

C H A P T E R 1 0

10

S
cripting C

om
ponents

Scripting Components 10

This chapter describes how your application can use the Component Manager and
scripting components to manipulate and execute scripts.

Before you read this chapter, you should read the chapter “Introduction to Scripting” in
this book and the chapters about the Apple Event Manager that are relevant to your
application.

Your application can use the standard scripting component data structures and routines
described in this chapter to manipulate scripts written in any scripting language based
on the Open Scripting Architecture (OSA). Your application need not be scriptable or
recordable to use these routines. However, if your application is scriptable, you can
easily make it capable of manipulating and executing scripts that control its own
behavior.

The first section in this chapter describes how to establish a connection with a scripting
component. The next two sections provide

■ examples of how to use the standard scripting component routines

■ information for developers of scripting components

The section “Scripting Components Reference” describes, in addition to the standard
scripting component routines, routines provided by the AppleScript component,
routines provided by the generic scripting component, and routines called by scripting
components.

If you are developing a scripting component, you should also read the instructions for
creating components in the chapter “Component Manager” in Inside Macintosh:
More Macintosh Toolbox.

Connecting to a Scripting Component 10

To manipulate and execute scripts written in different scripting languages, your
application can use Component Manager routines either to open a connection with each
corresponding scripting component individually or to open a single connection with the
generic scripting component. The generic scripting component, in turn, attempts to open
connections dynamically with the appropriate scripting component for each script. By
opening a connection with the generic scripting component, your application can load
and execute scripts created by any scripting component that is registered with the
Component Manager on the current computer.

In general, you should use the generic scripting component to execute and manipulate
existing scripts and a specific scripting component when you create new scripts. When
you call OSACompile or OSAStartRecording, the generic scripting component
examines the script ID to determine which scripting component to use. If instead of a
script ID you pass the constant kOSANullScript to these routines, the generic scripting
component uses its current default scripting component. Each instance of the generic
scripting component has its own default scripting component. From the user’s point of
view, the default scripting component corresponds to the scripting language selected in
the Script Editor application when the user first creates a new script.
Connecting to a Scripting Component 10-3

C H A P T E R 1 0

Scripting Components

The generic scripting component provides routines you can use to get and set the default
scripting component, determine which scripting component created a particular script,
and perform other useful tasks when you are using multiple scripting components. See
the section “Generic Scripting Component Routines,” which begins on page 10-84, for
descriptions of these routines.

You can use the Component Manager function OpenComponent to open a connection to
a scripting component you specify with the component identifier returned by the
FindNextComponent function. You can also use the OpenDefaultComponent
function to open a scripting component without calling the FindNextComponent
function.

The OpenComponent and OpenDefaultComponent functions return a component
instance. This value identifies your application’s connection to a component. You must
supply this value whenever you call a standard scripting component routine.

Note
Your application may maintain several connections to a single
component, or it may have connections to several components at the
same time. Because some scripting components (including the current
version of AppleScript) can execute only one script at a time per
component instance, a multithreaded application must provide a
separate component instance for each script that it compiles or executes
while it is simultaneously executing other scripts. ◆

The Component Manager type code for scripting components that support the routines
described in this chapter is 'osa ', and the subtype code for the generic scripting
component is 'scpt'.

CONST

kOSAComponentType = 'osa ';

kOSAGenericscriptingComponentSubtype = 'scpt';

You can open a connection to a scripting component by calling the
OpenDefaultComponent function, which returns a component instance. For example,
this code opens a connection with the generic scripting component and stores the
returned value in an application-defined variable:

VAR

gScriptingComponent: ComponentInstance;

{open connection to generic scripting component}

gScriptingComponent := OpenDefaultComponent(kOSAComponentType,

 kOSAGenericscriptingComponentSubtype);

The generic scripting component in turn opens connections with other scripting
components as necessary. The generic scripting component provides routines you can
use to get instances of other scripting components when you want to use
component-specific routines.
10-4 Connecting to a Scripting Component

C H A P T E R 1 0

Scripting Components

10

S
cripting C

om
ponents

It is also possible to open an explicit connection directly with a specific scripting
component such as AppleScript:

VAR

gScriptingComponent: ComponentInstance;

{open connection to AppleScript component}

gScriptingComponent := OpenDefaultComponent(kOSAComponentType,

kAppleScriptSubtype);

The scripting component routines described in this chapter include eight groups of
optional routines that scripting components can support. If necessary, you can use the
FindNextComponent function and other Component Manager routines to find a
scripting component that supports a specific group of routines or to determine whether a
particular scripting component supports a specific group of routines.

When you call FindNextComponent, you can provide, in a component description
record (a data structure of type ComponentDescription), information about the
scripting component you wish to find. The flag bits in the componentFlags field of a
component description record provide this information. To find a scripting component
that supports a specific group of optional routines, you can specify one or more of these
constants in the componentFlags field:

CONST

kOSASupportsCompiling = $0002;

kOSASupportsGetSource = $0004;

kOSASupportsAECoercion = $0008;

kOSASupportsAESending = $0010;

kOSASupportsRecording = $0020;

kOSASupportsConvenience = $0040;

kOSASupportsDialects = $0080;

kOSASupportsEventHandling = $0100;

The routines that correspond to these constants are described in “Optional Scripting
Component Routines,” which begins on page 10-46.

Note
Although the generic scripting component supports all the scripting
component routines represented by these flags, the support it can
actually provide depends on the individual components with which it
opens connections. ◆

Listing 10-1 shows how you can use these flags and the FindNextComponent function
to locate a scripting component with specific characteristics. The componentFlags field
of the component description record passed to FindNextComponent specifies the flags
kOSASupportsCompiling and kOSASupportsGetSource. Because the
componentFlagsMask field also specifies these flags, the FindNextComponent
function locates a scripting component that supports these routines, regardless of
whether or not it supports any others. The FindNextComponent function returns a
Connecting to a Scripting Component 10-5

C H A P T E R 1 0

Scripting Components

component identifier that you can then use to get more information about
the component or to open it.

Listing 10-1 Locating a scripting component that supports specific optional routines

FUNCTION MyConnectToScripting (VAR scriptingComponent: ComponentInstance)

: OSAError;

VAR

descr, descr2: componentDescription;

comp: component;

myErr: OSErr;

BEGIN

{fill in the fields of the component description record}

{first specify component type, subtype, and manufacturer}

descr.componentType := kOSAComponentType; {must be scripting component}

descr.componentSubType := OSType(0); {any OSA component matching spec}

descr.componentManufacturer := OSType(0); {don't care about manufacturer}

{specify component flags and flags mask}

descr.componentFlags := kOSASupportsCompiling + kOSASupportsGetSource;

descr.componentFlagsMask :=

kOSASupportsCompiling + kOSASupportsGetSource;

{locate and open the specified component}

comp := FindNextComponent(Component(0), descr); {0 indicates all }

{ registered components }

{ will be searched}

{check whether the found component is the generic scripting component; }

{ if so, skip it and find the next matching component}

myErr := GetComponentInfo(comp, descr2, NIL, NIL, NIL);

IF descr2.componentSubType = kOSAGenericScriptingComponentSubtype THEN

comp := FindNextComponent(comp, descr);

IF comp = 0 THEN

MyConnectToScripting := kComponentNotFound

ELSE

BEGIN

scriptingComponent := OpenComponent(comp);

IF scriptingComponent = 0 THEN

MyConnectToScripting := kComponentNotFound

ELSE

MyConnectToScripting := noErr;

END;

END;
10-6 Connecting to a Scripting Component

C H A P T E R 1 0

Scripting Components

10

S
cripting C

om
ponents

Because the generic scripting component supports all the standard scripting component
routines, the MyConnectToScripting function in Listing 10-1 checks whether the
found component is the generic scripting component and, if so, skips it. If for any reason
FindNextComponent can’t locate and open a scripting component that supports the
specified routines, MyConnectToScripting returns the application-defined constant
kComponentNotFound.

For more information about locating and opening components with specific
characteristics, see the chapter “Component Manager” in Inside Macintosh:
More Macintosh Toolbox.

Using Scripting Component Routines 10

The following sections describe how to use some of the standard scripting component
routines to manipulate and execute scripts from within your application. For an
overview of these routines, see “Manipulating and Executing Scripts,” which begins on
page 7-22.

The first section describes how to compile and execute source data for a script. The
remaining sections describe how you can use scripting component routines to

■ get a handle to a compiled script and save the data as a resource

■ load and execute a previously saved and compiled script

■ load, modify, recompile, and save a compiled script

■ redirect Apple events to handlers in script contexts

■ supply a resume dispatch function

■ supply an alternative active function

■ supply alternative send and create functions

■ record Apple events in compiled scripts and display equivalent source data to the user

Compiling and Executing Source Data 10
This section describes how you can use scripting component routines to obtain source
data from users, compile the source data, and execute the compiled script. To create and
execute a script using the Script Editor application, a user can type the script, then click
the Run button to execute it. Your application can provide similar capabilities.

To allow users to write a new script and then execute it, your application must use
scripting component routines to compile and execute the source data. To compile source
data in a new script with a new script ID, pass the constant kOSANullScript (rather
than an existing script ID) in the last parameter of the OSACompile function. This causes
OSACompile to return a new script ID in the same parameter.

To execute a compiled script, your application must specify, in addition to the script ID
for the compiled script, a script context: either the corresponding scripting component’s
Using Scripting Component Routines 10-7

C H A P T E R 1 0

Scripting Components

default context or a script ID for the global context created by that scripting component.
Script contexts maintain state information for the execution of scripts. Your application
can use script contexts to control the binding of variables used in scripts that it executes.
For example, if your application saves its own global context and reuses it every time a
script is executed, the binding of variables used in the script is maintained after the user
restarts the computer. If your application does not specify a script context, the
AppleScript component uses a single default context whenever it executes the script. A
scripting component’s default context binds the variables used in the script only until
the user quits the application.

To specify a scripting component’s default context, pass the constant kOSANullScript
in the third parameter of the OSAExecute function; to specify some other global context,
pass its script ID in the third parameter.

The MyDoNewScript procedure in Listing 10-2 allows a user to type a script in the
appropriate scripting language, then compiles the script, executes the compiled script
using a global context provided by the application, and displays the result to the user.

The MyDoNewScript procedure begins by calling the OSAScriptingComponentName
function to obtain the name of the scripting component specified by
gScriptingComponent. This name is passed to the application-defined function
MyGetUserScriptText.

Note
If you are using the generic scripting component, you can use the
OSAGetDefaultComponent function to get the subtype code for the
default scripting component (that is, the scripting component used by
the generic scripting component for new scripts). You can then get an
instance of the default scripting component by passing its subtype code
to OSAGetScriptingComponent. Finally, you can pass that instance to
OSAScriptingComponentName to obtain the default scripting
component’s name. For more information about the default scripting
component and routines you can use with the generic scripting
component, see “Generic Scripting Component Routines,” which begins
on page 10-84. ◆

The MyGetUserScriptText function displays the name of the scripting language to
use in a script-editing window or message box that allows the user to type and execute a
new script. After it obtains the source data for the new script, the MyDoNewScript
procedure sets the scriptID variable to kOSANullScript. The procedure then passes
the source data and scriptID to the OSACompile function. When the script ID passed
to OSACompile is kOSANullScript, OSACompile returns, in the same parameter, a
new script ID for the resulting compiled script. The MyDoNewScript procedure then
passes the new script ID to the OSAExecute function.

In addition to a component instance and the script ID for the compiled script to be
executed, OSAExecute takes a script ID for a script context and a parameter that
contains the mode flags, if any, for script execution. In Listing 10-2, the script ID passed
to OSAExecute for the script context is gContext, a global context provided by the
application. The constant kOSAModeNull in the next parameter indicates that no mode
flags are set for script execution.
10-8 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Listing 10-2 A routine that compiles and executes source data

PROCEDURE MyDoNewScript;

VAR

componentName, scriptText, resultText: AEDesc;

scriptID, resultID: OSAID;

myOSAErr, ignoreErr: OSAError;

BEGIN

{get the scripting component's name so you can show }

{ the user which scripting language to use}

myOSAErr := OSAScriptingComponentName(gScriptingComponent,

componentName);

IF myOSAErr = noErr THEN

BEGIN {get the user's script text, then compile it}

MyGetUserScriptText(componentName, scriptText);

{to create a new compiled script using the user's script }

{ text, pass kOSANullScript to OSACompile as the script ID }

{ for the script to be compiled}

scriptID := kOSANullScript;

myOSAErr := OSACompile(gScriptingComponent, scriptText,

kOSAModeNull, scriptID);

ignoreErr := AEDisposeDesc(scriptText);

END;

IF myOSAErr = noErr THEN

BEGIN

{execute the script in a global context}

myOSAErr := OSAExecute(gScriptingComponent, scriptID,

gContext, kOSAModeNull, resultID);

ignoreErr := OSADispose(gScriptingComponent, scriptID);

IF myOSAErr = noErr THEN

BEGIN

{convert the script value returned by OSAExecute to }

{ text that can be displayed to the user}

myOSAErr := OSADisplay(gScriptingComponent, resultID,

typeChar, kOSAModeNull, resultText);

ignoreErr := OSADispose(gScriptingComponent, resultID);

{show result to user}

MyShowUserResult(resultText);

ignoreErr := AEDisposeDesc(resultText);

END;

END;

IF myOSAErr = errOSAScriptError THEN

MyGetScriptErrorInfo;

END;
Using Scripting Component Routines 10-9

C H A P T E R 1 0

Scripting Components
If script execution is successful, the MyDoNewScript procedure passes the script ID
for the resulting script value to the OSADisplay function and calls the
MyShowUserResult procedure to display the script value to the user. It also disposes
of the script data for the compiled script. If OSAExecute or OSACompile returns the
result code errOSAScriptError, the MyDoNewScript procedure calls the
MyGetScriptErrorInfo procedure shown in Listing 10-3, which uses
the OSAScriptError function to obtain more information about the error.

Whenever a scripting component routine returns the result code errOSAScriptError,
you can use OSAScriptError to obtain more information about the error. The second
parameter of the OSAScriptError function is a constant that specifies the kind of error
information to be returned, and the third parameter is the descriptor type for the
descriptor record in which the additional error information will be returned.

The MyGetScriptErrorInfo procedure in Listing 10-3 calls OSAScriptError
three times: once to obtain an error number for either a system error or a scripting
component error, once to obtain a text description of the error, and once to obtain
error-range information. (For more information about specifying descriptor types for
OSAScriptError, see page 10-37.) Finally, the MyGetScriptErrorInfo procedure
extracts the starting and ending positions of the error range in the source data and calls
the application-defined procedure MyIndicateError to display the error information
to the user. Note that your application is responsible for disposing of any descriptor
records that are created.

You should use the OSACompile and OSAExecute functions as shown in Listing 10-2 if
you expect the user to execute the compiled script several times or manipulate it in some
other way. If you want to compile and execute a script just one time and don’t need to
keep the compiled script in memory after it has been executed, you can use either
OSACompileExecute or OSADoScript if these functions are supported by the
scripting component you specify.

The OSACompileExecute function takes a component instance, a descriptor record for
the source data to be compiled and executed, a context ID, and a modeFlags parameter.
It executes the resulting compiled script, disposes of the compiled script, and returns the
script ID for the resulting script value.

The OSADoScript function takes a component instance, a descriptor record for source
data, a context ID, a text descriptor type, and a modeFlags parameter. It compiles and
executes the script, returns a descriptor record for the text that corresponds to the
resulting script value, and disposes of both the compiled script and the script value.
10-10 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Listing 10-3 A procedure that uses OSAScriptError to get information about an execution
error

PROCEDURE MyGetScriptErrorInfo;

TYPE

OSErrPtr = ^OSErr;

OSErrHandle = ^OSErrPtr;

VAR

errorMessage: Handle;

startPos, endPos: Integer;

desc, recordDesc: AEDesc;

actualType: DescType;

actualSize: Size;

scriptErr, myErr, ignoreErr: OSErr;

myOSAErr: OSAError;

BEGIN

myOSAErr := OSAScriptError(gScriptingComponent,

kOSAErrorNumber, typeShortInteger,

desc);

scriptErr := OSErrHandle(desc.dataHandle)^^;

ignoreErr := AEDisposeDesc(desc);

myOSAErr := OSAScriptError(gScriptingComponent,

kOSAErrorMessage, typeChar, desc);

errorMessage := desc.dataHandle;

myOSAErr := OSAScriptError(gScriptingComponent,

kOSAErrorRange, typeOSAErrorRange,

desc);

myErr := AECoerceDesc (desc, typeAERecord, recordDesc);

ignoreErr := AEDisposeDesc(desc);

myErr := AEGetKeyPtr(recordDesc, keySourceStart,

typeShortInteger, actualType,

Ptr(@startPos), sizeOf(startPos),

actualSize);

myErr := AEGetKeyPtr(recordDesc, keySourceEnd,

typeShortInteger, actualType,

Ptr(@endPos), sizeOf(endPos),

actualSize);

ignoreErr := AEDisposeDesc(recordDesc);

MyIndicateError(scriptErr, errorMessage, startPos, endPos);

{add your own error checking}

END;
Using Scripting Component Routines 10-11

C H A P T E R 1 0

Scripting Components
Saving Script Data 10
After creating a new script (or after modifying a previously saved script), a user may
want to save it.

IMPORTANT

Your application should usually save scripts as script data rather
than source data, so that it can reload and execute the data without
compiling it. ▲

Before saving script data, your application can use the OSAStore function to obtain a
handle to the data. The OSAStore function takes four input parameters: a component
instance that identifies a connection with a scripting component, a script ID for the script
data to be stored, a desired descriptor type for the descriptor record to be returned, and a
parameter that contains mode flags for use by individual scripting components. It
returns a descriptor record for the script data in the fifth parameter.

The sections that follow describe the storage formats used by OSAStore and the
resource and file types for script data.

Storage Formats for Script Data 10

The descriptor record returned by OSAStore can be either a generic storage descriptor
record or a component-specific storage descriptor record:

■ A generic storage descriptor record is a special kind of descriptor record of type
typeOSAGenericStorage that can be used to store script data created by any
scripting component.

■ A component-specific storage descriptor record is a descriptor record whose
descriptor type is the scripting component subtype value for the scripting component
that created the script data.

Figure 10-1 illustrates the logical arrangement of a generic storage descriptor
record. The descriptor type for a generic storage descriptor record is always
typeOSAGenericStorage, and the data referred to by the descriptor record’s
handle is always followed by a trailer containing the subtype value for the scripting
component that created the script data.

Figure 10-1 A generic storage descriptor record

Descriptor type:

Data:

typeOSAGenericStorage

Script data

Trailer
10-12 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Figure 10-2 illustrates the logical arrangement of a component-specific storage descriptor
record. The descriptor type for a component-specific storage descriptor record is
the subtype value for the scripting component that created the script data, and the data
referred to by the descriptor record’s handle consists of the script data only, with no
trailer.

Figure 10-2 A component-specific storage descriptor record

In most cases it is safest to request a handle to script data in the form of a generic storage
descriptor record, regardless of the scripting component subtype you pass to the
OSAStore function.

If the presence of the trailer in a generic storage descriptor record does not interfere with
the script data, that data may be used for a wide variety of purposes. For example, if an
application uses script IDs to refer to XCMDs, it can call OSAStore with a desired type
of typeOSAGenericStorage. The data for the resulting descriptor record consists of
the XCMD data followed by a trailer indicating that the script data was created by a
scripting component that executes XCMDs. Because the trailer does not interfere with
the use of the data, the data may actually be used as an XCMD. Thus, an application can
save XCMDs as script data and load and execute them after it has opened a connection
with the generic scripting component.

However, in some cases adding a trailer to script data may interfere with script
execution. For example, suppose the data for a generic storage descriptor record consists
of sound data. If a scripting component attempts to play the data from beginning to
end as sound data, the trailer will interfere with the resulting sound. In this case, an
application must open an explicit connection with a scripting component that can play
sounds before saving the data, and then call OSAStore with a desired type that consists
of the subtype for that scripting component.

Resource and File Types for Script Data 10

When the OSAStore function returns a descriptor record of the specified type, your
application can save the descriptor record’s data as a resource of type 'scpt' or write it
to the data fork of a document.

The generic scripting component subtype, the generic storage descriptor type, and the
resource type for stored script data all have the same value, though they serve different
purposes.

Descriptor type: Scripting component subtype
(for example, typeASStorage)

Data: Script data
Using Scripting Component Routines 10-13

C H A P T E R 1 0

Scripting Components
CONST

kOSAGenericScriptingComponentSubtype = 'scpt';

kOSAScriptResourceType = kOSAGenericScriptingComponentSubtype;

typeOSAGenericStorage = kOSAScriptResourceType;

If you want to save script data as a compiled script file or as a script application, save it
as a resource of type 'scpt'. The Script Editor application uses resource ID 128, but you
can use any valid resource ID. Save the script comment that accompanies the script data
as resources of type 'TEXT' and 'styl' with resource ID 1128. (See Figure 7-1 on
page 7-6 for an example of a script comment.) Each script file can contain only one script
and one script comment. The file type for a compiled script file should be 'osas'.

A script application has the file type 'APPL'. If a script application has the creator
signature 'aplt', a user can initiate execution of the script it contains by opening it
from the Finder. If a script application has the creator signature 'dplt' and contains a
user-defined handler for the Open Documents event, a user can initiate execution of the
handler by dragging a document or folder icon over the script application’s icon. For
more information about the file formats used for script files, see “Script Editors and
Script Files” on page 7-6.

Script applications must include a 'SIZE' resource and two 'CODE' resources with
resource IDs 0 and 1. These resources should be identical to those in the sample script
application files provided by Apple Computer, Inc. (except that you can change the size
of the memory partition). The 'CODE' resources contain bootstrap code that instantiates
the script application component. The script application component, which is registered
with the Component Manager at startup, provides the code that loads the script to be
run and passes the resulting script ID to the appropriate component.

When the user opens a script application from the Finder, the Finder sends the script
application an Open Application event. If the scripting component that created the script
supports OSAExecuteEvent, the script application component passes the Open
Application event and the script ID for the script to OSAExecuteEvent. If the scripting
component doesn’t support OSAExecuteEvent, the script application component
passes the script ID to OSAExecute.

Loading and Executing Script Data 10
Figure 7-4 on page 7-13 illustrates how an application might execute a script whenever
the user presses the Tab key after entering a customer’s name in the “Customer Name”
field of an electronic form. To execute a script in response to some user action, your
application must be able to load and execute the script data for a compiled script.

This section describes how to load and execute a previously compiled and saved script.
The next section, “Modifying and Recompiling a Compiled Script,” describes how to
allow a user to modify a compiled script.
10-14 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
The OSALoad function takes three input parameters: a component instance that
identifies a connection with a scripting component; a descriptor record that contains a
handle to the script data to be loaded; and a parameter that contains flags for use by
individual scripting components. The function returns, in the fourth parameter, a script
ID for the script data.

When your application calls OSALoad with a component instance that identifies a
connection with the generic scripting component, the generic scripting component in
turn uses a connection with the scripting component that created the script data (if that
component is registered with the Component Manager on the local computer). If the
descriptor record passed to OSALoad is of type typeOSAGenericStorage, the generic
scripting component uses the trailer that follows the script data to determine
which scripting component to open a connection with. If the descriptor record’s type is
the subtype value for some other scripting component, the generic scripting component
does not look for a trailer and uses the descriptor type to identify the scripting
component.

When your application calls OSALoad with a component instance that identifies a
connection to any scripting component other than the generic scripting component, that
component can load script data only if it was saved as the data for a descriptor record
whose descriptor type matches the scripting component’s subtype. In this case, however,
your application easily can take advantage of additional routines and other special
capabilities provided by that scripting component.

It is also possible to call OSALoad using the generic scripting component, then use
generic scripting component routines to identify the specific component associated with
the loaded script. This allows you to use component-specific routines with a script
originally loaded by the generic scripting component. For information about how to do
this, see “Routines Used by Scripting Components,” which begins on page 10-92.

The OSALoad function returns a script ID for the loaded script data. The generic
scripting component always associates the returned script ID with the scripting
component that created the script. In this way, it can use a connection with
that component again whenever the client application passes the returned script ID
to other scripting component routines.

Listing 10-4 shows a procedure that loads and executes a script. The
MyLoadAndExecute procedure takes a handle to script data that was previously saved
using a generic storage descriptor record, obtains a script ID for the equivalent compiled
script, executes the compiled script in the default context, and disposes of both the
compiled script and the resulting script value ID. If the OSAExecute function returns a
script execution error, MyLoadAndExecute obtains further information about the error
and displays it to the user.
Using Scripting Component Routines 10-15

C H A P T E R 1 0

Scripting Components
Listing 10-4 A routine that loads and executes script data previously saved using a generic
storage descriptor record

PROCEDURE MyLoadAndExecute (scriptData: Handle);

VAR

scriptDesc: AEDesc;

scriptID, resultID: OSAID;

scriptText: AEDesc;

myOSAErr, ignoreErr: OSAError;

BEGIN

{load the script data}

scriptDesc.descriptorType := typeOSAGenericStorage;

scriptDesc.dataHandle := scriptData;

myOSAErr := OSALoad(gScriptingComponent, scriptDesc,

kOSAModeNull, scriptID);

IF myOSAErr = noErr THEN

BEGIN

{execute the resulting compiled script in the default }

{ context}

myOSAErr := OSAExecute(gScriptingComponent, scriptID,

kOSANullScript, kOSAModeNull,

resultID);

ignoreErr := OSADispose(gScriptingComponent, scriptID);

ignoreErr := OSADispose(gScriptingComponent, resultID);

END;

IF myOSAErr = errOSAScriptError THEN

MyGetScriptErrorInfo;

END;

The OSALoad function in Listing 10-4 takes a component instance, a generic storage
descriptor record for the script data to be loaded, and a parameter that contains the
mode flags, if any, for loading the script. In this case the constant kOSAModeNull
indicates that no mode flags are set. The OSALoad function returns a script ID for the
resulting compiled script, which the MyLoadAndExecute procedure then passes to the
OSAExecute function.

In addition to a component instance and the script ID for the compiled script to be
executed, the OSAExecute function takes a script ID for a context and a parameter that
contains the mode flags, if any, for script execution. In Listing 10-4, the script ID passed
to OSAExecute for the script context is kOSANullScript, indicating that the scripting
component can use its default context to bind any variables. The constant
kOSAModeNull in the next parameter indicates that no mode flags are set for script
execution.
10-16 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
After disposing of the compiled script and the resulting script value,
MyLoadAndExecute checks the result code returned by OSAExecute. If it is
errOSAScriptError, MyLoadAndExecute calls the MyGetScriptErrorInfo
procedure (see Listing 10-3 on page 10-11), which in turn uses the OSAScriptError
function to obtain more information about the error.

You can use the OSALoad and OSAExecute functions as shown in Listing 10-4 if you
expect the user to execute the compiled script several times or manipulate it in some
other way. If you want to load and execute a script just one time and don’t need to
keep the compiled script in memory after it has been executed, you can use
OSALoadExecute instead of OSALoad, OSAExecute, and OSADispose. This function
takes a component instance, a descriptor record for the script data to be loaded and
executed, a context ID, and a modeFlags parameter. The OSALoadExecute function
executes the resulting compiled script, disposes of the compiled script, and returns the
script ID for the resulting script data.

Modifying and Recompiling a Compiled Script 10
In addition to loading and executing a previously compiled and saved script as
described in the previous section, your application can use the scripting component
routines described in this section to decompile a compiled script, display the equivalent
source data to users for editing, and recompile the source data after editing is completed.
For example, if a user wants to change the script shown in Figure 7-4 on page 7-13 so
that it refers to some other database or looks up other information in addition to the
customer’s address, the forms application can use scripting component routines to
display the compiled script to the user and recompile it after the user has modified it.

You can use the OSAGetSource function to obtain the source data for a compiled script.
The OSAGetSource function takes a component instance, a script ID for the compiled
script, and the desired type of the resulting descriptor record. If you specify a component
instance that identifies a connection with the generic scripting component, you can use
OSAGetSource to get the source data for any compiled script created by a scripting
component that is registered with the Component Manager on the local computer. If you
specify a component instance that identifies an explicit connection with a scripting
component, you can use OSAGetSource only to get the source data for scripts that were
compiled by that scripting component.

The MyEditGenericScript procedure in Listing 10-5 shows how you can use the
OSAGetSource function with a component instance that identifies a connection to the
generic scripting component. The MyEditGenericScript function gets the source
data for a compiled script, allows the user to edit it, and recompiles the script so the
original script ID refers to the recompiled script data.
Using Scripting Component Routines 10-17

C H A P T E R 1 0

Scripting Components
Listing 10-5 A routine that displays a compiled script for editing and recompiles it

PROCEDURE MyEditGenericScript (scriptID: OSAID);

VAR

scriptText: AEDesc;

myOSAErr: OSAError;

ignoreErr: OSErr;

BEGIN

{first get the source data}

myOSAErr := OSAGetSource(gScriptingComponent, scriptID,

typeChar, scriptText);

{call the application's primitive text editor}

MyEditText(scriptText.dataHandle);

{now compile the edited script data in scriptText using }

{ the scripting component that originally created it; }

{ passing the original script ID to OSACompile causes }

{ OSACompile to replace the original script with the new one}

myOSAErr := OSACompile(gScriptingComponent, scriptText,

kOSAModeNull, scriptID);

ignoreErr := AEDisposeDesc(scriptText);

IF myOSAErr = errOSAScriptError THEN

MyGetScriptErrorInfo;

END;

After obtaining the source data for the script, the MyEditGenericScript procedure
calls the MyEditText function, which displays the application’s own primitive text
editor and allows the user to edit the source data. After the user has finished editing the
script, MyEditGenericScript passes the edited text and the script ID for the original
compiled script to the OSACompile function, which updates the script ID so that it
refers to the modified and recompiled script. The kOSAModeNull constant passed in the
third parameter of OSACompile indicates that no mode flags are specified for
compilation.

If the OSACompile function returns errOSAScriptError, the
MyEditGenericScript procedure calls the MyGetScriptErrorInfo procedure
shown in Listing 10-3 on page 10-11 to obtain information about the error.

After script data has changed as shown in Listing 10-5, your application should save the
modified script data. Listing 10-6 shows how this could be done from a function that
loads script data, calls the MyEditGenericScript procedure shown in Listing 10-5 to
modify and recompile the script, then saves the modified script data.
10-18 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Listing 10-6 A function that loads and modifies script data, then saves it using a generic
storage descriptor record

FUNCTION MyLoadAndModifyScriptData (resourceID: Integer)

: OSAError;

VAR

scriptDesc: AEDesc;

storageDescRec: AEDesc;

scriptID: OSAID;

myOSAErr: OSAError;

ignoreErr: OSErr;

myHndl: Handle;

BEGIN

scriptDesc.descriptorType := typeOSAGenericStorage;

scriptDesc.dataHandle := GetResource(kOSAScriptResourceType,

resourceID);

myOSAErr := OSALoad(gGenericScriptingComponent, scriptDesc,

kOSAModeNull, scriptID);

MyEditGenericScript (scriptID);

myOSAErr := OSAStore(gScriptingComponent, scriptID,

typeOSAGenericStorage, kOSAModeNull,

storageDescRec);

MyWriteResource(storageDescRec.dataHandle, resourceID);

ignoreErr := AEDisposeDesc(scriptDesc);

ignoreErr := AEDisposeDesc(storageDescRec);

END;

Using a Script Context to Handle an Apple Event 10
The preceding sections describe how you can load, compile, modify, and execute scripts
under circumstances determined by your application. Your application can use these
techniques to associate a script with an Apple event object or application object and
execute the script when the user manipulates the object in some way.

Another way to execute a script is to use a script context (called a script object in
AppleScript) to handle an Apple event. To do this, your application passes both the
event and the script context to OSAExecuteEvent or OSADoEvent. You can also
associate script contexts with Apple event objects—that is, objects in your application
that can be identified by object specifier records. If an Apple event acts on an object with
which a script context is associated, your application attempts to use the script context to
handle the Apple event.

For example, Figure 7-7 on page 7-26 shows how you can use a general Apple event
handler to provide initial processing for all Apple events received by your application.
Listing 10-7 shows an example of such a handler.
Using Scripting Component Routines 10-19

C H A P T E R 1 0

Scripting Components
You install a general Apple event handler like the one in Listing 10-7 in your
application’s special handler dispatch table using the constant keyPreDispatch:

myErr := AEInstallSpecialHandler(keyPreDispatch,

 @MyGeneralAppleEventHandler,

 FALSE);

When it receives an Apple event, the MyGeneralAppleEventHandler function in
Listing 10-7 first extracts the event’s direct parameter. It then calls another
application-defined function, MyGetAttachedScript, which checks whether the direct
parameter contains an object specifier record, calls AEResolve to locate the
corresponding Apple event object, and returns a script ID for any script context attached
to that object.

If a script context is associated with the object, MyGeneralAppleEventHandler passes
the script context’s script ID and the Apple event to the OSADoEvent function.
Otherwise, MyGeneralAppleEventHandler returns errAEEventNotHandled,
which causes the Apple Event Manager to look for an appropriate handler in the
application’s Apple event dispatch table or elsewhere using standard Apple event
dispatching.

The OSADoEvent function in Listing 10-7 takes a component instance that identifies a
connection with the generic scripting component. (If it has not already done so, the
generic scripting component in turn opens a connection with the scripting component
that created the script context.) In addition to the component instance, the Apple event,
and the script ID for the script context, OSADoEvent takes a parameter that indicates no
mode flags are set and a VAR parameter that contains any reply Apple event returned as
a result of handling the event.

If the scripting component determines that a script context can’t handle the specified
event (for example, if an AppleScript script context doesn’t include statements that
handle the event), OSADoEvent returns errAEEventNotHandled. If OSADoEvent
attempts to use the script context to handle the event, the function returns a reply event
that contains either the resulting script value or, if an error occurred, information about
the error.

The script context shown in Figure 7-7 contains an AppleScript handler for the Move
event. Such handlers exist only as AppleScript statements in a script context and do not
have corresponding entries in an application’s Apple event dispatch table. However, a
handler in a script context can modify or override the actions performed by an
application’s standard Apple event handlers installed in its Apple event dispatch table.
The next section, “Supplying a Resume Dispatch Function,” describes how this works.
10-20 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Listing 10-7 A general Apple event handler that uses the OSADoEvent function

FUNCTION MyGeneralAppleEventHandler (event: AppleEvent;

 reply: AppleEvent;

 refcon: LongInt): OSErr;

VAR

dp, resultDesc: AEDesc;

scriptID: OSAID;

myErr, ignoreErr: OSErr;

myOSAErr: OSAError;

BEGIN

{get the direct parameter}

myErr := AEGetParamDesc(event, keyDirectObject, typeWildCard,

dp);

{get script ID for script context attached to object }

{ specified in direct parameter}

IF MyGetAttachedScript(dp, scriptID) THEN

{execute the handler in the script context handler and, if }

{ necessary, the default Apple event handler}

myOSAErr := OSADoEvent(gScriptingComponent, event,

scriptID, kOSAModeNull, reply)

ELSE

myOSAErr := errAEEventNotHandled;

ignoreErr := AEDisposeDesc(dp);

MyGeneralAppleEventHandler := OSErr(myOSAErr);

END;

For more information about OSADoEvent, OSAExecuteEvent, and other routines
related to the use of script contexts to handle Apple events, see page 10-71.

Supplying a Resume Dispatch Function 10
Every scripting component calls a resume dispatch function during script execution if
the script contains the equivalent of an AppleScript continue statement within an
event handler. (See Figure 7-7 on page 7-26 for an example.) The resume dispatch
function dispatches the event specified by the script directly to the application’s standard
handler for that event.
Using Scripting Component Routines 10-21

C H A P T E R 1 0

Scripting Components
Thus, if the script context passed to OSADoEvent in Listing 10-7 specifies that the event
passed in the event parameter should be continued—that is, handled by the
application’s standard Apple event handler for that event—the scripting component
passes the event to the resume dispatch function currently set for that instance of the
scripting component. The resume dispatch function attempts to redispatch the event to
the handler installed in the application’s Apple event dispatch table for that event. If the
call to the resume dispatch function is successful, execution of the script proceeds from
the point at which the resume dispatch function was called. If the call to the resume
dispatch function is not successful, OSADoEvent returns errAEEventNotHandled in
the keyErrorNumber parameter of the reply event. (Other routines that execute scripts,
such as OSAExecute or OSAExecuteEvent, return errOSAScriptError in this
situation, and a subsequent call to OSAScriptError with kOSAErrorNumber in the
selector parameter returns errAEEventNotHandled.)

Some scripting components may provide routines that allow your application to set or
get the pointer to the resume dispatch function used by a specified instance of a scripting
component.

TYPE AEHandlerProcPtr = EventHandlerProcPtr;

A resume dispatch function takes the same parameters as an Apple event handler.

FUNCTION MyResumeDispatch (theAppleEvent: AppleEvent;

 reply: AppleEvent; refCon: LongInt)

:OSErr;

To set the resume dispatch function for a scripting component, call
OSASetResumeDispatchProc; to get the current dispatch function for a
scripting component, call OSAGetResumeDispatchProc. If you do not set a
resume dispatch function for a scripting component, it uses standard Apple event
dispatching to dispatch the event, starting with the special handler dispatch table.

You can install a resume dispatch function using the OSASetResumeDispatchProc
function. However, if you are using a general handler similar to that in Listing 10-7 on
page 10-21 and you can rely on standard Apple event dispatching to dispatch the event
correctly, you don’t need to provide a resume dispatch function. Instead, you can
specify kOSAUseStandardDispatch as the resume dispatch function and the
constant kOSADontUsePhac as the reference constant when you call
OSASetResumeDispatchProc.

myErr := OSASetResumeDispatchProc(gScriptingComponent,

kOSAUseStandardDispatch, kOSADontUsePhac);

This causes the Apple Event Manager to redispatch events that would otherwise be
passed to a resume dispatch function using standard Apple event dispatching—except
that the Apple Event Manager bypasses your application’s special handler dispatch table
and thus won’t call your general Apple event handler recursively.
10-22 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
When a scripting component calls your resume dispatch function, the A5 register is set
up for your application, and your application is the current process.

Supplying an Alternative Active Function 10
Every scripting component calls an active function periodically during script
compilation and execution. All scripting components support routines that allow your
application to set or get the pointer to the active function used by that scripting
component.

TYPE OSAActiveProcPtr = ProcPtr;

A pointer of type OSAActiveProcPtr points to a MyActiveProc function that takes a
reference constant as a parameter.

FUNCTION MyActiveProc(refCon: LongInt): OSErr;

If you want your application to get time periodically during script compilation and
execution for tasks such as spinning the cursor or checking for system-level errors, you
should provide an alternative active function that performs those tasks. To set an
alternative active function, call OSASetActiveProc; to get the current active function,
call OSAGetActiveProc.

If you do not set an alternative active function for a scripting component, it uses its own
default active function. A scripting component’s default active function allows a user to
cancel script execution by pressing Command-period and calls WaitNextEvent to give
other processes time.

Your alternative active function can in turn call the scripting component’s default active
function. To do this, your application can call OSAGetActiveProc before calling
OSASetActiveProc to set the alternative active function, then call the default active
function directly when necessary. Some scripting components may also supply
building-block routines that your application can use to construct an alternative active
function.

Multithreaded applications may need to give time to other threads while one thread is
waiting for the scripting component to complete compilation or execution of a script.
You can provide an alternative send function and an idle function that allows threads to
be switched (see “Alternative Send Functions” on page 10-25). However, the Apple
Event Manager calls an idle function only after an Apple event has been sent, whereas a
scripting component calls an active function at regular intervals throughout script
compilation and execution. Thus, to give time to multiple threads, you may want to
provide an alternative active function in addition to an alternative send function and an
idle function.

When a scripting component calls your alternative active function, the A5 register is set
up for your application, and your application is the current process.
Using Scripting Component Routines 10-23

C H A P T E R 1 0

Scripting Components
Supplying Alternative Create and Send Functions 10
Every scripting component calls a create function whenever it creates an Apple event
during script execution, and a send function whenever it sends an Apple event.
Scripting components that use Apple events during script compilation, including
AppleScript, also call create and send functions during compilation.

Some scripting components may provide routines that allow your application to set or
get the pointers to the create and send functions used by that scripting component. If
your application does not set alternative send and create functions, the scripting
component uses the standard Apple Event Manager functions AESend and
AECreateAppleEvent, which it calls with its own default parameters.

A scripting component that supports the routines you can use to set or get alternative
create and send functions has the kOSASupportsAESending bit set in its component
description record. For more information about using the Component Manager to find a
scripting component that supports specific routines, see “Connecting to a Scripting
Component,” which begins on page 10-3.

When a scripting component calls your alternative send or create function, the A5
register is set up for your application, and your application is the current process.

Alternative Create Functions 10

A scripting component that allows your application to set or get its create function uses a
pointer to identify the current create function.

TYPE AECreateAppleEventProcPtr = ProcPtr;

A pointer of type AECreateAppleEventProcPtr points to a MyAECreateProc
function that takes the same parameters as the AECreate function plus a reference
constant.

FUNCTION MyAECreateProc (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 target: AEAddressDesc;

 returnID: Integer;

 transactionID: LongInt;

 VAR result: AppleEvent;

 refCon: LongInt): OSErr;

Your application can use an alternative create function to gain control over the creation
and addressing of Apple events. This can be useful, for example, if your application
needs to add its own transaction code to the event.
10-24 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
To set an alternative create function, call OSASetCreateProc; to get the current
create function, call OSAGetCreateProc. If you do not set an alternative create
function for a scripting component, it uses the standard Apple Event Manager function
AECreateAppleEvent, which it calls with its own default parameters.

Your alternative create function can in turn call the scripting component’s default create
function. To do this, your application can call OSAGetCreateProc before calling
OSASetCreateProc to set the alternative create function, then call the default create
function directly when necessary.

Alternative Send Functions 10

A scripting component that allows your application to set or get its send function uses a
pointer to identify the current send function.

TYPE AESendProcPtr = ProcPtr;

A pointer of type AESendProcPtr points to a MyAESendProc function that takes the
same parameters as the AECreate function plus a reference constant.

FUNCTION MyAESendProc (theAppleEvent: AppleEvent;

 VAR reply: AppleEvent;

 sendMode: AESendMode;

 sendPriority: AESendPriority;

 timeOutInTicks: LongInt;

 idleProc: IdleProcPtr;

 filterProc: EventFilterProcPtr;

 refCon: LongInt): OSErr;

Your application can use an alternative send function to perform almost any action
instead of or in addition to sending Apple events. For example, it can modify Apple
events before sending them, save copies of Apple events before sending them, or
substitute some other specialized mechanism for sending Apple events.

To set an alternative send function, call OSASetSendProc; to get the current send
function, call OSAGetSendProc. If you do not set an alternative send function for a
scripting component, it uses the standard Apple Event Manager function AESend, which
it calls with its own default parameters.

Your alternative send function can in turn call the scripting component’s default send
function. To do this, your application can call OSAGetSendProc before calling
OSASetSendProc to set the alternative send function, then call the default send
function directly when necessary.
Using Scripting Component Routines 10-25

C H A P T E R 1 0

Scripting Components
After a scripting component successfully calls a send function, the scripting component
proceeds with script execution. If a call to a send function is not successful, the scripting
component returns errOSAScriptError, and a subsequent call to OSAScriptError
with kOSAErrorNumber in the selector parameter returns
errAEEventNotHandled.

Multithreaded applications need to allow other threads to execute while one thread is
waiting for the response to an Apple event. You can accomplish this by supplying an idle
function for your alternative send function that allows threads to be switched and by
setting the kAEQueueReply flag in the sendMode parameter of the send function.
However, if the call to the send function specifies the kAENoReply flag, be careful not to
override it, because the user may have explicitly requested that no reply be returned or
the 'aete' resource may indicate that the application cannot reply to that event.

Note
The Apple Event Manager calls an idle function only after an Apple
event has been sent, whereas a scripting component calls an active
function at regular intervals throughout script compilation and
execution. Thus, to give time to multiple threads, you may want to
provide an alternative active function in addition to an alternative send
function and an idle function. ◆

Some scripting components (including the current version of AppleScript) can execute
only one script at a time per component instance. For this reason, a multithreaded
application must provide a separate component instance for each script that it compiles
or executes while it is also compiling or executing other scripts.

You should follow the rules for setting sendMode flags described in the chapter
“Creating and Sending Apple Events” in this book when you set flags for the sendMode
parameter of an alternative send function. Keep these additional guidelines in mind:

■ If the target application is on the local computer, you can set the kAECanInteract
and kAECanSwitchLayer flags.

■ If the target application is on the local computer and the user has requested no reply,
set the kAENoReply, kAECanInteract, and kAECanSwitchLayer flags.

■ If the target application is on a remote computer, set the kAENeverInteract flag
and do not set the kAECanSwitchLayer flag.

Recording Scripts 10
If you want your application to record Apple events in the form of a compiled script,
or if you are writing a script-editing application like Script Editor, you can use the
OSAStartRecording and OSAStopRecording functions to start and stop recording
into a specified script ID on a single computer. Both functions take a component
instance and a script ID for a compiled script. When your application calls
OSAStartRecording, the scripting component identified by the component instance
10-26 Using Scripting Component Routines

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
sends a Start Recording event to your application and installs a Receive Recordable
Event handler in your application’s Apple event dispatch table. When your application
calls OSAStopRecording, the scripting component removes the handler.

An application acting as a recording process in this manner should not provide a
handler for the Start Recording event. Instead, the Apple Event Manager receives
the event and responds by sending a Recording On event to all running processes
on the local computer. Thereafter, the Apple Event Manager sends copies of
subsequent recordable events to the recording process, whose previously installed
Receive Recordable Event handler, much like a handler for event class typeWildCard
and event ID typeWildCard, handles those recordable events by recording them in the
compiled script specified in the call to OSAStartRecording.

Whenever the Receive Recordable Event handler receives a recordable event, the
scripting component sends your application a Recorded Text event. The Recorded Text
event contains the decompiled source data for the recorded event in the form of
styled text.

If your want your application to display the source data for recorded events as they are
recorded, you must provide a handler for the Recorded Text event.

For more information about the Receive Recordable Event handler and Apple event
recording, see “How Apple Event Recording Works,” which begins on page 9-35.

Writing a Scripting Component 10

It is possible to create scripting components that execute a variety of scripts, including
scripts that can be “run” in some sense but do not consist of statements in a scripting
language. For example, script data can consist of an XCMD or even sound data that the
appropriate scripting component can trigger or play back when it executes the script (see
“Storage Formats for Script Data,” which begins on page 10-12).

Recorded Text—append styled text to script editor window

Event class kOSASuite

Event ID kOSARecordedText

Required parameter

Keyword: keyDirectObject

Descriptor type: typeStyledText or any other text descriptor type

Data: Decompiled source data for recorded event

Description Sent by a scripting component to a recording process for each
event recorded after a call to OSAStartRecording
Writing a Scripting Component 10-27

C H A P T E R 1 0

Scripting Components
If you are developing a scripting component, you should read the instructions for
creating components in the chapter “Component Manager” in Inside Macintosh:
More Macintosh Toolbox. Every scripting component should also

■ Provide a component name in the scripting component’s component resource that
will make sense when displayed to users.

■ Support the standard scripting component routines described in “Required Scripting
Component Routines,” which begins on page 10-30.

■ Support some, all, or none of the optional scripting component routines, as
appropriate for the tasks to be performed by the scripting component. These routines
are described in “Optional Scripting Component Routines,” which begins on
page 10-46.

■ Use the three OSA routines OSAGetStorageType, OSAAddStorageType, and
OSARemoveStorageType to inspect, add, or remove the trailers appended to script
data in generic storage descriptor records. These routines are described in
“Manipulating Trailers for Generic Storage Descriptor Records,” which begins on
page 10-92.

■ Send the Get AETE event when necessary. This event is described in “Handling the
Get AETE Event,” which begins on page 8-23.

Scripting Components Reference 10

This section describes the standard scripting component data structures and routines
your application can use to manipulate and execute scripts. This section also describes
additional routines provided by the AppleScript scripting component and three routines
called by scripting components.

The first section, “Data Structures,” describes the principal data types used by scripting
component routines. “Required Scripting Component Routines,” which begins on
page 10-30, describes the standard scripting component routines that all scripting
components must support. “Optional Scripting Component Routines,” which begins on
page 10-46, describes additional standard scripting component routines that scripting
components are not required to support.

Your application can use the Component Manager to find a scripting component that
supports specific optional routines or to determine whether a particular scripting
component supports a specific group of routines. For information about how to do this,
see “Connecting to a Scripting Component,” which begins on page 10-3.

“AppleScript Component Routines,” which begins on page 10-80, describes additional
routines supported by the AppleScript component. “Generic Scripting Component
Routines” which begins on page 10-84, describes routines you can use to get instances of
specific components and perform other useful tasks when you are using multiple
scripting components. “Routines Used by Scripting Components,” which begins on
page 10-92, describes three routines that all scripting components can use to manipulate
trailers for generic storage descriptor records.
10-28 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Data Structures 10
This section describes the principal data structures and Component Manager type codes
used by the standard scripting component routines. Data structures used by individual
routines are described with the appropriate routines in the sections that follow.

The Component Manager type code for components that support the standard
scripting component routines is 'osa ', and the subtype code for the generic scripting
component is 'scpt'.

CONST

kOSAComponentType = 'osa ';

kOSAGenericScriptingComponentSubtype = 'scpt';

Because all results returned by the Component Manager are of type ComponentResult
(a long integer), scripting components also define this type for result codes.

TYPE

OSAError = ComponentResult;

Scripting components keep track of script data in memory by means of script IDs of type
OSAID.

TYPE OSAID = LongInt;

A scripting component assigns a script ID when it creates the associated script data (that
is, a compiled script, a script value, a script context, or other kinds of script data
supported by a scripting component) or loads it into memory. The scripting routines that
create, load, compile, and execute scripts all return script IDs, and your application must
pass valid script IDs to the other routines that manipulate scripts. A script ID remains
valid until a client application calls OSADispose to reclaim the memory used for the
corresponding script data.

If the execution of a script does not result in a value, OSAExecute returns the constant
kOSANullScript as the script ID. If a client application passes kOSANullScript to
the OSAGetSource function instead of a valid script ID, the scripting component should
display a null source description (possibly an empty text string). If a client application
passes kOSANullScript to OSAStartRecording, the scripting component creates a
new compiled script for editing or recording.

CONST kOSANullScript = 0;
Scripting Components Reference 10-29

C H A P T E R 1 0

Scripting Components
Required Scripting Component Routines 10
This section describes the routines that all scripting components must support. Your
application can use these routines to save and load script data, execute and dispose of
scripts, get script information, and manipulate the active function. “Optional Scripting
Component Routines,” which begins on page 10-46, describes additional routines your
application can use with scripting components that support them.

Saving and Loading Script Data 10

The OSAStore function takes a script ID and returns a copy of the corresponding script
data in the form of a storage descriptor record. You can then save the script data as a
resource or write it to the data fork of a document. The OSALoad function takes script
data in a storage descriptor record and returns a script ID.

OSAStore 10

You can use the OSAStore function to get a handle to script data in the form of a storage
descriptor record.

FUNCTION OSAStore(scriptingComponent: ComponentInstance;

scriptID: OSAID;

desiredType: DescType;

modeFlags: LongInt;

VAR resultingScriptData: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptID
The script ID for the script data for which to obtain a data handle.

desiredType
The desired type of the descriptor record to be returned. If you want to
store the script data in the form used by a generic storage descriptor
record, specify typeOSAGenericStorage.

modeFlags Information used by individual scripting components. To avoid setting
any mode flags, specify kOSAModeNull. To indicate that only the
minimum script data required to run the script should be returned, pass
kOSAModePreventGetSource in this parameter. (In this case the script
data returned is not identical to the compiled script data and can’t be
used to generate source data.) If the scriptID parameter identifies a
script context, you can pass kOSAModeDontStoreParent in this
parameter to store the script context without storing its parent context.

resultingScriptData
The resulting descriptor record.
10-30 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
DESCRIPTION

The OSAStore function writes script data to a descriptor record so that the data can later
be saved in a resource or written to the data fork of a document. You can then reload the
data for the descriptor record as a compiled script (although possibly with a different
script ID) by passing the descriptor record to OSALoad.

If you want the returned script data to be as small as possible and you are sure
that you won’t need to display the source data to the user, specify the
kOSAModePreventGetSource flag in the modeFlags parameter. If the scriptID
parameter identifies a script context and you don’t want the returned script data to
include the associated parent context, specify the kOSAModeDontStoreParent flag in
the modeFlags parameter.

The desired type is either typeOSAGenericStorage (for a generic storage descriptor
record) or a specific scripting component subtype value (for a component-specific
storage descriptor record).

To store either a generic storage descriptor record or a component-specific storage
descriptor record with your application’s resources, use 'scpt' as the resource type.
The generic scripting component subtype, the generic storage descriptor type, and the
resource type for stored script data all have the same value, though they serve different
purposes.

CONST

kOSAGenericScriptingComponentSubtype = 'scpt';

kOSAScriptResourceType = kOSAGenericScriptingComponentSubtype;

typeOSAGenericStorage = kOSAScriptResourceType;

RESULT CODES

SEE ALSO

For more information about storage formats for script data, see “Saving Script Data” on
page 10-12.

For an example of the use of OSAStore, see Listing 10-6 on page 10-19.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSABadStorageType –1752 Desired type not supported by this

scripting component
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-31

C H A P T E R 1 0

Scripting Components
OSALoad 10

You can use the OSALoad function to load script data.

FUNCTION OSALoad(scriptingComponent: ComponentInstance;

 scriptData: AEDesc;

 modeFlags: LongInt;

 VAR resultingScriptID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptData
The descriptor record containing the script data to be loaded.

modeFlags Information used by individual scripting components. To avoid setting
any mode flags, specify kOSAModeNull. To indicate that only the
minimum script data required to run the script should be loaded, pass
kOSAModePreventGetSource in this parameter.

resultingScriptID
The returned script ID for the compiled script.

DESCRIPTION

The OSALoad function loads script data and returns a script ID. The generic scripting
component uses the descriptor record in the scriptData parameter to determine which
scripting component should load the script. If the descriptor record is of type
typeOSAGenericStorage, the generic scripting component uses the trailer at the end
of the script data to identify the scripting component. If the descriptor record’s type is
the subtype value for another scripting component, the generic scripting component
uses the descriptor type to identify the scripting component.

If you want the script ID returned by OSALoad to identify only the minimum script data
required to run the script and you are sure that you won’t need to display the source
data to the user, specify the kOSAModePreventGetSource flag in the modeFlags
parameter.

Scripting components other than the generic scripting component can load script data
only if it has been saved in a descriptor record whose descriptor type matches the
scripting component’s subtype.

Script data may change after it has been loaded—for example, if your application allows
the user to edit a script’s source data. To test whether script data has been modified, pass
its script ID to OSAGetScriptInfo. If it has changed, you can call OSAStore again to
obtain a handle to the modified script data and save it.
10-32 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
RESULT CODES

SEE ALSO

For more information about the way scripting components interpret script data, see
“Saving Script Data” on page 10-12.

For examples of the use of OSALoad, see Listing 10-4 on page 10-16 and Listing 10-6 on
page 10-19.

Executing and Disposing of Scripts 10

To execute a script, your application must first obtain a valid script ID for a compiled
script or script context. You can use either the OSALoad function described in the
preceding section or the optional OSACompile function described on page 10-48 to
obtain a script ID.

The OSAExecute function takes a script ID for a compiled script or script context and
returns a script ID for a script value. The OSADisplay function converts a script value
to text that your application can later display to the user. If the OSAExecute function
returns errOSAScriptError, you can use the OSAScriptError function to get more
information about the error.

When your application no longer needs the script data associated with a specific script
ID, you can use the OSADispose function to release the memory the script data occupies.

OSAExecute 10

You can use the OSAExecute function to execute a compiled script or a script context.

FUNCTION OSAExecute(scriptingComponent: ComponentInstance;

 compiledScriptID: OSAID;

 contextID: OSAID;

 modeFlags: LongInt;

 VAR resultingScriptValueID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

noErr 0 No error
errOSACorruptData –1702 Corrupt data
errOSASystemError –1750 General scripting system error
errOSABadStorageType –1752 Script data not for this scripting

component
errOSADataFormatObsolete –1758 Data format is obsolete
errOSADataFormatTooNew –1759 Data format is too new
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-33

C H A P T E R 1 0

Scripting Components
compiledScriptID
The script ID for the compiled script to be executed.

contextID The script ID for the context to be used during script execution. The
constant kOSANullScript in this parameter indicates that the scripting
component should use its default context.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

resultingScriptValueID
The script ID for the script value returned.

DESCRIPTION

The OSAExecute function executes the compiled script identified by the
compiledScriptID parameter, using the script context identified by the contextID
parameter to maintain state information, such as the binding of variables, for the
compiled script. After successfully executing a script, OSAExecute returns the script ID
for a resulting script value, or, if execution does not result in a value, the constant
kOSANullScript.

You can use the OSACoerceToDesc function to coerce the resulting script value to a
descriptor record of a desired descriptor type, or the OSADisplay function to obtain the
equivalent source data for the script value.

You can control the way in which the scripting component executes a script by adding
any of these flags to the modeFlags parameter:

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter of
AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).
10-34 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
If the result code returned by OSAExecute is a general result code, there was some
problem in arranging for the script to be run. If the result code is errOSAScriptError,
an error occurred during script execution. In this case, you can obtain more detailed
error information by calling OSAScriptError.

RESULT CODES

SEE ALSO

For information about the OSAGetSource and OSACoerceToDesc functions, see
page 10-51 and page 10-54, respectively.

For examples of the use of the OSAExecute function, see Listing 10-2 on page 10-9 and
Listing 10-4 on page 10-16.

For more information about resume dispatch functions, see “Supplying a Resume
Dispatch Function,” which begins on page 10-21, and the description of a
resume dispatch function on page 10-97.

OSADisplay 10

You can use the OSADisplay function to convert a script value to text. Your application
can then use its own routines to display this text to the user.

FUNCTION OSADisplay(scriptingComponent: ComponentInstance;

 scriptValueID: OSAID;

 desiredType: DescType;

 modeFlags: LongInt;

 VAR resultingText: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptValueID
The script ID for the script value to coerce.

desiredType
The desired text descriptor type, such as typeChar, for the resulting
descriptor record.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSAScriptError –1753 Error occurred during execution
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-35

C H A P T E R 1 0

Scripting Components
modeFlags Information used by individual scripting components. To avoid setting
any mode flags, specify kOSAModeNull. To make the resulting text
readable by humans only, so that it can’t be recompiled, specify
kOSAModeDisplayForHumans.

resultingText
The resulting descriptor record.

DESCRIPTION

The OSADisplay function coerces the script value identified by scriptValueID to a
descriptor record of the text type specified by the desiredType parameter, if possible.
Valid types include all the standard text descriptor types defined in the Apple Event
Registry: Standard Suites, plus any special types supported by the scripting component.

Unlike OSAGetSource, OSADisplay can coerce only script values and always
produces a descriptor record of a text descriptor type. In addition, if you specify the
mode flag kOSAModeDisplayForHumans, the resulting text cannot be recompiled.

SPECIAL CONSIDERATIONS

If you want to get a script value in a form that you can display for humans to read, use
OSADisplay. If you want the descriptor type of the descriptor record returned in the
resultingText parameter to be the same as the descriptor type returned by a scripting
component, use OSACoerceToDesc and specify typeWildCard as the desired type.

RESULT CODES

SEE ALSO

For descriptions of the OSAGetSource and OSACoerceToDesc functions, see
page 10-51 and page 10-54, respectively.

For an example of the use of OSADisplay, see Listing 10-2 on page 10-9.

noErr 0 No error
errOSACantCoerce –1700 Desired type not supported by scripting

component
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
10-36 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSAScriptError 10

You can use the OSAScriptError function to get information about errors that occur
during script execution.

FUNCTION OSAScriptError(scriptingComponent: ComponentInstance;

selector: OSType;

desiredType: DescType;

VAR resultingErrorDescription: AEDesc)

: OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

selector A value that determines what OSAScriptError returns. The value can
be one of these constants:

CONST

kOSAErrorNumber = 'errn';

kOSAErrorMessage = 'errs';

kOSAErrorBriefMessage = 'errb';

kOSAErrorApp = 'erap';

kOSAErrorPartialResult = 'ptlr';

kOSAErrorOffendingObject = 'erob';

kOSAErrorRange = 'erng';

desiredType
The desired descriptor type of the resulting descriptor record. The
description that follows explains how this is determined by the value
passed in the selector parameter.

resultingErrorDescription
The resulting descriptor record.

DESCRIPTION

Whenever the OSAExecute function returns the error errOSAScriptError, you can
use the OSAScriptError function to get more specific information about the error from
the scripting component that encountered it. (This information remains available only
until the next call to the same scripting component.) The information returned by
Scripting Components Reference 10-37

C H A P T E R 1 0

Scripting Components
OSAScriptError depends on the value passed in the selector parameter, which also
determines the descriptor type you should specify in the desiredType parameter.

Every scripting component should support calls to OSAScriptError that pass
kOSAErrorNumber, kOSAErrorMessage, or kOSAErrorPartialResult in the
selector parameter.

Some scripting components may also support calls that pass other values in the
selector parameter, including kOSAErrorRange, which provides start and end
positions delimiting the errant expression in the source data. If the value of the selector
parameter is kOSAErrorRange, the value of desiredType must be
typeOSAErrorRange.

Constant
Information returned in
resultingErrorDescription parameter

kOSAErrorNumber Error number for either system error or scripting
component error. The value of desiredType must
be typeShortInteger.

kOSAErrorMessage Error message associated with error number,
including both the name of the application and a
description of the error. This constant is sufficient
for simple error reporting. The value of
desiredType must be typeChar or another text
descriptor type.

kOSAErrorBriefMessage Brief error message associated with error number,
excluding the name of the application, any partial
result, and the offending object. The value of
desiredType must be typeChar or another text
descriptor type.

kOSAErrorApp Either the name or the process serial number
(PSN) of the application that received the error,
if it was the result of sending an Apple event.
The value of desiredType must be
typeProcessSerialNumber (for the PSN)
or a text descriptor type such as typeChar
(for the name).

kOSAErrorPartialResult Partial result returned after a call to AESend that
failed. This consists of a reply parameter that
contains some but not all of the information
requested.The value of desiredType must be
typeBest (for the best type) or typeWildCard
(for the default type).

kOSAErrorOffendingObject An object specifier record for the object that caused
the error. The value of desiredType must be
typeObjectSpecifier, typeBest, or
typeWildCard. For some scripting components,
including AppleScript, these three values are
equivalent.

kOSAErrorRange Range of source data in which error
occurred. The value of desiredType
must be typeOSAErrorRange.
10-38 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
CONST typeOSAErrorRange = 'erng';

A descriptor record of type typeOSAErrorRange is an AE record that consists of two
descriptor records of typeShortInteger specified by these keywords:

CONST

keyOSASourceStart = 'srcs'; {start of error range}

keyOSASourceEnd = 'srce'; {end of error range}

If the value of the selector parameter is kOSAErrorNumber, scripting components
may return, in the resultingErrorDescription parameter, one of these general
error codes:

errOSACantCoerce –1700 Same as errAECoercionFail; can’t coerce
data to requested descriptor type

errOSACantAccess –1728 Same as errAENoSuchObject; runtime error
in resolution of object specifier record

errOSAGeneralError –2700 General runtime error

errOSADivideByZero –2701 Attempt to divide by zero

errOSANumericOverflow –2702 Numeric overflow

errOSACantLaunch –2703 Can’t launch specified file because it isn’t an
application

errOSAAppNotHighLevelEventAware –2704 Doesn’t respond to Apple events

errOSACorruptTerminology –2705 The application has a corrupted 'aete'
resource

errOSAStackOverflow –2706 Stack overflow

errOSAInternalTableOverflow –2707 Internal table overflow

errASDataBlockTooLarge –2708 Attempt to create a value larger than the
allowable size

errOSATypeError –1703 Same as errAEWrongDataType; wrong
descriptor type

errOSAMessageNotUnderstood –1708 Same as errAEEventNotHandled; event not
handled or message not understood

errOSAUndefinedMessage –1717 Same as errAEHandlerNotFound; handler
not found for message

errOSAIllegalIndex –1728 Same as errAEIllegalIndex; not a valid
index

errOSAIllegalRange –2720 Same as errAEImpossibleRange; range of
specified objects not possible

errOSASyntaxError –2740 General syntax error

errOSASyntaxTypeError –2741 Syntax error; parser expected one type but
found another

errOSATokenTooLong –2742 Identifier too long
continued
Scripting Components Reference 10-39

C H A P T E R 1 0

Scripting Components
Although scripting components are not required to support these error codes, their use
simplifies error handling for applications that run scripts created by multiple
components.

If the value of the selector parameter is kOSAErrorNumber, the AppleScript
component may return, in the resultingErrorDescription parameter, one of these
error codes:

SPECIAL CONSIDERATIONS

If you call OSAScriptError using an instance of the generic scripting component, the
generic scripting component uses the same instance of a scripting component that it used
for the previous call.

RESULT CODES

SEE ALSO

For an example of the use of OSAScriptError, see Listing 10-3 on page 10-11.

errOSAMissingParameter –1701 Same as errAEDescNotFound; descriptor
record not found

errOSAParameterMismatch –1721 Same as errAEWrongNumberArgs; wrong
number of arguments

errOSADuplicateParameter –2750 Parameter specified more than once

errOSADuplicateProperty –2751 Property specified more than once

errOSADuplicateHandler –2752 Handler defined more than once

errOSAUndefinedVariable –2753 Undefined variable

errOSAInconsistentDeclarations –2754 Inconsistent declarations

errOSAControlFlowError –2755 Control flow error

errAECantConsiderAndIgnore –2720 Can’t both consider and ignore a parameter

errASCantCompareMoreThan32k –2721 Can’t compare text larger than 32K

errASCantCompareMixedScripts –2722 Can’t compare text from different script systems

errASTerminologyNestingTooDeep –2760 Tell statements nested too deeply

errASInconsistentNames –2780 Syntax error; names at beginning and end of
handler are inconsistent (AppleScript English
dialect only)

noErr 0 No error
errOSACantCoerce –1700 Desired type not supported by scripting

component
errOSASystemError –1750 General scripting system error
errOSABadSelector –1754 Selector value not supported by scripting

component
badComponentInstance $80008001 Invalid component instance
10-40 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSADispose 10

You can use the OSADispose function to reclaim the memory occupied by script data.

FUNCTION OSADispose(scriptingComponent: ComponentInstance;

 scriptID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptID The script ID for the script data to be disposed of.

DESCRIPTION

The OSADispose function releases the memory assigned to the script data identified by
the scriptID parameter. The script ID passed to the OSADispose function is no longer
valid if the function returns successfully. A scripting component can then reuse that
script ID for other script data.

A call to OSADispose returns noErr if the script ID is kOSANullScript, although it
does not dispose of anything.

RESULT CODES

Setting and Getting Script Information 10

The OSASetScriptInfo function sets various kinds of information about script data,
and the OSAGetScriptInfo function returns information about script data. The kind
of information these functions set or get depends on constants you pass to the functions.

OSASetScriptInfo 10

You can use OSASetScriptInfo to set information about script data according to the
value you pass in the selector parameter.

FUNCTION OSASetScriptInfo(scriptingComponent: ComponentInstance;

 scriptID: OSAID;

 selector: OSType;

 value: LongInt): OSAError;

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-41

C H A P T E R 1 0

Scripting Components
scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptID The script ID for the script data whose information is to be set.

selector A value that determines what kind of information OSASetScriptInfo
sets. All scripting components can accept this value:

CONST kOSAScriptIsModified = 'modi';

The kOSAScriptIsModified constant indicates that the count of
changes since the script data was loaded or created should be set to the
value in the value parameter. The AppleScript component provides
limited support for this constant.

value The value to set.

DESCRIPTION

The OSASetScriptInfo function sets script information according to the value you
pass in the selector parameter. If you use the kOSAScriptIsModified constant,
OSASetScriptInfo sets a value that indicates how many times the script data has
been modified since it was created or passed to OSALoad. Some scripting components
may provide additional constants.

SPECIAL CONSIDERATIONS

Although you can specify kOSAScriptIsModified when you are using the
AppleScript component without generating an error, the current version of AppleScript
doesn’t actually set a value for the count of changes since the script data was loaded or
created. For more information, see the description of OSAGetScriptInfo that follows.

RESULT CODES

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSABadSelector –1754 Selector value not supported by scripting

component
badComponentInstance $80008001 Invalid component instance
10-42 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSAGetScriptInfo 10

You can use OSAGetScriptInfo to obtain information about script data according to
the value you pass in the selector parameter.

FUNCTION OSAGetScriptInfo(scriptingComponent: ComponentInstance;

 scriptID: OSAID;

 selector: OSType;

 VAR result: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptID The script ID for the script data about which to obtain information.

selector A value that determines what kind of information OSAGetScriptInfo
returns. The value can be one of these constants:

CONST kOSAScriptIsModified = 'modi';

kOSAScriptIsTypeCompiledScript = 'cscr';

kOSAScriptIsTypeScriptValue = 'valu';

kOSAScriptIsTypeScriptContext = 'cntx';

kOSAScriptBestType = 'best';

kOSACanGetSource = 'gsrc';

The AppleScript component provides limited support for the constant
kOSAScriptIsModified (see page 10-44). In addition to the standard
constants, the AppleScript component also supports this constant:

CONST kASHasOpenHandler = 'hsod';

result The requested information, which you can coerce to the appropriate
descriptor type for the value specified in the selector parameter.

DESCRIPTION

The OSAGetScriptInfo function returns various results according to the value you
pass in the selector parameter.

Value of selector parameter
Information returned in the result
parameter

kOSAScriptIsModified Long integer that indicates the number of
times the script data has been modified
since it was passed to OSALoad.

kOSAScriptIsTypeCompiledScript Boolean value that indicates whether or not
the script data is a compiled script.

continued
Scripting Components Reference 10-43

C H A P T E R 1 0

Scripting Components
The AppleScript component also provides this constant for use in the selector
parameter.

SPECIAL CONSIDERATIONS

Although you can specify kOSAScriptIsModified when you are using the
AppleScript component without generating an error, the current version of AppleScript
interprets this request conservatively. The AppleScript component stores script data in a
network of interlocking structures, and running a script can cause any of these
structures to be modified. If you pass a script ID is to OSAGetScriptInfo with
kOSAScriptIsModified as the value of the selector parameter, the AppleScript
component returns 1 if there is any possibility that the script data or related structures
may have been modified, and 0 if there is no possibility that they have been modified.

RESULT CODES

kOSAScriptIsTypeScriptValue Boolean value that indicates whether or not
the script data is a script value.

kOSAScriptIsTypeScriptContext Boolean value that indicates whether or not
the script data is a script context.

kOSAScriptBestType A descriptor type that you can pass to
OSACoerceToDesc.

kOSACanGetSource Boolean value that indicates whether the
script data can be successfully passed to
OSAGetSource.

Value of selector
parameter Information returned in the result parameter

kASHasOpenHandler Boolean value that indicates whether a script context
with the specified script ID contains a handler for the
Open Documents event. If the script ID doesn’t identify
a script context, OSAGetScriptInfo returns the result
code errOSAIllegalAccess.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSABadSelector –1754 Selector value not supported by scripting

component
badComponentInstance $80008001 Invalid component instance

Value of selector parameter
Information returned in the result
parameter (continued)
10-44 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Manipulating the Active Function 10

The OSASetActiveProc and OSAGetActiveProc functions allow your application to
set or to get a pointer to the active function called periodically by the scripting
component during script execution. To get time periodically during script execution for
its own purposes, your application can substitute its own active function for use by the
scripting component. If you do not specify an active function, the scripting component
uses its default active function, which allows a user to cancel script execution.

The functions described in this section use the following type for pointers to active
functions:

TYPE OSAActiveProcPtr = ProcPtr;

For more information about active functions, see “Supplying an Alternative Active
Function” on page 10-23.

OSASetActiveProc 10

You can use the OSASetActiveProc routine to set the active function that a scripting
component calls periodically while executing a script.

FUNCTION OSASetActiveProc(scriptingComponent: ComponentInstance;

 activeProc: OSAActiveProcPtr;

 refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

activeProc
A pointer to the active function to set. If the value of this parameter is
NIL, OSASetActiveProc sets the scripting component’s default active
function.

refCon A reference constant to be associated with the active function. This
parameter can be used for many purposes; for example, it could contain a
handle to data used by the active function.

RESULT CODES

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-45

C H A P T E R 1 0

Scripting Components
OSAGetActiveProc 10

You can use the OSAGetActiveProc function to get a pointer to the active function that
a scripting component is currently using.

FUNCTION OSAGetActiveProc(scriptingComponent: ComponentInstance;

 VAR activeProc: OSAActiveProcPtr;

 VAR refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

activeProc
The OSAGetActiveProc function returns in this parameter a pointer to
the active function currently set for the specified scripting component.

refCon The OSAGetActiveProc function returns in this parameter the reference
constant associated with the active function for the specified scripting
component.

RESULT CODES

Optional Scripting Component Routines 10
This section describes eight groups of optional routines that scripting components can
support. Your application can use the Component Manager to find a scripting
component that supports a specific group of routines or to determine whether a
particular scripting component supports a specific group of routines.

To specify one or more groups of routines for the Component Manager, use the following
constants to set the equivalent bits in the componentFlags field of a component
description record:

CONST

kOSASupportsCompiling = $0002;

kOSASupportsGetSource = $0004;

kOSASupportsAECoercion = $0008;

kOSASupportsAESending = $0010;

kOSASupportsRecording = $0020;

kOSASupportsConvenience = $0040;

kOSASupportsDialects = $0080;

kOSASupportsEventHandling = $0100;

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-46 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Each of these flags identifies one of the groups of routines that are described in the
sections that follow. For information about using these constants to locate scripting
components that support specific groups of optional routines, see “Connecting to a
Scripting Component,” which begins on page 10-3.

Compiling Scripts 10

Scripting components can provide three optional routines that get the name of
a scripting component, compile a script, and update a script ID.

To obtain the name of a scripting component in a form that you can coerce to text,
you can use the OSAScriptingComponentName function. The OSACompile function
compiles source data and returns a script ID, and the OSACopyID function updates
the script data associated with one script ID with the script data associated with
another script ID.

A scripting component that supports the routines in this section has the
kOSASupportsCompiling bit set in the componentFlags field of its component
description record.

OSAScriptingComponentName 10

You can use the OSAScriptingComponentName function to get the name of a scripting
component.

FUNCTION OSAScriptingComponentName

(scriptingComponent: ComponentInstance;

 VAR resultingScriptingComponentName: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resultingScriptingComponentName
The name of the scripting component; or, if the component is the generic
scripting component, the name of the default scripting component.

DESCRIPTION

The OSAScriptingComponentName function returns a descriptor record that you can
coerce to a text descriptor type such as typeChar. This can be useful if you want to
display the name of the scripting language in which the user should write a new script.
Scripting Components Reference 10-47

C H A P T E R 1 0

Scripting Components
RESULT CODES

SEE ALSO

For an example of the use of OSAScriptingComponentName, see Listing 10-2 on
page 10-9.

OSACompile 10

You can use the OSACompile function to compile the source data for a script and obtain
a script ID for a compiled script or a script context.

FUNCTION OSACompile (scriptingComponent: ComponentInstance;

sourceData: AEDesc; modeFlags: LongInt;

VAR previousAndResultingScriptID: OSAID)

: OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sourceData
A descriptor record containing suitable source data for the specified
scripting component.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

previousAndResultingScriptID
The script ID for the resulting compiled script. If the value of this
parameter on input is kOSANullScript, OSACompile returns a new
script ID for the compiled script data. If the value of this parameter on
input is an existing script ID, OSACompile updates the script ID so that it
refers to the newly compiled script data.

DESCRIPTION

You can pass a descriptor record containing source data suitable for a specific scripting
component (usually text) to the OSACompile function to obtain a script ID for the
equivalent compiled script or script context. To compile the source data as a script
context for use with OSAExecuteEvent or OSADoEvent, you must set the
kOSACompileIntoContext flag, and the source data should include appropriate
handlers.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-48 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
After you have successfully compiled the script, you can use the returned script ID to
refer to the compiled script when you call OSAExecute and other scripting component
routines.

You can control the way a compiled script is executed by adding any of these flags to the
modeFlags parameter:

SPECIAL CONSIDERATIONS

If you use OSACompile with an instance of the generic scripting component and pass
kOSANullScript in the previousAndResultingScriptID parameter, the generic
scripting component uses the default scripting component to compile the script.

Flag Description

kOSAModePreventGetSource Compiled script consists of only the minimum
script data required to run the script. It will cause
an error if passed to OSAGetSource.

kOSACompileIntoContext The OSACompile function returns a script context
instead of a compiled script.

kOSAModeAugmentContext Script data associated with script ID passed in
previousAndResultingCompiledScriptID is
augmented rather than replaced with the new
compiled script. Specifying this flag automatically
invokes the kOSAModeCompileIntoContext
mode flag. If you redefine variables, handlers, and
so on that were previously defined in the script
context, the new definitions will replace the old
ones.

kOSAModeNeverInteract Adds kAENeverInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in
sendMode parameter of AESend for events sent
when script is executed (the opposite of the Apple
Event Manager’s interpretation of the same bit).

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).
Scripting Components Reference 10-49

C H A P T E R 1 0

Scripting Components
If you’re recompiling a script, specify the original script ID in the
previousAndResultingScriptID parameter. The generic scripting component uses
the script ID to determine which scripting component it should use to compile the script.

RESULT CODES

SEE ALSO

For an example of the use of OSACompile to update an existing script ID, see Listing
10-5 on page 10-18. For an example of the use of OSACompile to obtain a new script ID,
see Listing 10-2 on page 10-9.

For more information about the default scripting component associated with any
instance of the generic scripting component, see “Generic Scripting Component
Routines,” which begins on page 10-84.

OSACopyID 10

You can use the OSACopyID function to update script data after editing or recording and
to perform undo or revert operations on script data.

FUNCTION OSACopyID(scriptingComponent: ComponentInstance;

 fromID: OSAID;

 VAR toID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

fromID The script ID for script data that you want to be associated with the script
ID in the toID parameter.

toID The script ID for the script data to be replaced. If the value of this
parameter is kOSANullScript, the OSACopyID function returns a new
script ID.

DESCRIPTION

The OSACopyID function replaces the script data identified by the script ID in the toID
parameter with the script data identified by the script ID in the fromID parameter.

noErr 0 No error
errOSACantCoerce –1700 Source data incompatible with scripting

component
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSAScriptError –1753 Source data invalid (syntax error)
badComponentInstance $80008001 Invalid component instance
10-50 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
RESULT CODES

Getting Source Data 10

The OSAGetSource function returns the source data that corresponds to the script data
identified by a script ID. The source data it returns can in turn be passed to OSACompile.

A scripting component that supports the OSAGetSource function has the
kOSASupportsGetSource bit set in the componentFlags field of its component
description record.

OSAGetSource 10

You can use the OSAGetSource function to decompile the script data identified by a
script ID and obtain the equivalent source data.

FUNCTION OSAGetSource(scriptingComponent: ComponentInstance;

 scriptID: OSAID;

 desiredType: DescType;

 VAR resultingSourceData: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptID The script ID for the script data to decompile. If you pass
kOSANullScript in this parameter, OSAGetSource returns a null
source description (such as an empty text string).

desiredType
The desired descriptor type of the resulting descriptor record, or
typeBest if any type will do.

resultingSourceData
The resulting descriptor record.

DESCRIPTION

The OSAGetSource function decompiles the script data identified by the specified
script ID and returns a descriptor record containing the equivalent source data. The
source data returned need not be exactly the same as the source data originally passed to
OSACompile—for example, white space and formatting might be different—but it
should be a reasonable equivalent suitable for user viewing and editing.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-51

C H A P T E R 1 0

Scripting Components
The difference between OSACoerceToDesc and OSAGetSource is that OSAGetSource
creates source data that can be displayed to a user or compiled and executed to generate
an appropriate value, whereas OSACoerceToDesc actually returns the value. For
example, if you call OSAGetSource and specify a string value, it returns the text
surrounded by quotation marks (so that it can be properly compiled). If you call
OSACoerceToDesc and specify a string value, it simply returns the text.

The main difference between OSADisplay and OSAGetSource is that OSAGetSource
can coerce any form of script data using a variety of descriptor types, whereas
OSADisplay can coerce only script values and always produces a descriptor record of a
text descriptor type.

RESULT CODES

SEE ALSO

For an example of the use of OSAGetSource, see Listing 10-5 on page 10-18.

Coercing Script Values 10

Scripting components can provide support for two optional routines,
OSACoerceFromDesc and OSACoerceToDesc, which coerce data in a descriptor
record to a script value and coerce a script value to data in a descriptor record,
respectively.

A scripting component that supports the routines in this section has the
kOSASupportsAECoercion bit set in the componentFlags field of its component
description record.

OSACoerceFromDesc 10

You can use the OSACoerceFromDesc function to obtain the script ID for a script value
that corresponds to the data in a descriptor record.

FUNCTION OSACoerceFromDesc

(scriptingComponent: ComponentInstance;

 scriptData: AEDesc; modeFlags: LongInt;

 VAR resultingScriptValueID: OSAID): OSAError;

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSASourceNotAvailable –1756 Source data not available
badComponentInstance $80008001 Invalid component instance
10-52 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptData
A descriptor record containing the script data to be coerced.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. If the scriptData parameter
contains an Apple event, you can use any of the mode flags listed in the
description that follows.

resultingScriptValueID
The resulting script ID for a script value.

DESCRIPTION

The OSACoerceFromDesc function coerces the descriptor record in the scriptData
parameter to the equivalent script value and returns a script ID for that value.

If you pass OSACoerceFromDesc an Apple event in the scriptData
parameter, it returns a script ID for the equivalent compiled script in the
resultingScriptValueID parameter. In this case you can specify any of the
modeFlags values used by OSACompile to control the way the compiled script
is executed:

Flag Description

kOSAModePreventGetSource Compiled script consists of only the minimum
script data required to run the script. It will cause
an error if passed to OSAGetSource.

kOSACompileIntoContext The OSACoerceFromDesc function returns a
script context instead of a compiled script.

kOSAModeNeverInteract Adds kAENeverInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in
sendMode parameter of AESend for events sent
when script is executed (the opposite of the Apple
Event Manager’s interpretation of the same bit).

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).
Scripting Components Reference 10-53

C H A P T E R 1 0

Scripting Components
SPECIAL CONSIDERATIONS

If you call OSACoerceFromDesc using an instance of the generic scripting component,
the generic scripting component uses the default scripting component to perform the
coercion.

RESULT CODES

SEE ALSO

For more information about the default scripting component associated with any
instance of the generic scripting component, see “Generic Scripting Component
Routines,” which begins on page 10-84.

OSACoerceToDesc 10

You can use the OSACoerceToDesc function to coerce a script value to a descriptor
record of a desired descriptor type.

FUNCTION OSACoerceToDesc(scriptingComponent: ComponentInstance;

 scriptValueID: OSAID;

 desiredType: DescType;

 modeFlags: LongInt;

 VAR result: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptValueID
The script ID for the script value to coerce.

desiredType
The desired descriptor type of the resulting descriptor record.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull.

result The resulting descriptor record.

DESCRIPTION

The OSACoerceToDesc function coerces the script value identified by scriptValueID
to a descriptor record of the type specified by the desiredType parameter, if possible.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-54 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Valid types include all the standard descriptor types defined in the Apple Event Registry:
Standard Suites, plus any special types supported by the scripting component.

SPECIAL CONSIDERATIONS

If you want the descriptor type of the descriptor record returned in the result
parameter to be the same as the descriptor type returned by a scripting component, use
OSACoerceToDesc and specify typeWildCard as the desired type. If you want to get
a script value in a form that you can display for humans to read, use OSADisplay.

RESULT CODES

SEE ALSO

For a description of OSADisplay, see page 10-35.

Manipulating the Create and Send Functions 10

Some scripting components provide routines that allow your application to set or get
pointers to the create and send functions used by the scripting component when it sends
and creates Apple events during script execution. If you do not set the pointers
that specify these functions, the scripting component uses the standard
AECreateAppleEvent and AESend functions with default parameters.

To gain control over the creation and addressing of Apple events, your application can
provide its own create function for use by scripting components. To set a new create
function, call the OSASetCreateProc function; to get the current create function, call
OSAGetCreateProc.

The send function provided by your application can perform almost any action instead
of or in addition to sending Apple events; for example, it can be used to facilitate
concurrent script execution. To set a new send function, call the OSASetSendProc
function; to get the current send function, call OSAGetSendProc.

The functions described in this section use the following types for pointers to the create
and send functions:

TYPE

AESendProcPtr = ProcPtr;

AECreateAppleEventProcPtr = ProcPtr;

For more information about create and send functions, see “Supplying Alternative
Create and Send Functions,” which begins on page 10-24.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-55

C H A P T E R 1 0

Scripting Components
Scripting components that support manipulation of the create and send functions also
support the OSASetDefaultTarget function, which allows you to set the default
application to which Apple events are sent.

A scripting component that supports the functions described in this section has the
kOSASupportsAESending bit set in the componentFlags field of its component
description record.

OSASetCreateProc 10

You can use the OSASetCreateProc function to specify a create function that a
scripting component should use instead of the Apple Event Manager’s
AECreateAppleEvent function when creating Apple events.

FUNCTION OSASetCreateProc(scriptingComponent: ComponentInstance;

 createProc: AECreateAppleEventProcPtr;

 refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

createProc
A pointer to the create function to set.

refCon A reference constant.

RESULT CODES

OSAGetCreateProc 10

You can use the OSAGetCreateProc function to get a pointer to the create function that
a scripting component is currently using to create Apple events.

FUNCTION OSAGetCreateProc(scriptingComponent: ComponentInstance;

VAR createProc: AECreateAppleEventProcPtr;

VAR refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-56 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
createProc
The OSAGetCreateProc function returns, in this parameter, a pointer to
the create function currently set for the specified scripting component.

refCon The OSAGetCreateProc function returns, in this parameter, the
reference constant associated with the create function for the specified
scripting component.

RESULT CODES

OSASetSendProc 10

You can use the OSASetSendProc function to specify a send function that a scripting
component should use instead of the Apple Event Manger’s AESend function when
sending Apple events.

FUNCTION OSASetSendProc(scriptingComponent: ComponentInstance;

sendProc: AESendProcPtr;

refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sendProc A pointer to the send function to set.

refCon A reference constant.

RESULT CODES

OSAGetSendProc 10

You can use the OSAGetSendProc function to get a pointer to the send function that a
scripting component is currently using.

FUNCTION OSAGetSendProc(scriptingComponent: ComponentInstance;

VAR sendProc: AESendProcPtr;

VAR refCon: LongInt): OSAError;

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-57

C H A P T E R 1 0

Scripting Components
scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sendProc The OSAGetSendProc function returns, in this parameter, a pointer to
the send function currently set for the specified scripting component.

refCon The OSAGetSendProc function returns, in this parameter, the reference
constant associated with the send function for the specified scripting
component.

RESULT CODES

OSASetDefaultTarget 10

You can use the OSASetDefaultTarget function to set the default target application
for Apple events.

FUNCTION OSASetDefaultTarget

(scriptingComponent: ComponentInstance;

 target: AEAddressDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

target The address of the application that is being made the default application.
If you pass a null descriptor record in this parameter, the scripting
component treats the current process as the default target.

DESCRIPTION

The OSASetDefaultTarget function establishes the default target application for
Apple event sending and the default application from which the scripting component
should obtain terminology information. For example, AppleScript statements that refer
to the default application do not need to be enclosed in tell/end tell statements.

If your application doesn’t call this function, or if you pass a null descriptor record in the
target parameter, the scripting component treats the current process (that is, the
application that calls OSAExecute or related routines) as the default target application.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-58 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
RESULT CODES

Recording Scripts 10

The OSAStartRecording function turns on the Apple Event Manager’s recording
mechanism and specifies a script in which subsequent recordable Apple events are
recorded. The scripting component sends the recording process (for example, a script
editor) a Recorded Text event that contains the decompiled equivalent for each
recordable event it receives. The script editor can then display the decompiled script in a
script editor window if a window for that script is currently open. Recording continues
until a call to OSAStopRecording turns recording off.

Script editors use these routines to allow users to control recording. Any application can
use these routines to provide its own script-recording interface.

For more information about the Apple event recording mechanism, see the chapter
“Recording Apple Events” in this book. For more information about the Recorded Text
event, see “Recording Scripts” on page 10-26.

A scripting component that supports the functions described in this section has the
kOSASupportsRecording bit set in the componentFlags field of its component
description record.

OSAStartRecording 10

You can use the OSAStartRecording routine to turn on Apple event recording and
record subsequent Apple events in a compiled script.

FUNCTION OSAStartRecording

(scriptingComponent: ComponentInstance;

 VAR compiledScriptToModifyID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

compiledScriptToModifyID
The script ID for the compiled script in which to record.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-59

C H A P T E R 1 0

Scripting Components
DESCRIPTION

The OSAStartRecording routine turns on Apple event recording. Subsequent Apple
events are recorded (that is, appended to any existing statements) in the compiled script
specified by the compiledScriptToModifyID parameter. If the source data for the
compiled script is currently displayed in a script editor’s window, the script editor’s
handler for the Recorded Text event should display each new statement in the window
as it is recorded. Users should not be able to change a script that is open in a script editor
window while it is being recorded into.

To record into a new compiled script, pass the constant kOSANullScript in the
compiledScriptToModifyID parameter. The scripting component should respond by
creating a new compiled script and recording into that.

SPECIAL CONSIDERATIONS

The generic scripting component uses its default scripting component to create and
record into a new compiled script.

RESULT CODES

SEE ALSO

For more information about the default scripting component associated with any
instance of the generic scripting component, see “Generic Scripting Component
Routines,” which begins on page 10-84.

OSAStopRecording 10

You can use the OSAStopRecording function to turn off Apple event recording.

FUNCTION OSAStopRecording(scriptingComponent: ComponentInstance;

 compiledScriptID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

noErr 0 No error
errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when

it is already on for a recording
process

errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
10-60 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
compiledScriptID
A script ID for the compiled script into which Apple events are being
recorded.

DESCRIPTION

The OSAStopRecording function turns off recording. If the script is not currently open
in a script editor window, the compiledScriptToModifyID parameter supplied to
OSAStartRecording is then augmented to contain the newly recorded statements. If
the script is currently open in a script editor window, the script data that corresponds to
the compiledScriptToModifyID parameter supplied to OSAStartRecording is
updated continuously until the client application calls OSAStopRecording.

If the compiled script identified by the script ID in the compiledScriptID parameter
is not being recorded into or recording is not currently on, OSAStopRecording returns
noErr.

RESULT CODES

Executing Scripts in One Step 10

The OSALoadExecute, OSACompileExecute, and OSADoScript functions combine
the capabilities of several other scripting component functions so that an application can
execute a script in a single step. You can use these functions if you know that the script
data to be executed will be executed only once.

A scripting component that supports the functions described in this section has the
kOSASupportsConvenience bit set in the componentFlags field of its component
description record.

OSALoadExecute 10

You can use the OSALoadExecute function to load and execute a script in a single step
rather than calling OSALoad and OSAExecute.

FUNCTION OSALoadExecute (scriptingComponent: ComponentInstance;

 scriptData: AEDesc;

 contextID: OSAID; modeFlags: LongInt;

 VAR resultingScriptValueID: OSAID)

 : OSAError;

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-61

C H A P T E R 1 0

Scripting Components
scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

scriptData
The descriptor record identifying the script data to be loaded and
executed.

contextID The script ID for the context to be used during script execution. The
constant kOSANullScript in this parameter indicates that the scripting
component should use its default context.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

resultingScriptValueID
The script ID for the script value returned.

DESCRIPTION

The OSALoadExecute function loads script data and executes the resulting compiled
script, using the script context identified by the contextID parameter to maintain state
information such as the binding of variables. After successfully executing the script,
OSALoadExecute disposes of the compiled script and returns either the script ID for
the resulting script value or, if execution does not result in a value, the constant
kOSANullScript.

You can control the way in which the scripting component executes a script by adding
any of these flags to the modeFlags parameter:

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter of
AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).
10-62 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
If the result code returned by OSALoadExecute is a general result code, there was some
problem in arranging for the script to be run. If the result code is errOSAScriptError,
an error occurred during script execution. In this case, you can obtain more detailed
error information by calling OSAScriptError.

RESULT CODES

OSACompileExecute 10

You can use the OSACompileExecute routine to compile and execute a script in a
single step rather than calling OSACompile and OSAExecute.

FUNCTION OSACompileExecute

(scriptingComponent: ComponentInstance;

 sourceData: AEDesc;

 contextID: OSAID; modeFlags: LongInt;

 VAR resultingScriptValueID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sourceData
A descriptor record identifying suitable source data for the specified
scripting component.

contextID The script ID for the context to be used during script execution. The
constant kOSANullScript in this parameter indicates that the scripting
component should use its default context.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

resultingScriptValueID
The script ID for the script value returned.

noErr 0 No error
errOSACorruptData –1702 Same as errAECorruptData
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSABadStorageType –1752 Script data not for this scripting

component
errOSAScriptError –1753 Error occurred during execution
errOSADataFormatObsolete –1758 Data format is obsolete
errOSADataFormatTooNew –1759 Data format is too new
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-63

C H A P T E R 1 0

Scripting Components
DESCRIPTION

The OSACompileExecute function compiles source data and executes the resulting
compiled script, using the script context identified by the contextID parameter to
maintain state information such as the binding of variables. After successfully executing
the script, OSACompileExecute disposes of the compiled script and returns either the
script ID for the resulting script value or, if execution does not result in a value, the
constant kOSANullScript.

You can control the way in which the scripting component executes a script by adding
any of these flags to the modeFlags parameter:

If the result code returned by OSACompileExecute is a general result code, there was
some problem in arranging for the script to be run. If the result code is
errOSAScriptError, an error occurred during script execution. In this case, you can
obtain more detailed error information by calling OSAScriptError.

RESULT CODES

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter of
AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).

noErr 0 No error
errOSACantCoerce –1700 Data could not be coerced to the requested

data type
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSAScriptError –1753 Source data invalid (syntax error) or an

execution error occurred
badComponentInstance $80008001 Invalid component instance
10-64 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSADoScript 10

You can use the OSADoScript routine to compile and execute a script and convert the
resulting script value to text in a single step rather than calling OSACompile,
OSAExecute, and OSADisplay.

FUNCTION OSADoScript (scriptingComponent: ComponentInstance;

 sourceData: AEDesc;

 contextID: OSAID; desiredType: DescType;

 modeFlags: LongInt;

 VAR resultingText: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sourceData
A descriptor record identifying suitable source data for the specified
scripting component.

contextID The script ID for the context to be used during script execution. The
constant kOSANullScript in this parameter indicates that the scripting
component should use its default context.

desiredType
The desired text descriptor type, such as typeChar, for the resulting
descriptor record.

modeFlags Information used by individual scripting components. To avoid setting
mode flag values, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

resultingText
The resulting descriptor record.

DESCRIPTION

Calling the OSADoScript function is equivalent to calling OSACompile followed by
OSAExecute and OSADisplay. After compiling the source data, executing the compiled
script using the script context identified by the contextID parameter, and returning the
text equivalent of the resulting script value in the resultingText parameter,
OSADoScript disposes of both the compiled script and the resulting script value.
Scripting Components Reference 10-65

C H A P T E R 1 0

Scripting Components
You can control the way in which the scripting component executes the script by adding
any of these flags to the modeFlags parameter:

If the result code returned by OSADoScript is a general result code, there was some
problem in arranging for the script to be run. If the result code is errOSAScriptError,
an error occurred during script execution, and the resultingText parameter contains
the error message associated with the error. In this case, you can obtain more detailed
error information by calling OSAScriptError.

RESULT CODES

SEE ALSO

For more information about resume dispatch functions, see “Supplying a Resume
Dispatch Function,” which begins on page 10-21, and the description of a resume
dispatch function on page 10-97.

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in
sendMode parameter of AESend for events sent
when script is executed (the opposite of the Apple
Event Manager’s interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).

kOSAModeDisplayForHumans Resulting text is readable by humans only and
cannot be recompiled by OSACompile.

noErr 0 No error
errOSACantCoerce –1700 Data could not be coerced to the requested

data type
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSAScriptError –1753 Source data invalid (syntax error) or an

execution error occurred
badComponentInstance $80008001 Invalid component instance
10-66 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Manipulating Dialects 10

Scripting components that provide several dialects may provide five functions that allow
you to switch between dialects dynamically and get information about currently
available dialects. The codes for specific dialects are provided by the scripting
component.

The OSASetCurrentDialect function sets the current dialect, and the
OSAGetCurrentDialect function gets the dialect code for the current dialect.
The OSAAvailableDialectCodeList function returns a list of codes for a scripting
component’s dialects. You can pass any of these codes to the OSAGetDialectInfo
function to get information about a specific dialect.

Instead of using the OSAAvailableDialectCodeList and OSAGetDialectInfo
functions, you can use the OSAAvailableDialects function to get a descriptor list
that contains information about all of the currently available dialects for a scripting
component. However, it is usually more convenient to get information about just one
dialect.

A scripting component that supports the functions described in this section has the
kOSASupportsDialects bit set in the componentFlags field of its component
description record.

OSASetCurrentDialect 10

You can use the OSASetCurrentDialect function to set the current dialect for a
scripting component.

FUNCTION OSASetCurrentDialect

(scriptingComponent: ComponentInstance;

 dialectCode: Integer): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

dialectCode
The code for the dialect to be set.

RESULT CODES

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSANoSuchDialect –1757 Invalid dialect code
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-67

C H A P T E R 1 0

Scripting Components
OSAGetCurrentDialect 10

You can use the OSAGetCurrentDialect function to get the dialect code for the dialect
currently being used by a scripting component.

FUNCTION OSAGetCurrentDialect

(scriptingComponent: ComponentInstance;

 VAR resultingDialectCode: Integer): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resultingDialectCode
The OSAGetCurrentDialect function returns, in this parameter, the
code for the current dialect of the specified scripting component.

RESULT CODES

OSAAvailableDialectCodeList 10

You can use the OSAAvailableDialectCodeList function to obtain a descriptor list
containing dialect codes for each of a scripting component’s currently available dialects.

FUNCTION OSAAvailableDialectCodeList

(scriptingComponent: ComponentInstance;

 VAR resultingDialectCodeList: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resultingDialectCodeList
The returned descriptor list.

DESCRIPTION

Each item in the descriptor list returned by OSAAvailableDialectCodeList is a
descriptor record of descriptor type typeInteger containing a dialect code for one of
the specified scripting component’s currently available dialects. Dialect codes are
defined by individual scripting components.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSANoSuchDialect –1757 Invalid dialect code
badComponentInstance $80008001 Invalid component instance
10-68 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
You can pass any dialect code you obtain using OSAAvailableDialectCodeList to
OSAGetDialectInfo to get information about the corresponding dialect.

RESULT CODES

OSAGetDialectInfo 10

You can use the OSAGetDialectInfo function to get information about a specified
dialect provided by a specified scripting component.

OSAGetDialectInfo (scriptingComponent: ComponentInstance;

 dialectCode: Integer; selector: OSType;

 VAR resultingDialectInfo: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

dialectCode
A code for the dialect about which you want information. You can
obtain a list of a scripting component’s dialect codes by calling
OSAAvailableDialectCodeList.

selector A constant that indicates what kind of information you want
OSAGetDialectInfo to return in the result parameter. This constant
determines the descriptor type for the descriptor record returned. See the
description that follows for a list of the standard constants you can
specify in this parameter.

resultingDialectInfo
A descriptor record containing the requested information. The descriptor
record’s descriptor type corresponds to the constant specified in the
selector parameter.

DESCRIPTION

After you obtain a list of dialect codes by calling OSAAvailableDialectCodeList,
you can pass any of those codes to OSAGetDialectInfo to get information about the
corresponding dialect. The descriptor type of the descriptor record returned by
OSAGetDialectInfo depends on the constant specified in the selector parameter.
All scripting components support the following constants for this parameter:

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-69

C H A P T E R 1 0

Scripting Components
CONST

keyOSADialectName = 'dnam';{used with descriptor record }

{ of any text type, such as }

{ type typeChar}

keyOSADialectLangCode = 'dlcd';{used with descriptor record }

{ of type typeShortInteger}

keyOSADialectScriptCode = 'dscd';{used with descriptor record }

{ of type typeShortInteger}

Individual scripting components may allow you to specify additional constants.

RESULT CODES

OSAAvailableDialects 10

You can use the OSAAvailableDialects function to obtain a descriptor list containing
information about each of the currently available dialects for a scripting component.

FUNCTION OSAAvailableDialects

(scriptingComponent: ComponentInstance;

 VAR resultingDialectInfoList: AEDesc): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resultingDialectInfoList
The returned descriptor list.

DESCRIPTION

Each item in the list returned by OSAAvailableDialects is an AE record of descriptor
type typeOSADialectInfo.

CONST typeOSADialectInfo = 'difo';

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSABadSelector –1754 Invalid selector
errOSANoSuchDialect –1757 Invalid dialect code
badComponentInstance $80008001 Invalid component instance
10-70 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Each descriptor record in the descriptor list contains, at a minimum, four
keyword-specified descriptor records with the following keywords:

CONST

keyOSADialectName = 'dnam';{used with descriptor record }

{ of any text type, such as }

{ type typeChar}

keyOSADialectCode = 'dcod';{used with descriptor record }

{ of type typeShortInteger}

keyOSADialectLangCode = 'dlcd';{used with descriptor record }

{ of type typeShortInteger}

keyOSADialectScriptCode = 'dscd';{used with descriptor record }

{ of type typeShortInteger}

Rather than calling OSAAvailableDialects to obtain complete dialect
information for a scripting component, it is usually more convenient to call
OSAAvailableDialectCodeList to get a list of codes for a scripting component’s
dialects, then call OSAGetDialectInfo to get information about the specific dialect
you’re interested in.

RESULT CODES

Using Script Contexts to Handle Apple Events 10

The optional routines described in this section allow your application to use script
contexts to handle Apple events. One way to do this is to install a general Apple
event handler in your application’s special handler dispatch table. The general
Apple event handler provides initial handling for every Apple event received by your
application. (For an example of such a handler, see “Using a Script Context to Handle an
Apple Event” on page 10-19.)

The general Apple event handler extracts the event’s direct parameter, obtains a script ID
for the script context associated with the object described in the direct parameter, and
passes the Apple event and the script ID to either OSAExecuteEvent or OSADoEvent.
The main difference between these two functions is that OSAExecuteEvent returns a
script ID for the resulting script value, whereas OSADoEvent returns a reply Apple
event that includes either the resulting script value or information about any errors that
occurred.

If the scripting component determines that a script context can’t handle the
specified event (for example, if an AppleScript script context doesn’t include
statements that handle the event), OSAExecuteEvent and OSADoEvent return
errAEEventNotHandled. This causes the Apple Event Manager to look for an
appropriate handler in the application’s Apple event dispatch table or elsewhere,

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-71

C H A P T E R 1 0

Scripting Components
using standard Apple event dispatching. If the scripting component determines that a
script context passed to OSAExecuteEvent or OSADoEvent can handle the event, the
function attempts to use the script context for that purpose.

Script contexts can in turn pass an event to a resume dispatch function with
a statement that’s equivalent to an AppleScript continue statement. The
OSASetResumeDispatchProc and OSAGetResumeDispatchProc functions allow
your application to set and get pointers to the resume dispatch function used by a
scripting component. These functions use the following type for a pointer to a
resume dispatch function:

TYPE AEHandlerProcPtr = EventHandlerProcPtr;

A resume dispatch function takes the same parameters as an Apple event handler and
dispatches an event to an application’s standard handler for that event.

If you need to create a new, empty script context, you can use the OSAMakeContext
function.

A scripting component that supports the functions described in this section has the
kOSASupportsEventHandling bit set in the componentFlags field of its component
description record.

OSASetResumeDispatchProc 10

You can use the OSASetResumeDispatchProc function to set the resume dispatch
function called by a scripting component during execution of an AppleScript continue
statement or its equivalent.

FUNCTION OSASetResumeDispatchProc

(scriptingComponent: ComponentInstance;

 resumeDispatchProc: AEHandlerProcPtr;

 refCon: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resumeDispatchProc
You can specify one of the following in this parameter:

■ a pointer to a resume dispatch function

■ the kOSAUseStandardDispatch constant, which causes the Apple
Event Manager to dispatch the event using standard Apple event
dispatching

■ the kOSANoDispatch constant, which tells the Apple Event Manager
that the processing of the Apple event is complete and that it does not
need to be dispatched
10-72 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
refCon A reference constant. Specify kOSADontUsePhac in this parameter and
kOSAUseStandardDispatch in the resumeDispatchProc parameter
to request standard Apple event dispatching excluding the special
handler dispatch table.

DESCRIPTION

The OSASetResumeDispatchProc function sets the resume dispatch function that the
specified instance of a scripting component calls during execution of an AppleScript
continue statement or its equivalent. The resume dispatch function should dispatch
the event to the application’s standard handler for that event.

If you are using a general handler similar to that in Listing 10-7 on page 10-21 for
preliminary processing of Apple events, and if you can rely on standard Apple event
dispatching to dispatch the event correctly, you don’t need to provide a resume dispatch
function. Instead, you can specify kOSAUseStandardDispatch as the value of the
resumeDispatchProc parameter and the constant kOSADontUsePhac as the value of
the refCon parameter. This causes the Apple Event Manager to use standard Apple
event dispatching except that it bypasses your application’s special handler dispatch
table and thus won’t call your general Apple event handler recursively.

RESULT CODES

SEE ALSO

For more information about resume dispatch functions, see “Supplying a Resume
Dispatch Function” on page 10-21 and the description of a resume dispatch function on
page 10-97.

OSAGetResumeDispatchProc 10

You can use the OSAGetResumeDispatchProc function to get the resume dispatch
function currently being used by a scripting component instance during execution of an
AppleScript continue statement or its equivalent.

FUNCTION OSAGetResumeDispatchProc

(scriptingComponent: ComponentInstance;

 VAR resumeDispatchProc: AEHandlerProcPtr;

 VAR refCon: LongInt): OSAError;

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-73

C H A P T E R 1 0

Scripting Components
scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resumeDispatchProc
The OSAGetResumeDispatchProc function returns a pointer to the
resume dispatch function for the specified scripting component in this
parameter. If no resume dispatch function has been registered,
OSAGetResumeDispatchProc returns kOSAUseStandardDispatch
(the default).

refCon The OSAGetResumeDispatchProc function returns the reference
constant associated with the resume dispatch function in this parameter.

RESULT CODES

OSAExecuteEvent 10

You can use the OSAExecuteEvent function to handle an Apple event with the aid of a
script context and obtain a script ID for the resulting script value.

FUNCTION OSAExecuteEvent(scriptingComponent: ComponentInstance;

 theAppleEvent: AppleEvent;

 contextID: OSAID;

 modeFlags: LongInt;

 VAR resultingScriptValueID: OSAID)

 : OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

theAppleEvent
The Apple event to be handled.

contextID The script ID for the script context to be used to handle the Apple event.

modeFlags Information used by individual scripting components. To avoid setting
any mode flags, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

resultingScriptValueID
A script ID for the resulting script value.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-74 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
DESCRIPTION

The OSAExecuteEvent function attempts to use the script context specified by the
contextID parameter to handle the Apple event specified by the theAppleEvent
parameter. If the scripting component determines that the script context can’t handle the
event (for example, if a script written in AppleScript doesn’t include statements that
handle the event), OSAExecuteEvent immediately returns errAEEventNotHandled
rather than errOSAScriptError.

If the scripting component determines that the script context can handle the event,
OSAExecuteEvent executes the script context’s handler and returns the resulting script
ID. If execution of the script context’s handler for the event generates an error,
OSAExecuteEvent returns errOSAScriptError, and you can get more detailed error
information by calling the OSAScriptError function.

You can control the way in which the scripting component executes a script context by
adding any of these flags to the modeFlags parameter:

If the script context identified by the contextID parameter specifies that the Apple
event should be passed to the application’s default handler for that event (for example,
with an AppleScript continue statement), OSAExecuteEvent passes the event to the
resume dispatch function currently being used by the scripting component. The resume
dispatch function dispatches the event directly to the application’s standard handler for
that event (that is, without calling OSAExecuteEvent again). If the contextID
parameter is kOSANullScript, the OSAExecuteEvent function passes the event

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter of
AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event Manager’s
interpretation of the same bit).
Scripting Components Reference 10-75

C H A P T E R 1 0

Scripting Components
directly to the resume dispatch function. If a call to the resume dispatch function is
successful, execution of the script context proceeds from the point at which the resume
dispatch function was called.

IMPORTANT

The OSAExecuteEvent function can generate the result code
errAEEventNotHandled in at least two ways. If the scripting
component determines that a script context doesn’t declare a handler for
a particular event, OSAExecuteEvent immediately returns
errAEEventNotHandled. If a scripting component calls its resume
dispatch function during script execution and the application’s standard
handler for the event fails to handle it, OSAExecuteEvent returns
errOSAScriptError and a call to OSAScriptError with
kOSAErrorNumber in the selector parameter returns
errAEEventNotHandled as the resulting error description. ▲

RESULT CODES

OSADoEvent 10

You can use the OSADoEvent function to handle an Apple event with the aid of a script
context and obtain a reply event.

FUNCTION OSADoEvent(scriptingComponent: ComponentInstance;

 theAppleEvent: AppleEvent;

 contextID: OSAID;

 modeFlags: LongInt;

 VAR reply: AppleEvent): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

theAppleEvent
The Apple event to be handled.

noErr 0 No error
errAEEventNotHandled –1708 Script context doesn’t contain handler for

event
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSAScriptError –1753 Error occurred during execution or

because of an attempt to pass event to a
NIL resume dispatch function

badComponentInstance $80008001 Invalid component instance
10-76 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
contextID The script ID for the script context to be used to handle the Apple event.

modeFlags Information used by individual scripting components. To avoid setting
any mode flags, specify kOSAModeNull. Other possible mode flags are
listed in the description that follows.

reply The reply Apple event.

DESCRIPTION

The OSADoEvent function resembles both OSADoScript and OSAExecuteEvent.
However, unlike OSADoScript, the script OSADoEvent executes must be in the
form of a script context, and execution is initiated by an Apple event. Unlike
OSAExecuteEvent, OSADoEvent returns a reply Apple event rather than the script ID
of the resulting script value.

The OSADoEvent function, like OSAExecuteEvent, attempts to use the script context
specified by the contextID parameter to handle the Apple event specified by the
theAppleEvent parameter. If the scripting component determines that the script
context can’t handle the event (for example, if a script written in an AppleScript dialect
doesn’t include statements that handle the event), OSADoEvent immediately returns
errAEEventNotHandled rather than errOSAScriptError.

If the scripting component determines that the script context can handle the event,
OSADoEvent executes the script context’s handler for the event and returns the resulting
script ID.

The OSADoEvent function returns a reply event that contains either the resulting script
value or, if an error occurred during script execution, information about the error. If the
error errOSAScriptError occurs during script execution, OSADoEvent calls
OSAScriptError and returns the appropriate error information in the reply. The
OSADoEvent function never returns errOSAScriptError.

You can control the way in which the scripting component executes a script context by
adding any of these flags to the modeFlags parameter:

Flag Description

kOSAModeNeverInteract Adds kAENeverInteract to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeCanInteract Adds kAECanInteract to sendMode parameter of
AESend for events sent when script is executed.

kOSAModeAlwaysInteract Adds kAEAlwaysInteract to sendMode
parameter of AESend for events sent when script is
executed.

continued
Scripting Components Reference 10-77

C H A P T E R 1 0

Scripting Components
If the script context specifies that the Apple event should be passed to the application’s
standard handler for that event (for example, with an AppleScript continue statement),
OSADoEvent passes the event to the resume dispatch function currently being used by
the scripting component. The resume dispatch function dispatches the event directly to
the application’s standard handler for that event (that is, without calling OSADoEvent
again). If the contextID parameter is kOSANullScript, the OSADoEvent function
passes the event directly to the resume dispatch function. If the call to the resume
dispatch function is successful, execution of the script context proceeds from the point at
which the resume dispatch function was called.

IMPORTANT

Like OSAExecuteEvent, OSADoEvent can generate the result code
errAEEventNotHandled in at least two ways. If the scripting
component determines that a script context doesn’t declare a handler for
a particular event, OSADoEvent immediately returns
errAEEventNotHandled. If a scripting component calls its resume
dispatch function during script execution and the application’s standard
handler for the event fails to handle it, OSADoEvent returns
errAEEventNotHandled in the reply Apple event. ▲

RESULT CODES

SEE ALSO

For an example of the use of OSADoEvent, see Listing 10-7 on page 10-21.

kOSAModeCantSwitchLayer Prevents use of kAECanSwitchLayer in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).

kOSAModeDontReconnect Adds kAEDontReconnect to sendMode parameter
of AESend for events sent when script is executed.

kOSAModeDoRecord Prevents use of kAEDontRecord in sendMode
parameter of AESend for events sent when script is
executed (the opposite of the Apple Event
Manager’s interpretation of the same bit).

noErr 0 No error
errAEEventNotHandled –1708 Script context doesn’t contain handler

for event
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance

Flag Description (continued)
10-78 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSAMakeContext 10

You can use the OSAMakeContext function to get a script ID for a new script context.

FUNCTION OSAMakeContext(scriptingComponent: ComponentInstance;

contextName: AEDesc;

parentContext: OSAID;

VAR resultingContextID: OSAID): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

contextName
Name of new context. Some scripting components may use context names
for semantic purposes. If the value of this parameter is typeNull,
OSAMakeContext creates an unnamed context.

parentContext
Existing context from which new context inherits bindings. If the value of
this parameter is kOSANullScript, the new context does not inherit
bindings from any other context.

resultingContextID
A script ID for the resulting script context.

DESCRIPTION

The OSAMakeContext function creates a new script context that you may pass to
OSAExecute or OSAExecuteEvent. The new script context inherits the bindings of the
script context specified in the parentContext parameter.

SPECIAL CONSIDERATIONS

If you call OSAMakeContext using an instance of the generic scripting component, the
generic scripting component uses the default scripting component to create the new
script context.

RESULT CODES

SEE ALSO

To compile existing source data into a script context, use OSACompile as described on
page 10-48.

noErr 0 No error
errOSACantCoerce –1700 Invalid context name
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
badComponentInstance $80008001 Invalid component instance D
Scripting Components Reference 10-79

C H A P T E R 1 0

Scripting Components
AppleScript Component Routines 10
The AppleScript component provides routines for initializing the AppleScript
component and manipulating the styles used to display AppleScript statements in a
script. These routines are used primarily by script editors and other applications that
display source data to users.

Initializing AppleScript 10

Before you call any of the standard scripting component routines, you can call the
ASInit function to initialize the AppleScript component with desired
application-specific stack and heap sizes. If you don’t call ASInit, the AppleScript
component initializes itself using either the values specified in the application’s 'scsz'
resource or, for those values not provided by the 'scsz' resource, default values
provided by the AppleScript component.

ASInit 10

You can use the ASInit function to initialize the AppleScript component.

FUNCTION ASInit (scriptingComponent: ComponentInstance;

 modeFlags: LongInt;

 minStackSize: LongInt;

 preferredStackSize: LongInt;

 maxStackSize: LongInt;

 minHeapSize: LongInt;

 preferredHeapSize: LongInt;

 maxHeapSize: LongInt): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

modeFlags Reserved for future use. Set to kOSAModeNull.

minStackSize
The minimum size for the portion of the application’s heap used by the
AppleScript component’s application-specific stack.

preferredStackSize
The preferred size for the portion of the application’s heap used by the
AppleScript component’s application-specific stack.

maxStackSize
The maximum size for the portion of the application’s heap used by the
AppleScript component’s application-specific stack.
10-80 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
minHeapSize
The minimum size for the portion of the application’s heap used by the
AppleScript component’s application-specific heap.

preferredHeapSize
The preferred size for the portion of the application’s heap used by the
AppleScript component’s application-specific heap.

maxHeapSize
The maximum size for the portion of the application’s heap used by the
AppleScript component’s application-specific heap.

DESCRIPTION

Your application should set the modeFlags parameter to kOSAModeNull. You can use
the other parameters to specify memory sizes for the portion of your application’s heap
used by the AppleScript component for its application-specific heap and stack. If your
application sets any of these parameters to 0, the AppleScript component uses the
corresponding value in your application’s 'scsz' resource. If that value is also set to 0,
the AppleScript component uses the corresponding default value:

CONST

kASDefaultMinStackSize = 1 * 1024;

kASDefaultPreferredStackSize = 4 * 1024;

kASDefaultMaxStackSize = 16 * 1024;

kASDefaultMinHeapSize = 4 * 1024;

kASDefaultPreferredHeapSize = 64 * 1024;

kASDefaultMaxHeapSize = 32 * 1024 * 1024;

If your application doesn’t call ASInit explicitly, the AppleScript component initializes
itself using the values specified in your application’s 'scsz' resource when your
application first calls any scripting component routine. If any of these values are set to 0,
the AppleScript component uses the corresponding default value.

If your application doesn’t call ASInit explicitly and doesn’t call any scripting
component routines, the AppleScript component will not be initialized. For example, if
your application opens and closes the AppleScript component or calls Component
Manager routines such as OpenDefaultComponent or FindNextComponent but
doesn’t call any scripting component routines, the AppleScript component is not
initialized.

When the AppleScript component is initialized, it uses your application’s high memory
to create the blocks that it locks for its own use. If you expect to lock any portion of high
memory for a shorter time than you expect the AppleScript component to be available,
you should call ASInit explicitly.
Scripting Components Reference 10-81

C H A P T E R 1 0

Scripting Components
RESULT CODES

Getting and Setting Styles for Source Data 10

The ASGetSourceStyles and ASSetSourceStyles functions allow you to get and
set the script format styles currently used by the AppleScript component to display
scripts. To obtain a list of style names formatted according to the script format styles
currently used by the AppleScript component, use the ASGetSourceStyleNames
function.

ASGetSourceStyles 10

You can use the ASGetSourceStyles function to get the script format styles currently
used by the AppleScript component to display scripts.

FUNCTION ASGetSourceStyles

(scriptingComponent: ComponentInstance;

 VAR resultingSourceStyles: STHandle): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

resultingSourceStyles
A handle to a style element array defined by the TextEdit data type
TEStyleTable that defines the styles used for different kinds of
AppleScript terms.

DESCRIPTION

The ASGetSourceStyles function returns a style element array that defines the nine
styles used for AppleScript terms.

You can use these index constants to identify individual styles returned in the
resultingSourceStyles parameter:

CONST

kASSourceStyleUncompiledText = 0;

kASSourceStyleNormalText = 1;

kASSourceStyleLanguageKeyword = 2;

kASSourceStyleApplicationKeyword = 3;

kASSourceStyleComment = 4;

kASSourceStyleLiteral = 5;

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-82 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
kASSourceStyleUserSymbol = 6;

kASSourceStyleObjectSpecifier = 7;

kASNumberOfSourceStyles = 8;

Other AppleScript dialects may define additional styles. When you have finished using
the style element array, you must dispose of it.

RESULT CODES

SEE ALSO

For information about the TEStyleTable array, see Inside Macintosh: Text.

ASSetSourceStyles 10

You can use the ASSetSourceStyles function to set the script format styles used by
the AppleScript component to display scripts.

FUNCTION ASSetSourceStyles (scriptingComponent: ComponentInstance;

 sourceStyles: STHandle): OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

sourceStyles
A handle to a style element array defined by the TextEdit data type
TEStyleTable that defines the nine styles used for different kinds of
AppleScript terms. The style for each kind of term should be identified
according to the index constants listed for ASGetSourceStyles on
page 10-82.

DESCRIPTION

The ASSetSourceStyles function sets the script format styles used to display scripts.
If you pass a NIL handle in the sourceStyles parameter, the AppleScript component
uses its default styles.

After you have set the script format styles, you must dispose of the style element array
you used to specify them.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-83

C H A P T E R 1 0

Scripting Components
RESULT CODES

SEE ALSO

For information about the TEStyleTable array, see Inside Macintosh: Text.

ASGetSourceStyleNames 10

You can use the ASGetSourceStyleNames function to obtain a list of style names that
are each formatted according to the script format styles currently used by the
AppleScript component.

FUNCTION ASGetSourceStyleNames

(scriptingComponent: ComponentInstance;

 modeFlags: LongInt;

 VAR resultingSourceStyleNameList: AEDescList)

 : OSAError;

scriptingComponent
A component instance created by a prior call to the Component Manager
function OpenDefaultComponent or OpenComponent (see page 10-4).

modeFlags Reserved for future use. Set to kOSAModeNull.

resultingSourceStyleNameList
List of style names (for example, “Uncompiled Text,” “Normal Text”) that
are each formatted according to the current script format styles. The order
of the names corresponds to the order of the source style constants listed
for ASGetSourceStyles on page 10-82.

RESULT CODES

Generic Scripting Component Routines 10
To manipulate and execute scripts written in different scripting languages, your
application can either open a connection with each corresponding scripting component
individually or open a single connection with the generic scripting component. For
information about how to connect with scripting components, see “Connecting to a
Scripting Component,” which begins on page 10-3.

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance

noErr 0 No error
errOSASystemError –1750 General scripting system error
badComponentInstance $80008001 Invalid component instance
10-84 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
If you open a connection with the generic scripting component, it in turn attempts to
open connections dynamically with the appropriate scripting component for each script
that it executes or manipulates. To provide this capability, the generic scripting
component must be able to determine which scripting component created any script ID
passed as a parameter to a standard scripting component routine. Because different
scripting components may end up using the same script ID to refer to different scripts,
the generic scripting component uses its own generic script IDs. The generic scripting
component translates generic scripting IDs into the corresponding component-specific
script IDs and vice versa when necessary.

A generic script ID is a script ID of type GenericID.

TYPE GenericID = OSAID;

You don’t need to know in detail how the generic scripting component keeps track of
script IDs. However, you should be aware that the script IDs to which your application
refers when it uses the generic scripting component are not the same as the script IDs
used by scripting components that actually manipulate and execute scripts.

If you are writing a script editor or recorder, you must pass the existing script ID to
OSACompile or OSAStartRecording when you are recompiling or recording into an
existing script. This ensures that the script is recompiled or recorded using the same
scripting component that originally created the script. If instead you pass
kOSANullScript to these routines, the new script is compiled or recorded using the
default scripting component. Each instance of the generic scripting component has its
own default scripting component. The section “Getting and Setting the Default Scripting
Component,” which follows, describes routines provided by the generic scripting
component that allow you to get and set the default scripting component.

The generic scripting component supports the standard scripting component routines.
However, most scripting components also support their own component-specific
routines. You can’t use the generic scripting component to call a component-specific
routine. Instead, you must use an instance of the specific scripting component that
supports the routine.

To facilitate the use of component-specific routines, the generic scripting component
allows you to identify the scripting component that created stored script data, get an
instance of a specified scripting component, and convert between generic script IDs and
component-specific script IDs. The section “Using Component-Specific Routines,” which
begins on page 10-87, describes the generic scripting component routines that allow you
to perform these tasks.

Some generic scripting component routines take or return a component subtype of type
ScriptingComponentSelector.

TYPE ScriptingComponentSelector = OSType;

You can use subtype codes of this type to identify specific scripting components.
Scripting Components Reference 10-85

C H A P T E R 1 0

Scripting Components
Getting and Setting the Default Scripting Component 10

The default scripting component for any instance of the generic
scripting component is initially AppleScript, but you can change
it if necessary. The OSAGetDefaultScriptingComponent and
OSASetDefaultScriptingComponent functions allow you to get
and set the default scripting component.

OSAGetDefaultScriptingComponent 10

You can use the OSAGetDefaultScriptingComponent function to get the subtype
code for the default scripting component associated with an instance of the generic
scripting component.

FUNCTION OSAGetDefaultScriptingComponent

(genericScriptingComponent: ComponentInstance;

 VAR scriptingSubType: ScriptingComponentSelector)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

scriptingSubType
The function returns, in this parameter, the subtype code for the default
scripting component associated with the instance of the generic scripting
component specified in the genericScriptingComponent parameter.

DESCRIPTION

The OSAGetDefaultScriptingComponent function returns the subtype code for the
default scripting component. This is the scripting component that will be used by
OSAStartRecording, OSACompile, or OSACompileExecute if no existing script ID
is specified. From the user’s point of view, the default scripting component corresponds
to the scripting language selected in the Script Editor application when the user first
creates a new script.

Each instance of the generic scripting component has its own default
scripting component, which is initially AppleScript. You can use
OSASetDefaultScriptingComponent to change the default scripting component.

RESULT CODES

noErr 0 No error
errOSACantOpenComponent –1762 Can’t connect to scripting component
badComponentInstance $80008001 Invalid component instance
10-86 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSASetDefaultScriptingComponent 10

You can use the OSASetDefaultScriptingComponent function to set the default
scripting component associated with an instance of the generic scripting component.

FUNCTION OSASetDefaultScriptingComponent

(genericScriptingComponent: ComponentInstance;

 scriptingSubType: ScriptingComponentSelector)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

scriptingSubType
The subtype code for the scripting component you want to set as the
default.

DESCRIPTION

The OSASetDefaultScriptingComponent function sets the default scripting
component for the specified instance of the generic scripting component to the
scripting component identified by the scriptingSubType parameter.

Each instance of the generic scripting component has its own default
scripting component, which is initially AppleScript. You can use
OSAGetDefaultScriptingComponent to get the current default
scripting component for an instance of the generic scripting component.

RESULT CODES

Using Component-Specific Routines 10

You can’t use the generic scripting component to call a component-specific routine.
Instead, you must use an instance of the specific scripting component that supports the
routine.

To facilitate the use of component-specific routines, the generic scripting component
allows you to identify the scripting component that created stored script data, get an
instance of a specified scripting component, and convert between generic script IDs and
component-specific script IDs.

noErr 0 No error
errOSACantOpenComponent –1762 Specified component subtype hasn’t

been registered
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-87

C H A P T E R 1 0

Scripting Components
If you want to identify the scripting component that created a storage descriptor record
but don’t want to load the script, use the OSAGetScriptingComponentFromStored
function. When you need to use a specific scripting component, the
OSAGetScriptingComponent function allows you to get a component instance for
that scripting component.

The OSAGenericToRealID and OSARealToGenericID functions allow you to
convert between generic script IDs and component-specific script IDs.

OSAGetScriptingComponentFromStored 10

You can use the OSAGetScriptingComponentFromStored routine to get the subtype
code for a scripting component that created a storage descriptor record.

FUNCTION OSAGetScriptingComponentFromStored

(genericScriptingComponent: ComponentInstance;

 scriptData: AEDesc;

 VAR scriptingSubType: ScriptingComponentSelector)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

scriptData
Either a generic storage descriptor record or a component-specific storage
descriptor record.

scriptingSubType
The function returns, in this parameter, a subtype code identifying the
scripting component that created the descriptor record specified by the
scriptData parameter.

DESCRIPTION

The OSAGetScriptingComponentFromStored function returns, in the
scriptingSubType parameter, the subtype code for the scripting component that
created the script data specified by the scriptData parameter.

The generic scripting component automatically identifies the appropriate scripting
component for you when you use it to call OSALoad. By calling
OSAGetScriptingComponentFromStored, you can determine, without loading a
script, which scripting component created the script data.
10-88 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
RESULT CODES

OSAGetScriptingComponent 10

You can use the OSAGetScriptingComponent function to get the instance of a
scripting component for a specified subtype.

FUNCTION OSAGetScriptingComponent

(genericScriptingComponent: ComponentInstance;

 scriptingSubType: ScriptingComponentSelector;

 VAR scriptingInstance: ComponentInstance)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

scriptingSubType
A subtype code for a scripting component.

scriptingInstance
The function returns, in this parameter, a component instance for the
scripting component identified by the scriptingSubType parameter.

DESCRIPTION

You can’t use the generic scripting component with component-specific routines.
Instead, use an instance of the specific scripting component, which you can obtain with
OSAGetScriptingComponent.

The OSAGetScriptingComponent function returns, in the scriptingInstance
parameter, an instance of the scripting component identified by the
scriptingSubType parameter. Each instance of the generic scripting component
keeps track of a single instance of each component subtype, so
OSAGetScriptingComponent always returns the same instance of a specified
scripting component that the generic scripting component uses for standard scripting
component routines.

For example, you can use OSAGetDefaultComponent to get the subtype code for
the default scripting component (that is, the scripting component used by the
generic scripting component for new scripts). You can then get an instance of the default
scripting component by passing its subtype code to OSAGetScriptingComponent.
Finally, you can pass that instance to OSAScriptingComponentName to obtain the
default scripting component’s name so you can display it to the user.

noErr 0 No error
errOSACantOpenComponent –1762 Can’t connect to scripting component
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-89

C H A P T E R 1 0

Scripting Components
Similarly, you can pass kAppleScriptSubtype in the scriptingSubType parameter
to obtain an instance of the AppleScript component. This is necessary, for example, to
call AppleScript-specific routines such as ASGetSourceStyles.

RESULT CODES

SEEALSO

For descriptions of the OSAGetDefaultScriptingComponent and
OSAScriptingComponentName functions, see page 10-86 and page 10-47, respectively.

OSAGenericToRealID 10

You can use the OSAGenericToRealID function to convert a generic script ID to the
corresponding component-specific script ID.

FUNCTION OSAGenericToRealID

(genericScriptingComponent: ComponentInstance;

 VAR theScriptID: OSAID;

 VAR theExactComponent: ComponentInstance)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

theScriptID
The generic script ID that you want to convert. The
OSAGenericToRealID function returns, in this parameter, the
component-specific script ID that corresponds to the generic script ID that
you pass in this parameter.

theExactComponent
The OSAGenericToRealID function returns, in this parameter, the
component instance that created the script ID returned in the
theScriptID parameter.

noErr 0 No error
errOSACantOpenComponent –1762 Can’t connect to scripting component
badComponentInstance $80008001 Invalid component instance
10-90 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
DESCRIPTION

You can’t use the generic scripting component and a generic script ID with
component-specific routines. Instead, you can use the component instance and script ID
returned by OSAGenericToRealID.

Given a generic script ID (that is, a script ID returned by a call to a standard component
routine via the generic scripting component), the OSAGenericToRealID function
returns the equivalent component-specific script ID and the component instance that
created that script ID. The OSAGenericToRealID function modifies the script ID in
place, changing the generic script ID you pass in the theScriptID parameter to the
corresponding component-specific script ID.

RESULT CODES

OSARealToGenericID 10

You can use the OSARealToGenericID function to convert a component-specific script
ID to the corresponding generic script ID.

FUNCTION OSARealToGenericID

(genericScriptingComponent: ComponentInstance;

 VAR theScriptID: OSAID;

 theExactComponent: ComponentInstance)

 : OSAError;

genericScriptingComponent
A component instance for the generic scripting component, created by a
prior call to the Component Manager function OpenDefaultComponent
or OpenComponent (see page 10-4).

theScriptID
The component-specific script ID that you want to convert. You must
have obtained this script ID from the scripting component instance
passed in the theExactComponent parameter. The
OSARealToGenericID function returns, in this parameter, the generic
script ID that corresponds to the component-specific script ID that you
pass in this parameter.

theExactComponent
A scripting component instance returned by a generic scripting
component routine.

noErr 0 No error
errOSACantOpenComponent –1762 Can’t connect to scripting component
badComponentInstance $80008001 Invalid component instance
Scripting Components Reference 10-91

C H A P T E R 1 0

Scripting Components
DESCRIPTION

The OSARealToGenericID function performs the reverse of the task performed by
OSAGenericToRealID. Given a component-specific script ID and an exact scripting
component instance (that is, the component instance that created the component-specific
script ID), the OSARealToGenericID function returns the corresponding generic script
ID. The OSARealToGenericID function modifies the script ID in place, changing the
component-specific script ID passed in the theScriptID parameter to the
corresponding generic script ID.

You’ll need to do this if you have obtained a component-specific script ID using an
exact scripting component instance and you want to refer to the same script in calls that
use an instance of the generic scripting component. You can’t use a component-specific
script ID with the generic scripting component.

The script ID you pass in the theScriptID parameter must be a component-specific
script ID obtained from a scripting component instance known to the generic scripting
component. You can obtain such an instance by calling either
OSAGetScriptingComponent or OSAGenericToRealID.

RESULT CODES

Routines Used by Scripting Components 10
Scripting components can call three routines to manipulate the trailers for generic
storage descriptor records. “Writing a Scripting Component” on page 10-27 provides
general guidelines for writing a scripting component.

Manipulating Trailers for Generic Storage Descriptor Records 10

All scripting components must use the OSAGetStorageType, OSAAddStorageType,
and OSARemoveStorageType functions described in this section to add, remove, and
inspect the trailers appended to script data in generic storage descriptor records.

For more information about generic storage descriptor records, see “Saving Script Data,”
which begins on page 10-12.

noErr 0 No error
errOSAComponentMismatch –1761 The theScriptID and

theExactComponent parameters are
for two different scripting components

errOSACantOpenComponent –1762 Can’t connect to scripting component
badComponentInstance $80008001 Invalid component instance
10-92 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
OSAGetStorageType 10

You can use the OSAGetStorageType function to retrieve the scripting component
subtype from the script trailer appended to the script data in a generic storage descriptor
record.

FUNCTION OSAGetStorageType(scriptData: Handle;

VAR type: DescType): OSErr;

scriptData
A handle to the script data.

type The descriptor type specified in the script data trailer.

DESCRIPTION

The OSAGetStorageType function retrieves the scripting component subtype from the
trailer. If no trailer can be found, OSAGetStorageType returns the error
errOSABadStorageType.

RESULT CODES

OSAAddStorageType 10

You can use the OSAAddStorageType routine to add a trailer to the script data in a
generic storage descriptor record.

FUNCTION OSAAddStorageType(scriptData: Handle;

type: DescType): OSErr;

scriptData A handle to the script data.

type The descriptor type to be specified in the trailer added to the script data.

DESCRIPTION

The OSAAddStorageType routine attaches a trailer to a handle (consequently
expanding the data to which the handle refers) or updates an existing trailer.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSABadStorageType –1752 Bad storage type
Scripting Components Reference 10-93

C H A P T E R 1 0

Scripting Components
RESULT CODES

OSARemoveStorageType 10

You can use the OSARemoveStorageType routine to remove a trailer from the script
data in a generic storage descriptor record.

FUNCTION OSARemoveStorageType (scriptData: Handle): OSErr;

scriptData
A handle to the script data.

DESCRIPTION

The OSARemoveStorageType routine removes an existing trailer (reducing the
handle's size). If no trailer can be found, then the handle is not modified, and noErr is
returned.

RESULT CODES

Application-Defined Routines 10
Your application can provide alternative active, send, and create functions for use by
scripting components during script execution. All scripting components support
routines that allow you to set and get the current active function called periodically by
the scripting component during script execution. Some scripting components also
support routines that allow you to set and get the current send and create functions used
by the scripting component when it creates and sends Apple events during script
execution.

This section provides the syntax declarations for the active, send, create, and resume
dispatch functions. When a scripting component calls any of these functions, the A5
register is set up for your application, and your application is the current process.

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSABadStorageType –1752 Bad storage type

noErr 0 No error
errOSASystemError –1750 General scripting system error
errOSABadStorageType –1752 Bad storage type
10-94 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
MyActiveProc 10

Your application can provide an alternative active function that performs periodic tasks
during script compilation such as checking for Command-period, spinning the cursor,
and checking for system-level errors.

FUNCTION MyActiveProc (refCon: LongInt): OSErr;

refCon A reference constant.

DESCRIPTION

Every scripting component calls an active function periodically during script
compilation and execution and provides routines that allow your application to set or
get the pointer to the active function.

If you don’t set an alternative active function for a scripting component, it uses its own
default active function. A scripting component’s default active function allows a user to
cancel script execution by pressing Command-period and calls WaitNextEvent to give
other processes time.

SEE ALSO

For descriptions of the scripting component routines you can use to set or get the pointer
to a scripting component’s active function, see “Manipulating the Active Function” on
page 10-45.

For a discussion of the role of an active function, see “Supplying an Alternative Active
Function” on page 10-23.

MyAECreateProc 10

Your application can provide an alternative create function to gain control over the
creation and addressing of Apple events. This can be useful, for example, if your
application needs to add its own transaction code to the event. An alternative create
function takes the same parameters as the AECreateAppleEvent function plus a
reference constant.

FUNCTION MyAECreateProc (theAEEventClass: AEEventClass;

 theAEEventID: AEEventID;

 target: AEAddressDesc;

 returnID: Integer;

 transactionID: LongInt;

 VAR result: AppleEvent;

 refCon: LongInt): OSErr;
Scripting Components Reference 10-95

C H A P T E R 1 0

Scripting Components
DESCRIPTION

Every scripting component calls a create function whenever it creates an Apple event
during script execution and provides routines that allow you to set or get the pointer to
the create function.

If you don’t set an alternative create function for a scripting component, it uses the
standard Apple Event Manager function AECreateAppleEvent, which it calls with its
own default parameters.

SEE ALSO

For descriptions of the scripting component routines you can use to set or get the pointer
to a scripting component’s create function, see “Manipulating the Create and Send
Functions,” which begins on page 10-55.

For information about create functions, see “Alternative Create Functions” on page 10-24.

For a description of the parameters for the AECreateAppleEvent function, see
“Creating Apple Events,” which begins on page 5-26.

MyAESendProc 10

Your application can provide an alternative send function that performs almost any
action instead of or in addition to sending Apple events. For example, before sending an
Apple event, an alternative send function can modify the event or save a copy of the
event. An alternative send function takes the same parameters as the AESend function
plus a reference constant.

FUNCTION MyAESendProc (theAppleEvent: AppleEvent;

 VAR reply: AppleEvent;

 sendMode: AESendMode;

 sendPriority: AESendPriority;

 timeOutInTicks: LongInt;

 idleProc: IdleProcPtr;

 filterProc: EventFilterProcPtr;

 refCon: LongInt): OSErr;

DESCRIPTION

Every scripting component calls a send function whenever it sends an Apple event
during script execution and provides routines that allow you to set or get the pointer to
the send function.
10-96 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
If you don’t set an alternative send function for a scripting component, it uses the
standard Apple Event Manager function AESend, which it calls with its own default
parameters.

SEE ALSO

For descriptions of the scripting component routines you can use to set or get the pointer
to a scripting component’s send function, see “Manipulating the Create and Send
Functions,” which begins on page 10-55.

For more information about send functions, see “Alternative Send Functions” on
page 10-25.

For a description of the parameters for the AESend function, see “Sending Apple
Events,” which begins on page 5-38.

MyResumeDispatch 10

Your application can provide a resume dispatch function that a scripting component
calls during script execution to dispatch Apple events directly to an application’s default
handler for an Apple event. A resume dispatch function takes the same parameters as an
Apple event handler.

FUNCTION MyResumeDispatch (theAppleEvent: AppleEvent;

reply: AppleEvent; refCon: LongInt)

: OSErr;

theAppleEvent
The Apple event to be dispatched.

reply The default reply Apple event provided by the Apple Event Manager.

refCon The reference constant stored in the Apple event dispatch table for the
Apple event.

DESCRIPTION

If a script specifies that the Apple event should be passed to an application’s standard
handler for that event (for example, with an AppleScript continue statement), the
scripting component executing the script passes the event to the resume dispatch
function currently being used by the scripting component. The resume dispatch function
should dispatch the event directly to the application’s standard handler for that event. If
you use script contexts to handle Apple events, you may need to provide a resume
dispatch function.
Scripting Components Reference 10-97

C H A P T E R 1 0

Scripting Components
If you can rely on standard Apple event dispatching to dispatch the event correctly, you
don’t need to provide a resume dispatch function. Instead, you can use the
OSASetResumeDispatchProc routine to specify that the Apple Event Manager should
use standard Apple event dispatching instead of a resume dispatch function.

SEE ALSO

For a description of the OSASetResumeDispatchProc function, see page 10-72.

For a discussion of the use of script contexts to handle Apple events, see “Using a Script
Context to Handle an Apple Event” on page 10-19.
10-98 Scripting Components Reference

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Summary of Scripting Components 10

Pascal Summary 10

Constants 10

CONST

{Component Manager type and subtype codes}

kOSAComponentType = 'osa ';

kOSAGenericScriptingComponentSubtype = 'scpt';

{null script ID passed to OSAExecute, OSAGetSource, or OSAStartRecording}

kOSANullScript = 0; {empty script}

{mode flag that indicates a routine's default mode settings are to be }

{ used}

kOSAModeNull = 0;

kOSANullMode = 0;

{mode flag used with OSAStore to store a script context without storing }

{ its parent context}

kOSAModeDontStoreParent = $00004000;

{mode flag used with OSAStore, OSALoad, or OSACompile to request }

{ minimum script data}

kOSAModePreventGetSource = $00000001;

{mode flags used with OSACompile, OSAExecute, OSALoadExecute, }

{ OSACompileExecute, OSADoScript, OSAExecuteEvent, and OSADoEvent}

{these mode flags cause the scripting component to set the corresponding }

{ sendMode flags when it sends the event}

kOSAModeNeverInteract = kAENeverInteract;

kOSAModeCanInteract = kAECanInteract;

kOSAModeAlwaysInteract = kAEAlwaysInteract;

kOSAModeDontReconnect = kAEDontReconnect;
Summary of Scripting Components 10-99

C H A P T E R 1 0

Scripting Components
{this mode flag causes the scripting component not to set the }

{ kAECanSwitchLayer sendMode flag when it sends the event}

kOSAModeCantSwitchLayer = $00000040;

{this mode flag causes the scripting component not to set the }

{ kAEDontRecord sendMode flag when it sends the event}

kOSAModeDoRecord = $00001000;

{mode flags used with OSACompile}

{this mode flag causes OSACompile to compile the source data as a script }

{ context}

kOSAModeCompileIntoContext = $00000002;

{this mode flag causes OSACompile to augment the script data for a }

{ script context rather than replacing it}

kOSAModeAugmentContext = $00000004;

{mode flags used with OSADisplay or OSADoScript to indicate that output }

{ needs to be readable by humans only and does not have to be recompiled }

{ by OSACompile}

kOSAModeDisplayForHumans = $00000008;

{suite and event code for the Recorded Text event}

kOSASuite = 'ascr';

kOSARecordedText = 'recd';

{resource type for stored script data}

kOSAScriptResourceType = kOSAGenericScriptingComponentSubtype;

{descriptor type for generic storage descriptor records}

typeOSAGenericStorage = kOSAScriptResourceType;

{descriptor types and error range keywords for OSAScriptError}

kOSAErrorNumber = 'errn'; {returns error number}

kOSAErrorMessage = 'errs'; {returns error message}

kOSAErrorBriefMessage = 'errb'; {returns brief error }

 { message}

kOSAErrorApp = 'erap'; {returns PSN or name of }

 { errant application}

kOSAErrorPartialResult = 'ptlr'; {returns partial }

 { result, if any}
10-100 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
kOSAErrorOffendingObject = 'erob'; {returns info about }

 { offending object, if }

 { any}

kOSAErrorRange = 'erng'; {returns error range}

typeOSAErrorRange = 'erng'; {descriptor type for }

 { error range}

keyOSASourceStart = 'srcs'; {start of error range}

keyOSASourceEnd = 'srce'; {end of error range}

{if selector parameter of kOSAScriptError is kOSAErrorNumber, scripting }

{ components may return any of these error codes}

{dynamic errors}

errOSACantCoerce = errAECoercionFail;

errOSACantAccess = errAENoSuchObject;

errOSAGeneralError = -2700;

errOSADivideByZero = -2701;

errOSANumericOverflow = -2702;

errOSACantLaunch = -2703;

errOSAAppNotHighLevelEventAware = -2704;

errOSACorruptTerminology = -2705;

errOSAStackOverflow = -2706;

errOSAInternalTableOverflow = -2707;

errOSADataBlockTooLarge = -2708;

{component-specific dynamic script errors: -2720 through -2739}

{static errors}

errTypeError = errAEWrongDataType;

errOSAMessageNotUnderstood = errAEEventNotHandled;

errOSAUndefinedMessage = errAEHandlerNotFound;

errOSAIllegalIndex = errAEIllegalIndex;

errOASIllegalRange = errAEImpossibleRange;

errOSASyntaxError = -2740;

errOSASyntaxTypeError = -2741;

errOSATokenTooLong = -2742;

errOSAMissingParameter = errAEDescNotFound;

errOSAParameterMismatch = errAEWrongNumberArgs;

errOSADuplicateParameter = -2750;

errOSADuplicateProperty = -2751;

errOSADuplicateHandler = -2752;

errOSAUndefinedVariable = -2753;
Summary of Scripting Components 10-101

C H A P T E R 1 0

Scripting Components
errOSAInconsistentDeclarations = -2754;

errOSAControlFlowError = -2755;

{component-specific static script errors: -2760 through -2779}

{dialect-specific script errors: -2780 through -2799}

{descriptor type for each item in list returned by OSAAvailableDialects}

typeOSADialectInfo = 'difo';

{keywords for descriptor record of descriptor type typeOSADialectInfo; }

{ these can also be used in selector parameter of OSAGetDialectInfo}

keyOSADialectName = 'dnam'; {used with descriptor }

 { record of any text }

 { type, such as typeChar}

keyOSADialectCode = 'dcod'; {used with descriptor }

 { record of type }

 { typeShortInteger}

keyOSADialectLangCode = 'dlcd'; {used with descriptor }

 { record of type }

 { typeShortInteger}

keyOSADialectScriptCode = 'dscd'; {used with descriptor }

 { record of type }

 { typeShortInteger}

{constants for use with OSASetResumeDispatchProc}

kOSAUseStandardDispatch = kAEUseStandardDispatch;

kOSANoDispatch = kAENoDispatch;

kOSADontUsePhac = $0001;

{selectors for use with OSAGetScriptInfo}

kOSAScriptIsModified = 'modi';

kOSAScriptIsTypeCompiledScript = 'cscr';

kOSAScriptIsTypeScriptValue = 'valu';

kOSAScriptIsTypeScriptContext = 'cntx';

kOSAScriptBestType = 'best';

kOSACanGetSource = 'gsrc';

{OSA component flags}

kOSASupportsCompiling = $0002;

kOSASupportsGetSource = $0004;

kOSASupportsAECoercion = $0008;

kOSASupportsAESending = $0010;
10-102 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
kOSASupportsRecording = $0020;

kOSASupportsConvenience = $0040;

kOSASupportsDialects = $0080;

kOSASupportsEventHandling = $0100;

{component selectors}

{basic scripting}

kOSASelectLoad = $0001;

kOSASelectStore = $0002;

kOSASelectExecute = $0003;

kOSASelectDisplay = $0004;

kOSASelectScriptError = $0005;

kOSASelectDispose = $0006;

kOSASelectSetScriptInfo = $0007;

kOSASelectGetScriptInfo = $0008;

kOSASelectSetActiveProc = $0009;

kOSASelectGetActiveProc = $000A;

{compiling}

kOSASelectScriptingComponentName = $0102;

kOSASelectCompile = $0103;

kOSASelectCopyID = $0104;

{getting source data}

kOSASelectGetSource = $0201;

{coercing script values}

kOSASelectCoerceFromDesc = $0301;

kOSASelectCoerceToDesc = $0302;

{manipulating send and create functions}

kOSASelectSetSendProc = $0401;

kOSASelectGetSendProc = $0402;

kOSASelectSetCreateProc = $0403;

kOSASelectGetCreateProc = $0404;

kOSASelectSetDefaultTarget = $0405;

{recording}

kOSASelectStartRecording = $0501;

kOSASelectStopRecording = $0502;
Summary of Scripting Components 10-103

C H A P T E R 1 0

Scripting Components
{convenience}

kOSASelectLoadExecute = $0601;

kOSASelectCompileExecute = $0602;

kOSASelectDoScript = $0603;

{manipulating dialects}

kOSASelectSetCurrentDialect = $0701;

kOSASelectGetCurrentDialect = $0702;

kOSASelectAvailableDialects = $0703;

kOSASelectGetDialectInfo = $0704;

kOSASelectAvailableDialectCodeList = $0705;

{executing Apple event handlers in script contexts}

kOSASelectSetResumeDispatchProc = $0801;

kOSASelectGetResumeDispatchProc = $0802;

kOSASelectExecuteEvent = $0803;

kOSASelectDoEvent = $0804;

kOSASelectMakeContext = $0805;

{scripting-component-specific selectors begin with this value}

kOSASelectComponentSpecificStart = $1001;

{*******AppleScript component constants*******}

typeAppleScript = 'ascr';

{Component Manager subtype for AppleScript component}

kAppleScriptSubtype = typeAppleScript;

{AppleScript constant for storage descriptor records}

typeASStorage = typeAppleScript;

{AppleScript constant for the selector parameter of OSAGetScriptInfo}

kASHasOpenHandler = 'hsod';

{AppleScript component selectors}

kASSelectInit = $1001;

kASSelectSetSourceStyles = $1002;

kASSelectGetSourceStyles = $1003;

kASSelectGetSourceStyleNames = $1004;

{default initialization parameters for AppleScript}

kASDefaultMinStackSize = 1 * 1024;

kASDefaultPreferredStackSize = 4 * 1024;

kASDefaultMaxStackSize = 16 * 1024;
10-104 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
kASDefaultMinHeapSize = 4 * 1024;

kASDefaultPreferredHeapSize = 64 * 1024;

kASDefaultMaxHeapSize = 32 * 1024 * 1024;

{AppleScript source style flags}

kASSourceStyleUncompiledText = 0;

kASSourceStyleNormalText = 1;

kASSourceStyleLanguageKeyword = 2;

kASSourceStyleApplicationKeyword = 3;

kASSourceStyleComment = 4;

kASSourceStyleLiteral = 5;

kASSourceStyleUserSymbol = 6;

kASSourceStyleObjectSpecifier = 7;

kASNumberOfSourceStyles = 8;

{if selector parameter of kOSAScriptError is kOSAErrorNumber, }

{ AppleScript component may return any of these error codes}

errASCantConsiderAndIgnore = -2720;

errASCantCompareMoreThan32k = -2721;

errASCantCompareMixedScripts = -2722;

errASTerminologyNestingTooDeep = -2760;

errASInconsistentNames = -2780; {English dialect}

{*******generic scripting component constants*******}

{component version this header file describes}

kGenericComponentVersion = $0100;

{generic scripting component selectors}

kGSSSelectGetDefaultScriptingComponent = $1001;

kGSSSelectSetDefaultScriptingComponent = $1002;

kGSSSelectGetScriptingComponent = $1003;

kGSSSelectGetScriptingComponentFromStored = $1004;

kGSSSelectGenericToRealID = $1005;

kGSSSelectRealToGenericID = $1006;

Data Types 10

TYPE

OSAID = LongInt; {script ID}

OSAError = ComponentResult; {type for result codes}
Summary of Scripting Components 10-105

C H A P T E R 1 0

Scripting Components
{pointers for application-defined functions}

OSAActiveProcPtr = ProcPtr;

AESendProcPtr = ProcPtr;

AECreateAppleEventProcPtr = ProcPtr;

AEHandlerProcPtr = EventHandlerProcPtr;

{generic scripting component data types}

ScriptingComponentSelector = OSType;

GenericID = OSAID;

Required Scripting Component Routines 10

Saving and Loading Script Data

FUNCTION OSAStore (scriptingComponent: ComponentInstance;
scriptID: OSAID;
desiredType: DescType;
modeFlags: LongInt;
VAR resultingScriptData: AEDesc): OSAError;

FUNCTION OSALoad (scriptingComponent: ComponentInstance;
scriptData: AEDesc;
modeFlags: LongInt;
VAR resultingScriptID: OSAID): OSAError;

Executing and Disposing of Scripts

FUNCTION OSAExecute (scriptingComponent: ComponentInstance;
compiledScriptID: OSAID;
contextID: OSAID;
modeFlags: LongInt;
VAR resultingScriptValueID: OSAID): OSAError;

FUNCTION OSADisplay (scriptingComponent: ComponentInstance;
scriptValueID: OSAID;
desiredType: DescType;
modeFlags: LongInt;
VAR resultingText: AEDesc): OSAError;

FUNCTION OSAScriptError (scriptingComponent: ComponentInstance;
selector: OSType;
desiredType: DescType;
VAR resultingErrorDescription: AEDesc)
: OSAError;

FUNCTION OSADispose (scriptingComponent: ComponentInstance;
scriptID: OSAID): OSAError;
10-106 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Setting and Getting Script Information

FUNCTION OSASetScriptInfo (scriptingComponent: ComponentInstance;
scriptID: OSAID; selector: OSType;
value: LongInt): OSAError;

FUNCTION OSAGetScriptInfo (scriptingComponent: ComponentInstance;
scriptID: OSAID; selector: OSType;
VAR result: LongInt): OSAError;

Manipulating the Active Function

FUNCTION OSASetActiveProc (scriptingComponent: ComponentInstance;
activeProc: OSAActiveProcPtr;
refCon: LongInt): OSAError;

FUNCTION OSAGetActiveProc (scriptingComponent: ComponentInstance;
VAR activeProc: OSAActiveProcPtr;
VAR refCon: LongInt): OSAError;

Optional Scripting Component Routines 10

Compiling Scripts

FUNCTION OSAScriptingComponentName
(scriptingComponent: ComponentInstance;
VAR resultingScriptingComponentName: AEDesc)
: OSAError;

FUNCTION OSACompile (scriptingComponent: ComponentInstance;
sourceData: AEDesc; modeFlags: LongInt;
VAR previousAndResultingScriptID: OSAID)
: OSAError;

FUNCTION OSACopyID (scriptingComponent: ComponentInstance;
fromID: OSAID; VAR toID: OSAID): OSAError;

Getting Source Data

FUNCTION OSAGetSource (scriptingComponent: ComponentInstance;
scriptID: OSAID; desiredType: DescType;
VAR resultingSourceData: AEDesc): OSAError;

Coercing Script Values

FUNCTION OSACoerceFromDesc (scriptingComponent: ComponentInstance;
scriptData: AEDesc; modeFlags: LongInt;
VAR resultingScriptValueID: OSAID): OSAError;
Summary of Scripting Components 10-107

C H A P T E R 1 0

Scripting Components
FUNCTION OSACoerceToDesc (scriptingComponent: ComponentInstance;
scriptValueID: OSAID;
desiredType: DescType; modeFlags: LongInt;
VAR result: AEDesc): OSAError;

Manipulating the Create and Send Functions

FUNCTION OSASetCreateProc (scriptingComponent: ComponentInstance;
createProc: AECreateAppleEventProcPtr;
refCon: LongInt): OSAError;

FUNCTION OSAGetCreateProc (scriptingComponent: ComponentInstance;
VAR createProc: AECreateAppleEventProcPtr;
VAR refCon: LongInt): OSAError;

FUNCTION OSASetSendProc (scriptingComponent: ComponentInstance;
sendProc: AESendProcPtr;
refCon: LongInt): OSAError;

FUNCTION OSAGetSendProc (scriptingComponent: ComponentInstance;
VAR sendProc: AESendProcPtr;
VAR refCon: LongInt): OSAError;

FUNCTION OSASetDefaultTarget
(scriptingComponent: ComponentInstance;
target: AEAddressDesc): OSAError;

Recording Scripts

FUNCTION OSAStartRecording (scriptingComponent: ComponentInstance;
VAR compiledScriptToModifyID: OSAID): OSAError;

FUNCTION OSAStopRecording (scriptingComponent: ComponentInstance;
compiledScriptID: OSAID): OSAError;

Executing Scripts in One Step

FUNCTION OSALoadExecute (scriptingComponent: ComponentInstance;
scriptData: AEDesc;
contextID: OSAID; modeFlags: LongInt;
VAR resultingScriptValueID: OSAID): OSAError;

FUNCTION OSACompileExecute (scriptingComponent: ComponentInstance;
sourceData: AEDesc;
contextID: OSAID; modeFlags: LongInt;
VAR resultingScriptValueID: OSAID): OSAError;

FUNCTION OSADoScript (scriptingComponent: ComponentInstance;
sourceData: AEDesc;
contextID: OSAID;
desiredType: DescType; modeFlags: LongInt;
VAR resultingText: AEDesc): OSAError;
10-108 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Manipulating Dialects

FUNCTION OSASetCurrentDialect
(scriptingComponent: ComponentInstance;
dialectCode: Integer): OSAError;

FUNCTION OSAGetCurrentDialect
(scriptingComponent: ComponentInstance;
VAR resultingDialectCode: Integer): OSAError;

FUNCTION OSAAvailableDialectCodeList
(scriptingComponent: ComponentInstance;
VAR resultingDialectCodeList: AEDesc)
: OSAError;

FUNCTION OSAGetDialectInfo (scriptingComponent: ComponentInstance;
dialectCode: Integer; selector: OSType;
VAR resultingDialectInfo: AEDesc): OSAError;

FUNCTION OSAAvailableDialects
(scriptingComponent: ComponentInstance;
VAR resultingDialectCodeList: AEDesc)
: OSAError;

Using Script Contexts to Handle Apple Events

FUNCTION OSASetResumeDispatchProc
(scriptingComponent: ComponentInstance;
resumeDispatchProc: AEHandlerProcPtr;
refCon: LongInt): OSAError;

FUNCTION OSAGetResumeDispatchProc
(scriptingComponent: ComponentInstance;
VAR resumeDispatchProc: AEHandlerProcPtr;
VAR refCon: LongInt): OSAError;

FUNCTION OSAExecuteEvent (scriptingComponent: ComponentInstance;
theAppleEvent: AppleEvent;
contextID: OSAID; modeFlags: LongInt;
VAR resultingScriptValueID: OSAID): OSAError;

FUNCTION OSADoEvent (scriptingComponent: ComponentInstance;
theAppleEvent: AppleEvent;
contextID: OSAID; modeFlags: LongInt;
VAR reply: AppleEvent): OSAError;

FUNCTION OSAMakeContext (scriptingComponent: ComponentInstance;
contextName: AEDesc;
parentContext: OSAID;
VAR resultingContextID: OSAID): OSAError;
Summary of Scripting Components 10-109

C H A P T E R 1 0

Scripting Components
AppleScript Component Routines 10

Initializing AppleScript

FUNCTION ASInit (scriptingComponent: ComponentInstance;
modeFlags: LongInt;
minStackSize: LongInt;
preferredStackSize: LongInt;
maxStackSize: LongInt;
minHeapSize: LongInt;
preferredHeapSize: LongInt;
maxHeapSize: LongInt): OSAError;

Getting and Setting Styles for Source Data
FUNCTION ASGetSourceStyles (scriptingComponent: ComponentInstance;

VAR resultingSourceStyles: STHandle): OSAError;

FUNCTION ASSetSourceStyles (scriptingComponent: ComponentInstance;
sourceStyles: STHandle): OSAError;

FUNCTION ASGetSourceStyleNames
(scriptingComponent: ComponentInstance;
modeFlags: LongInt;
VAR resultingSourceStyleNamesList: AEDescList)
: OSAError;

Generic Scripting Component Routines 10

Getting and Setting the Default Scripting Component

FUNCTION OSAGetDefaultScriptingComponent
(genericScriptingComponent: ComponentInstance;
VAR scriptingSubType:
ScriptingComponentSelector): OSAError;

FUNCTION OSASetDefaultScriptingComponent
(genericScriptingComponent: ComponentInstance;
scriptingSubType: ScriptingComponentSelector):
OSAError;

Using Component-Specific Routines

FUNCTION OSAGetScriptingComponentFromStored
(genericScriptingComponent: ComponentInstance;
scriptData: AEDesc;
VAR scriptingSubType:
ScriptingComponentSelector): OSAError;
10-110 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
FUNCTION OSAGetScriptingComponent
(genericScriptingComponent: ComponentInstance;
scriptingSubType: ScriptingComponentSelector;
VAR scriptingInstance: ComponentInstance)
: OSAError;

FUNCTION OSAGenericToRealID (genericScriptingComponent: ComponentInstance;
VAR theScriptID: OSAID;
VAR theExactComponent: ComponentInstance)
: OSAError;

FUNCTION OSARealToGenericID (genericScriptingComponent: ComponentInstance;
VAR theScriptID: OSAID;
theExactComponent: ComponentInstance)
: OSAError;

Routines Used by Scripting Components 10

Manipulating Trailers for Generic Storage Descriptor Records

FUNCTION OSAGetStorageType (scriptData: Handle; VAR type: DescType): OSErr;

FUNCTION OSAAddStorageType (scriptData: Handle; type: DescType): OSErr;

FUNCTION OSARemoveStorageType
(scriptData: Handle): OSErr;

Application-Defined Routines 10

FUNCTION MyActiveProc (refCon: LongInt): OSErr;

FUNCTION MyAECreateProc (theAEEventClass: AEEventClass;
theAEEventID: AEEventID; target: AEAddressDesc;
returnID: Integer; transactionID: LongInt;
VAR result: AppleEvent;
refCon: LongInt): OSErr;

FUNCTION MyAESendProc (theAppleEvent: AppleEvent;
VAR reply: AppleEvent; sendMode: AESendMode;
sendPriority: AESendPriority;
timeOutInTicks: LongInt;
idleProc: IdleProcPtr;
filterProc: EventFilterProcPtr;
refCon: LongInt): OSErr;

FUNCTION MyResumeDispatch (theAppleEvent: AppleEvent; reply: AppleEvent;
refCon: LongInt): OSErr;
Summary of Scripting Components 10-111

C H A P T E R 1 0

Scripting Components
C Summary 10

Constants 10

/*Component Manager type and subtype codes*/

#define kOSAComponentType 'osa '

#define kOSAGenericScriptingComponentSubtype 'scpt'

/*null script ID passed to OSAExecute, OSAGetSource, or OSAStartRecording*/

#define kOSANullScript ((OSAID) 0)

/*mode flag that indicates a routine's default mode settings are to be used*/

#define kOSAModeNull 0

#define kOSANullMode 0

/*mode flag used with OSAStore to store a script context without storing */

/* its parent context*/

#define kOSAModeDontStoreParent 0x00004000

/*mode flag used with OSAStore, OSALoad, or OSACompile to request */

/* minimum script data*/

#define kOSAModePreventGetSource 0x00000001

/*mode flags used with OSACompile, OSAExecute, OSALoadExecute, */

/* OSACompileExecute, OSADoScript, OSAExecuteEvent, and OSADoEvent*/

/*these mode flags cause the scripting component to set the corresponding */

/* sendMode flags when it sends the event*/

#define kOSAModeNeverInteract kAENeverInteract

#define kOSAModeCanInteract kAECanInteract

#define kOSAModeAlwaysInteract kAEAlwaysInteract

#define kOSAModeDontReconnect kAEDontReconnect

/*this mode flag causes the scripting component not to set the */

/* kAECanSwitchLayer sendMode flag when it sends the event*/

#define kOSAModeCantSwitchLayer 0x00000040

/*this mode flag causes the scripting component not to set the */

/* kAEDontRecord sendMode flag when it sends the event*/

#define kOSAModeDoRecord 0x00001000
10-112 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
/*mode flags used with OSACompile*/

/*this mode flag causes OSACompile to compile the source data as a script */

/* context*/

#define kOSAModeCompileIntoContext 0x00000002

/*this mode flag causes OSACompile to augment the script data for a script */

/* context rather than replacing it*/

#define kOSAModeAugmentContext 0x00000004

/*mode flags used with OSADisplay or OSADoScript to indicate that output */

/* needs to be readable by humans only and does not have to be recompiled */

/* by OSACompile*/

#define kOSAModeDisplayForHumans 0x00000008

/*suite and event code for the Recorded Text event*/

#define kOSASuite 'ascr'

#define kOSARecordedText 'recd'

/*resource type for stored script data*/

#define kOSAScriptResourceType kOSAGenericScriptingComponentSubtype

/*descriptor type for generic storage descriptor records*/

#define typeOSAGenericStorage kOSAScriptResourceType

/*descriptor types and error range keywords for OSAScriptError*/

#define kOSAErrorNumber 'errn' /*returns error number*/

#define kOSAErrorMessage 'errs' /*returns error message*/

#define kOSAErrorBriefMessage 'errb' /*returns brief error */

/* message*/

#define kOSAErrorApp 'erap' /*returns PSN or name of */

/* errant application*/

#define kOSAErrorPartialResult 'ptlr' /*returns partial result, */

/* if any*/

#define kOSAErrorOffendingObject 'erob' /*returns info about */

/* offending object, if any*/

#define kOSAErrorRange 'erng' /*returns error range*/

#define typeOSAErrorRange 'erng' /*descriptor type for */

/* error range*/

#define keyOSASourceStart 'srcs' /*start of error range*/

#define keyOSASourceEnd 'srce' /*end of error range*/
Summary of Scripting Components 10-113

C H A P T E R 1 0

Scripting Components
/*if selector parameter of kOSAScriptError is kOSAErrorNumber, scripting */

/* components may return any of these error codes*/

/*dynamic errors*/

#define errOSACantCoerce errAECoercionFail

#define errOSACantAccess errAENoSuchObject

#define errOSAGeneralError -2700

#define errOSADivideByZero -2701

#define errOSANumericOverflow -2702

#define errOSACantLaunch -2703

#define errOSAAppNotHighLevelEventAware -2704

#define errOSACorruptTerminology -2705

#define errOSAStackOverflow -2706

#define errOSAInternalTableOverflow -2707

#define errOSADataBlockTooLarge -2708

/*component-specific dynamic script errors: -2720 through -2739*/

/*static errors*/

#define errTypeError errAEWrongDataType

#define errOSAMessageNotUnderstood errAEEventNotHandled

#define errOSAUndefinedMessage errAEHandlerNotFound

#define errOSAIllegalIndex errAEIllegalIndex

#define errOASIllegalRange errAEImpossibleRange

#define errOSASyntaxError -2740

#define errOSASyntaxTypeError -2741

#define errOSATokenTooLong -2742

#define errOSAMissingParameter errAEDescNotFound

#define errOSAParameterMismatch errAEWrongNumberArgs

#define errOSADuplicateParameter -2750

#define errOSADuplicateProperty -2751

#define errOSADuplicateHandler -2752

#define errOSAUndefinedVariable -2753

#define errOSAInconsistentDeclarations -2754

#define errOSAControlFlowError -2755

/*component-specific static script errors: -2760 through -2779*/

/*dialect-specific script errors: -2780 through -2799*/

/*descriptor type for each item in list returned by OSAAvailableDialects*/

#define typeOSADialectInfo 'difo'
10-114 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
/*keywords for descriptor record of descriptor type typeOSADialectInfo; */

/* these can also be used in selector parameter of OSAGetDialectInfo*/

#define keyOSADialectName 'dnam' /*used with descriptor */

/* record of any text */

/* type, such as typeChar*/

#define keyOSADialectCode 'dcod' /*used with descriptor */

/* record of type */

/* typeShortInteger*/

#define keyOSADialectLangCode 'dlcd' /*used with descriptor */

/* record of type */

/* typeShortInteger*/

#define keyOSADialectScriptCode 'dscd' /*used with descriptor */

/* record of type */

/* typeShortInteger*/

/*constants for use with OSASetResumeDispatchProc*/

#define kOSAUseStandardDispatch kAEUseStandardDispatch

#define kOSANoDispatch kAENoDispatch

#define kOSADontUsePhac $0001

/*selectors for use with OSAGetScriptInfo*/

#define kOSAScriptIsModified 'modi'

#define kOSAScriptIsTypeCompiledScript 'cscr'

#define kOSAScriptIsTypeScriptValue 'valu'

#define kOSAScriptIsTypeScriptContext 'cntx'

#define kOSAScriptBestType 'best'

#define kOSACanGetSource 'gsrc'

/*OSA component flags*/

#define kOSASupportsCompiling 0x0002

#define kOSASupportsGetSource 0x0004

#define kOSASupportsAECoercion 0x0008

#define kOSASupportsAESending 0x0010

#define kOSASupportsRecording 0x0020

#define kOSASupportsConvenience 0x0040

#define kOSASupportsDialects 0x0080

#define kOSASupportsEventHandling 0x0100

/*component selectors*/

/*basic scripting*/

#define kOSASelectLoad 0x0001
Summary of Scripting Components 10-115

C H A P T E R 1 0

Scripting Components
#define kOSASelectStore 0x0002

#define kOSASelectExecute 0x0003

#define kOSASelectDisplay 0x0004

#define kOSASelectScriptError 0x0005

#define kOSASelectDispose 0x0006

#define kOSASelectSetScriptInfo 0x0007

#define kOSASelectGetScriptInfo 0x0008

#define kOSASelectSetActiveProc 0x0009

#define kOSASelectGetActiveProc 0x000A

/*compiling*/

#define kOSASelectScriptingComponentName 0x0102

#define kOSASelectCompile 0x0103

#define kOSASelectCopyID 0x0104

/*getting source data*/

#define kOSASelectGetSource 0x0201

/*coercing script values*/

#define kOSASelectCoerceFromDesc 0x0301

#define kOSASelectCoerceToDesc 0x0302

/*manipulating send and create functions*/

#define kOSASelectSetSendProc 0x0401

#define kOSASelectGetSendProc 0x0402

#define kOSASelectSetCreateProc 0x0403

#define kOSASelectGetCreateProc 0x0404

#define kOSASelectSetDefaultTarget 0x0405

/*recording*/

#define kOSASelectStartRecording 0x0501

#define kOSASelectStopRecording 0x0502

/*convenience*/

#define kOSASelectLoadExecute 0x0601

#define kOSASelectCompileExecute 0x0602

#define kOSASelectDoScript 0x0603

/*manipulating dialects*/

#define kOSASelectSetCurrentDialect 0x0701

#define kOSASelectGetCurrentDialect 0x0702

#define kOSASelectAvailableDialects 0x0703

#define kOSASelectGetDialectInfo 0x0704
10-116 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
#define kOSASelectAvailableDialectCodeList 0x0705

/*executing Apple event handlers in script contexts*/

#define kOSASelectSetResumeDispatchProc 0x0801

#define kOSASelectGetResumeDispatchProc 0x0802

#define kOSASelectExecuteEvent 0x0803

#define kOSASelectDoEvent 0x0804

#define kOSASelectMakeContext 0x0805

/*scripting-component-specific selectors are added beginning with this */

/* value*/

#define kOSASelectComponentSpecificStart 0x1001

/********AppleScript component constants********/

#define typeAppleScript 'ascr'

/*Component Manager subtype for AppleScript component*/

#define kAppleScriptSubtype typeAppleScript

/*AppleScript constant for storage descriptor records*/

#define typeASStorage typeAppleScript

/*AppleScript constant for the selector parameter of OSAGetScriptInfo*/

#define kASHasOpenHandler 'hsod'

/*AppleScript component selectors*/

#define kASSelectInit 0x1001

#define kASSelectSetSourceStyles 0x1002

#define kASSelectGetSourceStyles 0x1003

#define kASSelectGetSourceStyleNames 0x1004

/*default initialization parameters for AppleScript*/

#define kASDefaultMinStackSize 1 * 1024

#define kASDefaultPreferredStackSize 4 * 1024

#define kASDefaultMaxStackSize 16 * 1024

#define kASDefaultMinHeapSize 4 * 1024

#define kASDefaultPreferredHeapSize 64 * 1024

#define kASDefaultMaxHeapSize 32 * 1024 * 1024

/*AppleScript source style flags*/

#define kASSourceStyleUncompiledText 0

#define kASSourceStyleNormalText 1

#define kASSourceStyleLanguageKeyword 2
Summary of Scripting Components 10-117

C H A P T E R 1 0

Scripting Components
#define kASSourceStyleApplicationKeyword 3

#define kASSourceStyleComment 4

#define kASSourceStyleLiteral 5

#define kASSourceStyleUserSymbol 6

#define kASSourceStyleObjectSpecifier 7

#define kASNumberOfSourceStyles 8

/*if selector parameter of kOSAScriptError is kOSAErrorNumber, AppleScript */

/* component may return any of these error codes*/

#define errASCantConsiderAndIgnore -2720

#define errASCantCompareMoreThan32k -2721

#define errASCantCompareMixedScripts -2722

#define errASTerminologyNestingTooDeep -2760

#define errASInconsistentNames -2780 /*English dialect*/

/*******generic scripting component constants*******/

/*component version this header file describes*/

kGenericComponentVersion 0x0100

/*generic scripting component selectors*/

#define kGSSSelectGetDefaultScriptingComponent 0x1001

#define kGSSSelectSetDefaultScriptingComponent 0x1002

#define kGSSSelectGetScriptingComponent 0x1003

#define kGSSSelectGetScriptingSystemFromStored 0x1004

#define kGSSSelectGenericToRealID 0x1005

#define kGSSSelectRealToGenericID 0x1006

Data Types 10

typedef unsigned long OSAID; /*script ID*/

typedef ComponentResult OSAError; /*type for result codes*/

/*pointers for application-defined functions*/

typedef pascal OSErr (*OSAActiveProcPtr) (long refCon);

typedef pascal OSErr (*AESendProcPtr)

 (const AppleEvent* theAppleEvent,

AppleEvent* reply, AESendMode sendMode,

AESendPriority sendPriority,

long timeOutInTicks, IdleProcPtr idleProc,

EventFilterProcPtr filterProc, long refCon);
10-118 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
typedef pascal OSErr (*AECreateAppleEventProcPtr)

 (AEEventClass theAEEventClass,

AEEventID theAEEventID,

const AEAddressDesc* target, short returnID,

long transactionID, AppleEvent* result,

long refCon);

typedef pascal OSErr (*AEHandlerProcPtr)

 (const AppleEvent* the AppleEvent,

AppleEvent* reply, long refCon);

/*generic scripting component data types*/

typedef OSType ScriptingComponentSelector;

typedef OSAID GenericID;

Required Scripting Component Routines 10

Saving and Loading Script Data

pascal OSAError OSAStore (ComponentInstance scriptingComponent,
OSAID scriptID, DescType desiredType,
long modeFlags, AEDesc* resultingScriptData);

pascal OSAError OSALoad (ComponentInstance scriptingComponent,
const AEDesc* scriptData, long modeFlags,
OSAID* resultingScriptID);

Executing and Disposing of Scripts

pascal OSAError OSAExecute (ComponentInstance scriptingComponent,
OSAID compiledScriptID, OSAID contextID,
long modeFlags, OSAID* resultingScriptValueID);

pascal OSAError OSADisplay (ComponentInstance scriptingComponent,
OSAID scriptValueID, DescType desiredType,
long modeFlags, AEDesc* resultingText);

pascal OSAError OSAScriptError
(ComponentInstance scriptingComponent,
OSType selector, DescType desiredType,
AEDesc* resultingErrorDescription);

pascal OSAError OSADispose (ComponentInstance scriptingComponent,
OSAID scriptID);

Setting and Getting Script Information

pascal OSAError OSASetScriptInfo
(ComponentInstance scriptingComponent,
OSAID scriptID, OSType selector, long value);
Summary of Scripting Components 10-119

C H A P T E R 1 0

Scripting Components
pascal OSAError OSAGetScriptInfo
(ComponentInstance scriptingComponent,
OSAID scriptID, OSType selector, long* result);

Manipulating the Active Function

pascal OSAError OSASetActiveProc
(ComponentInstance scriptingComponent,
OSAActiveProcPtr activeProc, long refCon);

pascal OSAError OSAGetActiveProc
(ComponentInstance scriptingComponent,
OSAActiveProcPtr* activeProc, long* refCon);

Optional Scripting Component Routines 10

Compiling Scripts

pascal OSAError OSAScriptingComponentName
(ComponentInstance scriptingComponent,
AEDesc* resultingScriptingComponentName);

pascal OSAError OSACompile (ComponentInstance scriptingComponent,
const AEDesc* sourceData,
long modeFlags,
OSAID* previousAndResultingScriptID);

pascal OSAError OSACopyID (ComponentInstance scriptingComponent,
OSAID fromID, OSAID* toID);

Getting Source Data

pascal OSAError OSAGetSource
(ComponentInstance scriptingComponent,
OSAID scriptID, DescType desiredType,
AEDesc* resultingSourceData);

Coercing Script Values

pascal OSAError OSACoerceFromDesc
(ComponentInstance scriptingComponent,
const AEDesc* scriptData, long modeFlags,
OSAID* resultingScriptValueID);

pascal OSAError OSACoerceToDesc
(ComponentInstance scriptingComponent,
OSAID scriptValueID, DescType desiredType,
long modeFlags, AEDesc* result);
10-120 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Manipulating the Create and Send Functions

pascal OSAError OSASetCreateProc
(ComponentInstance scriptingComponent,
AECreateAppleEventProcPtr createProc,
long refCon);

pascal OSAError OSAGetCreateProc
(ComponentInstance scriptingComponent,
AECreateAppleEventProcPtr* createProc,
long* refCon);

pascal OSAError OSASetSendProc
(ComponentInstance scriptingComponent,
AESendProcPtr sendProc, long refCon);

pascal OSAError OSAGetSendProc
(ComponentInstance scriptingComponent,
AESendProcPtr* sendProc, long* refCon);

pascal OSAError OSASetDefaultTarget
(ComponentInstance scriptingComponent,
const AEAddressDesc* target);

Recording Scripts

pascal OSAError OSAStartRecording
(ComponentInstance scriptingComponent,
OSAID* compiledScriptToModifyID);

pascal OSAError OSAStopRecording
(ComponentInstance scriptingComponent,
OSAID compiledScriptID);

Executing Scripts in One Step

pascal OSAError OSALoadExecute
(ComponentInstance scriptingComponent,
const AEDesc* scriptData, OSAID contextID,
long modeFlags, OSAID* resultingScriptValueID);

pascal OSAError OSACompileExecute
(ComponentInstance scriptingComponent,
const AEDesc* sourceData, OSAID contextID,
long modeFlags, OSAID* resultingScriptValueID);

pascal OSAError OSADoScript (ComponentInstance scriptingComponent,
const AEDesc* sourceData, OSAID contextID,
DescType desiredType, long modeFlags,
AEDesc* resultingText);
Summary of Scripting Components 10-121

C H A P T E R 1 0

Scripting Components
Manipulating Dialects

pascal OSAError OSASetCurrentDialect
(ComponentInstance scriptingComponent,
short dialectCode);

pascal OSAError OSAGetCurrentDialect
(ComponentInstance scriptingComponent,
short* resultingDialectCode);

pascal OSAError OSAAvailableDialectCodeList
(ComponentInstance scriptingComponent,
AEDesc* resultingDialectCodeList);

pascal OSAError OSAGetDialectInfo
(ComponentInstance scriptingComponent,
short dialectCode, OSType selector,
AEDesc* resultingDialectInfo);

pascal OSAError OSAAvailableDialects
(ComponentInstance scriptingComponent,
AEDesc* resultingDialectInfoList);

Using Script Contexts to Handle Apple Events

pascal OSAError OSASetResumeDispatchProc
(ComponentInstance scriptingComponent,
AEHandlerProcPtr resumeDispatchProc,
long refCon);

pascal OSAError OSAGetResumeDispatchProc
(ComponentInstance scriptingComponent,
AEHandlerProcPtr* resumeDispatchProc,
long* refCon);

pascal OSAError OSAExecuteEvent
(ComponentInstance scriptingComponent,
const AppleEvent* theAppleEvent,
OSAID contextID, long modeFlags,
OSAID* resultingScriptValueID);

pascal OSAError OSADoEvent (ComponentInstance scriptingComponent,
const AppleEvent* theAppleEvent,
OSAID contextID, long modeFlags,
AppleEvent* reply);

pascal OSAError OSAMakeContext
(ComponentInstance scriptingComponent,
const AEDesc* contextName,
OSAID parentContext,
OSAID* resultingContextID);
10-122 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
AppleScript Component Routines 10

Initializing AppleScript

pascal OSAError ASInit (ComponentInstance scriptingComponent,
long modeFlags, long minStackSize,
long preferredStackSize, long maxStackSize,
long minHeapSize, long preferredHeapSize,
long maxHeapSize);

Getting and Setting Styles for Source Data

pascal OSAError ASGetSourceStyles
(ComponentInstance scriptingComponent,
STHandle* resultingSourceStyles);

pascal OSAError ASSetSourceStyles
(ComponentInstance scriptingComponent,
STHandle sourceStyles);

pascal OSAError ASGetSourceStyleNames
(ComponentInstance scriptingComponent,
long modeFlags,
AEDescList* resultingSourceStyleNamesList);

Generic Scripting Component Routines 10

Getting and Setting the Default Scripting Component

pascal OSAError OSAGetDefaultScriptingComponent
(ComponentInstance genericScriptingComponent,
ScriptingComponentSelector* scriptingSubType);

pascal OSAError OSASetDefaultScriptingComponent
(ComponentInstance genericScriptingComponent,
ScriptingComponentSelector scriptingSubType);

Using Component-Specific Routines

pascal OSAError OSAGetScriptingComponentFromStored
(ComponentInstance genericScriptingComponent,
const AEDesc *scriptData,
ScriptingComponentSelector scriptingSubType);

pascal OSAError OSAGetScriptingComponent
(ComponentInstance genericScriptingComponent,
ScriptingComponentSelector scriptingSubType,
ComponentInstance* scriptingInstance);
Summary of Scripting Components 10-123

C H A P T E R 1 0

Scripting Components
pascal OSAError OSAGenericToRealID
(ComponentInstance genericScriptingComponent,
OSAID *theScriptID,
ComponentInstance *theExactComponent);

pascal OSAError OSARealToGenericID
(ComponentInstance genericScriptingComponent,
OSAID *theScriptID,
ComponentInstance theExactComponent);

Routines Used by Scripting Components 10

Manipulating Trailers for Generic Storage Descriptor Records

pascal OSErr OSAGetStorageType
(Handle scriptData, DescType* type);

pascal OSErr OSAAddStorageType
(Handle scriptData, DescType type);

pascal OSErr OSARemoveStorageType
(Handle scriptData);

Application-Defined Routines 10

pascal OSErr MyActiveProc (long refCon);

pascal OSErr MyAECreateProc
(AEEventClass theAEEventClass,
AEEventID theAEEventID, AEAddressDesc target,
short returnID, long transactionID,
AppleEvent* result, long refCon);

pascal OSErr MyAESendProc (AppleEvent theAppleEvent, AppleEvent* reply,
AESendMode sendMode,
AESendPriority sendPriority,
long timeOutInTicks, IdleProcPtr idleProc,
EventFilterProcPtr filterProc, long refCon);

pascal OSErr MyResumeDispatch
(const AppleEvent* theAppleEvent,
AppleEvent* reply, long refCon);
10-124 Summary of Scripting Components

C H A P T E R 1 0

Scripting Components

10
S

cripting C
om

ponents
Result Codes 10
noErr 0 No error
errOSACantCoerce –1700 Same as errAECoercionFail; data could not be

coerced to the requested data type
errOSACorruptData –1702 Same as errAECorruptData
errAEEventNotHandled –1708 Event wasn’t handled by an Apple event handler
errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when it is already

on for a recording process
errOSASystemError –1750 General scripting system error
errOSAInvalidID –1751 Invalid script ID
errOSABadStorageType –1752 Illegal storage type
errOSAScriptError –1753 Error occurred during compilation or execution
errOSABadSelector –1754 Selector not supported by scripting component
errOSASourceNotAvailable –1756 Source data not available
errOSANoSuchDialect –1757 Invalid dialect code
errOSADataFormatObsolete –1758 Data format is obsolete
errOSADataFormatTooNew –1759 Data format is too new
errOSAComponentMismatch –1761 Generic scripting component error; parameters

are for two different scripting components instead
of the same one

errOSACantOpenComponent –1762 Generic scripting component error; can’t connect
to scripting component

badComponentInstance $80008001 Invalid component instance
Summary of Scripting Components 10-125

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	 Resolving and Creating Object Specifier Records
	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	Scripting Components
	Connecting to a Scripting Component
	Using Scripting Component Routines
	Compiling and Executing Source Data
	Saving Script Data
	Storage Formats for Script Data
	Resource and File Types for Script Data

	Loading and Executing Script Data
	Modifying and Recompiling a Compiled Script
	Using a Script Context to Handle an Apple Event
	Supplying a Resume Dispatch Function
	Supplying an Alternative Active Function
	Supplying Alternative Create and Send Functions
	Alternative Create Functions
	Alternative Send Functions

	Recording Scripts

	Writing a Scripting Component
	Scripting Components Reference
	Data Structures
	Required Scripting Component Routines
	Saving and Loading Script Data
	Executing and Disposing of Scripts
	Setting and Getting Script Information
	Manipulating the Active Function

	Optional Scripting Component Routines
	Compiling Scripts
	Getting Source Data
	Coercing Script Values
	Manipulating the Create and Send Functions
	Recording Scripts
	Executing Scripts in One Step
	Manipulating Dialects
	Using Script Contexts to Handle Apple Events

	AppleScript Component Routines
	Initializing AppleScript
	Getting and Setting Styles for Source Data

	Generic Scripting Component Routines
	Getting and Setting the Default Scripting Componen...
	Using Component-Specific Routines

	Routines Used by Scripting Components
	Manipulating Trailers for Generic Storage Descript...

	Application-Defined Routines

	Summary of Scripting Components
	Pascal Summary
	Constants
	Data Types
	Required Scripting Component Routines
	Optional Scripting Component Routines
	AppleScript Component Routines
	Generic Scripting Component Routines
	Routines Used by Scripting Components
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Required Scripting Component Routines
	Optional Scripting Component Routines
	AppleScript Component Routines
	Generic Scripting Component Routines
	Routines Used by Scripting Components
	Application-Defined Routines

	Result Codes

	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

