

C H A P T E R 2

2

F
ile M

anager

File Manager 2

This chapter describes how your application can use the File Manager to store and access
data in files or to manipulate files, directories, and volumes. It also provides a complete
description of all File Manager routines, data types, and constants.

You need to read the information in this chapter if you wish to use File Manager routines
other than those described in the chapter “Introduction to File Management” earlier in
this book. That chapter shows how to use the File Manager, the Standard File Package,
and other system software components to handle the typical File menu commands and
perform other common file-manipulation operations. This chapter addresses a number
of other important file-related issues, including

■ using the low-level File Manager routines

■ locking and unlocking byte ranges in shared files

■ searching a volume for files or directories satisfying certain criteria

■ obtaining information about files, directories, and volumes

This chapter also addresses some advanced topics of interest primarily to designers
of very specialized applications or file-system utility programs. These advanced
topics include

■ how the File Manager organizes file and directory data on disk

■ how the File Manager organizes information in memory

To use this chapter, you should already be familiar with the information presented in the
chapter “Introduction to File Management” earlier in this book.

This chapter begins with a general introduction to the File Manager and the services it
provides. Then it describes

■ ways of identifying files, directories, and volumes

■ file access permissions

■ directory access privileges

■ running in a shared environment

About the File Manager 2

The File Manager is the part of the Macintosh Operating System that manages the
organization, reading, and writing of data located on physical data storage devices
such as disk drives. This data includes the data in documents as well as other
collections of data used to maintain the hierarchical file system (HFS) and other system
software services. To accomplish these tasks, the File Manager interacts with many
other components of the system software. For example, the Resource Manager uses
File Manager routines when it needs to read and write resource data. Similarly, the File
Manager calls the Device Manager to perform the actual reading and writing of data
on a physical data storage device. In general, you’ll use the Resource Manager to read
and write data in a file’s resource fork and the File Manager to read and write data in
a file’s data fork. You’ll also use the File Manager to perform operations on directories
and volumes.
About the File Manager 2-5

C H A P T E R 2

File Manager

The File Manager provides a large number of routines for performing various operations
on files, directories, and volumes. The requirements of your application will dictate
which of these routines you will need to use. Many applications simply need to open
files, read and write the data in those files, and then close the files. Other applications
might provide more capabilities, such as the ability to copy a file or move a file to
another directory. A few file-system utilities perform even more extensive file operations
and hence need to use some of the advanced routines provided by the File Manager. For
example, a disk scavenger might need to make a byte-by-byte search through a volume
to find pieces of a deleted file.

You can often use one of several File Manager routines to accomplish a particular task.
This is because many of the File Manager routines are provided in two different forms:
high level and low level. The low-level routines generally provide the greatest control
over the requested task; they are identified by the prefixes PB and PBH, indicating that
they take the address of a parameter block as a parameter. The high-level routines are
always defined in terms of low-level routines; they are identified by prefixes such as FSp
or H, indicating how you identify files or directories using those routines, or by no
special prefix at all.

You pass information to a high-level routine using the routine’s parameters. A high-level
routine has as many parameters as are necessary to pass the information it requires.

You pass information to a low-level routine by filling in fields in a parameter block and
then passing the address of the parameter block to the routine. In all cases, a low-level
routine uses more fields in the parameter block than there are parameters in the
corresponding high-level routine. As a result, you can use those low-level routines to
perform more advanced operations or to provide more extensive information than you
can with the corresponding high-level routines. This is the principal reason you might
choose to use a low-level routine instead of its corresponding high-level routine.

IMPORTANT

If you use the low-level File Manager routines, be sure to clear all
unused fields of the parameter block. ▲

Low-level routines also accept a parameter indicating whether you want the routine to
be executed synchronously or asynchronously. If you request synchronous execution,
control does not return to your application until the routine has been executed. This
allows you to inspect the routine’s result code to see whether the routine was
successfully completed. If so, your application can continue by performing other
operations that depend on the successful completion of that routine.

If you request asynchronous execution, an I/O request is put into the file I/O queue and
control returns to your application immediately—possibly even before the actual I/O
operation is completed. The File Manager takes requests from the queue one at a time
and processes them; meanwhile, your application is free to work on other things.
Routines that are executed asynchronously return control to your application with the
result code noErr as soon as the call is placed in the file I/O queue. Return of control
does not signal successful completion of the call, but simply successful queuing of the
request. To determine when the call is actually completed, you can poll the ioResult
field of the parameter block. This field is set to a positive number when the call is made
2-6 About the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager

and set to the actual result code when the call is completed. If necessary, you can also
install a completion routine that is executed when the asynchronous call is completed.
See “Completion Routines” on page 2-240 for details about completion routines.

Note

Although you can request asynchronous execution for most low-level
routines, the device driver for the device on which the target file,
directory, or volume resides might not support asynchronous
operations. For example, the current implementation of the SCSI
Manager allows synchronous execution only. The Sony disk driver and
AppleShare server software do, however, support asynchronous
operation. ◆

The following sections describe the various capabilities of the File Manager. For full
details on any of the routines mentioned in these sections, see the descriptions given in
“File Manager Reference” beginning on page 2-87.

File Manipulation 2
The File Manager provides a number of routines that allow you to manipulate files. You
can open a file fork, read and write the data in it, adjust its logical end-of-file, set the file
mark, allocate blocks to a file, and close a file.

To manipulate the data in a file, you first need to open the file. You can open a file using
one of several routines, depending on whether you want to use low-level or high-level
routines and how you identify the file to open. Table 2-1 lists the file-opening routines.

All the high-level FSSpec routines require you to specify a file using a file system
specification record. All the HFS routines, whether high or low level, require you to
specify a file by its volume, directory, and name.

No matter which routine you use to open a file, you need to specify a file permission
that governs the kind of access your application can have to that file. You can specify one
of these constants:

CONST

fsCurPerm = 0; {whatever permission is allowed}

fsRdPerm = 1; {read permission}

Table 2-1 Routines for opening file forks

FSSpec HFS High-Level HFS Low-Level Description

FSpOpenDF HOpenDF PBHOpenDF Open a file’s data fork.

FSpOpenRF HOpenRF PBHOpenRF Open a file’s resource fork.

HOpen PBHOpen Open a driver or file data fork.
About the File Manager 2-7

C H A P T E R 2

File Manager

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

Use the constant fsCurPerm to request whatever permission is currently allowed. If
write access is unavailable (because the file is locked or because the file is already open
with write access), then read permission is granted. Otherwise, read/write permission
is granted.

Use the constant fsRdPerm to request permission to read the file. Similarly, use the
constant fsWrPerm to request permission to write to the file. If write permission is
granted, no other access paths are granted write permission. Note, however, that the File
Manager does not support write-only access to a file. As a result, fsWrPerm is
synonymous with fsRdWrPerm.

There are two types of read/write permission—exclusive and shared. Often you want
exclusive read/write permission, so that users can safely read and alter portions of a file.
If your application requests and is granted exclusive read/write permission, no users are
granted permission to write to the file; other users may, however, be granted permission
to read the file.

Shared read/write permission allows multiple access paths for writing and reading. It is
safe to have multiple read/write paths open to a file only if there is some way of locking
a portion of the file before writing to that portion of the file. You can use the File
Manager functions PBLockRange and PBUnlockRange to lock and unlock ranges of
bytes in a file. These functions, however, are supported only on remotely mounted
volumes or on local volumes that are sharable on the network. As a result, you should
request shared read/write permission only if range locking is available. See “Shared File
Access Permissions” on page 2-15 for details on permissions in shared environments.

Note

Don’t assume that successfully opening a file for writing ensures that
you can actually write data to the file. The File Manager allows you to
open with write permission a file located on a locked volume, and you
won’t receive an error until you first try to write data to the file. To be
safe, you can call the PBHGetVInfo function to make sure that the
volume is writable. ◆

When you successfully open a file fork, you receive a file reference number that
uniquely identifies the open file. You can pass that number to the File Manager routines
that allow you to manipulate open files. Table 2-2 lists the routines that operate on
open files.

The File Manager provides a number of routines that allow you to operate on files that
are closed. You can create, delete, get and set information, and lock and unlock files.
You can also move files within a volume and exchange data in two files. Table 2-2 lists
these routines.
2-8 About the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager

Note

You can use the functions listed in Table 2-2 on open files as well, except
for those functions that create or delete file forks. ◆

Table 2-2 Routines for operating on open file forks

High-Level Low-Level Description

FSRead PBRead Read bytes from an open file fork.

FSWrite PBWrite Write bytes to an open file fork.

FSClose PBClose Close an open file fork.

GetFPos PBGetFPos Get the position of the file mark.

SetFPos PBSetFPos Set the position of the file mark.

GetEOF PBGetEOF Get the current logical end-of-file.

SetEOF PBSetEOF Set the current logical end-of-file.

Allocate PBAllocate Add allocation blocks to a file fork.

AllocContig PBAllocContig Add contiguous allocation blocks to a file fork.

PBFlushFile Update the disk contents of a file fork.

GetVRefNum Get volume reference number of an open file.

Table 2-3 Routines for operating on closed files

FSSpec HFS High-Level HFS Low-Level Description

FSpCreate HCreate PBHCreate Create both forks of a
new file.

FSpDelete HDelete PBHDelete Delete both forks of a file.

FSpGetFInfo HGetFInfo PBHGetFInfo Get a file’s Finder
information.

FSpSetFInfo HSetFInfo PBHSetFInfo Set a file’s Finder information.

FSpSetFLock HSetFLock PBHSetFLock Lock a file.

FSpRstFLock HRstFLock PBHRstFLock Unlock a file.

FSpCatMove CatMove PBCatMove Move a file or directory
within a volume.

FSpRename HRename PBHRename Rename a file or directory.

PBGetCatInfo Get information about a file
or directory.

PBSetCatInfo Set information about a file
or directory.
About the File Manager 2-9

C H A P T E R 2

File Manager

You can exchange the data in two files using the FSpExchangeFiles and
PBExchangeFiles functions. If you need to create a file system specification record,
you can use the FSMakeFSSpec or PBMakeFSSpec function.

Directory Manipulation 2
The File Manager provides a number of routines that allow you to manipulate
directories. For example, you can create and delete directories, get information about a
directory, and move and rename directories. The directory manipulation routines are
listed in Table 2-2.

The File Manager includes a number of routines that allow you to manipulate working
directories. See Table 2-2. Most applications do not need to use working directories.

Table 2-4 Routines for operating on directories

FSSpec HFS High-Level HFS Low-Level Description

FSpDirCreate DirCreate PBDirCreate Create a directory.

FSpDelete HDelete PBHDelete Delete a directory.

FSpGetFInfo HGetFInfo PBHGetFInfo Get Finder information for
a directory.

FSpSetFInfo HSetFInfo PBHSetFInfo Set Finder information for
a directory.

FSpSetFLock HSetFLock PBHSetFLock Lock a directory.

FSpRstFLock HRstFLock PBHRstFLock Unlock a directory.

FSpCatMove CatMove PBCatMove Move a file or directory within
a volume.

FSpRename HRename PBHRename Rename a file or directory.

PBGetCatInfo Get information about a file
or directory.

PBSetCatInfo Set information about a file
or directory.
2-10 About the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Volume Manipulation 2
The File Manager provides a number of routines that allow you to manipulate volumes.
For example, you can obtain information about a mounted volume, update the
information on a volume, unmount a mounted volume or place it offline, and so forth.
Most applications don’t need explicit access to volumes. The Standard File Package and
the Finder handle most events related to the insertion and ejection of disks.

When the Event Manager function WaitNextEvent (or GetNextEvent) receives a
disk-inserted event, it calls the Desk Manager function SystemEvent. The Desk
Manager in turn calls the File Manager function PBMountVol, which attempts to mount
the volume on the disk. The result of the PBMountVol call is put into the high-order
word of the event message, and the drive number is put into its low-order word. If the
result code indicates that an error occurred, you need to call the Disk Initialization
Manager routine DIBadMount to allow the user to initialize or eject the volume. For
details, see the chapter “Disk Initialization Manager” in this book.

After a volume has been mounted, your application can call GetVInfo, which returns
the name, the amount of unused space, and the volume reference number. Given a file
reference number, you can get the volume reference number of the volume containing
that file by calling either GetVRefNum or GetFCBInfo.

You can unmount or place offline any volumes that aren’t currently being used. To
unmount a volume, call UnmountVol, which flushes a volume (by calling FlushVol)
and releases all of the memory it uses. To place a volume offline, call PBOffLine, which
flushes a volume and releases all of the memory used for it except for the volume control
block. The File Manager places offline volumes online as needed, but your application
must remount any unmounted volumes it wants to access. The File Manager itself may
place volumes offline during its normal operation.

Note

If you make a call to an offline volume, the File Manager displays the
disk switch dialog box and waits for the user to reinsert the disk
containing the volume. When the user inserts the required disk, the File
Manager mounts the volume and then reissues your original call. To
avoid presenting the user with numerous disk switch dialog boxes, you
might need to check that a volume is online before attempting to access
data on it. ◆

Table 2-5 Routines for manipulating working directories

High-Level Low-Level Description

OpenWD PBOpenWD Open a working directory.

CloseWD PBCloseWD Close a working directory.

GetWDInfo PBGetWDInfo Get information about a working directory.
About the File Manager 2-11

C H A P T E R 2

File Manager
To protect against data loss due to power interruption or unexpected disk ejection, you
should periodically call FlushVol (probably after each time you close a file), which
writes the contents of the volume buffer and all access path buffers (if any) to the volume
and updates the descriptive information contained on the volume.

Whenever your application is finished with a disk, or when the user chooses Eject from a
menu, call the Eject function. This function calls FlushVol, places the volume offline,
and then physically ejects the volume from its drive.

If you would like all File Manager calls to apply to a particular volume, specify it as the
default volume. You can use the HGetVol (or GetVol) function to determine the name
and volume reference number of the default volume, and the SetVol function to make
any mounted volume the default.

Normally, volume initialization and naming are handled by the Disk Initialization
Manager. If you want to initialize a volume explicitly or erase all files from a volume,
you can call the Disk Initialization Manager directly. When you want to change the name
of a volume, call the HRename function.

Table 2-6 summarizes the volume-manipulation routines. Most of these routines require
you to specify a volume either by name or by volume reference number.

Table 2-6 Routines for operating on volumes

High-Level Low-Level Description

PBMountVol Mount a volume.

UnmountVol PBUnmountVol Unmount a volume.

Eject PBEject Eject a volume.

PBOffLine Place a volume offline.

FlushVol PBFlushVol Update a volume.

GetVol PBGetVol Get the default volume.

HGetVol PBHGetVol Get the default volume.

SetVol PBSetVol Set the default volume.

HSetVol PBHSetVol Set the default volume.

GetVInfo PBHGetVInfo Get information about a volume.

PBSetVInfo Set information about a volume.

PBHGetVolParms Determine capabilities of a volume.

PBCatSearch Search a volume for files or directories
satisfying certain criteria.
2-12 About the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Volume Searching 2
The File Manager provides several routines that you can use to search a volume for files
or directories having specific characteristics. For example, you can search for all files
with modification dates of two days ago or less or all directories with the string “Temp”
in their names.

In general, you should avoid searching entire volumes, because a search of large
volumes can consume significant amounts of time. Suppose you are looking for a
particular file (for example, a dictionary file against which your application needs to
check the spelling of a document). In this case, you can save time and increase the
chances of finding the correct file by storing and later resolving an alias record that
describes the desired file. See the chapter “Alias Manager” in this book for details on
using alias records.

Alternatively, suppose you need to find the location of a standard system directory, such
as the Preferences folder or the Temporary Items folder. To perform this search most
efficiently, you should use the FindFolder function. See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for details.

In some cases, however, you do need to search volumes. For instance, a backup utility
needs to search an entire volume to find which files and directories, if any, might need to
be backed up. In these cases, you can choose either of two general search strategies: you
can search the volume’s catalog by calling the PBCatSearch function, or you can use a
recursive, indexed search by calling the PBGetCatInfo function (see Table 2-2).

Using the PBCatSearch function is the fastest and most reliable way to search the
catalog file of an HFS volume for files and directories satisfying certain criteria. The
PBCatSearch function returns a list of FSSpec records describing the files or
directories that match the criteria specified by your application.

However, PBCatSearch is not available on all volumes or in all versions of the
File Manager. See “Determining the Features of the File Manager” on page 2-33
for instructions on how to determine whether the system software and the target
volume both support the PBCatSearch function.

Note

The PBCatSearch function is available on all volumes that support the
AppleTalk Filing Protocol (AFP) version 2.1. This includes volumes and
directories shared using the file sharing software introduced in system
software version 7.0 and using the AppleShare 3.0 file server software. ◆

Table 2-7 Routines for manipulating working directories

Routine Description

PBCatSearch Search a volume’s catalog file for files or directories.

PBGetCatInfo Get information about a single catalog file entry.
About the File Manager 2-13

C H A P T E R 2

File Manager
In environments where PBCatSearch is not available, you’ll need to do a search that
recursively descends the directory hierarchy and reads through the catalog entries of all
files and directories located in each directory in that hierarchy. You can do this by making
indexed calls to the PBGetCatInfo function, which is supported by all system software
versions and by all volumes. However, using this recursive, indexed search method is
usually significantly slower than using the PBCatSearch function. (For example, a
recursive, indexed search that takes over 6 minutes might take about 20 seconds using
PBCatSearch.)

See “Searching a Volume” beginning on page 2-39 for examples of using both
PBCatSearch and PBGetCatInfo to search a volume for files and directories.

Shared Environments 2
Any operating environment that supports multiple users and multiple access to data or
applications is known as a shared environment. A shared environment can be a number
of workstations attached to a network as well as a single workstation executing a
multi-user operating system such as A/UX.

The File Manager supports access both to locally mounted volumes and to volumes
located on devices attached to remote machines on a network. For example, AppleShare,
Apple’s file-server application, allows users to share data, applications, and disk storage
over a network. System software version 7.0 introduced File Sharing, a local version of
AppleShare that allows users to make some or all of the files on a volume available over
the network. To do so, a user establishes a volume or directory as a share point, making
it available for use by registered users or guests on the network.

It is a virtual certainty that some users will run your application in a shared environment.
The File Manager, Chooser, and other system software components cooperate to make
access to remote volumes largely transparent to your application. As a result, most
applications do not need to accommodate shared environments explicitly. You can read
and write files, for instance, regardless of whether they are located on a local or a remote
volume.

If your application performs certain operations on files, however, you might be able to
save considerable time by using special shared environment routines. Suppose, for
example, that you want to copy a file to another directory on a volume. In the general
case, you handle this by reading a buffer of data from the source file and then writing it to
the destination file. If the source and destination volumes are remote, however, this
technique might involve the copying of a lot of data over the network. To optimize remote
file copying, the File Manager provides the PBHCopyFile function, which copies a
remote file without sending the data across the network. Similarly, the PBHMoveRename
function allows you to move and optionally rename a file located on a remote volume.

The File Manager provides routines that allow you to control other aspects of a shared
environment, including

■ providing multiple users with shared read/write access to files

■ locking and unlocking byte ranges within a file to ensure exclusive access to data
during updates
2-14 About the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
■ enabling and disabling sharing on local volumes and directories

■ getting and setting access privileges for directories

■ determining volume mounting and login information so that any volume can be
unmounted and remounted easily

Table 2-8 lists the File Manager routines that you can use in a shared environment. Note
that all of these are low-level routines.

The following sections describe the capabilities provided by these routines.

Shared File Access Permissions 2

In a shared environment, files can be shared at a file or subfile level. At a file level, a
project schedule could be read by many users simultaneously but updated by only one
user at a time. At a subfile level, different records of a data base file could be updated by
several users at the same time.

Table 2-8 Shared environment routines

Routine Description

PBHOpenDeny Open a file’s data fork using the access deny modes.

PBHOpenRFDeny Open a file’s resource fork using the access deny modes.

PBLockRange Lock a portion of a shared file.

PBUnlockRange Unlock a previously locked portion of a shared file.

PBShare Establish a volume or directory as a share point.

PBUnshare Remove a share point from a shared environment.

PBGetUGEntry Get a list of users and groups on the local file server.

PBHGetDirAccess Get the access control information for a directory.

PBHSetDirAccess Set the access control information for a directory.

PBGetVolMountInfoSize Get the size of a volume mounting information record.

PBGetVolMountInfo Get volume mounting information.

PBVolumeMount Mount a volume.

PBHGetLogInInfo Get the method used to log on to a shared volume.

PBHMapID Get the name of a user or group from its ID.

PBHMapName Get the ID of a user or group from its name.

PBHCopyFile Copy a file on a remote volume.

PBHMoveRename Move (and perhaps rename) a file on a remote volume.
About the File Manager 2-15

C H A P T E R 2

File Manager
The access modes provided by the standard file-opening routines prove insufficient for
shared files. Two additional open functions, PBHOpenDeny and PBHOpenRFDeny, allow
the ability to deny access as well. These deny modes are cumulative, combining to
determine the current access permissions for a file. For instance, if the first opening
routine denies reading to others and the second denies writing, both reading and writing
are then denied for the file.

Figure 2-1 shows how new access and deny modes are granted or refused according to a
file’s current access and deny modes. An unshaded square indicates that a new open call
with the listed permissions would succeed; otherwise, the new open call would fail.

Figure 2-1 Access and deny mode synchronization

You specify deny modes by setting bits in the ioDenyModes field of the parameter
block passed to PBHOpenDeny or PBHOpenRFDeny. Currently four bits of this field
are meaningful:

Bit Meaning

0 If set, request read permission

1 If set, request write permission

4 If set, deny other users read permission to this file

5 If set, deny other users write permission to this file

N
on

e

W
rit

e

R
ea

d/
W

rit
e

R
ea

d

N
on

e

W
rit

e

R
ea

d/
W

rit
e

R
ea

d

N
on

e

W
rit

e

R
ea

d/
W

rit
e

R
ea

d

N
on

e

W
rit

e

R
ea

d/
W

rit
e

R
ea

d

None

Write

Read/Write
Read

None

Write

Read/Write
Read

None

Write

Read/Write
Read

None

Write

Read/Write
Read

Deny
Read/Write Deny Write Deny Read Deny None

New open attempt deny mode and new
open attempt access mode

Deny
Read/Write

Deny Write

Deny Read

Deny None

Access
Mode

Deny Mode

C
ur

re
nt

 d
en

y
an

d
cu

rr
en

t a
cc

es
s

m
od

e
2-16 About the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
The combination of access and deny requests allows four common opening possibilities:

■ Browsing access. You request browsing access by specifying both read and
deny-write modes (ioDenyModes set to $0021). Browsing access is traditional
read-only access; it permits multiple readers but no writers. This access mode is useful
for shared files that do not change often, such as help files, configuration files, and
dictionaries.

■ Exclusive access. You request exclusive access by specifying both read and write
access and both deny-read and deny-write access (ioDenyModes set to $0033). Most
applications that are not specifically designed to share file data use this permission
setting. An exclusive access opening call succeeds only if there are no existing paths to
the file. After a successful opening call, all future attempts to establish access paths to
the file are denied until the exclusive-access path is closed.

■ Access as a single writer with multiple readers. You request access as the single
writer with multiple readers by specifying both read and write access and deny-write
access (ioDenyModes set to $0023). This access method allows additional users to
gain read-only access to browse a document being modified by the initial writer. The
writer’s application is responsible for range locking the file (by calling PBLockRange)
before writing to it, to prevent reading when the file is inconsistent.

■ Shared access. You request shared access by specifying both read and write access
(ioDenyModes set to $0003). Shared access should be used by applications that
support full multi-user access to its documents. Range locking is needed to prevent
other users from accessing information undergoing change. Each user must also check
for and handle any errors that result from access by other users. You might prefer to
use a semaphore to flag records in the document as they are checked out, rather than
use range locking exclusively.

You can open a shared file using either the deny modes described here or the file access
permissions described in “File Manipulation” on page 2-7. If you use the original
permissions when you open a file located in a shared directory, the File Manager
translates those permissions into the corresponding access and deny modes. The basic
rule followed in this translation is to allow a single writer or multiple readers, but not
both. The translation from the original permissions to the deny-mode permissions is
shown in Table 2-9.

Table 2-9 Access mode translation

HFS permissions Deny-mode permissions

fsCurPerm Exclusive access, or browsing access if exclusive access
is unavailable.

fsRdPerm Browsing access.

fsWrPerm Exclusive access.

fsRdWrPerm Exclusive access, or browsing access if exclusive access
is unavailable.

fsRdWrShPerm Shared access.
About the File Manager 2-17

C H A P T E R 2

File Manager
Notice that fsCurPerm and fsRdWrPerm are retried as read-only (browsing access) if
exclusive access is not available. In addition, whenever browsing access is requested
(that is, when you directly request fsRdPerm, or when a request for fsCurPerm or
fsRdWrPerm is retried because exclusive access is not available) and cannot be granted,
the AppleShare external file system searches through the open file control blocks (FCBs)
for another AFP access path to the file. If an AFP access path to that file is found, a
read-only access path is returned that shares the AFP access path.

Directory Access Privileges 2

AppleShare allows users to assign directory access privileges to individual directories,
controlling who has access to the files and folders in the directory. A directory may
be kept private, shared by a group of registered users, or shared with all users on
the network.

Users are organized into groups. Users can belong to more than one group. Information
about users and their privileges is maintained by AppleShare. Each directory has access
privileges assigned for each of these three classifications of users: owner, group, and
everyone. The following privileges can be assigned:

■ See Folders. A user with this access privilege (also called search privilege) can see
other directories in the specified directory.

■ See Files. A user with this access privilege (also called read privilege) can see the
icons and open documents or applications in that directory as well.

■ Make Changes. A user with this access privilege (also called write privilege) can
create, modify, rename, or delete any file or directory contained in the specified
directory. Directory deletion requires additional privileges. It is possible to have Make
Changes privileges without also having See Folders or See Files privileges; this would
allow users to put items into a directory but not view the contents of that directory.

For instance, a user might assign privileges to a particular directory allowing the owner
to read, write, and search the directory, and allowing everyone else (whether in the
group or not) only to search the directory.

On directories shared using File Sharing, you can also assign blank access privileges. In
this case, the File Manager ignores any other access privileges and uses the access
privileges of the directory’s parent. On the local machine, directories in a shared area
have blank access privileges, until set otherwise.

Note

You cannot assign blank access privileges to a volume’s root directory. ◆

You can use the PBHGetDirAccess and PBHSetDirAccess functions to determine
and change the access privileges for a directory. The access privileges are passed in the
4-byte ioACAccess field of the accessParam variant of the HFS parameter block
passed to these two functions. The 4 bytes are interpreted separately; byte 0 is the
high-order byte.
2-18 About the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
The bits in each byte encode access privilege information, as illustrated in Figure 2-2.
(The high-order byte is on top, and the high-order bit is on the left.) Note that the user’s
privileges byte also indicates whether the user owns the directory and whether the
directory has blank access privileges.

Figure 2-2 Access privileges information in the ioACAccess field

If bit 31 is set, then the user is the owner of the specified directory. If bit 28 is set, the
specified directory has blank access privileges. If bit 28 is clear, the 3 low-order bits of
each byte encode the write, read, and search privileges, respectively. If one of these bits
is set, the directory privileges permit the indicated access to the specified individual.

The 3 low-order bits of the byte encoding the user’s access privilege information are
the logical OR of the corresponding bits in whichever of the other 3 bytes apply to the
user. For example, if the user is the owner of a directory and is in the directory’s group,
then the 3 low-order bits of the user byte are the logical OR of the corresponding bits in
the other 3 bytes. If, however, the user is not the owner and is not in the directory’s
group, the user privilege bits have the same values as the corresponding ones in the
everyone byte.

Byte Meaning

0 User’s access privileges

1 Everyone’s access privileges

2 Group’s access privileges

3 Owner’s access privileges

Blank access privileges

Write
Read

Search

Directory owner

User's privileges

Everyone's privileges

Group's privileges

Owner's privileges

31

23

15

7

30

22

14

6

29

21

13

5

28

20

12

4

27

19

11

3

26

18

10

2

25

17

9

1

24

16

8

0

About the File Manager 2-19

C H A P T E R 2

File Manager
You can use PBHSetDirAccess to set the low-order 3 bits of all the privileges bytes
except the user’s privileges byte. In the user’s privileges byte, you can set only the blank
access privileges bit (bit 28).

Note

Not all volumes support blank access privileges. You can call the
PBHGetVolParms function to determine whether a particular volume
supports blank access privileges. ◆

Remote Volume Mounting 2

Typically, the user mounts remote shared volumes through the Chooser or by opening an
alias file. The File Manager in system software version 7.0 and later provides a set of calls
for collecting the mounting information from a mounted volume and then using that
information to mount the volume again later, without going through the Chooser.

Ordinarily, before you can mount a volume programmatically, you must record its
mounting information while it’s mounted. Because the size of the mounting information
can vary, you first call the PBGetVolMountInfoSize function, which returns the
size of the record you’ll need to allocate to hold the mounting information. You then
allocate the record and call PBGetVolMountInfo, passing a pointer to the record.
When you want to mount the volume later, you can pass the record directly to the
PBVolumeMount function.

Note

The functions for mounting volumes programmatically are low-level
functions designed for specialized applications. Even if your application
needs to track and access volumes automatically, it can ordinarily use
the Alias Manager, described in the chapter “Alias Manager” in this
book. The Alias Manager can record mounting information and later
remount most volumes, even those that do not support the
programmatic mounting functions. ◆

The programmatic mounting functions can now be used to mount AppleShare volumes.
The functions have been designed so that they can eventually be used to mount local
Macintosh volumes, such as partitions on devices that support partitioning, and local or
remote volumes managed by non-Macintosh file systems.

Privilege Information in Foreign File Systems 2

Virtually every file system has its own privilege model, that is, conventions for
controlling access to stored files and directories. A number of non-Macintosh file systems
support access from a Macintosh computer by mapping their native privilege models
onto the model defined by the AppleTalk Filing Protocol (AFP). Most applications that
manipulate files in foreign file systems can rely on the intervening software to translate
AFP privileges into whatever is required by the remote system.
2-20 About the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
The correlation is not always simple, however, and some applications require more
control over the files stored on the foreign system. The A/UX privilege model, for
example, recognizes four kinds of access: read, write, execute, and search. The AFP
model recognizes read, write, deny-read, and deny-write access. If a shell program
running on the Macintosh Operating System wants to allow the user to set native A/UX
privileges on a remote file, it has to communicate with the A/UX file system using the
A/UX privilege model.

System software version 7.0 provides two new functions, PBGetForeignPrivs and
PBSetForeignPrivs, for manipulating privileges in a non-Macintosh file system.
These access-control functions were designed for use by shell programs, such as the
Finder, that need to use the native privilege model of the foreign file system. Most
applications can rely on using shared environment functions, which are recognized by
file systems that support the Macintosh privilege model. The new access-control
functions do not relieve a foreign file system of the need to map its own privilege model
onto the shared environment functions.

Like all other low-level File Manager functions, the access-control functions exchange
information with your application through parameter blocks. The meanings of some
fields vary according to the foreign file system used. These fields are currently defined
for A/UX, and you can define them for other file systems.

You can identify the foreign file system through the PBHGetVolParms function. The
attributes buffer introduced in system software version 7.0 for the PBHGetVolParms
function contains a field for the foreign privilege model, vMForeignPrivID.

Note

The value of vMForeignPrivID does not specify whether the remote
volume supports the AFP access-control functions. You can determine
whether the volume supports the AFP access-control functions by
checking the bAccessCntl bit in the vMAttrib field. ◆

A value of 0 for vMForeignPrivID signifies an HFS volume that supports no foreign
privilege models. The field currently has one other defined value.

CONST

fsUnixPriv = 1; {A/UX privilege model}

For an updated list of supported models and their constants and fields, contact
Macintosh Developer Technical Support.

A volume can support no more than one foreign privilege model.

The access-control functions store information in an HFS parameter block of type
foreignPrivParam. The parameter block can store access-control information in one
or both of

■ a buffer of any length, whose location and size are stored in the parameter block

■ 4 long words of data stored in the parameter block itself
About the File Manager 2-21

C H A P T E R 2

File Manager
The meanings of the fields in the parameter block depend on the definitions established
by the foreign file system. For example, the A/UX operating system uses the
ioForeignPrivBuffer field to point to a 16-byte buffer that describes the access
rights for the specified file or directory. The buffer is divided into four fields, as follows:

Bytes Description

0–3 The user ID of the owner of the file or directory.

4–7 The group ID of the owner of the file or directory.

8–11 Mode bits specifying the type of access available to the owner of the file or
directory, the group of the file or directory, and to everyone else. The value in
this field is a logical OR of some of the following octal values:

Value Meaning

0001 Executable by others.

0002 Writable by others.

0004 Readable by others.

0010 Executable by the group.

0020 Writable by the group.

0040 Readable by the group.

0100 Executable by the owner.

0200 Writable by the owner.

0400 Readable by the owner.

2000 Set group ID on execution.

4000 Set user ID on execution.

(Execute privileges on a directory mean that the directory is searchable.) You
can also use these octal masks to test or set common acess rights:

Mask Meaning

0007 Executable, writable, and readable by others.

0070 Executable, writable, and readable by the group.

0700 Executable, writable, and readable by the owner.

12–15 The active user’s access rights. The value in this field is a logical OR of some
of the following octal values:

Value Meaning

0001 Executable by user.

0002 Writable by user.

0004 Readable by user.

0010 Set if user owns this file or directory.

Note that you cannot change the owner of a file or directory using
PBSetForeignPrivs. Accordingly, the value 0010 is meaningful for
PBGetForeignPrivs only.
2-22 About the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
File ID Reference Routines 2
The File Manager provides a set of three low-level functions for creating, resolving, and
deleting file ID references. These functions were developed for use by the Alias Manager
in tracking files that have been moved within a volume or renamed. In most cases, you
should use the Alias Manager, not file IDs, to track files. See the chapter “Alias Manager”
in this book.

You establish a file ID reference when you need to identify a file using a file number (see
“File IDs” on page 2-24). You create a file ID reference with the PBCreateFileIDRef
function. Because the File Manager assigns file numbers independently on each volume,
file IDs are not unique across volumes.

You can resolve a file ID reference by calling the PBResolveFileIDRef function,
which determines the name and parent directory ID of the file with a given ID. If you no
longer need a file ID, remove its record from the directory by calling the
PBDeleteFileIDRef function.

Note

Removing a file ID is seldom appropriate, but the function is provided
for completeness. ◆

Identifying Files, Directories, and Volumes 2

Whenever you want to perform some operation on a file, directory, or volume, you need
to identify the target item to the File Manager. Exactly how you specify these items in the
file system depends on several factors, including which version of system software is
currently running and, if the target item is a file, whether it is open or closed. For
example, once you have opened a file, you subsequently identify that file to the File
Manager by providing its file reference number, a unique number returned to your
application when you open the file.

In all other cases, you can identify files, directories, and volumes to the File Manager
by using a variety of methods. In addition to file reference numbers, the File
Manager recognizes

■ file system specifications

■ file ID references

■ directory ID numbers

■ volume reference numbers

■ working directory reference numbers

■ names and full or partial pathnames

This section describes each of these ways to identify items in the file system. Note,
however, that some of these methods are of historical or theoretical interest only.
Working directory reference numbers exist solely to provide compatibility with the
Identifying Files, Directories, and Volumes 2-23

C H A P T E R 2

File Manager
now-obsolete Macintosh file system (MFS), and their use is no longer recommended.
Similarly, the use of full pathnames to specify volumes, directories, or files is not
generally recommended.

Whenever possible, you should use file system specifications to identify files and
directories because they provide the simplest method of identification and are
recognized by the Finder, the Standard File Package, and other system software
components beginning with system software version 7.0. If your application is intended
to run in system software versions in which the routines that accept file system
specification records are not available, you should use the volume reference number,
parent directory ID, and name of the item you wish to identify.

File System Specifications 2
Conventions for identifying files, directories, and volumes have evolved as the File
Manager has matured. System software version 7.0 introduced a simple, standard form
for identifying a file or directory, called a file system specification. You can use a file
system specification whenever you must identify a file or directory for the File Manager.

A file system specification contains

■ the volume reference number of the volume on which the file or directory resides

■ the directory ID of the parent directory

■ the name of the file or directory

For a complete description of the file system specification (FSSpec) record, see “File
System Specification Record” on page 2-87.

The Standard File Package in system software version 7.0 uses FSSpec records to
identify files to be saved or opened. The File Manager provides a new set of high-level
routines that accept FSSpec records as input, so that your application can pass the data
directly from the Standard File Package to the File Manager. The Alias Manager and the
Edition Manager accept file specifications only in the form of FSSpec records.

The Finder introduced in version 7.0 uses alias records, which are resolved into FSSpec
records, to identify files to be opened or printed.

Version 7.0 also introduced the FSMakeFSSpec function, which initializes an FSSpec
record for a particular file or directory. For a description of FSMakeFSSpec, see
“Creating File System Specification Records” on page 2-35.

File IDs 2
A file ID is a unique number that the File Manager assigns to a file at the time it is
created. The File Manager uses file IDs to distinguish one file from another on the same
volume. In fact, a file ID is simply the catalog node ID of a file. As a result, file IDs are
functionally analogous to directory IDs (described in the next section), and both kinds of
IDs are assigned from the same set of numbers.
2-24 Identifying Files, Directories, and Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
The File Manager can set up an internal record in the volume’s catalog that specifies
the filename and parent directory ID of the file with a given file ID, allowing you to
reference the file by that number. (For more information about the volume’s catalog,
see “Catalog Files” on page 2-71.) This internal record in the volume catalog is a file ID
reference (or file ID thread record).

It is important to distinguish file IDs from file ID references. File IDs exist on all HFS
volumes, but file ID references might or might not exist on a particular HFS volume.
Even if file ID references do exist on a volume, they might not exist for all the files on
that volume. In addition, you can track files by their file IDs only on systems capable of
creating and resolving file ID references. See “File ID Reference Routines” on page 2-23
for a description of the File Manager functions that allow you to manipulate file IDs.

Note

The file ID is a low-level tool and is unique only on one HFS volume. In
most cases, your application should track files using the Alias Manager,
described in the chapter “Alias Manager” in this book. The Alias
Manager can track files across volumes. It creates a detailed record
describing a file that you want to track, and, when you need to resolve
the record later, it performs a sophisticated search. The Alias Manager
uses file IDs internally. ◆

A file ID is analogous to a directory ID. A file ID is unique only within a volume and
remains constant even when the file is moved or renamed. When a file is copied or
restored from backup, however, the file ID changes. File IDs are unique over time—that
is, once an ID has been assigned to a file, that number is not reused even after the file has
been deleted.

The file ID is a permanent file reference, one that a user cannot change. After storing a
file ID, your application can locate a specific file quickly and automatically, even if the
user has moved or renamed it on the same volume.

File IDs are intended only as a tool for tracking files, not as a new element in file
specification conventions. Neither high-level nor low-level File Manager functions
accept file IDs as parameters.

Directory IDs 2
A directory ID is a unique number that the File Manager uses to distinguish one
directory from another on the same volume. Assigned by the File Manager when the
directory is created, a directory ID is simply the catalog node ID of a directory. As a
result, directory IDs are functionally equivalent to file IDs, and both kinds of IDs are
assigned from the same set of numbers.

Directory IDs are long integers. The File Manager defines several constants to refer to
special directory IDs that exist on every volume.

CONST

fsRtParID = 1; {directory ID of root directory's parent}

fsRtDirID = 2; {directory ID of volume's root directory}
Identifying Files, Directories, and Volumes 2-25

C H A P T E R 2

File Manager
The root directory of every volume has a directory ID of 2. In addition, the root directory
of every volume has a parent directory ID of 1. There is, however, no such parent
directory; the constant fsRtParID is provided solely for use by applications and File
Manager routines that need to specify a parent ID when referring to the volume’s root
directory. For example, if you call the PBGetCatInfo function when the ioDirID field
is set to fsRtDirID, the value fsRtParID is returned in the ioDrParID field.

Volume Reference Numbers 2
A volume reference number is a unique number assigned to a volume at the time it is
mounted. Unlike the volume name (which the user can change at any time and hence
may not be unique), the volume reference number is both unique and unchangeable by
the user, and so is a reliable way to refer to a volume for as long as it is mounted.

Volume reference numbers are small negative integers. They are valid only until the
volume is unmounted. For example, if you place a volume offline and then bring it back
online, that volume retains the same volume reference number it was originally
assigned. However, if you unmount a volume and then remount it at some later time, its
volume reference number might not be the same during both mounts.

Note

A volume reference number refers to a volume only as long as the
volume is mounted. To create a volume reference that remains valid
across subsequent boots, use alias records. See the chapter “Alias
Manager” in this book for details. ◆

Working Directory Reference Numbers 2
The File Manager provides a method of identifying directories known as working
directory reference numbers. A working directory is a temporary directory reference
that the File Manager uses to specify both a directory and the volume on which it
resides. Each working directory is assigned a working directory reference number at
the time it is created. You can use this number in place of a volume reference number in
all File Manager routines.

Note

Working directories were developed to allow applications written for
the now-obsolete Macintosh file system to execute correctly when
accessing volumes using the hierarchical file system. In general, your
application should not create working directories and, in the few
instances a working directory reference number is returned to your
application, it should immediately convert that number to a volume
reference number and directory ID. ◆

The first file system available on Macintosh computers was the Macintosh file system
(MFS), a “flat” file system in which all files are stored in a single directory. The
hierarchical organization of folders within folders is an illusion maintained by the
system software. As a result, you can identify a file under MFS simply by specifying its
name and its volume. Typically, MFS routines require a volume reference number and a
filename to specify a file.
2-26 Identifying Files, Directories, and Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
To improve performance, especially with larger volumes, Apple Computer, Inc., intro-
duced the hierarchical file system (HFS) on the Macintosh Plus computer and later
models. In HFS, a volume can be divided into smaller units known as directories, which
can themselves contain files or other directories. This hierarchical relationship of folders
corresponds to an actual hierarchical directory structure maintained on disk. (See “Data
Organization on Volumes” beginning on page 2-53 for the precise details of this hierarchi-
cal directory structure.)

Each file on an HFS volume is stored in a directory, called the file’s parent directory. To
identify a file in HFS, you must specify its volume, its parent directory, and its name. The
File Manager assigns each directory a directory ID, and the user or the system software
assigns each directory a name. The HFS File Manager routines include an additional
parameter to handle the directory specification.

To keep existing applications running smoothly, Apple Computer, Inc. introduced the
concept of working directories. A working directory is a combined directory and volume
specification. To make a directory into a working directory, the File Manager establishes
a working directory control block that contains both the volume and the directory ID of
the target directory. The File Manager returns a unique working directory reference
number, which you can use instead of the volume reference number in all routines.

Note

If your application provides both a directory ID and a working directory
reference number, the directory ID is used to specify the directory
(overriding the working directory specified by the working directory
reference number). The working directory reference number is used to
specify the volume (unless a volume name, which overrides all other
forms of volume specification, is also provided). ◆

The best course of action is to avoid using working directories altogether. In the few
cases where system software returns a working directory reference number to your
application, the recommended practice is to immediately convert that working directory
reference number into its corresponding directory ID and volume reference number
(using PBGetWDInfo or its high-level equivalent, GetWDInfo).

In system software versions 7.0 and later, the Process Manager closes all working
directories opened on behalf of your application when it terminates (quits or crashes).
If your application might also run under earlier system software versions, you need to
be careful to close any such working directories before you quit (using PBCloseWD or
its high-level equivalent, CloseWD).

Names and Pathnames 2
Volumes, directories, and files all have names. A volume name is any sequence of 1
to 27 characters, excluding colons (:), that is assigned to a volume. File and directory
names consist of any sequence of 1 to 31 characters, excluding colons. You can use
uppercase and lowercase letters in names, but the File Manager ignores case when
comparing names. The File Manager does not, however, ignore diacritical marks when
comparing names.
Identifying Files, Directories, and Volumes 2-27

C H A P T E R 2

File Manager
Note

Although it is legal to use any character other than the colon in file,
directory, and volume names, you should avoid using nonprinting
characters in such names, even for temporary files that do not appear on
the desktop or in the Standard File Package dialog boxes. A program
written in C interprets a null character (ASCII code $00) as the end of a
name; as a result, embedding the null character in a filename is likely to
cause problems. In addition, file, directory, or volume names with null
characters are not usable by AFP file servers (such as computers running
Macintosh File Sharing or AppleShare software). In general, you should
ensure that you use only printing characters in names of objects that you
create in the file system. ◆

Files and directories located in the same directory must all have unique names.
However, there is no requirement that volumes have unique names. It is perfectly
acceptable for two mounted volumes to have the same name. This is one reason why
your application should use volume reference numbers rather than volume names to
specify volumes.

You can also specify files and directories using pathnames, although this method is
discouraged. There are two kinds of pathnames, full and partial. A full pathname is a
sequence of directory names, separated by colons, starting from the root directory (or
volume) and leading down to the file. A full pathname to the file “Bananas,” for instance,
might be something like this:

MyVolume:Fruits:Tropical:Bananas

A partial pathname is a pathname that begins in some directory other than the root
directory. A particular directory is specified by volume reference number (in the case of
the root directory), working directory reference number, or directory ID, and the
pathname begins relative to that directory. If the directory “Fruits” were specified, for
instance, the partial pathname to the “Bananas” file would be

:Tropical:Bananas

The use of pathnames, however, is highly discouraged. If the user changes names or
moves things around, they are worthless. It’s best to stay with simple file or directory
names and specify the directory containing the file or directory by its directory ID.

HFS Specifications 2
The simplest way to identify a mounted volume is by giving its volume reference
number. The simplest way to identify a file or directory located on a mounted volume is
by providing a file system specification. In some cases, however, you might not be able
to use file system specifications.

For example, the low-level File Manager routines do not accept file system specifications,
and so you must specify files and directories by some other method. You must also use
another file-identification method when you use the high-level HFS routines that existed
prior to the introduction of the routines that accept FSSpec records as file or directory
2-28 Identifying Files, Directories, and Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
specifications. This section summarizes the conventions the File Manager uses to
interpret the various volume, directory, and file specifications that are available even
when file system specifications are not.

The File Manager recognizes three kinds of file system objects: files, directories, and
volumes. You can identify them using various methods.

In HFS, you can pass a complete file specification in any of several ways:

■ full pathname

■ volume reference number and partial pathname

■ working directory reference number and partial pathname

■ volume reference number, directory ID, and partial pathname

A full pathname consists of the name of the volume, the names of all directories between
the root directory and the target, and the name of the target. A full pathname starts with
a character other than a colon and contains at least one colon. If the first character is a
colon, or if the pathname contains no colons, it is a partial pathname. If a partial
pathname starts with the name of a parent directory, the first character in the pathname
must be a colon. If a partial pathname contains only the name of the target file or
directory, the leading colon is optional.

You can identify a volume in the vRefNum parameter by volume reference number or
drive number, but volume reference number is preferred. A value of 0 represents the
default volume. A volume name in the pathname overrides any other volume
specification. Unlike a volume name, a volume reference number is guaranteed to be
unique. It changes, however, each time a volume is mounted.

A working directory reference number represents both the directory ID and the volume
reference number. If you specify any value other than 0 for the dirID parameter, that
value overrides the directory ID implied by a working directory reference number in the
volume parameter. The volume specification remains valid.

Figure 2-3 illustrates the standard ways to identify a file in HFS.

Object Method of identification

File Filename

Directory Directory name

Directory ID

Working directory reference number,
which also implies a volume

Volume Volume name

Volume reference number

Working directory reference number,
which also implies a directory
Identifying Files, Directories, and Volumes 2-29

C H A P T E R 2

File Manager
Figure 2-3 Identifying a file in HFS

Loma Prieta

vRefNum

dirID

fileName

Loma Prieta:Art:Lines

fileName

:Art:Lines

Full pathname

Volume and partial pathname

Working directory and partial pathname

Volume, directory ID, and partial pathname

Volume reference number or 0 for
default volume

Directory ID (a nonzero value here
overrides directory implied by working
directory reference number in vRefNum)

Volume reference number, 0 for default
volume, or working directory reference
number

Working directory reference number

fileName

Lines

Loma Prieta

Loma Prieta

Loma Prieta

dirID

dirID

Lines

Lines

Ignored

Ignored

Full pathname

vRefNum

0

Partial pathname

vRefNum

0

Partial pathname

vRefNum

dirID

fileName Partial pathname

Lines

Art

Lines

Art

Lines

Art

Art
2-30 Identifying Files, Directories, and Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
Search Paths 2
Whenever you specify a value of 0 for the directory ID in an HFS specification, the File
Manager first looks for the desired file in the directory indicated by the two other
relevant HFS parameters or fields—namely, the pathname and the volume specification.
If the specified file is not found in that directory, the File Manager continues searching
for the file along a path known as the poor man’s search path. You need to be aware of
this behavior so that you do not accidentally open, delete, or otherwise manipulate the
wrong file.

Note

The File Manager uses the poor man’s search path only when the
directory ID parameter or field has the value 0. You can avoid the
consequences of accidentally opening or deleting the wrong file by
specifying a directory explicitly with its directory ID. ◆

If the volume specification is a working directory reference number, the File Manager
searches in the directory whose directory ID is encoded in that working directory
reference number. If the volume specification is a volume reference number or 0, the File
Manager searches in the default directory on the indicated volume. (See “Manipulating
the Default Volume and Directory” on page 2-36 for information about default
directories.) If you provide a full pathname, the File Manager searches in the directory
whose name is contained in the pathname.

If the File Manager cannot find the specified file in the first directory it searches, it next
searches the root directory of the boot volume, but only if the first directory searched is
located on the boot volume. If the specified file is still not found, or if the first directory
searched is not located on the boot volume, the File Manager next searches the System
Folder, if one exists, on the volume containing the first directory searched. If the file still
cannot be found, the File Manager gives up and returns the result code fnfErr (file not
found) to your application.

As you can see, the use of the poor man’s search path might lead to unexpected results.
Suppose, for example, that you call the HOpenDF function like this:

myErr := HOpenDF(0, 0, ':Ackees', fsRdWrPerm, myRefNum);

The values of 0 for the first two parameters (the volume specification and directory ID)
indicate that you want the File Manager to look for the named file in the default
directory. If, however, there is no such file in that directory, the File Manager continues
looking along the poor man’s search path for a file with the specified name. The result
might be that you open the wrong file. (Worse yet, if you had called HDelete instead of
HOpenDF, you might have deleted the wrong file!)

The File Manager uses the poor man’s search path for all routines that can return the
fnfErr result code and to which you passed a directory ID of zero. It does not use the
poor man’s search path when you specify a nonzero directory ID or when you call an
indexed routine (that is, when the ioFDirIndex field of the parameter block has a
nonzero value). The File Manager also does not use the poor man’s search path when
you create a file (perhaps by calling PBHCreate) or move a file between directories (by
calling PBCatMove).
Identifying Files, Directories, and Volumes 2-31

C H A P T E R 2

File Manager
Note

The poor man’s search path might not be supported in future versions of
system software. You should not depend on its availability. ◆

Using the File Manager 2

You can use the File Manager to manipulate files, directories, and volumes. The chapter
“Introduction to File Management” in this book shows how to use the File Manager and
other system software services to accomplish the most common file-related operations
(that is, handling the typical File menu commands). This section shows how to accomplish
a variety of other operations on files, directories, and volumes. In particular, this section
shows how to

■ determine the available features of the File Manager

■ determine the characteristics of a particular mounted volume

■ create file system specification records

■ manipulate the default volume and directory

■ delete files and file forks

■ search a volume for files or directories matching various criteria

■ construct the full pathname of a file

■ determine the amount of free space on a volume

■ lock and unlock byte ranges in shared files

Altogether, the code listings given in this section provide a rich source of information
about using the many File Manager routines and data structures.

Determining the Features of the File Manager 2
Some of the capabilities provided by the File Manager depend on the version of system
software that is running, and some others depend on the characteristics of the target
volume. For example, the routines that accept FSSpec records as file or directory
specifications were introduced in system software version 7.0 and are unavailable in
earlier system software versions—unless your software development system provides
“glue” that allows you to call those routines when running in earlier system software
versions (or unless some system extension provides those routines). Similarly, some
volumes support features that other volumes do not; a volume that has local file
sharing enabled, for instance, allows you to lock byte ranges in any files on a volume
that is sharable.

Before using any of the File Manager features that are not universally available in all
system software versions and on all volumes, you should check for that feature’s
availability by calling either the Gestalt function or the PBHGetVolParms function,
according to whether the feature’s presence depends on the system software or the
characteristics of the volume.
2-32 Using the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
You can use Gestalt to determine whether or not you can call the functions that accept
and support FSSpec records. Call Gestalt with the gestaltFSAttr selector to check
for File Manager features. The response parameter currently has two relevant bits:

CONST

gestaltFullExtFSDispatching = 0; {exports HFSDispatch traps}

gestaltHasFSSpecCalls = 1; {supports FSSpec records}

Constant descriptions

gestaltFullExtFSDispatching
If set, all of the routines selected through the _HFSDispatch trap
are available to external file systems. If this bit is clear, the File
Manager checks the selector passed to _HFSDispatch and ensures
that it is valid; if the selector is invalid, the result code paramErr is
returned to the caller. If this bit is set, no such validity checking is
performed.

gestaltHasFSSpecCalls
If set, the operating environment provides the file system
specification versions of the basic file-manipulation functions, plus
the FSMakeFSSpec function.

The chapter “Introduction to File Management” in this book illustrates how to use the
Gestalt function to determine whether the operating environment supports the
routines that accept FSSpec records. For a complete description of the Gestalt
function, see the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.

To test for the availability of the features that depend on the volume, you can call the
low-level function PBHGetVolParms. Listing 2-1 illustrates how you can determine
whether the PBCatSearch function is available before using it to search a volume’s
catalog. Note that the SupportsCatSearch function defined in Listing 2-1 first calls
Gestalt to determine whether the File Manager supports PBCatSearch. If it does, the
SupportsCatSearch function calls PBHGetVolParms to see if the indicated volume
also supports PBCatSearch.

Listing 2-1 Testing for PBCatSearch

FUNCTION SupportsCatSearch (vRefNum: Integer): Boolean;

VAR

myHPB: HParamBlockRec;

infoBuffer: GetVolParmsInfoBuffer;

attrib: LongInt;

BEGIN

SupportsCatSearch := FALSE; {assume no PBCatSearch support}

IF gHasGestalt THEN {set this somewhere else}

IF Gestalt(gestaltFSAttr, attrib) = noErr THEN

IF BTst(attrib, gestaltFullExtFSDispatching) THEN
Using the File Manager 2-33

C H A P T E R 2

File Manager
BEGIN {this File Mgr has PBCatSearch}

WITH myHPB DO

BEGIN

ioNamePtr := NIL;

ioVRefNum := vRefNum;

ioBuffer := @infoBuffer;

ioReqCount := SIZEOF(infoBuffer);

END;

IF PBHGetVolParms(@myHPB, FALSE) = noErr THEN

IF BTST(infoBuffer.vMAttrib, bHasCatSearch) THEN

SupportsCatSearch := TRUE;

END;

END;

The SupportsCatSearch function calls PBHGetVolParms for the volume whose
reference number is passed as a parameter to SupportsCatSearch. The
PBHGetVolParms function returns information about a volume in a record of type
GetVolParmsInfoBuffer. The vMAttrib field of that record contains a number of
bits that encode information about the capabilities of the target volume. In particular, the
bit bHasCatSearch is set if the specified volume supports the PBCatSearch function.

Note

Some features of volumes might change dynamically during the
execution of your application. For example, the user can turn File
Sharing on and off, thereby changing the capabilities of volumes. See
“Locking and Unlocking File Ranges” on page 2-51 for more details. ◆

Creating File System Specification Records 2
Sometimes it is useful for your application to create a file system specification record. For
example, your application might be running in an environment where the enhanced
Standard File Package routines (which return FSSpec records) are unavailable but the
File Manager routines that accept FSSpec records are available (perhaps as glue code in
your development system). You can call the FSMakeFSSpec function (or its low-level
equivalent PBMakeFSSpec) to initialize a file system specification record.

Three of the parameters to FSMakeFSSpec represent the volume, parent directory, and
file specifications of the target object. You can provide this information in any of the four
combinations described in “HFS Specifications” beginning on page 2-28. Table 2-10
details the ways your application can identify the name and location of a file or directory
in a call to FSMakeFSSpec.

The fourth parameter to FSMakeFSSpec is a pointer to the FSSpec record.
2-34 Using the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Manipulating the Default Volume and Directory 2
When your application is running, the File Manager maintains a default volume and a
default directory for it. The default directory is used in File Manager routines whenever
you don’t explicitly specify some directory. The default volume is the volume containing
the default directory.

If you pass 0 as the volume specification with routines that operate on a volume (such as
mounting or ejecting routines), the File Manager assumes that you want to perform the
operation on the default volume. Initially, the volume used to start up the application is
set as the default volume, but your application can designate any mounted volume as
the default volume.

Table 2-10 How FSMakeFSSpec interprets its parameters

vRefNum dirID fileName Interpretation

Ignored Ignored Full pathname Full pathname overrides any other information

Volume reference
number or drive
number

Directory ID Partial pathname Partial pathname starts in the directory whose
parent is specified in the dirID parameter

Working directory
reference number

Directory ID Partial pathname Directory specification in the dirID parameter
overrides the directory implied by the
reference number

Partial pathname starts in the directory whose
parent is specified in dirID

Volume reference
number or drive
number

0 Partial pathname Partial pathname starts in the root directory of
the volume in vRefNum

Working directory
reference number

0 Partial pathname Partial pathname starts in the directory
specified by the working directory
reference number

Volume reference
number of drive

Directory ID Empty string
or NIL

The target object is the directory specified by
the directory ID in dirID

Working directory
reference number

0 Empty string
or NIL

The target object is the directory specified by
the working directory reference number
in vRefNum

Volume reference
number or drive
number

0 Empty string
or NIL

The target object is the volume specified
in vRefNum

0 Directory ID Empty string
or NIL

The target object is the directory specified in
dirID on the default volume

0 Directory ID Partial pathname Partial pathname starts in the directory
specified in dirID on the default volume

0 0 Empty string
or NIL

The target object is the default directory on the
default volume

0 0 Partial pathname Partial pathname starts in the default directory
on the default volume
Using the File Manager 2-35

C H A P T E R 2

File Manager
With routines that access files or directories, if you don’t specify a directory and you pass
a volume specification of 0, the File Manager assumes that the file or directory is located
in the default directory. Initially, the default directory is set to the root directory of the
default volume, but your application can designate any directory as the default directory.

Note

Don’t confuse the default directory and volume maintained by the
File Manager with the current directory and volume maintained by
the Standard File Package. Although the default volume and current
volume are initially the same, they can differ whenever your application
resets one of them. See the chapter “Standard File Package” in this book
for more information about the current directory and volume. ◆

The provision of a default volume was originally intended as a convenient way for
you to limit all File Manager calls to a particular volume. The default directory was
introduced along with HFS as an analog to the default volume. In general, however, it
is safest to specify both a volume and a directory explicitly in all File Manager calls. In
particular, the introduction of file system specification records has rendered default
volumes and directories largely obsolete. As a result, you should avoid relying on them.

In some cases, however, you might want to set the default volume or directory explicitly.
You can determine the default volume and directory by calling the GetVol or HGetVol
function. You can explicitly set the default directory and volume by calling the SetVol
or HSetVol function. For reasons explained later, however, the use of HSetVol and its
low-level equivalent PBHSetVol is discouraged.

To set the default volume only, you can call SetVol, passing it the volume reference
number of the volume you want to establish as the default volume, as in this example:

myErr := SetVol(NIL, myVRefNum);

You can instead specify the volume by name, but because volume names might not be
unique, it is best to use the volume reference number.

To set both the default directory and the default volume, you could call HSetVol,
passing it the appropriate volume reference number and directory ID, as in this example:

myErr := HSetVol(NIL, myVRefNum, myDirID);

However, using HSetVol can lead to problems in certain circumstances. When you call
HSetVol (or its low-level version PBHSetVol) and pass a working directory reference
number in the vRefNum parameter, the File Manager stores the encoded volume
reference number and directory ID separately. If you later call GetVol (or its low-level
version PBGetVol), the File Manager returns that volume reference number, not the
working directory reference number you passed to HSetVol. The net result is that any
code using the results of the GetVol call will access the root directory of the default
volume, not the actual default directory.
2-36 Using the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
It is important to realize that calling HSetVol is perfectly safe if all the code executing in
your application’s partition always calls HGetVol instead of GetVol. This is because
HGetVol returns a working directory reference number whenever the previous call to
HSetVol passed one in. Calling HSetVol can create problems only if your application is
running under a system software version prior to version 7.0. In that case, a desk accesso-
ry might be opened in your application’s partition, thereby inheriting your application’s
default volume and directory. If that desk accessory calls GetVol instead of HGetVol, it
might receive a volume reference number when it expects a working directory reference
number, as described in the previous paragraph. To avoid this problem, you can simply
use SetVol (or PBSetVol) instead of HSetVol, as in this example:

myErr := SetVol(NIL, myVRefNum);

In this case, the myVRefNum parameter should contain a working directory
reference number.

Deleting Files and File Forks 2
You can delete a file by calling FSpDelete, HDelete, or PBHDelete. These functions
delete both forks of a file by removing the catalog entry for the file and adjusting the
volume information block and volume bitmap accordingly. These functions do not
actually erase the disk areas occupied by the file, so there is a reasonable chance that a
good disk utility might be able to salvage a deleted file if the user hasn’t allocated any
new file blocks in the meantime.

Sometimes you might want to truncate just one fork of a file. Listing 2-2 illustrates how
you can truncate a file’s resource fork while preserving the data fork.

Listing 2-2 Deleting a file’s resource fork

FUNCTION TruncateRF (myFileSpec: FSSpec): OSErr;

VAR

myErr: OSErr; {result code}

myFile: Integer; {file reference number}

BEGIN

myErr := FSpOpenRF(myFileSpec, fsRdWrPerm, myFile);

IF myErr = noErr THEN

myErr := SetEOF(myFile, 0);

IF myErr = noErr THEN

myErr := FSClose(myFile);

IF myErr = noErr THEN

myErr := FlushVol(myFileSpec.vRefNum);

TruncateRF := myErr;

END;
Using the File Manager 2-37

C H A P T E R 2

File Manager
The function TruncateRF defined in Listing 2-2 opens the file’s resource fork with
exclusive read/write permission and sets its logical end-of-file to 0. This effectively
releases all the space occupied by the resource fork on the volume. Then TruncateRF
closes the file and updates the volume.

Searching a Volume 2
To search a volume efficiently, you can use the PBCatSearch function. The
PBCatSearch function looks at all entries in the volume’s catalog file and returns a list
of all files or directories that match the criteria you specify. You can ask PBCatSearch to
match files or directories using many types of criteria, including

■ names or partial names

■ file and directory attributes

■ Finder information

■ physical and logical file length

■ creation, modification, and backup dates

■ parent directory ID

Like all low-level File Manager functions, PBCatSearch exchanges information with
your application through a parameter block. The PBCatSearch function uses the
csParam variant of the basic parameter block defined by the HParamBlockRec data
type. That variant includes two fields, ioSearchInfo1 and ioSearchInfo2, that
contain the addresses of two catalog information records (of type CInfoPBRec). You
specify which kinds of files or directories you want to search for by filling in the fields of
those two records.

The fields in ioSearchInfo1 and ioSearchInfo2 have different uses:

■ The ioNamePtr field in ioSearchInfo1 holds a pointer to the target string; the
ioNamePtr field in ioSearchInfo2 must be NIL. (If you’re not searching for the
name, the ioNamePtr field in ioSearchInfo1 must also be NIL.)

■ The date and length fields in ioSearchInfo1 hold the lowest values in the target
range, and the date and length fields in ioSearchInfo2 hold the highest values in
the target range. The PBCatSearch function looks for values greater than or equal to
the field values in ioSearchInfo1 and less than or equal to the values in
ioSearchInfo2.

■ The ioFlAttrib and ioFlFndrInfo fields in ioSearchInfo1 hold the target
values, and the same fields in ioSearchInfo2 hold masks that specify which bits
are relevant.

Some fields in the catalog information records apply only to files, some only to
directories, and some to both. Some of the fields that apply to both have different names,
depending on whether the target of the record is a file or a directory. The PBCatSearch
function uses only some fields in the catalog information record. Table 2-11 lists the fields
used for files.

Table 2-12 lists the fields in catalog information records used for directories.
2-38 Using the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Table 2-12 Fields in ioSearchInfo1 and ioSearchInfo2 used for a directory

The PBCatSearch function searches only on bits 0 and 4 in the file attributes
field (ioFlAttrib).

Note

The PBCatSearch function cannot use the additional bits returned in
the ioFlAttrib field by the PBGetCatInfo function. ◆

Table 2-11 Fields in ioSearchInfo1 and ioSearchInfo2 used for a file

Field Meaning in ioSearchInfo1 Meaning in ioSearchInfo2

ioNamePtr Pointer to filename Reserved (must be NIL)

ioFlAttrib Desired file attributes Mask for file attributes

ioFlFndrInfo Desired Finder information Mask for Finder information

ioFlLgLen Smallest logical size of data fork Largest logical size

ioFlPyLen Smallest physical size of data fork Largest physical size

ioFlRLgLen Smallest logical size of resource fork Largest logical size

ioFlRPyLen Smallest physical size of resource fork Largest physical size

ioFlCrDat Earliest file creation date Latest file creation date

ioFlMdDat Earliest file modification date Latest file modification date

ioFlBkDat Earliest file backup date Latest file backup date

ioFlXFndrInfo Desired extended Finder information Mask for Finder information

ioFlParID Smallest directory ID of file’s parent Largest parent directory ID

Field Meaning in ioSearchInfo1 Meaning in ioSearchInfo2

ioNamePtr Pointer to directory name Reserved (must be NIL)

ioFlAttrib Desired directory attributes Mask for directory attributes

ioDrUsrWds Desired Finder information Mask for Finder information

ioDrNmFls Smallest number of files in directory Largest number of files

ioDrCrDat Earliest directory creation date Latest creation date

ioDrMdDat Earliest directory modification date Latest modification date

ioDrBkDat Earliest directory backup date Latest backup date

ioDrFndrInfo Desired extended Finder information Mask for Finder information

ioDrParID Smallest directory ID of directory’s parent Largest parent directory ID

Bit Meaning

0 Set if the file or directory is locked.

4 Set if the item is a directory.
Using the File Manager 2-39

C H A P T E R 2

File Manager
To give PBCatSearch a full description of the search criteria, you pass it a pair of
catalog information records that determine the limits of the search and a mask that
identifies the relevant fields within the records. You pass the mask in the
ioSearchBits field in the PBCatSearch parameter block. To determine the value of
ioSearchBits, add the appropriate constants. To match all files and directories on a
volume (including the volume’s root directory), set ioSearchBits to 0.

CONST

fsSBPartialName = 1; {substring of name}

fsSBFullName = 2; {full name}

fsSBFlAttrib = 4; {directory flag; software lock flag}

fsSBNegate = 16384;{reverse match status}

{for files only}

fsSBFlFndrInfo = 8; {Finder file info}

fsSBFlLgLen = 32; {logical length of data fork}

fsSBFlPyLen = 64; {physical length of data fork}

fsSBFlRLgLen = 128; {logical length of resource fork}

fsSBFlRPyLen = 256; {physical length of resource fork}

fsSBFlCrDat = 512; {file creation date}

fsSBFlMdDat = 1024; {file modification date}

fsSBFlBkDat = 2048; {file backup date}

fsSBFlXFndrInfo = 4096; {more Finder file info}

fsSBFlParID = 8192; {file's parent ID}

{for directories only}

fsSBDrUsrWds = 8; {Finder directory info}

fsSBDrNmFls = 16; {number of files in directory}

fsSBDrCrDat = 512; {directory creation date}

fsSBDrMdDat = 1024; {directory modification date}

fsSBDrBkDat = 2048; {directory backup date}

fsSBDrFndrInfo = 4096; {more Finder directory info}

fsSBDrParID = 8192; {directory's parent ID}

For example, to search for a file that was created between two specified dates and whose
name contains a specified string, set ioSearchBits to 517 (that is, to fsSBFlAttrib
+ fsSBFlCrDat + fsSBPartialName).

A catalog entry must meet all of the specified criteria to be placed in the list of matches.
After PBCatSearch has completed its scan of each entry, it checks the fsSBNegate bit.
If that bit is set, PBCatSearch reverses the entry’s match status (that is, if the entry is a
match but the fsSBNegate bit is set, the entry is not put in the list of matches; if it is not
a match, it is put in the list).

Note

The fsSBNegate bit is ignored during searches of remote volumes that
support AFP version 2.1. ◆
2-40 Using the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Although using PBCatSearch is significantly more efficient than searching the
directories recursively, searching a large volume can still take long enough to affect user
response time. You can break a search into several shorter searches by specifying a
maximum length of time in the ioSearchTime field of the parameter block and
keeping an index in the ioCatPosition field. The PBCatSearch function stores its
directory-location index in a catalog position record, which is defined by the
CatPositionRec data type.

TYPE CatPositionRec = {catalog position record}

RECORD

initialize: LongInt; {starting point}

priv: ARRAY[1..6] OF Integer; {private data}

END;

To start a search at the beginning of the catalog, set the initialize field to 0. When
PBCatSearch exits because of a timeout, it updates the record so that it describes the
next entry to be searched. When you call PBCatSearch to resume the search after a
timeout, pass the entire record that was returned by the last call. PBCatSearch returns a
list of the names and parent directories of all files and directories that match the criteria
you specify. It places the list in an array pointed to by the ioMatchPtr field.

Note

The ioSearchTime field is not used by AFP volumes. To break up a
potentially lengthy search into smaller searches on AFP volumes, use
the ioReqMatchCount field to specify the maximum number of
matches to return. ◆

Listing 2-3 illustrates how to use PBCatSearch to find all files (not directories) whose
names contain the string “Temp” and that were created within the past two days.

Listing 2-3 Searching a volume with PBCatSearch

CONST

kMaxMatches = 30; {find up to 30 matches in one pass}

kOptBufferSize = $4000; {use a 16K search cache for speed}

VAR

myErr: OSErr; {result code of function calls}

myCount: Integer; {loop control variable}

myFName: Str255; {name of string to look for}

myVRefNum: Integer; {volume to search}

myDirID: LongInt; {ignored directory ID for HGetVol}

myCurrDate: LongInt; {current date, in seconds}

twoDaysAgo: LongInt; {date two days ago, in seconds}

myPB: HParamBlockRec; {parameter block for PBCatSearch}

myMatches: PACKED ARRAY[1..kMaxMatches] OF FSSpec;

{put matches here}
Using the File Manager 2-41

C H A P T E R 2

File Manager
mySpec1: CInfoPBRec; {search criteria, part 1}

mySpec2: CInfoPBRec; {search criteria, part 2}

myBuffer: PACKED ARRAY[1..kOptBufferSize] OF Char;

{search cache}

done: Boolean; {have all matches been found?}

PROCEDURE SetupForFirstTime;

BEGIN

myErr := HGetVol(NIL, myVRefNum, myDirID);

{search on the default volume}

myFName := 'Temp'; {search for "Temp"}

GetDateTime(myCurrDate); {get current time in seconds}

twoDaysAgo := myCurrDate - (2 * 24 * 60 * 60);

WITH myPB DO

BEGIN

ioCompletion := NIL; {no completion routine}

ioNamePtr := NIL; {no volume name; use vRefNum}

ioVRefNum := myVRefNum; {volume to search}

ioMatchPtr := FSSpecArrayPtr(@myMatches);

{points to results buffer}

ioReqMatchCount:= kMaxMatches; {number of matches}

ioSearchBits := fsSBPartialName {search on partial name}

+ fsSBFlAttrib {search on file attributes}

+ fsSBFlCrDat; {search on creation date}

ioSearchInfo1 := @mySpec1; {points to first criteria set}

ioSearchInfo2 := @mySpec2; {points to second criteria set}

ioSearchTime := 0; {no timeout on searches}

ioCatPosition.initialize := 0; {set hint to 0}

ioOptBuffer := @myBuffer; {point to search cache}

ioOptBufSize := kOptBufferSize; {size of search cache}

END;

WITH mySpec1 DO

BEGIN

ioNamePtr := @myFName; {point to string to find}

ioFlAttrib := $00; {clear bit 4 to ask for files}

ioFlCrDat := twoDaysAgo; {lower bound of creation date}

END;

WITH mySpec2 DO

BEGIN

ioNamePtr := NIL; {set to NIL}

ioFlAttrib := $10; {set mask for bit 4}

ioFlCrDat := myCurrDate; {upper bound of creation date}

END;

END;
2-42 Using the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
BEGIN

SetupForFirstTime; {initialize data records}

REPEAT

myErr := PBCatSearchSync(@myPB); {get some files}

done := (myErr = eofErr); {eofErr returned when all done}

IF ((myErr = noErr) | done) & (myPB.ioActMatchCount > 0) THEN

FOR myCount := 1 TO myPB.ioActMatchCount DO

Writeln(myMatches[myCount].name);

{report all matches found}

UNTIL done;

END;

When PBCatSearch is not available in the current operating environment or is not
supported by the volume you wish to search, you’ll need to use PBGetCatInfo to
perform a recursive, indexed search through the volume’s directory hierarchy. This
kind of search is usually much slower than a search with PBCatSearch, and you
can encounter problems you avoid by using PBCatSearch. For example, a
recursive, indexed search can require a large amount of stack space. The procedure
EnumerateShell defined in Listing 2-4 is designed to minimize the amount of stack
space used. As a result, it should execute even in environments with very limited
stack space.

Listing 2-4 Searching a volume using a recursive, indexed search

PROCEDURE EnumerateShell (vRefNum: Integer; dirID: LongInt);
VAR

myName: Str63;
myCPB: CInfoPBRec;
myErr: OSErr;
PROCEDURE EnumerateCatalog (dirID: LongInt);
CONST

kFolderBit = 4;
VAR

index: Integer;
BEGIN

index := 1;
REPEAT

WITH myCBP DO
BEGIN

ioFDirIndex := index;
ioDrDirID := dirID; {reset dirID; PBGetCatInfo may change it}
ioACUser := 0;

END;
myErr := PBGetCatInfo(@myCPB, FALSE);
IF myErr = noErr THEN
Using the File Manager 2-43

C H A P T E R 2

File Manager
IF BTst(myCPB.ioFlAttrib, kFolderBit) THEN
BEGIN {we have a directory}

{Do something useful with the dir. information in myCPB.}
EnumerateCatalog(myCPB.ioDrDirID);
myErr := noErr; {clear error return on way back}

END
ELSE

BEGIN {we have a file}
{Do something useful with the file information in myCPB.}

END;
index := index + 1;

UNTIL (myErr <> noErr);
END; {EnumerateCatalog}

BEGIN {EnumerateShell}
WITH myCPB DO

BEGIN
ioNamePtr := @myName;
ioVRefNum := vRefNum;

END;
EnumerateCatalog(dirID);

END; {EnumerateShell}

The EnumerateShell procedure sets up a catalog information parameter block with a
pointer to a string variable and the volume reference number passed to it. It then calls
the EnumerateDir procedure, which uses indexed calls to PBGetCatInfo to read the
catalog information about all items in the specified directory. If an item is a directory (as
indicated by the kFolderBit bit of the ioFlAttrib field of the parameter block),
EnumerateDir calls itself recursively to enumerate the contents of that directory. If an
item is a file, EnumerateDir performs whatever processing is appropriate.

Note that EnumerateDir resets the ioDrDirID field before calling PBGetCatInfo.
This is necessary because PBGetCatInfo returns a file ID number in that field if the
item is a file. The EnumerateDir procedure also clears the ioACUser field. You need to
do this if your search depends on the value in that field after the call to PBGetCatInfo,
because the value returned in that field for local volumes is meaningless.

To search an entire volume, call the EnumerateShell procedure with the vRefNum
parameter set to the volume reference number of the volume you want to search and the
dirID parameter set to fsRtDirID. You can also do a partial search of a volume by
specifying a different directory ID in the dirID parameter.

Constructing Full Pathnames 2
As indicated in “Names and Pathnames” on page 2-27, the use of full or partial
pathnames is strongly discouraged. Full pathnames are particularly unreliable as a
means of identifying files or directories within your application, largely because the user
can change the name of any element in the path at virtually any time. In general, you
should use a file’s name, parent directory ID, and volume reference number to identify a
file you want to open, delete, or otherwise manipulate.
2-44 Using the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
If you need to remember the location of a particular file across subsequent system boots,
use the Alias Manager to create an alias record describing the file. If the Alias Manager is
not available, you can save the file’s name, its parent directory ID, and the name of the
volume on which it’s located. Although none of these methods is foolproof, they are
much more reliable than using full pathnames to identify files.

Nonetheless, it is sometimes useful to display a file’s full pathname to the user. For
example, a backup utility might display a list of full pathnames of files as it copies them
onto the backup medium. Or, a utility might want to display a dialog box showing the
full pathname of a file when it needs the user’s confirmation to delete the file. No matter
how unreliable full pathnames may be from a file-specification viewpoint, users
understand them more readily than volume reference numbers or directory IDs.

Note

The following technique for constructing the full pathname of a file is
intended for display purposes only. Applications that depend on any
particular structure of a full pathname are likely to fail on alternate
foreign file systems or under future system software versions. ◆

Listing 2-5 shows one way to define a function, GetFullPath, that accepts a directory
ID and a filename as parameters and returns the full pathname of the corresponding file
(if any). The GetFullPath function calls the low-level function PBGetCatInfo for the
specified directory to determine the name and directory ID of that directory’s parent
directory. It then performs the same operation on the parent directory’s parent,
continuing until it finds a parent directory with ID fsRtDirID. Under HFS, this is
always the ID of a volume’s root directory.

Listing 2-5 Constructing the full pathname of a file

FUNCTION GetFullPath (DirID: LongInt; vRefnum: Integer): Str255;
VAR

myPB: CInfoPBRec; {parameter block for PBGetCatInfo}
dirName: Str255; {a directory name}
fullPath: Str255; {full pathname being constructed}
myErr: OSErr;

BEGIN
fullPath := ''; {initialize full pathname}
myPB.ioNamePtr := @dirName;
myPB.ioVRefNum := vRefNum; {indicate target volume}
myPB.ioDrParID := DirId; {initialize parent directory ID}
myPB.ioFDirIndex := -1; {get info about a directory}
{Get name of each parent directory, up to root directory.}
REPEAT

myPB.ioDrDirID := myPB.ioDrParID;
myErr := PBGetCatInfo(@myPB, FALSE);
IF gHaveAUX THEN
Using the File Manager 2-45

C H A P T E R 2

File Manager
BEGIN
IF dirName[1] <> '/' THEN

dirName := concat(dirName, '/');
END

ELSE
dirName := concat(dirName, ':');

fullPath := concat(dirName, fullPath);
UNTIL myPB.ioDrDirID = fsRtDirID;
GetFullPath := fullPath; {return full pathname}

END;

Note that GetFullPath uses either a slash (/) or a colon (:) to separate names in the full
path, depending on whether A/UX is running or not. The GetFullPath function reads
the value of the global variable gHaveAUX to determine whether A/UX is running; your
application must initialize this variable (preferably by calling the Gestalt function)
before it calls GetFullPath.

The GetFullPath function defined in Listing 2-5 returns a result of type Str255,
which limits the full pathname to 255 characters. An actual full pathname, however,
might exceed 255 characters. A volume name can be up to 27 characters, and each
directory name can be up to 31 characters. If the average volume and directory name is
about 20 characters long, GetFullPath can handle files located only about 12 levels
deep. If the length of the average directory name is closer to the maximum,
GetFullPath provides a full pathname for files located only about 8 levels deep. If
necessary, you can overcome this limitation by rewriting GetFullPath to return a
handle to the full pathname; the algorithm for ascending the directory hierarchy using
PBGetCatInfo will still work, however.

Determining the Amount of Free Space on a Volume 2
You can determine how much space is free on a particular volume by calling the
low-level function PBHGetVInfo. This function returns, in the ioVFrBlk field of the
parameter block passed to it, the number of free allocation blocks on a volume. It also
returns, in the ioVAlBlkSiz field, the number of bytes in the allocation blocks on that
volume. By multiplying those two values, you can determine how many bytes are free
on a particular volume.

There is, however, one complication in this process. The ioVFrBlk field of the
parameter block is actually an unsigned integer and can contain values from 0 to 65,535.
However, because Pascal does not support unsigned integers, it interprets the values in
the ioVFrBlk field as lying in the range –32,768 to 32,767. (Integers are stored as 16-bit
quantities where the high-order bit indicates whether the value is true binary or a
negated value in its two’s complement positive form.) If, for example, a volume has
40,000 allocation blocks free and your application blindly returned the value in the
ioVFrBlk field, it would erroneously report that the volume had –25,536 allocation
blocks available.

You can circumvent this problem by forcing Pascal to interpret the high-order bit as
part of the number of free blocks. For example, if you install the value returned in the
2-46 Using the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
ioVFrBlk field as the low-order word of a long integer, the high-order bit of that
word is no longer the high-order bit of that long integer and hence is not interpreted
as a sign indication. The data type TwoIntsMakeALong provides a convenient way
to accomplish this.

TYPE
TwoIntsMakeALong = {two integers make a long integer}
RECORD

CASE Integer OF
1: (long: LongInt);
2: (ints: ARRAY[0..1] OF Integer);

END;

Listing 2-6 illustrates how to use this technique to determine the amount of free space on
a volume (specified by its volume reference number).

Listing 2-6 Determining the amount of free space on a volume

FUNCTION GetVolumeFreeSpace (myVol: Integer): LongInt;
VAR

myHPB: HParamBlockRec; {parameter block for PBHGetVInfo}
myErr: OSErr; {result code from PBHGetVInfo}
myRec: TwoIntsMakeALong; {easy way to get an unsigned int}

BEGIN
WITH myHPB DO

BEGIN
ioNamePtr := NIL;
ioVRefNum := myVol;
ioVolIndex := 0;

END;
myErr := PBHGetVInfo(@myHPB, FALSE);
IF myErr = noErr THEN

BEGIN
myRec.ints[0] := 0;
myRec.ints[1] := myHPB.ioVFrBlk;
GetVolumeFreeSpace := myRec.long * myHPB.ioVAlBlkSiz;

END
ELSE

GetVolumeFreeSpace := 0;
END;

If the value passed to GetVolumeFreeSpace is a valid volume reference number,
then this function reads the number of free allocation blocks on the volume, installs
that number as the low-order word of a long integer, and performs the necessary
multiplication to determine how many bytes are free on the volume.
Using the File Manager 2-47

C H A P T E R 2

File Manager
Note

You could avoid these complications with unsigned integers by calling
PBHGetVInfo as illustrated and then passing the value returned in the
ioVDrvInfo field to the high-level function GetVInfo. The technique
using the TwoIntsMakeALong data type to convert unsigned integers
to long integers is illustrated here because it is useful when reading the
fields of many other File Manager data structures from Pascal. For
example, the vcbFreeBks field of a volume control block contains an
unsigned integer that you can interpret in this way. ◆

Sharing Volumes and Directories 2
The File Manager includes several functions that allow you to manipulate share points
on local volumes that have file sharing enabled and to obtain a list of user and group
names and IDs recognized by the local file server. These functions are especially useful
if you need to implement a dialog box that allows the user to designate a volume or
directory as a share point or to set the owner, user, and group of a shared folder.

The PBShare function makes a volume or directory a share point, hence available on the
network. The PBUnshare function undoes the effects of PBShare: it makes an existing
share point unavailable on the network. The PBGetUGEntry function lets you create a
list of user and group names and IDs on the local server.

Before calling any of these functions, you should check whether file sharing is
enabled on the local machine and, if so, whether the desired local volume is sharable.
You can determine whether a particular volume is sharable by using the function
VolIsSharable defined in Listing 2-7.

Listing 2-7 Determining whether a volume is sharable

FUNCTION VolIsSharable (vRefNum: Integer): Boolean;

VAR

myHPB: HParamBlockRec;

myInfoBuffer: GetVolParmsInfoBuffer;

myErr: OSErr;

BEGIN

WITH myHPB DO

BEGIN

ioNamePtr := NIL;

ioVRefNum := vRefNum;

ioBuffer := @myInfoBuffer;

ioReqCount := SizeOf(myInfoBuffer);

END;

myErr := PBHGetVolParms(@myHPB, FALSE);

IF myErr = noErr THEN

IF BTst(myInfoBuffer.vMAttrib, bHasPersonalAccessPrivileges) THEN
2-48 Using the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
VolIsSharable := TRUE

ELSE

VolIsSharable := FALSE

ELSE

VolIsSharable := FALSE;

END;

The VolIsSharable function inspects the bHasPersonalAccessPrivileges
bit returned in the vMAttrib field of the volume attributes buffer it passed to
PBHGetVolParms. If this bit is set, local file sharing is enabled on the specified volume.

You can use the function SharingIsOn defined in Listing 2-8 to determine whether file
sharing is enabled on the local machine.

Listing 2-8 Determining whether file sharing is enabled

FUNCTION SharingIsOn: Boolean;

VAR

myHPB: HParamBlockRec;

myErr: OSErr;

volIndex: Integer;

sharing: Boolean;

BEGIN

sharing := FALSE; {assume file sharing is off}

volIndex := 1;

REPEAT

WITH myHPB DO

BEGIN

ioNamePtr := NIL;

ioVolIndex := volIndex;

END;

myErr := PBHGetVInfo(@myHPB, FALSE);

IF myErr = noErr THEN

sharing := VolIsSharable(myHPB.ioVRefNum);

volIndex := volIndex + 1;

UNTIL (myErr <> noErr) OR sharing;

SharingIsOn := sharing;

END;

The SharingIsOn function simply calls the VolIsSharable function for each local
volume (or until a sharable volume is found). It uses indexed calls to PBHGetVInfo to
obtain the volume reference number of each mounted volume.
Using the File Manager 2-49

C H A P T E R 2

File Manager
Locking and Unlocking File Ranges 2
A file can be opened with shared read/write permission to allow several users to share
the data in the file. When a user needs to modify a portion of a file that has been opened
with shared read/write permission, it is usually desirable to make that portion of the file
unavailable to other users while the changes are made. You can call the PBLockRange
function to lock a range of bytes before modifying the file and then PBUnlockRange to
unlock that range after your changes are safely recorded in the file.

Locking a range of bytes in a file gives the user exclusive read/write access to that range
and makes it inaccessible to other users. Other users can neither write nor read the bytes
in that range until you unlock it. If other users attempt to read data from a portion of a
file that you have locked, they receive the fLckdErr result code.

The functions PBLockRange and PBUnlockRange are effective only on files that are
located on volumes that are sharable. If you call PBLockRange on a file that is not
located on a remote server volume or that is not currently being shared, no range locking
occurs. Moreover, PBLockRange does not return a result code indicating that no range
locking has occurred. As a result, you should usually check whether range locking will
be effective on a file before attempting to lock the desired range.

Listing 2-9 illustrates how you can check to make sure that calling PBLockRange will
have the desired effect.

Listing 2-9 Determining whether a file can have ranges locked

FUNCTION RangesCanBeLocked (fRefNum: Integer): Boolean;

VAR

myParmBlk: ParamBlockRec; {basic parameter block}

myErr: OSErr;

BEGIN

WITH myParmBlk DO

BEGIN

ioRefNum := fRefNum;

ioReqCount := 1; {lock a single byte}

ioPosMode := fsFromStart; {at the beginning of the file}

ioPosOffset := 0;

END;

myErr := PBLockRange(@myParmBlk, FALSE);{lock the byte; ignore result}

myErr := PBLockRange(@myParmBlk, FALSE);{lock the byte again}

CASE myErr OF

fLckdErr, {byte was locked by another user}

afpRangeOverlap, {byte was locked by this user}

afpNoMoreLocks: {max number of locks already used}
2-50 Using the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
BEGIN

RangesCanBeLocked := TRUE; {range locking is supported}

IF myErr = afpRangeOverlap THEN {unlock the byte we locked}

myErr := PBUnlockRange(@myParmBlk, FALSE);

END;

OTHERWISE

RangesCanBeLocked := FALSE; {range locking is not supported}

END; {of CASE}

END;

The function RangesCanBeLocked takes a file reference number of an open file as
a parameter; this is the reference number of the file in which a range of bytes is to
be locked. The function attempts to locks the first byte in the file and immediately
attempts to lock it again. If the second range locking fails with the result code
afpRangeOverlap, the first call to PBLockRange was successful. If the second call to
PBLockRange fails with the result code fLckdErr, the byte was already locked by
another user. Similarly, if the second call to PBLockRange fails with the result code
afpNoMoreLocks, the maximum number of range locks has been reached. In these
three cases, range locking is supported by the volume containing the specified file. If any
other result code (including noErr) is returned, range locking is not supported by that
volume or for some reason the capabilities of the volume cannot be determined.

Note

Local file sharing can be started or stopped (via the Sharing Setup
control panel) while your application is running. For this reason, each
time you want to lock a range, it’s best to check that byte ranges in that
file can be locked. ◆

You can unlock a locked range of bytes by calling PBUnlockRange. Note that the range
to be unlocked must be the exact same range of bytes that was previously locked using
PBLockRange. (You can lock and unlock different byte ranges in any order, however.) If
for some reason you need to unlock a range of bytes and do not know where the range
started or how long the range is, you must close the file to unlock the range. When a file
is closed, all locked ranges held by a user are unlocked.

If you want to append data to a shared file, you can use PBLockRange to lock the range
of bytes from the file’s current logical end-of-file to the last possible addressable byte of
the file. Once you have locked that range, you can write data into it. Listing 2-10 shows
how to determine the current logical end-of-file and lock the appropriate range.

Listing 2-10 Locking a file range to append data to the file

FUNCTION LockRangeForAppending (fRefNum: Integer; VAR EOF: LongInt): OSErr;

VAR

myParmBlk: ParamBlockRec; {basic parameter block}

myErr: OSErr;

myEOF: LongInt; {current EOF}
Using the File Manager 2-51

C H A P T E R 2

File Manager
BEGIN

myParmBlk.ioCompletion := NIL;

myParmBlk.ioRefNum := fRefNum;

myErr := PBGetEOF(@myParmBlk, FALSE); {get the current EOF}

IF myErr <> noErr THEN

BEGIN

LockRangeForAppending := myErr;

Exit(LockRangeForAppending); {trouble reading EOF}

END;

myEOF := LongInt(myParmBlk.ioMisc); {save the current EOF}

WITH myParmBlk DO

BEGIN

ioReqCount := -1; {all addressable bytes}

ioPosMode := fsFromStart; {start range...}

ioPosOffset := myEOF; {...at the current end-of-file}

END;

myErr := PBLockRange(@myParmBlk, FALSE);{lock the specified range}

EOF := myEOF; {return current EOF to caller}

LockRangeForAppending := myErr;

END;

The function LockRangeForAppending first determines the current logical end-of-file.
It is important to get this value immediately before you attempt to lock a range that
depends on it because another user of the shared file might have changed the end-of-file
since you last read it. Then LockRangeForAppending locks the range beginning at the
current end-of-file and extending for the maximum number of bytes (specified using the
special value –1).

In effect, this technique locks a range where data does not yet exist. Practically speaking,
locking the entire addressable range of a file prevents another user from appending data
to the file until you unlock that range. Note that LockRangeForAppending returns the
current logical end-of-file to the caller so that the caller can unlock the correct range of
bytes after appending the data.

You can also call PBLockRange to lock a range of bytes when you want to truncate a
file. Locking the end portion of a file to be deleted prevents another user from using that
portion during the truncation. Instead of setting the ioPosOffset field of the
parameter block to the logical end-of-file (as in Listing 2-10), simply set it to what will be
the last byte after the file is truncated. Similarly, you can lock an entire file fork by setting
the ioPosOffset field to 0.

Data Organization on Volumes 2

This section describes how data is organized on HFS volumes. In general, an application
that simply manipulates data stored in files does not need to know how that data is
organized on a volume or on the physical storage medium containing that volume. The
2-52 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
organization described in this section is maintained by the File Manager for its own uses.
Some specialized applications and file-system utilities, however, do need to know
exactly how file data is stored on a disk.

▲ W A R N I N G

This section is provided primarily for informational purposes. The
organization of data on volumes is subject to change. Before you use this
information to read or modify the data stored on a volume, be sure to
check that the drSigWord field in the master directory block (described
in “Master Directory Blocks” beginning on page 2-60) identifies that
volume as an HFS volume. ▲

Much of the information describing the files and directories on an HFS volume is read
into memory when the volume is mounted. (For example, most of the volume’s master
directory block is read into memory as a volume control block.) For a description of how
that data is organized in memory, see “Data Organization in Memory” beginning on
page 2-77.

The File Manager uses a number of interrelated structures to manage the organization of
data on disk and in memory. For this reason, it is easy to lose sight of the simple and
elegant scheme that underlies these structures. As you read through this section and the
next, you should keep these points in mind:

■ The File Manager keeps track of which blocks on a disk are allocated to files and
which are not by storing a volume bitmap on disk and in memory. If a bit in the map is
set, the corresponding block is allocated to some file; otherwise, the corresponding
block is free for allocation.

■ The File Manager always allocates logical disk blocks to a file in groups called
allocation blocks; an allocation block is simply a group of consecutive logical blocks.
The size of a volume’s allocation blocks depends on the capacity of the volume; there
can be at most 65,535 allocation blocks on a volume.

■ The File Manager keeps track of the directory hierarchy on a volume by maintaining a
file called the catalog file; the catalog file lists all the files and directories on a volume,
as well as some of the attributes of those files and directories. A catalog file is
organized as a B*-tree (or “balanced tree”) to allow quick and efficient searches
through a directory hierarchy that is typically quite large.

■ The File Manager keeps track of which allocation blocks belong to a file by
maintaining a list of the file’s extents; an extent is a contiguous range of allocation
blocks allocated to some file, which can be represented by a pair of numbers: the start
of the range and the length of the range. The first three extents of most files are stored
in the volume’s catalog file. All remaining file extents are stored in the extents overflow
file, which is also organized as a B*-tree.

■ The first three extents of the catalog file and the extents overflow file are stored in the
master directory block (on disk) and the volume control buffer (in memory); a master
directory block is always located at a fixed offset from the beginning of a volume, and
a volume control block is stored in the VCB queue.
Data Organization on Volumes 2-53

C H A P T E R 2

File Manager
Disk and Volume Organization 2
A disk is a physical medium capable of storing information. Examples of disks include
3.5-inch floppy disks, SCSI hard disks and CD-ROM discs, and even RAM disks. A SCSI
disk may be divided into one or more partitions. A partition is simply part of a disk that
has been allocated to a particular operating system, file system, or device driver. For
example, you can partition a single SCSI disk into both Macintosh partitions and A/UX
partitions. The Macintosh partitions are typically used to hold Macintosh volumes. An
A/UX partition can contain an A/UX file system, but it can also be used as a paging area
for virtual memory or as a storage area for autorecovery files.

The information describing the division of a SCSI disk into partitions is contained in the
disk’s partition map, which is always located in the first physical block (512 bytes) on a
disk. The partition map specifies the first and last physical blocks in each partition, as
well as additional information about the partition (such as its type). The exact structure
of a partition map is described in the chapter “SCSI Manager” in Inside Macintosh: Devices.

Often the first partition on a SCSI disk, following the partition map, is the driver
partition that contains the actual device driver used to communicate with the disk.
(There is, however, no requirement that the driver partition be the first partition on a
disk.) Figure 2-4 illustrates a typical organization of partitions on a disk.

A partition can contain at most one volume. A volume is a single disk partition that
contains both file data and the file and directory information necessary to maintain the
appropriate data organization or file system. For example, a volume can contain a
Macintosh, ProDOS, MS-DOS, or A/UX file system structure. Notice in Figure 2-4 that a
Macintosh volume occupies only part of the entire physical disk, and that there can be
multiple partitions (both Macintosh volumes or other types of partitions) on a given disk.

Note

The disk organization illustrated in Figure 2-4 does not apply to
Macintosh 3.5-inch floppy disks. Because each floppy disk is one
volume, there is no need for a disk partition map. Also, there is no
device driver partition on a floppy disk. ◆

The remainder of this section describes only HFS volumes, that is, Macintosh file
systems organized using the hierarchical file system (HFS) implemented on the
Macintosh Plus and later models.

Each HFS volume begins with two boot blocks. The boot blocks on the startup volume
are read at system startup time and contain booting instructions and other important
information such as the name of the System file and the Finder. Following the boot
blocks are two additional structures, the master directory block and the volume bitmap.

The master directory block contains information about the volume, such as the date and
time of the volume’s creation and the number of files on the volume. The volume bitmap
contains a record of which blocks in the volume are currently in use.
2-54 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
Figure 2-4 Organization of partitions on a disk

The largest portion of a volume consists of four types of information or areas:

■ applications and data files

■ the catalog file

■ the extents overflow file

■ unused space

The general structure of an HFS volume is illustrated in Figure 2-5.

Contents

Partition information

Boot blocks

Disk driver
partition

Macintosh
partition

Other
partitions

Master directory block

1

n-1

0

n

n+1

n+2

Block

n+m
Data Organization on Volumes 2-55

C H A P T E R 2

File Manager
Figure 2-5 Organization of a volume

All the areas on a volume are of fixed size and location, except for the catalog file and the
extents overflow file. These two files can appear anywhere between the volume bitmap
and the alternate master directory block (MDB). They can appear in any order and are
not necessarily contiguous.

The information on all block-formatted volumes is organized in logical blocks and
allocation blocks. Logical blocks contain a number of bytes of standard information (512
bytes on Macintosh-initialized volumes). Allocation blocks are composed of any integral
number of logical blocks and are simply a means of grouping logical blocks in more
convenient parcels. The allocation block size is a volume parameter whose value is set
when the volume is initialized; it cannot be changed unless the volume is reinitialized.

To promote file contiguity and avoid fragmentation, space is allocated to files in groups
of allocation blocks, or clumps. The clump size is always a multiple of the allocation

Contents

System startup
information

Catalog file

1

3

0

n

n+m

n+m+l

Logical
block

n+m+l+k

Master directory block (MDB)

Volume bitmap

Other files and
free space

Alternate MDB

Not used

2

p-1

p

Allocation
block

0

m

m+1

m+l

m+l+1

m+l+k

Extents overflow
file
2-56 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
block size, and it’s the minimum number of bytes to allocate each time the Allocate
function is called or the physical end-of-file is reached during a write operation. The
clump size is specified in the catalog information for a file; you can determine the clump
size using the PBGetCatInfo function.

The rest of this section describes in detail the structure of the boot blocks, the master
directory block, and the catalog and extents overflow files. It also describes the general
structure of a B*-tree, because the catalog and extents overflow files are both organized
as B*-trees.

Boot Blocks 2
The first two logical blocks on every Macintosh volume are boot blocks. These blocks
contain system startup information: instructions and information necessary to start up
(or “boot”) a Macintosh computer. This information consists of certain configurable
system parameters (such as the capacity of the event queue, the number of open files
allowed, and so forth) and is contained in a boot block header. The system startup
information also includes actual machine-language instructions that could be used to
load and execute the System file. Usually these instructions follow immediately after the
boot block header. Generally, however, the boot code stored on disk is ignored in favor of
boot code stored in a resource in the System file.

The structure of the boot block header can be described by the Pascal BootBlkHdr
data type.

▲ W A R N I N G

The format of the boot block header is subject to change. If your
application relies on the information presented here, it should check the
boot block header version number and react gracefully if that number is
greater than that documented here. ▲

Note that there are two boot block header formats. The current format includes two
fields at the end that are not contained in the older format. These fields allow the
Operating System to size the System heap relative to the amount of available physical
RAM. A boot block header that conforms to the older format sets the size of the System
heap absolutely, using values specified in the header itself. You can determine whether a
boot block header uses the current or the older format by inspecting a bit in the
high-order byte of the bbVersion field, as explained in its field description.

TYPE BootBlkHdr = {boot block header}

RECORD

bbID: Integer; {boot blocks signature}

bbEntry: LongInt; {entry point to boot code}

bbVersion: Integer; {boot blocks version number}

bbPageFlags: Integer; {used internally}

bbSysName: Str15; {System filename}

bbShellName: Str15; {Finder filename}

bbDbg1Name: Str15; {debugger filename}
Data Organization on Volumes 2-57

C H A P T E R 2

File Manager
bbDbg2Name: Str15; {debugger filename}

bbScreenName: Str15; {name of startup screen}

bbHelloName: Str15; {name of startup program}

bbScrapName: Str15; {name of system scrap file}

bbCntFCBs: Integer; {number of FCBs to allocate}

bbCntEvts: Integer; {number of event queue elements}

bb128KSHeap: LongInt; {system heap size on 128K Mac}

bb256KSHeap: LongInt; {used internally}

bbSysHeapSize: LongInt; {system heap size on all machines}

filler: Integer; {reserved}

bbSysHeapExtra: LongInt; {additional system heap space}

bbSysHeapFract: LongInt; {fraction of RAM for system heap}

END;

Field descriptions

bbID A signature word. For HFS volumes, this field always contains the
value $4C4B.

bbEntry The entry point to the boot code stored in the boot blocks. This
field contains machine-language instructions that translate to
BRA.S *+$90 (or BRA.S *+$88, if the older block header format
is used), which jumps to the main boot code following the boot
block header. This field is ignored, however, if bit 6 is clear in the
high-order byte of the bbVersion field or if the low-order byte in
that field contains $D.

bbVersion A flag byte and boot block version number. The high-order byte of
this field is a flag byte whose bits have the following meanings:

If bit 7 is clear, then bits 5 and 6 are ignored and the version number
is found in the low-order byte of this field. If that byte contains a
value that is less than $15, the Operating System ignores any values
in the bb128KSHeap and bb256KSHeap fields and configures the
System heap to the default value contained in the bbSysHeapSize
field. If that byte contains a value that is greater than or equal to
$15, the Operating System sets the System heap to the value in
bbSysHeapSize. In addition, the Operating System executes
the boot code in the bbEntry field only if the low-order byte
contains $D.
If bit 7 is set, the Operating System inspects bit 6 to determine
whether to execute the boot code contained in the bbEntry field
and bit 5 to determine whether to use relative System heap sizing. If
bit 5 is clear, the Operating System sets the System heap to the value

Bit Meaning

0–4 Reserved; must be 0

5 Set if relative system heap sizing is to be used

6 Set if the boot code in boot blocks is to be executed

7 Set if new boot block header format is used
2-58 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
in bbSysHeapSize. If bit 5 is set, the System heap is extended by
the value in bbSysHeapExtra plus the fraction of available RAM
specified in bbSysHeapFract.

bbPageFlags Used internally.
bbSysName The name of the System file.
bbShellName The name of the shell file. Usually, the system shell is the Finder.
bbDbg1Name The name of the first debugger installed during the boot process.

Typically this is Macsbug.
bbDbg2Name The name of the second debugger installed during the boot process.

Typically this is Disassembler.
bbScreenName The name of the file containing the startup screen. Usually this is

StartUpScreen.
bbHelloName The name of the startup program. Usually this is Finder.
bbScrapName The name of the system scrap file. Usually this is Clipboard.
bbCntFCBs The number of file control blocks (FCBs) to put in the FCB buffer. In

system software version 7.0 and later, this field specifies only the
initial number of FCBs in the FCB buffer, because the Operating
System can usually resize the FCB buffer if necessary. See “File
Control Blocks” on page 2-82 for details on the FCB buffer.

bbCntEvts The number of event queue elements to allocate. This number
determines the maximum number of events that the Event Manager
can store at any one time. Usually this field contains the value 20.

bb128KSHeap The size of the System heap on a Macintosh computer having
128 KB of RAM.

bb256KSHeap Reserved.
bbSysHeapSize The size of the System heap on a Macintosh computer having

512 KB or more of RAM. This field might be ignored, as explained
in the description of the bbVersion field.

filler Reserved.
bbSysHeapExtra The minimum amount of additional System heap space required. If

bit 5 of the high-order word of the bbVersion field is set, this
value is added to bbSysHeapSize.

bbSysHeapFract The fraction of RAM available to be used for the System heap. If
bit 5 of the high-order word of the bbVersion field is set, this
fraction of available RAM is added to bbSysHeapSize.

Master Directory Blocks 2
A master directory block (MDB)—also sometimes known as a volume information
block (VIB)—contains information about the rest of the volume. This information is
written into the MDB when the volume is initialized. Thereafter, whenever the volume is
mounted, the File Manager reads the information in the MDB and copies some of that
information into a volume control block (VCB). A VCB is a private data structure
maintained in memory by the File Manager (in the VCB queue). The structure of a VCB
is described in “Volume Control Blocks,” later in this chapter.
Data Organization on Volumes 2-59

C H A P T E R 2

File Manager
Note in Figure 2-5 (page 2-57) that a copy of the MDB is located in the next-to-last block
in the volume. This copy is updated only when the extents overflow file or the catalog
file grows larger. This alternate MBD is intended for use solely by disk utilities.

The MDB data type defines a master directory block record.

TYPE MDB = {master directory block}

RECORD

drSigWord: Integer; {volume signature}

drCrDate: LongInt; {date and time of volume creation}

drLsMod: LongInt; {date and time of last modification}

drAtrb: Integer; {volume attributes}

drNmFls: Integer; {number of files in root directory}

drVBMSt: Integer; {first block of volume bitmap}

drAllocPtr: Integer; {start of next allocation search}

drNmAlBlks: Integer; {number of allocation blocks in volume}

drAlBlkSiz: LongInt; {size (in bytes) of allocation blocks}

drClpSiz: LongInt; {default clump size}

drAlBlSt: Integer; {first allocation block in volume}

drNxtCNID: LongInt; {next unused catalog node ID}

drFreeBks: Integer; {number of unused allocation blocks}

drVN: String[27]; {volume name}

drVolBkUp: LongInt; {date and time of last backup}

drVSeqNum: Integer; {volume backup sequence number}

drWrCnt: LongInt; {volume write count}

drXTClpSiz: LongInt; {clump size for extents overflow file}

drCTClpSiz: LongInt; {clump size for catalog file}

drNmRtDirs: Integer; {number of directories in root directory}

drFilCnt: LongInt; {number of files in volume}

drDirCnt: LongInt; {number of directories in volume}

drFndrInfo: ARRAY[1..8] OF LongInt;

{information used by the Finder}

drVCSize: Integer; {size (in blocks) of volume cache}

drVBMCSize: Integer; {size (in blocks) of volume bitmap cache}

drCtlCSize: Integer; {size (in blocks) of common volume cache}

drXTFlSize: LongInt; {size of extents overflow file}

drXTExtRec: ExtDataRec; {extent record for extents overflow file}

drCTFlSize: LongInt; {size of catalog file}

drCTExtRec: ExtDataRec; {extent record for catalog file}

END;

Field descriptions

drSigWord The volume signature. For HFS volumes, this field contains $4244;
for the obsolete flat MFS volumes, this field contains $D2D7.

drCrDate The date and time of volume creation (initialization).
2-60 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
drLsMod The date and time the volume was last modified. This is not
necessarily when the volume was last flushed.

drAtrb Volume attributes. Currently the following bits are defined:

drNmFls The number of files in the root directory.
drVBMSt The first block of the volume bitmap. This field always contains 3 in

the current implementation.
drAllocPtr The number of the allocation block at which the next allocation

search will begin. Used internally.
drNmAlBlks The number of allocation blocks in the volume. Because the value in

this field is an integer, a volume can contain at most 65,535
allocation blocks.

drAlBlkSiz The allocation block size (in bytes). This value must always be a
multiple of 512 bytes.

drClpSiz The default clump size.
drAlBlSt The location of the first allocation block in the volume.
drNxtCNID The next unused catalog node ID (directory ID or file ID).
drFreeBks The number of unused allocation blocks on the volume.
drVN The volume name. This field consists of a length byte followed

by 27 bytes. Note that the volume name can occupy at most
27 characters; this is an exception to the normal file and directory
name limit of 31 characters.

drVolBkUp The date and time of the last volume backup.
drVSeqNum Volume backup sequence number. Used internally.
drWrCnt The volume write count (that is, the number of times the volume

has been written to).
drXTClpSize The clump size for the extents overflow file.
drCTClpSize The clump size for the catalog file.
drNmRtDirs The number of directories in the root directory.
drFilCnt The number of files on the volume.
drDirCnt The number of directories on the volume.
drFndrInfo Information used by the Finder. See the chapter “Finder Interface”

in Inside Macintosh: Macintosh Toolbox Essentials for details on
Finder information.

drVCSize The size (in allocation blocks) of the volume cache. Used internally.
drVBMCSize The size (in allocation blocks) of the volume bitmap cache.

Used internally.
drCtlCSize The size (in allocation blocks) of the common volume cache.

Used internally.

Bit Meaning

7 Set if the volume is locked by hardware

8 Set if the volume was successfully unmounted

9 Set if the volume has had its bad blocks spared

15 Set if the volume is locked by software
Data Organization on Volumes 2-61

C H A P T E R 2

File Manager
drXTFlSize The size (in allocation blocks) of the extents overflow file.
drXTExtRec First extent record for the extents overflow file. An extent record is

an array of three extents. See “Extents Overflow Files” on page 2-75
for a description of extents and extent records.

drCTFlSize The size (in allocation blocks) of the catalog file.
drCTExtRec First extent record for the catalog file.

Note

The values in the drNmAlBlks and drFreeBks fields should be
interpreted as unsigned integers (that is, they can range from 0 to 65,535,
not from –32,768 to 32,767). Pascal does not support unsigned data
types, and so you need to use the technique illustrated in “Determining
the Amount of Free Space on a Volume” on page 2-47 to read the values
in these fields correctly. ◆

Volume Bitmaps 2
The File Manager uses a volume bitmap to keep track of whether each block in a volume
is currently allocated to some file or not. The bitmap contains one bit for each allocation
block in the volume. If a bit is set, the corresponding allocation block is currently in use
by some file. If a bit is clear, the corresponding allocation block is not currently in use by
any file and is available for allocation.

Note

The volume bitmap indicates which blocks on a volume are currently in
use, but it does not indicate which files occupy which blocks. The File
Manager maintains file-mapping information in two locations: in each
file’s catalog entry and in the extents overflow file. ◆

The size of the volume bitmap depends on the number of allocation blocks in the
volume, which in turn depends both on the number of physical blocks in the volume
and on the size of the volume’s allocation blocks (the number of physical blocks per
allocation block). For example, a floppy disk that can hold 800 KB of data and has an
allocation block size of one physical block has a volume bitmap size of 1600 bits (200
bytes). A volume containing 32 MB of data and having an allocation block size of one
physical block has a volume bitmap size of 65,536 bits (8192 bytes). However, the size of
the volume bitmap is rounded up, if necessary, so that the volume bitmap occupies an
integral number of physical blocks.

Because the drNmAlBlks field in the MDB occupies only 2 bytes, the File Manager can
address at most 65,535 allocation blocks. Thus, the volume bitmap is never larger than
8192 bytes (or 16 physical blocks). For volumes containing more than 32 MB of space, the
allocation block size must be increased. For example, a volume containing 40 MB of
space must have an allocation block size that is at least 2 physical blocks; a volume
containing 80 MB of space must have an allocation block size that is at least 3 physical
blocks; and so forth.
2-62 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
B*-Trees 2
The File Manager maintains information about a volume’s directory hierarchy and file
block mapping in two files that are organized as B*-trees to allow quick and efficient
retrieval of that information. In a B*-tree, all the information that needs to be stored is
intelligently classified and sorted into objects called nodes. Figure 2-6 illustrates the
general structure of a B*-tree file.

Figure 2-6 The structure of a B*-tree file

Note that each B*-tree file used by the File Manager makes use of the data fork only; the
resource fork of a B*-tree file is unused. The length of a B*-tree file varies according to the
number of nodes it contains.

A node in turn contains records, which can be used for a variety of purposes. Some
records contain the actual data that is to be retrieved and possibly updated; these records
occupy nodes called leaf nodes. Other records contain information about the structure of
the B*-tree. The File Manager uses these records to find the information it needs quickly.
There are three types of these “bookkeeping” nodes: header nodes, index nodes, and
map nodes.

Data fork

Node 0
Header
node

512

1024

0

n

Byte

Node 1

Node n/512

Node 2
Data Organization on Volumes 2-63

C H A P T E R 2

File Manager

2

F
ile M

anager

2

y
Nodes

A B*-tree file consists entirely of objects called nodes, each of which is 512 bytes long.
Figure 2-7 illustrates the structure of a node.

Each node has the same general structure and consists of three main parts: a node
descriptor that starts at the beginning of the node, a group of record offsets that starts
at the end of the node, and a group of records.

The node descriptor contains information about the node, as well as forward and
backward links to other nodes. You can use the NodeDescriptor data type to displa
the structure of a node descriptor.

TYPE NodeDescriptor = {node descriptor}
RECORD

ndFLink: LongInt; {forward link}
ndBLink: LongInt; {backward link}
ndType: SignedByte; {node type}
ndNHeight: SignedByte; {node level}
ndNRecs: Integer; {number of records in node}
ndResv2: Integer; {reserved}

END;

Figure 2-7 The structure of a node

Contents

Node descriptor

Records

$E

0
Byte

Record 0

Offset to free space

Record 1

Offset to record 1

Offset to record 0

Free space

Record
offsets
Data Organization on Volumes 2-65

C H A P T E R 2

File Manager

2

F
ile M

anager
Field descriptions

ndFLink A link to the next node of this type. If this node is the last node, this
field contains NIL.

ndBLink A link to the previous node of this type. If this node is the first node,
this field contains NIL.

ndType The type of this node. Currently four types of nodes are recognized,
defined by the constants listed in this section.

ndNHeight The level or “depth” of this node in the B*-tree hierarchy. The
top-level node (a header node, described in “Header Nodes” on
page 2-68) always has a level of 0; all other nodes have a level that is
one greater than their parent node. Currently, the maximum depth
of a node is 8.

ndNRecs The number of records contained in this node.
ndResv2 Reserved. This field should always be 0.

A node descriptor is always $0E bytes in length, and so the records contained in the
node always begin at offset $0E from the beginning of the node. The size of a record can
vary, depending on its type and on the amount of information it contains; as a result, the
File Manager accesses a record by storing the offset from the beginning of the node to
that record in the list of offsets found at the end of the node. Each offset occupies a word,
and (as you might have guessed) the last word in a node always contains the value $0E,
pointing to the first record in the node. The offsets to subsequent records are stored in
order starting from the end of the node, as illustrated in Figure 2-7.

Note that there is always one more offset than the number of records contained in a
node; this is an offset to the beginning of any unused space in the node. If there is no free
space in the node, then that offset contains its own byte offset within the node.

The ndType field of the node descriptor indicates the type of a node. In essence, the type
of a node indicates what kinds of records it contains and hence what its function in the
B*-tree hierarchy is. The File Manager maintains four kinds of nodes in a B*-tree,
indicated by constants:

CONST {node types}

ndIndxNode = $00; {index node}

ndHdrNode = $01; {header node}

ndMapNode = $02; {map node}

ndLeafNode = $FF; {leaf node}

These node types are described in the four sections immediately after the next one.
Data Organization on Volumes 2-65

C H A P T E R 2

File Manager
Node Records 2

A record in a B*-tree node contains either data or a pointer to some other node in the
tree. Figure 2-8 shows the general structure of a record in a leaf or index node.

Figure 2-8 Structure of a B*-tree node record

Note

The three records in a B*-tree header node do not have the structure
depicted in Figure 2-8. They consist solely of data, as described in the
next section, “Header Nodes.” Similarly, the single record in a map node
consists solely of data; see “Map Nodes” on page 2-70 for details. ◆

Each record contains a search key, which the File Manager uses to search through the
B*-tree to locate the information it needs. The key can contain any information at all that
is deemed useful in finding the data contained in the leaf nodes. In a catalog file, which
maintains information about the hierarchy of files and directories on a volume, the
search key is a combination of the file or directory name and the parent directory ID of
that file or directory. In an extents overflow file, which maintains information about the
extra extents belonging to a file, the search key is a combination of that file’s type, its file
ID, and the index of the first allocation block in the extent.

In a B*-tree, the records in each node are always grouped so that their keys are in
ascending order. Moreover, the nodes on any given level are linked (through the
ndFLink and ndBLink fields of their node descriptors) in such a way as to preserve the
ascending order of record keys throughout that level. This is the essential ordering
principle that allows the File Manager to search quickly through a tree. To illustrate this
ordering scheme, Figure 2-9 shows a sample B*-tree containing hypothetical search keys
(in this case, the keys are simply integers).

When the File Manager needs to find a data record, it begins searching at the root node
(which is an index node, unless the tree has only one level), moving from one record to
the next until it finds the record with the highest key that is less than or equal to the
search key. The pointer of that record leads to another node, one level down in the tree.
This process continues until the File Manager reaches a leaf node; then the records of
that leaf node are examined until the desired key is found. At that point, the desired data
has also been found.

Record key
(up to 255 bytes)

Record data or pointer

Byte 0

Key length (1 byte)

n
2-66 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
Figure 2-9 A sample B*-tree

There is of course no guarantee that a record having the desired key will always be
found in a search through a B*-tree. In this case, the search stops when a key larger
than the search key is reached. (This is most likely to happen in a search through the
catalog file.)

Header Nodes 2

The first node (that is, node 0) in every B*-tree file is a header node, which contains
essential information about the entire B*-tree file. The File Manager stores the location of
the header node of the catalog file in the first 2 bytes of the drCTExtRec field of the
MDB; the value in those 2 bytes indicates the allocation block number on which the
catalog file (and hence the header node) begins. Similarly, the File Manager stores the
location of the header node of the extents overflow file in the first 2 bytes of the
drXTExtRec field of the MDB.

Note

When a volume is mounted, the File Manager reads the header node
and copies some of the information it contains into a B*-tree control
block in memory. See “B*-Tree Control Blocks” on page 2-84 for a
description of this control block. ◆

A header node contains three records, the second of which occupies 128 bytes and is
reserved for use by the File Manager. The other two records are called the B*-tree header
record and the B*-tree map record; they occupy the first and third record positions,
respectively. Hence, a header node has the structure illustrated in Figure 2-10.

pointer pointerHeader node

pointer pointer8 16

pointer pointer8 13 pointer pointer16 20 23 pointer

data data8 10 data data13 15 data16 data data20 22 data23

Root node

Leaf nodes

Index nodes

pointer
Data Organization on Volumes 2-67

C H A P T E R 2

File Manager
Figure 2-10 Header node structure

Note

The three records contained in the header node do not contain keys. ◆

The map record is a bitmap that indicates which nodes in the B*-tree file are used and
which are not. The bits are interpreted in exactly the same way as the bits in the volume
bitmap: if a bit in the map record is set, then the corresponding node in the B*-tree file is
being used. This bitmap occupies 256 bytes and can therefore encode information about
2048 nodes at most. If more nodes are needed to contain all the data that is to be stored
in the B*-tree, the File Manager uses a map node to store additional mapping informa-
tion. See the next section, “Map Nodes,” for a description of the structure of a map node.

The B*-tree header record, a data structure of type BTHdrRec, contains information
about the beginning of the tree, as well as the size of the tree.

TYPE BTHdrRec = {B*-tree header}

RECORD

bthDepth: Integer; {current depth of tree}

bthRoot: LongInt; {number of root node}

bthNRecs: LongInt; {number of leaf records in tree}

bthFNode: LongInt; {number of first leaf node}

bthLNode: LongInt; {number of last leaf node}

bthNodeSize: Integer; {size of a node}

bthKeyLen: Integer; {maximum length of a key}

Contents

Node descriptor

$E

0
Byte

Offset to record 2

B*-tree header record

Offset to record 1

Offset to record 0

Unused record

Offset to unused space

$78

$F8

$1F8

$200

B*-tree map record
2-68 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
bthNNodes: LongInt; {total number of nodes in tree}

bthFree: LongInt; {number of free nodes}

bthResv: ARRAY[1..76] OF SignedByte; {reserved}

END;

Field descriptions

bthDepth The current depth of the B*-tree.
bthRoot The node number of the root node. The root node is the start of the

B*-tree structure; usually the root node is first index node, but it
might be a leaf node if there are no index nodes.

bthNRecs The number of data records (records contained in leaf nodes).
bthFNode The node number of the first leaf node.
bthLNode The node number of the last leaf node.
bthNodeSize The size (in bytes) of a node. Currently, this is always 512.
bthKeyLen The maximum length of the key records in each node.
bthNNodes The total number of nodes in the B*-tree.
bthFree The total number of free nodes in the B*-tree.
bthResv Reserved.

Map Nodes 2

As indicated in the previous section, the File Manager maintains a bitmap of the tree
nodes in the map record of the B*-tree header node. If a B*-tree file contains more than
2048 nodes (enough for about 8000 files), the File Manager uses a map node to store
additional node-mapping information. It stores the node number of the new map node
in the ndFLink field of the node descriptor of the header node.

A map node consists of a node descriptor and a single map record. The map record is a
continuation of the map record contained in the header node and occupies 494 bytes
(512 bytes in the node, less 14 bytes for the node descriptor and 2 bytes for each of the
two record offsets at the end of the node). A map node can therefore contain mapping
information for an additional 3952 nodes.

If a B*-tree contains more than 6000 nodes (that is, 2048 + 3952, enough for about 25,000
files), the File Manager uses a second map node, the node number of which is stored in
the ndFLink field of the node descriptor of the first map node. If more map nodes are
required, each additional map node is similarly linked to the previous one.

Index Nodes 2

An index node contains records that point to other nodes in the B*-tree hierarchy. The
File Manager uses index nodes to navigate the tree structure quickly when it wants to
find some data (which is always stored in leaf nodes). Index nodes speed a tree search by
dividing the tree into smaller pieces, as illustrated in Figure 2-9 (page 2-68).

The records stored in an index node are called pointer records. A pointer record consists
of a key followed by the node number of the corresponding node. The structure of the
key varies according to the type of B*-tree file that contains the index node. For a catalog
Data Organization on Volumes 2-69

C H A P T E R 2

File Manager
file, the search key is a combination of the file or directory name and the parent directory
ID of that file or directory. In an extents overflow file, the search key is a combination of
that file’s type, its file ID, and the index of the first allocation block in the extent. See the
sections “Catalog File Keys” on page 2-72 and “Extents Overflow Files” on page 2-75 for
more details on the structure of index node search keys.

The immediate descendants of an index node are called the children of the index node.
An index node can have from 1 to 15 children, depending on the size of the pointer
records that the index node contains. Typically the File Manager selects one of the node’s
children and continues the search at that node; the File Manager may stop the search,
however, if the index node does not contain a pointer record with the appropriate key.

The first index node in a B*-tree is called the root node. Recall that the B*-tree
header node contains the node number of the root node in the bthRoot field of
the header record.

Leaf Nodes 2

The bottom level of a B*-tree structure is occupied exclusively by leaf nodes, which
contain data records (not pointer records). The structure of the leaf node data records
varies according to the type of B*-tree under consideration. In an extents overflow file,
the leaf node data records consist of a key and an extent record. In a catalog file
(described in the next section), the leaf node data records can be any one of four kinds
of records.

Catalog Files 2
The File Manager uses a file called the catalog file to maintain information about the
hierarchy of files and directories on a volume. A catalog file is organized as a B*-tree file
and hence consists of a header node, index nodes, leaf nodes, and (if necessary) map
nodes. The allocation block number of the first file extent of the catalog file (and hence of
the file’s header node) is stored in the MDB; when the volume is mounted, that
information is copied into that volume’s volume control block. From the header node,
the File Manager can obtain the node number of the catalog file’s root node; from the
root node, the File Manager can find the entire catalog file.

Each node of the catalog file is assigned a unique catalog node ID (CNID). For directo-
ries, the CNID is the directory ID; for files, it’s the file ID. For any given file or directory,
the parent ID is the CNID of the parent directory. The first 16 CNIDs are reserved for use
by Apple Computer, Inc., and include the following standard assignments:

CNID Assignment

1 Parent ID of the root directory

2 Directory ID of the root directory

3 File number of the extents file

4 File number of the catalog file

5 File number of the bad allocation block file
2-70 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
You need to know only two things about a catalog file in addition to the information
given earlier in this chapter in “B*-Trees”:

■ the format of the catalog key used in index and leaf nodes

■ the format of the leaf node data records

These formats are described in the following two sections.

Catalog File Keys 2

The key that the File Manager uses to navigate the catalog file is simple: for a given file
or directory, the key consists principally of the name of that file or directory and its
parent directory ID. With the exception of a volume reference number (which is not
needed here), this mirrors the standard way to specify a file or directory with the
high-level HFS routines. You can describe a catalog file key using a record of the
CatKeyRec data type.

TYPE CatKeyRec = {catalog key record}

RECORD

ckrKeyLen: SignedByte; {key length}

ckrResrv1: SignedByte; {reserved}

ckrParID: LongInt; {parent directory ID}

ckrCName: Str31; {catalog node name}

END;

Field descriptions

ckrKeyLen The length (in bytes) of the rest of the key. The value in this field
does not include the byte occupied by the field itself. If this field
contains 0, the key indicates a deleted record.

ckrResrv1 Reserved.
ckrParID The catalog node ID of the parent directory.
ckrCName The name of the file or directory whose catalog entry is to be found.

This field is padded with null characters if necessary to have the
next record data or pointer begin on a word boundary.

You should pay special attention to the fact that the catalog key differs slightly
depending on whether it occurs in a record in an index node or a leaf node. If the key
occurs in a pointer record (hence in an index node), the ckrCName field always occupies
a full 32 bytes and the ckrKeyLen field always contains the value $25.

If, however, the catalog file key occurs in a data record (hence in a leaf node), then the
ckrCName field varies in length; it occupies only the number of bytes required to hold
the file or directory name, suitably padded so that the data following it begins on a word
boundary. In that case, the ckrKeyLen field varies as well and may contain values from
$7 to $25.
Data Organization on Volumes 2-71

C H A P T E R 2

File Manager
Catalog File Data Records 2

A catalog file leaf node can contain four different types of records:

■ Directory records. A directory record contains information about a single directory.

■ File records. A file record contains information about a single file.

■ Directory thread records. A directory thread record provides a link between a
directory and its parent directory. It allows the File Manager to find the name and
directory ID of the parent of a given directory.

■ File thread records. A file thread record provides a link between a file and its parent
directory. It allows the File Manager to find the name and directory ID of the parent of
a given file.

Each record is defined by a variant of the CatDataType data type.

TYPE CatDataType = (cdrDirRec, cdrFilRec, cdrThdRec,

 cdrFThdRec);

TYPE CatDataRec = {catalog data records}

RECORD

cdrType: SignedByte; {record type}

cdrResrv2: SignedByte; {reserved}

CASE CatDataType OF

cdrDirRec: {directory record}

 (dirFlags: Integer; {directory flags}

dirVal: Integer; {directory valence}

dirDirID: LongInt; {directory ID}

dirCrDat: LongInt; {date and time of creation}

dirMdDat: LongInt; {date and time of last modification}

dirBkDat: LongInt; {date and time of last backup}

dirUsrInfo: DInfo; {Finder information}

dirFndrInfo: DXInfo; {additional Finder information}

dirResrv: ARRAY[1..4] OF LongInt);

{reserved}

cdrFilRec: {file record}

 (filFlags: SignedByte; {file flags}

filTyp: SignedByte; {file type}

filUsrWds: FInfo; {Finder information}

filFlNum: LongInt; {file ID}

filStBlk: Integer; {first alloc. blk. of data fork}

filLgLen: LongInt; {logical EOF of data fork}

filPyLen: LongInt; {physical EOF of data fork}

filRStBlk: Integer; {first alloc. blk. of resource fork}

filRLgLen: LongInt; {logical EOF of resource fork}

filRPyLen: LongInt; {physical EOF of resource fork}

filCrDat: LongInt; {date and time of creation}
2-72 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
filMdDat: LongInt; {date and time of last modification}

filBkDat: LongInt; {date and time of last backup}

filFndrInfo: FXInfo; {additional Finder information}

filClpSize: Integer; {file clump size}

filExtRec: ExtDataRec; {first data fork extent record}

filRExtRec: ExtDataRec; {first resource fork extent record}

filResrv: LongInt); {reserved}

cdrThdRec: {directory thread record}

 (thdResrv: ARRAY[1..2] OF LongInt;

{reserved}

thdParID: LongInt; {parent ID for this directory}

thdCName: Str31); {name of this directory}

cdrFThdRec: {file thread record}

 (fthdResrv: ARRAY[1..2] OF LongInt;

{reserved}

fthdParID: LongInt; {parent ID for this file}

fthdCName: Str31); {name of this file}

END;

The first two fields of a catalog data record are common to all four variants. Each variant
also includes its own unique fields.

Field descriptions common to all variants

cdrType The type of catalog data record. This field can contain one of four
values:

cdrResrv2 Reserved.

Field descriptions for the cdrDirRec variant

dirFlags Directory flags.
dirVal The directory valence (the number of files in this directory).
dirDirID The directory ID.
dirCrDat The date and time this directory was created.
dirMdDat The date and time this directory was last modified.
dirBkDat The date and time this directory was last backed up.
dirUsrInfo Information used by the Finder.
dirFndrInfo Additional information used by the Finder.
dirResrv Reserved.

Value Meaning

1 Directory record

2 File record

3 Directory thread record

4 File thread record
Data Organization on Volumes 2-73

C H A P T E R 2

File Manager
Field descriptions for the cdrFilRec variant

filFlags File flags. This is interpreted as a bitmap; currently the following
bits are defined:

filTyp The file type. This field should always contain 0.
filUsrWds The file’s Finder information.
filFlNum The file ID.
filStBlk The first allocation block of the data fork.
filLgLen The logical EOF of the data fork.
filPyLen The physical EOF of the data fork.
filRStBlk The first allocation block of the resource fork.
filRLgLen The logical EOF of the resource fork.
filRPyLen The physical EOF of the resource fork.
filCrDat The date and time this file was created.
filMdDat The date and time this file was last modified.
filBkDat The date and time this file was last backed up.
filFndrInfo Additional information used by the Finder.
filClpSize The file clump size.
filExtRec The first extent record of the file’s data fork.
filRExtRec The first extent record of the file’s resource fork.
filResrv Reserved.

Field descriptions for the cdrThdRec variant

thdResrv Reserved.
thdParID The directory ID of the parent of the associated directory.
thdCName The name of this directory.

Field descriptions for the cdrFThdRec variant

fthdResrv Reserved.
fthdParID The directory ID of the parent of the associated file.
fthdCName The name of this file.

As you can see, a file thread record is exactly the same as a directory thread record
except that the associated object is a file, not a directory.

Extents Overflow Files 2
The File Manager keeps track of which allocation blocks belong to a file by maintaining a
list of contiguous disk segments that belong to that file, in the appropriate order. When
the list of disk segments gets too large, some of those segments (or extents) are stored on
disk in a file called the extents overflow file.

Bit Meaning

0 If set, file is locked and cannot be written to.

1 If set, a file thread record exists for this file.

7 If set, the file record is used.
2-74 Data Organization on Volumes

C H A P T E R 2

File Manager

2

F
ile M

anager
The structure of an extents overflow file is relatively simple compared to that of a catalog
file. The function of the extents overflow file is to store those file extents that are not
contained in the MDB or VCB (in the case of the catalog and extents overflow files
themselves) or in an FCB (in the case of all other files). Because the first three file extents
are always maintained in memory (in a VCB or an FCB), the File Manager needs to read
the extents overflow file only to retrieve any file extents beyond the first three; if a file
has at most three extents, the File Manager never needs to read the disk to find the
locations of the file’s blocks. (This is one good reason to promote file block contiguity.)

An extent is a contiguous range of allocation blocks that have been allocated to some file.
You can represent the structure of an extent using an extent descriptor, defined by the
ExtDescriptor data type.

TYPE ExtDescriptor = {extent descriptor}

RECORD

xdrStABN: Integer; {first allocation block}

xdrNumABlks: Integer; {number of allocation blocks}

END;

An extent descriptor record consists of the first allocation block of the extent, followed by
the number of allocation blocks in that extent. The File Manager prefers to access extent
descriptors in groups of three; to do so, it uses the extent data record, defined by the
ExtDataRec data type.

TYPE

ExtDataRec: ARRAY[1..3] OF ExtDescriptor;{extent data record}

Recall that the drCTExtRec and drXTExtRec fields of the MDB are of type
ExtDataRec (see “Master Directory Blocks,” earlier in this chapter), as is the
fcbExtRec field of an FCB (see “File Control Blocks” beginning on page 2-82). Also,
the records in the leaf nodes of the extents overflow file are extent data records. For
this reason, the extents overflow file is much simpler than the catalog file: the data in
a leaf node of an extents overflow file always consists of a single kind of record,
instead of the four kinds of records found in a catalog file.

The other main difference between a catalog B*-tree and an extents overflow B*-tree
concerns the format of the key. You can describe an extent record key with the
ExtKeyRec data type.

TYPE ExtKeyRec = {extent key record}

RECORD

xkrKeyLen: SignedByte; {key length}

xkrFkType: SignedByte; {fork type}

xkrFNum: LongInt; {file number}

xkrFABN: Integer; {starting file allocation block}

END;
Data Organization on Volumes 2-75

C H A P T E R 2

File Manager
Field descriptions

xkrKeyLen The length (in bytes) of the rest of the key. In the current
implementation, this field always contains the value 7.

xkrFkType The type of file fork. This field contains $00 if the file is a data fork
and $FF if the file is a resource fork.

xkrFNum The file ID of the file.
xkrFABN The starting file allocation block number. In the list of the allocation

blocks belonging to this file, this number is the index of the first
allocation block of the first extent descriptor of the extent record.

Note

Disks initialized using the enhanced Disk Initialization Manager
introduced in system software version 7.0 might contain extent records
for some blocks that do not belong to any actual file in the file system.
These extent records have a file ID set to 5, indicating that the extent
contains a bad block. See the chapter “Disk Initialization Manager” in
this book for details on bad block sparing. ◆

Data Organization in Memory 2

This section describes the data structures used internally by the File Manager and any
external file system that accesses files on Macintosh-initialized volumes. As described in
“Data Organization on Volumes,” which begins on page 2-53, most applications do not
need to access these internal data structures directly. In general, you need to know about
these data structures only if you are writing an external file system or a disk utility.

▲ W A R N I N G

This section is provided primarily for informational purposes. The
organization of data in memory is subject to change. If you want your
application to be compatible with future versions of Macintosh system
software, you should not access these internal data structures directly. ▲

The data structures maintained in memory by the File Manager and external file
systems include

■ the file I/O queue

■ the volume control block queue, listing information about each mounted volume

■ the file control block buffer, listing information about each access path to a fork

■ a B*-tree control block for the catalog file and the extents overflow file for each
mounted volume

■ the drive queue, listing information about each drive connected to the Macintosh
2-76 Data Organization in Memory

C H A P T E R 2

File Manager

2

F
ile M

anager
The File I/O Queue 2
The file I/O queue is a standard Operating System queue (described in the chapter
“Queue Utilities” in Inside Macintosh: Operating System Utilities) that contains parameter
blocks for all asynchronous routines awaiting execution.

Each entry in the file I/O queue consists of a parameter block for the routine that was
called. The File Manager uses the first four fields of each parameter block in processing
the I/O requests in the queue.

TYPE ParamBlockRec =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

{rest of block}

END;

Field descriptions

qLink A pointer to the next entry in the file I/O queue.
qType The queue type. This field must always contain ORD(ioQType).
ioTrap The trap word of the routine that was called.
ioCmdAddr The address of the routine that was called.

You can get a pointer to the header of the file I/O queue by calling the File Manager
utility function GetFSQHdr.

Assembly-Language Note

The global variable FSQHdr contains the header of the file I/O queue. ◆

Volume Control Blocks 2
Each time a volume is mounted, the File Manager reads its volume information from the
master directory block and uses the information to build a new volume control block
(VCB) in the volume control block queue (unless an ejected or offline volume is being
remounted). The File Manager also creates a volume buffer in the system heap. When a
volume is placed offline, its buffer is released. When a volume is unmounted, its VCB is
removed from the VCB queue as well.

Assembly-Language Note

The global variable VCBQHdr contains the header of the VCB queue. The
global variable DefVCBPtr points to the VCB of the default volume. ◆
Data Organization in Memory 2-77

C H A P T E R 2

File Manager
▲ W A R N I N G

The size and structure of a VCB may be different in future versions of
Macintosh system software. To ensure that you are reading the correct
version of a VCB, check the vcbSigWord field; it should contain the
value $4244. ▲

The volume control block queue is a standard Operating System queue that’s
maintained in the system heap. It contains a volume control block for each mounted
volume. A volume control block is a nonrelocatable block that contains volume-specific
information. The structure of a volume control block is defined by the VCB data type.

TYPE VCB = {volume control block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

vcbFlags: Integer; {volume flags}

vcbSigWord: Integer; {volume signature}

vcbCrDate: LongInt; {date and time of volume creation}

vcbLsMod: LongInt; {date and time of last modification}

vcbAtrb: Integer; {volume attributes}

vcbNmFls: Integer; {number of files in root directory}

vcbVBMSt: Integer; {first block of volume bitmap}

vcbAllocPtr: Integer; {start of next allocation search}

vcbNmAlBlks: Integer; {number of allocation blocks in volume}

vcbAlBlkSiz: LongInt; {size (in bytes) of allocation blocks}

vcbClpSiz: LongInt; {default clump size}

vcbAlBlSt: Integer; {first allocation block in volume}

vcbNxtCNID: LongInt; {next unused catalog node ID}

vcbFreeBks: Integer; {number of unused allocation blocks}

vcbVN: String[27]; {volume name}

vcbDrvNum: Integer; {drive number}

vcbDRefNum: Integer; {driver reference number}

vcbFSID: Integer; {file-system identifier}

vcbVRefNum: Integer; {volume reference number}

vcbMAdr: Ptr; {used internally}

vcbBufAdr: Ptr; {used internally}

vcbMLen: Integer; {used internally}

vcbDirIndex: Integer; {used internally}

vcbDirBlk: Integer; {used internally}

vcbVolBkUp: LongInt; {date and time of last backup}

vcbVSeqNum: Integer; {volume backup sequence number}

vcbWrCnt: LongInt; {volume write count}

vcbXTClpSiz: LongInt; {clump size for extents overflow file}

vcbCTClpSiz: LongInt; {clump size for catalog file}

vcbNmRtDirs: Integer; {number of directories in root dir.}

vcbFilCnt: LongInt; {number of files in volume}
2-78 Data Organization in Memory

C H A P T E R 2

File Manager

2

F
ile M

anager
vcbDirCnt: LongInt; {number of directories in volume}

vcbFndrInfo: ARRAY[1..8] OF LongInt;

{information used by the Finder}

vcbVCSize: Integer; {used internally}

vcbVBMCSiz: Integer; {used internally}

vcbCtlCSiz: Integer; {used internally}

vcbXTAlBks: Integer; {size of extents overflow file}

vcbCTAlBks: Integer; {size of catalog file}

vcbXTRef: Integer; {ref. num. for extents overflow file}

vcbCTRef: Integer; {ref. num. for catalog file}

vcbCtlBuf: Ptr; {ptr. to extents and catalog caches}

vcbDirIDM: LongInt; {directory last searched}

vcbOffsM: Integer; {offspring index at last search}

END;

Note

The values in the vcbNmAlBlks and vcbFreeBks fields are unsigned
integers (that is, they can range from 0 to 65,535, not from –32,768 to
32,767). Because Pascal does not support unsigned data types, you need
to use the technique illustrated in “Determining the Amount of Free
Space on a Volume” on page 2-47 to read the values in these fields
correctly. ◆

Field descriptions

qLink A pointer to the next entry in the VCB queue. You can get a pointer
to the header of the VCB queue by calling the File Manager utility
function GetVCBQHdr.

qType The queue type. When the volume is mounted and the VCB is
created, this field is cleared. Thereafter, bit 7 of this field is set
whenever a file on that volume is opened.

vcbFlags Volume flags. Bit 15 is set if the volume information has been
changed by a File Manager call since the volume was last affected
by a FlushVol call.

vcbSigWord The volume signature. For HFS volumes, this field contains $4244.
vcbCrDate The date and time of volume creation (initialization).
vcbLsMod The date and time of last modification. This is not necessarily when

the volume was last flushed.
vcbAtrb Volume attributes. The bits have these meanings:

vcbNmFls The number of files in the root directory.

Bit Meaning

0–5 Reserved

6 Set if the volume is busy (one or more files are open)

7 Set if the volume is locked by hardware

8–14 Reserved

15 Set if the volume is locked by software
Data Organization in Memory 2-79

C H A P T E R 2

File Manager
vcbVBMSt The first block of the volume bitmap.
vcbAllocPtr The start block of the next allocation search. Used internally.
vcbNmAlBlks The number of allocation blocks in the volume.
vcbAlBlkSiz The allocation block size (in bytes). This value must always be a

multiple of 512 bytes.
vcbClpSiz The default clump size.
vcbAlBlSt The first allocation block in the volume.
vcbNxtCNID The next unused catalog node ID (directory ID or file ID).
vcbFreeBks The number of unused allocation blocks on the volume.
vcbVN The volume name. This field consists of a length byte followed

by 27 bytes. Note that the volume name can occupy at most
27 characters; this is an exception to the normal file and directory
name limit of 31 characters.

vcbDrvNum The drive number of the drive on which the volume is located.
When a mounted volume is placed offline or ejected, vcbDrvNum is
set to 0.

vcbDRefNum The driver reference number of the driver used to access the
volume. When a volume is ejected, vcbDRefNum is set to the
previous value of vcbDrvNum (and hence is a positive number).
When a volume is placed offline, vcbDRefNum is set to the
negative of the previous value of vcbDrvNum (and hence is
a negative number).

vcbFSID An identifier for the file system handling the volume; it’s zero for
volumes handled by the File Manager and nonzero for volumes
handled by other file systems.

vcbVRefNum The volume reference number.
vcbMAdr Used internally.
vcbBufAdr Used internally.
vcbMLen Used internally.
vcbDirIndex Used internally.
vcbDirBlk Used internally.
vcbVolBkUp The date and time of the last volume backup.
vcbVSeqNum Used internally.
vcbWrCnt The volume write count.
vcbXTClpSiz The clump size of the extents overflow file.
vcbCTClpSiz The clump size of the catalog file.
vcbNmRtDirs The number of directories in the root directory.
vcbFilCnt The number of files on the volume.
vcbDirCnt The number of directories on the volume.
vcbFndrInfo Information used by the Finder.
vcbVCSize Used internally.
vcbVBMCSiz Used internally.
vcbCtlCSiz Used internally.
2-80 Data Organization in Memory

C H A P T E R 2

File Manager

2

F
ile M

anager
vcbXTAlBks The size (in blocks) of the extents overflow file.
vcbCTAlBks The size (in blocks) of the catalog file.
vcbXTRef The path reference number for the extents overflow file.
vcbCTRef The path reference number for the catalog file.
vcbCtlBuf A pointer to the extents and catalog caches.
vcbDirIDM The directory last searched.
vcbOffsM The offspring index at the last search.

File Control Blocks 2
Each time a file is opened, the File Manager reads that file’s catalog entry and builds a
file control block (FCB) in the FCB buffer, which contains information about all access
paths. The FCB buffer is a block in the system heap; the first word contains the length
of the buffer, and the remainder of the buffer is used to hold FCBs for open files.

The initial size of the FCB buffer is determined by the system startup information stored
on a volume. Beginning in system software version 7.0, the File Manager attempts to
resize the FCB buffer whenever the existing buffer is filled.

You can find the beginning of any particular FCB by adding the size of all preceding
FCBs to the size of the FCB buffer length word (that is, 2). This offset from the head of
the FCB buffer is used as the file reference number of the corresponding open file.
Because the current size of an FCB is 94 bytes, the first few valid file reference numbers
are 2, 96, 190, 284, 378, 472, and so on. The maximum size of an expandable FCB buffer is
32,535 bytes, so there is an absolute limit of 342 FCBs in the FCB buffer.

Note

The size and structure of an FCB will be different in future versions of
Macintosh system software. To be safe, you should get information from
the FCB allocated for an open file by calling the File Manager function
PBGetFCBInfo. ◆

When you close a file (for example, by calling FSClose), the FCB for that file is cleared,
and the File Manager may use that space to hold the FCB for a file that is opened at a
later time. Consequently, it is important that you do not attempt to close a file more
than once; you may inadvertently close a file that was opened by the system or by
another application.

▲ W A R N I N G

Closing a volume’s catalog file (perhaps by inadvertently calling
FSClose or PBClose twice with the same file reference number) may
result in damage to the volume’s file system and loss of data. ▲

The structure of a file control block is defined by the FCB data type.

TYPE FCB = {file control block}

RECORD

fcbFlNum: LongInt; {file ID}

fcbFlags: Integer; {file flags}
Data Organization in Memory 2-81

C H A P T E R 2

File Manager
fcbSBlk: Integer; {reserved}

fcbEOF: LongInt; {logical end-of-file}

fcbPLen: LongInt; {physical end-of-file}

fcbCrPs: LongInt; {current file mark position}

fcbVPtr: Ptr; {pointer to volume control block}

fcbBfAdr: Ptr; {pointer to access path buffer}

fcbFlPos: Integer; {reserved}

fcbClmpSize: LongInt; {file clump size}

fcbBTCBPtr: Ptr; {pointer to B*-tree control block}

fcbExtRec: ExtDataRec; {first three file extents}

fcbFType: LongInt; {file's four Finder type bytes}

fcbCatPos: LongInt; {catalog hint for use on close}

fcbDirID: LongInt; {file's parent directory ID}

fcbCName: String[31]; {name of file}

END;

Field descriptions

fcbFlNum The file ID of this file.
fcbFlags Flags describing the status of the file. Currently the following bits

are defined:

fcbSBlk Reserved.
fcbEOF The logical end-of-file of the file.
fcbPLen The physical end-of-file of the file.
fcbCrPs The position of the mark.
fcbVPtr A pointer to the volume control block of the volume containing

the file.
fcbBfAdr A pointer to the file’s access path buffer.
fcbFlPos Reserved.
fcbClmpSize The clump size of the file.
fcbBTCBPtr A pointer to the file’s B*-tree control block.
fcbExtRec An extent record (12 bytes) containing the first three extents of

the file.

Bit Meaning

0–7 Reserved

8 Set if data can be written to the file

9 Set if this FCB describes a resource fork

10 Set if the file has a locked byte range

11 Reserved

12 Set if the file has shared write permissions

13 Set if the file is locked (write-protected)

14 Set if the file’s clump size is specified in the FCB

15 Set if the file has changed since it was last flushed
2-82 Data Organization in Memory

C H A P T E R 2

File Manager

2

F
ile M

anager
fcbFType The file’s Finder type.
fcbCatPos A catalog hint, used when you close the file.
fcbDirID The file’s parent directory ID.
fcbCName The file’s name (as contained in the volume catalog file).

B*-Tree Control Blocks 2
When the File Manager mounts a volume, it reads the B*-tree header node for both the
catalog file and the extents overflow file found on that volume and, for each file, creates
a B*-tree control block in memory. (See the section “Header Nodes” on page 2-68 for a
description of B*-tree header nodes.) The structure of a B*-tree control block is defined by
the BTCB data type.

TYPE BTCB = {B*-tree control block}

RECORD

btcFlags: SignedByte; {flag byte}

btcResv: SignedByte; {reserved}

btcRefNum: Integer; {file reference number}

btcKeyCr: ProcPtr: {pointer to key comparison routine}

btcCQPtr: LongInt; {pointer to cache queue}

btcVarPtr: LongInt; {pointer to B*-tree variables}

btcLevel: Integer; {current level}

btcNodeM: LongInt; {current node mark}

btcIndexM: Integer; {current index mark}

btcDepth: Integer; {current depth of tree}

btcRoot: LongInt; {number of root node}

btcNRecs: LongInt; {number of leaf records in tree}

btcFNode: LongInt; {number of first leaf node}

btcLNode: LongInt; {number of last leaf node}

btcNodeSize: Integer; {size of a node}

btcKeyLen: Integer; {maximum length of a key}

btcNNodes: LongInt; {total number of nodes in tree}

btcFree: LongInt; {number of free nodes}

END;

Field descriptions

btcFlags A flag byte. Currently the following bits are defined:

Bit Meaning

4 Set if an existing index record must be deleted

5 Set if a new index record must be created

6 Set if the index key must be updated

7 Set if the block has changed since it was last flushed
Data Organization in Memory 2-83

C H A P T E R 2

File Manager
btcResv Reserved.
btcRefNum The file reference number of the catalog or extents overflow file

corresponding to this control block.
btcKeyCr A pointer to the routine used to compare keys.
btcCQPtr A pointer to the cache queue.
btcVarPtr A pointer to B*-tree variables.
btcLevel The current level.
btcNodeM The current node mark.
btcIndexM The current index mark.
bthDepth The current depth of the B*-tree.
btcRoot The node number of the root node. The root node is the start of the

B*-tree structure; usually the root node is the first index node, but
it might be a leaf node if there are no index nodes.

btcNRecs The number of data records (records contained in leaf nodes).
btcFNode The node number of the first leaf node.
btcLNode The node number of the last leaf node.
btcNodeSize The size (in bytes) of a node. Currently, this is always 512.
btcKeyLen The length of the key records in each node.
btcNNodes The total number of nodes in the B*-tree.
btcFree The total number of free nodes in the B*-tree.

The Drive Queue 2
The File Manager maintains a list of all disk drives connected to the computer. It
maintains this list in the drive queue, which is a standard operating system queue. The
drive queue is initially created at system startup time. Elements are added to the queue
at system startup time or when you call the AddDrive procedure. The drive queue can
support any number of drives, limited only by memory space. Each element in the drive
queue contains information about the corresponding drive; the structure of a drive
queue element is defined by the DrvQEl data type.

TYPE DrvQEl =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {flag for dQDrvSz and dQDrvSz2}

dQDrive: Integer; {drive number}

dQRefNum: Integer; {driver reference number}

dQFSID: Integer; {file-system identifier}

dQDrvSz: Integer; {number of logical blocks on drive}

dQDrvSz2: Integer; {additional field for large drives}

END;
2-84 Data Organization in Memory

C H A P T E R 2

File Manager

2

F
ile M

anager
Field descriptions

qLink A pointer to the next entry in the drive queue.
qType Used to specify the size of the drive. If the value of qType is 0,

the number of logical blocks on the drive is contained in the
dQDrvSz field alone. If the value of qType is 1, both dQDrvSz
and dQDrvSz2 are used to store the number of blocks; in that case,
dQDrvSz2 contains the high-order word of this number
and dQDrvSz contains the low-order word.

dQDrive The drive number of the drive.
dQRefNum The driver reference number of the driver controlling the device on

which the volume is mounted.
dQFSID An identifier for the file system handling the volume in the drive;

it’s zero for volumes handled by the File Manager and nonzero for
volumes handled by other file systems.

dQDrvSz The number of logical blocks on the drive.
dQDrvSz2 An additional field to handle large drives. This field is used only if

the qType field contains 1.

The File Manager also maintains four flag bytes preceding each drive queue element.
These bytes contain the following information:

You can read these flags by subtracting 4 bytes from the beginning of a drive queue
element, as illustrated in Listing 2-11.

Listing 2-11 Reading a drive queue element’s flag bytes

FUNCTION GetDriveFlags (myDQElemPtr: DrvQElPtr): LongInt;

TYPE

FlagPtr = ^LongInt; {pointer to the queue element flag bytes}

VAR

myQFlagsPtr: FlagPtr;

BEGIN

{Just subtract 4 from the queue element pointer.}

myQFlagsPtr := FlagPtr(ORD4(myDQElemPtr) - 4);

GetDriveFlags := myQFlagsPtr^;

END;

Byte Contents

0 Bit 7=1 if the volume on the drive is locked

1 0 if no disk in drive; 1 or 2 if disk in drive; 8 if nonejectable disk in drive;
$FC–$FF if disk was ejected within last 1.5 seconds; $48 if disk in drive is
nonejectable but driver wants a call

2 Used internally during system startup

3 Bit 7=0 if disk is single-sided
Data Organization in Memory 2-85

C H A P T E R 2

File Manager
The GetDriveFlags function defined Listing 2-11 takes a pointer to a drive queue
element as a parameter. You can get a queue element pointer for a particular volume by
walking the drive queue until you find a queue element whose dQDrive field contains
the same value as the vcbDrvNum field of that volume’s VCB. You can get a pointer to
the header of the drive queue by calling the File Manager function GetDrvQHdr.

Note that the bit numbers given in this section use the standard MC68000 numbering
scheme; to access the correct bit using some Pascal routines, you must reverse that
numbering. For example, if you use the Toolbox BitTst routine to determine whether a
particular disk is single-sided, you must test bit 24 (that is, 31 minus 7) of the returned
long integer. If you use the built-in Pascal function BTST, however, you can test the
indicated bit directly.

Assembly-Language Note

The global variable DrvQHdr contains the header of the drive queue. ◆

File Manager Reference 2

This section describes the routines provided by the File Manager and the data structures
you must pass when calling those routines.

The “Data Structures” section shows the Pascal data structures for all the records and
parameter blocks that most applications are likely to use. If you need information about
data structures describing the structure of the information maintained on volumes or in
memory, see “Data Organization on Volumes” and “Data Organization in Memory”
earlier in this chapter.

The remaining sections describe the routines provided by the File Manager.

Data Structures 2
This section describes the data structures that your application uses to exchange
information with the File Manager.

File System Specification Record 2

The system software recognizes the file system specification record, which provides a
simple, standard way to specify the name and location of a file or directory. The file
system specification record is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;
2-86 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Field descriptions

vRefNum The volume reference number of the volume containing the specified
file or directory.

parID The directory ID of the directory containing the specified file or
directory.

name The name of the specified file or directory.

The FSSpec record can describe only a file or a directory, not a volume. A volume can
be identified by its root directory, although the system software never uses an FSSpec
record to describe a volume. (The directory ID of the root’s parent directory is
fsRtParID, defined in the interface files. The name of the root directory is the same
as the name of the volume.)

If you need to convert a file specification into an FSSpec record, call the function
FSMakeFSSpec. Do not fill in the fields of an FSSpec record yourself.

Basic File Manager Parameter Block 2

Many of the low-level functions that manipulate files and volumes exchange information
with your application using the basic File Manager parameter block, defined by the
ParamBlockRec data type.

TYPE ParamBlockRec = {basic File Manager parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

CASE ParamBlkType OF

ioParam:

 (ioRefNum: Integer; {file reference number}

ioVersNum: SignedByte; {version number}

ioPermssn: SignedByte; {read/write permission}

ioMisc: Ptr; {miscellaneous}

ioBuffer: Ptr; {data buffer}

ioReqCount: LongInt; {requested number of bytes}

ioActCount: LongInt; {actual number of bytes}

ioPosMode: Integer; {positioning mode and newline char.}

ioPosOffset: LongInt); {positioning offset}

fileParam:

 (ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {file version number (unused)}
File Manager Reference 2-87

C H A P T E R 2

File Manager
filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file attributes}

ioFlVersNum: SignedByte; {file version number (unused)}

ioFlFndrInfo: FInfo; {information used by the Finder}

ioFlNum: LongInt; {file ID}

ioFlStBlk: Integer; {first alloc. blk. of data fork}

ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt); {date and time of last modification}

volumeParam:

 (filler2: LongInt; {reserved}

ioVolIndex: Integer; {volume index}

ioVCrDate: LongInt; {date and time of initialization}

ioVLsBkUp: LongInt; {date and time of last modification}

ioVAtrb: Integer; {volume attributes}

ioVNmFls: Integer; {number of files in root directory}

ioVDirSt: Integer; {first block of directory}

ioVBlLn: Integer; {length of directory in blocks}

ioVNmAlBlks: Integer; {number of allocation blocks}

ioVAlBlkSiz: LongInt; {size of allocation blocks}

ioVClpSiz: LongInt; {default clump size}

ioAlBlSt: Integer; {first block in block map}

ioVNxtFNum: LongInt; {next unused file ID}

ioVFrBlk: Integer); {number of unused allocation blocks}

END;

The first eight fields are common to all three variants. Each variant also includes its own
unique fields.

Field descriptions for fields common to all variants

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)
ioTrap The trap number of the routine that was called. (This field is used

internally by the File Manager.)
ioCmdAddr The address of the routine that was called. (This field is used

internally by the File Manager.)
2-88 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
ioCompletion A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NIL for asynchronous calls with
no completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

ioResult The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—
it’s very important that you set this field to point to storage for a
Str255 value (if you’re using a pathname) or to NIL (if you’re not).

ioVRefNum A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

Field descriptions for the ioParam variant

ioRefNum The file reference number of an open file.
ioVersNum A version number. This field is no longer used and you should

always set it to 0.
ioPermssn The access mode.
ioMisc Depends on the routine called. This field contains either a new

logical end-of-file, a new version number, or a pointer to a new
pathname. Because ioMisc is of type Ptr, you’ll need to perform
type coercion to interpret the value of ioMisc correctly when it
contains an end-of-file (a LongInt value) or version number (a
SignedByte value).

ioBuffer A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _Write calls.

ioReqCount The requested number of bytes to be read, written, or allocated.
ioActCount The number of bytes actually read, written, or allocated.
ioPosMode The positioning mode for setting the mark. Bits 0 and 1 of this field

indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {from beginning of file}

fsFromLEOF = 2; {from logical end-of-file}

fsFromMark = 3; {relative to current mark}

You can set bit 4 of the ioPosMode field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately
File Manager Reference 2-89

C H A P T E R 2

File Manager
read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST

rdVerify = 64; {use read-verify mode}

You can set bit 7 to read a continuous stream of bytes, and place
the ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

ioPosOffset The offset to be used in conjunction with the positioning mode.

Field descriptions for the fileParam variant

ioFRefNum The file reference number of an open file.
ioFVersNum A file version number. This field is no longer used and you should

always set it to 0.
filler1 Reserved.
ioFDirIndex An index for use with the PBHGetFInfo function.
ioFlAttrib File attributes. The bits in this field have these meanings:

ioFlVersNum A file version number. This feature is no longer supported, and you
must always set this field to 0.

ioFlFndrInfo Information used by the Finder. (See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for details.)

ioFlNum A file ID.
ioFlStBlk The first allocation block of the data fork. This field contains 0 if the

file’s data fork is empty.
ioFlLgLen The logical end-of-file of the data fork.
ioFlPyLen The physical end-of-file of the data fork.
ioFlRStBlk The first allocation block of the resource fork. This field contains 0 if

the file’s resource fork is empty.
ioFlRLgLen The logical end-of-file of the resource fork.
ioFlRPyLen The physical end-of-file of the resource fork.
ioFlCrDat The date and time of the file’s creation, specified in seconds since

midnight, January 1, 1904.
ioFlMdDat The date and time of the last modification to the file, specified in

seconds since midnight, January 1, 1904.

Bit Meaning

0 Set if file is locked

2 Set if resource fork is open

3 Set if data fork is open

4 Set if a directory

7 Set if file (either fork) is open
2-90 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Field descriptions for the volumeParam variant

filler2 Reserved.
ioVolIndex The volume index.
ioVCrDate The date and time of volume initialization.
ioVLsBkUp The date and time the volume information was last modified. (This

field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

ioVAtrb The volume attributes.
ioVNmFls The number of files in the root directory.
ioVDirSt The first block of the volume directory.
ioVBlLn Length of directory in blocks.
ioVNmAlBlks The number of allocation blocks.
ioVAlBlkSiz The size of allocation blocks.
ioVClpSiz The volume clump size.
ioAlBlSt The first block in the volume map.
ioVNxtFNum The next unused file number.
ioVFrBlk The number of unused allocation blocks.

HFS Parameter Block 2

Most of the low-level HFS functions exchange information with your application using
the HFS parameter block, defined by the HParamBlockRec data type.

TYPE HParamBlockRec = {HFS parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

CASE ParamBlkType OF

ioParam:

 (ioRefNum: Integer; {file reference number}

ioVersNum: SignedByte; {version number}

ioPermssn: SignedByte; {read/write permission}

ioMisc: Ptr; {miscellaneous}

ioBuffer: Ptr; {data buffer}

ioReqCount: LongInt; {requested number of bytes}

ioActCount: LongInt; {actual number of bytes}

ioPosMode: Integer; {positioning mode and newline char.}

ioPosOffset: LongInt); {positioning offset}
File Manager Reference 2-91

C H A P T E R 2

File Manager
fileParam:

 (ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {file version number (unused)}

filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file attributes}

ioFlVersNum: SignedByte; {file version number (unused)}

ioFlFndrInfo: FInfo; {information used by the Finder}

ioDirID: LongInt; {directory ID or file ID}

ioFlStBlk: Integer; {first alloc. blk. of data fork}

ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt); {date and time of last modification}

volumeParam:

 (filler2: LongInt; {reserved}

ioVolIndex: Integer; {volume index}

ioVCrDate: LongInt; {date and time of initialization}

ioVLsMod: LongInt; {date and time of last modification}

ioVAtrb: Integer; {volume attributes}

ioVNmFls: Integer; {number of files in root directory}

ioVBitMap: Integer; {first block of volume bitmap}

ioAllocPtr: Integer; {first block of next new file}

ioVNmAlBlks: Integer; {number of allocation blocks}

ioVAlBlkSiz: LongInt; {size of allocation blocks}

ioVClpSiz: LongInt; {default clump size}

ioAlBlSt: Integer; {first block in volume map}

ioVNxtCNID: LongInt; {next unused node ID}

ioVFrBlk: Integer; {number of unused allocation blocks}

ioVSigWord: Integer; {volume signature}

ioVDrvInfo: Integer; {drive number}

ioVDRefNum: Integer; {driver reference number}

ioVFSID: Integer; {file-system identifier}

ioVBkUp: LongInt; {date and time of last backup}

ioVSeqNum: Integer; {used internally}

ioVWrCnt: LongInt; {volume write count}

ioVFilCnt: LongInt; {number of files on volume}

ioVDirCnt: LongInt; {number of directories on volume}

ioVFndrInfo: ARRAY[1..8] OF LongInt);

{information used by the Finder}

accessParam:

 (filler3: Integer; {reserved}
2-92 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
ioDenyModes: Integer; {access mode information}

filler4: Integer; {reserved}

filler5: SignedByte; {reserved}

ioACUser: SignedByte; {user access rights}

filler6: LongInt; {reserved}

ioACOwnerID: LongInt; {owner ID}

ioACGroupID: LongInt; {group ID}

ioACAccess: LongInt); {directory access rights}

objParam:

 (filler7: Integer; {reserved}

ioObjType: Integer; {function code}

ioObjNamePtr: Ptr; {ptr to returned creator/group name}

ioObjID: LongInt); {creator/group ID}

copyParam:

 (ioDstVRefNum: Integer; {destination volume identifier}

filler8: Integer; {reserved}

ioNewName: Ptr; {pointer to destination pathname}

ioCopyName: Ptr; {pointer to optional name}

ioNewDirID: LongInt); {destination directory ID}

wdParam:

 (filler9: Integer; {reserved}

ioWDIndex: Integer; {working directory index}

ioWDProcID: LongInt; {working directory user identifier}

ioWDVRefNum: Integer; {working directory's vol. ref. num.}

filler10: Integer; {reserved}

filler11: LongInt; {reserved}

filler12: LongInt; {reserved}

filler13: LongInt; {reserved}

ioWDDirID: LongInt); {working directory's directory ID}

fidParam:

 (filler14: LongInt; {reserved}

ioDestNamePtr: StringPtr; {pointer to destination filename}

filler15: LongInt; {reserved}

ioDestDirID: LongInt; {destination parent directory ID}

filler16: LongInt; {reserved}

filler17: LongInt; {reserved}

ioSrcDirID: LongInt; {source parent directory ID}

filler18: Integer; {reserved}

ioFileID: LongInt); {file ID}

csParam:

 (ioMatchPtr: FSSpecArrayPtr;{pointer to array of matches}

ioReqMatchCount: LongInt; {max. number of matches to return}

ioActMatchCount: LongInt; {actual number of matches}

ioSearchBits: LongInt; {enable bits for matching rules}

ioSearchInfo1: CInfoPBPtr; {pointer to values and lower bounds}
File Manager Reference 2-93

C H A P T E R 2

File Manager
ioSearchInfo2: CInfoPBPtr; {pointer to masks and upper bounds}

ioSearchTime: LongInt; {maximum time to search}

ioCatPosition: CatPositionRec;{current catalog position}

ioOptBuffer: Ptr; {pointer to optional read buffer}

ioOptBufSize: LongInt); {length of optional read buffer}

foreignPrivParam:

 (filler21: LongInt; {reserved}

filler22: LongInt; {reserved}

ioForeignPrivBuffer: Ptr; {privileges data buffer}

ioForeignPrivReqCount: LongInt; {size of buffer}

ioForeignPrivActCount: LongInt; {amount of buffer used}

filler23: LongInt; {reserved}

ioForeignPrivDirID: LongInt; {parent directory ID of }

{ foreign file or directory}

ioForeignPrivInfo1: LongInt; {privileges data}

ioForeignPrivInfo2: LongInt; {privileges data}

ioForeignPrivInfo3: LongInt; {privileges data}

ioForeignPrivInfo4: LongInt); {privileges data}

END;

The first eight fields are common to all ten variants. Each variant also includes its own
unique fields.

Field descriptions common to all variants

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)
ioTrap The trap number of the routine that was called. (This field is used

internally by the File Manager.)
ioCmdAddr The address of the routine that was called. (This field is used

internally by the File Manager.)
ioCompletion A pointer to a completion routine to be executed at the end of an

asynchronous call. It should be NIL for asynchronous calls with
no completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

ioResult The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—it’s
very important that you set this field to point to storage for a
Str255 value (if you’re using a pathname) or to NIL (if you’re not).
2-94 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
ioVRefNum A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

Field descriptions for the ioParam variant

ioRefNum The file reference number of an open file.
ioVersNum A version number. This field is no longer used and you should

always set it to 0.
ioPermssn The access mode.
ioMisc Depends on the routine called. This field contains either a new

logical end-of-file, a new version number, a pointer to an access
path buffer, or a pointer to a new pathname. Because ioMisc is of
type Ptr, you’ll need to perform type coercion to interpret the value
of ioMisc correctly when it contains an end-of-file (a LongInt
value) or version number (a SignedByte value).

ioBuffer A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _Write calls.

ioReqCount The requested number of bytes to be read, written, or allocated.
ioActCount The number of bytes actually read, written, or allocated.
ioPosMode The positioning mode for setting the mark. Bits 0 and 1 of this field

indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {from beginning of file}

fsFromLEOF = 2; {from logical end-of-file}

fsFromMark = 3; {relative to current mark}

You can set bit 4 of the ioPosMode field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately
read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST

rdVerify = 64; {use read-verify mode}

You can set bit 7 to read a continuous stream of bytes, and place the
ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

ioPosOffset The offset to be used in conjunction with the positioning mode.

Field descriptions for the fileParam variant

ioFRefNum The file reference number of an open file.
ioFVersNum A file version number. This field is no longer used and you should

always set it to 0.
File Manager Reference 2-95

C H A P T E R 2

File Manager
filler1 Reserved.
ioFDirIndex An index for use with the PBHGetFInfo function.
ioFlAttrib File attributes. The bits in this field have these meanings:

ioFlVersNum A file version number. This field is no longer used and you should
always set it to 0.

ioFlFndrInfo Information used by the Finder.
ioDirID A directory ID.
ioFlStBlk The first allocation block of the data fork. This field contains 0 if the

file’s data fork is empty.
ioFlLgLen The logical end-of-file of the data fork.
ioFlPyLen The physical end-of-file of the data fork.
ioFlRStBlk The first allocation block of the resource fork.
ioFlRLgLen The logical end-of-file of the resource fork.
ioFlRPyLen The physical end-of-file of the resource fork.
ioFlCrDat The date and time of the file’s creation, specified in seconds since

midnight, January 1, 1904.
ioFlMdDat The date and time of the last modification to the file, specified in

seconds since midnight, January 1, 1904.

Field descriptions for the volumeParam variant

filler2 Reserved.
ioVolIndex An index for use with the PBHGetVInfo function.
ioVCrDate The date and time of volume initialization.
ioVLsMod The date and time the volume information was last modified. (This

field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

ioVAtrb The volume attributes.
ioVNmFls The number of files in the root directory.
ioVBitMap The first block of the volume bitmap.
ioAllocPtr The block at which the next new file starts. Used internally.
ioVNmAlBlks The number of allocation blocks.
ioVAlBlkSiz The size of allocation blocks.
ioVClpSiz The clump size.
ioAlBlSt The first block in the volume map.
ioVNxtCNID The next unused catalog node ID.
ioVFrBlk The number of unused allocation blocks.

Bit Meaning

0 Set if file is locked

2 Set if resource fork is open

3 Set if data fork is open

4 Set if a directory

7 Set if file (either fork) is open
2-96 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
ioVSigWord A signature word identifying the type of volume; it’s $D2D7 for
MFS volumes and $4244 for volumes that support HFS calls.

ioVDrvInfo The drive number of the drive containing the volume.
ioVDRefNum For online volumes, the reference number of the I/O driver for the

drive identified by ioVDrvInfo.
ioVFSID The file-system identifier. It indicates which file system is servicing

the volume; it’s zero for File Manager volumes and nonzero for
volumes handled by an external file system.

ioVBkUp The date and time the volume was last backed up (it’s 0 if never
backed up).

ioVSeqNum Used internally.
ioVWrCnt The volume write count.
ioVFilCnt The total number of files on the volume.
ioVDirCnt The total number of directories (not including the root directory) on

the volume.
ioVFndrInfo Information used by the Finder.

Field descriptions for the accessParam variant

filler3 Reserved.
ioDenyModes Access mode information. The bits in this field have these meanings:

filler4 Reserved.
filler5 Reserved.
ioACUser The user’s access rights for the specified directory. The bits in this

field have the following meanings:

filler6 Reserved.
ioACOwnerID The owner ID.
ioACGroupID The group ID.
ioACAccess The directory access privileges. See the section “Directory Access

Privileges,” beginning on page 2-18, for a complete description of
this field.

Bit Meaning

0 If set, request read permission

1 If set, request write permission

2–3 Reserved; must be 0

4 If set, deny other readers access to this file

5 If set, deny other writers access to this file

6–15 Reserved; must be 0

Bit Meaning

0 Set if user does not have See Folder privileges

1 Set if user does not have See Files privileges

2 Set if user does not have Make Changes privileges

3–6 Reserved; always set to 0

7 Set if user is not owner of the directory
File Manager Reference 2-97

C H A P T E R 2

File Manager
Field descriptions for the objParam variant

filler7 Reserved.
ioObjType A function code. The values passed in this field are determined by

the routine to which you pass this parameter block.
ioObjNamePtr A pointer to the returned creator/group name.
ioObjID The creator/group ID.

Field descriptions for the copyParam variant

ioDstVRefNum A volume reference number for the destination volume.
filler8 Reserved.
ioNewName A pointer to the destination pathname.
ioCopyName A pointer to an optional name.
ioNewDirID A destination directory ID.

Field descriptions for the wdParam variant

filler9 Reserved.
ioWDIndex An index to working directories.
ioWDProcID The working directory user identifier.
ioWDVRefNum The volume reference number for the working directory.
filler10 Reserved.
filler11 Reserved.
filler12 Reserved.
filler13 Reserved.
ioWDDirID The working directory’s directory ID.

Field descriptions for the fidParam variant

filler14 Reserved.
ioDestNamePtr A pointer to the name of the destination file.
filler15 Reserved.
ioDestDirID The parent directory ID of the destination file.
filler16 Reserved.
filler17 Reserved.
ioSrcDirID The parent directory ID of the source file.
filler18 Reserved.
ioFileID The file ID.

Field descriptions for the csParam variant

ioMatchPtr A pointer to an array of FSSpec records in which the file and
directory names that match the selection criteria are returned. The
array must be large enough to hold the largest possible number of
FSSpec records, as determined by the ioReqMatchCount field.

ioReqMatchCount
The maximum number of matches to return. This number should be
the number of FSSpec records that will fit in the memory pointed
2-98 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
to by ioMatchPtr. You can use this field to avoid a possible excess
of matches for criteria that prove to be too general (or to limit the
length of a search if the ioSearchTime field isn’t used).

ioActMatchCount
The number of actual matches found.

ioSearchBits The fields of the parameter blocks ioSearchInfo1 and
ioSearchInfo2 that are relevant to the search. See “Searching a
Volume” beginning on page 2-39 for constants you can add to
determine a value for ioSearchBits.

ioSearchInfo1 A pointer to a CInfoPBRec parameter block that contains values
and the lower bounds of ranges for the fields selected by
ioSearchBits.

ioSearchInfo2 A pointer to a second CInfoPBRec parameter block that contains
masks and upper bounds of ranges for the fields selected by
ioSearchBits.

ioSearchTime A time limit on a search, in Time Manager format. Use this field to
limit the run time of a single call to PBCatSearch. A value of 0
imposes no time limit. If the value of this field is positive, it is
interpreted as milliseconds. If the value of this field is negative, it is
interpreted as negated microseconds.

ioCatPosition A position in the catalog where searching should begin. Use this
field to keep an index into the catalog when breaking down the
PBCatSearch search into a number of smaller searches. This field
is valid whenever PBCatSearch exits because it either spends the
maximum time allowed by ioSearchTime or finds the maximum
number of matches allowed by ioReqMatchCount.
To start at the beginning of the catalog, set the initialize
field of ioCatPosition to 0. Before exiting after an interrupted
search, PBCatSearch sets that field to the next catalog entry to
be searched.
To resume where the previous call stopped, pass the entire
CatPosition record returned by the previous call as input
to the next.

ioOptBuffer A pointer to an optional read buffer. The ioOptBuffer and
ioOptBufSize fields let you specify a part of memory as a read
buffer, increasing search speed.

ioOptBufSize The size of the buffer pointed to by ioOptBuffer. Buffer size
effectiveness varies with models and configurations, but a 16 KB
buffer is likely to be optimal. The size should be at least 1024 bytes
and should be an integral multiple of 512 bytes.

Field descriptions for the foreignPrivParam variant

filler21 Reserved.
filler22 Reserved.
ioForeignPrivBuffer

A pointer to a buffer containing access-control information about
the foreign file system.
File Manager Reference 2-99

C H A P T E R 2

File Manager
ioForeignPrivReqCount
The size of the buffer pointed to by the ioForeignPrivBuffer field.

ioForeignPrivActCount
The amount of the buffer pointed to by the ioForeignPrivBuffer
field that was actually used to hold data.

filler23 Reserved.
ioForeignPrivDirID

The parent directory ID of the foreign file or directory.
ioForeignPrivInfo1

A long word that may contain privileges data.
ioForeignPrivInfo2

A long word that may contain privileges data.
ioForeignPrivInfo3

A long word that may contain privileges data.
ioForeignPrivInfo4

A long word that may contain privileges data.

Catalog Information Parameter Blocks 2

The low-level functions PBGetCatInfo, PBSetCatInfo, and PBCatSearch exchange
information with your application using the catalog information parameter block, which is
defined by the CInfoPBRec data type. There are two variants of this record, hFileInfo
and dirInfo, which describe files and directories, respectively.

TYPE CInfoPBRec = {catalog information parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {version number}

filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file or directory attributes}

ioACUser: SignedByte; {directory access rights}

CASE CInfoType OF

hFileInfo:

 (ioFlFndrInfo: FInfo; {information used by the Finder}

ioDirID: LongInt; {directory ID or file ID}

ioFlStBlk: Integer; {first alloc. blk. of data fork}
2-100 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt; {date and time of last modification}

ioFlBkDat: LongInt; {date and time of last backup}

ioFlXFndrInfo: FXInfo; {additional Finder information}

ioFlParID: LongInt; {file parent directory ID}

ioFlClpSiz: LongInt); {file's clump size}

dirInfo:

 (ioDrUsrWds: DInfo; {information used by the Finder}

ioDrDirID: LongInt; {directory ID}

ioDrNmFls: Integer; {number of files in directory}

filler3: ARRAY[1..9] OF Integer;

ioDrCrDat: LongInt; {date and time of creation}

ioDrMdDat: LongInt; {date and time of last modification}

ioDrBkDat: LongInt; {date and time of last backup}

ioDrFndrInfo: DXInfo; {additional Finder information}

ioDrParID: LongInt); {directory's parent directory ID}

END;

The first 14 fields are common to both variants. Each variant also includes its own
unique fields.

Field descriptions common to both variants

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)
ioTrap The trap number of the routine that was called. (This field is used

internally by the File Manager.)
ioCmdAddr The address of the routine that was called. (This field is used

internally by the File Manager.)
ioCompletion A pointer to a completion routine to be executed at the end of an

asynchronous call. It should be NIL for asynchronous calls with no
completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

ioResult The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.
File Manager Reference 2-101

C H A P T E R 2

File Manager
ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—
it’s very important that you set this field to point to storage for a
Str255 value (if you’re using a pathname) or to NIL (if you’re not).

ioVRefNum A volume specification. You can specify a volume using a volume
reference number, a drive number, a working directory reference
number, or 0 for the default drive.

ioFRefNum The file reference number of an open file.
ioFVersNum A file version number. This field is no longer used and you should

always set it to 0.
filler1 Reserved.
ioFDirIndex A file and directory index. If this field contains a positive number,

PBGetCatInfo returns information about the file or directory
having that directory index in the directory specified by the
ioVRefNum field. (If ioVRefNum contains a volume reference
number, the specified directory is that volume’s root directory.)
If this field contains 0, PBGetCatInfo returns information about
the file or directory whose name is specified in the ioNamePtr field
and that is located in the directory specified by the ioVRefNum
field. (Once again, if ioVRefNum contains a volume reference
number, the specified directory is that volume’s root directory.)
If this field contains a negative number, PBGetCatInfo ignores the
ioNamePtr field and returns information about the directory
specified in the ioDirID field. If both ioDirID and ioVRefNum
are set to 0, PBGetCatInfo returns information about the current
default directory.

ioFlAttrib File or directory attributes. For files, the bits in this field have the
following meanings:

For directories, the bits in this field have the following meanings:

Bit Meaning

0 Set if file is locked

1 Reserved

2 Set if resource fork is open

3 Set if data fork is open

4 Set if a directory

5–6 Reserved

7 Set if file (either fork) is open

Bit Meaning

0 Set if the directory is locked

1 Reserved

2 Set if the directory is within a shared area of the
directory hierarchy

3 Set if the directory is a share point that is mounted by
some user
2-102 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
ioACUser The user’s access rights for the specified directory. The bits in this
field have the following meanings:

For example, if you call PBGetCatInfo for a particular shared
volume and ioACUser returns 0, you know that the user is the
owner of the directory and has complete privileges to it.

Field descriptions for the hFileInfo variant

ioFlFndrInfo Information used by the Finder.
ioDirID A directory ID or file ID. On input to PBGetCatInfo, this field

contains a directory ID (which is used only if the ioFDirIndex
field is negative). On output, this field contains the file ID of the
specified file.

ioFlStBlk The first allocation block of the data fork. This field contains 0 if the
file’s data fork is empty.

ioFlLgLen The logical end-of-file of the data fork.
ioFlPyLen The physical end-of-file of the data fork.
ioFlRStBlk The first allocation block of the resource fork.
ioFlRLgLen The logical end-of-file of the resource fork.
ioFlRPyLen The physical end-of-file of the resource fork.
ioFlCrDat The date and time of the file’s creation, specified in seconds since

midnight, January 1, 1904.
ioFlMdDat The date and time of the last modification to the file, specified in

seconds since midnight, January 1, 1904.
ioFlBkDat The date and time of the last backup to the file, specified in seconds

since midnight, January 1, 1904.
ioFlXFndrInfo Additional information used by the Finder. (See the chapter

“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials
for details.)

ioFlParID The directory ID of the file’s parent.
ioFlClpSiz The clump size to be used when writing the file; if it’s 0, the

volume’s clump size is used when the file is opened.

4 Set if the item is a directory

5 Set if the directory is a share point

6–7 Reserved

Bit Meaning

0 Set if user does not have See Folder privileges

1 Set if user does not have See Files privileges

2 Set if user does not have Make Changes privileges

3–6 Reserved; always set to 0

7 Set if user is not owner of the directory

Bit Meaning
File Manager Reference 2-103

C H A P T E R 2

File Manager
Field descriptions for the dirInfo variant

ioDrUsrWds Information used by the Finder.
ioDrDirID A directory ID. On input to PBGetCatInfo, this field contains a

directory ID (which is used only if the value of the ioFDirIndex
field is negative). On output, this field contains the directory ID of
the specified directory.

ioDrNmFls The number of files in the directory.
filler3 Reserved.
ioDrCrDat The date and time of the directory’s creation, specified in seconds

since midnight, January 1, 1904.
ioDrMdDat The date and time of the last modification to the directory, specified

in seconds since midnight, January 1, 1904.
ioDrBkDat The date and time of the last backup to the directory, specified in

seconds since midnight, January 1, 1904.
ioDrFndrInfo Additional information used by the Finder.
ioDrParID The directory ID of the specified directory’s parent.

Catalog Position Records 2

When you call the PBCatSearch function to search a volume’s catalog file, you can
specify (in the ioCatPosition field of the parameter block passed to PBCatSearch) a
catalog position record. If a catalog search consumes more time than is allowed by the
ioSearchTime field, PBCatSearch stores a directory-location index in that record;
when you call PBCatSearch again, it uses that record to resume searching where it left
off. A catalog position record is defined by the CatPositionRec data type.

TYPE CatPositionRec = {catalog position record}

RECORD

initialize: LongInt; {starting point}

priv: ARRAY[1..6] OF Integer; {private data}

END;

Field descriptions

initialize The starting point of the catalog search. To start searching at
the beginning of a catalog, specify 0 in this field. To resume a
previous search, pass the value returned by the previous call
to PBCatSearch.

priv An array of integers that is used internally by PBCatSearch.

Catalog Move Parameter Blocks 2

The low-level HFS function PBCatMove uses the catalog move parameter block defined
by the CMovePBRec data type.
2-104 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
TYPE CMovePBRec = {catalog move parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

filler1: LongInt; {reserved}

ioNewName: StringPtr; {name of new directory}

filler2: LongInt; {reserved}

ioNewDirID: LongInt; {directory ID of new directory}

filler3: ARRAY[1..2] OF LongInt; {reserved}

ioDirID: LongInt; {directory ID of current directory}

END;

Field descriptions

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)
ioTrap The trap number of the routine that was called. (This field is used

internally by the File Manager.)
ioCmdAddr The address of the routine that was called. (This field is used

internally by the File Manager.)
ioCompletion A pointer to a completion routine to be executed at the end of an

asynchronous call. It should be NIL for asynchronous calls with no
completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

ioResult The result code of the function. For synchronous calls, this field is the
same as the result code of the function call itself. To determine when
an asynchronous call has actually been completed, your application
can poll this field; it’s set to a positive number when the call is made
and receives the actual result code when the call is completed.

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—it’s
very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NIL (if you’re not).

ioVRefNum A volume specification (volume reference number, working directory
reference number, drive number, or 0 for default volume).

filler1 Reserved.
File Manager Reference 2-105

C H A P T E R 2

File Manager
ioNewName The name of the directory into which the specified file or directory
is to be moved.

filler2 Reserved.
ioNewDirID The directory ID of the directory into which the specified file or

directory is to be moved.
filler3 Reserved.
ioDirID The current directory ID of the file or directory to be moved (used

in conjunction with the ioVRefNum and ioNamePtr fields).

Working Directory Parameter Blocks 2

The low-level HFS functions PBOpenWD, PBCloseWD, and PBGetWDInfo use the
working directory parameter block defined by the WDPBRec data type.

TYPE WDPBRec = {working directory parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

filler1: Integer; {reserved}

ioWDIndex: Integer; {working directory index}

ioWDProcID: LongInt; {working directory user identifier}

ioWDVRefNum: Integer; {working directory's vol. ref. num.}

filler2: ARRAY[1..7] OF Integer; {reserved}

ioWDDirID: LongInt; {working directory's directory ID}

END;

Field descriptions

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)
ioTrap The trap number of the routine that was called. (This field is used

internally by the File Manager.)
ioCmdAddr The address of the routine that was called. (This field is used

internally by the File Manager.)
ioCompletion A pointer to a completion routine to be executed at the end of an

asynchronous call. It should be NIL for asynchronous calls with
no completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.
2-106 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
ioResult The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—
it’s very important that you set this field to point to storage for a
Str255 value (if you’re using a pathname) or to NIL (if you’re not).

ioVRefNum A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

filler1 Reserved.
ioWDIndex An index for use with the PBGetWDInfo function.
ioWDProcID An identifier that’s used to distinguish between working directories

set up by different users; you should set ioWDProcID to your
application’s signature.

ioWDVRefNum The working directory’s volume reference number.
filler2 Reserved.
ioWDDirID The working directory’s directory ID.

File Control Block Parameter Blocks 2

The low-level HFS function PBGetFCBInfo uses the file control block parameter block
defined by the FCBPBRec data type.

TYPE FCBPBRec = {file control block parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

ioRefNum: Integer; {file reference number}

filler: Integer; {reserved}

ioFCBIndx: Integer; {FCB index}

filler1: Integer; {reserved}

ioFCBFlNm: LongInt; {file ID}

ioFCBFlags: Integer; {flags}

ioFCBStBlk: Integer; {first allocation block of file}

ioFCBEOF: LongInt; {logical end-of-file}

ioFCBPLen: LongInt; {physical end-of-file}
File Manager Reference 2-107

C H A P T E R 2

File Manager
ioFCBCrPs: LongInt; {position of the file mark}

ioFCBVRefNum: Integer; {volume reference number}

ioFCBClpSiz: LongInt; {file's clump size}

ioFCBParID: LongInt; {parent directory ID}

END;

Field descriptions

qLink A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)
ioTrap The trap number of the routine that was called. (This field is used

internally by the File Manager.)
ioCmdAddr The address of the routine that was called. (This field is used

internally by the File Manager.)
ioCompletion A pointer to a completion routine to be executed at the end of an

asynchronous call. It should be NIL for asynchronous calls with
no completion routine and is automatically set to NIL for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

ioResult The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

ioNamePtr A pointer to a pathname. Whenever a routine description specifies
that ioNamePtr is used—whether for input, output, or both—
it’s very important that you set this field to point to storage for a
Str255 value (if you’re using a pathname) or to NIL (if you’re not).

ioVRefNum A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

ioRefNum The file reference number of an open file.
filler Reserved.
ioFCBIndx An index for use with the PBGetFCBInfo function.
filler1 Reserved.
ioFCBFlNm The file ID.
ioFCBFlags Flags describing the status of the file. The bits in this field that are

currently used have the following meanings:

Bit Meaning

8 Set if data can be written to the file

9 Set if this FCB describes a resource fork

10 Set if the file has a locked byte range

11 Reserved
2-108 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
ioFCBStBlk The number of the first allocation block of the file.
ioFCBEOF The logical end-of-file.
ioFCBPLen The physical end-of-file.
ioFCBCrPs The position of the file mark.
ioFCBVRefNum The volume reference number.
ioFCBClpSiz The file clump size.
ioFCBParID The file’s parent directory ID.

Volume Attributes Buffer 2

The low-level HFS function PBHGetVolParms returns information in the volume
attributes buffer, defined by the GetVolParmsInfoBuffer data type.

TYPE GetVolParmsInfoBuffer =

RECORD

vMVersion: Integer; {version number}

vMAttrib: LongInt; {volume attributes}

vMLocalHand: Handle; {reserved}

vMServerAdr: LongInt; {network server address}

vMVolumeGrade: LongInt; {relative speed rating}

vMForeignPrivID: Integer; {foreign privilege model}

END;

Field descriptions

vMVersion The version of the attributes buffer structure. Currently this field
returns either 1 or 2.

vMAttrib A 32-bit quantity that encodes information about the volume
attributes. See the list of constants in the description of
PBHGetVolParms beginning on page 2-148 for details on the
meaning of each bit.

vMLocalHand A handle to private data for shared volumes. On creation of the
VCB (right after mounting), this field is a handle to a 2-byte block
of memory. The Finder uses this for its local window list storage,
allocating and deallocating memory as needed. It is disposed of
when the volume is unmounted. Your application should treat this
field as reserved.

vMServerAdr For AppleTalk server volumes, this field contains the internet
address of an AppleTalk server volume. Your application can

12 Set if the file has shared write permissions

13 Set if the file is locked (write-protected)

14 Set if the file’s clump size is specified in the FCB

15 Set if the file has changed since it was last flushed

Bit Meaning
File Manager Reference 2-109

C H A P T E R 2

File Manager
inspect this field to tell which volumes belong to which server; the
value of this field is 0 if the volume does not have a server.

vMVolumeGrade The relative speed rating of the volume. The scale used to
determine these values is currently uncalibrated. In general,
lower values indicate faster speeds. A value of 0 indicates that
the volume’s speed is unrated. The buffer version returned in
the vMVersion field must be greater than 1 for this field to
be meaningful.

vMForeignPrivID
An integer representing the privilege model supported by the
volume. Currently two values are defined for this field:
0 represents a standard HFS volume that might or might not
support the AFP privilege model; fsUnixPriv represents a
volume that supports the A/UX privilege model. The buffer
version returned in the vMVersion field must be greater than 1
for this field to be meaningful.

Volume Mounting Information Records 2

The File Manager remote mounting functions store the mounting information in a
variable-sized structure called a volume mounting information record, defined by the
VolMountInfoHeader data type.

TYPE VolMountInfoHeader = {volume mounting information}

RECORD

length: Integer; {length of mounting information}

media: VolumeType; {type of volume}

{volume-specific, variable-length location data}

END;

Field descriptions

length The length of the VolMountInfoHeader structure (that is,
the total length of the structure header described here plus the
variable-length location data). The length of the record is flexible
so that non-Macintosh file systems can store whatever information
they need for volume mounting.

media The volume type of the remote volume. The value
AppleShareMediaType (a constant that translates to 'afpm')
represents an AppleShare volume. If you are adding support for
the programmatic mounting functions to a non-Macintosh file
system, you should register a four-character identifier for your
volumes with Macintosh Developer Technical Support at Apple
Computer, Inc.

The only volumes that currently support the programmatic mounting functions are
AppleShare servers, which use a volume mounting record of type AFPVolMountInfo.
2-110 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
TYPE AFPVolMountInfo = {AFP volume mounting information}

RECORD

length: Integer; {length of mounting information}

media: VolumeType; {type of volume}

flags: Integer; {reserved; must be set to 0}

nbpInterval: SignedByte; {NBP retry interval}

nbpCount: SignedByte; {NBP retry count}

uamType: Integer; {user authentication method}

zoneNameOffset: Integer; {offset to zone name}

serverNameOffset: Integer; {offset server name}

volNameOffset: Integer; {offset to volume name}

userNameOffset: Integer; {offset to user name}

userPasswordOffset:

Integer; {offset to user password}

volPasswordOffset:

Integer; {offset to volume password}

AFPData: PACKED ARRAY[1..144] OF CHAR;

{standard AFP mounting info}

{optional volume-specific, variable-length data}

END;

Field descriptions

length The length of the AFPVolMountInfo structure (that is, the total
length of the structure header described here plus the variable-
length location data).

media The volume type of the remote volume. The value
AppleShareMediaType (a constant that translates to 'afpm')
represents an AppleShare volume.

flags Reserved; set this field to 0. If bit 0 is set, no greeting message from
the server is displayed.

nbpInterval The NBP retransmit interval, in units of 8 ticks.
npbCount The NBP retransmit count. This field specifies the total number of

times a packet should be transmitted, including the first
transmission.

uamType The access-control method used by the remote volume. AppleShare
uses four methods, defined by constants:

CONST

kNoUserAuthentication = 1; {no password}

kPassword = 2; {8-byte password}

kEncryptPassword = 3;

{encrypted 8-byte password}

kTwoWayEncryptPassword = 6;

{two-way random encryption}
File Manager Reference 2-111

C H A P T E R 2

File Manager
zoneNameOffset The offset in bytes from the beginning of the record to the entry in
the AFPData field containing the name of the AppleShare zone.

serverNameOffset
The offset in bytes from the beginning of the record to the entry in
the AFPData field containing the name of the AppleShare server.

volNameOffset The offset in bytes from the beginning of the record to the entry in
the AFPData field containing the name of the volume.

userNameOffset The offset in bytes from the beginning of the record to the entry in
the AFPData field containing the name of the user.

userPasswordOffset
The offset in bytes from the beginning of the record to the entry in
the AFPData field containing the user’s password.

volPasswordOffset
The offset in bytes from the beginning of the record to the entry
in the AFPData field containing the volume’s password. Some
versions of the AppleShare software do not pass the information
in this field to the server.

AFPData The actual volume mounting information, offsets to which are
contained in the preceding six fields. To mount an AFP volume, you
must fill in the record with at least the zone name, server name,
user name, user password, and volume password. You can lay out
the data in any order within this data field, as long as you specify
the correct offsets in the offset fields.

High-Level File Access Routines 2
This section describes the File Manager’s high-level file access routines. When you call
one of these routines, you specify a file by a file reference number (which the File
Manager returns to your application when the application opens a file). Unless your
application has very specialized needs, you should be able to manage all file access (for
example, writing data to the file) using the routines described in this section. Typically
you use these routines to operate on a file’s data fork, but in certain circumstances you
might want to use them on a file’s resource fork as well.

Reading, Writing, and Closing Files 2

You can use the functions FSRead, FSWrite, and FSClose to read data from a
file, write data to a file, and close an open file. All three of these functions operate
on open files. You can use any one of a variety of routines to open a file (for example,
FSpOpenDF).
2-112 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
FSRead 2

You can use the FSRead function to read any number of bytes from an open file.

FUNCTION FSRead (refNum: Integer; VAR count: LongInt;

buffPtr: Ptr): OSErr;

refNum The file reference number of an open file.

count On input, the number of bytes to read; on output, the number of bytes
actually read.

buffPtr A pointer to the data buffer into which the bytes are to be read.

DESCRIPTION

The FSRead function attempts to read the requested number of bytes from the specified
file into the specified buffer. The buffPtr parameter points to that buffer; this buffer is
allocated by your application and must be at least as large as the count parameter.

Because the read operation begins at the current mark, you might want to set the mark
first by calling the SetFPos function. If you try to read past the logical end-of-file,
FSRead reads in all the data up to the end-of-file, moves the mark to the end-of-file, and
returns eofErr as its function result. Otherwise, FSRead moves the file mark to the byte
following the last byte read and returns noErr.

Note

The low-level PBRead function lets you set the mark without having to
call SetFPos. Also, if you want to read data in newline mode, you must
use PBRead instead of FSRead. ◆

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
fLckdErr -45 File is locked
paramErr –50 Negative count
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file
File Manager Reference 2-113

C H A P T E R 2

File Manager
FSWrite 2

You can use the FSWrite function to write any number of bytes to an open file.

FUNCTION FSWrite (refNum: Integer; VAR count: LongInt;

buffPtr: Ptr): OSErr;

refNum The file reference number of an open file.

count On input, the number of bytes to write to the file; on output, the number
of bytes actually written.

buffPtr A pointer to the data buffer from which the bytes are to be written.

DESCRIPTION

The FSWrite function takes the specified number of bytes from the specified data buffer
and attempts to write them to the specified file. Because the write operation begins at
the current mark, you might want to set the mark first by calling the SetFPos function.

If the write operation completes successfully, FSWrite moves the file mark to the
byte following the last byte written and returns noErr. If you try to write past the
logical end-of-file, FSWrite moves the logical end-of-file. If you try to write past
the physical end-of-file, FSWrite adds one or more clumps to the file and moves the
physical end-of-file accordingly.

Note

The low-level PBWrite function lets you set the mark without having to
call SetFPos. ◆

RESULT CODES

FSClose 2

You can use the FSClose function to close an open file.

FUNCTION FSClose (refNum: Integer): OSErr;

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
posErr –40 Attempt to position mark before start of file
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
paramErr –50 Negative count
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing
2-114 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
refNum The file reference number of an open file.

DESCRIPTION

The FSClose function removes the access path for the specified file and writes the
contents of the volume buffer to the volume.

Note

The FSClose function calls PBFlushFile internally to write the file’s
bytes onto the volume. To ensure that the file’s catalog entry is updated,
you should call FlushVol after you call FSClose. ◆

▲ W A R N I N G

Make sure that you do not call FSClose with a file reference number of
a file that has already been closed. Attempting to close the same file
twice may result in loss of data on a volume. See “File Control Blocks”
on page 2-82 for a description of how this can happen. ▲

RESULT CODES

Manipulating the File Mark 2

You can use the functions GetFPos and SetFPos to get or set the current position of the
file mark.

GetFPos 2

You can use the GetFPos function to determine the current position of the mark before
reading from or writing to an open file.

FUNCTION GetFPos (refNum: Integer; VAR filePos: LongInt): OSErr;

refNum The file reference number of an open file.

filePos On output, the current position of the mark.

DESCRIPTION

The GetFPos function returns, in the filePos parameter, the current position of the file
mark for the specified open file. The position value is zero-based; that is, the value of
filePos is 0 if the file mark is positioned at the beginning of the file.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
fnfErr –43 File not found
rfNumErr –51 Bad reference number
File Manager Reference 2-115

C H A P T E R 2

File Manager
RESULT CODES

SetFPos 2

You can use the SetFPos function to set the position of the file mark before reading
from or writing to an open file.

FUNCTION SetFPos (refNum: Integer; posMode: Integer;

posOff: LongInt): OSErr;

refNum The file reference number of an open file.

posMode The positioning mode.

posOff The positioning offset.

DESCRIPTION

The SetFPos function sets the file mark of the specified file. The posMode parameter
indicates how to position the mark; it must contain one of the following values:

CONST

fsAtMark = 0; {at current mark}

fsFromStart = 1; {set mark relative to beginning of file}

fsFromLEOF = 2; {set mark relative to logical end-of-file}

fsFromMark = 3; {set mark relative to current mark}

If you specify fsAtMark, the mark is left wherever it’s currently positioned, and the
posOff parameter is ignored. The next three constants let you position the mark relative
to either the beginning of the file, the logical end-of-file, or the current mark. If you
specify one of these three constants, you must also pass in posOff a byte offset (either
positive or negative) from the specified point. If you specify fsFromLEOF, the value in
posOff must be less than or equal to 0.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
gfpErr –52 Error during GetFPos

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
rfNumErr –51 Bad reference number
2-116 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Manipulating the End-of-File 2

You can use the functions GetEOF and SetEOF to get or set the logical end-of-file of an
open file.

GetEOF 2

You can use the GetEOF function to determine the current logical end-of-file of an
open file.

FUNCTION GetEOF (refNum: Integer; VAR logEOF: LongInt): OSErr;

refNum The file reference number of an open file.

logEOF On output, the logical end-of-file.

DESCRIPTION

The GetEOF function returns, in the logEOF parameter, the logical end-of-file of the
specified file.

RESULT CODES

SetEOF 2

You can use the SetEOF function to set the logical end-of-file of an open file.

FUNCTION SetEOF (refNum: Integer; logEOF: LongInt): OSErr;

refNum The file reference number of an open file.

logEOF The logical end-of-file.

DESCRIPTION

The SetEOF function sets the logical end-of-file of the specified file. If you attempt to set
the logical end-of-file beyond the physical end-of-file, the physical end-of-file is set
1 byte beyond the end of the next free allocation block; if there isn’t enough space on the
volume, no change is made, and SetEOF returns dskFulErr as its function result.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file
File Manager Reference 2-117

C H A P T E R 2

File Manager
If you set the logEOF parameter to 0, all space occupied by the file on the volume is
released. The file still exists, but it contains 0 bytes. Setting a file fork’s end-of-file to 0 is
therefore not the same as deleting the file (which removes both file forks at once).

RESULT CODES

Allocating File Blocks 2

The File Manager provides two functions, Allocate and AllocContig, that allow you
to allocate additional blocks to a file. The File Manager automatically allocates file blocks
if you move the logical end-of-file past the physical end-of-file, and it automatically
deallocates unneeded blocks from a file if you move the logical end-of-file to a position
more than one allocation block before the current physical end-of-file. Consequently,
you do not in general need to be concerned with allocating or deallocating file
blocks. However, you can improve file block contiguity if you use the Allocate
or AllocContig function to preallocate file blocks. This is most useful if you know
in advance how big a file is likely to become.

Note

When the File Manager allocates (or deallocates) file blocks
automatically, it always adds (or removes) blocks in clumps. The
Allocate and AllocContig functions allow you to add blocks
in allocation blocks, which may be smaller than clumps. ◆

The Allocate and AllocContig functions are not supported by AppleShare volumes.
Instead, use SetEOF or PBSetEOF to extend a file by setting the end-of-file.

Allocate 2

You can use the Allocate function to allocate additional blocks to an open file.

FUNCTION Allocate (refNum: Integer; VAR count: LongInt): OSErr;

refNum The file reference number of an open file.
count On input, the number of additional bytes to allocate to the file; on output,

the number of bytes actually allocated, rounded up to the nearest
multiple of the allocation block size.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing
2-118 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
DESCRIPTION

The Allocate function adds the specified number of bytes to the specified file and sets
the physical end-of-file to 1 byte beyond the last block allocated. If there isn’t enough
empty space on the volume to satisfy the allocation request, Allocate allocates the rest
of the space on the volume and returns dskFulErr as its function result.

The Allocate function always attempts to allocate contiguous blocks. If the total
number of requested bytes is unavailable, Allocate allocates whatever space,
contiguous or not, is available. To force the allocation of the entire requested space as a
contiguous piece, call AllocContig instead.

RESULT CODES

AllocContig 2

You can use the AllocContig function to allocate additional contiguous blocks to an
open file.

FUNCTION AllocContig (refNum: Integer; VAR count: LongInt): OSErr;

refNum The file reference number of an open file.

count On input, the number of additional bytes to allocate to the file; on output,
the number of bytes allocated, rounded up to the nearest multiple of the
allocation block size.

DESCRIPTION

The AllocContig function is identical to the Allocate function except that if there
isn’t enough contiguous empty space on the volume to satisfy the allocation request,
AllocContig does nothing and returns dskFulErr as its function result. If you want
to allocate whatever space is available, even when the entire request cannot be filled by
the allocation of a contiguous piece, call Allocate instead.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing
File Manager Reference 2-119

C H A P T E R 2

File Manager
RESULT CODES

Low-Level File Access Routines 2
This section describes the low-level file access routines. These low-level routines, whose
names begin with the letters PB, provide two advantages over the corresponding
high-level file access routines:

■ These routines can be executed asynchronously, returning control to your application
before the operation is completed.

■ In certain cases, these routines provide more extensive information or perform
advanced operations.

All of these routines exchange parameters with your application through a parameter
block of type ParamBlock. When you call a low-level routine, you pass the address of
the parameter block to the routine.

Assembly-Language Note

When you call any of these low-level routines, register A0 must point to
a parameter block containing the parameters for the routine. If you want
the routine to be executed asynchronously, set bit 10 of the routine trap
word. You can do this by supplying the word ASYNC as the second
argument to the routine macro. Here’s an example:

_Read, ASYNC

You can set or test bit 10 of a trap word using the global constant
asyncTrpBit.

The hierarchical extensions of certain basic File Manager routines
actually are not new calls. For instance, _Open and _HOpen both trap to
the same routine. The trap word generated by the _HOpen macro is the
same as the trap word that would be generated by invoking the _Open
macro with bit 9 set. The setting of this bit tells the File Manager to
expect a larger parameter block containing the additional fields (such as
a directory ID) needed to handle a hierarchical directory volume. You
can set or test bit 9 of a trap word by using the global constant hfsBit.

All File Manager routines return a result code in register D0. ◆

These low-level file access routines can run either synchronously or asynchronously.
There are three versions of each routine. The first takes two parameters: a pointer to the

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing
2-120 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
parameter block and a Boolean parameter that specifies whether the routine is to run
asynchronously (TRUE) or synchronously (FALSE). For example, the first version of the
low-level routine to read bytes from a file has this declaration:

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

The second version does not take a second parameter; instead, it adds the suffix Async
to the name of the routine.

FUNCTION PBReadAsync (paramBlock: ParmBlkPtr): OSErr;

Similarly, the third version of the routine does not take a second parameter; instead, it
adds the suffix Sync to the name of the routine.

FUNCTION PBReadSync (paramBlock: ParmBlkPtr): OSErr;

Only the first version of each routine is documented in this section. (See “Summary of
the File Manager,” beginning on page 2-243, for a listing of all three versions of these
routines.) Note, however, that the second and third versions of these routines do not use
the glue code that the first version uses and are therefore more efficient.

Note

Although you can execute low-level file access routines asynchronously,
the underlying device driver may not support asynchronous operation.
The SCSI Manager, for example, currently supports only synchronous
data transfers. Data transfers to a floppy disk or to a network server,
however, can be made asynchronously. ◆

Reading, Writing, and Closing Files 2

You can use the functions PBRead, PBWrite, and PBClose to read data from a file,
write data to a file, and close an open file. All three of these functions operate on open
files. You can use any one of a variety of routines (for example, PBHOpenDF) to open
a file.

PBRead 2

You can use the PBRead function to read any number of bytes from an open file.

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.
File Manager Reference 2-121

C H A P T E R 2

File Manager
Parameter block

DESCRIPTION

The PBRead function attempts to read ioReqCount bytes from the open file whose
access path is specified in the ioRefNum field and transfer them to the data buffer
pointed to by the ioBuffer field. The position of the mark is specified by ioPosMode
and ioPosOffset. If your application tries to read past the logical end-of-file, PBRead
reads the data, moves the mark to the end-of-file, and returns eofErr as its function
result. Otherwise, PBRead moves the file mark to the byte following the last byte read
and returns noErr. After the read is completed, the mark is returned in ioPosOffset,
and the number of bytes actually read into the buffer is returned in ioActCount.

You can specify that PBRead read the file data 1 byte at a time until the requested
number of bytes have been read or until the end-of-file is reached. To do so, set bit 7 of
the ioPosMode field. Similarly, you can specify that PBRead should stop reading data
when it reaches an application-defined newline character. To do so, place the ASCII code
of that character into the high-order byte of the ioPosMode field; you must also set bit 7
of that field to enable newline mode.

Note

When reading data in newline mode, PBRead returns the newline
character as part of the data read and sets ioActCount to the actual
number of bytes placed into the buffer (which includes the newline
character). ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBRead is _Read.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioBuffer Ptr A pointer to a data buffer.
→ ioReqCount LongInt The number of bytes requested.
← ioActCount LongInt The number of bytes actually read.
→ ioPosMode Integer The positioning mode.
↔ ioPosOffset LongInt The positioning offset.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
fLckdErr -45 File is locked
paramErr –50 Negative ioReqCount
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file
2-122 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBWrite 2

You can use the PBWrite function to write any number of bytes to an open file.

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBWrite function takes ioReqCount bytes from the buffer pointed to by
ioBuffer and attempts to write them to the open file whose access path is specified by
ioRefNum. The position of the mark is specified by ioPosMode and ioPosOffset. If
the write operation completes successfully, PBWrite moves the file mark to the byte
following the last byte written and returns noErr. After the write operation is
completed, the mark is returned in ioPosOffset and the number of bytes actually
written is returned in ioActCount.

If you try to write past the logical end-of-file, PBWrite moves the logical end-of-file. If
you try to write past the physical end-of-file, PBWrite adds one or more clumps to the
file and moves the physical end-of-file accordingly.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBWrite is _Write.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioBuffer Ptr A pointer to a data buffer.
→ ioReqCount LongInt The number of bytes requested.
← ioActCount LongInt The number of bytes actually written.
→ ioPosMode Integer The positioning mode.
↔ ioPosOffset LongInt The positioning offset.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
posErr –40 Attempt to position mark before start of file
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
File Manager Reference 2-123

C H A P T E R 2

File Manager
PBClose 2

You can use the PBClose function to close an open file.

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBClose function writes the contents of the access path buffer specified by the
ioRefNum field to the volume and removes the access path.

▲ W A R N I N G

Some information stored on the volume won’t be updated until
PBFlushVol is called. ▲

▲ W A R N I N G

Do not call PBClose with a file reference number of a file that has
already been closed. Attempting to close the same file twice may result
in loss of data on a volume. See “File Control Blocks” on page 2-82 for a
description of how this can happen. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBClose is _Close.

RESULT CODES

paramErr –50 Negative ioReqCount
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
fnfErr –43 File not found
rfNumErr –51 Bad reference number
2-124 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Manipulating the File Mark 2

You can use the functions PBGetFPos and PBSetFPos to get or set the current position
of the file mark.

PBGetFPos 2

You can use the PBGetFPos function to determine the current position of the file mark
before reading from or writing to an open file.

FUNCTION PBGetFPos (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetFPos function returns, in the ioPosOffset field, the mark of the specified
file. The value returned in ioPosOffset is zero-based. Thus, a call to PBGetFPos
returns 0 if you call it when the file mark is positioned at the beginning of the file.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBGetFPos is _GetFPos.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
← ioReqCount LongInt On output, set to 0.
← ioActCount LongInt On output, set to 0.
← ioPosMode Integer On output, set to 0.
← ioPosOffset LongInt The current position of the mark.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
gfpErr –52 Error during PBGetFPos
File Manager Reference 2-125

C H A P T E R 2

File Manager
PBSetFPos 2

You can use the PBSetFPos function to position the file mark before reading from or
writing to an open file.

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DECRIPTION

The PBSetFPos function sets the mark of the specified file to the position specified by
the ioPosMode and ioPosOffset fields. If you try to set the mark past the logical
end-of-file, PBSetFPos moves the mark to the end-of-file and returns eofErr as its
function result.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSetFPos is _SetFPos.

RESULT CODES

Manipulating the End-of-File 2

You can use the functions PBGetEOF and PBSetEOF to get or set the current end-of-file.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioPosMode Integer The positioning mode.
↔ ioPosOffset LongInt On input, the positioning offset. On

output, the position at which the mark
was actually set.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
rfNumErr –51 Bad reference number
extFSErr –58 External file system
2-126 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBGetEOF 2

You can use the PBGetEOF function to determine the current logical end-of-file of an
open file.

FUNCTION PBGetEOF (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetEOF function returns, in the ioMisc field, the logical end-of-file of the
specified file. Because ioMisc is of type Ptr, you’ll need to coerce the value to type
LongInt to interpret the value correctly.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBGetEOF is _GetEOF.

RESULT CODES

PBSetEOF 2

You can use the PBSetEOF function to set the logical end-of-file of an open file.

FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
← ioMisc Ptr The logical end-of-file.

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
rfNumErr –51 Bad reference number
afpAccessDenied –5000 User does not have the correct access to the file
File Manager Reference 2-127

C H A P T E R 2

File Manager
Parameter block

DESCRIPTION

The PBSetEOF function sets the logical end-of-file of the open file, whose access path is
specified by ioRefNum, to ioMisc. Because the ioMisc field is of type Ptr, you must
coerce the desired value from type LongInt to type Ptr.

If you attempt to set the logical end-of-file beyond the current physical end-of-file,
another allocation block is added to the file; if there isn’t enough space on the volume,
no change is made and PBSetEOF returns dskFulErr as its function result.

If the value of the ioMisc field is 0, all space occupied by the file on the volume is
released. The file still exists, but it contains 0 bytes. Setting a file fork’s end-of-file to 0
is therefore not the same as deleting the file (which removes both file forks at once).

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSetEOF is _SetEOF.

RESULT CODES

Allocating File Blocks 2

The File Manager provides two low-level functions, PBAllocate and PBAllocContig,
that allow you to allocate additional blocks to a file. The File Manager automatically
allocates file blocks if you move the logical end-of-file past the physical end-of-file, and it
automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file.
Consequently, you do not in general need to be concerned with allocating or deallocating
file blocks. However, you can improve file block contiguity if you use the PBAllocate
or PBAllocContig function to preallocate file blocks. This is most useful if you know in
advance how big a file is likely to become.

PBAllocate and PBAllocContig are not supported by AppleShare volumes. Instead,
use SetEOF or PBSetEOF to extend a file by setting the end-of-file.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioMisc Ptr The logical end-of-file.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing
2-128 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBAllocate 2

You can use the PBAllocate function to allocate additional blocks to an open file.

FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBAllocate function adds ioReqCount bytes to the specified file and sets the
physical end-of-file to 1 byte beyond the last block allocated. If there isn’t enough empty
space on the volume to satisfy the allocation request, PBAllocate allocates the rest of
the space on the volume and returns dskFulErr as its function result.

Note

If the total number of requested bytes is unavailable, PBAllocate
allocates whatever space, contiguous or not, is available. To force the
allocation of the entire requested space as a contiguous piece, call
PBAllocContig instead. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBAllocate is _Allocate.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioReqCount LongInt The number of bytes requested.
← ioActCount LongInt The number of bytes actually

allocated, rounded up to the nearest
multiple of the allocation block size.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing
File Manager Reference 2-129

C H A P T E R 2

File Manager
PBAllocContig 2

You can use the PBAllocContig function to allocate additional contiguous blocks to an
open file.

FUNCTION PBAllocContig (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBAllocContig function is identical to the PBAllocate function except that if
there isn’t enough contiguous empty space on the volume to satisfy the allocation
request, PBAllocContig does nothing and returns dskFulErr as its function result. If
you want to allocate whatever space is available, even when the entire request cannot be
filled by the allocation of a contiguous piece, call PBAllocate instead.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBAllocContig is _AllocContig.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioReqCount LongInt The number of bytes requested.
← ioActCount LongInt The number of bytes allocated,

rounded up to the nearest multiple
of the allocation block size.

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
fnOpnErr –38 File not open
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
rfNumErr –51 Bad reference number
wrPermErr –61 Read/write permission doesn’t allow writing
2-130 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Updating Files 2

You can use the PBFlushFile function to ensure that the path access buffer of a file is
written to disk. There is no high-level equivalent of this function.

PBFlushFile 2

You can use the PBFlushFile function to write the contents of a file’s access path buffer.

FUNCTION PBFlushFile (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic FIle Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBFlushFile function writes the contents of the access path buffer indicated by
ioRefNum to the volume and then updates the file’s entry in the volume catalog.

▲ W A R N I N G

Some information stored on the volume won’t be correct until
PBFlushVol is called. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBFlushFile is _FlushFile.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnOpnErr –38 File not open
fnfErr –43 File not found
rfNumErr –51 Bad reference number
extFSErr –58 External file system
File Manager Reference 2-131

C H A P T E R 2

File Manager
High-Level Volume Access Routines 2
This section describes the File Manager’s high-level routines for accessing volumes.
Most applications are likely to need only the FlushVol function described on
page 2-135.

When you call one of these routines, you specify a volume by a volume reference
number (which you can obtain, for example, by calling the GetVInfo function, or from
the reply record returned by the Standard File Package). You can also specify a volume
by name, but this is generally discouraged, because there is no guarantee that volume
names will be unique.

Unmounting Volumes 2

The functions UnmountVol and Eject allow you to unmount and eject volumes. Most
applications do not need to use these routines, because the user typically ejects (and
possibly also unmounts) a volume in the Finder.

UnmountVol 2

You can use the UnmountVol function to unmount a volume that isn’t currently
being used.

FUNCTION UnmountVol (volName: StringPtr; vRefNum: Integer): OSErr;

volName A pointer to the name of a mounted volume.

vRefNum A volume reference number, a working directory reference number, a
drive number, or 0 for the default volume.

DESCRIPTION

The UnmountVol function unmounts the specified volume. All files on the volume
(except those opened by the Operating System) must be closed before you call
UnmountVol, which does not eject the volume.

▲ W A R N I N G

Don’t unmount the startup volume. Doing so will cause a
system crash. ▲
2-132 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
RESULT CODES

Eject 2

You can use the Eject function to place a volume offline and eject it.

FUNCTION Eject (volName: StringPtr; vRefNum: Integer): OSErr;

volName A pointer to the name of a volume.

vRefNum A volume reference number, a working directory reference number, a
drive number, or 0 for the default volume.

DESCRIPTION

The Eject function flushes the specified volume, places it offline, and then ejects
the volume.

RESULT CODES

Updating Volumes 2

When you close a file, you should call FlushVol to ensure that any changed contents of
the file are written to the volume.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
fBsyErr –47 One or more files are open
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system
File Manager Reference 2-133

C H A P T E R 2

File Manager
FlushVol 2

You can use the FlushVol function to write the contents of the volume buffer and
update information about the volume.

FUNCTION FlushVol (volName: StringPtr; vRefNum: Integer): OSErr;

volName A pointer to the name of a mounted volume.

vRefNum A volume reference number, a working directory reference number, a
drive number, or 0 for the default volume.

DESCRIPTION

On the specified volume, the FlushVol function writes the contents of the associated
volume buffer and descriptive information about the volume (if they’ve changed since
the last time FlushVol was called). This information is written to the volume.

RESULT CODES

Manipulating the Default Volume 2

The functions GetVol, SetVol, HGetVol, and HSetVol allow you to determine which
volume is the default volume and to set the default volume.

GetVol 2

You can use the GetVol function to determine the current default volume and possibly
also the default directory.

FUNCTION GetVol (volName: StringPtr; VAR vRefNum: Integer): OSErr;

volName A pointer to the name of the default volume.

vRefNum A volume reference number or a working directory reference number.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive
2-134 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
DESCRIPTION

The GetVol function returns a pointer to the name of the default volume in the volName
parameter and its volume reference number in the vRefNum parameter. If the default
directory has a working directory associated with it, the vRefNum parameter instead
contains a working directory reference number (which encodes both the volume reference
number and the default directory ID). However, if, in a previous call to HSetVol (or
PBHSetVol), a working directory reference number was passed in, GetVol returns a
volume reference number in the vRefNum parameter.

RESULT CODES

SetVol 2

You can change the default volume and default directory using the SetVol function.

FUNCTION SetVol (volName: StringPtr; vRefNum: Integer): OSErr;

volName A pointer to the name of a mounted volume.

vRefNum A volume reference number or a working directory reference number.

DESCRIPTION

The SetVol function sets the default volume and directory to the values specified in the
volName and vRefNum parameters. If you pass a volume reference number in vRefNum
or a pointer to a volume name in volName, SetVol makes the specified volume the
default volume and the root directory of that volume the default directory. If you pass a
working directory reference number in vRefNum, SetVol makes the specified directory
the default directory, and the volume containing that directory the default volume.

RESULT CODES

noErr 0 No error
nsvErr –35 No such volume

noErr 0 No error
nsvErr –35 No such volume
bdNamErr –37 Bad volume name
paramErr –50 No default volume
File Manager Reference 2-135

C H A P T E R 2

File Manager
HGetVol 2

You can use the HGetVol function to determine the current default volume and
default directory.

FUNCTION HGetVol (volName: StringPtr; VAR vRefNum: Integer;

VAR dirID: LongInt): OSErr;

volName A pointer to the name of the default volume.

vRefNum A volume reference number or a working directory reference number.

dirID The directory ID of the default directory.

DESCRIPTION

The HGetVol function returns the name and reference number of the default volume, as
well as the directory ID of the default directory. A pointer to the name of the default
volume is returned in the volName parameter, unless you set volName to NIL before
calling HGetVol.

The HGetVol function returns a working directory reference number in the vRefNum
parameter if the previous call to HSetVol (or PBHSetVol) passed in a working
directory reference number. If, however, you have previously called HSetVol (or
PBHSetVol) specifying the target volume with a volume reference number, then
HGetVol returns a volume reference number in the vRefNum parameter.

RESULT CODES

HSetVol 2

You can use the HSetVol function to set both the default volume and the default
directory.

FUNCTION HSetVol (volName: StringPtr; vRefNum: Integer;

dirID: LongInt): OSErr;

volName A pointer to the name of a mounted volume or the partial pathname
of a directory.

vRefNum A volume reference number or a working directory reference number.

dirID A directory ID.

noErr 0 No error
nsvErr –35 No default volume
2-136 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
DESCRIPTION

The HSetVol function lets you specify the default directory by volume reference
number, by directory ID, or by a combination of working directory reference number
and partial pathname (beginning from that working directory).

▲ W A R N I N G

Use of the HSetVol function is discouraged if your application may
execute in system software versions prior to version 7.0. Because the
specified directory might not itself be a working directory, HSetVol
records the default volume and directory separately, using the volume
reference number of the volume and the actual directory ID of the
specified directory. Subsequent calls to GetVol (or PBGetVol) return
only the volume reference number, which will cause that volume’s root
directory (rather than the default directory, as expected) to be accessed. ▲

Note

Both the default volume and the default directory are used in calls made
with no volume name, a volume reference number of 0, and a directory
ID of 0. ◆

RESULT CODES

Obtaining Volume Information 2

You can get information about a volume by calling the GetVInfo or
GetVRefNum function.

GetVInfo 2

You can use the GetVInfo function to get information about a mounted volume.

FUNCTION GetVInfo (drvNum: Integer; volName: StringPtr;

VAR vRefNum: Integer;

VAR freeBytes: LongInt): OSErr;

drvNum The drive number of the volume for which information is requested.

volName On output, a pointer to the name of the specified volume.

vRefNum The volume reference number of the specified volume.

freeBytes The available space (in bytes) on the specified volume.

noErr 0 No error
nsvErr –35 No such volume
bdNamErr –37 Bad volume name
fnfErr –43 Directory not found
paramErr –50 No default volume
afpAccessDenied –5000 User does not have access to the directory
File Manager Reference 2-137

C H A P T E R 2

File Manager
DESCRIPTION

The GetVInfo function returns the name, volume reference number, and available
space (in bytes) for the specified volume. You specify a volume by providing its drive
number in the drvNum parameter. You can pass 0 in the drvNum parameter to get
information about the default volume.

RESULT CODES

GetVRefNum 2

You can use the GetVRefNum function to get a volume reference number from a file
reference number.

FUNCTION GetVRefNum (refNum: Integer; VAR vRefNum: Integer):

OSErr;

refNum The file reference number of an open file.

vRefNum On exit, the volume reference number of the volume containing the file
specified by refNum.

DESCRIPTION

The GetVRefNum function returns the volume reference number of the volume
containing the specified file. If you also want to determine the directory ID of the
specified file’s parent directory, call the PBGetFCBInfo function.

RESULT CODES

Low-Level Volume Access Routines 2
This section describes the low-level routines for accessing volumes. These routines
exchange parameters with your application through a parameter block of type
ParamBlock, HParamBlock, or WDPBRec. When you call a low-level routine, you
pass the address of the appropriate parameter block to the routine.

Some low-level routines for accessing volumes can run either asynchronously or
synchronously. Each of these routines comes in three versions: one version requires the
async parameter and two have the suffix Async or Sync added to their names. For

noErr 0 No error
nsvErr –35 No such volume
paramErr –50 No default volume

noErr 0 No error
rfNumErr –51 Bad reference number
2-138 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
more information about the differences between the three versions, see “Low-Level File
Access Routines” on page 2-121.

Only the first version of these routines is documented in this section. See “Summary of
the File Manager,” beginning on page 2-243, for a listing that includes all three versions.

Assembly-Language Note

See the assembly-language note on page 2-121 for details on calling
these routines from assembly language. ◆

Mounting and Unmounting Volumes 2

The File Manager provides several low-level routines that allow you to mount and
unmount Macintosh volumes, eject volumes, and place mounted volumes offline.

PBMountVol 2

You can use the PBMountVol function to mount a volume.

FUNCTION PBMountVol (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic FIle Manager parameter block.

Parameter block

DESCRIPTION

The PBMountVol function mounts the volume in the specified drive. If there are no
volumes already mounted, this volume becomes the default volume.

Because you specify the volume to be mounted by providing a drive number, you can
use PBMountVol to mount only one volume per disk.

The PBMountVol function always executes synchronously.

Note

The PBMountVol function opens two files needed for maintaining
file catalog and file mapping information. If no access paths are
available for these two files, PBMountVol fails and returns tmfoErr
as its function result. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBMountVol is _MountVol.

← ioResult OSErr The result code of the function.
↔ ioVRefNum Integer On input, a drive number. On output,

the volume reference number.
File Manager Reference 2-139

C H A P T E R 2

File Manager
RESULT CODES

PBUnmountVol 2

You can use the PBUnmountVol function to unmount a volume.

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

The PBUnmountVol function unmounts the specified volume. All user files on the
volume must be closed. Then, PBUnmountVol calls PBFlushVol to flush the volume
and releases the memory used for the volume.

The PBUnmountVol function always executes synchronously.

▲ W A R N I N G

Don’t unmount the startup volume. Doing so will cause a
system crash. ▲

Note

Unmounting a volume does not close working directories; to release the
memory allocated to a working directory, call PBCloseWD. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBUnmountVol is _UnmountVol.

noErr 0 No error
ioErr –36 I/O error
tmfoErr –42 Too many files open
paramErr –50 Bad drive number
volOnLinErr –55 Volume already online
nsDrvErr –56 No such drive
noMacDskErr –57 Not a Macintosh disk
extFSErr –58 External file system
badMDBErr –60 Bad master directory block
memFullErr –108 Not enough room in heap zone

← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume reference number, a

working directory reference number,
or 0 for the default volume.
2-140 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
RESULT CODES

PBEject 2

When your application is finished with a volume, you can use the PBEject function to
place the volume offline and eject it.

FUNCTION PBEject (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

The PBEject function flushes the specified volume, places it offline, and then ejects
the volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBEject is _Eject. You can invoke the _Eject macro asynchro-
nously; the first two parts of the call are executed synchronously, and the actual ejection
is executed asynchronously.

RESULT CODES

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
fBsyErr –47 One or more files are open
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system

→ ioCompletion ProcPtr A pointer to a completion
routine.

← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system
File Manager Reference 2-141

C H A P T E R 2

File Manager
PBOffLine 2

You can use the PBOffLine function to place a volume offline. Most applications don’t
need to do this.

FUNCTION PBOffLine (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

The PBOffLine function places the specified volume offline by calling PBFlushVol to
flush the volume and releasing all the memory used for the volume except for the
volume control block.

The PBOffLine function always executes synchronously.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBOffLine is _OffLine.

RESULT CODES

Updating Volumes 2

You can update a volume by calling the PBFlushVol function.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system
2-142 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBFlushVol 2

You can use the PBFlushVol function to write the contents of the volume buffer and
update information about the volume.

FUNCTION PBFlushVol (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

On the volume specified by ioNamePtr or ioVRefNum, the PBFlushVol function
writes descriptive information about the volume, the contents of the associated volume
buffer, and all access path buffers for the volume (if they’ve changed since the last time
PBFlushVol was called).

Note

The date and time of the last modification to the volume are set when
the modification is made, not when the volume is flushed. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBFlushVol is _FlushVol.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad volume name
paramErr –50 No default volume
nsDrvErr –56 No such drive
extFSErr –58 External file system
File Manager Reference 2-143

C H A P T E R 2

File Manager
Obtaining Volume Information 2

The File Manager provides several routines that allow you to obtain and modify
information about a volume. For example, you can use the PBHGetVInfo function
to determine the date and time that a volume was last modified. You can use the
PBHGetVolParms function to determine other features of the volume, such as
whether it supports the PBHOpenDeny function.

PBHGetVInfo 2

You can use the PBHGetVInfo function to get detailed information about a volume.

FUNCTION PBHGetVInfo (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to the volume’s name.
↔ ioVRefNum Integer On input, a volume specification.

On output, the volume reference
number.

→ ioVolIndex Integer An index used for indexing through
all mounted volumes.

← ioVCrDate LongInt The date and time of initialization.
← ioVLsMod LongInt The date and time of last

modification.
← ioVAtrb Integer The volume attributes.
← ioVNmFls Integer The number of files in the root

directory.
← ioVBitMap Integer The first block of the volume bitmap.
← ioVAllocPtr Integer The block at which the next new

file starts.
← ioVNmAlBlks Integer The number of allocation blocks.
← ioVAlBlkSiz LongInt The size of allocation blocks.
← ioVClpSiz LongInt The default clump size.
← ioAlBlSt Integer The first block in the volume

block map.
← ioVNxtCNID LongInt The next unused catalog node ID.
← ioVFrBlk Integer The number of unused

allocation blocks.
← ioVSigWord Integer The volume signature.
← ioVDrvInfo Integer The drive number.
← ioVDRefNum Integer The driver reference number.
2-144 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
DESCRIPTION

The PBHGetVInfo function returns information about the specified volume. If the value
of ioVolIndex is positive, the File Manager attempts to use it to find the volume; for
instance, if the value of ioVolIndex is 2, the File Manager attempts to access the second
mounted volume in the VCB queue. If the value of ioVolIndex is negative, the File
Manager uses ioNamePtr and ioVRefNum in the standard way to determine the
volume. If the value of ioVolIndex is 0, the File Manager attempts to access the
volume by using ioVRefNum only. The volume reference number is returned in
ioVRefNum, and the volume name is returned in the buffer whose address you passed
in ioNamePtr. You should pass a pointer to a Str31 value if you want that name
returned. If you pass NIL in the ioNamePtr field, no volume name is returned.

If you pass a working directory reference number in ioVRefNum (or if the default
directory is a subdirectory), the number of files and directories in the specified directory
(the directory’s valence) is returned in ioVNmFls.

You can read the ioVDrvInfo and ioVDRefNum fields to determine whether the
specified volume is online, offline, or ejected. For online volumes, ioVDrvInfo contains
the drive number of the drive containing the specified volume and hence is always
greater than 0. If the value returned in ioVDrvInfo is 0, the volume is either offline or
ejected. You can determine whether the volume is offline or ejected by inspecting the
value of the ioVDRefNum field. For online volumes, ioVDRefNum contains a driver
reference number; these numbers are always less than 0. If the volume is not online, the
value of ioVDRefNum is either the negative of the drive number (if the volume is offline)
or the drive number itself (if the volume is ejected).

You can get information about all the online volumes by making repeated calls to
PBHGetVInfo, starting with the value of ioVolIndex set to 1 and incrementing that
value until PBHGetVInfo returns nsvErr.

SPECIAL CONSIDERATIONS

The values returned in the ioVNmAlBlks and ioVFrBlk fields are unsigned integers.
You need to exercise special care when reading those values from Pascal. See
“Determining the Amount of Free Space on a Volume” on page 2-47 for one technique
you can use to read those values.

← ioVFSID Integer The file system handling
this volume.

← ioVBkUp LongInt The date and time of the last backup.
← ioVSeqNum Integer Used internally.
← ioVWrCnt LongInt The volume write count.
← ioVFilCnt LongInt The number of files on the volume.
← ioVDirCnt LongInt The number of directories on

the volume.
← ioVFndrInfo ARRAY[1..8] OF LongInt

Information used by the Finder.
File Manager Reference 2-145

C H A P T E R 2

File Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHGetVInfo is _HGetVolInfo.

RESULT CODES

PBSetVInfo 2

You can use the PBSetVInfo function to change information about a volume.

FUNCTION PBSetVInfo (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBSetVInfo function lets you modify information about volumes. You can specify,
in ioNamePtr, a pointer to a new name for the volume. Only bit 15 of ioVAtrb can be
changed; setting it locks the volume.

Note

You cannot specify the volume by name; you must use either the
volume reference number, the drive number, or a working directory
reference number. ◆

noErr 0 No error
nsvErr –35 No such volume
paramErr –50 No default volume

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the volume’s name.
→ ioVRefNum Integer A volume specification.
→ ioVCrDate LongInt The date and time of initialization.
→ ioVLsMod LongInt The date and time of last

modification.
→ ioVAtrb Integer The volume attributes.
→ ioVBkUp LongInt The date and time of the last

backup.
→ ioVSeqNum Integer Used internally.
→ ioVFndrInfo ARRAY[1..8] OF LongInt

Information used by the Finder.
2-146 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSetVInfo is _SetVolInfo.

RESULT CODES

PBHGetVolParms 2

You can use the PBHGetVolParms function to determine the characteristics of a volume.

FUNCTION PBHGetVolParms (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHGetVolParms function returns information about the characteristics of a
volume. You specify a volume (either by name or by volume reference number) and a
buffer size, and PBHGetVolParms fills in the volume attributes buffer, as described in
this section.

You can use a name (pointed to by the ioNamePtr field) or a volume specification
(contained in the ioVRefNum field) to specify the volume. A volume specification can be
a volume reference number, drive number, or working directory reference number. If
you use a volume specification to specify the volume, you should set the ioNamePtr
field to NIL.

You must allocate memory to hold the returned attributes and put a pointer to the buffer
in the ioBuffer field. Specify the size of the buffer in the ioReqCount field. The
PBHGetVolParms function places the attributes information in the buffer pointed to by
the ioBuffer field and specifies the actual length of the data in the ioActCount field.

noErr 0 No error
nsvErr –35 No such volume
paramErr –50 No default volume

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the volume’s name.
→ ioVRefNum Integer A volume specification.
→ ioBuffer Ptr A pointer to a GetVolParmsInfoBuffer

record.
→ ioReqCount LongInt The size of the buffer area.
← ioActCount LongInt The size of the data actually returned.
File Manager Reference 2-147

C H A P T E R 2

File Manager
The PBHGetVolParms function returns the bulk of its volume description in the
vMAttrib field of the attributes buffer. The vMAttrib field contains 32 bits of
attribute information about the volume. Bits 0–3 and 21–24 are reserved; all volumes
should return these bits clear. The bits currently used are defined by these constants:

CONST

bHasBlankAccessPrivileges

= 4; {volume supports inherited privileges}

bHasBTreeMgr = 5; {reserved}

bHasFileIDs = 6; {volume supports file ID functions}

bHasCatSearch = 7; {volume supports PBCatSearch}

bHasUserGroupList

= 8; {volume supports AFP privileges}

bHasPersonalAccessPrivileges

= 9; {local file sharing is enabled}

bHasFolderLock = 10; {volume supports locking of folders}

bHasShortName = 11; {volume supports AFP short names}

bHasDesktopMgr = 12; {volume supports Desktop Manager}

bHasMoveRename = 13; {volume supports _MoveRename}

bHasCopyFile = 14; {volume supports _CopyFile}

bHasOpenDeny = 15; {volume supports shared access modes}

bHasExtFSVol = 16; {volume is external file system volume}

bNoSysDir = 17; {volume has no system directory}

bAccessCntl = 18; {volume supports AFP access control}

bNoBootBlks = 19; {volume is not a startup volume}

bNoDeskItems = 20; {do not place objects on the desktop}

bNoSwitchTo = 25; {do not switch launch to applications}

bTrshOffLine = 26; {zoom volume when it is unmounted}

bNoLclSync = 27; {don't let Finder change mod. date}

bNoVNEdit = 28; {lock volume name}

bNoMiniFndr = 29; {reserved; always 1}

bLocalWList = 30; {use shared volume handle for window }

{ list}

bLimitFCBs = 31; {limit file control blocks}

These constants have the following meanings if set:

Constant descriptions

bHasBlankAccessPrivileges
This volume supports inherited access privileges for folders.

bHasBTreeMgr Reserved for internal use.
bHasFileIDs This volume supports the file ID functions, including the

PBExchangeFiles function.
bHasCatSearch This volume supports the PBCatSearch function.
2-148 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
bHasUserGroupList
This volume supports the Users and Groups file and thus the AFP
privilege functions.

bHasPersonalAccessPrivileges
This volume has local file sharing enabled.

bHasFolderLock Folders on the volume can be locked, and so they cannot be deleted
or renamed.

bHasShortName This volume supports AFP short names.
bHasDesktopMgr This volume supports all of the desktop functions (described in

the chapter “Desktop Manager” in Inside Macintosh: More
Macintosh Toolbox).

bHasMoveRename This volume supports the PBHMoveRename function.
bHasCopyFile This volume supports the PBHCopyFile function, which is used in

copy and duplicate operations if both source and destination
volumes have the same server address.

bHasOpenDeny This volume supports the PBHOpenDeny and PBHOpenRFDeny
functions.

bHasExtFSVol This volume is an external file system volume.
bNoSysDir This volume doesn’t support a system directory. Do not switch

launch to this volume.
bAccessCntl This volume supports AppleTalk AFP access-control interfaces. The

PBHGetLoginInfo, PBHGetDirAccess, PBHSetDirAccess,
PBHMapID, and PBHMapName functions are supported. Special
folder icons are used. The Access Privileges menu command is
enabled for disk and folder items. The ioFlAttrib field of
PBGetCatInfo calls is assumed to be valid.

bNoBootBlks This volume is not a startup volume. The Startup menu item is
disabled. Boot blocks are not copied during copy operations.

bNoDeskItems Don’t place objects in this volume on the Finder desktop.
bNoSwitchTo The Finder will not switch launch to any application on this volume.
bTrshOffLine Any time this volume goes offline, it is zoomed to the Trash

and unmounted.
bNoLclSync Don’t let the Finder change the modification date.
bNoVNEdit This volume’s name cannot be edited.
bNoMiniFndr Reserved; always set to 1.
bLocalWList The Finder uses the returned shared volume handle for its local

window list.
bLimitFCBs The Finder limits the number of file control blocks used during

copying to 8 instead of 16.

SPECIAL CONSIDERATIONS

A volume’s characteristics can change when the user enables and disables file sharing.
You might have to make repeated calls to PBHGetVolParms to ensure that you have the
current status of a volume.
File Manager Reference 2-149

C H A P T E R 2

File Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHGetVolParms are

RESULT CODES

Manipulating the Default Volume 2

The low-level functions PBGetVol, PBSetVol, PBHGetVol, and PBHSetVol allow you
to manipulate the default volume and directory.

PBGetVol 2

You can use the PBGetVol function to determine the default volume and default
directory.

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetVol function returns, in ioNamePtr, a pointer to the name of the default
volume (unless ioNamePtr is NIL) and, in ioVRefNum, its volume reference number. If
a default directory was set with a previous call to PBSetVol, a pointer to its name is
returned in ioNamePtr and its working directory reference number is returned in
ioVRefNum. However, if, in a previous call to HSetVol (or PBHSetVol), a working
directory reference number was passed in, PBGetVol returns a volume reference
number in the ioVRefNum field.

Trap macro Selector

_HFSDispatch $0030

noErr 0 No error
nsvErr –35 Volume not found
paramErr –50 Volume doesn’t support the function

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
← ioNamePtr StringPtr A pointer to a pathname.
← ioVRefNum Integer A volume reference number

or a working directory
reference number.
2-150 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBGetVol is _GetVol.

RESULT CODES

PBSetVol 2

You can change the default volume and default directory using the PBSetVol function.

FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

If you pass a volume reference number in ioVRefNum, the PBSetVol function makes
the specified volume the default volume and the root directory of that volume the
default directory. If you pass a working directory reference number, PBSetVol makes
the specified directory the default directory, and the volume containing that directory
the default volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSetVol is _SetVol.

RESULT CODES

noErr 0 No error
nsvErr –35 No default volume

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume reference number or a

working directory reference number.

noErr 0 No error
nsvErr –35 No such volume
bdNamErr –37 Bad volume name
paramErr –50 No default volume
File Manager Reference 2-151

C H A P T E R 2

File Manager
PBHGetVol 2

You can use the PBHGetVol function to determine the default volume and default
directory.

FUNCTION PBHGetVol (paramBlock: WDPBPtr; async: Boolean): OSErr;

paramBlock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHGetVol function returns the default volume and directory last set by a call
to either PBSetVol or PBHSetVol. The reference number of the default volume is
returned in ioVRefNum. The PBHGetVol function returns a pointer to the volume’s
name in the ioNamePtr field. You should pass a pointer to a Str31 value if you
want that name returned. If you pass NIL in the ioNamePtr field, no volume name
is returned.

▲ W A R N I N G

On exit, the ioVRefNum field contains a working directory reference
number (instead of the volume reference number) if, in the last call to
PBSetVol or PBHSetVol, a working directory reference number was
passed in this field. ▲

The volume reference number of the volume on which the default directory exists
is returned in ioWDVRefNum. The directory ID of the default directory is returned
in ioWDDirID.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHGetVol is _HGetVol.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
← ioNamePtr StringPtr A pointer to a pathname.
← ioVRefNum Integer A volume reference number or a working

directory reference number.
← ioWDProcID LongInt The working directory user identifier.
← ioWDVRefNum Integer The volume reference number of the

default volume.
← ioWDDirID LongInt The directory ID of the default directory.

noErr 0 No error
nsvErr –35 No default volume
2-152 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBHSetVol 2

The PBHSetVol function sets both the default volume and the default directory.

FUNCTION PBHSetVol (paramBlock: WDPBPtr; async: Boolean): OSErr;

paramBlock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHSetVol function sets the default volume and directory to the volume and
directory specified by the ioNamePtr, ioVRefNum, and ioWDDirID fields.

The PBHSetVol function sets the default volume to the volume specified by the
ioVRefNum field, which can contain either a volume reference number or a working
directory reference number. If the ioNamePtr field specifies a full pathname, however,
the default volume is set to the volume whose name is contained in that pathname. (A
full pathname overrides the ioVRefNum field.)

The PBHSetVol function also sets the default directory. If the ioVRefNum field contains
a volume reference number, then the default directory is set to the directory on that
volume having the partial pathname specified by ioNamePtr in the directory specified
by ioWDDirID. If the value of ioNamePtr is NIL, the default directory is simply the
directory whose directory ID is contained in ioWDDirID.

If the ioVRefNum field contains a working directory reference number, then ioWDDirID
is ignored and the default directory is set to the directory on that volume having the
partial pathname specified by ioNamePtr in the directory specified by the working
directory reference number. If the value of ioNamePtr is NIL, the default directory is
simply the directory specified in ioVRefNum.

▲ W A R N I N G

Use of the PBHSetVol function is discouraged if your application may
execute in system software versions prior to version 7.0. Because the
specified directory might not itself be a working directory, PBHSetVol
records the default volume and directory separately, using the volume
reference number of the volume and the actual directory ID of the
specified directory. Subsequent calls to GetVol (or PBGetVol) return
only the volume reference number, which will cause that volume’s root
directory (rather than the default directory, as expected) to be accessed. ▲

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume reference number or a

working directory reference number.
→ ioWDDirID LongInt The directory ID.
File Manager Reference 2-153

C H A P T E R 2

File Manager
Note

Both the default volume and the default directory are used in calls made
with no volume name, a volume reference number of 0, and a directory
ID of 0. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSGetVol is _HSetVol.

RESULT CODES

File System Specification Routines 2
The File Manager provides a set of file and directory manipulation routines that accept
file system specification records as parameters. Depending on the requirements of your
application and on the environment in which it is running, you may be able to
accomplish all your file and directory operations by using these routines.

Before calling any of these routines, however, you should call the Gestalt function to
ensure that they are available in the operating environment. If these routines are not
available, you can call the corresponding HFS routines. See “High-Level HFS Routines”
on page 2-170 for details.

Opening Files 2

There are two FSSpec functions that allow you to open files, FSpOpenDF and
FSpOpenRF. You can use them to open a file’s data fork and resource fork, respectively.

FSpOpenDF 2

You can use the FSpOpenDF function to open a file’s data fork.

FUNCTION FSpOpenDF (spec: FSSpec; permission: SignedByte;

VAR refNum: Integer): OSErr;

spec An FSSpec record specifying the file whose data fork is to be opened.

permission A constant indicating the desired file access permissions.

refNum A reference number of an access path to the file’s data fork.

noErr 0 No error
nsvErr –35 No such volume
bdNamErr –37 Bad volume name
fnfErr –43 Directory not found
paramErr –50 No default volume
afpAccessDenied –5000 User does not have access to the directory
2-154 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
DESCRIPTION

The FSpOpenDF function opens the data fork of the file specified by the spec parameter
and returns a file reference number in the refNum parameter. You can pass that reference
number as a parameter to any of the low- or high-level file access routines.

The permission parameter specifies the kind of access permission mode you want.
In most cases, you can simply set the permission parameter to fsCurPerm. Some
applications request fsRdWrPerm, to ensure that they can both read from and write
to a file. For more information about permissions, see “File Manipulation” on page 2-7.
In shared environments, permission requests are translated into the deny mode
permissions defined by AppleShare.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpOpenDF are

RESULT CODES

FSpOpenRF 2

You can use the FSpOpenRF function to open a file’s resource fork.

FUNCTION FSpOpenRF (spec: FSSpec; permission: SignedByte;

VAR refNum: Integer): OSErr;

spec An FSSpec record specifying the file whose resource fork is to be opened.

permission A constant indicating the desired file access permissions.

refNum A reference number of an access path to the file’s resource fork.

DESCRIPTION

The FSpOpenRF function creates an access path to the resource fork of a file and returns,
in the refNum parameter, an access path reference number to that fork. You can pass that

Trap macro Selector

_HighLevelHFSDispatch $0002

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
File Manager Reference 2-155

C H A P T E R 2

File Manager
reference number as a parameter to any of the low- or high-level file access routines.
The permission parameter should contain a constant indicating the desired file
access permissions.

SPECIAL CONSIDERATIONS

Generally, your application should use Resource Manager routines rather than File
Manager routines to access a file’s resource fork. The FSpOpenRF function does not read
the resource map into memory and is generally useful only for applications (such as
utilities that copy files) that need block-level access to a resource fork. In particular, you
should not use the resource fork of a file to hold nonresource data. Many parts of the
system software assume that a resource fork always contains resource data.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpOpenRF are

RESULT CODES

Creating and Deleting Files and Directories 2

You can create files and directories by calling FSpCreate and FSpDirCreate,
respectively. You can delete files and directories by calling the FSpDelete function.

FSpCreate 2

You can use the FSpCreate function to create a new file.

FUNCTION FSpCreate (spec: FSSpec; creator: OSType;

fileType: OSType; scriptTag: ScriptCode):

OSErr;

spec An FSSpec record specifying the file to be created.

Trap macro Selector

_HighLevelHFSDispatch $0003

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
2-156 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
creator The creator of the new file.

fileType The file type of the new file.

scriptTag The code of the script system in which the filename is to be displayed. If
you have established the name and location of the new file using either the
StandardPutFile or CustomPutFile procedure, specify the script
code returned in the reply record. (See the chapter “Standard File Package”
in this book for a description of StandardPutFile and
CustomPutFile.) Otherwise, specify the system script by setting the
scriptTag parameter to the value smSystemScript.

DESCRIPTION

The FSpCreate function creates a new file (both forks) with the specified type, creator,
and script code. The new file is unlocked and empty. The date and time of creation and
last modification are set to the current date and time.

See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for
information on file types and creators.

Files created using FSpCreate are not automatically opened. If you want to write data to
the new file, you must first open the file using a file access routine (such as FSpOpenDF).

Note

The resource fork of the new file exists but is empty. You’ll need to
call one of the Resource Manager procedures CreateResFile,
HCreateResFile, or FSpCreateResFile to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFile, HOpenResFile, or FSpOpenResFile). ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpCreate are

RESULT CODES

Trap macro Selector

_HighLevelHFSDispatch $0004

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 A directory exists with that name
File Manager Reference 2-157

C H A P T E R 2

File Manager
FSpDirCreate 2

You can use the FSpDirCreate function to create a new directory.

FUNCTION FSpDirCreate (spec: FSSpec; scriptTag: ScriptCode;

VAR createdDirID: LongInt): OSErr;

spec An FSSpec record specifying the directory to be created.

scriptTag The code of the script system in which the directory name is to be
displayed. If you have established the name and location of the new
directory using either the StandardPutFile or CustomPutFile
procedure, specify the script code returned in the reply record. (See the
chapter “Standard File Package” in this book for a description of
StandardPutFile and CustomPutFile.) Otherwise, specify the
system script by setting the scriptTag parameter to the value
smSystemScript.

createdDirID
The directory ID of the directory that was created.

DESCRIPTION

The FSpDirCreate function creates a new directory and returns the directory ID of the
new directory in the createdDirID parameter. Then FSpDirCreate sets the date and
time of creation and last modification to the current date and time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpDirCreate are

RESULT CODES

Trap macro Selector

_HighLevelHFSDispatch $0005

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access
2-158 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
FSpDelete 2

You can use the FSpDelete function to delete files and directories.

FUNCTION FSpDelete (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file or directory to delete.

DESCRIPTION

The FSpDelete function removes a file or directory. If the specified target is a file, both
forks of the file are deleted. The file ID reference, if any, is removed.

A file must be closed before you can delete it. Similarly, a directory must be empty
before you can delete it. If you attempt to delete an open file or a nonempty directory,
FSpDelete returns the result code fBsyErr. FSpDelete also returns the result
code fBsyErr if the directory has an open working directory associated with it.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpDelete are

RESULT CODES

Accessing Information About Files and Directories 2

You can use several File Manager routines that accept FSSpec records if you want to
obtain and set information about files and directories and to manipulate file locking.
These routines don’t require the file to be open.

Trap macro Selector

_HighLevelHFSDispatch $0006

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
fBsyErr –47 File busy, directory not empty, or working directory

control block open
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
File Manager Reference 2-159

C H A P T E R 2

File Manager
FSpGetFInfo 2

You can use the FSpGetFInfo function to obtain the Finder information about a file or
directory.

FUNCTION FSpGetFInfo (spec: FSSpec; VAR fndrInfo: FInfo): OSErr;

spec An FSSpec record specifying the file or directory whose Finder
information is desired.

fndrInfo Information used by the Finder.

DESCRIPTION

The FSpGetFInfo function returns the Finder information from the volume catalog
entry for the specified file or directory. The FSpGetFInfo function provides only the
original Finder information—the FInfo or DInfo records, not FXInfo or DXInfo. (See
the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for a
discussion of Finder information.)

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpGetFInfo are

RESULT CODES

FSpSetFInfo 2

You can use the FSpSetFInfo function to set the Finder information about a file
or directory.

FUNCTION FSpSetFInfo (spec: FSSpec; fndrInfo: FInfo): OSErr;

spec An FSSpec record specifying the file or directory whose Finder
information will be set.

fndrInfo Information to be used by the Finder.

Trap macro Selector

_HighLevelHFSDispatch $0007

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
paramErr –50 No default volume
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Directory not found or incomplete pathname
2-160 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
DESCRIPTION

The FSpSetFInfo function changes the Finder information in the volume catalog entry
for the specified file or directory. FSpSetFInfo allows you to set only the original
Finder information—the FInfo or DInfo records, not FXInfo or DXInfo. (See the
chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for a
discussion of Finder information.)

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpSetFInfo are

RESULT CODES

FSpSetFLock 2

You can use the FSpSetFLock function to lock a file.

FUNCTION FSpSetFLock (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file to lock.

DESCRIPTION

The FSpSetFLock function locks a file. After you lock a file, all new access paths to that
file are read-only. This function has no effect on existing access paths.

If the PBHGetVolParms function indicates that the volume supports folder locking (that
is, the bHasFolderLock bit of the vMAttrib field is set), you can use FSpSetFLock to
lock a directory.

Trap macro Selector

_HighLevelHFSDispatch $0008

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object was a directory
File Manager Reference 2-161

C H A P T E R 2

File Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpSetFLock are

RESULT CODES

FSpRstFLock 2

You can use the FSpRstFLock function to unlock a file.

FUNCTION FSpRstFLock (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file to unlock.

DESCRIPTION

The FSpRstFLock function unlocks a file.

If the PBHGetVolParms function indicates that the volume supports folder locking (that
is, the bHasFolderLock bit of the vMAttrib field is set), you can use FSpRstFLock to
unlock a directory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpRstFLock are

RESULT CODES

Trap macro Selector

_HighLevelHFSDispatch $0009

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume

Trap macro Selector

_HighLevelHFSDispatch $000A

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume
2-162 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
FSpRename 2

You can use the FSpRename function to rename a file or directory.

FUNCTION FSpRename (spec: FSSpec; newName: Str255): OSErr;

spec An FSSpec record specifying the file or directory to rename.

newName The new name of the file or directory.

DESCRIPTION

The FSpRename function changes the name of a file or directory. If a file ID reference for
the specified file exists, it remains with the renamed file.

SPECIAL CONSIDERATIONS

If you want to change the name of a new copy of an existing file, you should use the
FSpExchangeFiles function instead.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpRename are

RESULT CODES

Moving Files or Directories 2

The FSpCatMove function allows you to move files and directories within a volume. If
the FSSpec routines are not available, you can call the high-level HFS routine CatMove
or the low-level HFS routine PBCatMove.

Trap macro Selector

_HighLevelHFSDispatch $000B

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Volume is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
paramErr –50 No default volume
fsRnErr –59 Problem during rename
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
File Manager Reference 2-163

C H A P T E R 2

File Manager
FSpCatMove 2

You can use the FSpCatMove function to move a file or directory from one location to
another on the same volume.

FUNCTION FSpCatMove (source: FSSpec; dest: FSSpec): OSErr;

source An FSSpec record specifying the name and location of the file or
directory to be moved.

dest An FSSpec record specifying the name and location of the directory into
which the source file or directory is to be moved.

DESCRIPTION

The FSpCatMove function moves the file or directory specified by the source
parameter into the directory specified by the dest parameter. The directory ID specified
in the parID field of the dest parameter is the directory ID of the parent of the
directory into which you want to move the source file or directory. The name field of the
dest parameter specifies the name of the directory into which you want to move the
source file or directory.

Note

If you don’t already know the parent directory ID of the destination
directory, it might be easier to use the PBCatMove function, which
allows you to specify only the directory ID of the destination directory. ◆

The FSpCatMove function is strictly a file catalog operation; it does not actually change
the location of the file or directory on the disk. You cannot use FSpCatMove to move
a file or directory to another volume (that is, the vRefNum field in both FSSpec
parameters must be the same). Also, you cannot use FSpCatMove to rename files or
directories; to rename a file or directory, use FSpRename.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpCatMove are

Trap macro Selector

_HighLevelHFSDispatch $000C
2-164 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
RESULT CODES

Exchanging the Data in Two Files 2

The FSpExchangeFiles function allows you to exchange the data in two files.

FSpExchangeFiles 2

You can use the FSpExchangeFiles function to exchange the data stored in two files
on the same volume.

FUNCTION FSpExchangeFiles (source: FSSpec; dest: FSSpec): OSErr;

source The source file. The contents of this file and its file information are placed
in the file specified by the dest parameter.

dest The destination file. The contents of this file and its file information are
placed in the file specified by the source parameter.

DESCRIPTION

The FSpExchangeFiles function swaps the data in two files by changing the
information in the volume’s catalog and, if the files are open, in the file control
blocks. You should use FSpExchangeFiles when updating an existing file, so
that the file ID remains valid in case the file is being tracked through its file ID.
The FSpExchangeFiles function changes the fields in the catalog entries that
record the location of the data and the modification dates. It swaps both the data
forks and the resource forks.

The FSpExchangeFiles function works on both open and closed files. If either file is
open, FSpExchangeFiles updates any file control blocks associated with the file.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or attempt to move into a file
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 Target directory is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
paramErr –50 No default volume
badMovErr –122 Attempt to move into offspring
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access to the file
File Manager Reference 2-165

C H A P T E R 2

File Manager
Exchanging the contents of two files requires essentially the same access permissions as
opening both files for writing.

The files whose data is to be exchanged must both reside on the same volume. If they do
not, FSpExchangeFiles returns the result code diffVolErr.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSpExchangeFiles are

RESULT CODES

Creating File System Specifications 2

You can use either the FSMakeFSSpec function or the PBMakeFSSpec function to
create FSSpec records. You should always use FSMakeFSSpec or PBMakeFSSpec
to create an FSSpec record rather than allocating space and filling out the fields of the
record yourself.

FSMakeFSSpec 2

You can use the FSMakeFSSpec function to initialize an FSSpec record to particular
values for a file or directory.

FUNCTION FSMakeFSSpec (vRefNum: Integer; dirID: LongInt;

fileName: Str255; VAR spec: FSSpec):

OSErr;

Trap macro Selector

_HighLevelHFSDispatch $000F

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
wrgVolTypErr –123 Not an HFS volume
diffVolErr –1303 Files on different volumes
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object is a directory, not a file
afpSameObjectErr –5038 Source and destination files are the same
2-166 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
vRefNum A volume specification. This parameter can contain a volume reference
number, a working directory reference number, a drive number, or 0
(to specify the default volume).

dirID A directory specification. This parameter usually specifies the parent
directory ID of the target object. If the directory is sufficiently specified
by either the vRefNum or fileName parameter, dirID can be set to 0.
If you explicitly specify dirID (that is, if it has any value other than 0),
and if vRefNum specifies a working directory reference number, dirID
overrides the directory ID included in vRefNum. If the fileName
parameter contains an empty string, FSMakeFSSpec creates an
FSSpec record for a directory specified by either the dirID or
vRefNum parameter.

fileName A full or partial pathname. If fileName specifies a full pathname,
FSMakeFSSpec ignores both the vRefNum and dirID parameters. A
partial pathname might identify only the final target, or it might include
one or more parent directory names. If fileName specifies a partial
pathname, then vRefNum, dirID, or both must be valid.

spec A file system specification to be filled in by FSMakeFSSpec.

DESCRIPTION

The FSMakeFSSpec function fills in the fields of the spec parameter using the
information contained in the other three parameters. Call FSMakeFSSpec whenever you
want to create an FSSpec record.

You can pass the input to FSMakeFSSpec in any of the ways described in “HFS
Specifications” on page 2-28. See Table 2-10 on page 2-36 for information about the way
FSMakeFSSpec interprets its input.

If the specified volume is mounted and the specified parent directory exists, but the
target file or directory doesn’t exist in that location, FSMakeFSSpec fills in the record
and then returns fnfErr instead of noErr. The record is valid, but it describes a target
that doesn’t exist. You can use the record for other operations, such as creating a file with
the FSpCreate function.

In addition to the result codes that follow, FSMakeFSSpec can return a number of other
File Manager error codes. If your application receives any result code other than noErr
or fnfErr, all fields of the resulting FSSpec record are set to 0.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSMakeFSSpec are

Trap macro Selector

_HighLevelHFSDispatch $0001
File Manager Reference 2-167

C H A P T E R 2

File Manager
RESULT CODES

PBMakeFSSpec 2

You can use the low-level PBMakeFSSpec function to create an FSSpec record for a file
or directory.

FUNCTION PBMakeFSSpec (paramBlock: HParmBlkPtr; async: Boolean):

 OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

Given a complete specification for a file or directory, the PBMakeFSSpec function fills in
an FSSpec record that identifies the file or directory. (See Table 2-10 on page 2-36 for a
detailed description of valid file specifications.)

If the specified volume is mounted and the specified parent directory exists, but the
target file or directory doesn’t exist in that location, PBMakeFSSpec fills in the record
and returns fnfErr instead of noErr. The record is valid, but it describes a target that
doesn’t exist. You can use the record for another operation, such as creating a file.

In addition to the result codes that follow, PBMakeFSSpec can return a number of
different File Manager error codes. When PBMakeFSSpec returns any result other
than noErr or fnfErr, all fields of the resulting FSSpec record are set to 0.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBMakeFSSpec are

noErr 0 No error
nsvErr –35 Volume doesn’t exist
fnfErr –43 File or directory does not exist (FSSpec is still valid)

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a file or directory name.
→ ioVRefNum Integer A volume specification.
→ ioMisc LongInt A pointer to an FSSpec record.
→ ioDirID LongInt A parent directory ID.

Trap macro Selector

_HFSDispatch $001B
2-168 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
RESULT CODES

High-Level HFS Routines 2
The File Manager provides a set of high-level file and directory manipulation routines
that are available in all operating environments. You may need to use these routines if
the FSSpec routines are not available. You do not need to call the Gestalt function to
determine if these routines are available.

Each of the high-level HFS routines allows you to specify a file or directory by providing
three parameters: a volume specification, a directory specification, and a filename. See
“HFS Specifications” on page 2-28 for a complete description of the many ways in which
you can set these parameters to pick out a file or directory.

Opening Files 2

You can use the functions HOpenDF, HOpenRF, and HOpen to open files.

HOpenDF 2

You can use the HOpenDF function to open the data fork of a file.

FUNCTION HOpenDF (vRefNum: Integer; dirID: LongInt;

fileName: Str255; permission: SignedByte;

VAR refNum: Integer): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

permission The access mode under which to open the file.

refNum The file reference number of the opened file.

DESCRIPTION

The HOpenDF function creates an access path to the data fork of a file and returns, in
the refNum parameter, an access path reference number to that fork. You can pass that
reference number as a parameter to any of the high-level file access routines.

noErr 0 No error
nsvErr –35 Volume doesn’t exist
fnfErr –43 File or directory does not exist (FSSpec is still valid)
File Manager Reference 2-169

C H A P T E R 2

File Manager
RESULT CODES

HOpenRF 2

You can use the HOpenRF function to open the resource fork of file.

FUNCTION HOpenRF (vRefNum: Integer; dirID: LongInt;

fileName: Str255; permission: SignedByte;

VAR refNum: Integer): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

permission The access mode under which to open the file.

refNum The file reference number of the opened file.

DESCRIPTION

The HOpenRF function creates an access path to the resource fork of a file. A file
reference number for that file is returned in the refNum parameter.

SPECIAL CONSIDERATIONS

Generally, your application should use Resource Manager routines rather than File
Manager routines to access a file’s resource fork. The HOpenRF function does not read
the resource map into memory and is generally useful only for applications (such as
utilities that copy files) that need block-level access to a resource fork. In particular, you
should not use the resource fork of a file to hold nonresource data. Many parts of the
system software assume that a resource fork always contains resource data.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
2-170 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
RESULT CODES

HOpen 2

You can use the HOpen function to open the data fork of a file. Because HOpen also opens
devices, it’s safer to use the HOpenDF function instead.

FUNCTION HOpen (vRefNum: Integer; dirID: LongInt;

fileName: Str255; permission: SignedByte;

VAR refNum: Integer): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

permission The access mode under which to open the file.

refNum The file reference number of the opened file.

DESCRIPTION

The HOpen function creates an access path to the data fork of the specified file. A file
reference number for that file is returned in the refNum parameter.

▲ W A R N I N G

If you use HOpen to try to open a file whose name begins with a period,
you might mistakenly open a driver instead; subsequent attempts to
write data might corrupt data on the target device. To avoid these
problems, you should always use HOpenDF instead of HOpen. ▲

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
File Manager Reference 2-171

C H A P T E R 2

File Manager
RESULT CODES

Creating and Deleting Files and Directories 2

You can create a file by calling the HCreate function and a directory by calling the
DirCreate function. To delete either a file or a directory, call HDelete.

HCreate 2

You can use the HCreate function to create a new file.

FUNCTION HCreate (vRefNum: Integer; dirID: LongInt;

fileName: Str255; creator: OSType;

fileType: OSType): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the new file.

creator The creator of the new file.

fileType The file type of the new file.

DESCRIPTION

The HCreate function creates a new file (both forks) with the specified name, creator,
and file type. For information on a file’s creator and type, see the chapter “Finder
Interface” in Inside Macintosh: Macintosh Toolbox Essentials.

The new file is unlocked and empty. The date and time of its creation and last
modification are set to the current date and time.

Files created using HCreate are not automatically opened. If you want to write data to
the new file, you must first open the file using a file access routine.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
2-172 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Note

The resource fork of the new file exists but is empty. You’ll need to
call one of the Resource Manager procedures CreateResFile,
HCreateResFile, or FSpCreateResFile to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFile, HOpenResFile, or FSpOpenResFile). ◆

You should not allow users to give files names that begin with a period (.). This ensures
that files can be successfully opened by applications calling HOpen instead of HOpenDF.

RESULT CODES

DirCreate 2

You can use the DirCreate function to create a new directory.

FUNCTION DirCreate (vRefNum: Integer; parentDirID: LongInt;

directoryName: Str255;

VAR createdDirID: LongInt): OSErr;

vRefNum A volume reference number, a working directory reference number,
or 0 for the default volume.

parentDirID The directory ID of the parent directory; if it’s 0, the new directory
is placed in the root directory of the specified volume.

directoryName The name of the new directory.

createdDirID The directory ID of the created directory.

DESCRIPTION

The DirCreate function creates a new directory and returns the directory ID of the new
directory in the createdDirID parameter. The date and time of its creation and last
modification are set to the current date and time.

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 A directory exists with that name
File Manager Reference 2-173

C H A P T E R 2

File Manager
Note

A directory ID, unlike a volume reference number or a working
directory reference number, is a LongInt value. ◆

RESULT CODES

HDelete 2

You can use the HDelete function to delete a file or directory.

FUNCTION HDelete (vRefNum: Integer; dirID: LongInt;

fileName: Str255): OSErr;

vRefNum A volume specification (a volume reference number, a working directory
reference number, or 0 for the default volume).

dirID The directory ID of the parent of the file or directory to delete.

fileName The name of the file or directory to delete.

DESCRIPTION

The HDelete function removes a file or directory. If the specified target is a file, both
forks of the file are deleted. In addition, if a file ID reference for the specified file exists,
that reference is removed.

A file must be closed before you can delete it. Similarly, you cannot delete a directory
unless it’s empty. If you attempt to delete an open file or a nonempty directory, HDelete
returns the result code fBsyErr. HDelete also returns the result code fBsyErr if the
directory has an open working directory associated with it.

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access
2-174 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
RESULT CODES

Accessing Information About Files and Directories 2

The File Manager provides a number of high-level HFS routines that allow you to obtain
and set information about files and directories and to manipulate file locking. All of the
routines described in this section operate on both forks of a file and don’t require the file
to be open.

HGetFInfo 2

You can use the HGetFInfo function to obtain the Finder information for a file.

FUNCTION HGetFInfo (vRefNum: Integer; dirID: LongInt;

fileName: Str255; VAR fndrInfo: FInfo):

OSErr;

vRefNum A volume reference number, a working directory reference number, or
0 for the default volume.

dirID A directory ID.

fileName The name of the file.

fndrInfo Information used by the Finder.

DESCRIPTION

The HGetFInfo function returns the Finder information stored in the volume’s catalog
for a file. The HGetFInfo function returns only the original Finder information—the
FInfo record, not FXInfo. (See the chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials for a discussion of Finder information.)

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
fBsyErr –47 File busy, directory not empty, or working directory

control block open
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
File Manager Reference 2-175

C H A P T E R 2

File Manager
RESULT CODES

HSetFInfo 2

You can use the HSetFInfo function to set the Finder information for a file.

FUNCTION HSetFInfo (vRefNum: Integer; dirID: LongInt;

fileName: Str255; fndrInfo: FInfo): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

fndrInfo Information used by the Finder.

DESCRIPTION

The HSetFInfo function changes the Finder information stored in the volume’s catalog
for a file. HSetFInfo changes only the original Finder information—the FInfo record,
not FXInfo. (See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for a discussion of Finder information.)

RESULT CODES

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
paramErr –50 No default volume
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Directory not found or incomplete pathname

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object was a directory
2-176 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
HSetFLock 2

You can use the HSetFLock function to lock a file.

FUNCTION HSetFLock (vRefNum: Integer; dirID: LongInt;

fileName: Str255): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

DESCRIPTION

The HSetFLock function locks a file. After you lock a file, all new access paths to that
file are read-only. This function has no effect on existing access paths.

If the PBHGetVolParms function indicates that the volume supports folder locking (that
is, the bHasFolderLock bit of the vMAttrib field is set), you can use HSetFLock to
lock a directory.

RESULT CODES

HRstFLock 2

You can use the HRstFLock function to unlock a file.

FUNCTION HRstFLock (vRefNum: Integer; dirID: LongInt;

fileName: Str255): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

fileName The name of the file.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume
File Manager Reference 2-177

C H A P T E R 2

File Manager
DESCRIPTION

The HRstFLock function unlocks a file.

If the PBHGetVolParms function indicates that the volume supports folder locking (that
is, the bHasFolderLock bit of the vMAttrib field is set), you can use HRstFLock to
unlock a directory.

RESULT CODES

HRename 2

You can use the HRename function to rename a file, directory, or volume.

FUNCTION HRename (vRefNum: Integer; dirID: LongInt;

oldName: Str255; newName: Str255): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

oldName An existing filename, directory name, or volume name.

newName The new filename, directory name, or volume name.

DESCRIPTION

The HRename function changes the name of a file, directory, or volume. Given the name
of a file or directory in oldName, HRename changes it to the name in newName. Given a
volume name or a volume reference number, it changes the name of the volume to the
name in newName. Access paths currently in use aren’t affected.

SPECIAL CONSIDERATIONS

You cannot use HRename to change the directory in which a file resides. If you’re
renaming a volume, make sure that both names end with a colon.

Note

If a file ID reference exists for a file you are renaming, the file ID remains
with the renamed file. ◆

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume
2-178 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
RESULT CODES

Moving Files or Directories 2

The high-level HFS function CatMove allows you to move files and directories within
a volume.

CatMove 2

You can use the CatMove function to move files or directories from one directory to
another on the same volume.

FUNCTION CatMove (vRefNum: Integer; dirID: LongInt;

oldName: Str255; newDirID: LongInt;

newName: Str255): OSErr;

vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

oldName An existing filename or directory name.

newDirID If newName is empty, the directory ID of the target directory; otherwise,
the parent directory ID of the target directory.

newName The name of the directory to which the file or directory is to be moved.

DESCRIPTION

The CatMove function moves a file or directory from one directory to another within a
volume. CatMove is strictly a file catalog operation; it does not actually change the
location of the file or directory on the disk.

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Volume is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename
paramErr –50 No default volume
fsRnErr –59 Problem during rename
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
File Manager Reference 2-179

C H A P T E R 2

File Manager
The newName parameter specifies the name of the directory to which the file or directory
is to be moved. If a valid directory name is provided for newName, the destination
directory’s parent directory is specified in newDirID. However, you can specify an
empty name for newName, in which case newDirID should be set to the directory ID of
the destination directory.

Note

It is usually simplest to specify the destination directory by passing its
directory ID in the newDirID parameter and by setting newName to an
empty name. To specify an empty name, set newName to ':'. ◆

The CatMove function cannot move a file or directory to another volume (that is, the
vRefNum parameter is used in specifying both the source and the destination). Also, you
cannot use it to rename files or directories; to rename a file or directory, use HRename.

RESULT CODES

Maintaining Working Directories 2

The File Manager provides several functions that allow you to manipulate working
directories. Working directories are used internally by the File Manager; in general,
your application should not create or directly access working directories. For more
information about working directories, see “Working Directory Reference Numbers,”
beginning on page 2-26.

OpenWD 2

You can use the OpenWD function to create a working directory.

FUNCTION OpenWD (vRefNum: Integer; dirID: LongInt;

procID: LongInt; VAR wdRefNum: Integer): OSErr;

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or attempt to move into a file
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 Target directory is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
paramErr –50 No default volume
badMovErr –122 Attempt to move into offspring
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access to the file
2-180 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
vRefNum A volume reference number, a working directory reference number, or 0
for the default volume.

dirID A directory ID.

procID A working directory user identifier. You should use your application’s
signature as the user identifier.

wdRefNum On exit, the working directory reference number.

DESCRIPTION

The OpenWD function creates a working directory that corresponds to the specified
directory. It returns in wdRefNum a working directory reference number that can be used
in subsequent File Manager calls.

If a working directory having the specified user identifier already exists for the specified
directory, no new working directory is opened; instead, the existing working directory
reference number is returned in wdRefNum. If the specified directory already has a
working directory with a different user identifier, a new working directory reference
number is returned.

If the directory specified by the dirID parameter is the volume’s root directory, no
working directory is created; instead, the volume reference number is returned in the
wdRefNum parameter.

RESULT CODES

CloseWD 2

You can use the CloseWD function to close a working directory.

FUNCTION CloseWD (wdRefNum: Integer): OSErr;

wdRefNum A working directory reference number.

DESCRIPTION

The CloseWD function releases the specified working directory.

Note

If you specify a volume reference number in the wdRefNum parameter,
CloseWD does nothing. ◆

noErr 0 No error
nsvErr –35 No such volume
fnfErr –43 No such directory
tmwdoErr –121 Too many working directories open
afpAccessDenied –5000 User does not have the correct access to the file
File Manager Reference 2-181

C H A P T E R 2

File Manager
RESULT CODES

GetWDInfo 2

You can use the GetWDInfo function to get information about a working directory.

FUNCTION GetWDInfo (wdRefNum: Integer; VAR vRefNum: Integer;

VAR dirID: LongInt; VAR procID: LongInt):

OSErr;

wdRefNum A working directory reference number.

vRefNum If nonzero on input, a volume reference number or drive number. On
output, the volume reference number of the working directory.

dirID On output, the directory ID of the specified working directory.

procID The working directory user identifier.

DESCRIPTION

The GetWDInfo function returns information about the specified working directory.
You can use GetWDInfo to convert a working directory reference number to its
corresponding volume reference number and directory ID.

RESULT CODES

Low-Level HFS Routines 2
The File Manager provides a set of low-level file and directory manipulation routines
that are available in all operating environments. You do not need to call the Gestalt
function to determine if these routines are available.

These routines exchange parameters with your application through a parameter block.
When you call a low-level routine, you pass the address of the appropriate parameter
block to the routine.

Some low-level HFS routines can run either asynchronously or synchronously. Each of
these routines comes in three versions: one version requires the async parameter, and
two have the suffix Async or Sync added to their names. For more information about
the differences between the three versions, see “Low-Level File Access Routines” on

noErr 0 No error
nsvErr –35 No such volume
rfNumErr –51 Bad working directory reference number

noErr 0 No error
nsvErr –35 No such volume
rfNumErr –51 Bad working directory reference number
2-182 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
page 2-121. Only the first version of these routines is documented in this section. See
“Summary of the File Manager,” beginning on page 2-243, for a listing that includes all
three versions.

Assembly-Language Note

See the assembly-language note on page 2-121 for details on calling
these routines from assembly language. ◆

Opening Files 2

You can use the functions PBHOpenDF, PBHOpenRF, and PBHOpen to open files.

PBHOpenDF 2

You can use the PBHOpenDF function to open the data fork of a file.

FUNCTION PBHOpenDF (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHOpenDF function creates an access path to the data fork of a file and returns a
file reference number in the ioRefNum field. PBHOpenDF is exactly like the PBHOpen
function except that PBHOpenDF allows you to open a file whose name begins with
a period (.).

You can open a path for writing even if it accesses a file on a locked volume, and no error
is returned until a PBWrite, PBSetEOF, or PBAllocate call is made.

If you attempt to open a locked file for writing, PBHOpenDF returns the result code
permErr. If you request exclusive read/write permission but another access path
is already open, PBHOpenDF returns the reference number of the existing access path
in ioRefNum and opWrErr as its function result. You should not use this reference
number unless your application originally opened the file.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioRefNum Integer A file reference number.
→ ioPermssn SignedByte The read/write permission.
→ ioDirID LongInt A parent directory ID.
File Manager Reference 2-183

C H A P T E R 2

File Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHOpenDF are

RESULT CODES

PBHOpenRF 2

You can use the PBHOpenRF function to open the resource fork of file.

FUNCTION PBHOpenRF (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHOpenRF function creates an access path to the resource fork of a file and returns
a file reference number in the ioRefNum field.

Trap macro Selector

_HFSDispatch $001A

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioRefNum Integer A file reference number.
→ ioPermssn SignedByte The read/write permission.
→ ioDirID LongInt A directory ID.
2-184 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
SPECIAL CONSIDERATIONS

Generally your application should use Resource Manager routines rather than File
Manager routines to access a file’s resource fork. The PBHOpenRF function does not read
the resource map into memory and is generally useful only for applications (such as
utilities that copy files) that need block-level access to a resource fork. In particular, you
should not use the resource fork of a file to hold nonresource data. Many parts of the
system software assume that a resource fork always contains resource data.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHOpenRF is _HOpenRF.

RESULT CODES

PBHOpen 2

You can use the PBHOpen function to open the data fork of a file. Because PBHOpen will
also open devices, it’s safer to use the PBHOpenDF function instead.

FUNCTION PBHOpen (paramBlock: HParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioRefNum Integer A file reference number.
→ ioPermssn SignedByte The read/write permission.
→ ioDirID LongInt A directory ID.
File Manager Reference 2-185

C H A P T E R 2

File Manager
DESCRIPTION

The PBHOpen function creates an access path to the data fork of the specified file and
returns a file reference number in the ioRefNum field.

You can open a path for writing even if it accesses a file on a locked volume, and no error
is returned until a PBWrite, PBSetEOF, or PBAllocate call is made.

If you attempt to open a locked file for writing, PBHOpen returns the result code
permErr. If you request exclusive read/write permission but another access path is
already open, PBHOpen returns the reference number of the existing access path in
ioRefNum and opWrErr as its function result. You should not use this reference number
unless your application originally opened the file.

▲ W A R N I N G

If you use PBHOpen to try to open a file whose name begins with a
period, you might mistakenly open a driver instead; subsequent
attempts to write data might corrupt data on the target device. To
avoid these problems, you should always use PBHOpenDF instead
of PBHOpen. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHOpen is _HOpen.

RESULT CODES

Creating and Deleting Files and Directories 2

You can create a file by calling the PBHCreate function and a directory by calling the
PBDirCreate function. To delete either a file or a directory, use PBHDelete.

PBHCreate 2

You can use the PBHCreate function to create a new file.

FUNCTION PBHCreate (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open for writing
permErr –54 Attempt to open locked file for writing
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
2-186 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHCreate function creates a new file (both forks); the new file is unlocked and
empty. The date and time of its creation and last modification are set to the current date
and time. If the file created isn’t temporary (that is, if it will exist after the user quits the
application), the application should call PBHSetFInfo (after PBHCreate) to fill in the
information needed by the Finder.

Files created using PBHCreate are not automatically opened. If you want to write
data to the new file, you must first open the file using a file access routine (such
as PBHOpenDF).

Note

The resource fork of the new file exists but is empty. You’ll need to
call one of the Resource Manager procedures CreateResFile,
HCreateResFile, or FSpCreateResFile to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFile, HOpenResFile, or FSpOpenResFile). ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHCreate is _HCreate.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 A directory exists with that name
File Manager Reference 2-187

C H A P T E R 2

File Manager
PBDirCreate 2

You can use the PBDirCreate function to create a new directory.

FUNCTION PBDirCreate (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBDirCreate function is identical to PBHCreate except that it creates a new
directory instead of a file. You can specify the parent of the directory to be created in
ioDirID; if it’s 0, the new directory is placed in the root directory of the specified
volume. The directory ID of the new directory is returned in ioDirID. The date and
time of its creation and last modification are set to the current date and time.

Note

A directory ID, unlike a volume reference number or a working
directory reference number, is a LongInt value. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBDirCreate are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
↔ ioDirID LongInt A directory ID.

Trap macro Selector

_HFSDispatch $0006

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Disk is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 Directory not found or incomplete pathname
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
dirNFErr –120 Directory not found or incomplete pathname
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access
2-188 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBHDelete 2

You can use the PBHDelete function to delete a file or directory.

FUNCTION PBHDelete (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHDelete function removes a file or directory. If the specified target is a file, both
forks of the file are deleted. In addition, if a file ID reference for the specified file exists,
that file ID reference is also removed.

A file must be closed before you can delete it. Similarly, you cannot delete a directory
unless it’s empty. If you attempt to delete an open file or a nonempty directory,
PBHDelete returns the result code fBsyErr. PBHDelete also returns fBsyErr if you
attempt to delete a directory that has an open working directory associated with it.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHDelete is _HDelete.

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
fBsyErr –47 File busy, directory not empty, or working directory

control block open
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
File Manager Reference 2-189

C H A P T E R 2

File Manager
Accessing Information About Files and Directories 2

The File Manager provides a number of low-level HFS routines that allow you to obtain
and set information about files and directories and to manipulate file locking. All of the
routines described in this section operate on both forks of a file and don’t require the file
to be open.

PBGetCatInfo 2

You can use the PBGetCatInfo function to get information about the files and
directories in a file catalog.

FUNCTION PBGetCatInfo (paramBlock: CInfoPBPtr; async: Boolean):

OSErr;

paramBlock A pointer to a catalog information parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block for files

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioFRefNum Integer A file reference number.
→ ioFDirIndex Integer An index.
← ioFlAttrib SignedByte The file attributes.
← ioFlFndrInfo FInfo Information used by the Finder.
↔ ioDirID LongInt On input, a directory ID. On output, a

file ID.
← ioFlStBlk Integer The first allocation block of the

data fork.
← ioFlLgLen LongInt The logical end-of-file of the data fork.
← ioFlPyLen LongInt The physical end-of-file of the

data fork.
← ioFlRStBlk Integer The first allocation block of the

resource fork.
← ioFlRLgLen LongInt The logical end-of-file of the

resource fork.
← ioFlRPyLen LongInt The physical end-of-file of the

resource fork.
← ioFlCrDat LongInt The date and time of creation.
← ioFlMdDat LongInt The date and time of the last

modification.
← ioFlBkDat LongInt The date and time of the last backup.
← ioFlXFndrInfo FXInfo Additional information used by

the Finder.
← ioFlParID LongInt The directory ID of the parent directory.
← ioFlClpSiz LongInt The file’s clump size.
2-190 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Parameter block for directories

DESCRIPTION

The PBGetCatInfo function returns information about a file or directory, depending on
the values you specify in the ioFDirIndex, ioNamePtr, ioVRefNum, and ioDirID or
ioDrDirID fields. If you need to determine whether the information returned is for a
file or a directory, you can test bit 4 of the ioFlAttrib field; if that bit is set, the
information returned describes a directory.

The PBGetCatInfo function selects a file or directory according to these rules:

■ If the value of ioFDirIndex is positive, PBGetCatInfo returns information about
the file or directory whose directory index is ioFDirIndex in the directory specified
by ioVRefNum (this will be the root directory if a volume reference number is
provided).

■ If the value of ioFDirIndex is 0, PBGetCatInfo returns information about the file
or directory specified by ioNamePtr in the directory specified by ioVRefNum (again,
this will be the root directory if a volume reference number is provided).

■ If the value of ioFDirIndex is negative, PBGetCatInfo ignores ioNamePtr and
returns information about the directory specified by ioDrDirID.

With files, PBGetCatInfo is similar to PBHGetFInfo but returns some additional
information. If the file is open, the reference number of the first access path found is
returned in ioFRefNum, and the name of the file is returned in ioNamePtr (unless
ioNamePtr is NIL). The file’s attributes are returned in the ioFlAttrib field. See
the description of the fields of the CInfoPBRec data type (beginning on page 2-101)
for the meaning of the bits in this field.

Note

When you get information about a file, the ioDirID field contains the
file ID on exit from PBGetCatInfo. You might need to save the value of
ioDirID before calling PBGetCatInfo if you make subsequent calls
with the same parameter block. ◆

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioFDirIndex Integer An index.
← ioFlAttrib SignedByte The directory attributes.
← ioACUser SignedByte The directory access rights.
← ioDrUsrWds DInfo Information used by the Finder.
↔ ioDrDirID LongInt The directory ID.
← ioDrNmFls Integer The number of files in the directory.
← ioDrCrDat LongInt The date and time of creation.
← ioDrMdDat LongInt The date and time of the last

modification.
← ioDrBkDat LongInt The date and time of the last backup.
← ioDrFndrInfo DXInfo Additional information used by

the Finder.
← ioDrParID LongInt The directory ID of the parent directory.
File Manager Reference 2-191

C H A P T E R 2

File Manager
With directories, PBGetCatInfo returns information such as the directory attributes
and, for server volumes, the directory access privileges of the user. The directory
attributes are encoded by bits in the ioFlAttrib field and have these meanings:

Note

These bits in the ioFlAttrib field for directories are read-only.
You cannot alter directory attributes by setting these bits using
PBSetCatInfo. Instead, you can call PBHSetFLock and
PBHRstFLock to lock and unlock a directory, and PBShare
and PBUnshare to enable and disable file sharing on local
directories. ◆

The PBGetCatInfo function returns the directory access rights in the ioACUser
field only for shared volumes. As a result, you should set this field to 0 before
calling PBGetCatInfo.

You can also use PBGetCatInfo to determine whether a file has a file ID reference.
The value of the file ID is returned in the ioDirID field. Because that parameter could
also represent a directory ID, call PBResolveFileIDRef to see if the value is a real
file ID. If you want to determine whether a file ID reference exists for a file and create
one if it doesn’t, use PBCreateFileIDRef, which will either create a file ID or
return fidExists.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetCatInfo are

RESULT CODES

Bit Meaning

0 Set if the directory is locked

1 Reserved

2 Set if the directory is within a shared area of the directory hierarchy

3 Set if the directory is a share point that is mounted by some user

4 Set if the item is a directory

5 Set if the directory is a share point

6–7 Reserved

Trap macro Selector

_HFSDispatch $0009

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
paramErr –50 No default volume
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Directory not found or incomplete pathname
2-192 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBSetCatInfo 2

You can use the PBSetCatInfo function to modify information about files and
directories.

FUNCTION PBSetCatInfo (paramBlock: CInfoPBPtr; async: Boolean):

OSErr;

paramBlock A pointer to a catalog information parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block for files

Parameter block for directories

DESCRIPTION

The PBSetCatInfo function sets information about a file or directory. When used to set
information about a file, it works much as PBHSetFInfo does, but lets you set some
additional information.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioFlFndrInfo FInfo Information used by the Finder.
→ ioDirID LongInt The directory ID.
→ ioFlCrDat LongInt The date and time of creation.
→ ioFlMdDat LongInt The date and time of the last

modification.
→ ioFlBkDat LongInt The date and time of the last backup.
→ ioFlXFndrInfo FXInfo Additional information used by

the Finder.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDrUsrWds DInfo Information used by the Finder.
→ ioDrDirID LongInt The directory ID.
→ ioDrCrDat LongInt The date and time of creation.
→ ioDrMdDat LongInt The date and time of the last

modification.
→ ioDrBkDat LongInt The date and time of the last backup.
→ ioDrFndrInfo DXInfo Additional information used by

the Finder.
File Manager Reference 2-193

C H A P T E R 2

File Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBSetCatInfo are

RESULT CODES

PBHGetFInfo 2

You can use the PBHGetFInfo function to obtain information about a file.

FUNCTION PBHGetFInfo (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Trap macro Selector

_HFSDispatch $000A

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
paramErr –50 No default volume
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioFRefNum Integer A file reference number.
→ ioFDirIndex Integer An index.
← ioFlAttrib SignedByte The file attributes.
← ioFlFndrInfo FInfo Information used by the Finder.
↔ ioDirID LongInt On input, a directory ID; on output, a file ID.
← ioFlStBlk Integer The first allocation block of the data fork.
← ioFlLgLen LongInt The logical end-of-file of the data fork.
← ioFlPyLen LongInt The physical end-of-file of the data fork.
← ioFlRStBlk Integer The first allocation block of the resource fork.
← ioFlRLgLen LongInt The logical end-of-file of the resource fork.
← ioFlRPyLen LongInt The physical end-of-file of the resource fork.
← ioFlCrDat LongInt The date and time of creation.
← ioFlMdDat LongInt The date and time of last modification.
2-194 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
DESCRIPTION

If the value of ioFDirIndex is positive, the PBHGetFInfo function returns
information about the file whose directory index is ioFDirIndex on the volume
specified by ioVRefNum in the directory specified by ioDirID. You should call
PBHGetFInfo just before PBHSetFInfo, so that the current information is present
in the parameter block.

Note

If a working directory reference number is specified in ioVRefNum, the
File Manager returns information about the file whose directory index is
ioFDirIndex in the specified directory. ◆

If the value of ioFDirIndex is negative or 0, the PBHGetFInfo function returns
information about the file having the name pointed to by ioNamePtr on the volume
specified by ioVRefNum. If the file is open, the reference number of the first access path
found is returned in ioFRefNum, and the name of the file is returned in ioNamePtr
(unless ioNamePtr is NIL).

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHGetFInfo is _HGetFileInfo.

RESULT CODES

PBHSetFInfo 2

You can use the PBHSetFInfo function to set information for a file.

FUNCTION PBHSetFInfo (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
paramErr –50 No default volume
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Directory not found or incomplete pathname
File Manager Reference 2-195

C H A P T E R 2

File Manager
Parameter block

DESCRIPTION

The PBHSetFInfo function sets information (including the date and time of creation
and modification, and information needed by the Finder) about the file having the name
pointed to by ioNamePtr on the volume specified by ioVRefNum. You should call
PBHGetFInfo just before PBHSetFInfo, so that the current information is present in
the parameter block.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHSetFInfo is _HSetFileInfo.

RESULT CODES

PBHSetFLock 2

You can use the PBHSetFLock function to lock a file.

FUNCTION PBHSetFLock (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioFlFndrInfo FInfo Information used by the Finder.
→ ioDirID LongInt A directory ID.
→ ioFlCrDat LongInt The date and time of creation.
→ ioFlMdDat LongInt The date and time of last modification.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object was a directory
2-196 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Parameter block

DESCRIPTION

The PBHSetFLock function locks the file with the name pointed to by ioNamePtr on
the volume specified by ioVRefNum. After you lock a file, all new access paths to that
file are read-only. Access paths currently in use aren’t affected.

If the PBHGetVolParms function indicates that the volume supports folder locking (that
is, the bHasFolderLock bit of the vMAttrib field is set), you can use PBHSetFLock to
lock a directory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHSetFLock is _HSetFLock.

RESULT CODES

PBHRstFLock 2

You can use the PBHRstFLock function to unlock a file.

FUNCTION PBHRstFLock (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume
File Manager Reference 2-197

C H A P T E R 2

File Manager
Parameter block

DESCRIPTION

The PBHRstFLock function unlocks the file with the name pointed to by ioNamePtr on
the volume specified by ioVRefNum. Access paths currently in use aren’t affected.

If the PBHGetVolParms function indicates that the volume supports folder locking (that
is, the bHasFolderLock bit of the vMAttrib field is set), you can use PBHRstFLock to
unlock a directory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHRstFLock is _HRstFLock.

RESULT CODES

PBHRename 2

You can use the PBHRename function to rename a file, directory, or volume.

FUNCTION PBHRename (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access to the file
afpObjectTypeErr –5025 Folder locking not supported by volume
2-198 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Parameter block

DESCRIPTION

Given a pointer to the name of a file or directory in ioNamePtr, PBHRename changes it
to the name pointed to by ioMisc. Given a pointer to a volume name in ioNamePtr or
a volume reference number in ioVRefNum, it changes the name of the volume to the
name pointed to by ioMisc.

Note

If a file ID reference exists for the file being renamed, the file ID remains
with the file. ◆

IMPORTANT

You cannot use PBHRename to change the directory in which a file
is located. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHRename is _HRename.

RESULT CODES

Moving Files or Directories 2

The low-level HFS function PBCatMove allows you to move files and directories within
a volume.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioMisc Ptr A pointer to the new name for the file.
→ ioDirID LongInt A directory ID.

noErr 0 No error
dirFulErr –33 File directory full
dskFulErr –34 Volume is full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
paramErr –50 No default volume
fsRnErr –59 Problem during rename
dirNFErr –120 Directory not found or incomplete pathname
afpAccessDenied –5000 User does not have the correct access
File Manager Reference 2-199

C H A P T E R 2

File Manager
PBCatMove 2

You can use the PBCatMove function to move files or directories from one directory to
another on the same volume.

FUNCTION PBCatMove (paramBlock: CMovePBPtr; async: Boolean):

OSErr;

paramBlock A pointer to a catalog move parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBCatMove function moves a file or directory from one directory to another within
a volume. PBCatMove is strictly a file catalog operation; it does not actually change the
location of the file or directory on the disk.

The source file or directory should be specified by its volume, parent directory ID, and
partial pathname. Pass a volume specification in ioVRefNum. Pass the parent directory
ID in the ioDirID field and a pointer to the partial pathname in the ioNamePtr field.

The name of the directory into which the file or directory is to be moved is specified by
the ioNewName field. If a valid directory name is provided for ioNewName, the
destination directory’s parent directory is specified in ioNewDirID. However, you can
specify NIL for ioNewName, in which case ioNewDirID should be set to the directory
ID of the destination directory itself.

Note

It is usually simplest to specify the destination directory by passing
its directory ID in the ioNewDirID field and by setting ioNewName
to NIL. ◆

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to the name of the file or

directory to be moved.
→ ioVRefNum Integer A volume specification.
→ ioNewName StringPtr A pointer to the name of the directory

into which the file or directory is to
be moved.

→ ioNewDirID LongInt The directory ID of the directory into
which the file or directory is to be moved,
if ioNewName is NIL. If ioNewName is
not NIL, this is the parent directory ID of
the directory into which the file or
directory is to be moved.

→ ioDirID LongInt The directory ID of the file or directory to
be moved.
2-200 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
The PBCatMove function cannot move a file or directory to another volume (that is,
ioVRefNum is used in specifying both the source and the destination). Also, you cannot
use it to rename files or directories; to rename a file or directory, use PBHRename.

If a file ID reference exists for the file, the file ID reference remains with the moved file.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBCatMove are

RESULT CODES

Maintaining Working Directories 2

The File Manager provides several low-level functions that allow you to manipulate
working directories. Working directories are used internally by the File Manager; in
general, your application should not create or directly access working directories. For
more information about working directories, see “Working Directory Reference
Numbers,” beginning on page 2-26.

PBOpenWD 2

You can use the PBOpenWD function to create a working directory.

FUNCTION PBOpenWD (paramBlock: WDPBPtr; async: Boolean): OSErr;

paramBlock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Trap macro Selector

_HFSDispatch $0005

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or attempt to move into a file
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 Target directory is locked
vLckdErr –46 Software volume lock
dupFNErr –48 Duplicate filename and version
paramErr –50 No default volume
badMovErr –122 Attempt to move into offspring
wrgVolTypErr –123 Not an HFS volume
afpAccessDenied –5000 User does not have the correct access
File Manager Reference 2-201

C H A P T E R 2

File Manager
Parameter block

DESCRIPTION

The PBOpenWD function creates a working directory that corresponds to the directory
specified by ioVRefNum, ioWDDirID, and ioWDProcID. (You can also specify the
directory using a combination of partial pathname and directory ID.) PBOpenWD returns
in ioVRefNum a working directory reference number that can be used in subsequent File
Manager calls.

If a working directory having the specified user identifier already exists for the specified
directory, no new working directory is opened; instead, the existing working directory
reference number is returned in ioVRefNum. If the specified directory already has a
working directory with a different user identifier, a new working directory reference
number is returned.

If the directory specified by the ioWDDirID parameter is the volume’s root directory, no
working directory is created; instead, the volume reference number is returned in the
ioVRefNum parameter.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBOpenWD are

RESULT CODES

PBCloseWD 2

You can use the PBCloseWD function to close a working directory.

FUNCTION PBCloseWD (paramBlock: WDPBPtr; async: Boolean): OSErr;

paramBlock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
↔ ioVRefNum Integer A volume specification.
→ ioWDProcID LongInt The working directory user identifier.
→ ioWDDirID LongInt The working directory’s directory ID.

Trap macro Selector

_HFSDispatch $0001

noErr 0 No error
nsvErr –35 No such volume
fnfErr –43 No such directory
tmwdoErr –121 Too many working directories open
afpAccessDenied –5000 User does not have the correct access
2-202 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Parameter block

DESCRIPTION

The PBCloseWD function releases the working directory whose working directory
reference number is specified in ioVRefNum.

Note

If you specify a volume reference number in the ioVRefNum field,
PBCloseWD does nothing. ◆

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBCloseWD are

RESULT CODES

PBGetWDInfo 2

You can use the PBGetWDInfo function to get information about a working directory.

FUNCTION PBGetWDInfo (paramBlock: WDPBPtr; async: Boolean): OSErr;

paramBlock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioVRefNum Integer A working directory reference

number.

Trap macro Selector

_HFSDispatch $0002

noErr 0 No error
nsvErr –35 No such volume
rfNumErr –51 Bad working directory reference number

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
← ioNamePtr StringPtr A pointer to a pathname.
↔ ioVRefNum Integer A volume specification.
→ ioWDIndex Integer An index.
↔ ioWDProcID LongInt The working directory user identifier.
↔ ioWDVRefNum Integer The volume reference number for the

working directory.
← ioWDDirID LongInt The working directory’s directory ID.
File Manager Reference 2-203

C H A P T E R 2

File Manager
DESCRIPTION

The PBGetWDInfo function returns information about the specified working directory.
The working directory can be specified either by its working directory reference number
in ioVRefNum (in which case the value of ioWDIndex should be 0), or by its index
number in ioWDIndex. In the latter case, if the value of ioVRefNum is not 0, it’s
interpreted as a volume specification, and only working directories on that volume
are indexed.

The ioWDVRefNum field always returns the volume reference number. The ioVRefNum
field contains a working directory reference number when a working directory reference
number is passed in that field; otherwise, it returns a volume reference number.
PBGetWDInfo returns a pointer to the volume’s name in the ioNamePtr field. You
should pass a pointer to a Str31 value if you want that name returned. If you pass NIL
in the ioNamePtr field, no volume name is returned.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetWDInfo are

RESULT CODES

Searching a Catalog 2

The low-level HFS function PBCatSearch allows you to search a volume using a
particular set of search criteria.

PBCatSearch 2

The PBCatSearch function searches a volume’s catalog file using a set of search criteria
that you specify. It builds a list of all files or directories that meet your specifications.

FUNCTION PBCatSearch (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a csParam variant of an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Trap macro Selector

_HFSDispatch $0007

noErr 0 No error
nsvErr –35 No such volume
rfNumErr –51 Bad working directory reference number
2-204 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Parameter block

DESCRIPTION

The PBCatSearch function searches the volume you specify for files or directories
that match two coordinated sets of selection criteria. PBCatSearch returns (in the
ioMatchPtr field) a pointer to an array of FSSpec records identifying the files and
directories that match the criteria.

If the catalog file changes between two timed calls to PBCatSearch (that is, when you are
using ioSearchTime and ioCatPosition to search a volume in segments and
the catalog file changes between searches), PBCatSearch returns a result code of
catChangedErr and no matches. Depending on what has changed on the volume,
ioCatPosition might be invalid, most likely by a few entries in one direction or
another. You can continue the search, but you risk either skipping some entries or reading
some twice.

When PBCatSearch has searched the entire volume, it returns eofErr. If it exits
because it either spends the maximum time allowed by ioSearchTime or finds the
maximum number of matches allowed by ioReqMatchCount, it returns noErr. You
can specify a value of 0 in the ioSearchTime field to indicate that no time limit is to
be enforced.

SPECIAL CONSIDERATIONS

Not all volumes support the PBCatSearch function. Before you call PBCatSearch to
search a particular volume, you should call the PBHGetVolParms function to determine
whether that volume supports PBCatSearch. See page 2-148 for details on calling
PBHGetVolParms.

Even though AFP volumes support PBCatSearch, they do not support all of its features
that are available on local volumes. These restrictions apply to AFP volumes:

■ AFP volumes do not use the ioSearchTime field. Current versions of the AppleShare
server software search for 1 second or until 4 matches are found. The AppleShare
workstation software keeps requesting the appropriate number of matches until the
server returns either the number specified in the ioReqMatchCount field or an error.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a volume name.
→ ioVRefNum Integer A volume specification.
→ ioMatchPtr FSSpecArrayPtr A pointer to an array of matches.
→ ioReqMatchCount LongInt The maximum match count.
← ioActMatchCount LongInt The actual match count.
→ ioSearchBits LongInt Enable bits for fields in criteria

records.
→ ioSearchInfo1 CInfoPBPtr The values and lower bounds.
→ ioSearchInfo2 CInfoPBPtr The masks and upper bounds.
→ ioSearchTime LongInt The maximum allowed search time.
↔ ioCatPosition CatPositionRec The current catalog position.
→ ioOptBuffer Ptr A pointer to optional read buffer.
→ ioOptBufSize LongInt The length of optional read buffer.
File Manager Reference 2-205

C H A P T E R 2

File Manager
■ AFP volumes do not support both logical and physical fork lengths. If you request a
search using the length of a fork, the actual minimum length used is the smallest of
the values in the logical and physical fields of the ioSearchInfo1 record and the
actual maximum length used is the largest of the values in the logical and physical
fields of the ioSearchInfo2 record.

■ The fsSBNegate bit of the ioSearchBits field is ignored during searches of
remote volumes that support AFP version 2.1.

■ If the AFP server returns afpCatalogChanged, the catalog position record returned
to your application (in the ioCatPosition field) is the same one you passed to
PBCatSearch. You should clear the initialize field of that record to restart the
search from the beginning.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBCatSearch are

RESULT CODES

SEE ALSO

See “Searching a Volume” on page 2-39 for a description of how to use PBCatSearch.

Exchanging the Data in Two Files 2

The function PBExchangeFiles allows you to exchange the data in two files.

PBExchangeFiles 2

You can use the PBExchangeFiles function to exchange the data stored in two files on
the same volume.

FUNCTION PBExchangeFiles (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

Trap macro Selector

_HFSDispatch $0018

noErr 0 No error (entire catalog has not been searched)
nsvErr –35 Volume not found
ioErr –36 I/O error
eofErr –39 Logical end-of-file reached
paramErr –50 Parameters don’t specify an existing volume
extFSErr –58 External file system
wrgVolTypErr –123 Volume is an MFS volume
catChangedErr –1304 Catalog has changed and catalog position record

may be invalid
afpCatalogChanged –5037 Catalog has changed and search cannot be resumed
2-206 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBExchangeFiles function swaps the data in two files by changing some of the
information in the volume catalog and, if the files are open, in the file control blocks. The
PBExchangeFiles function uses the file ID parameter block.

You should use PBExchangeFiles to preserve the file ID when updating an existing
file, in case the file is being tracked through its file ID.

Typically, you use PBExchangeFiles after creating a new file during a safe save.
You identify the names and parent directory IDs of the two files to be exchanged in
the fields ioNamePtr, ioDestNamePtr, ioSrcDirID, and ioDestDirID. The
PBExchangeFiles function changes the fields in the catalog entries that record the
location of the data and the modification dates. It swaps both the data forks and the
resource forks.

The PBExchangeFiles function works on either open or closed files. If either file is
open, PBExchangeFiles updates any file control blocks associated with the file.
Exchanging the contents of two files requires essentially the same access privileges as
opening both files for writing.

The PBExchangeFiles function does not require that file ID references exist for the
files being exchanged.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBExchangeFiles are

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDestNamePtr StringPtr A pointer to the name of the destination file.
→ ioDestDirID LongInt The destination file’s parent directory ID.
→ ioSrcDirID LongInt The source file’s parent directory ID.

Trap macro Selector

_HFSDispatch $0017
File Manager Reference 2-207

C H A P T E R 2

File Manager
RESULT CODES

Shared Environment Routines 2
The File Manager provides a number of routines that allow you to control access to files,
directories, and volumes in a shared environment. The routines described in this section
allow you to

■ provide multiple users with read/write access to files

■ lock and unlock portions of files opened with shared read/write permission

■ manipulate share points on local shared volumes

■ get and change the access privileges for directories

■ mount remote volumes

■ control login access

■ access a list of users and groups on the local file server

Before using the routines described in this section, call the PBHGetVolParms
function to see if the volume supports them. (The PBGetVolMountInfoSize,
PBGetVolMountInfo, and PBVolumeMount routines are exceptions: you’ll just
have to make these calls and check the result code.)

Opening Files While Denying Access 2

The PBHOpenDeny and PBHOpenRFDeny functions control file access modes and enable
applications to implement shared read/write access to files.

PBHOpenDeny 2

You can use the PBHOpenDeny function to open a file’s data fork using the access
deny modes.

FUNCTION PBHOpenDeny (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
wrgVolTypErr –123 Not an HFS volume
diffVolErr –1303 Files on different volumes
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Object is a directory, not a file
afpSameObjectErr –5038 Source and destination are the same
2-208 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHOpenDeny function opens a file’s data fork with specific access rights specified
in the ioDenyModes field. The file reference number is returned in ioRefNum.

The result code opWrErr is returned if you’ve requested write permission and you
have already opened the file for writing; in that case, the existing file reference
number is returned in ioRefNum. You should not use this reference number unless
your application originally opened the file.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHOpenDeny are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioRefNum Integer The file reference number.
→ ioDenyModes Integer Access rights data.
→ ioDirID LongInt The directory ID.

Trap macro Selector

_HFSDispatch $0038

noErr 0 No error
tmfoErr –42 Too many files open
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
opWrErr –49 File already open for writing
paramErr –50 Function not supported by volume
permErr –54 File is already open and cannot be opened using

specified deny modes
afpAccessDenied –5000 User does not have the correct access to the file
afpDenyConflict –5006 Requested access permission not possible
File Manager Reference 2-209

C H A P T E R 2

File Manager
PBHOpenRFDeny 2

You can use the PBHOpenRFDeny function to open a file’s resource fork using the access
deny modes.

FUNCTION PBHOpenRFDeny (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHOpenRFDeny function opens a file’s resource fork with specific access rights.
The path reference number is returned in ioRefNum.

The result code opWrErr is returned if you’ve requested write permission and you
have already opened the file for writing; in that case, the existing file reference
number is returned in ioRefNum. You should not use this reference number unless
your application originally opened the file.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHOpenRFDeny are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioRefNum Integer The file reference number.
→ ioDenyModes Integer Access rights data.
→ ioDirID LongInt The directory ID.

Trap macro Selector

_HFSDispatch $0039

noErr 0 No error
tmfoErr –42 Too many files open
fnfErr –43 File not found
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked or read-only
opWrErr –49 File already open for writing
paramErr –50 Function not supported by volume
permErr –54 File is already open and cannot be opened using

specified deny modes
afpAccessDenied –5000 User does not have the correct access to the file
afpDenyConflict –5006 Requested access permission not possible
2-210 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Locking and Unlocking File Ranges 2

The File Manager provides several low-level routines that allow you to lock and unlock
parts of files. These functions are ineffective when used on local HFS volumes unless
local file sharing is enabled for those volumes.

PBLockRange 2

You can use the PBLockRange function to lock a portion of a file.

FUNCTION PBLockRange (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBLockRange function locks a portion of a file that was opened with shared
read/write permission. The beginning of the range to be locked is determined by the
ioPosMode and ioPosOffset fields. The end of the range to be locked is determined
by the beginning of the range and the ioReqCount field. For example, to lock the
first 50 bytes in a file, set ioReqCount to 50, ioPosMode to fsFromStart, and
ioPosOffset to 0. Set ioReqCount to –1 to lock the maximum number of bytes from
the position specified in ioPosOffset.

The PBLockRange function uses the same parameters as both PBRead and PBWrite; by
calling it immediately before PBRead, you can use the information in the parameter
block for the PBRead call.

When you’re finished with the data (typically after a call to PBWrite), be sure to call
PBUnlockRange to free that portion of the file for subsequent PBRead calls.

SPECIAL CONSIDERATIONS

The PBLockRange function does nothing if the file specified in the ioRefNum field is
open with shared read/write permission but is not located on a remote server volume
or is not located under a share point on a sharable local volume. See “Locking and

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioReqCount LongInt The number of bytes in the range.
→ ioPosMode Integer The positioning mode.
→ ioPosOffset LongInt The positioning offset.
File Manager Reference 2-211

C H A P T E R 2

File Manager
Unlocking File Ranges” on page 2-51 for a simple way to determine whether calling
PBLockRange on an open file would in fact lock a range of bytes.

▲ W A R N I N G

In system software versions 6.0.7 and earlier, specifying ioPosMode as
fsFromLEOF results in the wrong byte range being locked. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBLockRange are

RESULT CODES

PBUnlockRange 2

You can use the PBUnlockRange function to unlock a portion of a file that was
previously locked by a call to PBLockRange.

FUNCTION PBUnlockRange (paramBlock: ParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Trap macro Selector

_HFSDispatch $0010

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
fLckdErr –45 File is locked by another user
paramErr –50 Negative ioReqCount
rfNumErr –51 Bad reference number
extFSErr –58 External file system
volGoneErr –124 Server volume has been disconnected
afpNoMoreLocks –5015 No more ranges can be locked
afpRangeOverlap –5021 Part of range is already locked

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioRefNum Integer A file reference number.
→ ioReqCount LongInt The number of bytes in the range.
→ ioPosMode Integer The positioning mode.
→ ioPosOffset LongInt The positioning offset.
2-212 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
DESCRIPTION

The PBUnlockRange function unlocks a portion of a file that you locked with
PBLockRange. You specify the range by filling in the ioReqCount, ioPosMode,
and ioPosOffset fields as described in the preceding discussion of PBLockRange.
The range of bytes to be unlocked must be the exact same range locked by a previous
call to PBLockRange.

If for some reason you need to unlock a range whose beginning or length is unknown,
you can simply close the file. When a file is closed, all locked ranges held by the user
are unlocked.

SPECIAL CONSIDERATIONS

The PBUnlockRange function does nothing if the file specified in the ioRefNum field is
open with shared read/write permission but is not located on a remote server volume or
is not located under a share point on a local volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBUnlockRange are

RESULT CODES

Manipulating Share Points 2

The PBShare and PBUnshare functions allow you to manipulate share points on local
volumes. The PBGetUGEntry function lets you access the list of user and group names
and IDs on the local server.

Trap macro Selector

_HFSDispatch $0011

noErr 0 No error
ioErr –36 I/O error
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
paramErr –50 Negative ioReqCount
rfNumErr –51 Bad reference number
extFSErr –58 External file system
volGoneErr –124 Server volume has been disconnected
afpRangeNotLocked –5020 Specified range was not locked
File Manager Reference 2-213

C H A P T E R 2

File Manager
PBShare 2

You can use the PBShare function to establish a local volume or directory as a
share point.

FUNCTION PBShare (paramBlock: HParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBShare function makes the directory specified by the ioNamePtr and ioDirID
fields a share point. If ioNamePtr is NIL, then ioDirID is the directory ID of the
directory that is to become a share point. If ioNamePtr points to a partial pathname,
ioDirID is the parent directory of the directory to be shared. The ioVRefNum field can
contain a volume reference number, a working directory reference number, a drive
number, or 0 for the default volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBShare are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

Trap macro Selector

_HFSDispatch $0042

noErr 0 No error
tmfoErr –42 Too many share points
fnfErr –43 File not found
dupFNErr –48 Already a share point with this name
paramErr –50 Function not supported by volume
dirNFErr –120 Directory not found
afpAccessDenied –5000 This directory cannot be shared
afpObjectTypeErr –5025 Object was a file, not a directory
afpContainsSharedErr –5033 The directory contains a share point
afpInsideSharedErr –5043 The directory is inside a shared directory
2-214 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBUnshare 2

You can use the PBUnshare function to reverse the effects of PBShare.

FUNCTION PBUnShare (paramBlock: HParmBlkPtr; async: Boolean):

 OSErr;

paramBlock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBUnshare function makes the share point specified by the ioNamePtr and
ioDirID fields unavailable on the network. If ioNamePtr is NIL, then ioDirID is
the directory ID of the directory that is to become unavailable. If ioNamePtr points
to a partial pathname, ioDirID is the parent directory of the directory to become
unavailable. The ioVRefNum field can contain a volume reference number, a working
directory reference number, a drive number, or 0 for the default volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBUnshare are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDirID LongInt A directory ID.

Trap macro Selector

_HFSDispatch $0043

noErr 0 No error
fnfErr –43 File not found
paramErr –50 Function not supported by volume
dirNFErr –120 Directory not found
afpObjectTypeErr –5025 Object was a file, not a directory; or, this directory is

not a share point
File Manager Reference 2-215

C H A P T E R 2

File Manager
PBGetUGEntry 2

You can use the PBGetUGEntry function to get a list of user and group entries from the
local file server.

FUNCTION PBGetUGEntry (paramBlock: HParmBlkPtr; async: Boolean):

 OSErr;

paramBlock A pointer to an objParam variant of an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetUGEntry function returns the name and ID of the user or group whose name
is alphabetically next to that of the user or group whose ID is contained in the ioObjID
field. You can enumerate the users or groups in alphabetical order by setting ioObjID to
0 and then repetitively calling PBGetUGEntry with the same parameter block until the
result code fnfErr is returned.

You specify whether you want information about users or groups by setting the
ioObjType field to the desired value. Set ioObjType to 0 to receive the next user
entry; set it to –1 to receive the next group entry.

The user or group name is returned as a Pascal string pointed to by ioObjNamePtr.
The maximum size of the string is 31 characters, preceded by a length byte. If you set
ioObjNamePtr to NIL, no name is returned.

If you set ioObjID to 0, PBGetUGEntry returns information about the user or group
known to the local server whose name is alphabetically first. If the value of ioObjID is
not 0, PBGetUGEntry returns information about the user or group whose name follows
immediately in alphabetical order that of the user or group having that ID.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetUGEntry are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioObjType Integer A function code.
→ ioObjNamePtr Ptr A pointer to the returned user/group name.
↔ ioObjID LongInt A user/group ID.

Trap macro Selector

_HFSDispatch $0044

noErr 0 No error
fnfErr –43 No more users or groups
paramErr –50 Function not supported; or, ioObjID is negative
2-216 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Controlling Directory Access 2

The PBHGetDirAccess and PBHSetDirAccess functions control privileges for
individual directories.

PBHGetDirAccess 2

You can use the PBHGetDirAccess function to get the access control information for
a directory.

FUNCTION PBHGetDirAccess (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHGetDirAccess returns access control information for the specified directory.
On output, the ioACOwnerID field contains the ID of the directory’s owner, and the
ioACGroupID field contains the directory’s primary group. The directory’s access rights
are encoded in the ioACAccess field. See “Directory Access Privileges,” beginning on
page 2-18, for a description of the ioACAccess field.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHGetDirAccess are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
← ioACOwnerID LongInt The owner ID.
← ioACGroupID LongInt The group ID.
← ioACAccess LongInt The access rights.
→ ioDirID LongInt The directory ID.

Trap macro Selector

_HFSDispatch $0032

noErr 0 No error
fnfErr –43 Directory not found
paramErr –50 Function not supported by volume
afpAccessDenied –5000 User does not have the correct access to the directory
File Manager Reference 2-217

C H A P T E R 2

File Manager
PBHSetDirAccess 2

You can use the PBHSetDirAccess function to change the access control information
for a directory.

FUNCTION PBHSetDirAccess (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHSetDirAccess function allows you to change the access rights to the specified
directory. The ioACAccess field contains the directory’s access rights. You cannot set
the owner or user rights bits of the ioACAccess field directly (if you try to do this,
PBHSetDirAccess returns the result code paramErr). See “Directory Access
Privileges,” beginning on page 2-18, for a description of the ioACAccess field.

To change the owner or group, you should set the ioACOwnerID or ioACGroupID field
to the appropriate ID. You must be the owner of the directory to change the owner or
group ID. A guest on a server can manipulate the privileges of any directory owned by
the guest.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHSetDirAccess are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioACOwnerID LongInt The owner ID.
→ ioACGroupID LongInt The group ID.
→ ioACAccess LongInt The access rights.
→ ioDirID LongInt The directory ID.

Trap macro Selector

_HFSDispatch $0033

noErr 0 No error
fnfErr –43 Directory not found
vLckdErr –46 Volume is locked or read-only
paramErr –50 Parameter error
afpAccessDenied –5000 User does not have the correct access to the directory
afpObjectTypeErr –5025 Object is a file, not a directory
2-218 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Mounting Volumes 2

The File Manager provides three functions that allow your application to record the
mounting information for a volume and then to mount the volume later. The program-
matic mounting functions store the mounting information in a structure called the
AFPVolMountInfo record. The programmatic mounting functions use the ioParam
variant of the ParamBlockRec record.

In general, it is easier to mount remote volumes by creating and then resolving alias
records that describe those volumes. The Alias Manager displays the standard user
interface for user authentication when resolving alias records for remote volumes. As
a result, the routines described in this section are primarily of interest for applications
that need to mount remote volumes with no user interface or with some custom
user interface.

Note

All the functions described in this section execute synchronously. You
should not call them at interrupt time. ◆

PBGetVolMountInfoSize 2

You use the PBGetVolMountInfoSize function to determine how much space to
allocate for a volume mounting information record.

FUNCTION PBGetVolMountInfoSize (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

For a specified volume, the PBGetVolMountInfoSize function provides the size
of the record needed to hold the volume’s mounting information. The ioBuffer
field is a pointer to the size information, which is of type Integer (2 bytes). If
PBGetVolMountInfoSize returns noErr, that integer contains the size of the
volume mounting information record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetVolMountInfoSize are

→ ioCompletion LongInt A pointer to a completion routine.
← ioResult OSErr The function’s result code.
→ ioVRefNum Integer A volume specification.
→ ioBuffer LongInt A pointer to storage for size.

Trap macro Selector

_HFSDispatch $003F
File Manager Reference 2-219

C H A P T E R 2

File Manager
RESULT CODES

PBGetVolMountInfo 2

After ascertaining the size of the record needed and allocating storage, you can use the
PBGetVolMountInfo function to retrieve a record containing all the information
needed to mount the volume, except for passwords. You can later pass this record to the
PBVolumeMount function to mount the volume.

FUNCTION PBGetVolMountInfo (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

The PBGetVolMountInfo function places the mounting information for a specified
volume into the buffer pointed to by the ioBuffer field. The mounting information for
an AppleShare volume is stored as an AFP mounting record. The length of the buffer is
specified by the value pointed to by the ioBuffer field in a previous call to
PBGetVolMountInfoSize.

The PBGetVolMountInfo function does not return the user password or volume
password in the AFPVolMountInfo record. Your application should solicit
these passwords from the user and fill in the record before attempting to mount the
remote volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetVolMountInfo are

noErr 0 No error
nsvErr –35 Volume not found
paramErr –50 Parameter error
extFSErr –58 External file system error; typically, function

is not available for that volume

→ ioCompletion LongInt A pointer to a completion routine.
← ioResult OSErr The function’s result code.
→ ioVRefNum Integer A volume specification.
→ ioBuffer LongInt A pointer to mounting information.

Trap macro Selector

_HFSDispatch $0040
2-220 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
RESULT CODES

PBVolumeMount 2

You can use the PBVolumeMount function to mount a volume, using either the
information returned by the PBGetVolMountInfo function or a structure filled in by
your application.

FUNCTION PBVolumeMount (paramBlock: ParmBlkPtr): OSErr;

paramBlock A pointer to a basic File Manager parameter block.

Parameter block

DESCRIPTION

The PBVolumeMount function mounts a volume and returns its volume reference
number. If you’re mounting an AppleShare volume, place the volume’s AFP mounting
information record in the buffer pointed to by the ioBuffer field.

The PBGetVolMountInfo function does not return the user and volume passwords;
they’re returned blank. Typically, your application asks the user for any necessary
passwords and fills in those fields just before calling PBVolumeMount. If you want to
mount a volume with guest status, pass an empty string as the user password.

If you have enough information about the volume, you can fill in the mounting record
yourself and call PBVolumeMount, even if you did not save the mounting information
while the volume was mounted. To mount an AFP volume, you must fill in the record
with at least the zone name, server name, user name, user password, and volume
password. You can lay out the fields in any order within the data field, as long as you
specify the correct offsets.

SPECIAL CONSIDERATIONS

The File Sharing workstation software introduced in system software version 7.0 does
not currently pass the volume password. The AppleShare 3.0 workstation software does,
however, pass the volume password.

noErr 0 No error
nsvErr –35 Volume not found
paramErr –50 Parameter error
extFSErr –58 External file system error; typically, function is not

available for that volume

→ ioCompletion LongInt A pointer to a completion routine.
← ioResult OSErr The function’s result code.
← ioVRefNum Integer A volume reference number.
→ ioBuffer LongInt A pointer to mounting information.
File Manager Reference 2-221

C H A P T E R 2

File Manager
AFP volumes currently ignore the user authentication method passed in the uamType
field of the volume mounting information record whose address is passed in ioBuffer.
The most secure available method is used by default, except when a user mounts the
volume as <Guest> and uses the kNoUserAuthentication authentication method.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBVolumeMount are

RESULT CODES

Controlling Login Access 2

You can use the functions PBHGetLogInInfo, PBHMapID, and PBHMapName to
get information about the login method and the recognized users and groups on a
particular machine.

Trap macro Selector

_HFSDispatch $0041

noErr 0 No error
notOpenErr –28 AppleTalk is not open
nsvErr –35 Volume not found
paramErr –50 Parameter error; typically, zone, server, and

volume name combination is not valid or not
complete, or the user name is not recognized

extFSErr –58 External file system error; typically, file system
signature was not recognized, or function is
not available for that volume

memFullErr –108 Not enough memory to create a new volume
control block for mounting the volume

afpBadUAM –5002 User authentication method is unknown
afpBadVersNum –5003 Workstation is using an AFP version that the

server doesn’t recognize
afpNoServer –5016 Server is not responding
afpUserNotAuth –5023 User authentication failed (usually, password

is not correct)
afpPwdExpired –5042 Password has expired on server
afpBadDirIDType –5060 Not a fixed directory ID volume
afpCantMountMoreSrvrs –5061 Maximum number of volumes has

been mounted
afpAlreadyMounted –5062 Volume already mounted
afpSameNodeErr –5063 Attempt to log on to a server running on the

same machine
2-222 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBHGetLogInInfo 2

You can use the PBHGetLogInInfo function to determine the login method used to log
on to a particular shared volume.

FUNCTION PBHGetLogInInfo (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an objParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHGetLogInInfo function returns the method used for login and the user name
specified at login time for the volume specified by the ioVRefNum field. The login user
name is returned as a Pascal string in ioObjNamePtr. The maximum size of the user
name is 31 characters. The login method type is returned in the ioObjType field. These
values are recognized.

CONST

kNoUserAuthentication = 1; {no password}

kPassword = 2; {8-byte password}

kEncryptPassword = 3; {encrypted 8-byte password}

kTwoWayEncryptPassword = 6; {two-way random encryption}

Values in the range 7–127 are reserved for future use by Apple Computer, Inc. Values in
the range 128–255 are available to your application as user-defined values.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHGetLogInInfo are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioVRefNum Integer The volume specification.
← ioObjType Integer The login method.
← ioObjNamePtr Ptr A pointer to the user name.

Trap macro Selector

_HFSDispatch $0031

noErr 0 No error
nsvErr –35 Specified volume doesn’t exist
paramErr –50 Function not supported by volume
File Manager Reference 2-223

C H A P T E R 2

File Manager
PBHMapID 2

You can use the PBHMapID function to determine the name of a user or group if you
know the user or group ID.

FUNCTION PBHMapID (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to an objParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHMapID function returns the name of a user or group given its unique ID. The
ioObjID field contains the ID to be mapped. (AppleShare uses the value 0 to signify
<Any User>.) The ioObjType field is the mapping function code; its value is 1 if you’re
mapping a user ID to a user name or 2 if you’re mapping a group ID to a group name.
The name is returned in ioObjNamePtr; the maximum size of the name is 31 characters
(preceded by a length byte).

Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you
might not need to specify a value in the ioObjType field.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHMapID are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioObjType Integer The login method.
← ioObjNamePtr Ptr A pointer to the user/group name.
→ ioObjID LongInt The user/group ID.

Trap macro Selector

_HFSDispatch $0034

noErr 0 No error
fnfErr –43 Unrecognizable owner or group name
paramErr –50 Function not supported by volume
2-224 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBHMapName 2

You can use the PBHMapName function to determine the user ID or group ID from a user
or group name.

FUNCTION PBHMapName (paramBlock: HParmBlkPtr; async: Boolean):

 OSErr;

paramBlock A pointer to an objParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

Given a name, the PBHMapName function returns the corresponding unique user ID
or group ID. The name is passed as a string in ioObjNamePtr. If NIL is passed, the ID
returned is always 0. The maximum size of the name is 31 characters. The ioObjType
field is the mapping function code; its value is 3 if you’re mapping a user name to a user
ID or 4 if you’re mapping a group name to a group ID. On exit, ioObjID contains the
mapped ID.

Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you
might need to set the ioObjType field to determine which database (user or group) to
search first. If both a user and a group have the same name, this field determines which
kind of ID you receive.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHMapName are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioObjType Integer The login method.
→ ioObjNamePtr Ptr A pointer to the user/group name.
← ioObjID LongInt The user/group ID.

Trap macro Selector

_HFSDispatch $0035

noErr 0 No error
fnfErr –43 Unrecognizable owner or group name
paramErr –50 Function not supported by volume
File Manager Reference 2-225

C H A P T E R 2

File Manager
Copying and Moving Files 2

The File Manager provides two shared environment routines—PBHCopyFile and
PBHMoveRename—that allow you to copy and move files. These routines are especially
useful when you want to copy or move files located on a remote volume, because they
allow you to forgo transmitting large amounts of data across a network. These routines
are used internally by the Finder; most applications do not need to use them.

If you do want to use PBHCopyFile or PBHMoveRename, you should first call
PBHGetVolParms to see whether the target volume supports these routines.

PBHCopyFile 2

You can use the PBHCopyFile function to duplicate a file and optionally to rename it.

FUNCTION PBHCopyFile (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

paramBlock A pointer to a copyParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBHCopyFile function duplicates a file on the specified volume and optionally
renames it. It is an optional call for AppleShare file servers. Your application should
examine the information returned by the PBHGetVolParms function to see if the
volume supports PBHCopyFile.

For AppleShare file servers, the source and destination pathnames must indicate the
same file server; however, the parameter block may specify different source and
destination volumes on that file server. A useful way to tell if two file server volumes are
on the same file server is to call the PBHGetVolParms function for each volume and
compare the server addresses returned. The server opens source files with read/deny
write enabled and destination files with write/deny read and write enabled.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioDstVRefNum Integer Destination volume identifier.
→ ioNewName Ptr A pointer to the destination

pathname (may be NIL).
→ ioCopyName Ptr A pointer to the file’s new name

(may be NIL).
→ ioNewDirID LongInt The destination directory ID.
→ ioDirID LongInt The source directory ID.
2-226 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
You specify the source file with the ioVRefNum, ioDirID, and ioNamePtr fields. You
specify the destination directory with the ioDstVRefNum, ioNewDirID, and
ioNewName fields. If ioNewName is NIL, the destination directory is the directory
having ID ioNewDirID on the specified volume; if ioNewName is not NIL, the
destination directory is the directory having the partial pathname pointed to by
ioNewName in the directory having ID ioNewDirID on the specified volume.

The ioCopyName field may contain a pointer to an optional string to be used in copying
the file; if it is not NIL, the file copy is renamed to the name specified in ioCopyName.
The string pointed to by ioCopyName must be a filename, not a partial pathname.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHCopyFile are

RESULT CODES

PBHMoveRename 2

You can use the PBHMoveRename function to move a file or directory and optionally to
rename it.

FUNCTION PBHMoveRename (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to a copyParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Trap macro Selector

_HFSDispatch $0036

noErr 0 No error
dskFulErr –34 Destination volume is full
fnfErr –43 Source file not found, or destination directory does

not exist
vLckdErr –46 Destination volume is read-only
fBsyErr –47 The source or destination file could not be opened

with the correct access modes
dupFNErr –48 Destination file already exists
paramErr –50 Function not supported by volume
wrgVolTypErr –123 Function not supported by volume
afpAccessDenied –5000 The user does not have the right to read the source or

write to the destination
afpDenyConflict –5006 The source or destination file could not be opened

with the correct access modes
afpObjectTypeErr –5025 Source is a directory
File Manager Reference 2-227

C H A P T E R 2

File Manager
Parameter block

DESCRIPTION

The PBHMoveRename function allows you to move (not copy) a file or directory and
optionally to rename it. The source and destination pathnames must point to the same
file server volume.

You specify the source file or directory with the ioVRefNum, ioDirID, and ioNamePtr
fields. You specify the destination directory with the ioNewDirID and ioNewName
fields. If ioNewName is NIL, the destination directory is the directory having ID
ioNewDirID on the specified volume; if ioNewName is not NIL, the destination
directory is the directory having the partial pathname pointed to by ioNewName in
the directory having ID ioNewDirID on the specified volume.

The ioCopyName field may contain a pointer to an optional string to be used in copying
the file or directory; if it is not NIL, the moved object is renamed to the name specified
in ioCopyName. The string pointed to by ioCopyName must be a filename, not a
partial pathname.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBHMoveRename are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
→ ioNewName Ptr A pointer to the destination

pathname (may be NIL).
→ ioCopyName Ptr A pointer to the file’s new name

(may be NIL).
→ ioNewDirID LongInt The destination directory ID.
→ ioDirID LongInt The source directory ID.

Trap macro Selector

_HFSDispatch $0037

noErr 0 No error
fnfErr –43 Source file or directory not found
fLckdErr –45 File is locked
vLckdErr –46 Destination volume is read-only
dupFNErr –48 Destination already exists
paramErr –50 Function not supported by volume
badMovErr –122 Attempted to move directory into offspring
afpAccessDenied –5000 The user does not have the right to move the file

or directory
2-228 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
File ID Routines 2
The File Manager provides several routines that allow you to track files using file IDs.
These routines use the fidParam variant of the HFS parameter block.

Note

Most applications do not need to use these routines. In general you
should track files using alias records, as described in the chapter “Alias
Manager” in this book. The Alias Manager uses file IDs internally as
part of its search algorithms for finding the target of an alias record. ◆

Resolving File ID References 2

You can find the target of a file ID reference by calling the PBResolveFileIDRef
function.

PBResolveFileIDRef 2

You can use the PBResolveFileIDRef function to retrieve the filename and parent
directory ID of the file with a specified file ID.

FUNCTION PBResolveFileIDRef (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an fidParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBResolveFileIDRef function returns the filename and parent directory ID of the
file referred to by file ID in the ioFileID field. It places the filename in the string
pointed to by the ioNamePtr field and the parent directory ID in the ioSrcDirID field.
If the name string is NIL, PBResolveFileIDRef returns only the parent directory ID.
If the name string is not NIL but is only a volume name, PBResolveFileIDRef ignores
the value in the ioVRefNum field, uses the volume name instead, and overwrites the
name string with the filename. A return code of fidNotFoundErr means that the
specified file ID reference has become invalid, either because the file was deleted or
because the file ID reference was destroyed by PBDeleteFileIDRef.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a filename.
→ ioVRefNum Integer A volume specification.
← ioSrcDirID LongInt The file’s parent directory ID.
→ ioFileID LongInt A file ID.
File Manager Reference 2-229

C H A P T E R 2

File Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBResolveFileIDRef are

RESULT CODES

Creating and Deleting File ID References 2

You can create and delete file ID references using the functions PBCreateFileIDRef
and PBDeleteFileIDRef.

Note

Most applications should not directly create or delete file ID references. ◆

PBCreateFileIDRef 2

Use the PBCreateFileIDRef function to establish a file ID reference for a file.

FUNCTION PBCreateFileIDRef (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an fidParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Trap macro Selector

_HFSDispatch $0016

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
extFSErr –58 External file system
wrgVolTypErr –123 Not an HFS volume
fidNotFoundErr –1300 File ID not found
notAFileErr –1302 Specified file is a directory
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Specified file is a directory
afpIDNotFound –5034 File ID not found
afpBadIDErr –5039 File ID not found

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a filename.
→ ioVRefNum Integer A volume specification.
→ ioSrcDirID LongInt The file’s parent directory ID.
← ioFileID LongInt A file ID.
2-230 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
DESCRIPTION

Given a volume reference number, filename, and parent directory ID, the
PBCreateFileIDRef function creates a record to hold the name and parent directory
ID of the specified file. PBCreateFileIDRef places the file ID in the ioFileID field.
If a file ID reference already exists for the file, PBCreateFileIDRef supplies the file
ID but returns the result code fidExists.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBCreateFileIDRef are

RESULT CODES

PBDeleteFileIDRef 2

You can use the PBDeleteFileIDRef function to delete a file ID reference.

FUNCTION PBDeleteFileIDRef (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to an fidParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Trap macro Selector

_HFSDispatch $0014

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
extFSErr –58 External file system
wrgVolTypErr –123 Not an HFS volume
fidExists –1301 File ID already exists
notAFileErr –1302 Specified file is a directory
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Specified file is a directory
afpIDExists –5035 File ID already exists

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a filename.
→ ioVRefNum Integer A volume specification.
→ ioFileID LongInt A file ID.
File Manager Reference 2-231

C H A P T E R 2

File Manager
DESCRIPTION

The PBDeleteFileIDRef function invalidates the specified file ID reference on the
volume specified by ioVRefNum or ioNamePtr. After it has invalidated a file ID
reference, the File Manager can no longer resolve that ID reference to a filename and
parent directory ID.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBDeleteFileIDRef are

RESULT CODES

Foreign File System Routines 2
The File Manager provides several routines that allow you to obtain and set privilege
information on foreign file systems. The PBGetForeignPrivs and PBSetForeignPrivs
functions allow your application or shell program to communicate with a foreign file
system about its native access-control system. These functions retrieve and set access
permissions on the foreign file system, using a foreignPrivParam variant of the HFS
parameter block.

PBGetForeignPrivs 2

You can use the PBGetForeignPrivs function to determine the native access-control
information for a file or directory stored on a volume managed by a foreign file system.

FUNCTION PBGetForeignPrivs (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

Trap macro Selector

_HFSDispatch $0015

noErr 0 No error
nsvErr –35 Volume not found
ioErr –36 I/O error
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
vLckdErr –46 Software volume lock
paramErr –50 Function not supported by volume
volOfflinErr –53 Volume is offline
extFSErr –58 External file system
wrgVolTypErr –123 Function is not supported by volume
fidNotFoundErr –1300 File ID not found
afpAccessDenied –5000 User does not have the correct access
afpObjectTypeErr –5025 Specified file is a directory
afpIDNotFound –5034 File ID not found
2-232 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
paramBlock A pointer to a foreignPrivParam variant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetForeignPrivs function retrieves access information for a file or directory
on a volume managed by a file system that uses a privilege model different from the AFP
model. See “Privilege Information in Foreign File Systems” on page 2-20 for a more
complete explanation of access-control privileges.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetForeignPrivs are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a file or

directory name.
← ioVRefNum Integer A volume specification.
← ioForeignPrivBuffer Ptr A pointer to the privilege

information buffer.
→ ioForeignPrivReqCount LongInt The size allocated for the buffer.
← ioForeignPrivActCount LongInt The amount used in buffer.
→ ioForeignPrivDirID Integer The parent directory ID.
← ioForeignPrivInfo1 LongInt Information specific to

privilege model.
← ioForeignPrivInfo2 LongInt Information specific to

privilege model.
← ioForeignPrivInfo3 LongInt Information specific to

privilege model.
← ioForeignPrivInfo4 LongInt Information specific to

privilege model.

Trap macro Selector

_HFSDispatch $0060

noErr 0 No error
nsvErr –35 Volume not found
paramErr –50 Volume is HFS or MFS (that is, it has no foreign

privilege model), or foreign volume does not
support these calls
File Manager Reference 2-233

C H A P T E R 2

File Manager

.

PBSetForeignPrivs 2

You can use the PBSetForeignPrivs function to change the native access-control
information for a file or directory stored on a volume managed by a foreign file system.

FUNCTION PBSetForeignPrivs (paramBlock: HParmBlkPtr;

async: Boolean): OSErr;

paramBlock A pointer to a foreignPrivParam variant of the HFS
parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBSetForeignPrivs function modifies access information for a file or directory
on a volume managed by a file system that uses a privilege model different from the
AFP model.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBSetForeignPrivs are

RESULT CODES

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
→ ioNamePtr StringPtr A pointer to a file or directory name
→ ioVRefNum Integer A volume specification.
→ ioForeignPrivBuffer Ptr A pointer to the privilege

information buffer.
→ ioForeignPrivReqCount LongInt The size allocated for the buffer.
→ ioForeignPrivActCount LongInt The amount used in buffer.
→ ioForeignPrivDirID Integer The parent directory ID.
→ ioForeignPrivInfo1 LongInt Information specific to

privilege model.
→ ioForeignPrivInfo2 LongInt Information specific to

privilege model.
→ ioForeignPrivInfo3 LongInt Information specific to

privilege model.
→ ioForeignPrivInfo4 LongInt Information specific to

privilege model.

Trap macro Selector

_HFSDispatch $0061

noErr 0 No error
nsvErr –35 Volume not found
paramErr –50 Volume is HFS or MFS (that is, it has no foreign

privilege model), or foreign volume does not
support these calls
2-234 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
Utility Routines 2
The File Manager provides several utility routines that allow you to obtain information
about File Manager queues and file control blocks. These routines insulate your
application from the need to know about the data structures maintained internally by
the File Manager. Most applications do not need to use these routines.

Obtaining Queue Headers 2

You can use the functions GetFSQHdr, GetVCBQHdr, and GetDrvQHdr to obtain a
pointer to the header of the file I/O queue, the VCB queue, and the drive queue,
respectively. See the chapter “Queue Utilities” in Inside Macintosh: Operating System
Utilities for a description of queues and the format of a queue header.

GetFSQHdr 2

You can use the GetFSQHdr function to get a pointer to the header of the file I/O queue.

FUNCTION GetFSQHdr: QHdrPtr;

DESCRIPTION

The GetFSQHdr function returns a pointer to the header of the file I/O queue.

ASSEMBLY-LANGUAGE INFORMATION

The global variable FSQHdr contains the header of the file I/O queue.

GetVCBQHdr 2

You can use the GetVCBQHdr function to get a pointer to the header of the VCB queue.

FUNCTION GetVCBQHdr: QHdrPtr;

DESCRIPTION

The GetVCBQHdr function returns a pointer to the header of the VCB queue.

ASSEMBLY-LANGUAGE INFORMATION

The global variable VCBQHdr contains the header of the VCB queue. The default
volume’s VCB is pointed to by the global variable DefVCBPtr.
File Manager Reference 2-235

C H A P T E R 2

File Manager
GetDrvQHdr 2

You can use the GetDrvQHdr function to get a pointer to the header of the drive queue.

FUNCTION GetDrvQHdr: QHdrPtr;

DESCRIPTION

The GetDrvQHdr function returns a pointer to the header of the drive queue.

ASSEMBLY-LANGUAGE INFORMATION

The global variable DrvQHdr contains the header of the drive queue.

Adding a Drive 2

The AddDrive procedure allows you to add a drive.

AddDrive 2

You can use the AddDrive procedure to add a drive to the system.

PROCEDURE AddDrive (drvrRefNum: Integer; drvNum: Integer;

qEl: DrvQElPtr);

drvrRefNum A driver reference number.

drvNum A drive number.

qEl A pointer to a drive queue element.

DESCRIPTION

The AddDrive procedure adds a disk drive having the specified driver reference
number and drive number to the system. The File Manager expands the drive queue
by adding a copy of the queue element pointed to by the qEl parameter to the end
of the existing queue.

Obtaining File Control Block Information 2

You can get information from the file control block (FCB) allocated for an open file by
calling the function PBGetFCBInfo.
2-236 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
PBGetFCBInfo 2

You can use PBGetFCBInfo to get information about an open file.

FUNCTION PBGetFCBInfo (paramBlock: FCBPBPtr; async: Boolean):

OSErr;

paramBlock A pointer to a file control block parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

DESCRIPTION

The PBGetFCBInfo function returns information about the specified open file. If the
value of ioFCBIndx is positive, the File Manager returns information about the file
whose index in the FCB buffer is ioFCBIndx and that is located on the volume specified
by ioVRefNum (which may contain a drive number, volume reference number, or
working directory reference number). If the value of ioVRefNum is 0, all open files are
indexed; otherwise, only open files on the specified volume are indexed.

If the value of ioFCBIndx is 0, the File Manager returns information about the file
whose file reference number is specified by the ioRefNum field. If the value of
ioFCBIndx is positive, the ioRefNum field is ignored on input and contains the file
reference number on output.

If PBGetFCBInfo executes successfully, the ioNamePtr field contains the name of the
specified open file. You should pass a pointer to a Str31 value if you want that name
returned. If you pass NIL in the ioNamePtr field, no filename is returned.

The ioFCBFlags field returns status information about the specified open file. See
“File Control Block Parameter Blocks” beginning on page 2-108 for a description of
the meaning of the bits in this field.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code of the function.
↔ ioNamePtr StringPtr A pointer to a pathname.
→ ioVRefNum Integer A volume specification.
↔ ioRefNum Integer The file reference number.
→ ioFCBIndx Integer An index.
← ioFCBFlNm LongInt The file ID.
← ioFCBFlags Integer File status flags.
← ioFCBStBlk Integer The first allocation block of the file.
← ioFCBEOF LongInt The logical end-of-file.
← ioFCBPLen LongInt The physical end-of-file.
← ioFCBCrPs LongInt The position of the file mark.
← ioFCBVRefNum Integer The volume reference number.
← ioFCBClpSiz LongInt The file clump size.
← ioFCBParID LongInt The parent directory ID.
File Manager Reference 2-237

C H A P T E R 2

File Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGetFCBInfo are

RESULT CODES

Application-Defined Routines 2

This section describes the application-defined routines whose addresses you pass to
some of the File Manager routines. You can define a routine that is called after the
completion of an asynchronous call.

Completion Routines 2

Most low-level File Manager routines can be executed either synchronously (that
is, the application can’t continue until the routine is completed) or asynchronously
(that is, the application is free to perform other tasks while the routine is executing).
Some routines, however, can only be executed synchronously because they use the
Memory Manager to allocate and release memory.

When you execute a routine asynchronously, you can specify a completion routine that
the File Manager executes after the completion of the call.

MyCompletionProc 2

A File Manager completion routine has the following syntax:

PROCEDURE MyCompletionProc;

DESCRIPTION

When you execute a File Manager routine asynchronously (by setting its async
parameter to TRUE), you can specify a completion routine by passing the routine’s
address in the ioCompletion field of the parameter block passed to the routine.
Because you requested asynchronous execution, the File Manager places an I/O request
in the file I/O queue and returns control to your application—possibly even before the
actual I/O operation is completed. The File Manager takes requests from the queue one
at a time and processes them; meanwhile, your application is free to do other processing.

Trap macro Selector

_HFSDispatch $0008

noErr 0 No error
nsvErr –35 Specified volume doesn’t exist
fnOpnErr –38 File not open
rfNumErr –51 Reference number specifies nonexistent access path
2-238 File Manager Reference

C H A P T E R 2

File Manager

2

F
ile M

anager
A routine executed asynchronously returns control to your application with the result
code noErr as soon as the call is placed in the file I/O queue. This result code does not
indicate that the call has successfully completed, but simply indicates that the call was
successfully placed in the queue. To determine when the call is actually completed, you
can inspect the ioResult field of the parameter block. This field is set to a positive
number when the call is made and set to the actual result code when the call is
completed. If you specify a completion routine, it is executed after the result code is
placed in ioResult.

ASSEMBLY-LANGUAGE INFORMATION

When your completion routine is called, register A0 contains a pointer to the parameter
block of the asynchronous call, and register D0 contains the result code. The value in
register D0 is always identical to the value in the ioResult field of the parameter block.

A completion routine must preserve all registers other than A0, A1, and D0–D2.

SPECIAL CONSIDERATIONS

Because a completion routine is executed at interrupt time, it should not allocate, move,
or purge memory (either directly or indirectly) and should not depend on the validity of
handles to unlocked blocks.

If your completion routine uses application global variables, it must also ensure that
register A5 contains the address of the boundary between your application global
variables and your application parameters. For details, see the discussion of the
functions SetCurrentA5 and SetA5 in the chapter “Memory Management Utilities”
in Inside Macintosh: Memory.

SEE ALSO

For a more complete discussion of interrupt-level processing and its limitations, see the
chapter “Introduction to Processes and Tasks” in Inside Macintosh: Processes.
File Manager Reference 2-239

C H A P T E R 2

File Manager
Summary of the File Manager 2

Pascal Summary 2

Constants 2

CONST

{Gestalt constants}

gestaltFSAttr = 'fs '; {file system attributes selector}

gestaltFullExtFSDispatching= 0; {exports HFSDispatch traps}

gestaltHasFSSpecCalls = 1; {supports FSSpec records}

{directory IDs}

fsRtParID = 1; {directory ID of root directory's parent}

fsRtDirID = 2; {directory ID of volume's root directory}

{access modes for opening files}

fsCurPerm = 0; {whatever permission is allowed}

fsRdPerm = 1; {read permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

{file mark positioning modes}

fsAtMark = 0; {at current mark}

fsFromStart = 1; {set mark relative to beginning of file}

fsFromLEOF = 2; {set mark relative to logical end-of-file}

fsFromMark = 3; {set mark relative to current mark}

rdVerify = 64; {add to above for read-verify}

{values for ioSearchBits in PBCatSearch parameter block}

fsSBPartialName = 1; {substring of name}

fsSBFullName = 2; {full name}

fsSBFlAttrib = 4; {directory flag; software lock flag}

fsSBNegate = 16384; {reverse match status}

{for files only}

fsSBFlFndrInfo = 8; {Finder file info}

fsSBFlLgLen = 32; {logical length of data fork}

fsSBFlPyLen = 64; {physical length of data fork}
2-240 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
fsSBFlRLgLen = 128; {logical length of resource fork}

fsSBFlRPyLen = 256; {physical length of resource fork}

fsSBFlCrDat = 512; {file creation date}

fsSBFlMdDat = 1024; {file modification date}

fsSBFlBkDat = 2048; {file backup date}

fsSBFlXFndrInfo = 4096; {more Finder file info}

fsSBFlParID = 8192; {file's parent ID}

{for directories only}

fsSBDrUsrWds = 8; {Finder directory info}

fsSBDrNmFls = 16; {number of files in directory}

fsSBDrCrDat = 512; {directory creation date}

fsSBDrMdDat = 1024; {directory modification date}

fsSBDrBkDat = 2048; {directory backup date}

fsSBDrFndrInfo = 4096; {more Finder directory info}

fsSBDrParID = 8192; {directory's parent ID}

{value of vMForeignPrivID in file attributes buffer}

fsUnixPriv = 1; {A/UX privilege model}

{bit positions in vMAttrib field of GetVolParmsInfoBuffer}

bHasBlankAccessPrivileges

= 4; {volume supports inherited privileges}

bHasBTreeMgr = 5; {reserved}

bHasFileIDs = 6; {volume supports file ID functions}

bHasCatSearch = 7; {volume supports PBCatSearch}

bHasUserGroupList = 8; {volume supports AFP privileges}

bHasPersonalAccessPrivileges

= 9; {local file sharing is enabled}

bHasFolderLock = 10; {volume supports locking of folders}

bHasShortName = 11; {volume supports AFP short names}

bHasDesktopMgr = 12; {volume supports Desktop Manager}

bHasMoveRename = 13; {volume supports _MoveRename}

bHasCopyFile = 14; {volume supports _CopyFile}

bHasOpenDeny = 15; {volume supports shared access modes}

bHasExtFSVol = 16; {volume is external file system volume}

bNoSysDir = 17; {volume has no system directory}

bAccessCntl = 18; {volume supports AFP access control}

bNoBootBlks = 19; {volume is not a startup volume}

bNoDeskItems = 20; {do not place objects on the desktop}

bNoSwitchTo = 25; {do not switch launch to applications}

bTrshOffLine = 26; {zoom volume when it is unmounted}

bNoLclSync = 27; {don't let Finder change mod. date}

bNoVNEdit = 28; {lock volume name}
Summary of the File Manager 2-241

C H A P T E R 2

File Manager
bNoMiniFndr = 29; {reserved; always 1}

bLocalWList = 30; {use shared volume handle for window list}

bLimitFCBs = 31; {limit file control blocks}

{media type in remote mounting information}

AppleShareMediaType

= 'afpm'; {an AppleShare volume}

{user authentication methods in AFP remote mounting information}

kNoUserAuthentication = 1; {guest status; no password needed}

kPassword = 2; {8-byte password}

kEncryptPassword = 3; {encrypted 8-byte password}

kTwoWayEncryptPassword = 6; {two-way random encryption; }

{ authenticate both user and server}

Data Types 2

File System Specification Record

TYPE

FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63; {filename or directory name}

END;

FSSpecPtr = ^FSSpec;

FSSpecHandle = ^FSSpecPtr;

FSSpecArray = ARRAY[0..0] OF FSSpec;

FSSpecArrayPtr = ^FSSpecArray;

FSSpecArrayHandle = ^FSSpecArrayPtr;

File and Directory Parameter Blocks

TYPE

ParamBlkType = (ioParam, fileParam, volumeParam, cntrlParam,

slotDevParam, multiDevParam, accessParam,

objParam, copyParam, wdParam, fidParam, csParam,

foreignPrivsParam);
2-242 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
ParmBlkPtr = ^ParamBlockRec;

ParamBlockRec = {basic File Manager parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

CASE ParamBlkType OF

ioParam:

 (ioRefNum: Integer; {file reference number}

ioVersNum: SignedByte; {version number}

ioPermssn: SignedByte; {read/write permission}

ioMisc: Ptr; {miscellaneous}

ioBuffer: Ptr; {data buffer}

ioReqCount: LongInt; {requested number of bytes}

ioActCount: LongInt; {actual number of bytes}

ioPosMode: Integer; {positioning mode and newline char.}

ioPosOffset: LongInt); {positioning offset}

fileParam:

 (ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {file version number (unused)}

filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file attributes}

ioFlVersNum: SignedByte; {file version number (unused)}

ioFlFndrInfo: FInfo; {information used by the Finder}

ioFlNum: LongInt; {file ID}

ioFlStBlk: Integer; {first alloc. blk. of data fork}

ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt); {date and time of last modification}

volumeParam:

 (filler2: LongInt; {reserved}

ioVolIndex: Integer; {volume index}

ioVCrDate: LongInt; {date and time of initialization}
Summary of the File Manager 2-243

C H A P T E R 2

File Manager
ioVLsBkUp: LongInt; {date and time of last modification}

ioVAtrb: Integer; {volume attributes}

ioVNmFls: Integer; {number of files in root directory}

ioVDirSt: Integer; {first block of directory}

ioVBlLn: Integer; {length of directory in blocks}

ioVNmAlBlks: Integer; {number of allocation blocks}

ioVAlBlkSiz: LongInt; {size of allocation blocks}

ioVClpSiz: LongInt; {default clump size}

ioAlBlSt: Integer; {first block in block map}

ioVNxtFNum: LongInt; {next unused file ID}

ioVFrBlk: Integer); {number of unused allocation blocks}

END;

HParmBlkPtr = ^HParamBlockRec;

HParamBlockRec = {HFS parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

CASE ParamBlkType OF

ioParam:

 (ioRefNum: Integer; {file reference number}

ioVersNum: SignedByte; {version number}

ioPermssn: SignedByte; {read/write permission}

ioMisc: Ptr; {miscellaneous}

ioBuffer: Ptr; {data buffer}

ioReqCount: LongInt; {requested number of bytes}

ioActCount: LongInt; {actual number of bytes}

ioPosMode: Integer; {positioning mode and newline char.}

ioPosOffset: LongInt); {positioning offset}

fileParam:

 (ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {file version number (unused)}

filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file attributes}

ioFlVersNum: SignedByte; {file version number (unused)}

ioFlFndrInfo: FInfo; {information used by the Finder}

ioDirID: LongInt; {directory ID or file ID}
2-244 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
ioFlStBlk: Integer; {first alloc. blk. of data fork}

ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}

ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt); {date and time of last modification}

volumeParam:

 (filler2: LongInt; {reserved}

ioVolIndex: Integer; {volume index}

ioVCrDate: LongInt; {date and time of initialization}

ioVLsMod: LongInt; {date and time of last modification}

ioVAtrb: Integer; {volume attributes}

ioVNmFls: Integer; {number of files in root directory}

ioVBitMap: Integer; {first block of volume bitmap}

ioAllocPtr: Integer; {first block of next new file}

ioVNmAlBlks: Integer; {number of allocation blocks}

ioVAlBlkSiz: LongInt; {size of allocation blocks}

ioVClpSiz: LongInt; {default clump size}

ioAlBlSt: Integer; {first block in volume map}

ioVNxtCNID: LongInt; {next unused node ID}

ioVFrBlk: Integer; {number of unused allocation blocks}

ioVSigWord: Integer; {volume signature}

ioVDrvInfo: Integer; {drive number}

ioVDRefNum: Integer; {driver reference number}

ioVFSID: Integer; {file-system identifier}

ioVBkUp: LongInt; {date and time of last backup}

ioVSeqNum: Integer; {used internally}

ioVWrCnt: LongInt; {volume write count}

ioVFilCnt: LongInt; {number of files on volume}

ioVDirCnt: LongInt; {number of directories on volume}

ioVFndrInfo: ARRAY[1..8] OF LongInt);

{information used by the Finder}

accessParam:

 (filler3: Integer; {reserved}

ioDenyModes: Integer; {access mode information}

filler4: Integer; {reserved}

filler5: SignedByte; {reserved}

ioACUser: SignedByte; {user access rights}

filler6: LongInt; {reserved}

ioACOwnerID: LongInt; {owner ID}

ioACGroupID: LongInt; {group ID}

ioACAccess: LongInt); {directory access rights}
Summary of the File Manager 2-245

C H A P T E R 2

File Manager
objParam:

 (filler7: Integer; {reserved}

ioObjType: Integer; {function code}

ioObjNamePtr: Ptr; {ptr to returned creator/group name}

ioObjID: LongInt); {creator/group ID}

copyParam:

 (ioDstVRefNum: Integer; {destination volume identifier}

filler8: Integer; {reserved}

ioNewName: Ptr; {pointer to destination pathname}

ioCopyName: Ptr; {pointer to optional name}

ioNewDirID: LongInt); {destination directory ID}

wdParam:

 (filler9: Integer; {reserved}

ioWDIndex: Integer; {working directory index}

ioWDProcID: LongInt; {working directory user identifier}

ioWDVRefNum: Integer; {working directory's vol. ref. num.}

filler10: Integer; {reserved}

filler11: LongInt; {reserved}

filler12: LongInt; {reserved}

filler13: LongInt; {reserved}

ioWDDirID: LongInt); {working directory's directory ID}

fidParam:

 (filler14: LongInt; {reserved}

ioDestNamePtr: StringPtr; {pointer to destination filename}

filler15: LongInt; {reserved}

ioDestDirID: LongInt; {destination parent directory ID}

filler16: LongInt; {reserved}

filler17: LongInt; {reserved}

ioSrcDirID: LongInt; {source parent directory ID}

filler18: Integer; {reserved}

ioFileID: LongInt); {file ID}

csParam:

 (ioMatchPtr: FSSpecArrayPtr;{pointer to array of matches}

ioReqMatchCount: LongInt; {max. number of matches to return}

ioActMatchCount: LongInt; {actual number of matches}

ioSearchBits: LongInt; {enable bits for matching rules}

ioSearchInfo1: CInfoPBPtr; {pointer to values and lower bounds}

ioSearchInfo2: CInfoPBPtr; {pointer to masks and upper bounds}

ioSearchTime: LongInt; {maximum time to search}

ioCatPosition: CatPositionRec;{current catalog position}

ioOptBuffer: Ptr; {pointer to optional read buffer}

ioOptBufSize: LongInt); {length of optional read buffer}
2-246 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
foreignPrivParam:

 (filler21: LongInt; {reserved}

filler22: LongInt; {reserved}

ioForeignPrivBuffer: Ptr; {privileges data buffer}

ioForeignPrivReqCount: LongInt; {size of buffer}

ioForeignPrivActCount: LongInt; {amount of buffer used}

filler23: LongInt; {reserved}

ioForeignPrivDirID: LongInt; {parent directory ID of }

{ foreign file or directory}

ioForeignPrivInfo1: LongInt; {privileges data}

ioForeignPrivInfo2: LongInt; {privileges data}

ioForeignPrivInfo3: LongInt; {privileges data}

ioForeignPrivInfo4: LongInt); {privileges data}

END;

Catalog Information Parameter Blocks

TYPE

CInfoType = (hfileInfo, dirInfo);

CInfoPBPtr = ^CInfoPBRec;

CInfoPBRec = {catalog information parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

ioFRefNum: Integer; {file reference number}

ioFVersNum: SignedByte; {version number}

filler1: SignedByte; {reserved}

ioFDirIndex: Integer; {directory index}

ioFlAttrib: SignedByte; {file or directory attributes}

ioACUser: SignedByte; {directory access rights}

CASE CInfoType OF

hFileInfo:

 (ioFlFndrInfo: FInfo; {information used by the Finder}

ioDirID: LongInt; {directory ID or file ID}

ioFlStBlk: Integer; {first alloc. blk. of data fork}

ioFlLgLen: LongInt; {logical EOF of data fork}

ioFlPyLen: LongInt; {physical EOF of data fork}
Summary of the File Manager 2-247

C H A P T E R 2

File Manager
ioFlRStBlk: Integer; {first alloc. blk. of resource fork}

ioFlRLgLen: LongInt; {logical EOF of resource fork}

ioFlRPyLen: LongInt; {physical EOF of resource fork}

ioFlCrDat: LongInt; {date and time of creation}

ioFlMdDat: LongInt; {date and time of last modification}

ioFlBkDat: LongInt; {date and time of last backup}

ioFlXFndrInfo: FXInfo; {additional Finder information}

ioFlParID: LongInt; {file parent directory ID}

ioFlClpSiz: LongInt); {file's clump size}

dirInfo:

 (ioDrUsrWds: DInfo; {information used by the Finder}

ioDrDirID: LongInt; {directory ID}

ioDrNmFls: Integer; {number of files in directory}

filler3: ARRAY[1..9] OF Integer;

ioDrCrDat: LongInt; {date and time of creation}

ioDrMdDat: LongInt; {date and time of last modification}

ioDrBkDat: LongInt; {date and time of last backup}

ioDrFndrInfo: DXInfo; {additional Finder information}

ioDrParID: LongInt); {directory's parent directory ID}

END;

Catalog Position Record

TYPE

CatPositionRec = {catalog position record}

RECORD

initialize: LongInt; {starting point}

priv: ARRAY[1..6] OF Integer; {private data}

END;

Catalog Move Parameter Block

TYPE

CMovePBPtr = ^CMovePBRec;

CMovePBRec = {catalog move parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}
2-248 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
filler1: LongInt; {reserved}

ioNewName: StringPtr; {name of new directory}

filler2: LongInt; {reserved}

ioNewDirID: LongInt; {directory ID of new directory}

filler3: ARRAY[1..2] OF LongInt; {reserved}

ioDirID: LongInt; {directory ID of current directory}

END;

Working Directory Parameter Block

TYPE

WDPBPtr = ^WDPBRec;

WDPBRec = {working directory parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}

filler1: Integer; {reserved}

ioWDIndex: Integer; {working directory index}

ioWDProcID: LongInt; {working directory user identifier}

ioWDVRefNum: Integer; {working directory's vol. ref. num.}

filler2: ARRAY[1..7] OF Integer; {reserved}

ioWDDirID: LongInt; {working directory's directory ID}

END;

File Control Block Parameter Block

TYPE

FCBPBPtr = ^FCBPBRec;

FCBPBRec = {file control block parameter block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {pointer to completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to pathname}

ioVRefNum: Integer; {volume specification}
Summary of the File Manager 2-249

C H A P T E R 2

File Manager
ioRefNum: Integer; {file reference number}

filler: Integer; {reserved}

ioFCBIndx: Integer; {FCB index}

filler1: Integer; {reserved}

ioFCBFlNm: LongInt; {file ID}

ioFCBFlags: Integer; {flags}

ioFCBStBlk: Integer; {first allocation block of file}

ioFCBEOF: LongInt; {logical end-of-file}

ioFCBPLen: LongInt; {physical end-of-file}

ioFCBCrPs: LongInt; {position of the file mark}

ioFCBVRefNum: Integer; {volume reference number}

ioFCBClpSiz: LongInt; {file's clump size}

ioFCBParID: LongInt; {parent directory ID}

END;

Volume Attributes Buffer

TYPE

GetVolParmsInfoBuffer =

RECORD

vMVersion: Integer; {version number}

vMAttrib: LongInt; {volume attributes}

vMLocalHand: Handle; {reserved}

vMServerAdr: LongInt; {network server address}

vMVolumeGrade: LongInt; {relative speed rating}

vMForeignPrivID: Integer; {foreign privilege model}

END;

Volume Mounting Information Records

TYPE

VolumeType = OSType;

VolMountInfoPtr = ^VolMountInfoHeader;

VolMountInfoHeader = {volume mounting information}

RECORD

length: Integer; {length of mounting information}

media: VolumeType; {type of volume}

END;

AFPVolMountInfoPtr = ^AFPVolMountInfo;

AFPVolMountInfo = {AFP volume mounting information}

RECORD

length: Integer; {length of mounting information}

media: VolumeType; {type of volume}
2-250 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
flags: Integer; {reserved; must be set to 0}

nbpInterval: SignedByte; {NBP retry interval}

nbpCount: SignedByte; {NBP retry count}

uamType: Integer; {user authentication method}

zoneNameOffset: Integer; {offset to zone name}

serverNameOffset: Integer; {offset server name}

volNameOffset: Integer; {offset to volume name}

userNameOffset: Integer; {offset to user name}

userPasswordOffset:

Integer; {offset to user password}

volPasswordOffset:

Integer; {offset to volume password}

AFPData: PACKED ARRAY[1..144] OF CHAR;

{standard AFP mounting info}

END;

Internal Data Types 2

Volume and File Control Blocks

TYPE

VCB = {volume control block}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

vcbFlags: Integer; {volume flags (bit 15 = 1 if dirty)}

vcbSigWord: Integer; {volume signature}

vcbCrDate: LongInt; {date and time of volume creation}

vcbLsMod: LongInt; {date and time of last modification}

vcbAtrb: Integer; {volume attributes}

vcbNmFls: Integer; {number of files in root directory}

vcbVBMSt: Integer; {first block of volume bitmap}

vcbAllocPtr: Integer; {start of next allocation search}

vcbNmAlBlks: Integer; {number of allocation blocks in volume}

vcbAlBlkSiz: LongInt; {size (in bytes) of allocation blocks}

vcbClpSiz: LongInt; {default clump size}

vcbAlBlSt: Integer; {first allocation block in volume}

vcbNxtCNID: LongInt; {next unused catalog node ID}

vcbFreeBks: Integer; {number of unused allocation blocks}

vcbVN: String[27]; {volume name}

vcbDrvNum: Integer; {drive number}

vcbDRefNum: Integer; {driver reference number}

vcbFSID: Integer; {file-system identifier}
Summary of the File Manager 2-251

C H A P T E R 2

File Manager
vcbVRefNum: Integer; {volume reference number}

vcbMAdr: Ptr; {used internally}

vcbBufAdr: Ptr; {used internally}

vcbMLen: Integer; {used internally}

vcbDirIndex: Integer; {used internally}

vcbDirBlk: Integer; {used internally}

vcbVolBkUp: LongInt; {date and time of last backup}

vcbVSeqNum: Integer; {volume backup sequence number}

vcbWrCnt: LongInt; {volume write count}

vcbXTClpSiz: LongInt; {clump size for extents overflow file}

vcbCTClpSiz: LongInt; {clump size for catalog file}

vcbNmRtDirs: Integer; {number of directories in root dir.}

vcbFilCnt: LongInt; {number of files in volume}

vcbDirCnt: LongInt; {number of directories in volume}

vcbFndrInfo: ARRAY[1..8] OF LongInt;

{information used by the Finder}

vcbVCSize: Integer; {used internally}

vcbVBMCSiz: Integer; {used internally}

vcbCtlCSiz: Integer; {used internally}

vcbXTAlBlks: Integer; {size of extents overflow file}

vcbCTAlBlks: Integer; {size of catalog file}

vcbXTRef: Integer; {ref. num. for extents overflow file}

vcbCTRef: Integer; {ref. num. for catalog file}

vcbCtlBuf: Ptr; {ptr. to extents and catalog caches}

vcbDirIDM: LongInt; {directory last searched}

vcbOffsM: Integer; {offspring index at last search}

END;

FCB = {file control block}

RECORD

fcbFlNum: LongInt; {file ID}

fcbFlags: Integer; {file flags}

fcbSBlk: Integer; {first allocation block of file}

fcbEOF: LongInt; {logical end-of-file}

fcbPLen: LongInt; {physical end-of-file}

fcbCrPs: LongInt; {current file mark position}

fcbVPtr: Ptr; {pointer to volume control block}

fcbBfAdr: Ptr; {pointer to access path buffer}

fcbFlPos: Integer; {reserved}

fcbClmpSize: LongInt; {file clump size}

fcbBTCBPtr: Ptr; {pointer to B*-tree control block}

fcbExtRec: ExtDataRec; {first three file extents}

fcbFType: LongInt; {file's four Finder type bytes}
2-252 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
fcbCatPos: LongInt; {catalog hint for use on Close}

fcbDirID: LongInt; {file's parent directory ID}

fcbCName: String[31]; {name of file}

END;

Drive Queue Elements

TYPE

DrvQEl = {drive queue element}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {flag for dQDrvSz and dQDrvSz2}

dQDrive: Integer; {drive number}

dQRefNum: Integer; {driver reference number}

dQFSID: Integer; {file-system identifier}

dQDrvSz: Integer; {number of logical blocks on drive}

dQDrvSz2: Integer; {additional field for large drives}

END;

High-Level File Access Routines 2

Reading, Writing, and Closing Files

FUNCTION FSRead (refNum: Integer; VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION FSWrite (refNum: Integer; VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION FSClose (refNum: Integer): OSErr;

Manipulating the File Mark

FUNCTION GetFPos (refNum: Integer; VAR filePos: LongInt): OSErr;

FUNCTION SetFPos (refNum: Integer; posMode: Integer;
posOff: LongInt): OSErr;

Manipulating the End-of-File

FUNCTION GetEOF (refNum: Integer; VAR logEOF: LongInt): OSErr;

FUNCTION SetEOF (refNum: Integer; logEOF: LongInt): OSErr;

Allocating File Blocks

FUNCTION Allocate (refNum: Integer; VAR count: LongInt): OSErr;

FUNCTION AllocContig (refNum: Integer; VAR count: LongInt): OSErr;
Summary of the File Manager 2-253

C H A P T E R 2

File Manager
Low-Level File Access Routines 2

Reading, Writing, and Closing Files

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBReadSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBReadAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBWriteSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBWriteAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBCloseSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBCloseAsync (paramBlock: ParmBlkPtr): OSErr;

Manipulating the File Mark

FUNCTION PBGetFPos (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBGetFPosSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBGetFPosAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetFPos (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBSetFPosSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetFPosAsync (paramBlock: ParmBlkPtr): OSErr;

Manipulating the End-of-File

FUNCTION PBGetEOF (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBGetEOFSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBGetEOFAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetEOF (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBSetEOFSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetEOFAsync (paramBlock: ParmBlkPtr): OSErr;

Allocating File Blocks

FUNCTION PBAllocate (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBAllocateSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBAllocateAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBAllocContig (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBAllocContigSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBAllocContigAsync (paramBlock: ParmBlkPtr): OSErr;
2-254 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Updating Files

FUNCTION PBFlushFile (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBFlushFileSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBFlushFileAsync (paramBlock: ParmBlkPtr): OSErr;

High-Level Volume Access Routines 2

Unmounting Volumes

FUNCTION UnmountVol (volName: StringPtr; vRefNum: Integer): OSErr;

FUNCTION Eject (volName: StringPtr; vRefNum: Integer): OSErr;

Updating Volumes

FUNCTION FlushVol (volName: StringPtr; vRefNum: Integer): OSErr;

Manipulating the Default Volume

FUNCTION GetVol (volName: StringPtr; VAR vRefNum: Integer):
OSErr;

FUNCTION SetVol (volName: StringPtr; vRefNum: Integer): OSErr;

FUNCTION HGetVol (volName: StringPtr; VAR vRefNum: Integer;
VAR dirID: LongInt): OSErr;

FUNCTION HSetVol (volName: StringPtr; vRefNum: Integer;
dirID: LongInt): OSErr;

Obtaining Volume Information

FUNCTION GetVInfo (drvNum: Integer; volName: StringPtr;
VAR vRefNum: Integer; VAR freeBytes: LongInt):
OSErr;

FUNCTION GetVRefNum (refNum: Integer; VAR vRefNum: Integer): OSErr;

Low-Level Volume Access Routines 2

Mounting and Unmounting Volumes

FUNCTION PBMountVol (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBUnmountVol (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBEject (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBOffLine (paramBlock: ParmBlkPtr): OSErr;
Summary of the File Manager 2-255

C H A P T E R 2

File Manager
Updating Volumes

FUNCTION PBFlushVol (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBFlushVolSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBFlushVolAsync (paramBlock: ParmBlkPtr): OSErr;

Obtaining Volume Information

FUNCTION PBHGetVInfo (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHGetVInfoSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetVInfoAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBSetVInfo (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBSetVInfoSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBSetVInfoAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetVolParms (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHGetVolParmsSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetVolParmsAsync (paramBlock: HParmBlkPtr): OSErr;

Manipulating the Default Volume

FUNCTION PBGetVol (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBGetVolSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBGetVolAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetVol (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBSetVolSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBSetVolAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBHGetVol (paramBlock: WDPBPtr; async: Boolean): OSErr;

FUNCTION PBHGetVolSync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBHGetVolAsync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBHSetVol (paramBlock: WDPBPtr; async: Boolean): OSErr;

FUNCTION PBHSetVolSync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBHSetVolAsync (paramBlock: WDPBPtr): OSErr;

File System Specification Routines 2

Opening Files
FUNCTION FSpOpenDF (spec: FSSpec; permission: SignedByte;

VAR refNum: Integer): OSErr;

FUNCTION FSpOpenRF (spec: FSSpec; permission: SignedByte;
VAR refNum: Integer): OSErr;
2-256 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Creating and Deleting Files and Directories

FUNCTION FSpCreate (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode):
OSErr;

FUNCTION FSpDirCreate (spec: FSSpec; scriptTag: ScriptCode;
VAR createdDirID: LongInt): OSErr;

FUNCTION FSpDelete (spec: FSSpec): OSErr;

Accessing Information About Files and Directories

FUNCTION FSpGetFInfo (spec: FSSpec; VAR fndrInfo: FInfo): OSErr;

FUNCTION FSpSetFInfo (spec: FSSpec; fndrInfo: FInfo): OSErr;

FUNCTION FSpSetFLock (spec: FSSpec): OSErr;

FUNCTION FSpRstFLock (spec: FSSpec): OSErr;

FUNCTION FSpRename (spec: FSSpec; newName: Str255): OSErr;

Moving Files or Directories

FUNCTION FSpCatMove (source: FSSpec; dest: FSSpec): OSErr;

Exchanging the Data in Two Files

FUNCTION FSpExchangeFiles (source: FSSpec; dest: FSSpec): OSErr;

Creating File System Specifications

FUNCTION FSMakeFSSpec (vRefNum: Integer; dirID: LongInt;
fileName: Str255; VAR spec: FSSpec): OSErr;

FUNCTION PBMakeFSSpec (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBMakeFSSpecSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBMakeFSSpecAsync (paramBlock: HParmBlkPtr): OSErr;

High-Level HFS Routines 2

Opening Files

FUNCTION HOpenDF (vRefNum: Integer; dirID: LongInt;
fileName: Str255; permission: SignedByte;
VAR refNum: Integer): OSErr;

FUNCTION HOpenRF (vRefNum: Integer; dirID: LongInt;
fileName: Str255; permission: SignedByte;
VAR refNum: Integer): OSErr;
Summary of the File Manager 2-257

C H A P T E R 2

File Manager
FUNCTION HOpen (vRefNum: Integer; dirID: LongInt;
fileName: Str255; permission: SignedByte;
VAR refNum: Integer): OSErr;

Creating and Deleting Files and Directories

FUNCTION HCreate (vRefNum: Integer; dirID: LongInt;
fileName: Str255; creator: OSType;
fileType: OSType): OSErr;

FUNCTION DirCreate (vRefNum: Integer; parentDirID: LongInt;
directoryName: Str255;
VAR createdDirID: LongInt): OSErr;

FUNCTION HDelete (vRefNum: Integer; dirID: LongInt;
fileName: Str255): OSErr;

Accessing Information About Files and Directories

FUNCTION HGetFInfo (vRefNum: Integer; dirID: LongInt;
fileName: Str255; VAR fndrInfo: FInfo): OSErr;

FUNCTION HSetFInfo (vRefNum: Integer; dirID: LongInt;
fileName: Str255; fndrInfo: FInfo): OSErr;

FUNCTION HSetFLock (vRefNum: Integer; dirID: LongInt;
fileName: Str255): OSErr;

FUNCTION HRstFLock (vRefNum: Integer; dirID: LongInt;
fileName: Str255): OSErr;

FUNCTION HRename (vRefNum: Integer; dirID: LongInt;
oldName: Str255; newName: Str255): OSErr;

Moving Files or Directories

FUNCTION CatMove (vRefNum: Integer; dirID: LongInt;
oldName: Str255; newDirID: LongInt;
newName: Str255): OSErr;

Maintaining Working Directories

FUNCTION OpenWD (vRefNum: Integer; dirID: LongInt;
procID: LongInt; VAR wdRefNum: Integer): OSErr;

FUNCTION CloseWD (wdRefNum: Integer): OSErr;

FUNCTION GetWDInfo (wdRefNum: Integer; VAR vRefNum: Integer;
VAR dirID: LongInt; VAR procID: LongInt):
OSErr;
2-258 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Low-Level HFS Routines 2

Opening Files

FUNCTION PBHOpenDF (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHOpenDFSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenDFAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenRF (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHOpenRFSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenRFAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpen (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHOpenSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenAsync (paramBlock: HParmBlkPtr): OSErr;

Creating and Deleting Files and Directories

FUNCTION PBHCreate (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHCreateSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHCreateAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBDirCreate (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBDirCreateSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBDirCreateAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHDelete (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHDeleteSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHDeleteAsync (paramBlock: HParmBlkPtr): OSErr;

Accessing Information About Files and Directories

FUNCTION PBGetCatInfo (paramBlock: CInfoPBPtr; async: Boolean): OSErr;

FUNCTION PBGetCatInfoSync (paramBlock: CInfoPBPtr): OSErr;

FUNCTION PBGetCatInfoAsync (paramBlock: CInfoPBPtr): OSErr;

FUNCTION PBSetCatInfo (paramBlock: CInfoPBPtr; async: Boolean): OSErr;

FUNCTION PBSetCatInfoSync (paramBlock: CInfoPBPtr): OSErr;

FUNCTION PBSetCatInfoAsync (paramBlock: CInfoPBPtr): OSErr;

FUNCTION PBHGetFInfo (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;
Summary of the File Manager 2-259

C H A P T E R 2

File Manager
FUNCTION PBHGetFInfoSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetFInfoAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetFInfo (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHSetFInfoSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetFInfoAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetFLock (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHSetFLockSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetFLockAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHRstFLock (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHRstFLockSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHRstFLockAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHRename (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHRenameSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHRenameAsync (paramBlock: HParmBlkPtr): OSErr;

Moving Files or Directories
FUNCTION PBCatMove (paramBlock: CMovePBPtr; async: Boolean): OSErr;

FUNCTION PBCatMoveSync (paramBlock: CMovePBPtr): OSErr;

FUNCTION PBCatMoveAsync (paramBlock: CMovePBPtr): OSErr;

Maintaining Working Directories
FUNCTION PBOpenWD (paramBlock: WDPBPtr; async: Boolean): OSErr;

FUNCTION PBOpenWDSync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBOpenWDAsync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBCloseWD (paramBlock: WDPBPtr; async: Boolean): OSErr;

FUNCTION PBCloseWDSync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBCloseWDAsync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBGetWDInfo (paramBlock: WDPBPtr; async: Boolean): OSErr;

FUNCTION PBGetWDInfoSync (paramBlock: WDPBPtr): OSErr;

FUNCTION PBGetWDInfoAsync (paramBlock: WDPBPtr): OSErr;

Searching a Catalog
FUNCTION PBCatSearch (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

FUNCTION PBCatSearchSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBCatSearchAsync (paramBlock: HParmBlkPtr): OSErr;
2-260 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Exchanging the Data in Two Files

FUNCTION PBExchangeFiles (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBExchangeFilesSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBExchangeFilesAsync
(paramBlock: HParmBlkPtr): OSErr;

Shared Environment Routines 2

Opening Files While Denying Access
FUNCTION PBHOpenDeny (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

FUNCTION PBHOpenDenySync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenDenyAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenRFDeny (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHOpenRFDenySync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHOpenRFDenyAsync (paramBlock: HParmBlkPtr): OSErr;

Locking and Unlocking File Ranges
FUNCTION PBLockRange (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBLockRangeSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBLockRangeAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBUnlockRange (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBUnlockRangeSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBUnlockRangeAsync (paramBlock: ParmBlkPtr): OSErr;

Manipulating Share Points
FUNCTION PBShare (paramBlock: HParmBlkPtr; async: Boolean):

OSErr;

FUNCTION PBShareSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBShareAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBUnshare (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBUnshareSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBUnshareAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBGetUGEntry (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBGetUGEntrySync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBGetUGEntryAsync (paramBlock: HParmBlkPtr): OSErr;
Summary of the File Manager 2-261

C H A P T E R 2

File Manager
Controlling Directory Access

FUNCTION PBHGetDirAccess (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHGetDirAccessSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetDirAccessAsync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetDirAccess (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHSetDirAccessSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHSetDirAccessAsync
(paramBlock: HParmBlkPtr): OSErr;

Mounting Volumes

FUNCTION PBGetVolMountInfoSize
(paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBGetVolMountInfo (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBVolumeMount (paramBlock: ParmBlkPtr): OSErr;

Controlling Login Access

FUNCTION PBHGetLogInInfo (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHGetLogInInfoSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHGetLogInInfoAsync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHMapID (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHMapIDSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHMapIDAsync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHMapName (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHMapNameSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHMapNameAsync (paramBlock: HParmBlkPtr): OSErr;

Copying and Moving Files

FUNCTION PBHCopyFile (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHCopyFileSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHCopyFileAsync (paramBlock: HParmBlkPtr): OSErr;
2-262 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
FUNCTION PBHMoveRename (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBHMoveRenameSync (paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBHMoveRenameAsync (paramBlock: HParmBlkPtr): OSErr;

File ID Routines 2

Resolving File ID References

FUNCTION PBResolveFileIDRef (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBResolveFileIDRefSync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBResolveFileIDRefAsync
(paramBlock: HParmBlkPtr): OSErr;

Creating and Deleting File ID References

FUNCTION PBCreateFileIDRef (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBCreateFileIDRefSync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBCreateFileIDRefAsync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBDeleteFileIDRef (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBDeleteFileIDRefSync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBDeleteFileIDRefAsync
(paramBlock: HParmBlkPtr): OSErr;

Foreign File System Routines 2

Accessing Privilege Information in Foreign File Systems

FUNCTION PBGetForeignPrivs (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBGetForeignPrivsSync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBGetForeignPrivsAsync
(paramBlock: HParmBlkPtr): OSErr;
Summary of the File Manager 2-263

C H A P T E R 2

File Manager
FUNCTION PBSetForeignPrivs (paramBlock: HParmBlkPtr; async: Boolean):
OSErr;

FUNCTION PBSetForeignPrivsSync
(paramBlock: HParmBlkPtr): OSErr;

FUNCTION PBSetForeignPrivsAsync
(paramBlock: HParmBlkPtr): OSErr;

Utility Routines 2

Obtaining Queue Headers

FUNCTION GetFSQHdr : QHdrPtr;

FUNCTION GetVCBQHdr : QHdrPtr;

FUNCTION GetDrvQHdr : QHdrPtr;

Adding a Drive

PROCEDURE AddDrive (drvrRefNum: Integer; drvNum: Integer;
qEl: DrvQElPtr);

Obtaining File Control Block Information

FUNCTION PBGetFCBInfo (paramBlock: FCBPBPtr; async: Boolean): OSErr;

FUNCTION PBGetFCBInfoSync (paramBlock: FCBPBPtr): OSErr;

FUNCTION PBGetFCBInfoAsync (paramBlock: FCBPBPtr): OSErr;

Application-Defined Routine 2

Completion Routines

PROCEDURE MyCompletionProc;

C Summary 2

Constants 2

/*Gestalt constants*/

#define gestaltFSAttr 'fs ' /*file system attributes selector*/

#define gestaltFullExtFSDispatching 0 /*exports HFSDispatch traps*/

#define gestaltHasFSSpecCalls 1 /*supports FSSpec records*/
2-264 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
/*directory IDs*/

enum {

fsRtParID = 1, /*directory ID of root directory's parent*/

fsRtDirID = 2}; /*directory ID of volume's root directory*/

/*values for requesting file read/write permissions*/

enum {

fsCurPerm = 0, /*whatever permission is allowed*/

fsRdPerm = 1, /*read permission*/

fsWrPerm = 2, /*write permission*/

fsRdWrPerm = 3, /*exclusive read/write permission*/

fsRdWrShPerm = 4}; /*shared read/write permission*/

/*file mark positioning modes*/

enum {

fsAtMark = 0, /*at current mark}

fsFromStart = 1, /*set mark relative to beginning of file*/

fsFromLEOF = 2, /*set mark relative to logical end-of-file*/

fsFromMark = 3, /*set mark relative to current mark*/

rdVerify = 64}; /*add to above for read-verify*/

/*values for ioSearchBits in PBCatSearch parameter block*/

enum {

fsSBPartialName = 1, /*substring of name*/

fsSBFullName = 2, /*full name*/

fsSBFlAttrib = 4, /*directory flag; software lock flag*/

fsSBNegate = 16384}; /*reverse match status*/

/*for files only*/

enum {

fsSBFlFndrInfo = 8, /*Finder file info*/

fsSBFlLgLen = 32, /*logical length of data fork*/

fsSBFlPyLen = 64, /*physical length of data fork*/

fsSBFlRLgLen = 128, /*logical length of resource fork*/

fsSBFlRPyLen = 256, /*physical length of resource fork*/

fsSBFlCrDat = 512, /*file creation date*/

fsSBFlMdDat = 1024, /*file modification date*/

fsSBFlBkDat = 2048, /*file backup date*/

fsSBFlXFndrInfo = 4096, /*more Finder file info*/

fsSBFlParID = 8192}; /*file's parent ID*/
Summary of the File Manager 2-265

C H A P T E R 2

File Manager
/*for directories only*/

enum {

fsSBDrUsrWds = 8, /*Finder directory info*/

fsSBDrNmFls = 16, /*number of files in directory*/

fsSBDrCrDat = 512, /*directory creation date*/

fsSBDrMdDat = 1024, /*directory modification date*/

fsSBDrBkDat = 2048, /*directory backup date*/

fsSBDrFndrInfo = 4096, /*more Finder directory info*/

fsSBDrParID = 8192}; /*directory's parent ID*/

/*value of vMForeignPrivID in file attributes buffer*/

enum {fsUnixPriv = 1}; /*A/UX privilege model*/

/*bit positions in vMAttrib field of GetVolParmsInfoBuffer*/

enum {

bHasBlankAccessPrivileges

= 4, /*volume supports inherited privileges*/

bHasBTreeMgr = 5, /*reserved*/

bHasFileIDs = 6, /*volume supports file ID functions*/

bHasCatSearch = 7, /*volume supports PBCatSearch*/

bHasUserGroupList = 8, /*volume supports AFP privileges*/

bHasPersonalAccessPrivileges

= 9, /*local file sharing is enabled*/

bHasFolderLock = 10, /*volume supports locking of folders*/

bHasShortName = 11, /*volume supports shorter volume name*/

bHasDesktopMgr = 12, /*volume supports Desktop Manager*/

bHasMoveRename = 13, /*volume supports _MoveRename*/

bHasCopyFile = 14, /*volume supports _CopyFile*/

bHasOpenDeny = 15, /*volume supports shared access modes*/

bHasExtFSVol = 16, /*volume is external file system volume*/

bNoSysDir = 17, /*volume has no system directory*/

bAccessCntl = 18, /*volume supports AFP access control*/

bNoBootBlks = 19, /*volume is not a startup volume*/

bNoDeskItems = 20, /*do not place objects on the desktop*/

bNoSwitchTo = 25, /*do not switch launch to applications*/

bTrshOffLine = 26, /*zoom volume when it is unmounted*/

bNoLclSync = 27, /*don't let Finder change mod. date*/

bNoVNEdit = 28, /*lock volume name*/

bNoMiniFndr = 29, /*reserved; always 1*/

bLocalWList = 30, /*use shared volume handle for window */

/* list*/

bLimitFCBs = 31}; /*limit file control blocks*/
2-266 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
/*media type in remote mounting information/*

enum {AppleShareMediaType

= 'afpm'}; /*an AppleShare volume*/

/*user authentication methods in AFP remote mounting information*/

enum {

kNoUserAuthentication = 1, /*guest status; no password needed*/

kPassword = 2, /*8-byte password*/

kEncryptPassword = 3, /*encrypted 8-byte password*/

kTwoWayEncryptPassword = 6}; /*two-way random encryption; */

/* authenticate both user and server*/

Data Types 2

File System Specification Record

struct FSSpec { /*file system specification*/

short vRefNum; /*volume reference number*/

long parID; /*directory ID of parent directory*/

Str63 name; /*filename or directory name*/

};

typedef struct FSSpec FSSpec;

typedef FSSpec *FSSpecPtr;

typedef FSSpecPtr *FSSpecHandle;

File and Directory Parameter Blocks

union ParamBlockRec {

IOParam ioParam;

FileParam fileParam;

VolumeParam volumeParam;

CntrlParam cntrlParam;

SlotDevParam slotDevParam;

MultiDevParam multiDevParam;

};

typedef union ParamBlockRec ParamBlockRec;

typedef ParamBlockRec *ParmBlkPtr;
Summary of the File Manager 2-267

C H A P T E R 2

File Manager
#define ParamBlockHeader \

QElemPtr qLink; /*next queue entry*/\

short qType; /*queue type*/\

short ioTrap; /*routine trap*/\

Ptr ioCmdAddr; /*routine address*/\

ProcPtr ioCompletion; /*completion routine*/\

OSErr ioResult; /*result code*/\

StringPtr ioNamePtr; /*pointer to pathname*/\

short ioVRefNum; /*volume specification*/

struct IOParam {
ParamBlockHeader
short ioRefNum; /*file reference number*/
char ioVersNum; /*version number*/
char ioPermssn; /*read/write permission*/
Ptr ioMisc; /*miscellaneous*/
Ptr ioBuffer; /*data buffer*/
long ioReqCount; /*requested number of bytes*/
long ioActCount; /*actual number of bytes*/
short ioPosMode; /*positioning mode and newline char.*/
long ioPosOffset; /*positioning offset*/

};

typedef struct IOParam IOParam;

struct FileParam {

ParamBlockHeader

short ioFRefNum; /*file reference number*/

char ioFVersNum; /*file version number (unused)*/

char filler1; /*reserved*/

short ioFDirIndex; /*directory index*/

unsigned char ioFlAttrib; /*file attributes*/

unsigned char ioFlVersNum; /*file version number (unused)*/

FInfo ioFlFndrInfo; /*information used by the Finder*/

unsigned long ioFlNum; /*File ID*/

unsigned short ioFlStBlk; /*first alloc. blk. of data fork*/

long ioFlLgLen; /*logical EOF of data fork*/

long ioFlPyLen; /*physical EOF of data fork*/

unsigned short ioFlRStBlk; /*first alloc. blk. of resource fork*/

long ioFlRLgLen; /*logical EOF of resource fork*/

long ioFlRPyLen; /*physical EOF of resource fork*/

unsigned long ioFlCrDat; /*date and time of creation*/

unsigned long ioFlMdDat; /*date and time of last modification*/

};

typedef struct FileParam FileParam;
2-268 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
struct VolumeParam {

ParamBlockHeader

long filler2; /*reserved*/

short ioVolIndex; /*volume index*/

unsigned long ioVCrDate; /*date and time of initialization*/

unsigned long ioVLsBkUp; /*date and time of last modification*/

unsigned short ioVAtrb; /*volume attributes*/

unsigned short ioVNmFls; /*number of files in root directory*/

unsigned short ioVDirSt; /*first block of directory*/

short ioVBlLn; /*length of directory in blocks*/

unsigned short ioVNmAlBlks; /*number of allocation blocks*/

long ioVAlBlkSiz; /*size of allocation blocks*/

long ioVClpSiz; /*number of bytes to allocate*/

unsigned short ioAlBlSt; /*first block in block map*/

unsigned long ioVNxtFNum; /*next unused file ID*/

unsigned short ioVFrBlk; /*number of unused allocation blocks*/

};

typedef struct VolumeParam VolumeParam;

union HParamBlockRec { /*HFS parameter block*/

HIOParam ioParam;

HFileParam fileParam;

HVolumeParam volumeParam;

AccessParam accessParam;

ObjParam objParam;

CopyParam copyParam;

WDParam wdParam;

FIDParam fidParam;

CSParam csParam;

ForeignPrivParam foreignPrivParam;

};

typedef union HParamBlockRec HParamBlockRec;

typedef HParamBlockRec *HParmBlkPtr;

struct HIOParam {

ParamBlockHeader

 short ioRefNum; /*file reference number*/

char ioVersNum; /*version number*/

char ioPermssn; /*read/write permission*/

Ptr ioMisc; /*miscellaneous*/

Ptr ioBuffer; /*data buffer*/

long ioReqCount; /*requested number of bytes*/
Summary of the File Manager 2-269

C H A P T E R 2

File Manager
long ioActCount; /*actual number of bytes*/

short ioPosMode; /*positioning mode and newline char.*/

long ioPosOffset; /*positioning offset*/

};

typedef struct HIOParam HIOParam;

struct HFileParam {

ParamBlockHeader

short ioFRefNum; /*file reference number*/

char ioFVersNum; /*file version number (unused)*/

char filler1; /*reserved*/

short ioFDirIndex; /*directory index*/

char ioFlAttrib; /*file attributes*/

char ioFlVersNum; /*file version number (unused)*/

FInfo ioFlFndrInfo; /*information used by the Finder*/

long ioDirID; /*directory ID or file ID*/

unsigned short ioFlStBlk; /*first alloc. blk. of data fork*/

long ioFlLgLen; /*logical EOF of data fork*/

long ioFlPyLen; /*physical EOF of data fork*/

unsigned short ioFlRStBlk; /*first alloc. blk. of resource fork*/

long ioFlRLgLen; /*logical EOF of resource fork*/

long ioFlRPyLen; /*physical EOF of resource fork*/

unsigned long ioFlCrDat; /*date and time of creation*/

unsigned long ioFlMdDat; /*date and time of last modification*/

};

typedef struct HFileParam HFileParam;

struct HVolumeParam {

ParamBlockHeader

long filler2; /*reserved*/

short ioVolIndex; /*volume index*/

unsigned long ioVCrDate; /*date and time of initialization*/

unsigned long ioVLsMod; /*date and time of last modification*/

short ioVAtrb; /*volume attributes*/

unsigned short ioVNmFls; /*number of files in root directory*/

short ioVBitMap; /*first block of volume bitmap*/

short ioAllocPtr; /*first block of next new file*/

unsigned short ioVNmAlBlks; /*number of allocation blocks*/

long ioVAlBlkSiz; /*size of allocation blocks*/

long ioVClpSiz; /*default clump size*/

short ioAlBlSt; /*first block in volume map*/

long ioVNxtCNID; /*next unused node ID*/
2-270 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
unsigned short ioVFrBlk; /*number of unused allocation blocks*/

unsigned short ioVSigWord; /*volume signature*/

short ioVDrvInfo; /*drive number*/

short ioVDRefNum; /*driver reference number*/

short ioVFSID; /*file-system identifier*/

unsigned long ioVBkUp; /*date and time of last backup*/

unsigned short ioVSeqNum; /*used internally*/

long ioVWrCnt; /*volume write count*/

long ioVFilCnt; /*number of files on volume*/

long ioVDirCnt; /*number of directories on volume*/

long ioVFndrInfo[8];/*information used by the Finder*/

};

typedef struct HVolumeParam HVolumeParam;

struct AccessParam {

ParamBlockHeader

short filler3; /*reserved*/

short ioDenyModes; /*access mode information*/

short filler4; /*reserved*/

char filler5; /*reserved*/

char ioACUser; /*user access rights*/

long filler6; /*reserved*/

long ioACOwnerID; /*owner ID*/

long ioACGroupID; /*group ID*/

long ioACAccess; /*directory access rights*/

};

typedef struct AccessParam AccessParam;

struct ObjParam {

ParamBlockHeader

short filler7; /*reserved*/

short ioObjType; /*function code*/

StringPtr ioObjNamePtr; /*ptr to returned creator/group name*/

long ioObjID; /*creator/group ID*/

long ioReqCount; /*size of buffer area*/

long ioActCount; /*length of data*/

};

typedef struct ObjParam ObjParam;
Summary of the File Manager 2-271

C H A P T E R 2

File Manager
struct CopyParam {

ParamBlockHeader

short ioDstVRefNum; /*destination volume identifier*/

short filler8; /*reserved*/

StringPtr ioNewName; /*pointer to destination pathname*/

StringPtr ioCopyName; /*pointer to optional name*/

long ioNewDirID; /*destination directory ID*/

long filler14; /*reserved*/

long filler15; /*reserved*/

long ioDirID; /*directory ID or file ID*/

};

typedef struct CopyParam CopyParam;

struct WDParam {

ParamBlockHeader

short filler9; /*reserved*/

short ioWDIndex; /*working directory index*/

long ioWDProcID; /*working directory user identifier*/

short ioWDVRefNum; /*working directory's vol. ref. num.*/

short filler10; /*reserved*/

long filler11; /*reserved*/

long filler12; /*reserved*/

long filler13; /*reserved*/

long ioWDDirID; /*working directory's directory ID*/

};

typedef struct WDParam WDParam;

struct FIDParam {

ParamBlockHeader

long filler1; /*reserved*/

StringPtr ioDestNamePtr; /*pointer to destination filename*/

long filler2; /*reserved*/

long ioDestDirID; /*destination parent directory ID*/

long filler3; /*reserved*/

long filler4; /*reserved*/

long ioSrcDirID; /*source parent directory ID*/

short filler5; /*reserved*/

long ioFileID; /*file ID*/

};

typedef struct FIDParam FIDParam;
2-272 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
struct CSParam {

ParamBlockHeader

FSSpecPtr ioMatchPtr; /*pointer to array of matches*/

long ioReqMatchCount; /*max number of matches to return*/

long ioActMatchCount; /*actual number of matches*/

long ioSearchBits; /*enable bits for matching rules*/

CInfoPBPtr ioSearchInfo1; /*pointer to values and lower */

/* bounds*/

CInfoPBPtr ioSearchInfo2; /*pointer to masks and upper */

/* bounds*/

long ioSearchTime; /*maximum time to search*/

CatPositionRec ioCatPosition; /*current catalog position*/

Ptr ioOptBuffer; /*pointer to optional read buffer*/

long ioOptBufSize; /*length of optional read buffer*/

};

typedef struct CSParam CSParam;

struct ForeignPrivParam {

ParamBlockHeader

long filler1; /*reserved*/

long filler2; /*reserved*/

Ptr ioForeignPrivBuffer; /*privileges data buffer*/

long ioForeignPrivReqCount; /*size of buffer*/

long ioForeignPrivActCount; /*amount of buffer used*/

long filler3; /*reserved*/

long ioForeignPrivDirID; /*parent directory ID of foreign */

/* file or directory*/

long ioForeignPrivInfo1; /*privileges data*/

long ioForeignPrivInfo2; /*privileges data*/

long ioForeignPrivInfo3; /*privileges data*/

long ioForeignPrivInfo4; /*privileges data*/

};

typedef struct ForeignPrivParam ForeignPrivParam;

typedef ForeignPrivParam *ForeignPrivParamPtr;
Summary of the File Manager 2-273

C H A P T E R 2

File Manager
Catalog Information Parameter Blocks

enum {hFileInfo, dirInfo};

typedef unsigned char CInfoType;

union CInfoPBRec { /*catalog information parameter block*/

HFileInfo hFileInfo;

DirInfo dirInfo;

};

typedef union CInfoPBRec CInfoPBRec;

typedef CInfoPBRec *CInfoPBPtr;

struct HFileInfo {

ParamBlockHeader

short ioFRefNum; /*file reference number*/

char ioFVersNum; /*version number*/

char filler1; /*reserved*/

short ioFDirIndex; /*file index*/

char ioFlAttrib; /*file attributes*/

char ioACUser; /*directory access rights*/

FInfo ioFlFndrInfo; /*information used by the Finder*/

long ioDirID; /*directory ID or file ID*/

unsigned short ioFlStBlk; /*first alloc. blk. of data fork*/

long ioFlLgLen; /*logical EOF of data fork*/

long ioFlPyLen; /*physical EOF of data fork*/

unsigned short ioFlRStBlk; /*first alloc. blk. of resource fork*/

long ioFlRLgLen; /*logical EOF of resource fork*/

long ioFlRPyLen; /*physical EOF of resource fork*/

unsigned long ioFlCrDat; /*date and time of creation*/

unsigned long ioFlMdDat; /*date and time of last modification*/

unsigned long ioFlBkDat; /*date and time of last backup*/

FXInfo ioFlXFndrInfo; /*additional Finder information*/

long ioFlParID; /*file parent directory ID (integer)*/

long ioFlClpSiz; /*file's clump size*/

};

typedef struct HFileInfo HFileInfo;

struct DirInfo {

ParamBlockHeader

short ioFRefNum; /*file reference number*/

short filler1; /*reserved*/

short ioFDirIndex; /*directory index*/
2-274 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
char ioFlAttrib; /*directory attributes*/

char filler2; /*reserved*/

DInfo ioDrUsrWds; /*information used by the Finder*/

long ioDrDirID; /*directory ID*/

unsigned short ioDrNmFls; /*number of files in directory*/

short filler3[9]; /*reserved*/

unsigned long ioDrCrDat; /*date and time of creation*/

unsigned long ioDrMdDat; /*date and time of last modification*/

unsigned long ioDrBkDat; /*date and time of last backup*/

DXInfo ioDrFndrInfo; /*additional Finder information*/

long ioDrParID; /*directory's parent directory ID*/

};

typedef struct DirInfo DirInfo;

Catalog Position Record

struct CatPositionRec { /*catalog position record*/

long initialize; /*starting point*/

short priv[6]; /*private data*/

};

typedef struct CatPositionRec CatPositionRec;

Catalog Move Parameter Block

struct CMovePBRec { /*catalog move parameter block*/

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

short ioTrap; /*routine trap*/

Ptr ioCmdAddr; /*routine address*/

ProcPtr ioCompletion; /*completion routine*/

OSErr ioResult; /*result code*/

StringPtr ioNamePtr; /*pointer to pathname*/

short ioVRefNum; /*volume specification*/

long filler1; /*reserved*/

StringPtr ioNewName; /*name of new directory*/

long filler2; /*reserved*/

long ioNewDirID; /*directory ID of new directory*/

long filler3[2]; /*reserved*/

long ioDirID; /*directory ID of current directory*/

};

typedef struct CMovePBRec CMovePBRec;

typedef CMovePBRec *CMovePBPtr;
Summary of the File Manager 2-275

C H A P T E R 2

File Manager
Working Directory Parameter Block

struct WDPBRec { /*working directory parameter block*/

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

short ioTrap; /*routine trap*/

Ptr ioCmdAddr; /*routine address*/

ProcPtr ioCompletion; /*completion routine*/

OSErr ioResult; /*result code*/

StringPtr ioNamePtr; /*pointer to pathname*/

short ioVRefNum; /*volume specification*/

short filler1; /*reserved*/

short ioWDIndex; /*working directory index*/

long ioWDProcID; /*working directory user identifier*/

short ioWDVRefNum; /*working directory's vol. ref. num.*/

short filler2[7]; /*reserved*/

long ioWDDirID; /*working directory's directory ID*/

};

typedef struct WDPBRec WDPBRec;

typedef WDPBRec *WDPBPtr;

File Control Block Parameter Block

struct FCBPBRec { /*file control block parameter block*/

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

short ioTrap; /*routine trap*/

Ptr ioCmdAddr; /*routine address*/

ProcPtr ioCompletion; /*completion routine*/

OSErr ioResult; /*result code*/

StringPtr ioNamePtr; /*pointer to pathname*/

short ioVRefNum; /*volume specification*/

short ioRefNum; /*file reference number*/

short filler; /*reserved*/

short ioFCBIndx; /*FCB index*/

short filler1; /*reserved*/

long ioFCBFlNm; /*file ID*/

short ioFCBFlags; /*flags*/

unsigned short ioFCBStBlk; /*first allocation block of file*/

long ioFCBEOF; /*logical end-of-file*/

long ioFCBPLen; /*physical end-of-file*/

long ioFCBCrPs; /*position of the file mark*/

short ioFCBVRefNum; /*volume reference number*/
2-276 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
long ioFCBClpSiz; /*file's clump size*/

long ioFCBParID; /*parent directory ID*/

};

typedef struct FCBPBRec FCBPBRec;

typedef FCBPBRec *FCBPBPtr;

Volume Attributes Buffer

struct GetVolParmsInfoBuffer {

short vMVersion; /*version number*/

long vMAttrib; /*volume attributes*/

Handle vMLocalHand; /*reserved*/

long vMServerAdr; /*network server address*/

long vMVolumeGrade; /*relative speed rating*/

short vMForeignPrivID; /*foreign privilege model*/

};

typedef struct GetVolParmsInfoBuffer GetVolParmsInfoBuffer;

Volume Mounting Information Records

struct VolMountInfoHeader{ /*volume mounting information*/

short length; /*length of mounting information*/

VolumeType media; /*type of volume*/

};

typedef struct VolMountInfoHeader VolMountInfoHeader;

typedef VolMountInfoHeader *VolMountInfoPtr;

struct AFPVolMountInfo{ /*AFP volume mounting information*/
short length; /*length of mounting information*/
VolumeType media; /*type of volume*/
short flags; /*reserved; must be set to 0*/
char nbpInterval; /*NBP retry interval*/
char nbpCount; /*NBP retry count*/
short uamType; /*user authentication method*/
short zoneNameOffset; /*offset to zone name*/
short serverNameOffset; /*offset server name*/
short volNameOffset; /*offset to volume name*/
short userNameOffset; /*offset to user name*/
short userPasswordOffset; /*offset to user password*/
short volPasswordOffset; /*offset to volume password*/
char AFPData[144]; /*standard AFP mounting info*/

};

typedef struct AFPVolMountInfo AFPVolMountInfo;
typedef AFPVolMountInfo *AFPVolMountInfoPtr;
Summary of the File Manager 2-277

C H A P T E R 2

File Manager
Internal Data Types 2

Volume and File Control Blocks

struct VCB { /*volume control block*/

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type*/

short vcbFlags; /*volume flags (bit 15 = 1 if dirty)*/

unsigned short vcbSigWord; /*volume signature*/

unsigned long vcbCrDate; /*date and time of volume creation*/

unsigned long vcbLsMod; /*date and time of last modification*/

short vcbAtrb; /*volume attributes*/

unsigned short vcbNmFls; /*number of files in root directory*/

short vcbVBMSt; /*first block of volume bitmap*/

short vcbAllocPtr; /*start of next allocation search*/

unsigned short vcbNmAlBlks; /*number of allocation blocks in */

/* volume*/

long vcbAlBlkSiz; /*size (in bytes) of allocation */

/* blocks*/

long vcbClpSiz; /*default clump size*/

short vcbAlBlSt; /*first allocation block in volume*/

long vcbNxtCNID; /*next unused catalog node ID*/

unsigned short vcbFreeBks; /*number of unused allocation blocks*/

Str27 vcbVN; /*volume name*/

short vcbDrvNum; /*drive number*/

short vcbDRefNum; /*driver reference number*/

short vcbFSID; /*file-system identifier*/

short vcbVRefNum; /*volume reference number*/

Ptr vcbMAdr; /*used internally*/

Ptr vcbBufAdr; /*used internally*/

short vcbMLen; /*used internally*/

short vcbDirIndex; /*used internally*/

short vcbDirBlk; /*used internally*/

unsigned long vcbVolBkUp; /*date and time of last backup*/

unsigned short vcbVSeqNum; /*volume backup sequence number*/

long vcbWrCnt; /*volume write count*/

long vcbXTClpSiz; /*clump size for extents overflow */

/* file*/

long vcbCTClpSiz; /*clump size for catalog file*/

unsigned short vcbNmRtDirs; /*number of directories in root dir.*/

long vcbFilCnt; /*number of files in volume*/

long vcbDirCnt; /*number of directories in volume*/

long vcbFndrInfo[8];/*information used by the Finder*/
2-278 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
unsigned short vcbVCSize; /*used internally*/

unsigned short vcbVBMCSiz; /*used internally*/

unsigned short vcbCtlCSiz; /*used internally*/

unsigned short vcbXTAlBlks; /*size of extents overflow file*/

unsigned short vcbCTAlBlks; /*size of catalog file*/

short vcbXTRef; /*ref. num. for extents overflow */

/* file*/

short vcbCTRef; /*ref. num. for catalog file*/

Ptr vcbCtlBuf; /*ptr. to extents and catalog caches*/

long vcbDirIDM; /*directory last searched*/

short vcbOffsM; /*offspring index at last search*/

};

typedef struct VCB VCB;

struct FCB { /*file control block*/

long fcbFlNum; /*file ID*/

short fcbFlags; /*file flags*/

short fcbSBlk; /*first allocation block of file*/

long fcbEOF; /*logical end-of-file*/

long fcbPLen; /*physical end-of-file*/

long fcbCrPs; /*current file mark position*/

Ptr fcbVPtr; /*pointer to volume control block*/

Ptr fcbBfAdr; /*pointer to access path buffer*/

short fcbFlPos; /*unused*/

long fcbClmpSize; /*file clump size*/

Ptr fcbBTCBPtr; /*pointer to B*-tree control block*/

ExtDataRec fcbExtRec; /*first three file extents*/

long fcbFType; /*file's four Finder type bytes*/

long fcbCatPos; /*catalog hint for use on Close*/

long fcbDirID; /*file's parent directory ID*/

Str31 fcbCName; /*name of file*/

};

typedef struct FCB FCB;

Drive Queue Elements

struct DrvQEl { /*drive queue element*/

QElemPtr qLink; /*next queue entry*/

short qType; /*flag for dQDrvSz and dQDrvSz2*/

short dQDrive; /*drive number*/

short dQRefNum; /*driver reference number*/

short dQFSID; /*file-system identifier*/
Summary of the File Manager 2-279

C H A P T E R 2

File Manager
unsigned short dQDrvSz; /*number of logical blocks on drive*/

unsigned short dQDrvSz2; /*additional field for large drives*/

};

typedef struct DrvQEl DrvQEl;

High-Level File Access Routines 2

Reading, Writing, and Closing Files

pascal OSErr FSRead (short refNum, long *count, Ptr buffPtr);

pascal OSErr FSWrite (short refNum, long *count, Ptr buffPtr);

pascal OSErr FSClose (short refNum);

Manipulating the File Mark

pascal OSErr GetFPos (short refNum, long *filePos);

pascal OSErr SetFPos (short refNum, short posMode, long posOff);

Manipulating the End-of-File

pascal OSErr GetEOF (short refNum, long *logEOF);

pascal OSErr SetEOF (short refNum, long logEOF);

Allocating File Blocks

pascal OSErr Allocate (short refNum, long *count);

pascal OSErr AllocContig (short refNum, long *count);

Low-Level File Access Routines 2

Reading, Writing, and Closing Files

pascal OSErr PBRead (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBReadSync (ParmBlkPtr paramBlock);

pascal OSErr PBReadAsync (ParmBlkPtr paramBlock);

pascal OSErr PBWrite (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBWriteSync (ParmBlkPtr paramBlock);

pascal OSErr PBWriteAsync (ParmBlkPtr paramBlock);

pascal OSErr PBClose (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBCloseSync (ParmBlkPtr paramBlock);

pascal OSErr PBCloseAsync (ParmBlkPtr paramBlock);
2-280 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Manipulating the File Mark

pascal OSErr PBGetFPos (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBGetFPosSync (ParmBlkPtr paramBlock);

pascal OSErr PBGetFPosAsync (ParmBlkPtr paramBlock);

pascal OSErr PBSetFPos (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBSetFPosSync (ParmBlkPtr paramBlock);

pascal OSErr PBSetFPosAsync (ParmBlkPtr paramBlock);

Manipulating the End-of-File

pascal OSErr PBGetEOF (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBGetEOFSync (ParmBlkPtr paramBlock);

pascal OSErr PBGetEOFAsync (ParmBlkPtr paramBlock);

pascal OSErr PBSetEOF (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBSetEOFSync (ParmBlkPtr paramBlock);

pascal OSErr PBSetEOFAsync (ParmBlkPtr paramBlock);

Allocating File Blocks

pascal OSErr PBAllocate (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBAllocateSync (ParmBlkPtr paramBlock);

pascal OSErr PBAllocateAsync (ParmBlkPtr paramBlock);

pascal OSErr PBAllocContig (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBAllocContigSync
(ParmBlkPtr paramBlock);

pascal OSErr PBAllocContigAsync
(ParmBlkPtr paramBlock);

Updating Files

pascal OSErr PBFlushFile (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBFlushFileSync (ParmBlkPtr paramBlock);

pascal OSErr PBFlushFileAsync
(ParmBlkPtr paramBlock);

High-Level Volume Access Routines 2

Unmounting Volumes

pascal OSErr UnmountVol (StringPtr volName, short vRefNum);

pascal OSErr Eject (StringPtr volName, short vRefNum);
Summary of the File Manager 2-281

C H A P T E R 2

File Manager
Updating Volumes

pascal OSErr FlushVol (StringPtr volName, short vRefNum);

Manipulating the Default Volume

pascal OSErr GetVol (StringPtr volName, short *vRefNum);

pascal OSErr SetVol (StringPtr volName, short vRefNum);

pascal OSErr HGetVol (StringPtr volName, short *vRefNum,
long *dirID);

pascal OSErr HSetVol (StringPtr volName, short vRefNum, long dirID);

Obtaining Volume Information

pascal OSErr GetVInfo (short drvNum, StringPtr volName,
short *vRefNum, long *freeBytes);

pascal OSErr GetVRefNum (short refNum, short *vRefNum);

Low-Level Volume Access Routines 2

Mounting and Unmounting Volumes

pascal OSErr PBMountVol (ParmBlkPtr paramBlock);

pascal OSErr PBUnmountVol (ParmBlkPtr paramBlock);

pascal OSErr PBEject (ParmBlkPtr paramBlock);

pascal OSErr PBOffLine (ParmBlkPtr paramBlock);

Updating Volumes

pascal OSErr PBFlushVol (ParmBlkPtr paramBlock; Boolean async);

pascal OSErr PBFlushVolSync (ParmBlkPtr paramBlock);

pascal OSErr PBFlushVolAsync (ParmBlkPtr paramBlock);

Obtaining Volume Information

pascal OSErr PBHGetVInfo (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHGetVInfoSync (HParmBlkPtr paramBlock);

pascal OSErr PBHGetVInfoAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBSetVInfo (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBSetVInfoSync (HParmBlkPtr paramBlock);

pascal OSErr PBSetVInfoAsync (HParmBlkPtr paramBlock);

pascal OSErr PBHGetVolParms (HParmBlkPtr paramBlock, Boolean async);
2-282 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
pascal OSErr PBHGetVolParmsSync
(HParmBlkPtr paramBlock);

pascal OSErr PBHGetVolParmsAsync
(HParmBlkPtr paramBlock);

Manipulating the Default Volume
pascal OSErr PBGetVol (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBGetVolSync (ParmBlkPtr paramBlock);

pascal OSErr PBGetVolAsync (ParmBlkPtr paramBlock);

pascal OSErr PBSetVol (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBSetVolSync (ParmBlkPtr paramBlock);

pascal OSErr PBSetVolAsync (ParmBlkPtr paramBlock);

pascal OSErr PBHGetVol (WDPBPtr paramBlock, Boolean async);

pascal OSErr PBHGetVolSync (WDPBPtr paramBlock);

pascal OSErr PBHGetVolAsync (WDPBPtr paramBlock);

pascal OSErr PBHSetVol (WDPBPtr paramBlock, Boolean async);

pascal OSErr PBHSetVolSync (WDPBPtr paramBlock);

pascal OSErr PBHSetVolAsync (WDPBPtr paramBlock);

File System Specification Routines 2

Opening Files
pascal OSErr FSpOpenDF (const FSSpec *spec, char permission,

short *refNum);

pascal OSErr FSpOpenRF (const FSSpec *spec, char permission,
short *refNum);

Creating and Deleting Files and Directories
pascal OSErr FSpCreate (const FSSpec *spec, OSType creator,

OSType fileType, ScriptCode scriptTag);

pascal OSErr FSpDirCreate (const FSSpec *spec, ScriptCode scriptTag,
long *createdDirID);

pascal OSErr FSpDelete (const FSSpec *spec);

Accessing Information About Files and Directories
pascal OSErr FSpGetFInfo (const FSSpec *spec, FInfo *fndrInfo);

pascal OSErr FSpSetFInfo (const FSSpec *spec, const FInfo *fndrInfo);

pascal OSErr FSpSetFLock (const FSSpec *spec);

pascal OSErr FSpRstFLock (const FSSpec *spec);

pascal OSErr FSpRename (const FSSpec *spec, ConstStr255Param newName);
Summary of the File Manager 2-283

C H A P T E R 2

File Manager
Moving Files or Directories

pascal OSErr FSpCatMove (const FSSpec *source, const FSSpec *dest);

Exchanging the Data in Two Files

pascal OSErr FSpExchangeFiles
(const FSSpec *source, const FSSpec *dest);

Creating File System Specifications

pascal OSErr FSMakeFSSpec (short vRefNum, long dirID,
ConstStr255Param fileName, FSSpecPtr spec);

pascal OSErr PBMakeFSSpec (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBMakeFSSpecSync
(HParmBlkPtr paramBlock);

pascal OSErr PBMakeFSSpecAsync
(HParmBlkPtr paramBlock);

High-Level HFS Routines 2

Opening Files

pascal OSErr HOpenDF (short vRefNum, long dirID,
 const Str255 fileName, char permission,
 short *refNum);

pascal OSErr HOpenRF (short vRefNum, long dirID,
 const Str255 fileName, char permission,
 short *refNum);

pascal OSErr HOpen (short vRefNum, long dirID,
 const Str255 fileName, char permission,
 short *refNum);

Creating and Deleting Files and Directories

pascal OSErr HCreate (short vRefNum, long dirID,
 const Str255 fileName, OSType creator,
 OSType fileType);

pascal OSErr DirCreate (short vRefNum, long parentDirID,
 const Str255 directoryName,
 long *createdDirID);

pascal OSErr HDelete (short vRefNum, long dirID,
 const Str255 fileName);
2-284 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Accessing Information About Files and Directories

pascal OSErr HGetFInfo (short vRefNum, long dirID,
 const Str255 fileName, FInfo *fndrInfo);

pascal OSErr HSetFInfo (short vRefNum, long dirID,
 const Str255 fileName, const FInfo *fndrInfo);

pascal OSErr HSetFLock (short vRefNum, long dirID,
 const Str255 fileName);

pascal OSErr HRstFLock (short vRefNum, long dirID,
 const Str255 fileName);

pascal OSErr HRename (short vRefNum, long dirID,
 const Str255 oldName, const Str255 newName);

Moving Files or Directories

pascal OSErr CatMove (short vRefNum, long dirID,
 const Str255 oldName, long newDirID,
 const Str255 newName);

Maintaining Working Directories

pascal OSErr OpenWD (short vRefNum, long dirID, long procID,
short *wdRefNum);

pascal OSErr CloseWD (short wdRefNum);

pascal OSErr GetWDInfo (short wdRefNum, short *vRefNum, long *dirID,
long *procID);

Low-Level HFS Routines 2

Opening Files

pascal OSErr PBHOpenDF (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHOpenDFSync (HParmBlkPtr paramBlock);

pascal OSErr PBHOpenDFAsync (HParmBlkPtr paramBlock);

pascal OSErr PBHOpenRF (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHOpenRFSync (HParmBlkPtr paramBlock);

pascal OSErr PBHOpenRFAsync (HParmBlkPtr paramBlock);

pascal OSErr PBHOpen (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHOpenSync (HParmBlkPtr paramBlock);

pascal OSErr PBHOpenAsync (HParmBlkPtr paramBlock);
Summary of the File Manager 2-285

C H A P T E R 2

File Manager
Creating and Deleting Files and Directories

pascal OSErr PBHCreate (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHCreateSync (HParmBlkPtr paramBlock);

pascal OSErr PBHCreateAsync (HParmBlkPtr paramBlock);

pascal OSErr PBDirCreate (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBDirCreateSync (HParmBlkPtr paramBlock);

pascal OSErr PBDirCreateAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHDelete (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHDeleteSync (HParmBlkPtr paramBlock);

pascal OSErr PBHDeleteAsync (HParmBlkPtr paramBlock);

Accessing Information About Files and Directories

pascal OSErr PBGetCatInfo (CInfoPBPtr paramBlock, Boolean async);

pascal OSErr PBGetCatInfoSync
(CInfoPBPtr paramBlock, Boolean async);

pascal OSErr PBGetCatInfoAsync
(CInfoPBPtr paramBlock);

pascal OSErr PBSetCatInfo (CInfoPBPtr paramBlock, Boolean async);

pascal OSErr PBSetCatInfoSync
(CInfoPBPtr paramBlock);

pascal OSErr PBSetCatInfoAsync
(CInfoPBPtr paramBlock);

pascal OSErr PBHGetFInfo (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHGetFInfoSync (HParmBlkPtr paramBlock);

pascal OSErr PBHGetFInfoAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHSetFInfo (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHSetFInfoSync (HParmBlkPtr paramBlock);

pascal OSErr PBHSetFInfoAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHSetFLock (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHSetFLockSync (HParmBlkPtr paramBlock);

pascal OSErr PBHSetFLockAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHRstFLock (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHRstFLockSync (HParmBlkPtr paramBlock);

pascal OSErr PBHRstFLockAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHRename (HParmBlkPtr paramBlock, Boolean async);
2-286 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
pascal OSErr PBHRenameSync (HParmBlkPtr paramBlock);

pascal OSErr PBHRenameAsync (HParmBlkPtr paramBlock);

Moving Files or Directories

pascal OSErr PBCatMove (CMovePBPtr paramBlock, Boolean async);

pascal OSErr PBCatMoveSync (CMovePBPtr paramBlock);

pascal OSErr PBCatMoveAsync (CMovePBPtr paramBlock);

Maintaining Working Directories

pascal OSErr PBOpenWD (WDPBPtr paramBlock, Boolean async);

pascal OSErr PBOpenWDSync (WDPBPtr paramBlock);

pascal OSErr PBOpenWDAsync (WDPBPtr paramBlock);

pascal OSErr PBCloseWD (WDPBPtr paramBlock, Boolean async);

pascal OSErr PBCloseWDSync (WDPBPtr paramBlock);

pascal OSErr PBCloseWDAsync (WDPBPtr paramBlock);

pascal OSErr PBGetWDInfo (WDPBPtr paramBlock, Boolean async);

pascal OSErr PBGetWDInfoSync (WDPBPtr paramBlock);

pascal OSErr PBGetWDInfoAsync
(WDPBPtr paramBlock);

Searching a Catalog

pascal OSErr PBCatSearch (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBCatSearchSync (HParmBlkPtr paramBlock);

pascal OSErr PBCatSearchAsync
(HParmBlkPtr paramBlock);

Exchanging the Data in Two Files

pascal OSErr PBExchangeFiles (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBExchangeFilesSync
(HParmBlkPtr paramBlock);

pascal OSErr PBExchangeFilesAsync
(HParmBlkPtr paramBlock);

Shared Environment Routines 2

Opening Files While Denying Access

pascal OSErr PBHOpenDeny (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHOpenDenySync (HParmBlkPtr paramBlock);
Summary of the File Manager 2-287

C H A P T E R 2

File Manager
pascal OSErr PBHOpenDenyAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHOpenRFDeny (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHOpenRFDenySync
(HParmBlkPtr paramBlock);

pascal OSErr PBHOpenRFDenyAsync
(HParmBlkPtr paramBlock);

Locking and Unlocking File Ranges

pascal OSErr PBLockRange (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBLockRangeSync (ParmBlkPtr paramBlock);

pascal OSErr PBLockRangeAsync
(ParmBlkPtr paramBlock);

pascal OSErr PBUnlockRange (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBUnlockRangeSync
(ParmBlkPtr paramBlock);

pascal OSErr PBUnlockRangeAsync
(ParmBlkPtr paramBlock);

Manipulating Share Points

pascal OSErr PBShare (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBShareSync (HParmBlkPtr paramBlock);

pascal OSErr PBShareAsync (HParmBlkPtr paramBlock);

pascal OSErr PBUnshare (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBUnshareSync (HParmBlkPtr paramBlock);

pascal OSErr PBUnshareAsync (HParmBlkPtr paramBlock);

pascal OSErr PBGetUGEntry (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBGetUGEntrySync
(HParmBlkPtr paramBlock);

pascal OSErr PBGetUGEntryAsync
(HParmBlkPtr paramBlock);

Controlling Directory Access

pascal OSErr PBHGetDirAccess (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHGetDirAccessSync
(HParmBlkPtr paramBlock);

pascal OSErr PBHGetDirAccessAsync
(HParmBlkPtr paramBlock);
2-288 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
pascal OSErr PBHSetDirAccess (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHSetDirAccessSync
(HParmBlkPtr paramBlock);

pascal OSErr PBHSetDirAccessAsync
(HParmBlkPtr paramBlock);

Mounting Volumes

pascal OSErr PBGetVolMountInfoSize
(ParmBlkPtr paramBlock);

pascal OSErr PBGetVolMountInfo
(ParmBlkPtr paramBlock);

pascal OSErr PBVolumeMount (ParmBlkPtr paramBlock);

Controlling Login Access

pascal OSErr PBHGetLogInInfo (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHGetLogInInfoSync
(HParmBlkPtr paramBlock);

pascal OSErr PBHGetLogInInfoAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHMapID (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHMapIDSync (HParmBlkPtr paramBlock);

pascal OSErr PBHMapIDAsync (HParmBlkPtr paramBlock);

pascal OSErr PBHMapName (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHMapNameSync (HParmBlkPtr paramBlock);

pascal OSErr PBHMapNameAsync (HParmBlkPtr paramBlock);

Copying and Moving Files

pascal OSErr PBHCopyFile (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHCopyFileSync (HParmBlkPtr paramBlock);

pascal OSErr PBHCopyFileAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBHMoveRename (HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBHMoveRenameSync
(HParmBlkPtr paramBlock);

pascal OSErr PBHMoveRenameAsync
(HParmBlkPtr paramBlock);
Summary of the File Manager 2-289

C H A P T E R 2

File Manager
File ID Routines 2

Resolving File ID References

pascal OSErr PBResolveFileIDRef
(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBResolveFileIDRefSync
(HParmBlkPtr paramBlock);

pascal OSErr PBResolveFileIDRefAsync
(HParmBlkPtr paramBlock);

Creating and Deleting File ID References

pascal OSErr PBCreateFileIDRef
(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBCreateFileIDRefSync
(HParmBlkPtr paramBlock);

pascal OSErr PBCreateFileIDRefAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBDeleteFileIDRef
(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBDeleteFileIDRefSync
(HParmBlkPtr paramBlock);

pascal OSErr PBDeleteFileIDRefAsync
(HParmBlkPtr paramBlock);

Foreign File System Routines 2

Accessing Privilege Information in Foreign File Systems

pascal OSErr PBGetForeignPrivs
(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBGetForeignPrivsSync
(HParmBlkPtr paramBlock);

pascal OSErr PBGetForeignPrivsAsync
(HParmBlkPtr paramBlock);

pascal OSErr PBSetForeignPrivs
(HParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBSetForeignPrivsSync
(HParmBlkPtr paramBlock);

pascal OSErr PBSetForeignPrivsAsync
(HParmBlkPtr paramBlock);
2-290 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Utility Routines 2

Obtaining Queue Headers

#define GetFSQHdr() (QHdrPtr);

#define GetVCBQHdr() (QHdrPtr);

#define GetDrvQHdr() (QHdrPtr);

Adding a Drive

pascal void AddDrive (short drvrRefNum, short drvNum, DrvQElPtr qEl);

Obtaining File Control Block Information

pascal OSErr PBGetFCBInfo (FCBPBPtr paramBlock, Boolean async);

pascal OSErr PBGetFCBInfoSync
(FCBPBPtr paramBlock);

pascal OSErr PBGetFCBInfoAsync
(FCBPBPtr paramBlock);

Application-Defined Routine 2

Completion Routines

pascal void MyCompletionProc (void);

Assembly-Language Summary 2

Constants 2

;flags in trap words

hfsBit EQU 9 ;set for an HFS call

asyncTrpBit EQU 10 ;set for an asynchronous call

;masks for flags in trap words

newHFS EQU $200 ;make an HFS call

ASYNC EQU $400 ;make an asynchronous call
Summary of the File Manager 2-291

C H A P T E R 2

File Manager
Data Structures 2

File System Specification Record

HFS Parameter Block Common Fields

I/O Parameter Variant

File Parameter Variant

0 vRefNum word volume reference number
2 parID long parent directory ID
6 name 64 bytes filename or directory name

0 qLink long next queue entry
4 qType word queue type
6 ioTrap word routine trap
8 ioCmdAddr long routine address

12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long pointer to pathname
22 ioVRefNum word volume specification

24 ioRefNum word file reference number
26 ioVersNum byte version number
27 ioPermssn byte read/write permission
28 ioMisc long miscellaneous
32 ioBuffer long data buffer
36 ioReqCount long requested number of bytes
40 ioActCount long actual number of bytes
44 ioPosMode word positioning mode and newline character
46 ioPosOffset long positioning offset

24 ioFRefNum word file reference number
26 ioFVersNum byte file version number (unused)
27 filler1 byte reserved
28 ioFDirIndex word directory index
30 ioFlAttrib byte file attributes
31 ioFlVersNum byte file version number (unused)
32 ioFlFndrInfo 16 bytes information used by the Finder
48 ioDirID long directory ID or file ID
52 ioFlStBlk word first allocation block of data fork
54 ioFlLgLen long logical end-of-file of data fork
58 ioFlPyLen long physical end-of-file of data fork
62 ioFlRStBlk word first allocation block of resource fork
64 ioFlRLgLen long logical end-of-file of resource fork
68 ioFlRPyLen long physical end-of-file of resource fork
72 ioFlCrDat long date and time of creation
76 ioFlMdDat long date and time of last modification
2-292 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Volume Parameter Variant

Access Variant

Object Variant

Copy Variant

24 filler2 long reserved
28 ioVolIndex word volume index
30 ioVCrDate long date and time of initialization
34 ioVLsMod long date and time of last modification
38 ioVAtrb word volume attributes
40 ioVNmFls word number of files in root directory
42 ioVBitMap word first block of volume bitmap
44 ioAllocPtr word first block of next new file
46 ioVNmAlBlks word number of allocation blocks
48 ioVAlBlkSiz long size of allocation blocks
50 ioVClpSiz long default clump size
54 ioAlBlSt word first block in volume map
56 ioVNxtCNID long next unused node ID
60 ioVFrBlk word number of unused allocation blocks
62 ioVSigWord word volume signature
64 ioVDrvInfo word drive number
66 ioVDRefNum word driver reference number
68 ioVFSID word file-system identifier
70 ioVBkUp long date and time of last backup
74 ioVSeqNum word used internally
76 ioVWrCnt long volume write count
80 ioVFilCnt long number of files on volume
84 ioVDirCnt long number of directories on volume
88 ioVFndrInfo 32 bytes information used by the Finder

24 filler3 word reserved
26 ioDenyModes word access mode information
28 filler4 word reserved
30 filler5 byte reserved
31 ioACUser byte user access rights
32 filler6 long reserved
36 ioACOwnerID long owner ID
40 ioACGroupID long group ID
44 ioACAccess long directory access rights

24 filler7 word reserved
26 ioObjType word function code
28 ioObjNamePtr long pointer to returned creator/group name
32 ioObjID long creator/group ID

24 ioDstVRefNum word destination volume identifier
26 filler8 word reserved
28 ioNewName long pointer to destination pathname
32 ioCopyName long pointer to optional name
36 ioNewDirID long directory ID of destination directory
Summary of the File Manager 2-293

C H A P T E R 2

File Manager
Working Directory Variant

File ID Variant

Catalog Search Variant

Foreign Privileges Variant

24 filler9 word reserved
26 ioWDIndex word working directory’s index
28 ioWDProcID long working directory’s user identifier
32 ioWDVRefNum word working directory’s volume reference number
34 filler10 word reserved
36 filler11 long reserved
40 filler12 long reserved
44 filler13 long reserved
48 ioWDDirID long working directory’s directory ID

24 filler14 long reserved
28 ioDestNamePtr long pointer to destination filename
32 filler15 long reserved
36 ioDestDirID long destination parent directory ID
40 filler16 long reserved
44 filler17 long reserved
48 ioSrcDirID long source parent directory ID
52 filler18 word reserved
54 ioFileID long file ID

24 ioMatchPtr long pointer to array of matches
28 ioReqMatchCount long maximum match count
32 ioActMatchCount long actual match count
36 ioSearchBits long search criteria selector
40 ioSearchInfo1 long pointer to values and lower bounds
44 ioSearchInfo2 long pointer to masks and upper bounds
48 ioSearchTime long time limit on search
52 ioCatPosition 16 bytes catalog position record
68 ioOptBuffer long pointer to optional read buffer
72 ioOptBufSize long length of optional read buffer

24 filler21 long reserved
28 filler22 long reserved
32 ioForeignPrivBuffer long pointer to privileges data buffer
36 ioForeignPrivReqCount long size allocated for buffer
40 ioForeignPrivActCount long amount of buffer used
44 filler23 long reserved
48 ioForeignPrivDirID long parent directory ID of target
52 ioForeignPrivInfo1 long privileges data
56 ioForeignPrivInfo2 long privileges data
60 ioForeignPrivInfo3 long privileges data
64 ioForeignPrivInfo4 long privileges data
2-294 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Catalog Information Parameter Block (Files Variant)

Catalog Information Parameter Block (Directories Variant)

Catalog Position Record

24 ioFRefNum word file reference number
26 ioFVersNum byte version number
27 filler1 byte reserved
28 ioFDirIndex word directory index
30 ioFlAttrib byte file attributes
31 ioACUser byte directory access rights
32 ioFlUsrWds 16 bytes information used by the Finder
48 ioFlNum long file ID
52 ioFlStBlk word first allocation block of data fork
54 ioFlLgLen long logical end-of-file of data fork
58 ioFlPyLen long physical end-of-file of data fork
62 ioFlRStBlk word first allocation block of resource fork
64 ioFlRLgLen long logical end-of-file of resource fork
68 ioFlRPyLen long physical end-of-file of resource fork
72 ioFlCrDat long date and time of creation
76 ioFlMdDat long date and time of last modification
80 ioFlBkDat long date and time of last backup
84 ioFlXFndrInfo 16 bytes additional information used by the Finder

100 ioFlParID long file parent directory ID
104 ioFlClpSiz long file’s clump size

24 ioFRefNum word file reference number
26 ioFVersNum byte version number
27 filler1 byte reserved
28 ioFDirIndex word directory index
30 ioFlAttrib byte directory attributes
31 ioACUser byte directory access rights
32 ioDrUsrWds 16 bytes information used by the Finder
48 ioDrDirID long directory ID
52 ioDrNmFls word number of files in directory
54 filler3 18 bytes reserved
72 ioDrCrDat long date and time of creation
76 ioDrMdDat long date and time of last modification
80 ioDrBkDat long date and time of last backup
84 ioDrFndrInfo 16 bytes additional information used by the Finder

100 ioDrParID long directory’s parent directory ID

0 initialize long starting place for next search
4 priv 12 bytes private data
Summary of the File Manager 2-295

C H A P T E R 2

File Manager
Catalog Move Parameter Block

Working Directory Parameter Block

File Control Block Parameter Block

Volume Attributes Buffer

Volume Mounting Information Record

24 filler1 long reserved
28 ioNewName long pointer to name of new directory
32 filler2 long reserved
36 ioNewDirID long directory ID of new directory
40 filler3 8 bytes reserved
48 ioDirID long directory ID of current directory

24 filler1 word reserved
26 ioWDIndex word working directory’s index
28 ioWDProcID long working directory’s user identifier
32 ioWDVRefNum word working directory’s volume reference number
34 filler2 14 bytes reserved
48 ioWDDirID long working directory’s directory ID

24 ioRefNum word file reference number
26 filler word reserved
28 ioFCBIndx word FCB index
30 ioFCBfiller1 word reserved
32 ioFCBFlNm long file ID
36 ioFCBFlags word flags
38 ioFCBStBlk word first allocation block of file
40 ioFCBEOF long logical end-of-file
44 ioFCBPLen long physical end-of-file
48 ioFCBCrPs long position of the file mark
52 ioFCBVRefNum word volume reference number
54 ioFCBClpSiz long file’s clump size
58 ioFCBParID long parent directory ID

0 vMVersion word version number
2 vMAttrib long volume attributes
6 vMLocalHand long reserved

10 vMServerAdr long network server address
14 vMVolumeGrade long relative speed rating
18 vMForeignPrivID word foreign privilege model

0 length word length of record
2 media 4 bytes type of volume
2-296 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
AFP Mounting Information Record

Volume Control Block Data Structure (Internal)

0 length word length of record
2 media 4 bytes type of volume
6 flags word reserved; must be 0
8 nbpInterval byte NBP retry interval
9 nbpCount byte NBP retry count

10 uamType word user authentication method
12 zoneNameOffset word offset to zone name
14 serverNameOffset word offset to server name
16 volNameOffset word offset to volume name
18 userNameOffset word offset to user name
20 userPasswordOffset word offset to user password
22 volPasswordOffset word offset to volume password
24 AFPData 144 bytes mounting data

0 qLink long next queue entry
4 qType word queue type
6 vcbFlags word volume flags
8 vcbSigWord word volume signature

10 vcbCrDate long date and time of initialization
14 vcbLsMod long date and time of last modification
18 vcbAtrb word volume attributes
20 vcbNmFls word number of files in root directory
22 vcbVBMSt word first block of volume bitmap
24 vcbAllocPtr word start of next allocation search
26 vcbNmAlBlks word number of allocation blocks in volume
28 vcbAlBlkSiz long size (in bytes) of allocation block
32 vcbClpSiz long default clump size
36 vcbAlBlSt word first allocation block in volume
38 vcbNxtCNID long next unused catalog node ID
42 vcbFreeBks word number of unused allocation blocks
44 vcbVN 28 bytes volume name preceded by length byte
72 vcbDrvNum word drive number
74 vcbDRefNum word driver reference number
76 vcbFSID word file-system identifier
78 vcbVRefNum word volume reference number
80 vcbMAdr long pointer to block map
84 vcbBufAdr long pointer to volume buffer
88 vcbMLen word number of bytes in block map
90 vcbDirIndex word reserved
92 vcbDirBlk word reserved
94 vcbVolBkUp long date and time of last backup
98 vcbVSeqNum word volume backup sequence number
Summary of the File Manager 2-297

C H A P T E R 2

File Manager
File Control Block Data Structure (Internal)

Drive Queue Elements

100 vcbWrCnt long volume write count
104 vcbXTClpSiz long clump size for extents overflow file
108 vcbCTClpSiz long clump size for catalog file
112 vcbNmRtDirs word number of directories in root directory
114 vcbFilCnt long number of files in volume
118 vcbDirCnt long number of directories in volume
122 vcbFndrInfo 32 bytes information used by the Finder
154 vcbVCSize word reserved
156 vcbVBMCSiz word reserved
158 vcbCtlCSiz word reserved
160 vcbXTAlBks word size in blocks of extents overflow file
162 vcbCTAlBks word size in blocks of catalog file
164 vcbXTRef word file reference number for extents overflow file
166 vcbCTRef word file reference number for catalog file
168 vcbCtlBuf long pointer to extents and catalog tree caches
172 vcbDirIDM long directory last searched
176 vcbOffsM word offspring index at last search

0 fcbFlNum long file ID
4 fcbFlags word file flags
6 fcbSBlk word first allocation block of file
8 fcbEOF long logical end-of-file

12 fcbPLen long physical end-of-file
16 fcbCrPs long current file mark position
20 fcbVPtr long pointer to volume control block
24 fcbBfAdr long pointer to access path buffer
28 fcbFlPos word reserved
30 fcbClmpSize long file’s clump size
34 fcbBTCBPtr long pointer to B*-tree control block
38 fcbExtRec 12 bytes first three file extents
50 fcbFType long file’s four Finder type bytes
54 fcbCatPos long catalog hint for use on close
58 fcbDirID long file’s parent directory ID
62 fcbCName 32 bytes name of open file, preceded by length byte

0 qLink long next queue entry
4 qType word flag for dQDrvSz and dQDrvSz2 fields
6 dQDrive word drive number
8 dQRefNum word driver reference number

10 dQFSID word file-system identifier
12 dQDrvSz word number of logical blocks on drive
14 dQDrvSz2 word additional field for large drives
2-298 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
Trap Macros 2

Trap Macro Names

Pascal name Trap macro name

PBAllocate _Allocate

PBAllocContig _AllocContig

PBClose _Close

PBDirCreate _DirCreate

PBEject _Eject

PBFlushFile _FlushFile

PBFlushVol _FlushVol

PBGetEOF _GetEOF

PBGetFPos _GetFPos

PBGetVol _GetVol

PBHCreate _HCreate

PBHDelete _HDelete

PBHGetFInfo _HGetFileInfo

PBHGetVInfo _HGetVolInfo

PBHGetVol _HGetVol

PBHGetVolParms _GetVolParms

PBHOpen _HOpen

PBHOpenRF _HOpenRF

PBHRename _HRename

PBHRstFLock _HRstFLock

PBHSetFInfo _HSetFileInfo

PBHSetFLock _HSetFLock

PBHSetVol _HSetVol

PBMountVol _MountVol

PBOffLine _OffLine

PBRead _Read

PBSetEOF _SetEOF

PBSetFPos _SetFPos

PBSetVInfo _SetVolInfo

PBSetVol _SetVol

PBUnmountVol _UnmountVol

PBWrite _Write
Summary of the File Manager 2-299

C H A P T E R 2

File Manager
Trap Macros Requiring Routine Selectors

_HFSDispatch

Selector Routine

$0001 PBOpenWD

$0002 PBCloseWD

$0005 PBCatMove

$0006 PBDirCreate

$0007 PBGetWDInfo

$0008 PBGetFCBInfo

$0009 PBGetCatInfo

$000A PBSetCatInfo

$000B PBSetVInfo

$0010 PBLockRange

$0011 PBUnlockRange

$0014 PBCreateFileIDRef

$0015 PBDeleteFileIDRef

$0016 PBResolveFileIDRef

$0017 PBExchangeFiles

$0018 PBCatSearch

$001A PBHOpenDF

$001B PBMakeFSSpec

$0030 PBHGetVolParms

$0031 PBHGetLogInInfo

$0032 PBHGetDirAccess

$0033 PBHSetDirAccess

$0034 PBHMapID

$0035 PBHMapName

$0036 PBHCopyFile

$0037 PBHMoveRename

$0038 PBHOpenDeny

$0039 PBHOpenRFDeny

$003F PBGetVolMountInfoSize

$0040 PBGetVolMountInfo

$0041 PBVolumeMount

$0042 PBShare

$0043 PBUnshare
2-300 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
_HighLevelFSDispatch

$0044 PBGetUGEntry

$0060 PBGetForeignPrivs

$0061 PBSetForeignPrivs

Selector Routine

$0001 FSMakeFSSpec

$0002 FSpOpenDF

$0003 FSpOpenRF

$0004 FSpCreate

$0005 FSpDirCreate

$0006 FSpDelete

$0007 FSpGetFInfo

$0008 FSpSetFInfo

$0009 FSpSetFLock

$000A FSpRstFLock

$000B FSpRename

$000C FSpCatMove

$000D FSpOpenResFile

$000E FSpCreateResFile

$000F FSpExchangeFiles

Selector Routine
Summary of the File Manager 2-301

C H A P T E R 2

File Manager
Global Variables 2

Result Codes 2

BootDrive word Working directory reference number for startup volume.
DefVCBPtr long Pointer to default volume control block.
DrvQHdr 10 bytes Drive queue header.
FSFCBLen word Size of a file control block.
FSQHdr 10 bytes File I/O queue header.
ToExtFS long Pointer to external file system.
VCBQHdr 10 bytes Volume control block queue header.

noErr 0 No error
notOpenErr –28 AppleTalk is not open
dirFulErr –33 File directory full
dskFulErr –34 All allocation blocks on the volume are full
nsvErr –35 Volume not found
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name
fnOpnErr –38 File not open
eofErr –39 Logical end-of-file reached
posErr –40 Attempt to position mark before start of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
wPrErr –44 Hardware volume lock
fLckdErr –45 File is locked
vLckdErr –46 Software volume lock
fBsyErr –47 File is busy; one or more files are open; directory not

empty or working directory control block is open
dupFNErr –48 A file with the specified name already exists
opWrErr –49 File already open for writing
paramErr –50 Parameter error
rfNumErr –51 Reference number specifies nonexistent access path;

bad working directory reference number
gfpErr –52 Error during GetFPos
volOfflinErr –53 Volume is offline
permErr –54 Attempt to open locked file for writing
volOnLinErr –55 Specified volume is already mounted and online
nsDrvErr –56 Specified drive number doesn’t match any number

in the drive queue
noMacDskErr –57 Volume lacks Macintosh-format directory
extFSErr –58 External file system
fsRnErr –59 Problem during rename
badMDBErr –60 Bad master directory block
wrPermErr –61 Read/write permission doesn’t allow writing
memFullErr –108 Insufficient memory available
dirNFErr –120 Directory not found
tmwdoErr –121 Too many working directories open
badMovErr –122 Attempted to move into offspring
wrgVolTypErr –123 Not an HFS volume
2-302 Summary of the File Manager

C H A P T E R 2

File Manager

2

F
ile M

anager
volGoneErr –124 Server volume has been disconnected
fsDSIntErr –127 Internal file system error
fidNotFoundErr –1300 File ID not found
fidExists –1301 File ID already exists
notAFileErr –1302 Specified file is a directory
diffVolErr –1303 Files are on different volumes
catChangedErr –1304 Catalog has changed and catalog position record

may be invalid
sameFileErr –1306 Files are the same
afpAccessDenied –5000 The operation has failed because the user does not

have the correct access to the file or folder
afpBadUAM –5002 User authentication method is unknown
afpBadVersNum –5003 Workstation is using an AFP version that the server

doesn’t recognize
afpDenyConflict –5006 The operation has failed because the permission or

deny mode conflicts with the mode in which the
fork has already been opened

afpNoMoreLocks –5015 Byte range locking has failed because the server
cannot lock any additional ranges

afpNoServer –5016 Server is not responding
afpRangeNotLocked –5020 User has attempted to unlock a range that was not

locked by that user
afpRangeOverlap –5021 User attempted to lock some or all of a range that is

already locked
afpUserNotAuth –5023 User authentication failed (usually, password is

not correct)
afpObjectTypeErr –5025 Object was a file, not a directory; or, this directory is

not a share point
afpContainsSharedErr –5033 The directory contains a share point
afpIDNotFound –5034 File ID not found
afpIDExists –5035 File ID already exists
afpCatalogChanged –5037 Catalog has changed and search cannot be resumed
afpSameObjectErr –5038 Source and destination are the same
afpBadIDErr –5039 Bad file ID
afpPwdExpired –5042 Password has expired on server
afpInsideSharedErr –5043 The directory is inside a shared directory
afpBadDirIDType –5060 Not a fixed directory ID volume
afpCantMountMoreSrvrs –5061 Maximum number of volumes have been mounted
afpAlreadyMounted –5062 Volume already mounted
afpSameNodeErr –5063 Attempt to log on to a server running on the

same machine
Summary of the File Manager 2-303

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to File Management TOC
	 Introduction to File Management
	 File Manager TOC
	File Manager
	About the File Manager
	File Manipulation
	Directory Manipulation
	Volume Manipulation
	Volume Searching
	Shared Environments
	Shared File Access Permissions
	Directory Access Privileges
	Remote Volume Mounting
	Privilege Information in Foreign File Systems

	File ID Reference Routines

	Identifying Files, Directories, and Volumes
	File System Specifications
	File IDs
	Directory IDs
	Volume Reference Numbers
	Working Directory Reference Numbers
	Names and Pathnames
	HFS Specifications
	Search Paths

	Using the File Manager
	Determining the Features of the File Manager
	Creating File System Specification Records
	Manipulating the Default Volume and Directory
	Deleting Files and File Forks
	Searching a Volume
	Constructing Full Pathnames
	Determining the Amount of Free Space on a Volume
	Sharing Volumes and Directories
	Locking and Unlocking File Ranges

	Data Organization on Volumes
	Disk and Volume Organization
	Boot Blocks
	Master Directory Blocks
	Volume Bitmaps
	B*-Trees
	Nodes
	Node Records
	Header Nodes
	Map Nodes
	Index Nodes
	Leaf Nodes

	Catalog Files
	Catalog File Keys
	Catalog File Data Records

	Extents Overflow Files

	Data Organization in Memory
	The File I/O Queue
	Volume Control Blocks
	File Control Blocks
	B*-Tree Control Blocks
	The Drive Queue

	File Manager Reference
	Data Structures
	File System Specification Record
	Basic File Manager Parameter Block
	HFS Parameter Block
	Catalog Information Parameter Blocks
	Catalog Position Records
	Catalog Move Parameter Blocks
	Working Directory Parameter Blocks
	File Control Block Parameter Blocks
	Volume Attributes Buffer
	Volume Mounting Information Records

	High-Level File Access Routines
	Reading, Writing, and Closing Files
	Manipulating the File Mark
	Manipulating the End-of-File
	Allocating File Blocks

	Low-Level File Access Routines
	Reading, Writing, and Closing Files
	Manipulating the File Mark
	Manipulating the End-of-File
	Allocating File Blocks
	Updating Files

	High-Level Volume Access Routines
	Unmounting Volumes
	Updating Volumes
	Manipulating the Default Volume
	Obtaining Volume Information

	Low-Level Volume Access Routines
	Mounting and Unmounting Volumes
	Updating Volumes
	Obtaining Volume Information
	Manipulating the Default Volume

	File System Specification Routines
	Opening Files
	Creating and Deleting Files and Directories
	Accessing Information About Files and Directories
	Moving Files or Directories
	Exchanging the Data in Two Files
	Creating File System Specifications

	High-Level HFS Routines
	Opening Files
	Creating and Deleting Files and Directories
	Accessing Information About Files and Directories
	Moving Files or Directories
	Maintaining Working Directories

	Low-Level HFS Routines
	Opening Files
	Creating and Deleting Files and Directories
	Accessing Information About Files and Directories
	Moving Files or Directories
	Maintaining Working Directories
	Searching a Catalog
	Exchanging the Data in Two Files

	Shared Environment Routines
	Opening Files While Denying Access
	Locking and Unlocking File Ranges
	Manipulating Share Points
	Controlling Directory Access
	Mounting Volumes
	Controlling Login Access
	Copying and Moving Files

	File ID Routines
	Resolving File ID References
	Creating and Deleting File ID References

	Foreign File System Routines
	Utility Routines
	Obtaining Queue Headers
	Adding a Drive
	Obtaining File Control Block Information

	Application-Defined Routines
	Completion Routines

	Summary of the File Manager
	Pascal Summary
	Constants
	Data Types
	Internal Data Types
	High-Level File Access Routines
	Low-Level File Access Routines
	High-Level Volume Access Routines
	Low-Level Volume Access Routines
	File System Specification Routines
	High-Level HFS Routines
	Low-Level HFS Routines
	Shared Environment Routines
	File ID Routines
	Foreign File System Routines
	Utility Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Internal Data Types
	High-Level File Access Routines
	Low-Level File Access Routines
	High-Level Volume Access Routines
	Low-Level Volume Access Routines
	File System Specification Routines
	High-Level HFS Routines
	Low-Level HFS Routines
	Shared Environment Routines
	File ID Routines
	Foreign File System Routines
	Utility Routines
	Application-Defined Routine

	Assembly-Language Summary
	Constants
	Data Structures
	Trap Macros
	Global Variables

	Result Codes

	 Standard File Package TOC
	 Standard File Package
	 Alias Manager TOC
	 Alias Manager
	 Disk Initialization Manager TOC
	 Disk Initialization Manager
	 Glossary
	 Index
	 Colophon

