AEDisposeDesc, it is preferable to use them for any data that is not
identified by a handle. ◆

Your Apple event handler should always set its function result either to noErr if it
successfully handles the Apple event or to a nonzero result code if an error occurs.
If your handler returns a nonzero result code, the Apple Event Manager adds a
keyErrorNumber parameter to the reply Apple event (unless you have already
added a keyErrorNumber parameter). This parameter contains the result code that
your handler returns. The client should check whether the keyErrorNumber parameter
exists to determine whether your handler performed the requested action. In addition to
returning a result code, your handler can also return an error string in the
keyErrorString parameter of the reply Apple event. The client can use this string in
an error message to the user.

If the client application requested a reply, the Apple Event Manager returns the reply
Apple event, which is identified by the event class kCoreEventClass and by the event
ID kAEAnswer. When the client has finished using the reply Apple event, it should
dispose of both the reply event and the original event—and thereby deallocate the
memory they use—by calling the AEDisposeDesc function. The Apple Event Manager
takes care of disposing both the Apple event and the reply Apple event after a server
3-26 Responding to Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
application’s handler returns to AEProcessAppleEvent, but a server application is
responsible for disposing of any Apple event data structures it creates while extracting
data from the Apple event.

Figure 3-12 shows the entire process of responding to an Apple event.

Figure 3-12 Responding to an Open Documents event

DoHighLevelEvent(event)

CASE event.message OF
 myHighLevelEvent1: . . .
 myHighLevelEvent2: . . .
OTHERWISE
 AEProcessAppleEvent(event)

Client
application

Finder

Apple event

Open Documents

Dec. Invoice
Nov. Invoice

SurfWriter

Event loop

CASE event.what OF
 kHighLevelEvent:
 DoHighLevelEvent(event)

MyHandleODoc (anAppleEvent)

Extract list of documents
from direct parameter
Open each document in a
window
Return function result and,
if appropriate, error string

•

•

•

Dec. Invoice

Nov. Invoice

Bill to:
My Company
San Francisco, CA

Design
Art
Film
TOTAL

$200
$500
$200
$900

Apple event

Reply

keyErrorNumber parameter
keyErrorString parameter

Server
application

AEProcessAppleEvent

•

Apple event dispatch table

@MyHandleODoc

@MyHandlePDoc

Handler

Open Documents

Print Documents

Call handler for Open Documents
event
If handler returns nonzero function
result, add keyErrorNumber
parameter to the reply Apple event
If requested, return reply Apple
event

•

•

Apple Event Manager

Event
Responding to Apple Events 3-27

C H A P T E R 3

Introduction to Apple Events
When your handler returns a result code to the Apple Event Manager, you have finished
your response to the client application’s Apple event.

Creating and Sending Apple Events 3

Your application can use Apple events to request services or information from other
applications, send information to other applications, or trigger actions within your
application. For example, you can use the core Apple event Get Data to request specific
data from another application’s documents. Similarly, you can use other Apple events to
request services—for example, asking a spell-checking application to check the text in a
document created by your application. Consult the Apple Event Registry: Standard Suites
for the format and function of the standard Apple events that you want your application
to send.

To communicate with another application by sending an Apple event, your
application must

■ set the appropriate flags in its 'SIZE' resource

■ create an Apple event record by calling the AECreateAppleEvent function

■ use Apple Event Manager functions to add parameters and any additional attributes
to the Apple event

■ call the AESend function to send the Apple event

■ dispose of any copies of descriptor records that you have created

■ handle the reply Apple event (if necessary)

The sections that follow describe how your application can use the Apple Event
Manager to accomplish these tasks. The chapter “Creating and Sending Apple Events” in
this book provides detailed information about creating and sending Apple events.

To act as a server for your application, the target application must support high-level
events and must be running. The server can be your own application, another
application running on the user’s computer, or an application running on another user’s
computer connected to the network.

Your application should also allow the user to choose among the various applications
available as servers. The PPCBrowser function allows users to select target applications
on their own computers or on computers connected to the network. The PPCBrowser
function presents a standard user interface for choosing a target application, much as the
Standard File Package provides a standard user interface for opening and saving files.
See the chapter “Program-to-Program Communications Toolbox” in this book for details
on using the PPCBrowser function.
3-28 Creating and Sending Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
If the server application is on a remote computer on a network, the user of that computer
must allow program linking to the server application. The user of the server application
does this by selecting the application icon in the Finder, choosing Sharing from the
File menu, then clicking the Allow Remote Program Linking checkbox. If the user has
not yet started program linking, the Sharing command offers to display the
Sharing Setup control panel so that the user can start program linking. The user must
also authorize remote users for program linking by using the Users & Groups control
panel. Program linking and setting up authenticated sessions are described in the
chapter “Program-to-Program Communications Toolbox” in this book.

Creating an Apple Event Record 3
Use the AECreateAppleEvent function to create an Apple event record. Using the
arguments you pass to the AECreateAppleEvent function, the Apple Event Manager
constructs the data structures describing the event class, the event ID, and the target
address attributes of an Apple event. The event class and event ID, of course, identify the
particular event you wish to send. The target address identifies the intended recipient of
the Apple event.

You can specify two other attributes with the AECreateAppleEvent function: the
reply ID and the transaction ID. For the reply ID attribute, you usually specify the
kAutoGenerateReturnID constant to the AECreateAppleEvent function. This
constant ensures that the Apple Event Manager generates a unique return ID for the
reply Apple event returned from the server. For the transaction ID attribute, you usually
specify the kAnyTransactionID constant, which indicates that this Apple event is not
one of a series of interdependent Apple events.

Adding Apple Event Attributes and Parameters 3

The Apple event record created with the AECreateAppleEvent function serves as a
foundation for the Apple event you want to send. Descriptor records and descriptor lists
are the building blocks from which the complete Apple event record is constructed. To
create descriptor records and descriptor lists and add items to a descriptor list, use the
following functions:

Function Description

AECreateDesc Takes a descriptor type and a pointer to data and converts them into
a descriptor record

AECreateList Creates an empty descriptor list or AE record.

AEPutPtr Takes a descriptor type and a pointer to data and adds the data
to a descriptor list as a descriptor record; used, for example, to
add to a descriptor list a number used as the parameter of an Apple
event requesting a calculation.

AEPutDesc Adds a descriptor record to a descriptor list; used, for example,
to add to a descriptor list an alias record used as the direct
parameter of an Apple event requesting file manipulation.
Creating and Sending Apple Events 3-29

C H A P T E R 3

Introduction to Apple Events
To add the remaining attributes and parameters necessary for your Apple event to the
Apple event record, you can use these additional Apple Event Manager functions:

Apple event parameters for core events and functional-area events can include
descriptions of Apple event objects in special descriptor records called object specifier
records. For an overview of object specifier records, see “Working With Object Specifier
Records,” which begins on page 3-32.

Sending an Apple Event and Handling the Reply 3
After you add all the attributes and parameters required for the Apple event, use the
AESend function to send the Apple event. The Apple Event Manager uses the
Event Manager to transmit the Apple event to the server application.

The AESend function requires that you specify whether your application should wait for
a reply from the server. If you specify that you want a reply, the Apple Event Manager
prepares a reply Apple event for your application by passing a default reply Apple event
to the server. The Apple Event Manager returns any nonzero result code from the
server’s handler in the keyErrorNumber parameter of the reply Apple event.
The server can return an error string in the keyErrorString parameter of the reply
Apple event. The server can also use the reply Apple event to return any data you
requested—for example, the results of a numeric calculation or a list of misspelled words.

Function Description

AEPutParamPtr Takes a keyword, descriptor type, and pointer to data and
adds the data to an Apple event record as a parameter with
the specified keyword (replacing any existing parameter
with the same keyword); used, for example, to put
numbers into the parameters of an Apple event that asks
the server to perform a calculation.

AEPutParamDesc Takes a keyword and a descriptor record and adds the
descriptor record to an Apple event record as a parameter
with the specified keyword (replacing any existing
parameter with the same keyword); used, for example, to
place a descriptor list containing alias records into the
direct parameter of an Apple event that requests a server to
manipulate files.

AEPutAttributePtr Takes a keyword, descriptor type, and pointer to data and
adds the descriptor record to an Apple event record as
an attribute with the specified keyword (replacing any
existing attribute with the same keyword); used, for
example, to change the transaction ID of an Apple event
record that is waiting to be sent.

AEPutAttributeDesc Takes a keyword and a descriptor record and adds
the descriptor record to an Apple event record as an
attribute with the specified keyword (replacing any
existing attribute with the same keyword); used, for
example, to replace the descriptor record used for the target
address attribute in an Apple event record waiting to be
sent.
3-30 Creating and Sending Apple Events

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
You specify how your application should wait for a reply by using one of these flags in
the sendMode parameter of the AESend function:

If you specify the kAEWaitReply flag, you should provide an idle function. This
function should process any non-high-level events that occur while your application is
waiting for a reply. You supply a pointer to your idle function as a parameter to the
AESend function. So that your application can process other Apple events while it is
waiting for a reply, you can also specify an optional filter function to the AESend
function.

If you specify the kAENoReply flag, the reply Apple event prepared by the Apple Event
Manager for the server application consists of a null descriptor record.

If your Apple event may require the user to interact with the server application
(for example, to specify print or file options), you can communicate your user interaction
preferences to the server by specifying additional flags in the sendMode parameter of
the AESend function. These flags specify the conditions, if any, under which the server
application can interact with the user and, if interaction is allowed, whether the
server should come directly to the foreground or post a notification request.

The server application specifies its own preferences for user interaction by specifying
flags to the AESetInteractionAllowed function, as described in the previous section.
The interaction of the client and server applications’ preferences is explained in detail in
“Interacting With the User,” which begins on page 4-45.

After you send an Apple event, your application is responsible for disposing of
the Apple event record—and thereby deallocating the memory its data uses—by
calling the AEDisposeDesc function. If you create one descriptor record and add it to
another, the Apple Event Manager adds a copy of the newly created one to the existing
one and also makes a copy of the associated data. For example, you might use the
AECreateDesc function to create a descriptor record that you wish to add to an Apple
event. When you use the AEPutParamDesc function, it adds a copy of your newly
created descriptor record, including its data, as a parameter to an existing Apple event.
When you no longer need the original descriptor record, you should call
AEDisposeDesc to dispose of it.

Flag Description

kAENoReply Your application does not want a reply Apple event.

kAEQueueReply Your application wants a reply Apple event; the reply appears in
your event queue as soon as the server has the opportunity to
process and respond to your Apple event.

kAEWaitReply Your application wants a reply Apple event and is willing to give
up the processor while waiting for the reply; for example, if the
server application is on the same computer as your application,
your application yields the processor to allow the server to
respond to your Apple event.
Creating and Sending Apple Events 3-31

C H A P T E R 3

Introduction to Apple Events
Your application should dispose of all the descriptor records that are created for the
purposes of adding parameters and attributes to an Apple event. You normally dispose
of your Apple event and its reply after you receive a result from the AESend function.
You should dispose of these even if AESend returns an error result.

If you specify the kAEWaitReply flag, the reply Apple event is returned in a parameter
you pass to the AESend function. If you specify the kAEQueueReply flag to the AESend
function, the reply Apple event is returned in the event queue. In this case, the reply
is identified by the event class kCoreEventClass and the event ID kAEAnswer.
Your application processes reply events in its event queue in the same way that server
applications process Apple events.

Your application should check for the existence of the keyErrorNumber parameter of
the reply Apple event to ensure that the server performed the requested action. The
server can also return, in the keyErrorString parameter, any error messages you need
to display to the user.

Whenever a server application provides an error string, it should also provide an error
number. However, you can’t count on all server applications to do so. The absence of the
keyErrorNumber parameter doesn’t necessarily mean that there won’t an error string
provided in the keyErrorString parameter. A client application should therefore
check for both the keyErrorNumber and keyErrorString parameters before
assuming that no error has occurred. If a string has been provided without an error
number, an error has occurred.

After extracting the information it needs from the reply event, your handler should
dispose of the reply by calling the AEDisposeDesc function. Similarly, when your
handler no longer needs descriptor records it has extracted from the reply, it should call
AEDisposeDesc to dispose of them.

The next section provides an overview of the way a source application identifies Apple
event objects supported by a target application. If you are starting by supporting only
the Required suite and the Apple events sent by the Edition Manager, you can skip the
next section and go directly to “About the Apple Event Manager,” which begins on
page 3-48.

Working With Object Specifier Records 3

Most of the standard Apple events allow the source application to refer, in an Apple
event parameter, to Apple event objects within the target application or its documents.
The Apple Event Manager allows applications to construct and interpret such references
by means of a standard classification system for Apple event objects. This system,
described in detail in the Apple Event Registry: Standard Suites, is summarized in “The
Classification of Apple Event Objects,” which begins on page 3-39. A description in an
Apple event parameter that uses this classification system takes the form of an object
specifier record.
3-32 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
An object specifier record is a descriptor record of descriptor type
typeObjectSpecifier that describes the location of one or more Apple event objects:
for example, the table “Summary of Sales” in the document “Sales Report,” or the third
row in that table, or the last row of the column “Totals.” With the aid of
application-defined functions, the Apple Event Manager can conduct a step-by-step
search according to such instructions in an object specifier record, locating first the
document, then the table, then other objects, and so on until the requested object has
been identified. Object specifier records can specify many combinations of identifying
characteristics that cannot be specified using one of the simple data types.

This section introduces object specifier records and the organization of their data. You
need to read this section (a) if you plan to support the Core suite or any of the standard
functional-area suites and (b) if you want to make your application scriptable—that is,
capable of responding to scripts written in a scripting language.

IMPORTANT

An object specifier record identifies one or more Apple event objects
among many; it contains a description of each object, not the object
itself. An Apple event object described by an object specifier record
exists only in the server application’s document or in the server
application itself. ▲

A client application cannot retrieve an Apple event object from a server application
unless the server application can accurately locate it. Thus, to locate characters of a
specific color, a server application must be able to identify a single character’s color; to
locate a character in a cell, a server application must be able to locate both the table and
the cell.

A client application can create object specifier records for use as Apple event
parameters. Scripting components can also create object specifier records as Apple
event parameters for the Apple events they generate in the course of executing a script.
A server application that receives an Apple event containing an object specifier record
should resolve the object specifier record—that is, locate the requested Apple event
objects.

To respond to core and functional-area Apple events received by your application, you
must first define a hierarchy of Apple event objects for your application that you want
other applications or scripting languages to be able to describe. The Apple event objects
for your application should be based as closely as possible on the standard object classes
described by the Apple Event Registry: Standard Suites. After you have decided which of
the standard Apple event objects make sense for your application, you can write
functions that locate objects on the basis of information in an object specifier record. If
you want your application to send specific Apple events to other applications, you must
also write functions that can create object specifier records and add them to Apple
events. Your application does not need to create object specifier records in order to be
scriptable. However, to write functions that can help the Apple Event Manager resolve
object specifier records, you need to know how they are constructed.
Working With Object Specifier Records 3-33

C H A P T E R 3

Introduction to Apple Events
“Finding Apple Event Objects,” which begins on page 3-46, provides an overview of the
way the Apple Event Manager works with your application-defined functions to locate
the Apple event objects described in an object specifier record. The chapter “Resolving
and Creating Object Specifier Records” in this book describes in detail how to support
object specifier records as a server or client application.

Data Structures Within an Object Specifier Record 3
The organization of the data for an object specifier record is nearly identical to that of the
data for an AE record. An object specifier record is a structure of data type AEDesc
whose data handle usually refers to four keyword-specified descriptor records
describing one or more Apple event objects. An AE record is a structure of data type
AERecord whose data handle refers to one or more Apple event parameters.

The four keyword-specified descriptor records for an object specifier record provide
information about the requested Apple event object or objects.

For example, the data for an object specifier record identifying a table named “Summary
of Sales” in a document named “Sales Report” consists of four keyword-specified
descriptor records that provide the following information:

■ the object class ID for a table

■ another object specifier record identifying the document “Sales Report” as the
container for the table

■ a key form constant indicating that the key data contains a name

■ key data that consists of the string “Summary of Sales”

Keyword Description of data

keyAEDesiredClass Four-character code indicating the object class ID

keyAEContainer A description of the container for the requested object,
usually in the form of another object specifier record

keyAEKeyForm Four-character code for the key form, which indicates how to
interpret the key data

keyAEKeyData Key data, used to distinguish the desired Apple event object
from other objects of the same object class in the same
container
3-34 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
The object class ID specifies the Apple event object class to which the object belongs.
An Apple event object class is a category for Apple event objects that share
specific characteristics (see “Apple Events and Apple Event Objects” on page 3-6). The
characteristics of each object class are listed in the Apple Event Registry: Standard Suites.
For example, the Core suite defines object classes for documents, paragraphs, words,
windows, and floating windows. The first keyword-specified descriptor record in an
object specifier record uses a four-character code or a constant to specify the object class
ID. The object class for words, for example, can be identified by either the object class ID
'cwor' or the constant cWord.

Note
The object class ID identifies the object class of an Apple event object
described in an object specifier record, whereas the event class and event
ID identify an Apple event. ◆

The container for an Apple event object is usually another Apple event object. For
example, the container for a document might be a window, and the container for
characters, delimited items, or a word might be another word, a paragraph, or a
document. The container is identified by the second keyword-specified descriptor record
in an object specifier record; usually this is another object specifier record. The container
can also be specified by a null descriptor record, which indicates a default container or a
container already known to the Apple Event Manager.

The descriptor record in an object specifier record that identifies an Apple event
object’s container can in turn use another object specifier record to identify the
container’s container, and so on until the Apple event object is fully specified.
For example, an object specifier record identifying a paragraph might specify the
paragraph’s container with another object specifier record that identifies a page. That
object specifier record might in turn specify the page’s container with another object
specifier record identifying a document. The ability to nest one object specifier record
within another in this way makes it possible to identify elements such as “the first row in
the table named ‘Summary of Sales’ in the document named ‘Sales Report.’”
Working With Object Specifier Records 3-35

C H A P T E R 3

Introduction to Apple Events
The key form and key data distinguish the desired Apple event object from other Apple
event objects of the same object class. The key form describes the form the key data
takes. The third keyword-specified descriptor record in an object specifier record usually
specifies the key form with one of seven standard constants:

A key form of formPropertyID indicates key data that specifies a property. A property
of an Apple event object is a specific characteristic of that object that can be identified by
a constant. The properties associated with the object class for documents include the
name of the document and a flag indicating whether the document has been modified
since the last save. The properties associated with the object class for words include
color, font, point size, and style.

Figure 3-13 shows the structure of a typical object specifier record: four
keyword-specified descriptor records that specify the class ID, the container, the key
form, and the key data. These four keyword-specified descriptor records are the data for
a descriptor record (AEDesc) of descriptor type typeObjectSpecifier. Note the
similarities between the object specifier record shown in Figure 3-13 and the Apple event
record shown in Figure 3-9 on page 3-19. Like an Apple event record or an AE record, an
object specifier record consists of a list of keyword-specified descriptor records.

Figure 3-13 shows the structure of a simple object specifier record that specifies the key
form formPropertyID, formName, or formAbsolutePosition. For detailed
information about the structure of object specifier records that specify the other key
forms, see the chapter “Resolving and Creating Object Specifier Records” in this book.

Key form Value Corresponding key data

formPropertyID 'prop' Property ID for an element’s property

formName 'name' Element’s name

formUniqueID 'ID ' A value that uniquely identifies an object within its
container or across an application

formAbsolutePosition 'indx' An integer or other constant indicating the position of one
or more elements in relation to the beginning or end of
their container

formRelativePosition 'rele' A constant that specifies the element just before or after
the container

formTest 'test' Descriptor records that specify a test

formRange 'rang' Descriptor records that specify a group of elements
between two other elements
3-36 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Figure 3-13 Data structures within a simple object specifier record

Object specifier data

Data type AEDesc

Descriptor type:

Data:

typeObjectSpecifier

Descriptor type: typeType

Data: Class ID

Keyword: keyAEDesiredClass

Descriptor type: typeObjectSpecifier

Data:

Keyword: keyAEContainer

Descriptor type: typeEnumerated

Data: formPropertyID or formName
or formAbsolutePosition

Keyword: keyAEKeyForm

Descriptor type: typeType or typeText
or typeLongInteger

Data: Property ID or element
name or offset

Keyword: keyAEKeyData

Object specifier data

keyAEContainer

keyAEKeyForm

keyAEKeyData

keyAEDesiredClass
Working With Object Specifier Records 3-37

C H A P T E R 3

Introduction to Apple Events
Figure 3-14 shows the object specifier record for the Get Data event previously illustrated
in Figure 3-4 on page 3-11. The object class ID tells the SurfWriter application that the
requested data is an element of class cTable. The container for the table is the document
“Sales Report.” The key form is formName, which tells the server application that the
key data identifies the Apple event object by name. The key data is the name of the table.

Figure 3-14 An object specifier record in a Get Data event

Apple event

Get Data

Event class attribute:
kAECoreSuite

Apple event

Reply

Summary of Sales
300 788 500 825

Event ID attribute:
kAEGetData

Target address attribute:
application with the
signature 'Wave'

Direct parameter—
An object specifier record:
Class: cTable
Container:

Key form: formName
Key data: “Summary of Sales”

Sales Report

This table
shows the
sales data:

Summary of
Sales

300

500

788

825

Chart of sales
by product area:

300

788

Sales Chart

500 825

Apple event
object of

object class
cTable with the

specified name

Data retrieved
from table object

Container

Client
application

SurfCharter

Server
application

SurfWriter

Summary of
Sales

Specified by object
specifier record for document
“Sales Report”
3-38 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
To add an object specifier record to an Apple event as one of its parameters, your
application must first create the object specifier record. “Creating Object Specifier
Records,” which begins on page 6-55, describes the Apple Event Manager routines for
creating object specifier records.

To respond to Apple events that include object specifier records, your application should
use the standard classification system for Apple event objects and provide functions that
can locate those objects within your application or its documents. The next section
summarizes the classification of Apple event objects as defined in the Apple Event
Registry: Standard Suites.

The Classification of Apple Event Objects 3
To create or resolve object specifier records, your application should use the classification
of Apple event objects defined by the Apple Event Registry: Standard Suites. This section
summarizes the concepts that underlie that classification system. You should have a copy
of the Apple Event Registry: Standard Suites available for reference purposes while you
read this section.

You do not need to write your application in an object-oriented programming language
in order to support Apple event objects in your application. However, you must
understand the classification system described in this section in order to classify Apple
event objects in your application and to write routines that can locate them on the basis
of information contained in object specifier records.

Object Classes 3

Except for the concept of inheritance, Apple event objects are different from the objects
used in object-oriented programming languages. Apple event objects are distinct items in
a server application or any of its documents that can be specified by an object specifier
record in an Apple event sent by a client application. Apple event objects are often, but
not always, items that a user can differentiate and manipulate within an application,
such as words, paragraphs, shapes, windows, or style formats. Every Apple event object
can be classified according to its object class, which defines both its characteristics and its
behavior. The object classes listed in the Apple Event Registry: Standard Suites provide a
method of describing Apple event objects that all applications can understand. Object
classes permit more flexibility than simple descriptor types; for example, a word can be
defined as a simple string, or it can be defined as an Apple event object with specific
characteristics such as font or style.

Note
The definition of an object class only specifies conventions that
determine how applications should handle Apple event objects that
belong to that class. Your application must make sure that it uses the
conventions correctly; they are not enforced by the Apple Event
Manager. ◆
Working With Object Specifier Records 3-39

C H A P T E R 3

Introduction to Apple Events
Each object class is identified by a four-character object class ID, which can also be
represented by a constant. Constants for object classes always begin with the letter c.

The definition of an object class specifies its superclass , which is the object class from
which a subclass (the class being defined) inherits some of its characteristics.
Characteristics can also be inherited from special object classes, called abstract
superclasses, that are used only in definitions of object classes and do not refer to real
Apple event objects. The pattern of inheritance among object classes is called the
object class inheritance hierarchy. Figure 3-15 shows a portion of this hierarchy. The
abstract superclass cObject is at the top of the hierarchy and is therefore the only object
class that has no superclass. At the next level are cText, which is a regular object class,
and cOpenableObject, which is an abstract superclass. Both are subclasses of
cObject and superclasses for their own subclasses. The object classes cWord, cItem,
and cChar are all subclasses of cText. Similarly, cWindow, cDocument, and cFile are
subclasses of cOpenableObject. Every object class inherits all the characteristics of
its superclass and can also add characteristics of its own.

Figure 3-15 Superclasses and subclasses

Here are some of the object classes defined for the Core suite:

Class Class ID Description

cChar 'cha ' Text characters

cDocument 'docu' Macintosh documents

cFile 'cfil' Macintosh files

cSelection 'csel' User or application selections

cText 'ctxt' Series of characters

cWindow 'cwin' Standard Macintosh windows

cObject

cText cOpenableObject

cWord cItem cChar cWindow cDocument cFile
3-40 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Here are some of the object classes defined for the Text suite:

As you can see, some object classes, such as cChar and cText, are defined in more than
one suite. For example, the definition of the cText object class in the Text suite is an
extension of the cText object class defined in the Core suite; it duplicates all the
characteristics of the Core suite object class and adds some of its own. Like a word in a
dictionary, one object class ID can have several related definitions. You can choose to
support the definition that best suits your application; or, if necessary, you can create
extensions of your own. The extension of an object class is different from inheritance
between object classes. An extension of a standard object class provides additional ways
of describing an Apple event object of that class, whereas the object class inheritance
hierarchy determines the pattern of characteristics shared by different object classes.

The definition of an object class always specifies a default descriptor type. Suppose, for
example, that a client application sends a Get Data, Cut, or Copy event that specifies an
Apple event object but does not specify a descriptor type for the returned data. In this
case, the server application returns a descriptor record of the default descriptor type for
the object class of the specified Apple event object. For example, the default descriptor
type for Apple event objects of class cWord is typeIntlText, a descriptor type that
specifies an undelimited string of characters in a specific language and script system.
The client application can also request that the data be returned in a descriptor record of
some other data type.

The definition of an object class includes three lists of characteristics: properties, element
classes, and Apple events that support the object class. (The next section describes
properties and element classes.) Any or all of these characteristics may be inherited from
a superclass. An Apple event is listed for an object class if its parameters can specify
objects of that class. The definition for cWindow, for example, lists 12 Apple events,
including the Open, Close, and Move events, whose parameters can include object
specifier records that specify windows. The cWindow class inherits all of these Apple
events from its abstract superclass, cOpenableObject.

The Apple Event Registry: Standard Suites also defines primitive object classes, which
describe Apple event objects that contain a single value. For example, the cBoolean,
cLongInteger, and cAlias object classes are all primitive object classes. The object
class ID for a primitive object class is the same as the four-character value of its
descriptor type. Primitive object classes contain no properties; they contain only the
value of the data.

Class Class ID Description

cChar 'cha ' Text characters

cLine 'clin' Lines of text

cParagraph 'cpar' Paragraphs

cText 'ctxt' Series of characters

cTextFlow 'cflo' Text flows

cWord 'cwor' Words
Working With Object Specifier Records 3-41

C H A P T E R 3

Introduction to Apple Events
Properties and Elements 3

The properties listed for an object class can be used to identify characteristics of Apple
event objects that belong to that class. Each property is identified by a four-character
property ID, which can also be represented by a constant. Constants for properties
always begin with the letter p.

Here are constants and property IDs for some properties:

The property of an Apple event object is itself defined as a single Apple event object
whose container is the object to which the property belongs. For example, the pFont
property of a word is defined by the name of a font, such as New York; the string that
identifies the font is an Apple event object of class cText.

The constant cProperty specifies the object class for any object specifier record that
identifies a property.

CONST cProperty = 'prop';

An object specifier record for a property specifies cProperty as the object class ID, the
Apple event object to which the property belongs as the container, formPropertyID as
the key form, and a constant such as pFont as the key data.

The elements of a specific Apple event object are the other Apple event objects it
contains, excluding those that define its properties. An object specifier record for an
element specifies the Apple event object in which the element is located as the container
and can specify any key form except formPropertyID. Each object class definition in
the Apple Event Registry: Standard Suites includes a list of element classes, which are the
object classes of the elements that an Apple event object can contain.

Property Property ID Description

pName 'pnam' Name of an Apple event object

pBounds 'pbnd' Coordinates of a window

pVisible 'pvis' Indicates whether a window is visible

pIsModal 'pmod' Indicates whether a window is modal

pClass 'pcls' Class ID of an Apple event object

pFont 'font' Font

pTextStyle 'txst' Text style

pColor 'colr' Text color

pTextPointSize 'ptps' Point size

pScriptTag 'psct' Script system identifier

pFillColor 'flcl' Fill color
3-42 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
An Apple event object contains exactly one of each of its properties, whereas it can
contain no elements or many elements of the same element class. In general, a property
of an object describes something about that object; a property can be examined or
changed but never deleted. An element can be one or more discrete objects contained in
another object and can usually be deleted.

For example, because a paragraph can contain one or more words, one of the element
classes listed for the object class cParagraph is the object class cWord. Individual
words can be deleted from a paragraph. However, even though a word in a paragraph
can be in a different font from the words around it, a paragraph can have only one
pFont property. This property is defined as the font of the first character in the
paragraph and consists of the name of a font. The paragraph’s pFont property can be
changed but not removed.

The properties and element classes listed for each object class definition in the
Apple Event Registry: Standard Suites can be inherited from a superclass, or they can
originate with a subclass. Figure 3-16 illustrates the object class inheritance hierarchy for
the object class cWindow in the Core suite. Boldface terms in the figure represent those
properties, element classes, or Apple events that are not inherited. The object class
cWindow includes all the properties and Apple events of its superclass,
cOpenableObject, which in turn includes all the properties and Apple events of its
superclass, cObject. The object class cWindow also includes 11 properties and one
element class that originate with cWindow and are not inherited.

The pClass property—the property that specifies the four-character class ID—
originates with cObject. Because the definitions of all object classes are ultimately
derived from cObject, pClass is inherited by all object classes. The definition for
cObject also lists ten Apple events, which include common events such as Get Data,
Move, and Delete Element. Because cObject is at the top of the object class inheritance
hierarchy, these ten Apple events can use object specifier records that describe Apple
event objects of any object class as a direct parameter. Like all abstract superclasses,
cObject does not correspond to a real Apple event object, so its definition does not list
any element classes. Unlike any other object class, cObject is at the top of the object
class inheritance hierarchy and therefore does not have a superclass.
Working With Object Specifier Records 3-43

C H A P T E R 3

Introduction to Apple Events
Figure 3-16 The object class inheritance hierarchy for the object class cWindow

Properties:

Element
classes:

Apple
events:

pBestType
pClass
pDefaultType

None

Clone
Count Elements
Create Element
Delete
Do Objects Exist
Get Class Info
Get Data
Get Data Size
Move
Set Data

Properties:

Element
classes:

Apple
events:

pBestType
pClass
pDefaultType
pName

None

Clone
Count Elements
Create Element
Delete
Do Objects Exist
Get Class Info
Get Data
Get Data Size
Move
Set Data
Close
Open

cObject

cOpenableObject

cObject

cText cOpenableObject

cWord cItem cChar cWindow cDocument cFile

Properties:

Element
classes:

Apple
events:

pBestType
pClass
pDefaultType
pName
pBounds
pHasCloseBox
pHasTitleBar
pIndex
pIsFloating
pIsModal
pIsResizable
pIsZoomable
pIsZoomed
pSelection
pVisible

cDocument

Clone
Count Elements
Create Element
Delete
Do Objects Exist
Get Class Info
Get Data
Get Data Size
Move
Set Data
Close
Open

cWindow
3-44 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
The chain of containers that determine the location of one or more Apple event objects is
called the container hierarchy. The container hierarchy, which specifies the location of
real Apple event objects, is different from the object class inheritance hierarchy, which is
an abstract concept that determines which properties, element classes, and Apple events
an object class inherits from its superclass. For example, the container hierarchy for an
Apple event object of class cWord can vary from one word to another, because various
combinations of other Apple event objects, such as a document, a paragraph, a delimited
string, or another word, can contain a word.

Applications that support Apple event objects must be able to identify the order of
several elements of the same class that are contained within another Apple event object.
For example, each word in a paragraph should have an identifiable order, such as the
5th word or the 12th word. This allows other applications to identify Apple event objects
by describing their absolute position within a container.

Figure 3-17 shows an Apple event object of object class cWord—the word “Sales”—
contained in another Apple event object of object class cParagraph. (Both these object
classes are defined in the Text suite.) The figure shows only a portion of the container
hierarchy for the word, since a complete description of the word would also include the
containers that specify the location of the paragraph.

Your application must take account of the definitions in the Apple Event Registry:
Standard Suites for any object classes you want to support. For example, the definition for
the object class cText lists paragraphs, lines, words, and characters as Apple event
objects that can be contained in Apple event objects of class cText. To support Apple
events that refer to elements of object class cText, your application should associate the
cText object class with paragraphs, lines, words, and characters in its documents. The
list of properties defined for class cText includes the properties pColor, pFont,
pPointSize, pScriptTag, and pTextStyles. If you want to support Apple events
that distinguish a boldface 12-point word of object class cText from an italic 14-point
word, for example, your application must associate the point size and style of text in its
documents with the properties pPointSize and pTextStyles defined for class cText.
Working With Object Specifier Records 3-45

C H A P T E R 3

Introduction to Apple Events
Figure 3-17 An Apple event object of class cWord contained in an Apple event object of
class cParagraph

Finding Apple Event Objects 3
Most of the Apple events in the Core suite and the functional-area suites defined in the
Apple Event Registry: Standard Suites can include parameters that consist of object
specifier records. Your application’s handlers for these events can use the AEResolve
function to resolve object specifier records: that is, to locate the Apple event objects they
describe.

The AEResolve function parses an object specifier record and performs related tasks
that are the same for all object specifier records. When necessary, the AEResolve
function calls application-defined functions to perform tasks that are unique to the
application, such as locating a specific Apple event object in the application’s data
structures.

The sales figures for 1991 indicate
substantial growth in three areas.

The
sales
figures
for
1991
indicate
substantial
growth
in
three
areas
.

1st word
2nd word
3rd word
4th word
5th word
6th word
7th word
8th word
9th word
10th word
11th word
12th word

pClass = cParagraph
pFont = "Palatino"
pJustification = kAELeftJustified
pPointSize = 10
pTextStyles = "Plain"

Properties
of this
paragraph

Elements of
this paragraph
that belong to
class cWord

Apple event object of object class cParagraph

pClass = cWord
pFont = "Palatino"
pPointSize = 10
pUniformStyles = "Italic"

Properties
of this
word

s
a
l
e
s

1st character
2nd character
3rd character
4th character
5th character

Elements of
this word that
belong to class
cChar

Apple event object of object class cWord
3-46 Working With Object Specifier Records

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
Your application can provide two kinds of application-defined functions for use by
AEResolve. Object accessor functions locate Apple event objects. Every application
that supports simple object specifier records must provide one or more object accessor
functions. Object callback functions perform other tasks that only an application can
perform, such as counting, comparing, or marking Apple event objects.

Each time AEResolve calls one of your application’s object accessor functions
successfully, the object accessor function returns a special descriptor record, called a
token, that identifies either an element in a specified container or a property of a
specified Apple event object. The token can be of any descriptor type, including
descriptor types you define yourself.

You install object accessor functions by using the AEInstallObjectAccessor
function. Much like the AEInstallEventHandler function,
AEInstallObjectAccessor uses an object accessor dispatch table to map
requests for Apple event objects to the appropriate object accessor functions in
your application. These requests refer to objects of a specified object class in
containers identified by a token of a specified descriptor type.

Responding to an Apple event that includes an object specifier record typically involves
these steps:

1. After determining that the event is an Apple event, your application calls
AEProcessAppleEvent.

2. The AEProcessAppleEvent function uses the Apple event dispatch table to
dispatch the event to the your application’s handler for that event.

3. The Apple event handler extracts the Apple event parameters, and passes the object
specifier records they contain to AEResolve.

4. The AEResolve function uses the object accessor dispatch table to call one or more
object accessor functions, one at a time, that can identify the nested Apple event
objects described by each object specifier record. Each object accessor function returns
a token for the object it finds, which in turn helps to determine which object accessor
function the AEResolve function will use to locate the next Apple event object.

5. The AEResolve function returns the final token for the requested object to the
application’s handler.

The resolution of an object specifier record always begins with the outermost container it
specifies. For example, to locate a table named “Summary of Sales” in the document
named “Sales Report,” the AEResolve function first calls an object accessor function
that can locate the document, then uses the token returned by that function to identify an
object accessor function that can locate the table. It then returns the token for the table to
the Apple event handler that called AEResolve.

The chapter “Resolving and Creating Object Specifier Records” in this book describes in
detail how to resolve object specifier records and how to write and install object accessor
and object callback functions.
Working With Object Specifier Records 3-47

C H A P T E R 3

Introduction to Apple Events
About the Apple Event Manager 3

You can use the Apple Event Manager to

■ respond to Apple events as a server application

■ create and send Apple events as a client application

■ resolve and create object specifier records

■ support Apple event recording

This section briefly summarizes the steps involved in providing each kind of support
and tells where to find the relevant information in this book.

Supporting Apple Events as a Server Application 3
You do not need to implement all Apple events at once. You can begin by supporting just
the required events and, if necessary, the events sent by the Edition Manager. The
beginning of the section “Handling Apple Events” on page 4-4 describes how to provide
this minimal level of support.

It is relatively easy to respond to the required events and the events sent by the
Edition Manager. If, however, your application cannot respond to any other Apple
events, other applications will not be able to request services that involve locating
specific Apple event objects within your application or its documents, and users will not
be able to control your application by executing scripts. To respond to Apple events it is
likely to receive from other applications or from scripting components, your application
must be able to respond to the appropriate core and functional-area Apple events.

Once you have provided the basic level of support for the Required suite and for events
sent by the Edition Manager, you should

■ decide which other Apple event suites you want to support

■ define the hierarchy of Apple event objects within your application that you want
scripting components or other applications to be able to identify—that is, which
Apple event objects can be contained by other Apple event objects in your application

■ write handlers for the Apple events you support, and install corresponding entries in
your application’s Apple event dispatch table

To decide which Apple event suites you want to support and how to define the
hierarchy of Apple event objects in your application, consult the Apple Event Registry:
Standard Suites and evaluate which Apple events and Apple event object classes make
sense for your application. If necessary, you can extend the definitions of the standard
Apple events and Apple events objects to cover special requirements of your application.
It is better to extend the standard definitions rather than to define your own custom
Apple events, because only those applications that choose to support your custom Apple
events explicitly will be able to make use of them.
3-48 About the Apple Event Manager

C H A P T E R 3

Introduction to Apple Events

3
Introduction to A

pple E
vents
The chapter “Responding to Apple Events” in this book describes how to write Apple
event handlers and related routines. The chapter “Resolving and Creating Object
Specifier Records” describes how to resolve object specifiers in an Apple event that
describes Apple event objects in your application or its documents.

If your application can respond to Apple events, you can make it scriptable simply by
adding an 'aete' resource. Scripting components use your application’s 'aete'
resource to obtain information about the Apple events and corresponding
human-language terminology that your application supports. The chapter “Apple Event
Terminology Resources” in this book describes how to optimize your implementation of
Apple events for use by scripting components and how to create an 'aete' resource.

Supporting Apple Events as a Client Application 3
Because users can send Apple events to a variety of applications simply by executing a
script, many applications have no need to send Apple events. However, if you want to
factor your application for recording, or if you want your application to send Apple
events directly to other applications, you can use Apple Event Manager routines to
create and send Apple events.

To send an Apple event, you must

■ create the Apple event

■ add parameters and attributes

■ use the AESend function to send the event

The chapter “Creating and Sending Apple Events” in this book describes how to perform
these tasks.

Supporting Apple Event Objects 3
If your application responds to core and functional-area Apple events, it must also be
able to resolve object specifier records that describe the objects on which those Apple
events can act. In addition to the tasks described in the chapter “Responding to
Apple Events,” you must perform the following tasks to handle Apple events that
contain object specifier records:

■ Write object accessor functions that can locate the Apple event objects you support,
and install corresponding entries in your application’s object accessor dispatch table.

■ Write any object callback functions that you decide to provide. To handle object
specifier records that specify a test, your application must provide at least two object
callback functions: one that counts objects and one that compares them.

■ Call AEResolve from your Apple event handlers whenever an Apple event
parameter includes an object specifier record.

The chapter “Resolving and Creating Object Specifier Records” describes how to
perform these tasks. It also describes how applications that send Apple events to
themselves or directly to other applications can create object specifier records.
About the Apple Event Manager 3-49

C H A P T E R 3

Introduction to Apple Events
Supporting Apple Event Recording 3
If you make your application scriptable, you may also want to make it recordable. Users
of recordable applications can record their actions in the form of Apple events that a
scripting component translates into a script. When a user executes a recorded script,
the scripting component sends the same Apple events to the application in which they
were recorded.

To make your application recordable, you should use Apple events to report user actions
to the Apple Event Manager in terms of Apple events. One way to do this is to separate
the code that implements your application’s user interface from the code that actually
performs work when the user manipulates the interface. This is called factoring your
application. A factored application acts as both the client and server application for
Apple events it sends to itself in response to user actions. When recording is turned on,
the Apple Event Manager sends a copy of every event than an application sends to itself
to the scripting component or other process that turned recording on.

The chapter “Introduction to Scripting” in this book provides an overview of how to
make your application both scriptable and recordable. The chapter “Recording Apple
Events” describes how to factor your application for recording and explains the
Apple Event Manager’s recording mechanism.
3-50 About the Apple Event Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	Introduction to Apple Events
	About Apple Events
	Apple Events and Apple Event Objects
	Apple Event Attributes and Parameters
	Apple Event Attributes
	Apple Event Parameters
	Interpreting Apple Event Attributes and Parameters...

	Data Structures Within Apple Events
	Descriptor Records
	Keyword-Specified Descriptor Records
	Descriptor Lists

	Responding to Apple Events
	Accepting and Processing Apple Events
	About Apple Event Handlers
	Extracting and Checking Data
	Interacting With the User
	Performing the Requested Action and Returning a Re...

	Creating and Sending Apple Events
	Creating an Apple Event Record
	Adding Apple Event Attributes and Parameters
	Sending an Apple Event and Handling the Reply

	Working With Object Specifier Records
	Data Structures Within an Object Specifier Record
	The Classification of Apple Event Objects
	Object Classes
	Properties and Elements

	Finding Apple Event Objects

	About the Apple Event Manager
	Supporting Apple Events as a Server Application
	Supporting Apple Events as a Client Application
	Supporting Apple Event Objects
	Supporting Apple Event Recording

	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

