

C H A P T E R 6

6

R
esolving and C

reating O
bject

S
pecifier R

ecords

Resolving and Creating Object Specifier Records 6

This chapter describes how your application can use the Apple Event Manager and
application-defined functions to resolve object specifier records. Your application must
be able to resolve object specifier records to respond to core and functional-area Apple
events defined in the Apple Event Registry: Standard Suites.

For example, after receiving a Get Data event that requests a table in a document, your
application can use the Apple Event Manager and application-defined functions to parse
the object specifier record in the direct parameter, locate the requested table, and send a
reply Apple event containing the table’s data back to the application that requested it.

This chapter also describes how your application can use the Apple Event Manager to
create object specifier records. If you want to factor your application for Apple event
recording, or if you want to send Apple events directly to other applications, you need to
know how to create object specifier records.

To use this chapter, you should be familiar with the chapters “Introduction to Apple
Events” and “Responding to Apple Events” in this book. The section “Working With
Object Specifier Records,” which begins on page 3-32, provides a general introduction to
the subject.

If you plan to create object specifier records, you should also be familiar with the chapter
“Creating and Sending Apple Events.” If you are factoring your application, you should
read the chapter “Recording Apple Events” before you write code for resolving or
creating object specifier records.

This chapter begins with an overview of the way your application works with the
Apple Event Manager to resolve object specifier records. It then describes

■ how the data in an object specifier record is organized

■ how to install entries in the object accessor tables

■ how to write object accessor and object callback functions

■ how to create an object specifier record

IMPORTANT

Versions 1.0 and 1.01 of the Apple Event Manager do not include the
routines for resolving and creating object specifier records described in
this chapter. To use these routines with those versions of the Apple
Event Manager, you must link the Object Support Library (OSL) with
your application when you build it, and call the AEObjectInit
function before calling any of the routines. ▲
6-3

C H A P T E R 6

Resolving and Creating Object Specifier Records

Resolving Object Specifier Records 6

If an Apple event parameter consists of an object specifier record, your handler for the
Apple event should resolve the object specifier record: that is, locate the Apple event
objects it describes. The first step is to call the AEResolve function with the object
specifier record as a parameter.

The AEResolve function performs tasks that are required to resolve any object specifier
record, such as parsing its contents, keeping track of the results of tests, and handling
memory management. When necessary, AEResolve calls application-defined functions
to perform tasks that are unique to the application, such as locating a specific Apple
event object in the application’s data structures or counting the number of Apple event
objects in a container.

Note
Object specifier records are only valid while the Apple event that
contains them is being handled. For example, if an application receives
an Apple event asking it to cut row 5 of a table, what was row 6 then
becomes row 5, and the original object specifier record that referred to
row 5 no longer refers to the same row. ◆

The AEResolve function can call two kinds of application-defined functions. Object
accessor functions locate Apple event objects. Object callback functions perform other
tasks that only an application can perform, such as counting, comparing, or marking
Apple event objects. This section provides an overview of the way AEResolve calls
object accessor and object callback functions when it resolves object specifier records.

Each time AEResolve calls one of your application’s object accessor functions
successfully, the object accessor function should return a special descriptor record
created by your application, called a token, that identifies either an element in a
specified container or a property of a specified Apple event object. The Apple Event
Manager examines the token’s descriptor type but does nothing with the token’s data.
When it needs to refer to the object the token identifies, the Apple Event Manager simply
passes the token back to your application.

Each object accessor function provided by your application should either find elements
of a given object class in a container identified by a token of a given descriptor type, or
find properties of an Apple event object identified by a token of a specified descriptor
type. The Apple Event Manager uses the object class ID and the descriptor type of the
token that identifies the object’s container to determine which object accessor function
to call.
6-4 Resolving Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6

R
esolving and C

reating O
bject

S
pecifier R

ecords

It is up to you to decide how many object accessor functions you need to write for your
application. You can write one object accessor function that locates Apple event objects of
several different object classes, or you can write separate object accessor functions for
certain object classes. Similarly, you may want to use only one descriptor type for all the
tokens returned by your object accessor functions, or you may want to use several
descriptor types. The way you define your tokens depends on the needs of your
application.

You can use the AEInstallObjectAccessor function to create an object accessor
dispatch table that the Apple Event Manager uses to map requests for Apple event
objects to the appropriate object accessor function in your application. The Apple Event
Manager uses the object class of each requested object and the descriptor type of the
token that identifies the object’s container to determine which object accessor function to
call. Depending on the container hierarchy for a given object specifier record and the
way your application defines its object accessor functions, the Apple Event Manager
may need to call a series of object accessor functions to resolve the nested object specifier
records that describe an Apple event object’s container. For information about creating
and using the object accessor dispatch table, see “Installing Entries in the Object Accessor
Dispatch Tables,” which begins on page 6-21.

Figure 6-1 illustrates the major steps involved in resolving an object specifier record. The
SurfWriter application shown in Figure 6-1 receives a Get Data event whose direct
parameter is an object specifier record for a table named “Summary of Sales” in a
document named “Sales Report.” The SurfWriter application’s handler for the Get Data
event calls the AEResolve function with the object specifier record as a parameter. The
AEResolve function begins to parse the object specifier record. The first object accessor
function that AEResolve calls is usually the function that can identify the Apple event
object in the application’s default container— the outermost container in the container
hierarchy. In Figure 6-1, the object specifier record for the document “Sales Report”
specifies the default container, so the Apple Event Manager calls the object accessor
function in the SurfWriter application that can locate a document in a container
identified by a descriptor record of descriptor type typeNull.
Resolving Object Specifier Records 6-5

C H A P T E R 6

Resolving and Creating Object Specifier Records

Figure 6-1 Resolving an object specifier record for a table in a document

AEProcessAppleEvent(event)

Apple event

Get Data

Object specifier record

Class ID:

Container:

cTable

 Object specifier record

Class ID:

Container:

Key form:

Key data:

cDocument

Default container

formName

"Sales Report"

Key form:

Key data:

AEProcessAppleEvent

Object accessor dispatch table

Object class Token type

cTable

cDocument

cDocument

typeMyDocToken

typeNull

typeFile

@MyGetTable

@MyGetDoc

@MyGetDocFile

MyHandleGetData(anAppleEvent)

AEResolve(anObjectSpecRec)

 •

 •

 •

AEDisposeToken(token)

MyGetDoc(objSpecRec, token)

• Locate document named “Sales Report”
• Return token for document

MyDisposeToken(token)

• Dispose of token for document

MyGetTable(objSpecRec, token)

• Locate table named “Summary of Sales”
 in “Sales Report”
• Return token for table

AEResolve

Call object accessor function
for object class cDocument
and token type typeNull
 •
 •
 •
Call object accessor function
for object class cTable and
token type typeMyDocToken
 •
 •
 •

Call token disposal function
 •
 •
 •
Return token for table
as result of AEResolve

•

•

•

•

• Call handler for Get Data event

Handler

Server
application

SurfWriter

Apple Event Manager

Apple event dispatch table

 •
 •
 •

formName

"Summary of Sales"

6-6 Resolving Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6

R
esolving and C

reating O
bject

S
pecifier R

ecords

After locating the document named “Sales Report,” the SurfWriter application returns a
token to the Apple Event Manager—that is, a descriptor record that SurfWriter uses to
identify the document. The Apple Event Manager examines the descriptor type of the
token but does not need to know anything about the token’s data to continue parsing the
object specifier record. Next, the Apple Event Manager calls the object accessor function
that can identify a table in a container identified by a token of descriptor type
typeMyDocToken. When the Apple Event Manager calls this object accessor function, it
uses the token that describes the document to identify the table’s container. After the
SurfWriter application has located the table named “Summary of Sales” in the document
named “Sales Report,” it returns a token describing that table to the Apple Event
Manager.

After your application has successfully located an Apple event object, the Apple Event
Manager disposes of all previous tokens returned during resolution of the object
specifier record for the object. The Apple Event Manager disposes of tokens by calling
either the AEDisposeDesc function or your application’s token disposal function, if
you have provided one, which is an object callback function that disposes of a token. In
Figure 6-1, the AEResolve function calls the SurfWriter application’s token disposal
function to dispose of the token for the document after AEResolve receives the token
for the table. After the SurfWriter application has disposed of the token for the
document, the AEResolve function returns the result of the resolution—that is, the
token for the requested table—to the handler in the SurfWriter application that originally
called AEResolve.

The Apple Event Manager can complete the cycle of parsing the object specifier record
and calling the appropriate object accessor function to obtain a token as many times as
necessary to identify every container in the container hierarchy and finish resolving an
object specifier record, including disposing of the tokens for the containers. However,
one token will always be left over—the token that identifies the requested Apple event
object. After AEResolve returns this final token and your application performs the
action requested by the Apple event, it is up to your application to dispose of the token.
Your application can do so by calling the AEDisposeToken function, which in turn calls
either AEDisposeDesc or your application’s token disposal function.

You need to provide a token disposal function only if a call to AEDisposeDesc is not
sufficient by itself to dispose of a token or if you provide marking callback functions,
which are three object callback functions that allow your application to use its own
marking scheme rather than tokens when identifying large groups of Apple event
objects. Your application is not required to provide marking callback functions.

To handle object specifier records that specify a test, your application must provide two
object callback functions: (a) an object-counting function, which counts the number of
elements of a given object class in a given container so that the Apple Event Manager can
determine how many elements it must test to find the element or elements that meet a
specified condition, and (b) an object-comparison function, which compares one
element to another element or to a descriptor record and returns TRUE or FALSE.
Resolving Object Specifier Records 6-7

C H A P T E R 6

Resolving and Creating Object Specifier Records

Your application may also provide an error callback function that can identify which
descriptor record caused the resolution of an object specifier record to fail. Your
application is not required to provide an error callback function.

If your application resolves object specifier records without the help of the Apple Event
Manager, it must extract the equivalent descriptor records and coerce them as necessary
to get access to their data. The Apple Event Manager includes coercion handlers for these
coercions; for information about this default coercion handling, see Table 4-1 on
page 4-43.

For more information about object accessor functions, see “Writing Object Accessor
Functions,” which begins on page 6-28. For more information about object
callback functions, see “Writing Object Callback Functions,” which begins on page 6-45.

The next section, “Descriptor Records Used in Object Specifier Records,” describes how
the data in an object specifier record is interpreted by the Apple Event Manager.

Descriptor Records Used in Object Specifier Records 6

An object specifier record is a coerced AE record of descriptor type
typeObjectSpecifier. The data to which its data handle refers consists of four
keyword-specified descriptor records:

This section describes the descriptor types and data associated with each of these
keywords. You need this information if your application resolves or creates object
specifier records.

For a summary of the descriptor types and key forms discussed in this section, see
Table 6-11 on page 6-76. For an overview of object specifier records, see “Working With
Object Specifier Records,” which begins on page 3-32.

Keyword Value Description of data

keyAEDesiredClass 'want' A four-character code for the object class

keyAEContainer 'from' An object specifier record (or in some cases a
descriptor record with a handle whose value is
NIL) that identifies the container for the
requested objects

keyAEKeyForm 'form' A four-character code for the key form

keyAEKeyData 'seld' Data or nested descriptor records that specify a
property, name, position, range, or test,
depending on the key form
6-8 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6

R
esolving and C

reating O
bject

S
pecifier R

ecords

Object Class 6
The object class of the requested objects is identified by an object class ID. The
corresponding keyword-specified descriptor record takes this form:

The Apple Event Registry: Standard Suites defines constants for the standard object
class IDs.

Container 6
The container for the requested objects is usually the object in which they are located. It
can be identified in one of four ways:

The data that describes a container usually consists of another object specifier record.
The ability to nest one object specifier record within another in this way makes it
possible to identify a chain of containers that fully describes the location of one or more
Apple event objects.

Keyword Descriptor type Data

keyAEDesiredClass typeType Object class ID

Keyword Descriptor type Data

keyAEContainer typeObjectSpecifier Object specifier record.

typeNull Value of data handle is NIL.
Specifies the default
container at the top of the
container hierarchy.

typeObjectBeingExamined Value of data handle is NIL.
Specifies the container for
elements that are tested one
at a time; used only within
key data for key form
formTest.

typeCurrentContainer Value of data handle is NIL.
Specifies a container for an
element that demarcates one
boundary in a range. Used
only within key data for key
form formRange.
Descriptor Records Used in Object Specifier Records 6-9

C H A P T E R 6

Resolving and Creating Object Specifier Records

For example, Figure 6-2 shows nested object specifier records that specify the first row of
a table named “Summary of Sales” in a document named “Sales Report.” The container
specified by the object specifier record at the bottom of the figure describes the outermost
container in the container hierarchy—the container for the document “Sales Report.”

Because a container must be specified for each Apple event object in a container
hierarchy, a null descriptor record (that is, a descriptor record whose descriptor type is
typeNull and whose data handle has the value NIL) is used to specify the application’s
default container—the outermost container for any container hierarchy in that
application.

Figure 6-2 Nested object specifier records that specify a container hierarchy

Note
The format used in Figure 6-2 and similar figures throughout this
chapter does not show the structure of the nested object specifier records
as they exist within an Apple event. Instead, these figures show what
you would obtain after calling AEGetKeyDesc repeatedly to extract the
object specifier records from an Apple event record.

When you call AEGetKeyDesc to extract a null descriptor record, the
function returns a descriptor record of type AEDesc with a descriptor
type of typeNull and a data handle whose value is 0. ◆

Object specifier data for row

Object specifier data for table

Object specifier data for document

typeType

cTable

keyAEDesiredClass

typeObjectSpecifier

keyAEContainer

Data shown below

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of table (“Summary of Sales”)

typeType

cRow

keyAEDesiredClass

typeObjectSpecifier

keyAEContainer

Data shown below

typeLongInteger

1

keyAEKeyDatakeyAEKeyForm

typeEnumerated

keyAEContainer

typeType

cDocument

keyAEDesiredClass

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

typeNull

Data handle is NIL

formAbsolutePosition

Name of document (“Sales Report”)
6-10 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The object specifier data at the bottom of Figure 6-2 uses a null descriptor record to
specify the document’s container—that is, the default container for the application. The
object specifier record for the document identifies the document named “Sales Report”;
the object specifier record for the table identifies the table named “Summary of Sales” in
the document “Sales Report”; and the object specifier record for the row identifies the
first row of the table named “Summary of Sales” in the document “Sales Report.”

An object specifier record in an Apple event parameter almost always includes
nested object specifier records that specify the container hierarchy for the requested
Apple event object. For the nested object specifier records shown in Figure 6-2, the
relationship between each Apple event object and its container is always simple
containment: it is located inside its container.

In other cases, the specified container may not actually contain the requested Apple
event object. Instead, the relationship between a “container” and a specified object can be
defined differently, depending on the key form. For example, the key form
formRelativePosition indicates that the requested object is before or after its
container.

Object specifier records that specify the key form formTest or formRange require key
data that consists of several nested descriptor records, including additional object
specifier records that identify either a group of elements to be tested or the boundary
elements that demarcate a range. These object specifier records use two special
descriptor types to specify containers: typeObjectBeingExamined (see page 6-19),
which specifies a container that changes as a group of elements are tested one at a time,
and typeCurrentContainer (see page 6-20), which specifies the container for a
boundary element in a range. Both of these descriptor types require a data handle whose
value is NIL, since they act much like variables whose value is supplied by the Apple
Event Manager according to other information provided in the container hierarchy.

Key Form 6
The key form indicates how the key data should be interpreted. It can be specified by
one of eight constants:

The next section describes the key data that corresponds to each key form.

Keyword Descriptor type Data

keyAEKeyForm typeEnumerated formPropertyID
formName
formUniqueID
formAbsolutePosition
formRelativePosition
formTest
formWhose
formRange
Descriptor Records Used in Object Specifier Records 6-11

C H A P T E R 6

Resolving and Creating Object Specifier Records
Key Data 6
The nature of the information provided by the key data depends both on the specified
key form and on the descriptor type of the descriptor record for the key data. Table 6-1
summarizes these relationships for the standard key forms.

Most applications that resolve object specifier records need to support only the key
forms formPropertyID, formName, formUniqueID, formAbsolutePosition,
formRelativePosition, and formRange explicitly. You do not need to support these
key forms for all object classes; for example, words usually do not have names, so most
applications should return errAEEventNotHandled if they receive a request for a
word by name.

If your application provides an object-counting function and an object-comparison
function in addition to the appropriate object accessor functions, the Apple Event
Manager can handle formTest automatically.

Table 6-1 Standard descriptor types used with keyAEKeyData

Key form Descriptor type Data

formPropertyID typeType Property ID for an element’s property

formName typeChar or other text type Element’s name

formUniqueID Any appropriate type A value that uniquely identifies an
object within its container or across an
application

formAbsolutePosition typeLongInteger Offset from beginning (positive) or end
(negative) of container

typeAbsoluteOrdinal kAEFirst
kAEMiddle
kAELast
kAEAny
kAEAll

formRelativePosition typeEnumerated kAENext
kAEPrevious

formTest typeCompDescriptor (see Table 6-2 on page 6-16)

typeLogicalDescriptor (see Table 6-3 on page 6-17)

formRange typeRangeDescriptor (see Table 6-4 on page 6-20)

formWhose typeWhoseDescriptor (see Table 6-5 on page 6-42)
6-12 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The Apple Event Manager uses the key form formWhose internally to optimize
resolution of object specifier records that specify formTest. Applications that translate
tests into their own query languages need to support formWhose explicitly. “Handling
Whose Tests,” which begins on page 6-41, describes formWhose in detail.

You can define custom key forms and the format for corresponding data for use by
your own application if necessary. If you think you need to do this, check with the
Apple Event Registrar first to find out whether existing key forms or others still under
development can be adapted to the needs of your application.

One simple kind of key form involves identifying an object on the basis of a specified
property. For example, the corresponding data for key form formUniqueID (defined in
the Apple Event Registry: Standard Suites) always consists of a unique ID for the requested
object. This ID is stored as a property identified by the constant pID. The four-character
code that corresponds to both formUniqueID and pID is 'ID '.

If you discover that you do need to define a custom key form based on a property, use
the same four-character code for both the key form and the associated property.

The rest of this section describes how the key data for the other key forms shown in
Table 6-1 identifies Apple event objects.

Key Data for a Property ID 6

The key data for formPropertyID is specified by a descriptor record of descriptor type
typeType. The Apple Event Registry: Standard Suites defines constants for the standard
property IDs.

An object specifier record for a property specifies cProperty as the object class ID, an
object specifier record for the object that contains the property as the container,
formPropertyID as the key form, and a constant such as pFont as the key data. For
example, if you were sending a Set Data event to change the font of a word to Palatino®,
you could specify the data for the object specifier record in the direct parameter as
follows:

In this example, the Set Data Apple event parameter identified by the keyword
keyAETheData would specify Palatino as the value to which to set the specified
property. The reply Apple event for a subsequent Get Data event that included an object
specifier record for the same property would return Palatino in the parameter
identified by the keyword keyAEResult.

Keyword Descriptor type Data

keyAEDesiredClass typeType cProperty

keyAEContainer typeObjectSpecifier Object specifier record for
word to which property
belongs

keyAEKeyForm typeEnumerated formPropertyID

keyAEKeyData typeType pFont
Descriptor Records Used in Object Specifier Records 6-13

C H A P T E R 6

Resolving and Creating Object Specifier Records
Key Data for an Object’s Name 6

The key data for formName is specified by a descriptor record whose data consists of
text, with a descriptor type such as typeChar or typeIntlText.

Figure 6-2 on page 6-10 includes two object specifier records that specify formName.

Key Data for a Unique ID 6
The key data for formUniqueID consists of a value that identifies an object. This ID
must be unique either within the container, at a minimum, or unique across the
application. A unique ID can be specified by a descriptor record of any appropriate type;
for example, type typeInteger.

Key Data for Absolute Position 6

The key data for formAbsolutePosition consists of an integer that specifies either an
offset or an ordinal position. For descriptor type typeLongInteger, the data is either a
positive integer, indicating the offset of the requested element from the beginning of the
container, or a negative integer, indicating its offset from the end of the container.
The first object specifier record shown in Figure 6-2 on page 6-10 specifies
formAbsolutePosition with key data that consists of the positive integer 1.

For descriptor type typeAbsoluteOrdinal, the data consists of one of these constants:

If an object specifier record specifies kAEMiddle and the number of elements in the
container is even, the Apple Event Manager rounds down; for example, the second word
would be the “middle” word in a range of four words.

Constant Meaning

kAEFirst The first element in the specified container

kAEMiddle The element in the middle of the specified container

kAELast The last element in the specified container

kAEAny A single element chosen at random from the specified container

kAEAll All the elements in the specified container
6-14 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Key Data for Relative Position 6

The key data for formRelativePosition is specified by a descriptor record of type
typeEnumerated whose data consists of one of these constants:

The “container” can be a single Apple event object or a group of Apple event objects; the
requested elements are located immediately before or immediately after it, not inside it.

If your application can locate objects of the same class by absolute position, it can easily
locate the same objects by relative position. For example, all applications that support
formAbsolutePosition can easily locate the table immediately after a container
specified as another table named “Summary of Sales.”

Some applications may also be able to locate an object of one class before or after an
object of another class. For example, a word processor might be able to locate the
paragraph immediately after a container specified as a table named “Summary of Sales.”

Key Data for a Test 6

The key data for formTest is specified by either a comparison descriptor record or a
logical descriptor record. If your application provides an object-counting function and an
object-comparison function in addition to the appropriate object accessor functions, the
Apple Event Manager can handle formTest for you. Some applications may perform
tests more efficiently by translating them into the application’s own query language. For
information about handling tests yourself, see “Handling Whose Tests,” which begins on
page 6-41.

The container for objects that pass a test can be one or more Apple event objects. The
objects specified are those in the container that pass the test specified by the key data.
For example, an object specifier record can describe “the first row in which the First
Name column equals ‘John’ and the Last Name column equals ‘Chapman’ in the table
‘MyAddresses’ of the database ‘SurfDB.’” To resolve such an object specifier record, the
Apple Event Manager must evaluate a logical expression that applies the logical
operator AND to two separate comparisons for each row: a comparison of the First Name
column to the word “John” and a comparison of the Last Name column to the word
“Chapman.”

Constant Meaning

kAENext The Apple event object after the specified container

kAEPrevious The Apple event object before the specified container
Descriptor Records Used in Object Specifier Records 6-15

C H A P T E R 6

Resolving and Creating Object Specifier Records
The Apple Event Manager evaluates comparisons and logical expressions on the
basis of the information in comparison descriptor records and logical descriptor records.
A comparison descriptor record is a coerced AE record of type typeCompDescriptor
that specifies an Apple event object and either another Apple event object or data for the
Apple Event Manager to compare to the first object. The Apple Event Manager can also
use the information in a comparison descriptor record to compare elements in a
container, one at a time, either to an Apple event object or to data. The data for a
comparison descriptor record consists of three keyword-specified descriptor records
with the descriptor types and data shown in Table 6-2.

The keyword keyAEObject1 identifies a descriptor record for the element that is
currently being compared to the object or data specified by the descriptor record
for the keyword keyAEObject2. Either object can be described by a descriptor record of
type typeObjectSpecifier or typeObjectBeingExamined. A descriptor record
of typeObjectBeingExamined acts as a placeholder for each of the successive
elements in a container when the Apple Event Manager tests those elements one at a
time. The keyword keyAEObject2 can also be used with a descriptor record of any
other descriptor type whose data is to be compared to each element in a container.

You don’t have to support all the available comparison operators for all Apple event
objects; for example, the “begins with” operator probably doesn’t make sense for objects
of type cRectangle. It is up to you to decide which comparison operators are
appropriate for your application to support, and how to interpret them.

Table 6-2 Keyword-specified descriptor records for typeCompDescriptor

Keyword Descriptor type Data

keyAECompOperator typeType kAEGreaterThan
kAEGreaterThanEquals
kAEEquals
kAELessThan
kAELessThanEquals
kAEBeginsWith
kAEEndsWith
kAEContains

keyAEObject1 typeObjectSpecifier Object specifier data

typeObjectBeingExamined Value of data handle is NIL

keyAEObject2 typeObjectSpecifier Object specifier data for object to be
compared

typeObjectBeingExamined Value of data handle is NIL

any other type (AEDesc) Data to be compared
6-16 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
If necessary, you can define your own custom comparison operators. If you think you
need to do this, check with the Apple Event Registrar first to find out whether existing
definitions of comparison operators or definitions still under development can be
adapted to the needs of your application.

A logical descriptor record is a coerced AE record of type typeLogicalDescriptor
that specifies a logical expression—that is, an expression that the Apple Event Manager
evaluates to either TRUE or FALSE. The logical expression is constructed from a logical
operator (one of the Boolean operators AND, OR, or NOT) and a list of logical terms to
which the operator is applied. Each logical term in the list can be either another logical
descriptor record or a comparison descriptor record. The Apple Event Manager
short-circuits its evaluation of a logical expression as soon as one part of the expression
fails a test. For example, if while testing a logical expression such as A AND B AND C the
Apple Event Manager discovers that A AND B is not true, it will evaluate the expression
to FALSE without testing C.

The data for a logical descriptor record consists of two keyword-specified descriptor
records with the descriptor types and data shown in Table 6-3.

If the logical operator is AND or OR, the list can contain any number of logical terms, and
the logical operator is applied to all the terms in the list. For example, the logical
descriptor data shown in Figure 6-4 on page 6-19 consists of the logical operator AND and
a list of logical terms that contains two comparison descriptor records. The entire logical
descriptor record corresponds to the logical expression “the First Name column equals
‘John’ AND the Last Name column equals ‘Chapman.’” If the logical operator is NOT, the
list must contain a single term.

Figure 6-3 shows four object specifier records that specify the container hierarchy for the
first row in the table “MyAddresses” of the database “SurfDB” that meets a test. The
object specifier record at the top of Figure 6-3 specifies the first row contained in the set
of rows that form its container. The container for the first row is specified by an object
specifier record for a set of rows that meet a test. The two object specifier records at the
bottom of Figure 6-3 specify the table named “MyAddresses,” which contains the rows
to be tested, in the database named “SurfDB.”

Table 6-3 Keyword-specified descriptor records for typeLogicalDescriptor

Keyword Descriptor type Data

keyAELogicalOperator typeEnumerated kAEAND
kAEOR
kAENOT

keyAELogicalTerms typeAEList One or more comparison or
logical descriptor records
Descriptor Records Used in Object Specifier Records 6-17

C H A P T E R 6

Resolving and Creating Object Specifier Records
Figure 6-3 The container hierarchy for the first row in a table that meets a test

The object specifier record in Figure 6-3 for a set of rows that meet a test specifies
formTest. The corresponding key data consists of the logical descriptor record shown
in Figure 6-4, which applies the logical operator AND to two logical terms: a comparison
descriptor record that specifies all the rows in the container (the table “MyAddresses”)
in which the column named “First Name” equals “John,” and another comparison
descriptor record that specifies all the rows in which the column named “Last Name”
equals “Chapman.” A row in the table “MyAddresses” passes the test only if both
comparison descriptor records evaluate as TRUE.

typeType

cRow

keyAEDesiredClass

typeObjectSpecifier

keyAEContainer

Data shown below

typeLongInteger

1

keyAEKeyDatakeyAEKeyForm

formAbsolutePosition

typeType

cRow

keyAEDesiredClass

typeObjectSpecifier

keyAEContainer

Data shown below

typeEnumerated

keyAEKeyForm

formTest

typeLogicalDescriptor

keyAEKeyData

Data shown in Figure 6-4

typeObjectSpecifier

keyAEContainer

Data shown below

typeType

cTable

keyAEDesiredClass

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

typeNull

keyAEContainer

Data handle is NIL

typeType

cDatabase

keyAEDesiredClass

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of database (“SurfDB”)

Name of table (“MyAddresses”)

typeEnumerated

Object specifier data for the first row in a container

Object specifier data for a set of rows that meet a test

Object specifier data for a table

Object specifier data for a database
6-18 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Figure 6-4 A logical descriptor record that specifies a test

The keyword-specified descriptor records with the keyword keyAEObject1 in
Figure 6-4 each consist of an object specifier record that identifies a column
by name. The row for each column is specified by a descriptor record of
typeObjectBeingExamined, which acts as a placeholder for each row as the Apple
Event Manager tests successive rows in the table. The Apple event object specified by
each of these object specifier records consists of a column in the row. The Apple Event
Manager (with the help of an object-comparison function) compares the contents of the
column in successive rows to the string identified by the keyword keyAEObject2 using
the comparison operator identified by the keyword keyAECompOperator.

typeEnumerated

kAEAnd

keyAELogicalOperator

typeAEList

keyAELogicalTerms

Data shown below

typeCompDescriptor

Data shown to right

Data shown to right

typeCompDescriptor

Logical descriptor data
for Figure 6-3

Logical terms data

typeType

kAEEquals

keyAECompOperator

typeObjectSpecifier

keyAEObject1

Data for first
logical term

typeChar

keyAEObject2

typeType

kAEEquals

keyAECompOperator

typeObjectSpecifier

keyAEObject1

Data for second
logical term

typeChar

keyAEObject2

First name (“John”)

Last name (“Chapman”)

typeType

cColumn

keyAEDesiredClass

typeObjectBeingExamined

keyAEContainer

Object specifier data for
first logical term

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of column (“First Name”)

typeType

cColumn

keyAEDesiredClass

typeObjectBeingExamined

keyAEContainer

Object specifier data for
second logical term

typEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of column (“Last Name”)

Data handle is NIL

Data handle is NIL

Data shown to right

Data shown to right
Descriptor Records Used in Object Specifier Records 6-19

C H A P T E R 6

Resolving and Creating Object Specifier Records
Key Data for a Range 6

The key data for formRange is specified by a range descriptor record, which is a
coerced AE record of type typeRangeDescriptor that identifies two Apple event
objects marking the beginning and end of a range of elements. The data for a range
descriptor record consists of two keyword-specified descriptor records with
the descriptor types and data shown in Table 6-4.

The elements that identify the beginning and end of the range, which are known as
boundary objects, do not have to belong to the same object class as the elements in the
range itself. If the boundary objects belong to the same object class as the elements in
the range, the boundary objects are included in the range. For example, the range of
tables specified by boundary elements that are also tables would include the two
boundary tables.

The container for boundary objects is usually the same as the container for the entire
range, in which case the container for a boundary object can be specified by a
placeholder—that is, a descriptor record of type typeCurrentContainer whose data
handle has the value NIL.

When AEResolve calls an object accessor function to locate a range of objects, the
Apple Event Manager replaces the descriptor record of type typeCurrentContainer
with a token for the container of each boundary object. When using AEResolve to
resolve the object specifier record, your application doesn’t need to examine the contents
of this token, because the Apple Event Manager keeps track of it. If your application
attempts to resolve some or all of the object specifier record without calling AEResolve,
the application may need to examine the token before it can locate the boundary objects.
The token provided by the Apple Event Manager for a boundary object’s container is a
descriptor record of type typeToken whose data handle refers to a structure of type
ccntTokenRecord.

Table 6-4 Keyword-specified descriptor records in a descriptor record of type
typeRangeDescriptor

Keyword Descriptor type Data

keyAERangeStart typeObjectSpecifier An object specifier record for the
first Apple event object in the
desired range

keyAERangeStop typeObjectSpecifier An object specifier record for the
last Apple event object in the
desired range
6-20 Descriptor Records Used in Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
TYPE ccntTokenRecord =

RECORD

tokenClass: DescType; {class ID of container }

{ represented by token}

token: AEDesc; {token for current container}

END;

This data type is of interest only if you attempt to resolve an object specifier record for a
range without calling AEResolve. Otherwise, the Apple Event Manager keeps track of
the container.

Installing Entries in the Object Accessor Dispatch Tables 6

If the direct parameter for an Apple event consists of an object specifier record, your
handler for the event should call the AEResolve function to resolve the object specifier
record: that is, to find the Apple event objects or properties it describes. The AEResolve
function resolves the object specifier record with the help of object accessor functions
provided by your application. Your application installs entries for its object accessor
functions in an object accessor dispatch table, which is used by the Apple Event Manager
to map requests for Apple event objects or their properties to the appropriate object
accessor functions.

After being called by AEResolve, an object accessor function should return a token that
identifies (in whatever manner is appropriate for your application) the specified
Apple event object or property. An object accessor function also returns a result code that
indicates whether it found the Apple event object or property. The token, which is
a descriptor record of data type AEDesc, can be of any descriptor type, including
descriptor types you define yourself. For an overview of the way AEResolve works
with your application’s object accessor functions to locate Apple event objects, see
“Resolving Object Specifier Records,” which begins on page 6-4.

Each object accessor function provided by your application should either find elements
of a specified object class contained in an Apple event object identified by a token of a
specified descriptor type, or find properties of an Apple event object identified by a
token of a specified descriptor type. To determine which object accessor function to
dispatch, the Apple Event Manager uses the object class ID specified in an object
specifier record and the descriptor type of the token that identifies the requested object’s
container. For object accessor functions that find properties, you should specify the
object class ID as the constant cProperty.
Installing Entries in the Object Accessor Dispatch Tables 6-21

C H A P T E R 6

Resolving and Creating Object Specifier Records
To install entries in your application’s object accessor dispatch table, use the
AEInstallObjectAccessor function. For each object class and property your
application supports, you should install entries that specify

■ the object class of the requested Apple event object or property

■ the descriptor type of the token used to identify the container for the requested
Apple event object or property

■ the address of the object accessor function that finds objects or properties of the
specified object class in containers described by tokens of the specified descriptor type

■ a reference constant

You provide this information in the first four parameters to the
AEInstallObjectAccessor function. The fifth parameter allows you to
indicate whether the entry should be added to your application’s object accessor
dispatch table or the system object accessor dispatch table.

The system object accessor dispatch table is a table in the system heap that contains
object accessor functions available to all processes running on the same computer.
The object accessor functions in your application’s object accessor dispatch table are
available only to your application. If AEResolve cannot find an object accessor function
for the Apple event object class in your application’s object accessor dispatch table, it
looks in the system object accessor dispatch table. If it doesn’t find an object accessor
function there either, it returns the result code errAEAccessorNotFound.

If AEResolve successfully calls the appropriate object accessor function in either the
application object accessor dispatch table or the system object accessor dispatch table,
the object accessor function returns a token and result code. The AEResolve function
uses the token and result code to continue resolving the object specifier record. If,
however, the token identifies the final Apple event object or property in the container
hierarchy, AEResolve returns the token for the final resolution in the theToken
parameter.

If the AEResolve function calls an object accessor function in the system object accessor
dispatch table, your Apple event handler may not recognize the descriptor type of the
token returned by the function. If this happens, your handler should attempt to coerce
the token to an appropriate descriptor type. If coercion fails, return the result code
errAEUnknownObjectType. When your handler returns this result code, the
Apple Event Manager attempts to locate a system Apple event handler that can
recognize the token.
6-22 Installing Entries in the Object Accessor Dispatch Tables

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
It is up to you to decide how many object accessor functions you need to write and
install for your application. You can install one object accessor function that locates
Apple event objects of several different object classes, or you can write separate object
accessor functions for certain object classes. Similarly, you may want to use only one
descriptor type for all the tokens returned by your object accessor functions, or you may
want to use several descriptor types. The sections that follow provide examples of
alternative approaches.

For more information about object accessor functions, see “Writing Object Accessor
Functions,” which begins on page 6-28.

Installing Object Accessor Functions That Find Apple Event
Objects 6
Listing 6-1 demonstrates how to add entries to your application’s object accessor
dispatch table for the object class cText and three of its element classes: the object
classes cWord, cItem, and cChar. In this example, the container for each of these
object classes is identified by a token that consists of a descriptor record of descriptor
type typeMyText.

Listing 6-1 Installing object accessor functions that find elements of different classes for
container tokens of the same type

myErr := AEInstallObjectAccessor(cText, typeMyText,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cWord, typeMyText,

@MyFindWordObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cItem, typeMyText,

@MyFindItemObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cChar, typeMyText,

@MyFindCharObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);
Installing Entries in the Object Accessor Dispatch Tables 6-23

C H A P T E R 6

Resolving and Creating Object Specifier Records
The first call to AEInstallObjectAccessor in Listing 6-1 adds an entry to the
application’s object accessor dispatch table. This entry indicates that the AEResolve
function should call the MyFindTextObjectAccessor function when resolving any
Apple event object with the cText object class and a container identified by a token of
descriptor type typeMyText. The other calls to AEInstallObjectAccessor in
Listing 6-1 add entries for Apple event objects of object classes cWord, cItem, and
cChar in a container identified by a token of descriptor type typeMyText. For example,
because all the entries created by the code in Listing 6-1 specify the descriptor type
typeMyText for the token that identifies the container, the AEResolve function calls
the MyFindWordObjectAccessor function to locate a requested word regardless of
whether the container for the word is a run of text, another word, a paragraph,
or an item.

The fourth parameter for the AEInstallObjectAccessor function specifies a
reference constant passed to your handler by the Apple Event Manager each time
AEResolve calls your object accessor function. Your application can use this reference
constant for any purpose. If your application doesn’t use the reference constant, you can
use 0 as the value, as shown in Listing 6-1.

The last parameter for the AEInstallObjectAccessor function is a Boolean value
that determines whether the entry is added to the system object accessor dispatch table
(TRUE) or to your application’s object accessor dispatch table (FALSE).

If you add an object accessor function to the system object accessor dispatch table, the
function that you specify must reside in the system heap. If there was already an entry in
the system object accessor dispatch table for the same object class and container
descriptor type, that entry is replaced unless you chain it to your system handler. You
can do this the same way you chain a previously installed system Apple event handler to
your own system handler. See the description of AEInstallEventHandler on
page 4-62 for details.

▲ W A R N I N G

Before an application calls a system object accessor function, system
software has set up the A5 register for the calling application. For this
reason, if you provide a system object accessor function, it should never
use A5 global variables or anything that depends on a particular context;
otherwise, the application that calls the system object accessor function
may crash. ▲

The code shown in Listing 6-1 installs a separate object accessor function for each object
class, even though the code specifies the same descriptor type for tokens that identify the
containers for Apple event objects of each class. Most word-processing applications can
specify the same object accessor function as well as the same token descriptor type for
Apple event objects of these four classes, in which case the code shown in Listing 6-1 can
be altered as shown in Listing 6-2.
6-24 Installing Entries in the Object Accessor Dispatch Tables

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Listing 6-2 Installing one object accessor function that finds elements of different classes for
container tokens of one type

myErr := AEInstallObjectAccessor(cText, typeMyText,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cWord, typeMyText,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cItem, typeMyText,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cChar, typeMyText,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

In some situations you may want to write different object accessor functions to locate
Apple event objects of the same object class in containers identified by tokens of different
descriptor types. For example, the code in Listing 6-3 installs two different object
accessor functions: one that finds a word in a container identified by a token of type
typeMyTextToken, and one that finds a word in a container identified by a token
of typeMyGraphicTextToken.

Listing 6-3 Installing object accessor functions that find elements of the same class for
container tokens of different types

myErr := AEInstallObjectAccessor(cWord, typeMyTextToken,

@MyFindTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cWord, typeMyGraphicTextToken,

@MyFindGrphcTextObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);
Installing Entries in the Object Accessor Dispatch Tables 6-25

C H A P T E R 6

Resolving and Creating Object Specifier Records
Every application must provide one or more object accessor functions that can find
Apple event objects in the default container, which is always identified by a token of
descriptor type typeNull. Listing 6-4 demonstrates how to add entries to your
application’s object accessor dispatch table for the object classes cWindow and
cDocument. The container for each of these classes is identified by a token of descriptor
type typeNull, which specifies an application’s default container.

Listing 6-4 Installing object accessor functions that locate elements of different classes in the
default container

myErr := AEInstallObjectAccessor(cWindow, typeNull,

@MyFindWindowObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

myErr := AEInstallObjectAccessor(cDocument, typeNull,

@MyFindDocumentObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

For any entry in your object accessor dispatch table, you can specify a wildcard value for
the object class, for the descriptor type of the token used to identify the container, or for
both. You specify a wildcard by supplying the typeWildCard constant when installing
an entry into the object accessor dispatch table. A wildcard value matches all possible
values.

If an object accessor dispatch table contains one entry for a specific object class and a
specific token descriptor type, and another entry that is identical except that it specifies a
wildcard value for either the object class or the token descriptor type, the Apple Event
Manager dispatches the more specific entry. For example, if an object accessor dispatch
table includes one entry that specifies the object class as cWord and the token descriptor
type as typeMyTextToken, and another entry that specifies the object class as cWord
and the token descriptor type as typeWildCard, the Apple Event Manager dispatches
the object accessor function associated with the entry that specifies typeMyTextToken.

If you specify typeWildCard as the first parameter and typeMyToken as the second
parameter for the AEInstallObjectAccessor function and no other entry in the
dispatch table matches more exactly, the Apple Event Manager calls the object accessor
function that you specify in the third parameter when resolving Apple event objects of
any object class in containers identified by tokens of the typeMyToken descriptor type.
6-26 Installing Entries in the Object Accessor Dispatch Tables

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
If you specify cText as the first parameter and typeWildCard as the second parameter
for the AEInstallObjectAccessor function and no other entry in the dispatch table
matches more exactly, the Apple Event Manager calls the object accessor function that
you specify in the third parameter when resolving Apple event objects of the object class
cText in containers identified by tokens of any descriptor type.

If you specify typeWildCard for both the first and second parameters of the
AEInstallObjectAccessor function and no other entry in the dispatch table matches
more exactly, the Apple Event Manager calls the object accessor function that you specify
in the third parameter when resolving Apple event objects of any object class in
containers identified by tokens of any descriptor type.

Once the Apple Event Manager finds a matching entry, whether exact or involving type
typeWildCard, that is the only object accessor function it calls for that object class and
token descriptor type. If that function fails, the Apple Event Manager won’t look for
another matching entry in the same table.

Installing Object Accessor Functions That Find Properties 6
The Apple event object to which a property belongs is that property’s container. You
should add entries to your application’s object accessor dispatch table that specify object
accessor functions for finding properties in containers identified by tokens of various
descriptor types. Object specifier records do not specify a property’s specific object class;
instead, they specify the constant cProperty as the class ID for any property.
Similarly, you should specify the constant cProperty as the object class for an object
accessor function that can find any property of a container identified by a token of a
given descriptor type. If you need to install different object accessor routines for finding
properties of Apple event objects that belong to different object classes, you must use
different descriptor types for the tokens that represent those Apple event objects.

For example, to specify an object accessor function that locates properties of Apple event
objects identified by tokens of descriptor type typeMyToken, you can add a single entry
to the object accessor dispatch table:

myErr := AEInstallObjectAccessor(cProperty, typeMyToken,

@MyFindPropertyObjectAccessor,

0, FALSE);

IF myErr <> noErr THEN DoError(myErr);

The code in this example adds an object accessor function to the application’s object
accessor dispatch table that can find any property of any container identified by a token
of descriptor type typeMyToken. If the second parameter were specified as
typeWildCard, the MyFindPropertyObjectAccessor function would have to be
capable of finding any property of any Apple event object in your application except for
those found by handlers with more specific entries in the object accessor dispatch table.
Installing Entries in the Object Accessor Dispatch Tables 6-27

C H A P T E R 6

Resolving and Creating Object Specifier Records
Writing Object Accessor Functions 6

If the direct parameter for an Apple event consists of an object specifier record, your
handler for the event should call the AEResolve function to resolve the object specifier
record: that is, to find the Apple event objects or properties it describe. The AEResolve
function resolves object specifier records with the help of object accessor functions
provided by your application. For an overview of the way AEResolve works with your
application’s object accessor functions to locate Apple event objects, see “Resolving
Object Specifier Records,” which begins on page 6-4.

This section describes how to write object accessor functions. You need to read this
section if your application supports the Core suite or any of the functional-area suites in
the Apple Event Registry: Standard Suites.

Your application should provide object accessor functions that can find Apple event
objects and their properties for all object classes supported by your application,
including their corresponding properties and element classes. Because the Apple Event
Manager dispatches object accessor functions according to the class ID of the requested
Apple event object and the descriptor type of the token that identifies its container, you
have a great deal of flexibility in deciding what object accessor functions you need to
write for your application. The installation and dispatching of object accessor functions
are described in “Installing Entries in the Object Accessor Dispatch Tables,” which begins
on page 6-21.

For example, if your application is a word processor, one object accessor function will
probably work equally well for Apple event objects of object classes cParagraph,
cItem, and cWord located in containers identified by tokens of descriptor type
myTextToken. If you use a single descriptor type for tokens that identify any containers
in which objects of these three object classes can be found, you can dispatch requests for
all such elements to the same object accessor function. However, the same word
processor might use one descriptor type for tokens identifying containers of class cCell
and another descriptor type for tokens identifying containers of class cColumn—in
which case it would need an object accessor function for each descriptor type.

For each object class that your application supports, your application should also
provide one object accessor function that can find all the properties of that object class, or
one object accessor function that can find all the properties of several object classes.

Here’s the declaration for a sample object accessor function:

FUNCTION MyObjectAccessor (desiredClass: DescType;

containerToken: AEDesc;

containerClass: DescType;

keyForm: DescType; keyData: AEDesc;

VAR theToken: AEDesc;

theRefCon: LongInt): OSErr;
6-28 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The AEResolve function passes the following information to your object accessor
function: the object class ID of the requested Apple event objects, the object class of their
container, a token that identifies the specific container in which to look for them, the key
form and key data that specify how to locate them, and the reference constant associated
with the object accessor function. Your object accessor function uses this information to
locate the requested objects.

Most applications that resolve object specifier records need to support only the
key forms formPropertyID, formName, formUniqueID, formAbsolutePosition,
formRelativePosition, and formRange explicitly. You do not need to support these
key forms for all object classes; for example, words usually do not have names, so most
applications should return errAEEventNotHandled if they receive a request for a
word by name.

If your application provides an object-counting function and an object-comparison
function in addition to the appropriate object accessor functions, the Apple Event
Manager can handle formTest automatically.

The Apple Event Manager uses the key form formWhose internally to optimize
resolution of object specifier records that specify formTest. Only applications that
translate tests into their own query languages need to support formWhose explicitly.
“Handling Whose Tests,” which begins on page 6-41, describes formWhose in detail.

If your object accessor function successfully locates the requested Apple event objects,
your application should return the noErr result code and a token that identifies them.
The token can be of any descriptor type, as long as it is a descriptor record. For example,
to identify a file, your application might use a descriptor record of descriptor type
typeAlias or typeFSS. To identify an open document, your application might define
its own descriptor type, such as typeMyDocToken, for a descriptor record whose data
handle refers to a pointer to a document record. For more information about tokens, see
“Defining Tokens” on page 6-39.

IMPORTANT

Object accessor functions must not have side effects that change the
number or order of elements in a container while an object specifier
record is being resolved. If the number of elements in a container is
changed during the resolution of an object specifier record, the Apple
Event Manager may not be able to locate all the elements. ▲

Writing Object Accessor Functions That Find
Apple Event Objects 6
The first three listings in this section demonstrate how to write three object accessor
functions that might be called in the following situation: An application receives a
Get Data event with a direct parameter that consists of an object specifier record for the
first word in the third paragraph of a document. The application’s handler for the
Get Data event calls the AEResolve function to resolve the object specifier record.
The AEResolve function first calls the application’s object accessor function for objects
of class cDocument in containers identified by a token of descriptor type typeNull.
Writing Object Accessor Functions 6-29

C H A P T E R 6

Resolving and Creating Object Specifier Records
The AEResolve function passes these values to the
MyFindDocumentObjectAccessor function shown in Listing 6-5:
in the desiredClass parameter, the constant cDocument; in the containerToken
parameter, a descriptor record of descriptor type typeNull with a data handle
whose value is NIL; in the containerClass parameter, the constant typeNull;
in the keyForm parameter, the constant formName; in the keyData parameter, a
descriptor record of descriptor type typeText whose data consists of the string
"MyDoc"; and the reference constant specified in the application’s object accessor
dispatch table.

Listing 6-5 An object accessor function that locates Apple event objects of object class
cDocument

FUNCTION MyFindDocumentObjectAccessor

(desiredClass: DescType;

 containerToken: AEDesc;

 containerClass: DescType;

 keyForm: DescType; keyData: AEDesc;

 VAR token: AEDesc;

 theRefCon: LongInt): OSErr;

VAR

docName: Str255;

actSize: Size;

foundDoc: Boolean;

foundDocRecPtr: MyDocumentRecordPtr;

BEGIN

IF keyform = formName THEN

BEGIN

{get the name of the document from the key data}

MyGetStringFromDesc(keyData, docName, actSize);

{look for a document with the given name by }

{ searching all document records}

MySearchDocRecs(docName, foundDocRecPtr, foundDoc);

IF NOT foundDoc THEN

MyFindDocumentObjectAccessor := kObjectNotFound

ELSE {create token that identifies the document}

MyFindDocumentObjectAccessor :=

AECreateDesc(typeMyDocToken, @foundDocRecPtr,

SizeOf(foundDocRecPtr), token);

END

{handle the other key forms you support}

ELSE

MyFindDocumentObjectAccessor := kKeyFormNotSupported;

END;
6-30 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The MyFindDocumentObjectAccessor function uses the information in the
keyForm and keyData parameters to find the specified document. If it finds
the Apple event object, MyFindDocumentObjectAccessor returns a token of
descriptor type typeMyDocToken to AEResolve. The data handle for this token
refers to a pointer to a document record (see Figure 6-5 on page 6-39). The
MyFindDocumentObjectAccessor function returns this token and the noErr
result code to the AEResolve function.

In the Get Data example, the token returned to AEResolve by the
MyFindDocumentObjectAccessor function identifies the document “MyDoc.”
The AEResolve function then calls the application’s object accessor function for objects
of class cParagraph in containers identified by a token of descriptor type
typeMyDocToken.

In this case, AEResolve passes these values to the MyFindParaObjectAccessor
function shown in Listing 6-6: in the desiredClass parameter, the constant
cParagraph; in the containerToken parameter, the token returned by the
MyFindDocumentObjectAccessor function; in the containerClass parameter,
the constant cDocument; in the keyForm parameter, the constant
formAbsolutePosition; in the keyData parameter, a descriptor record with the
typeLongInteger descriptor type and data that consists of the value 3 (indicating the
third paragraph); and the reference constant specified in the application’s object accessor
dispatch table.
Writing Object Accessor Functions 6-31

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-6 An object accessor function that locates Apple event objects of object class
cParagraph

FUNCTION MyFindParaObjectAccessor (desiredClass: DescType;

containerToken: AEDesc;

containerClass: DescType;

keyForm: DescType;

keyData: AEDesc;

VAR token: AEDesc;

theRefCon: LongInt): OSErr;

VAR

index: LongInt;

{MyFoundTextRecord is an application-defined data type }

{ consisting of three fields: start, ending, and docPtr}

foundParaRec: MyFoundTextRecord;

foundParaStart: LongInt;

foundParaEnd: LongInt;

foundDocRecPtr: MyDocumentRecordPtr;

success: Boolean;

BEGIN

IF keyForm = formAbsolutePosition THEN

BEGIN

{get the index of the paragraph from the key data}

MyGetIndexFromDesc(keyData, index);

{get the desired paragraph by index}

success := MyGetPara(index, containerToken, foundParaStart,

foundParaEnd, foundDocRecPtr);

IF NOT success THEN

MyFindParaObjectAccessor := kObjectNotFound

ELSE {create token that identifies the paragraph}

BEGIN

foundParaRec.start := foundParaStart;

foundParaRec.ending := foundParaEnd;

foundParaRec.docPtr := foundDocRecPtr;

MyFindParaObjectAccessor :=

AECreateDesc(typeMyTextToken, @foundParaRec,

SizeOf(foundParaRec), token);

END;

END

{handle the other key forms you support}

ELSE

MyFindParaObjectAccessor := kKeyFormNotSupported;

END;
6-32 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The MyFindParaObjectAccessor function uses another application-defined function,
MyGetPara, to search the data structures associated with the document and find the
desired paragraph. If it finds the paragraph, MyGetPara returns a value that identifies
the beginning of the paragraph, a value that identifies the end of the paragraph, and a
pointer to the document (which MyGetPara gets from the containerToken
parameter). The MyFindParaObjectAccessor function returns an
application-defined token that contains this information. This token is of descriptor type
typeMyTextToken; it describes a range of characters that can be used to identify any
range of text, including a paragraph or a word. The MyFindParaObjectAccessor
function returns this token and the noErr result code to the AEResolve function.

In the Get Data example, the token returned to AEResolve by the
MyFindParaObjectAccessor function identifies the third paragraph in the
document “MyDoc.” The AEResolve function then calls the application’s
object accessor function for objects of class cWord in containers identified by
a token of descriptor type typeMyTextToken.

In this case, the AEResolve function passes these values to the
MyFindWordObjectAccessor function shown in Listing 6-7: in the desiredClass
parameter, the constant cWord; in the containerToken parameter, the token
returned by the MyFindParaObjectAccessor function (a token of descriptor
type typeMyTextToken that identifies a paragraph); in the containerClass
parameter, the constant cParagraph; in the keyForm parameter, the constant
formAbsolutePosition; in the keyData parameter, a descriptor record with
the typeLongInteger descriptor type and data that consists of the value 1
(indicating the first word); and the reference constant specified in the application’s
object accessor dispatch table.

The MyFindWordObjectAccessor function uses another application-defined
function, MyGetWord, to search the paragraph to find the desired word. If it finds the
word, MyGetWord returns a value that identifies the beginning of the word, a value that
identifies the end of the word, and a pointer to the document (which MyGetWord gets
from the containerToken parameter). The MyFindWordObjectAccessor function
returns a token that contains this information. This token is also of descriptor type
typeMyTextToken; in this case, the token identifies a specific word. The
MyFindWordObjectAccessor function returns this token and the noErr result code
to the AEResolve function, which in turn returns the token to the Get Data event
handler that originally called AEResolve.
Writing Object Accessor Functions 6-33

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-7 An object accessor function that locates Apple event objects of object class
cWord

FUNCTION MyFindWordObjectAccessor

(desiredClass: DescType;

 containerToken: AEDesc;

 containerClass: DescType;

 keyForm: DescType; keyData: AEDesc;

 VAR token: AEDesc;

 theRefCon: LongInt): OSErr;

VAR

index: LongInt;

foundWordRec: MyFoundTextRecord;

foundWordStart: LongInt;

foundWordEnd: LongInt;

foundDocRecPtr: MyDocumentRecPtr;

success: Boolean;

BEGIN

IF keyForm = formAbsolutePosition THEN

BEGIN

{get the index of the word from the key data}

MyGetIndexFromDesc(keyData, index);

{get the desired word by index}

success := MyGetWord(index, containerToken, foundWordStart,

foundWordEnd, foundDocRecPtr);

IF NOT success THEN

MyFindWordObjectAccessor := kObjectNotFound

ELSE {create token that identifies the paragraph}

BEGIN

foundWordRec.start := foundWordStart;

foundWordRec.ending := foundWordEnd;

foundWordRec.docPtr := foundDocRecPtr;

MyFindWordObjectAccessor :=

AECreateDesc(typeMyTextToken, @foundWordRec,

SizeOf(foundWordRec), token);

END;

END

{handle the other key forms you support}

ELSE

MyFindWordObjectAccessor := kKeyFormNotSupported;

END;
6-34 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Listing 6-5 on page 6-30 shows an object accessor function that locates a document in the
default container. Every application must provide one or more object accessor functions
that can find Apple event objects in the default container, which is always identified by a
descriptor record of descriptor type typeNull. Listing 6-8 provides another example of
an object accessor function that locates an Apple event object in the default container. If
the MyFindWindowObjectAccessor function shown in Listing 6-8 were installed in
an application’s object accessor dispatch table, the AEResolve function would call it as
necessary to locate an object of class cWindow in a container identified by a token of
descriptor type typeNull.

Listing 6-8 An object accessor function that locates Apple event objects of object class
cWindow

FUNCTION MyFindWindowObjectAccessor (desiredClass: DescType;

 containerToken: AEDesc;

 containerClass: DescType;

 keyForm: DescType;

 keyData: AEDesc;

 VAR token: AEDesc;

 theRefCon: LongInt): OSErr;

VAR

windowName: Str255;

actSize: Size;

windTitle: Str255;

window: WindowPtr;

index, iLoop: Integer;

found: Boolean;

BEGIN

IF keyForm = formName THEN

BEGIN

{get the name of the window to find from the keyData }

{ parameter. MyGetStringFromDesc gets data out of an }

{ AEDesc and returns a string and the string's size}

MyGetStringFromDesc(keyData, windowName, actSize);

{look for a window with the given name}

window := FrontWindow;

found := FALSE;

WHILE ((window <> NIL) AND (found = FALSE)) DO

BEGIN

GetWTitle(window, windTitle);

found := EqualString(windTitle, windowName, FALSE, TRUE);

IF NOT found THEN

window := WindowPtr(WindowPeek(window)^.nextWindow);

END; {of while}
Writing Object Accessor Functions 6-35

C H A P T E R 6

Resolving and Creating Object Specifier Records
END {of formName}

ELSE

IF keyForm = formAbsolutePosition THEN

{find the window given an index in key data}

BEGIN {get the index from the key data}

MyGetIndexFromDesc(keyData, index);

found := FALSE;

iLoop := 0;

window := FrontWindow;

WHILE (window <> NIL) AND (found <> TRUE) DO

BEGIN

iLoop := iLoop +1;

IF iLoop = index THEN

found := TRUE

ELSE

window := WindowPtr(WindowPeek(window)^.nextWindow);

END; {of while}

END {of formAbsolutePosition}

{handle the other key forms you support}

ELSE

BEGIN

MyFindWindowObjectAccessor := kKeyFormNotSupported;

Exit(MyFindWindowObjectAccessor);

END;

IF window = NIL THEN

MyFindWindowObjectAccessor := kObjectNotFound

ELSE {create token that identifies the window}

MyFindWindowObjectAccessor :=

AECreateDesc(typeMyWindow, @window,

SizeOf(window), token);

END;
6-36 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The keyForm parameter of the MyFindWindowObjectAccessor function describes
how the function should interpret the keyData parameter. If the key form is formName,
then the key data contains the name of the window to locate. If the key form is
formAbsolutePosition, the key data contains the position of the window to locate
in the window list; for example, a value of 1 identifies the frontmost window.

The MyFindWindowObjectAccessor function supports only the formName and
formAbsolutePosition key forms. Your object accessor functions should support all
key forms that make sense for the kinds of objects the functions can locate.

For the formName keyword, the MyFindWindowObjectAccessor function starts with
the frontmost window and compares the window’s title to the name specified by the
keyData parameter. It continues this search until it reaches either the end of the
window list or finds a match. If the MyFindWindowObjectAccessor function finds a
match, it uses the AECreateDesc function to create a descriptor record for the token,
specifying the application-defined typeMyWindow descriptor type and the data for
this descriptor type as a window pointer.

The MyFindWindowObjectAccessor function then sets its function result
appropriately, and the AEResolve function either returns this function result and token,
or uses the returned token to request the next Apple event object in the container
hierarchy, such as a document in the window.

Writing Object Accessor Functions That Find Properties 6
The Apple event object to which a property belongs is that property’s container. Your
application should provide an object accessor function for finding properties in
containers identified by tokens of various descriptor types. Your application does not
need to be given a property’s specific object class in order to find that property; instead,
you can specify the object class ID for any property with the constant cProperty. Thus,
you can write a single object accessor function that can find any property of an object
identified by a token of a given descriptor type.

To install such an object accessor function, you can add a single entry to the object
accessor dispatch table that specifies the desired object class as cProperty for a given
token descriptor type. For example, Listing 6-9 shows an object accessor function that
identifies any property of a window.
Writing Object Accessor Functions 6-37

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-9 An object accessor function that identifies any property of a window

FUNCTION MyFindPropertyOfWindowObjectAccessor

(desiredClass: DescType;

containerToken: AEDesc;

containerClass: DescType;

keyForm: DescType; keyData: AEDesc;

VAR token: AEDesc;

theRefCon: LongInt): OSErr;

VAR

theProperty: DescType;

BEGIN

MyFindPropertyOfWindowObjectAccessor := noErr;

MyGetPropFromKeyData(keyData, theProperty);

IF keyForm = formPropertyID THEN

BEGIN

IF theProperty = pName THEN

{create token that identifies name property of the }

{ window}

MyCreateToken(typeMyWindowProp, containerToken, pName,

token)

ELSE

IF theProperty = pBounds THEN

{create token that identifies bounds property of the }

{ window}

MyCreateToken(typeMyWindowProp, containerToken, pBounds,

token)

{create tokens for other properties as appropriate}

ELSE

MyFindPropertyOfWindowObjectAccessor :=

kErrorPropNotFound;

END

ELSE

MyFindPropertyOfWindowObjectAccessor :=

kKeyFormNotSupported;

END;
6-38 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The MyFindPropertyOfWindowObjectAccessor function takes a token that
identifies a window and creates a token that identifies the requested property of that
window. See Figure 6-6 on page 6-40 for an illustration of the logical organization of a
token of descriptor type typeMyWindowProp.

This simplified example merely translates information about the requested property and
the window to which it belongs into the form of a token of type typeMyWindowProp.
This token can then be used by Apple event handlers to identify the corresponding
window and its property, so that a handler can either retrieve the value of the property
(for example, a Get Data handler) or change the value of the property (for example, a
Set Data handler). Like other tokens, a token that identifies a property should always
contain a reference to the corresponding property and the object to which it belongs—
not a copy of the data for that object’s property.

Defining Tokens 6
It is up to you to decide how many token descriptor types you need to define for your
application. In many cases you may be able to define one token that can identify
Apple event objects of several different object classes, such as a token of type
typeMyTextToken that identifies Apple event objects of object classes cText, cWord,
cItem, and cChar. In other cases you may need to define specific token descriptor types
for specific object classes.

For example, the MyFindDocumentObjectAccessor routine shown in Listing 6-5 on
page 6-30 returns a token of descriptor type typeMyDocToken, which identifies a
document record.

CONST {application-defined token}

typeMyDocToken = 'docr'; {identifies a document record}

Figure 6-5 shows the logical arrangement of a descriptor record of descriptor type
typeMyDocToken whose data is specified by a pointer to a document record.

Figure 6-5 Descriptor record for an application-defined token that identifies a document

Data type AEDesc

Descriptor type: typeMyDocToken

Data: Pointer to a document record
Writing Object Accessor Functions 6-39

C H A P T E R 6

Resolving and Creating Object Specifier Records
The MyFindPropertyOfWindowObjectAccessor routine shown in Listing 6-9
returns a token of descriptor type typeMyWindowProp for every property that it
can locate.

CONST {application-defined token}

typeMyWindowProp = 'wprp'; {a window pointer and a }

 { property ID}

Figure 6-6 shows the logical arrangement of a descriptor record of descriptor type
typeMyWindowProp that identifies the bounds property of a window. Its data consists
of a window pointer and the constant pBounds. The application can use this token
either to return or to change the window’s bounds setting, depending on the Apple
event that specified the property. If the token specified pName instead, the application
could use it either to return the window’s name as a string or to change the window’s
name.

Figure 6-6 Descriptor record for an application-defined token that identifies the pbounds
property of a window

A token’s data should always contain a reference to the corresponding Apple event
objects—not a copy of the data for those objects. This allows the same token to be used
for both reading and writing tokens.

It’s often possible to use the same token type for objects of several object classes, or for
both an object of a given class and one of its properties. A token’s data is private to your
application and can be organized in any way that is convenient.

When an object accessor function that supports key form formRange locates a range of
Apple event objects, it should normally return a descriptor list (AEDescList) of tokens
for the individual objects. A typical exception is an object accessor function that returns a
range of objects of class cText, which should return a single token representing the
entire range. For example, an object accessor function that finds “all the characters from
char 1 to char 1024” should return a token that consists of a list of 1024 objects, each
of class cChar, whereas an object specifier function that finds “all the text from char 1
to char 1024” should return a single token for a single item of class cText that is
1024 characters long.

Data type AEDesc

Descriptor type: typeMyWindowProp

Data: Window pointer

pBounds
6-40 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
A token is valid only until the Apple Event Manager has located the requested element
in the container the token represents and returned another token for the element. The
Apple Event Manager disposes of intermediate tokens after it finishes resolving an object
specifier record, but one token is always left over—the token that identifies the specified
Apple event object or objects. Your application should dispose of this final token by
calling the AEDisposeToken function, which in turn calls your application’s token
disposal function (if one exists), an optional object callback function that disposes of a
token. See page 6-99 for the declaration of a token disposal function.

If your application does not provide a token disposal function, the Apple Event Manager
uses the AEDisposeDesc function to dispose of tokens. This function does the job as
long as disposing of tokens involves nothing more than simply disposing of a descriptor
record. Otherwise, you need to provide a custom token disposal function. For example,
suppose the data field of a token descriptor record contains a handle to a block that in
turn contains references to memory for the Apple event object referred to by the token. In
this case, the application should provide a token disposal function that performs the
tasks required to dispose of the token and any associated structures.

Handling Whose Tests 6
If your application provides an object-counting function and an object-comparison
function in addition to the appropriate object accessor functions, the Apple Event
Manager can resolve object specifier records that specify formTest without any other
assistance from your application. The Apple Event Manager translates object specifier
records of key form formTest into object specifier records of key form formWhose.
This involves collapsing the key form and key data from two object specifier records in a
container hierarchy into one object specifier record with the key form formWhose.

Some applications may find it more efficient to translate whose tests into their own
query languages rather than letting the Apple Event Manager handle the tests. This is
useful only for applications that can make use of a test combined with either an absolute
position or a range to locate objects. If you want the Apple Event Manager to let your
application handle whose tests, set the kAEIDoWhose flag in the callbackFlags
parameter of the AEResolve function. If for any reason one of your application’s object
accessor functions chooses not to handle a particular whose descriptor record, it should
return errAEEventNotHandled as the result code, and the Apple Event Manager will
try again using the original object specifier records, just as if the kAEIDoWhose flag were
not set.
Writing Object Accessor Functions 6-41

C H A P T E R 6

Resolving and Creating Object Specifier Records
The key data for formWhose is specified by a whose descriptor record, which is a
coerced AE record of descriptor type typeWhoseDescriptor. The data for a whose
descriptor record consists of the two keyword-specified descriptor records shown in
Table 6-5.

A whose descriptor record is never created directly by an application. The Apple Event
Manager creates a whose descriptor record whenever an object specifier record of key
form formTest is used to describe the container for elements described by an object
specifier record of key form formAbsolutePosition or formRange, with some
exceptions as noted in this section.

For example, Figure 6-3 on page 6-18 shows four object specifier records that show the
container hierarchy for the first row that meets a test in the table “MyAddresses” of the
database “SurfDB.” The top two object specifier records in that figure use the key forms
formAbsolutePosition and formTest to describe elements in a container. When it
receives these two object specifier records, the Apple Event Manager collapses them into
one, as shown in Figure 6-7. It then calls the application’s object-counting function to
find out how many objects of class cRow the table contains and the object-comparison
function to test the rows in the table until it finds the first row that passes the test.

Table 6-5 Keyword-specified descriptor records for typeWhoseDescriptor

Keyword Descriptor type Data

keyAEIndex typeLongInteger Offset of requested element in group
of elements that pass a test

typeAbsoluteOrdinal kAEFirst
kAEMiddle
kAELast
kAEAny
kAEAll

typeWhoseRange Whose range descriptor record

keyAETest typeCompDescriptor Comparison descriptor record

typeLogicalDescriptor Logical descriptor record
6-42 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Figure 6-7 A container hierarchy created by the Apple Event Manager using a whose
descriptor record

If the elements to be tested are described by an object specifier record of key form
formAbsolutePosition or formRange but are not of the same object class as their
container, the Apple Event Manager cannot collapse the existing object specifier records
into a whose descriptor record. Instead, the Apple Event Manager creates a
whose descriptor record as if a third object specifier record of key form
formAbsolutePosition and kAEAll were inserted between the object specifier
record for the container and that for the tested elements. For example, the Apple Event
Manager would interpret a request for “character 1 of word whose first letter = ‘a’” as
“character 1 of every word whose first letter = ‘a’”.

typeNull

keyAEContainer

typeType

cDatabase

keyAEDesiredClass

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of database (“SurfDB”)

Object specifier data for a set of rows that meet a test

Object specifier data for a table

Object specifier data for a database

Data handle is NIL

typeType

cRow

keyAEDesiredClass keyAEKeyForm

typeEnumerated

Whose descriptor data

formWhose

typeObjectSpecifier

keyAEContainer

Data shown below

typeLogicalDescriptor

Data shown in Figure 6-4

keyAETest

typeLongInteger

1

keyAEKeyIndex

typeWhoseDescriptor

Data shown below

keyAEKeyData

typeType

cTable

keyAEDesiredClass

typeObjectSpecifier

keyAEContainer

Data shown below

typeEnumerated

keyAEKeyForm

formName

typeChar

keyAEKeyData

Name of table (“MyAddresses”)
Writing Object Accessor Functions 6-43

C H A P T E R 6

Resolving and Creating Object Specifier Records
When an object specifier record of key form formTest is used to describe the container
for elements described by an object specifier record of key form formRange, the
Apple Event Manager will, under certain conditions, coerce the corresponding range
descriptor record to a whose range descriptor record, which is a coerced AE record of
typeWhoseRange. The data for a whose range descriptor record consists of
two keyword-specified descriptor records with the descriptor types and data shown in
Table 6-6.

A whose range descriptor record describes the absolute position of the boundary
elements, within the set of all elements that pass a test, that identify the beginning and
end of the desired range.

The Apple Event Manager coerces a range descriptor record to a whose range descriptor
record if the specified container and its elements are of the same class, if the container for
the specified range of elements is a group of Apple event objects that pass a test, and if
the boundary objects in the original range descriptor record meet these conditions:

■ Both boundary objects are of the same object class as the Apple event objects in the
range they specify.

■ The object specifier record for each boundary object specifies its container with a
descriptor record of descriptor type typeCurrentContainer.

■ The object specifier record for each boundary object specifies a key form of
formAbsolutePosition.

Table 6-6 Keyword-specified descriptor records for typeWhoseRange

Keyword Descriptor type Data

keyAEWhoseRangeStart typeLongInteger Offset of beginning of
range

typeAbsoluteOrdinal kAEFirst
kAEMiddle
kAELast
kAEAny
kAEAll

keyAEWhoseRangeStop typeLongInteger Offset of end of range

typeAbsoluteOrdinal kAEFirst
kAEMiddle
kAELast
kAEAny
kAEAll
6-44 Writing Object Accessor Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
If these conditions are not met, the Apple Event Manager doesn’t create a whose range
descriptor record. Instead, as described earlier in this section, the Apple Event Manager
creates a whose descriptor record as if the original request specified every element that
passed the test.

If your application sets the kAEIDoWhose flag in the callbackFlags parameter
of AEResolve, you should provide object accessor functions that can handle
formWhose. These functions should coerce the whose descriptor record specified as
key data for an object specifier record to an AE record and extract the data from the
AE record by calling the AEGetKeyPtr and AEGetKeyDesc functions. If the
keyword-specified descriptor record with the keyword keyAEIndex specifies descriptor
type typeWhoseRange, your object accessor function must also coerce that descriptor
record to an AE record and extract the data. Your object accessor function should then
attempt to locate the requested objects and, if successful, return a token that identifies
them.

If your application sets the kAEIDoWhose flag and attempts to resolve every whose
descriptor record it receives, the Apple Event Manager does not attempt to resolve object
specifier records of any key form. The object-counting and object-comparison functions
are never called, and your application is solely responsible for determining the formats
and types of all tokens.

Writing Object Callback Functions 6

If an Apple event parameter consists of an object specifier record, your handler for
the Apple event typically calls AEResolve to begin the process of locating the requested
Apple event object or objects. In turn, AEResolve calls object accessor functions and,
if necessary, object callback functions provided by your application.

Every application that supports Apple event objects should provide object accessor
functions that can locate Apple event objects belonging to any of the supported object
classes. For an overview of the way AEResolve calls object accessor functions to locate
Apple event objects described by object specifier records, see “Resolving Object Specifier
Records,” which begins on page 6-4.

In addition to object accessor functions, your application can provide up to seven object
callback functions:

■ An object-counting function counts the number of elements of a specified class in a
specified container, so that the Apple Event Manager can determine how many
elements it must examine to find the element or elements that pass a test. Your
application must provide one object-counting function to handle object specifier
records that specify tests. (See “Writing an Object-Counting Function,” which begins
on page 6-48.)
Writing Object Callback Functions 6-45

C H A P T E R 6

Resolving and Creating Object Specifier Records
■ An object-comparison function compares one element either to another element or to a
descriptor record and returns either TRUE or FALSE. Your application must provide
one object-comparison function to handle object specifier records that specify tests.
(See “Writing an Object-Comparison Function” on page 6-50.)

■ A token disposal function disposes of a token after your application calls the
AEDisposeToken function. If your application doesn’t provide a token disposal
function, the Apple Event Manager uses the AEDisposeDesc function instead. Your
application must provide a token disposal function if it requires more than a call to
AEDisposeDesc to dispose of one of its tokens. This is true, for example, if your
application supports marking by modifying its own data structures. (See page 6-99 for
the declaration of a token disposal function.)

■ An error callback function gives the Apple Event Manager an address to which to write
the descriptor record it is currently working with if an error occurs while AEResolve
is attempting to resolve an object specifier record. Your application is not required to
provide an error callback function. (See page 6-100 for the declaration of an error
callback function.)

■ Three marking callback functions are used by the Apple Event Manager to get a mark
token from your application, to mark specific Apple event objects, and to pare down a
group of marked Apple event objects. Your application must provide all three
marking functions if it supports marking. (See “Writing Marking Callback Functions”
on page 6-53.)

To make your object callback functions available to the Apple Event Manager, use the
AESetObjectCallbacks function:

myErr := AESetObjectCallbacks (@MyCompareObjects,

 @MyCountObjects, @MyDisposeToken,

 @MyGetMarkToken, @MyMark,

 @MyAdjustMarks, @MyGetErrDesc);

Each parameter to the AESetObjectCallbacks function consists of either a pointer
to the corresponding application-defined function or NIL if no function is provided.
The AESetObjectCallbacks function sets object callback functions that are available
only to your application. To set system object callback functions, which are available
to all applications and processes running on the same computer, use the
AEInstallSpecialHandler function as described on page 4-100.

To handle object specifier records that specify tests, your application must provide an
object-counting function and an object-comparison function. The Apple Event Manager
calls your application’s object-counting function to determine the number of Apple event
objects in a specified container that need to be tested. The Apple Event Manager calls
your application’s object-comparison function when it needs to compare one Apple
event object to either another Apple event object or to a value in a descriptor record.
6-46 Writing Object Callback Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
If your application does not provide a token disposal function, the Apple Event Manager
uses the AEDisposeDesc function to dispose of tokens. This function does the job as
long as disposing of tokens involves nothing more than simply disposing of a descriptor
record. Otherwise, you need to provide custom token disposal function. For example,
suppose the data field of a token descriptor record contains a handle to a block that in
turn contains references to storage for the Apple event object referred to by the token. In
this case, the application can provide a token disposal function that performs the tasks
required to dispose of the token and any associated structures.

Whenever more than one Apple event object passes a test, AEResolve can either return
a list of tokens or make use of a target application’s ability to mark its own objects.
Sometimes a list of tokens can become unmanageably large. For example, if a Get Data
event asks for the names and addresses of all customers with a specified zip code who
have purchased a specified product, the object accessor function that locates all the
customers with the specified zip code might return a list of many thousands of tokens;
the elements identified by those tokens would then have to be tested for the specified
product. However, if your application uses some method of marking objects, you can
choose simply to mark the requested objects rather than returning a list of tokens.
“Writing Marking Callback Functions” on page 6-53 describes how to do this. If your
application supports marking by modifying its own data structures, you must provide a
token disposal function.

When one of your application’s Apple event handlers calls the AEResolve function, the
handler should pass a value in the callbackFlags parameter that specifies whether
your application supports whose descriptor records or provides marking callback
functions. You can add the following constants, as appropriate, to provide a value for the
callbackFlags parameter:

CONST kAEIDoMinimum = $0000; {does not handle whose tests or }

{ provide marking callbacks}

kAEIDoWhose = $0001; {supports key form formWhose}

kAEIDoMarking = $0004; {provides marking functions}

For example, this code instructs the Apple Event Manager to call any marking functions
previously set with the AESetObjectCallbacks function while resolving the object
specifier record in the objectSpecifier parameter:

VAR

objectSpecifier: AEDesc;

resultToken: AEDesc;

myErr: OSErr;

myErr := AEResolve(objectSpecifier, kAEIDoMarking, resultToken);
Writing Object Callback Functions 6-47

C H A P T E R 6

Resolving and Creating Object Specifier Records
If any of the marking callback functions are not installed, AEResolve returns the error
errAEHandlerNotFound.

IMPORTANT

If your application doesn’t specify kAEIDoWhose, the Apple Event
Manager attempts to resolve all object specifier records of key form
formTest. To do so, the Apple Event Manager uses your application’s
object-counting and object-comparison functions, and returns a token of
type typeAEList.

If your application does specify kAEIDoWhose, the Apple Event
Manager does not attempt to resolve object specifier records of any key
form. In this case, the object-counting and object-comparison functions
are never called; your application determines the formats and types of
all tokens; and your application must interpret whose descriptor records
created by the Apple Event Manager during the resolution of object
specifier records. For more information, see “Handling Whose Tests,”
which begins on page 6-41. ▲

Writing an Object-Counting Function 6
To handle object specifier records that specify tests, your application should provide
an object-counting function (unless it specifies kAEIDoWhose as just described).
Your object-counting function should be able to count the number of elements of a given
object class in a given container. For example, if your application supports Apple
event objects that belong to the object class cText in the Text suite, your application
should provide an object-counting function that can count Apple event objects of each
element class listed in the definition of cText in the Apple Event Registry: Standard Suites.
In this case, your application should provide an object-counting function that can count
the number of words, items, or characters in a text object.

You specify your object-counting function with the AESetObjectCallbacks function.
Whenever it is resolving an object specifier record and it requires a count of the number
of elements in a given container, the Apple Event Manager calls your object-counting
function.

Here’s the declaration for a sample object-counting function:

FUNCTION MyCountObjects (desiredClass: DescType;

 containerClass: DescType;

 containerToken: AEDesc;

 VAR result: LongInt): OSErr;

The Apple Event Manager passes the following information to your object-counting
function: the object class ID of the Apple event objects to count, the object class of their
container, and a token identifying their container. (The container class can be useful if
you want to use one token type for several object classes.) Your object-counting function
uses this information to count the number of Apple event objects of the specified object
6-48 Writing Object Callback Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
class in the specified container. After counting the Apple event objects, your application
should return the noErr result code and, in the result parameter, the number of Apple
event objects counted.

Listing 6-10 shows an application-defined function, MyCountObjects, that counts the
number of objects for any object class supported by the application.

Listing 6-10 An object-counting function

FUNCTION MyCountObjects (desiredClass: DescType; containerClass: DescType;

 containerToken: AEDesc; VAR result: LongInt): OSErr;

VAR

window: WindowPtr;

BEGIN

result := 0;

IF desiredClass = cWindow THEN

BEGIN

IF containerClass = typeNull THEN

BEGIN

{count the number of windows}

window := FrontWindow;

WHILE window <> NIL DO

BEGIN

result := result + 1;

window := WindowPtr(WindowPeek(window)^.nextWindow);

END; {of while}

END;

MyCountObjects := noErr;

END {of cWindow}

ELSE

IF desiredClass = cWord THEN

{count the number of words in the container}

MyCountObjects := MyCountWords(containerClass, containerToken,

result)

ELSE

IF desiredClass = cParagraph THEN

{count the number of paragraphs in the container}

MyCountObjects := MyCountParas(containerClass, containerToken,

result)

ELSE

{this app does not support any other object classes}

MyCountObjects := kObjectClassNotFound;

END;
Writing Object Callback Functions 6-49

C H A P T E R 6

Resolving and Creating Object Specifier Records
Writing an Object-Comparison Function 6
To handle object specifier records that specify tests, your application should provide an
object-comparison function (unless it specifies kAEIDoWhose as described on page 6-48).
Your object-comparison function should be able to compare one Apple event object to
another Apple event object or to another descriptor record.

You specify your object-comparison function with the AESetObjectCallbacks
function. Whenever it is resolving object specifier records and needs to compare the
value of an Apple event object with another object or with data, the Apple Event
Manager calls your object-comparison function.

Here’s the declaration for a sample object-comparison function:

FUNCTION MyCompareObjects (comparisonOperator: DescType;

object: AEDesc;

objectOrDescToCompare: AEDesc;

VAR result: Boolean): OSErr;

The Apple Event Manager passes the following information to your object-comparison
function: a comparison operator that specifies how the two objects should be compared,
a token for the first Apple event object, and either a token that describes the Apple event
object to compare or a descriptor record.

It is up to your application to interpret the comparison operators it receives. The
meaning of comparison operators differs according to the Apple event objects being
compared, and not all comparison operators apply to all object classes. After successfully
comparing the Apple event objects, your object-comparison function should return the
noErr result code and, in the result parameter, a Boolean value specifying TRUE if the
result of the comparison is true and FALSE otherwise. If for any reason your comparison
function is unable to compare the specified Apple event objects, it should return the
result code errAEEventNotHandled; then the Apple Event Manager will try an
alternative method of comparing the Apple event objects, such as calling the equivalent
system object-comparison function, if one exists.

Your object-comparison function should be able to compare an Apple event object
belonging to any object class with another Apple event object. Your function should also
be able to compare two Apple event objects with different object classes, if appropriate.
For example, an object-comparison function for a word-processing application might be
asked to compare the First Name column of a specified row in a table with the first word
on a specified page—that is, to compare an Apple event object of object class cColumn
with an Apple event object of object class cWord. You must decide what kinds of
comparisons make sense for your application.
6-50 Writing Object Callback Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The Apple Event Registry: Standard Suites defines standard comparison operators. Here is
a list of the constants that correspond to these comparison operators:

CONST

kAEGreaterThan = '> ';

kAEGreaterThanEquals = '>= ';

kAEEquals = '= ';

kAELessThan = '< ';

kAELessThanEquals = '<= ';

kAEBeginsWith = 'bgwt';

kAEEndsWith = 'ends';

kAEContains = 'cont';

The comparison operators always relate the first operand to the second. For example,
the constant kAEGreaterThan means that the object-comparison function should
determine whether or not the value of the first operand is greater than the value of the
second operand. For more information, see page 6-90.

Listing 6-11 shows an application-defined function, MyCompareObjects, that compares
two Apple event objects of any object class supported by the application.
Writing Object Callback Functions 6-51

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-11 Object-comparison function that compares two Apple event objects

FUNCTION MyCompareObjects (comparisonOperator: DescType;

theObject: AEDesc;

objectOrDescToCompare: AEDesc;

VAR result: Boolean): OSErr;

BEGIN

result := FALSE;

{compare two objects for equivalence}

IF comparisonOperator = kAEEquals THEN

MyCompareObjects := MyCompEquals(theObject,

objectOrDescToCompare,

result)

ELSE

{compare two objects for greater than}

IF comparisonOperator = kAEGreaterThan THEN

MyCompareObjects := MyCompGreaterThan(theObject,

objectOrDescToCompare,

result)

ELSE

{compare two objects for less than}

IF comparisonOperator = kAELessThan THEN

MyCompareObjects := MyCompLessThan(theObject,

objectOrDescToCompare,

result)

ELSE

{this app does not support any other comparison operators}

MyCompareObjects := errAEEventNotHandled;

END;

The MyCompareObjects function calls a separate application-defined routine for each
comparison operator. In each case, the application-defined routine that actually performs
the comparison can compare an Apple event object with either another Apple event
object or with a descriptor record’s data. If for any reason the comparison cannot be
performed, the MyCompareObjects function returns the result code
errAEEventNotHandled.
6-52 Writing Object Callback Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Writing Marking Callback Functions 6
Marking callback functions allow applications such as databases that can mark their own
objects to take advantage of that capability when resolving object specifier records.
Instead of returning a list of tokens for a group of Apple event objects that pass a test,
your application can simply mark the Apple event objects and return a token that
identifies how they have been marked. In this way, you can speed the resolution of
complex object specifier records and reduce the amount of memory you need to allocate
for tokens.

The use of marking callback functions is optional and usually makes sense if (a) you can
reasonably expect that the tokens created in the process of resolving some object specifier
records might not all fit in memory at once or (b) your application already uses a
marking mechanism. If you want the Apple Event Manager to use marking callback
functions provided by your application, you must add the kAEIDoMarking constant to
the value of the callbackFlags parameter for the AEResolve function. If for any
reason your application cannot mark a requested set of Apple event objects, it should
return errAEEventNotHandled as the result code, and the Apple Event Manager will
attempt to continue resolving the object specifier record by some other method, such as
using a system marking function, if one exists.

If your application supports marking callback functions, it must provide three functions
with declarations that match these examples:

FUNCTION MyGetMarkToken (containerToken: AEDesc;

 containerClass: DescType;

 VAR Result: AEDesc): OSErr;

FUNCTION MyMark (theToken: AEDesc; markToken: AEDesc;

 markCount: LongInt): OSErr;

FUNCTION MyAdjustMarks (newStart, newStop: LongInt;

markToken: AEDesc): OSErr;

For more detailed information about these sample declarations, see “Object Callback
Functions,” which begins on page 6-96.

To resolve a given object specifier record with the aid of the marking callback functions
provided by your application, the Apple Event Manager first calls your application’s
mark token function (MyGetMarkToken), passing a token that identifies the container
of the elements to be marked in the containerToken parameter and the container’s
object class in the containerClass parameter. The mark token function returns a mark
token. A mark token, like other tokens, can be a descriptor record of any type; however,
unlike other tokens, it identifies the way your application marks Apple event objects
during the current session while resolving a single test. A mark token does not identify a
specific Apple event object; rather, it allows your application to associate a group of
objects with a marked set.
Writing Object Callback Functions 6-53

C H A P T E R 6

Resolving and Creating Object Specifier Records
After it receives the mark token, the Apple Event Manager can call your application’s
object-marking function (MyMark) repeatedly to mark specific Apple event objects. The
Apple Event Manager passes the following information to your marking function: in the
theToken parameter, a token for the object to be marked (obtained from the appropriate
object accessor function); in the markToken parameter, the current mark token; and in
the markCount parameter, the mark count. The mark count indicates the number of
times the Apple Event Manager has called the marking function for the current mark
token. Your application should associate the mark count with each Apple event object it
marks.

When the Apple Event Manager needs to identify either a range of elements or the
absolute position of an element in a group of Apple event objects that pass a test, it can
use your application’s mark-adjusting function (MyAdjustMarks) to unmark objects
that it has previously marked. For example, suppose an object specifier record specifies
“any row in the table ‘MyCustomers’ for which the City column is ‘San Francisco.’” The
Apple Event Manager first uses the appropriate object accessor routine to locate all the
rows in the table for which the City column is “San Francisco” and calls the application’s
marking function repeatedly to mark them. It then generates a random number between
1 and the number of rows it found that passed the test and calls the application’s
mark-adjusting function to unmark all the rows whose mark count does not match the
randomly generated number. If the randomly chosen row has a mark count value of 5,
the Apple Event Manager passes the mark-adjusting function 5 in both the newStart
parameter and the newStop parameter, and the current mark token in the markToken
parameter. The newStart and newStop parameters identify the beginning and end of
the new set of marked objects that the mark-adjusting function will create by unmarking
those previously marked objects not included in the new set.

When the Apple Event Manager calls your mark-adjusting function, your application
must dispose of any data structures that it may have created to mark the previously
marked objects. The Apple Event Manager calls your mark-adjusting function only once
for a given mark token.

A mark token is valid until the Apple Event Manager either disposes of it (by calling
AEDisposeToken) or returns it as the result of the AEResolve function. If the final
result of a call to the AEResolve function is a mark token, the Apple event objects
currently marked for that mark token are those specified by the object specifier record
passed to AEResolve, and your application can proceed to do whatever the Apple event
has requested. Note that your application is responsible for disposing of a final mark
token with a call to AEDisposeToken, just as for any other final token.

If your application supports marking, it should also provide a token disposal function.
When the Apple Event Manager calls AEDisposeToken to dispose of a mark token that
is not the final result of a call to AEResolve, the subsequent call to your token disposal
function lets you know that you can unmark the Apple event objects marked with that
mark token. A call to AEDisposeDesc to dispose of a mark token (which would occur if
you did not provide a token disposal function) would leave the objects marked.
6-54 Writing Object Callback Functions

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Creating Object Specifier Records 6

If your application creates and sends Apple events that require the target application to
locate Apple event objects, your application must create object specifier records for those
events. This section describes how to use the four keyword-specified descriptor records
described in “Descriptor Records Used in Object Specifier Records,” which begins on
page 6-8, to specify the object class ID, container, key form, and key data for an object
specifier record.

Because the internal structure of an object specifier record is nearly identical to the
internal structure of an AE record, it is possible to use AECreateList, AEPutPtr,
and AEPutKeyDesc to add the four keyword-specified descriptor records to an
AE record, then use AECoerceDesc to coerce the AE record to a descriptor record
of type typeObjectSpecifier. However, it is usually preferable to use
the CreateObjSpecifier function to accomplish the same goal. The
CreateObjSpecifier function adds the keyword-specified descriptor records
directly to an object specifier record, thus eliminating several steps that are required
if you create an AE record first. The instructions that follow make use of
CreateObjSpecifier.

To specify the class ID for an object specifier record, your application can specify
the appropriate class ID value as the desiredClass parameter for the
CreateObjSpecifier function, which uses it to create a keyword-specified descriptor
record with the keyword keyAEDesiredClass as part of an object specifier record.

To specify the container for an object specifier record, your application must create a
keyword-specified descriptor record with the keyword keyAEContainer that fully
describes the container of the Apple event object. Because this container is usually
another Apple event object, the container is usually specified by another object specifier
record.

To specify the complete container hierarchy of an Apple event object, your application
must create a series of nested object specifier records, starting with the object specifier
record for the Apple event object whose container is outermost. With the exception of
this first object specifier record, each object specifier record specifies another object
specifier record in the chain as a container.
Creating Object Specifier Records 6-55

C H A P T E R 6

Resolving and Creating Object Specifier Records
For example, Figure 6-2 on page 6-10 shows a series of nested object specifier records
that specify the first row of a table named “Summary of Sales” in a document named
“Sales Report.” The logical organization of the same object specifier records is
summarized in Table 6-7.

Note
The format used in Table 6-7 and similar tables throughout this chapter
does not show the structure of nested object specifier records as they
exist within an Apple event. Instead, this format shows what you would
obtain after calling AEGetKeyDesc repeatedly to extract the object
specifier records from an Apple event record.

When you call AEGetKeyDesc to extract a null descriptor record,
AEGetKeyDesc returns a descriptor record of type AEDesc with a
descriptor type of typeNull and a data handle whose value is 0. ◆

To specify the default container for an object specifier record (such as the container for
the document in Table 6-7), you can use AECreateDesc to create a null descriptor
record, which you can then pass in the theContainer parameter of the
CreateObjSpecifier function. The CreateObjSpecifier function uses the null
descriptor record to create a keyword-specified descriptor record with the keyword
keyAEContainer as part of an object specifier record.

Table 6-7 Nested object specifier records that describe a container hierarchy

Keyword Descriptor type Data

keyAEDesiredClass typeType cRow

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cTable

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cDocument

keyAEContainer typeNull Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "Sales Report"

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "Summary of Sales"

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 1
6-56 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The object specifier record that specifies the default container is always the first record
you create in a series of nested object specifier records that specifies the complete
container hierarchy for an Apple event object. Each one in the series uses the previously
created object specifier record to specify its container. As with the null descriptor
record, you can pass an object specifier record as the second parameter to the
CreateObjSpecifier function, which uses it to create a keyword-specified descriptor
record with the keyword keyAEContainer.

To specify the key form for an object specifier record, your application can specify a key
form constant as the third parameter to the CreateObjSpecifier function,
which uses it to create a keyword-specified descriptor record with the keyword
keyAEKeyForm as part of an object specifier record. The standard key forms for object
specifier records are summarized in Table 6-1 on page 6-12.

For example, the key form for the object specifier records in Table 6-7 that specify
the document and the table is formName. In other words, the key data identifies the
document and the table by their names. Similarly, the key form for the object specifier
record in Table 6-7 that specifies the first row in the table is formAbsolutePosition.
In other words, the key data identifies the position of the row compared to other rows in
the same container.

To specify the key data for an object specifier record, your application must create a
keyword-specified descriptor record with the keyword keyAEKeyData whose data
handle refers to the appropriate data for the specified key form. You can use
AECreateDesc, CreateCompDescriptor, CreateLogicalDescriptor, and related
functions to create the descriptor record, which you can then pass in the fourth
parameter of the CreateObjSpecifier function. The CreateObjSpecifier
function uses this descriptor record to create a keyword-specified descriptor record with
the keyword keyAEKeyData as part of an object specifier record.

Creating a Simple Object Specifier Record 6
This section shows how to use the CreateObjSpecifier function to create the object
specifier record shown in Table 6-7. The CreateObjSpecifier function creates the
necessary keyword-specified descriptor records for the class ID, container, key form, and
key data and returns the resulting object specifier record as a descriptor record of type
typeObjectSpecifier.
Creating Object Specifier Records 6-57

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-12 shows how the CreateObjSpecifier function creates an object specifier
record from parameters that an application specifies.

Listing 6-12 Creating an object specifier record using CreateObjSpecifier

VAR

desiredClass: DescType;

myObjectContainer: AEDesc;

myKeyForm: DescType;

myKeyDataDesc: AEDesc;

disposeInputs: Boolean;

myObjSpecRec: AEDesc;

myErr: OSErr;

desiredClass := cRow;

myObjectContainer := MyGetContainer;

myKeyForm := formAbsolutePosition;

myKeyDataDesc := MyGetKeyData;

disposeInputs := TRUE;

{create an object specifier record}

myErr := CreateObjSpecifier(desiredClass, myObjectContainer,

myKeyForm, myKeyDataDesc,

disposeInputs, myObjSpecRec);

The code shown in Listing 6-12 demonstrates how an application might use
the CreateObjSpecifier function to create four keyword-specified descriptor
records as part of a descriptor record of type typeObjectSpecifier. The
CreateObjSpecifier function returns a result code of noErr if the object
specifier record was successfully created. The object specifier record returned
in the myObjSpecRec parameter describes an Apple event object of the class
specified by the desiredClass parameter, located in the container specified by the
myObjectContainer parameter, with the key form specified by the myKeyForm
parameter and key data specified by the myKeyDataDesc parameter.

You can specify TRUE in the disposeInputs parameter if you want the
CreateObjSpecifier function to dispose of the descriptor records you created for the
myObjectContainer and myKeyDataDesc parameters. If you specify FALSE, then
your application is responsible for disposing of these leftover descriptor records.

Listing 6-13 shows an application-defined function that uses CreateObjSpecifier to
create an object specifier record for the first row in the table named “Summary of Sales”
in the document “Sales Report,” then uses the object specifier record returned in the
myObjSpecRec parameter as the direct parameter for a Get Data event.
6-58 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Listing 6-13 Using CreateObjSpecifier in an application-defined function

FUNCTION MyRequestRowFromTarget (targetAddress: AEAddressDesc;

VAR reply: AppleEvent): OSErr;

VAR

desiredClass: DescType;

myKeyForm: DescType;

myObjectContainer: AEDesc;

myObjSpecRec: AEDesc;

myKeyDataDesc: AEDesc;

keyData: LongInt;

theAppleEvent: AppleEvent;

myErr: OSErr;

ignoreErr: OSErr;

BEGIN

{initialize (set to null descriptor records) the two descriptor records }

{ that must eventually be disposed of}

MyInit2DescRecs(myObjSpecRec, theAppleEvent);

desiredClass := cRow; {specify the class}

{specify container for the row}

myErr := MyCreateTableContainer(myObjectContainer,

'Summary of Sales', 'Sales Report');

IF myErr = noErr THEN

BEGIN

myKeyForm := formAbsolutePosition; {specify the key form}

keyData := 1; {specify the key data for row}

myErr := AECreateDesc(typeLongInteger, @keyData, Sizeof(keyData),

myKeyDataDesc);

IF myErr = noErr THEN

{create the object specifier record}

myErr := CreateObjSpecifier(desiredClass, myObjectContainer,

myKeyForm, myKeyDataDesc,

TRUE, myObjSpecRec);

IF myErr = noErr THEN

{myObjSpecRec now describes an Apple event object, and will become }

{ direct parameter of a Get Data event; first create Get Data event}

myErr := AECreateAppleEvent(kAECoreSuite, kAEGetData, targetAddress,

kAutoGenerateReturnID,

kAnyTransactionID, theAppleEvent);
Creating Object Specifier Records 6-59

C H A P T E R 6

Resolving and Creating Object Specifier Records
IF myErr = noErr THEN

{add myObjSpecRec as the direct parameter of the Get Data event}

myErr := AEPutParamDesc(theAppleEvent, keyDirectObject,

myObjSpecRec);

IF myErr = noErr THEN

myErr := AESend(theAppleEvent, reply, kAEWaitReply +

 kAENeverInteract, kAENormalPriority, 120,

 @MyIdleFunction, NIL);

END;

ignoreErr := AEDisposeDesc(myObjSpecRec);

ignoreErr := AEDisposeDesc(theAppleEvent);

MyRequestRowFromTarget := myErr;

END;

The MyRequestRowFromTarget function shown in Listing 6-13 specifies the class ID as
cRow, indicating that the desired Apple event object is a row in a table. It uses the
application-defined function MyCreateTableContainer to create an object specifier
record for the table that contains the row, passing “Summary of Sales” and “Sales
Report” as the second and third parameters to identify the name of the table and the
name of the document that contains the table. (The next section, “Specifying the
Container Hierarchy,” explains how to construct the MyCreateTableContainer
function.) It then specifies the key form as the constant formAbsolutePosition,
which indicates that the key data specifies the position of the row within its container;
sets the keyData variable to 1, indicating the first row, and uses AECreateDesc to
create a descriptor record for the key data; and uses CreateObjSpecifier to
create the object specifier record that describes the desired word.

The desired row is now fully described by the myObjSpecRec variable, which contains
a descriptor record of type typeObjectSpecifier that contains the three nested
object specifier records shown in Table 6-7 on page 6-56. After using
AECreateAppleEvent to create a Get Data event, the MyRequestRowFromTarget
function uses the AEPutParamDesc function to add the myObjSpecRec variable to the
Get Data event as a direct parameter, then uses AESend to send the Get Data event.

Note that the MyRequestRowFromTarget function begins by using the
application-defined function MyInit2DescRecs to set myObjSpecRec and
theAppleEvent to null descriptor records. These two functions must be disposed of
whether the function is successful or not. By setting them to null descriptor records, the
function can dispose of them at the end regardless of where an error may have occurred.
6-60 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Specifying the Container Hierarchy 6

Because the container for an object specifier record usually consists of a chain of other
object specifier records that specify the container hierarchy, your application must create
all the object specifier records in the chain, starting with the record for the
outermost container. Listing 6-14 and Listing 6-15 demonstrate how to use the
CreateObjSpecifier function to create the first two object specifier records in such
a chain: the records for a document and a table.

Listing 6-14 Specifying a document container

FUNCTION MyCreateDocContainer (VAR myDocContainer: AEDesc;

 docName: Str255): OSErr;

VAR

myDocDescRec: AEDesc;

nullDescRec: AEDesc;

myErr: OSErr;

BEGIN

{create a descriptor record for the name of the document}

myErr := AECreateDesc(typeChar, @docName[1],

 Length(docName), myDocDescRec);

IF myErr = noErr THEN

{create a null descriptor record}

myErr := AECreateDesc(typeNull, NIL, 0, nullDescRec);

IF myErr = noErr THEN

{create an object specifier record to specify the }

{ document object}

myErr := CreateObjSpecifier(cDocument, nullDescRec,

 formName, myDocDescRec, TRUE,

 myDocContainer);

MyCreateDocContainer := myErr;

END;
Creating Object Specifier Records 6-61

C H A P T E R 6

Resolving and Creating Object Specifier Records
The function MyCreateDocContainer in Listing 6-14 creates an object specifier record
that identifies a document by name. It starts by using the AECreateDesc function to
create two descriptor records: one of type typeChar for the name of the document, and
one of type typeNull for the null descriptor record that specifies the default container
(because the document is not contained in any other Apple event object). These two
descriptor records can then be used as parameters for the CreateObjSpecifier
function, which returns an object specifier record (that is, a descriptor record of type
typeObjectSpecifier) in the myDocContainer variable. The object specifier record
specifies an Apple event object of the object class cDocument in the container specified
by the nullDescRec variable with a key form of formName and the key data specified
by the myDocDescRec variable. This object specifier can be used by itself to specify a
document, or it can be used to specify the container for another Apple event object.

Listing 6-15 shows an application-defined function, MyCreateTableContainer, that
creates an object specifier record describing a table contained in a document.

Listing 6-15 Specifying a table container

FUNCTION MyCreateTableContainer (VAR myTableContainer: AEDesc;

tableName: Str255;

docName: Str255): OSErr;

VAR

myDocDescRec: AEDesc;

myTableDescRec: AEDesc;

myErr: OSErr;

BEGIN

{create a container for the document}

myErr := MyCreateDocContainer(myDocDescRec, docName);

IF myErr = noErr THEN

BEGIN

{create the table container, }

{ first specify the descriptor record for the key data}

myErr := AECreateDesc(typeChar, @tableName[1],

Length(tableName), myTableDescRec);

IF myErr = noErr THEN

myErr := CreateObjSpecifier(cTable, myDocDescRec,

formName, myTableDescRec,

TRUE, myTableContainer);

END;

MyCreateTableContainer := myErr;

END;
6-62 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The function MyCreateTableContainer in Listing 6-15 starts by using the function
MyCreateDocContainer from Listing 6-14 to create an object specifier record that
identifies the table’s container—the document in which the table is located. Then it uses
the AECreateDesc function to create a descriptor record for the key data—a name that,
when combined with the key form formName, will identify the table in the document.
The object specifier record for the document and the descriptor record specifying the
table’s name are passed to the function CreateObjSpecifier. It returns an object
specifier record in the myTableContainer parameter that specifies an Apple event
object of the object class cTable in the container specified by the MyDocDescRec
variable with a key form of formName and the key data specified by the
myTableDescRec variable. This object specifier record can be used by itself to specify a
table, or it can be used to specify the container for another Apple event object.

Listing 6-13 uses the MyCreateTableContainer function shown in Listing 6-15 to
specify the container hierarchy illustrated in Table 6-7 on page 6-56. The nested
object specifier records shown in Table 6-7 use the key forms formName
and formRelativePosition. You can create key data for the key forms
formPropertyID, formUniqueID, and formRelativePosition using similar
techniques.

Specifying a Property 6

The key form formPropertyID allows your application to specify key data identifying
a property of the object specified as a container. For example, an object specifier record
that identifies the font property of a word specifies cProperty as the class ID, an object
specifier record for the word as the property’s container, formPropertyID as the key
form, and the constant pFont as the key data.

Note that an object specifier record that identifies a property does not include a value for
the property, such as Palatino. The value of a property is returned or set as a
parameter of an Apple event. For example, an application that sends a Get Data event to
get the pFont property of a word receives a value such as Palatino in the
keyAEResult parameter of the reply event, and an application that sends a Set Data
event to change the pFont property of a word specifies a font in the keyAEData
parameter of the Set Data event.

To specify the key data for a key form of formPropertyID, your application must
create a descriptor record of typeType whose data consists of a constant specifying a
property. You can use AECreateDesc to create a descriptor record that specifies the
constant for a property, then use CreateObjSpecifier to add the descriptor record to
an object specifier record as a keyword-specified descriptor record with the keyword
keyAEKeyData.

For more information about object specifier records that specify a property, see “Key
Data for a Property ID” on page 6-13.
Creating Object Specifier Records 6-63

C H A P T E R 6

Resolving and Creating Object Specifier Records
Specifying a Relative Position 6

The key form formRelativePosition allows your application to specify key data
identifying an element or a set of elements that are immediately before or after the
specified container. For example, if the container is a table, you could use a key form of
formRelativePosition to specify the paragraph before or after the table.

To specify the key data for a key form of formRelativePosition, your application
must create a descriptor record of typeEnumerated whose data consists of a constant
specifying either the element after (kAENext) or the element before (kAEPrevious)
the specified container.

You can use AECreateDesc to create a descriptor record that specifies one of these
constants, then use CreateObjectSpecifier to add it to an object specifier record as
a keyword-specified descriptor record with the keyword keyAEKeyData.

For more information about object specifier records that specify a relative position, see
“Key Data for Relative Position” on page 6-15.

Creating a Complex Object Specifier Record 6
This section describes how to create object specifier records that specify a test or a range.
You can specify the object class ID for these object specifier records the same way you
would for any other object specifier record. When you create the other three
keyword-specified descriptor records, however, you can use additional Apple Event
Manager routines and descriptor types to specify any combination of Apple event
objects.

Specifying a Test 6

The key form formTest allows your application to specify key data that identifies one
or more elements in the specified container that pass a test. To do so, your application
must construct several interconnected descriptor records that specify comparisons and, if
necessary, logical expressions.

For example, to specify “the first row in which the First Name column equals ‘John’ and
the Last Name column equals ‘Chapman’ in the table ‘MyAddresses’ of the database
‘SurfDB,’” your application must construct an object specifier record whose key data
describes a logical expression that applies the logical operator AND to two separate
comparisons for each row: a comparison of the First Name column to the word “John”
and a comparison of the Last Name column to the word “Chapman.”
6-64 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The logical organization of the data for the object specifier record that specifies this test is
summarized in Table 6-8 and Table 6-9. (It is also illustrated in Figure 6-3 and Figure 6-4,
beginning on page 6-18.) The listings in the remainder of this section demonstrate how to
create this object specifier record. For general information about the organization of key
data for a test, see “Key Data for a Test,” which begins on page 6-15.

Table 6-8 Object specifier record for the first row that meets a test in the table named
“MyAddresses”

Keyword Descriptor type Data

keyAEDesiredClass typeType cRow

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cRow

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cTable

keyAEContainer typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cDatabase

keyAEContainer typeNull Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "SurfDB"

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "MyAddresses"

keyAEKeyForm typeEnumerated formTest

keyAEKeyData typeLogicalDescriptor (see Table 6-9)

keyAEKeyForm typeEnumerated formAbsolutePosition

keyAEKeyData typeLongInteger 1
Creating Object Specifier Records 6-65

C H A P T E R 6

Resolving and Creating Object Specifier Records
Because both the database and the table shown in Table 6-8 are specified by name,
it would be convenient to have an application-defined routine that creates
an object specifier record that uses the key form formName. The
MyCreateFormNameObjSpecifier function shown in Listing 6-16 can be used for
this purpose.

Table 6-9 Logical descriptor record that specifies a test

Keyword Descriptor type Data

keyAELogicalOperator typeEnumerated kAEAnd

keyAELogicalTerms typeAEList (see indented records)

typeCompDescriptor (see indented record)

keyAECompOperator typeType kAEEquals

keyAEObject1 typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeObjectBeingExamined Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "First Name"

keyAEObject2 typeChar "John"

typeCompDescriptor (see indented record)

keyAECompOperator typeType kAEEquals

keyAEObject1 typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cColumn

keyAEContainer typeObjectBeingExamined Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "Last Name"

keyAEObject2 typeChar "Chapman"
6-66 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Listing 6-16 Creating an object specifier record with the key form formName

FUNCTION MyCreateFormNameObjSpecifier

(class: DescType; container: AEDesc;

 keyDataName: str255;

 VAR resultObjSpecRec: AEDesc): OSErr;

VAR

keyDataDescRec: AEDesc;

myErr: OSErr;

BEGIN

myErr := AECreateDesc(typeChar, @keyDataName[1],

 Length(keyDataName), keyDataDescRec);

IF myErr = noErr THEN

myErr := CreateObjSpecifier(class, container, formName,

keyDataDescRec, TRUE,

resultObjSpecRec);

MyCreateFormNameObjSpecifier := myErr;

END;

The MyCreateFormNameObjSpecifier function shown in Listing 6-16 returns, in the
resultObjSpecRec parameter, an object specifier record that describes an Apple event
object of the class specified by the class parameter, located in the container specified by
the container parameter, with the key form formName and key data specified by
the keyDataName parameter. This function is used in Listing 6-19 on page 6-70 to create
object specifier records that use the key form formName for the database and the table.

The nested object specifier records shown in Table 6-9 specify “the rows in which the
First Name column equals ‘John’ and the Last Name column equals ‘Chapman.’” To
identify the rows that pass this test, the Apple Event Manager needs to evaluate two
comparisons: the comparison of each row of the First Name column to the word “John,”
and the comparison of each row of the Last Name column to the word “Chapman.”

The Apple Event Manager uses the information in comparison descriptor records to
compare the specified elements in a container, one at a time, either to another Apple
event object or to the data associated with a descriptor record. The two comparison
descriptor records you need to create for this example are summarized in Table 6-9 on
page 6-66.
Creating Object Specifier Records 6-67

C H A P T E R 6

Resolving and Creating Object Specifier Records
You can use the CreateCompDescriptor function to create a comparison descriptor
record, or you can create an AE record and use AECoerceDesc to coerce it to a
comparison descriptor record. Listing 6-17 shows an example of an application-defined
routine that creates an object specifier record and a descriptor record of typeChar, then
uses the CreateCompDescriptor function to add them to a comparison descriptor
record.

Listing 6-17 Creating a comparison descriptor record

FUNCTION MyCreateComparisonDescRec (VAR compDesc: AEDesc;

colName: str255;

name: str255): OSErr;

VAR

logicalContainer, colNameDesc, nameDesc: AEDesc;

myObjectExaminedContainer: AEDesc;

myErr: OSErr;

BEGIN

{create the object specifier record for keyAEObject1; }

{ first create container}

myErr := AECreateDesc(typeObjectBeingExamined, NIL, 0,

myObjectExaminedContainer);

{create key data}

IF myErr = noErr THEN

myErr := AECreateDesc(typeChar, @colName[1],

 Length(colName), colNameDesc);

{now create the object specifier record}

IF myErr = noErr THEN

myErr := CreateObjSpecifier(cColumn,

 myObjectExaminedContainer,

 formName, colNameDesc, TRUE,

 logicalContainer);

{create the descriptor record for keyAEObject2}

IF myErr = noErr THEN

myErr := AECreateDesc(typeChar, @name[1], Length(name),

 nameDesc);

{create the first logical term (comp descriptor record)}

IF myErr = noErr THEN

myErr := CreateCompDescriptor(kAEEquals, logicalContainer,

nameDesc, TRUE, compDesc);

MyCreateComparisonDescRec := myErr;

END;
6-68 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
The MyCreateComparisonDescRec function takes two strings and uses them to create
a comparison descriptor record. The string passed in the second parameter specifies the
name of the column whose contents should be compared to the string passed in the third
parameter. First, the MyCreateComparisonDescRec function uses AECreateDesc to
create a descriptor record of typeObjectBeingExamined, which is returned in the
variable myObjectExaminedContainer. Next, AECreateDesc creates a descriptor
record of descriptor type typeChar, whose data consists of the string in the variable
colName, and which is returned in the variable colNameDesc. The code then
passes the variables myObjectExaminedContainer and colNameDesc to the
CreateObjSpecifier function, which uses them to create an object specifier record,
returned in the logicalContainer variable, that becomes the keyword-specified
descriptor record with the keyword keyAEObject1.

Next, the MyCreateComparisonDescRec function uses AECreateDesc and the name
parameter to create the descriptor record for keyAEObject2, which AECreateDesc
returns in the nameDesc variable. Finally, the code passes the constant kAEEquals, the
variable logicalContainer, and the variable nameDesc to the
CreateCompDescriptor function, which creates a comparison descriptor record that
allows the Apple Event Manager (with the help of object-comparison functions provided
by the server application) to determine whether the specified column in the row
currently being checked equals the specified string.

You can use the MyCreateComparisonDescRec function to create both the
descriptor records of type typeCompDescriptor shown in Table 6-9 on page 6-66.
These descriptor records provide two logical terms for a logical descriptor record.
The entire logical descriptor record corresponds to the logical expression “the First
Name column equals ‘John’ AND the Last Name column equals ‘Chapman.’”

You can use the CreateLogicalDescriptor function to create a logical descriptor
record, or you can create an AE record and use the AECoerceDesc function to coerce it
to a comparison descriptor record. Listing 6-18 shows an application-defined function
that adds two comparison descriptor records to a descriptor list, then uses the
CreateLogicalDescriptor function to create a logical descriptor record whose
logical terms are the two comparison descriptor records.
Creating Object Specifier Records 6-69

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-18 Creating a logical descriptor record

FUNCTION MyCreateLogicalDescRec (VAR compDesc1, compDesc2: AEDesc;

logicalOperator: DescType;

VAR logicalDesc: AEDesc): OSErr;

VAR

logicalTermsList: AEDescList;

myErr: OSErr;

BEGIN

{create a logical descriptor record that contains two }

{ comparison descriptor records}

{first create a list}

myErr := AECreateList(NIL, 0, FALSE, logicalTermsList);

IF myErr = noErr THEN

myErr := AEPutDesc(logicalTermsList, 1, compDesc1);

IF myErr = noErr THEN

myErr := AEPutDesc(logicalTermsList, 2, compDesc2);

IF myErr = noErr THEN

myErr := AEDisposeDesc(compDesc1);

IF myErr = noErr THEN

myErr := AEDisposeDesc(compDesc2);

IF myErr = noErr THEN

myErr := CreateLogicalDescriptor(logicalTermsList,

logicalOperator, TRUE,

logicalDesc);

MyCreateLogicalDescRec := myErr;

END;

Listing 6-19 uses the application-defined functions shown in Listing 6-16, Listing 6-17,
and Listing 6-18 to build the object specifier record illustrated in Table 6-8 and Table 6-9.

Listing 6-19 Creating a complex object specifier record

FUNCTION MyCreateObjSpecRec (VAR theResultObj: AEDesc): OSErr;

VAR

nullContainer, databaseContainer, tableContainer: AEDesc;

compDesc1, compDesc2: AEDesc;

logicalTestDesc, rowTestContainer, rowOffset: AEDesc;

myErr: OSErr;
6-70 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
BEGIN

{create a null container}

myErr := AECreateDesc(typeNull, NIL, 0, nullContainer);

{create a container for the database}

IF myErr = noErr THEN

myErr := MyCreateFormNameObjSpecifier(cDatabase, nullContainer,

 'SurfDB', databaseContainer);

{create a container for the table}

IF myErr = noErr THEN

myErr := MyCreateFormNameObjSpecifier(cTable, databaseContainer,

 'MyAddresses', tableContainer);

{create a container for the row--an object specifier record that }

{ specifies a test (the row whose First Name column = 'John' and }

{ Last Name column = 'Chapman')}

{create the first comparison descriptor record}

IF myErr = noErr THEN

myErr := MyCreateComparisonDescRec(compDesc1, 'First Name', 'John');

{create the second comparison descriptor record}

IF myErr = noErr THEN

myErr := MyCreateComparisonDescRec(compDesc2, 'Last Name', 'Chapman');

{create the logical descriptor record}

IF myErr = noErr THEN

myErr := MyCreateLogicalDescRec(compDesc1, compDesc2, kAEAND,

logicalTestDesc);

{now create the object specifier record that specifies the test}

IF myErr = noErr THEN

myErr := CreateObjSpecifier(cRow, tableContainer, formTest,

 logicalTestDesc, TRUE, rowTestContainer);

{create the object specifier record for the Apple event object}

{first, create the descriptor record for the key data}

IF myErr = noErr THEN

myErr := CreateOffsetDescriptor (1, rowOffset);

{now create the object specifier record}

IF myErr = noErr THEN

myErr := CreateObjSpecifier (cRow, rowTestContainer,

formAbsolutePosition, rowOffset,

TRUE, theResultObj);

MyCreateObjSpecRec := myErr;

END;
Creating Object Specifier Records 6-71

C H A P T E R 6

Resolving and Creating Object Specifier Records
The MyCreateObjSpecRec function shown in Listing 6-19 begins by
using AECreateDesc to create a null descriptor record, then uses the
MyCreateFormNameObjSpecifier function (shown in Listing 6-16) to specify
the default container for the database named “SurfDB.” The code then calls the
MyCreateFormNameObjSpecifier function again, this time passing the object
specifier record for SurfDB to specify the container for the table “MyAddresses.” The
next two calls are both to the MyCreateComparisonDescRec function (shown in
Listing 6-17), which creates the comparison descriptor records that allow the Apple
Event Manager to compare the First Name column and Last Name column to the names
“John” and “Chapman,” respectively. The next call passes these two comparison
descriptor records to the MyCreateLogicalDescRec function (shown in Listing 6-18)
in the compDesc1 and compDesc2 variables.

Now all the components of the logical descriptor record are ready to assemble. The
next call, to CreateObjSpecifier, specifies the logical descriptor record in
the logicalTestDesc variable as the key data for the object specifier record
that specifies the test. A call to the Apple Event Manager routine
CreateOffsetDescriptor then creates an offset descriptor record that contains
the integer 1. Finally, the code passes the offset descriptor record to the
CreateObjSpecifier function in the rowOffset variable to create the final object
specifier record, which describes the requested row as the first row that passes the test.

The CreateOffsetDescriptor function creates a descriptor record of type
typeLongInteger that can be used as the key data with a key form of
formAbsolutePosition to indicate an element’s offset within its container. A positive
integer indicates an offset from the beginning of the container (the first element has an
offset of 1), and a negative integer indicates an offset from the end of the container (the
last element has an offset of –1). Using CreateOffsetDescriptor accomplishes the
same thing as setting a variable to an integer and passing the variable to AECreateDesc
to create a descriptor record of type typeLongInteger.

Specifying a Range 6

The key form formRange allows your application to specify key data that identifies a
range of elements in the specified container. To do so, your application must first create a
range descriptor record. The Apple Event Manager uses a range descriptor record to
identify the two Apple event objects that specify the beginning and end of a range of
elements.

For example, an object specifier record for a range of text in a document could specify
the table named “Summary of Sales” as the first boundary object and the figure named
“Best-Selling Widgets for 1991” as the second boundary object for a range that consists of
all the text between the table and the figure. Any word processor that keeps track of the
relative positions of text, tables, and figures should be capable of supporting such a
request.
6-72 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Table 6-10 summarizes the logical organization of the data for the object specifier record
that specifies this range. For general information about the organization of data within a
range descriptor record, see “Key Data for a Range” on page 6-20.

You can use the CreateRangeDescriptor function to create a range descriptor record,
or you can create an AE record and use AECoerceDesc to coerce it to a range descriptor
record. Listing 6-20 provides an example of an application-defined routine that creates
two object specifier records, then uses the CreateRangeDescriptor function to add
them to a range descriptor record.

The container for the boundary objects in the range descriptor record created by
Listing 6-20 is the same as the container for the range itself. The object specifier record
for the range’s container is added to an object specifier record of key form formRange at
the same time that the range descriptor record is added as key data. The container for the
two boundary objects can therefore be specified in the range descriptor record by a
descriptor record of type typeCurrentContainer whose data handle has the value
NIL. The Apple Event Manager interprets this as a placeholder for the range’s container
when it is resolving the range descriptor record.

Table 6-10 A range descriptor record

Keyword Descriptor type Data

keyAERangeStart typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cTable

keyAEContainer typeCurrentContainer Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "Summary of Sales"

keyAERangeStop typeObjectSpecifier (see indented record)

keyAEDesiredClass typeType cFigure

keyAEContainer typeCurrentContainer Data handle is NIL

keyAEKeyForm typeEnumerated formName

keyAEKeyData typeChar "Best-Selling Widgets
for 1991"
Creating Object Specifier Records 6-73

C H A P T E R 6

Resolving and Creating Object Specifier Records
Listing 6-20 Creating a range descriptor record

FUNCTION MyCreateRangeDescriptor (VAR rangeDescRec: AEDesc): OSErr;

VAR

rangeStart: AEDesc;

rangeEnd: AEDesc;

currentContainer: AEDesc;

tableNameDescRec: AEDesc;

figureNameDescRec: AEDesc;

myErr: OSErr;

BEGIN

{create the object specifier record for the start of the range }

{ (the table named 'Summary of Sales' in 'MyDoc' document)}

{create a descriptor record of type typeCurrentContainer}

myErr := AECreateDesc(typeCurrentContainer, NIL, 0, currentContainer);

{create the object specifier record}

IF myErr = noErr THEN

myErr := MyCreateNameDescRec(tableNameDescRec,

'Summary of Sales');

IF myErr = noErr THEN

myErr := CreateObjSpecifier(cTable, currentContainer, formName,

 tableNameDescRec, FALSE, rangeStart);

myErr := AEDisposeDesc(tableNameDescRec);

{create the object specifier record for the end of the range }

{ (the figure named 'Best-Selling Widgets...' in 'MyDoc') }

IF myErr = noErr THEN

myErr := MyCreateNameDescRec(figureNameDescRec,

'Best-Selling Widgets for 1991');

IF myErr = noErr THEN

myErr := CreateObjSpecifier(cFigure, currentContainer, formName,

 figureNameDescRec, TRUE, rangeEnd);

{now create the range descriptor record}

IF myErr = noErr THEN

myErr := CreateRangeDescriptor(rangeStart, rangeEnd, TRUE,

rangeDescRec);

MyCreateRangeDescriptor := myErr;

END;
6-74 Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
After creating a descriptor record of type typeCurrentContainer and a descriptor
record for the first table’s name, Listing 6-20 uses the CreateObjSpecifier function
to create an object specifier record that identifies the beginning of the range. The
parameters to CreateObjSpecifier specify that the beginning of the range is an
Apple event object of the object class cTable in the current container, with a key form of
formName and key data that identifies the table by name. A second call to
CreateObjSpecifier creates the object specifier record that identifies the end of the
range—an Apple event object of the cFigure object class in the current container, with a
key form of formName and key data that identifies the figure by name. Finally, the code
in Listing 6-20 uses the CreateRangeDescriptor function to create the range
descriptor record, using the two previously created object specifier records to specify the
beginning and end of the range.

Reference to Resolving and Creating Object Specifier Records 6

This section describes the Apple Event Manager routines your application can use to
resolve and create object specifier records. It also describes application-defined object
accessor functions and object callback functions that your application can provide for use
by the Apple Event Manager in resolving object specifier records.

The first section, “Data Structures Used in Object Specifier Records,” summarizes the
descriptor types and associated data that can be used in an object specifier record.
“Routines for Resolving and Creating Object Specifier Records,” which begins on
page 6-77, describes the Apple Event Manager routines you use to initialize the
Object Support Library, resolve object specifier records, set and manipulate object
accessor functions, deallocate memory for tokens, and create object specifier records.
“Application-Defined Routines,” which begins on page 6-94, describes the object
accessor functions and object callback functions that a server application can provide.

Data Structures Used in Object Specifier Records 6
The data for object specifier records can be specified using a variety of descriptor records
and descriptor types. These are described in detail in “Descriptor Records Used in Object
Specifier Records,” which begins on page 6-8, and summarized in Table 6-11.
Reference to Resolving and Creating Object Specifier Records 6-75

C H A P T E R 6

Resolving and Creating Object Specifier Records
Table 6-11 Keyword-specified descriptor records for typeObjectSpecifier

Keyword Descriptor type Data

keyAEDesiredClass typeType Object class ID

keyAEContainer typeObjectSpecifier Object specifier record

typeNull Data handle is NIL. Specifies
the default container at the top
of the container hierarchy.

typeObjectBeingExamined Data handle is NIL. Specifies
the container for elements that
are tested one at a time; used
only with formTest.

typeCurrentContainer Data handle is NIL. Specifies a
container for an element that
demarcates one boundary in a
range. Used only with
formRange.

keyAEKeyForm typeEnumerated formPropertyID
formName
formUniqueID
formAbsolutePosition
formRelativePosition
formTest
formRange
formWhose

keyAEKeyData (See indented key forms)

for formPropertyID typeType Property ID for an element’s
property

for formName typeChar or other text type Element’s name

for formUniqueID Any appropriate type Element’s unique ID

for formAbsolutePosition typeLongInteger Offset from beginning
(positive) or end (negative) of
container

typeAbsoluteOrdinal kAEFirst
kAEMiddle
kAELast
kAEAny
kAEAll

for formRelativePosition typeEnumerated kAENext
kAEPrevious

for formTest typeCompDescriptor (See Table 6-2 on page 6-16)

typeLogicalDescriptor (See Table 6-3 on page 6-17)

for formRange typeRangeDescriptor (See Table 6-4 on page 6-20)

for formWhose typeWhoseDescriptor (See Table 6-5 on page 6-42)
6-76 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Routines for Resolving and Creating Object Specifier Records 6
This section describes routines for initializing the Object Support Library, resolving
object specifier records, setting and manipulating object accessor functions, deallocating
memory for tokens, and creating object specifier records.

Initializing the Object Support Library 6

You should call the AEObjectInit function to initialize the Apple Event Manager
routines that handle object specifier records and Apple event objects. To make
these routines available to your application with version 1.01 and earlier versions of the
Apple Event Manager, you must also link the Apple Event Object Support Library with
your application when you build it.

AEObjectInit 6

You use the AEObjectInit function to initialize the Object Support Library.

FUNCTION AEObjectInit: OSErr;

DESCRIPTION

You must call this function before calling any of the Apple Event Manager routines that
describe or manipulate Apple event objects.

RESULT CODES

Setting Object Accessor Functions and Object Callback Functions 6

The Apple Event Manager provides two routines that allow you to specify the object
accessor functions and object callback functions provided by your application. The
AEInstallObjectAccessor function adds an entry for an object accessor function
to either the application’s object accessor dispatch table or the system object accessor
dispatch table. The AESetObjectCallbacks function allows you to specify the object
callback functions to be called for your application.

noErr 0 No error occurred
memFullErr –108 Not enough room in heap zone
errAENewerVersion –1706 Need a newer version of the Apple Event Manager
Reference to Resolving and Creating Object Specifier Records 6-77

C H A P T E R 6

Resolving and Creating Object Specifier Records
AEInstallObjectAccessor 6

You can use the AEInstallObjectAccessor function to add an entry for an object
accessor function to either the application’s object accessor dispatch table or the system
object accessor dispatch table.

FUNCTION AEInstallObjectAccessor (desiredClass: DescType;

 containerType: DescType;

 theAccessor: AccessorProcPtr;

 accessorRefcon: LongInt;

 isSysHandler: Boolean): OSErr;

desiredClass
The object class of the Apple event objects to be located by the object
accessor function for this table entry.

containerType
The descriptor type of the token used to specify the container for the
desired objects. The object accessor function finds objects in containers
specified by tokens of this type.

theAccessor
A pointer to the object accessor function for this table entry. Note that an
object accessor function listed in the system dispatch table must reside in
the system heap; thus, if the value of the isSysHandler parameter is
TRUE, the theAccessor parameter should point to a location in the
system heap. Otherwise, if you put your system object accessor function
in your application heap, you must call AERemoveObjectAccessor to
remove the function before your application terminates.

accessorRefcon
A reference constant passed by the Apple Event Manager to the object
accessor function whenever the function is called. If your object accessor
function doesn’t use a reference constant, use 0 as the value of this
parameter. To change the value of the reference constant, you must call
AEInstallObjectAccessor again.

isSysHandler
A value that specifies the object accessor dispatch table to which the entry
is added. If the value of isSysHandler is TRUE, the Apple Event
Manager adds the entry to the system object accessor dispatch table.
Entries in the system object accessor dispatch table are available to all
applications running on the same computer. If the value is FALSE, the
Apple Event Manager adds the entry to your application’s object accessor
table. When searching for object accessor functions, the Apple Event
Manager searches the application’s object accessor dispatch table first; it
searches the system object accessor dispatch table only if the necessary
function is not found in your application’s object accessor dispatch table.
6-78 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
DESCRIPTION

The AEInstallObjectAccessor function adds an entry to either the application or
system object accessor dispatch table. You must supply parameters that specify the object
class of the Apple event objects that the object accessor function can locate, the descriptor
type of tokens for containers in which the object accessor function can locate objects, the
address of the object accessor function for which you are adding an entry, and whether
the entry is to be added to the system object accessor dispatch table or your application’s
object accessor dispatch table. You can also specify a reference constant that the Apple
Event Manager passes to your object accessor function each time the Apple Event
Manager calls the function.

RESULT CODES

SEE ALSO

For more information about installing object accessor functions, see “Installing Entries in
the Object Accessor Dispatch Tables,” which begins on page 6-21.

For a description of the AERemoveObjectAccessor function, see page 6-84.

AESetObjectCallbacks 6

You can use the AESetObjectCallbacks function to specify the object callback
functions to be called for your application.

FUNCTION AESetObjectCallbacks (myCompareProc, myCountProc,

 myDisposeTokenProc,

 myGetMarkTokenProc, myMarkProc,

 myAdjustMarksProc,

 myGetErrDescProc: ProcPtr): OSErr;

myCompareProc
Either a pointer to the object-comparison function provided by your
application or NIL if no function is provided.

myCountProc
Either a pointer to the object-counting function provided by your
application or NIL if no function is provided.

myDisposeTokenProc
Either a pointer to the token disposal function provided by your
application or NIL if no function is provided.

noErr 0 No error occurred
paramErr –50 The handler pointer is NIL or odd, or AEObjectInit was not

called before this function
Reference to Resolving and Creating Object Specifier Records 6-79

C H A P T E R 6

Resolving and Creating Object Specifier Records
myGetMarkTokenProc
Either a pointer to the function for returning a mark token provided by
your application or NIL if no function is provided.

myMarkProc Either a pointer to the object-marking function provided by your
application or NIL if no function is provided.

myAdjustMarksProc
Either a pointer to the mark-adjusting function provided by your
application or NIL if no function is provided.

myGetErrDescProc
Either a pointer to the error callback function provided by your
application or NIL if no function is provided.

DESCRIPTION

Your application can provide only one each of the object callback functions specified by
AESetObjectCallbacks: one object-comparison function, one object-counting
function, and so on. As a result, each of these callback functions must perform the
requested task (comparing, counting, and so on) for all the object classes that your
application supports. In contrast, your application may provide many different object
accessor functions if necessary, depending on the object classes and token types your
application supports.

To replace object callback routines that have been previously installed, you can
make another call to AESetObjectCallbacks. Each additional call to
AESetObjectCallbacks replaces any object callback functions installed by previous
calls to AESetObjectCallbacks. You cannot use AESetObjectCallbacks to replace
system object callback routines or object accessor functions. Only those routines you
specify are replaced; to avoid replacing existing callback functions, specify a value of
NIL for the functions you don’t want to replace.

RESULT CODES

SEE ALSO

For information about writing object callback functions, see “Application-Defined
Routines,” which begins on page 6-94.

To install system object callback functions, use the AEInstallSpecialHandler
function described on page 4-100.

noErr 0 No error occurred
paramErr –50 The handler pointer is NIL or odd, or

AEObjectInit was not called before
this function

memFullErr –108 There is not enough room in heap zone
errAENotASpecialFunction –1714 The keyword is not valid for a special

function
6-80 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Getting, Calling, and Removing Object Accessor Functions 6

The Apple Event Manager provides three functions that allow you to get, call, and
remove object accessor functions that you have installed in either the system or
application object accessor dispatch table with the AEInstallObjectAccessor
function. The AEGetObjectAccessor and AECallObjectAccessor functions get
and call object accessor functions installed in the dispatch table you specify, and
AERemoveObjectAccessor removes an installed function.

AEGetObjectAccessor 6

You can use the AEGetObjectAccessor function to get a pointer to an object accessor
function and the value of its reference constant.

FUNCTION AEGetObjectAccessor (desiredClass: DescType;

containerType: DescType;

VAR theAccessor: AccessorProcPtr;

VAR accessorRefcon: LongInt;

isSysHandler: Boolean): OSErr;

desiredClass
The object class of the Apple event objects located by the requested object
accessor function. This parameter can also contain the constant
typeWildCard or the constant cProperty.

containerType
The descriptor type of the token that identifies the container for the
objects located by the requested object accessor function. This parameter
can also contain the constant typeWildCard.

theAccessor
The AEGetObjectAccessor function returns a pointer to the requested
object accessor function in this parameter.

accessorRefcon
The AEGetObjectAccessor function returns the reference constant
from the object accessor dispatch table entry for the specified object
accessor function in this parameter.

isSysHandler
A value that specifies the object accessor table from which to get the
object accessor function and its reference constant. If the value of
isSysHandler is TRUE, AEGetObjectAccessor gets the function from
the system object accessor dispatch table. If the value of isSysHandler
is FALSE, AEGetObjectAccessor gets the function from the
application’s object accessor dispatch table.
Reference to Resolving and Creating Object Specifier Records 6-81

C H A P T E R 6

Resolving and Creating Object Specifier Records
DESCRIPTION

The AEGetObjectAccessor function returns a pointer to the object accessor function
installed for the object class specified in the desiredClass parameter and the
descriptor type specified in the containerType parameter. It also returns the reference
constant associated with the specified function. You must supply a value in the
isSysHandler parameter that specifies which object accessor dispatch table you want
to get the function from.

Calling AEGetObjectAccessor does not remove the object accessor function from an
object accessor dispatch table.

To get an object accessor function whose entry in an object accessor dispatch table
specifies typeWildCard as the object class, you must specify typeWildCard as the
value of the desiredClass parameter. Similarly, to get an object accessor function
whose entry in an object accessor dispatch table specifies typeWildCard as the
descriptor type of the token used to specify the container, you must specify
typeWildCard as the value of the containerType parameter.

To get an object accessor function whose entry in an object accessor dispatch table
specifies cProperty (a constant used to specify a property of any object class), you
must specify cProperty as the desiredClass parameter.

RESULT CODES

AECallObjectAccessor 6

You can use the AECallObjectAccessor function to invoke one of your application’s
object accessor functions.

FUNCTION AECallObjectAccessor (desiredClass: DescType;

 containerToken: AEDesc;

 containerClass: DescType;

 keyForm: DescType;

 keyData: AEDesc;

 VAR theToken: AEDesc): OSErr;

desiredClass
The object class of the desired Apple event objects.

noErr 0 No error occurred
paramErr –50 AEObjectInit was not called before this

function was called
errAEAccessorNotFound –1723 There is no object accessor function for the

specified object class and container type
6-82 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
containerToken
The token that identifies the container for the desired objects.

containerClass
The object class of the container for the desired objects.

keyForm The key form specified by the object specifier record for the object or
objects to be located.

keyData The key data specified by the object specifier record for the object or
objects to be located.

theToken The object accessor function that is invoked returns a token specifying the
desired object or objects in this parameter.

DESCRIPTION

If you want your application to do some of the Apple event object resolution normally
performed by the AEResolve function, you can use AECallObjectAccessor to
invoke an object accessor function. This might be useful, for example, if you
have installed an object accessor function using typeWildCard for the
AEInstallObjectAccessor function’s desiredClass parameter and typeAEList
for the containerType parameter. To return a list of tokens for a request like “every
line that ends in a period,” the object accessor function can create an empty list, then call
AECallObjectAccessor for each requested element, adding tokens for each element
to the list one at a time.

The parameters of AECallObjectAccessor are identical to the parameters of an object
accessor function, with one exception: the parameter that specifies the reference constant
passed to the object accessor function whenever it is called is added by the Apple Event
Manager when it calls the object accessor function.

To call an object accessor function whose entry in an object accessor dispatch table
specifies typeWildCard as the object class, you must specify typeWildCard as the
value of the desiredClass parameter.

To call an object accessor function whose entry in an object accessor dispatch table
specifies cProperty, you must specify cProperty as the desiredClass parameter.

RESULT CODES

In addition to the following result codes, AECallObjectAccessor returns any other
result codes returned by the object accessor function that is called.

noErr 0 No error occurred
paramErr –50 AEObjectInit was not called before this

function was called
errAEAccessorNotFound –1723 No object accessor was found
Reference to Resolving and Creating Object Specifier Records 6-83

C H A P T E R 6

Resolving and Creating Object Specifier Records
AERemoveObjectAccessor 6

You can use the AERemoveObjectAccessor function to remove an object accessor
function from an object accessor dispatch table.

FUNCTION AERemoveObjectAccessor (desiredClass: DescType;

containerType: DescType;

theAccessor: AccessorProcPtr;

isSysHandler: Boolean): OSErr;

desiredClass
The object class of the Apple event objects located by the object accessor
function. The desiredClass parameter can also contain the constant
typeWildCard or the constant cProperty.

containerType
The descriptor type of the token that identifies the container for the
objects located by the object accessor function. The containerType
parameter can also contain the constant typeWildCard.

theAccessor
A pointer to the object accessor function you want to remove. Although
the parameters desiredClass and containerType would be
sufficient to identify the function to be removed, providing the parameter
theAccessor guarantees that you remove the correct function. If this
parameter does not contain a pointer to the object accessor function you
want to remove, its value should be NIL.

isSysHandler
A value that specifies the object accessor dispatch table from which to
remove the object accessor function. If the value of isSysHandler is
TRUE, AEGetObjectAccessor removes the routine from the system
object accessor dispatch table. If the value is FALSE,
AEGetObjectAccessor removes the routine from the application object
accessor dispatch table.

DESCRIPTION

The AERemoveObjectAccessor function removes the object accessor function you
have installed for the object class specified in the desiredClass parameter and the
descriptor type specified in the containerType parameter.

To remove an object accessor function whose entry in an object accessor dispatch table
specifies typeWildCard as the object class, you must specify typeWildCard as the
value of the desiredClass parameter. Similarly, to remove an object accessor function
whose entry in an object accessor dispatch table specifies typeWildCard as the
descriptor type of the token used to specify the container for the desired objects, you
must specify typeWildCard as the value of the containerType parameter.
6-84 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
To remove an object accessor function whose entry in an object accessor dispatch table
specifies cProperty (a constant used to specify a property of any object class), you
must specify cProperty as the desiredClass parameter.

RESULT CODES

Resolving Object Specifier Records 6

If an Apple event parameter consists of an object specifier record, your handler for the
event typically calls the AEResolve function to begin the process of resolving the object
specifier record.

AEResolve 6

You can use the AEResolve function to resolve an object specifier record in an Apple
event parameter.

FUNCTION AEResolve (objectSpecifier: AEDesc;

 callbackFlags: Integer;

 VAR theToken: AEDesc): OSErr;

objectSpecifier
The object specifier record to be resolved.

callbackFlags
A value that determines what additional assistance, if any, your
application can give the Apple Event Manager when it parses the object
specifier record. The value is specified by adding the following constants,
as appropriate:

CONST kAEIDoMinimum = $0000; {supports minimum }

{ callbacks only}

kAEIDoWhose = $0001; {supports formWhose}

kAEIDoMarking = $0004; {provides marking }

{ functions}

noErr 0 No error occurred
paramErr –50 AEObjectInit was not called before this

function was called
errAEAccessorNotFound –1723 There is no object accessor function for the

specified object class and container type
Reference to Resolving and Creating Object Specifier Records 6-85

C H A P T E R 6

Resolving and Creating Object Specifier Records
theToken The AEResolve function returns, in this parameter, a token that identifies
the Apple event objects specified by the objectSpecifier parameter.
Your object accessor functions may need to create many tokens to resolve
a single object specifier record; this parameter contains only the final
token that identifies the requested Apple event object. If an error occurs,
AEResolve returns a null descriptor record.

DESCRIPTION

The AEResolve function resolves the object specifier record passed in the
objectSpecifier parameter with the help of the object accessor functions and object
callback functions provided by your application.

RESULT CODES

In addition to the result codes listed here, AEResolve also returns any result code
returned by one of your application’s object accessor functions or object callback
functions. For example, an object accessor function can return errAENoSuchObject
(–1728) when it can’t find an Apple event object, or it can return more specific result
codes.

noErr 0 No error occurred
paramErr –50 AEObjectInit was not called before

this function was called
errAEHandlerNotFound –1717 The necessary object callback function was

not found (this result is returned only for
object callback functions;
errAEAccessorNotFound [–1723] is
returned when an object accessor function
is not found)

errAEImpossibleRange –1720 The range is not valid because it is
impossible for a range to include the first
and last objects that were specified; an
example is a range in which the offset of
the first object is greater than the offset of
the last object

errAEWrongNumberArgs –1721 The number of operands provided for the
kAENOT logical operator is not 1

errAEAccessorNotFound –1723 There is no object accessor function for the
specified object class and token descriptor
type

errAENoSuchLogical –1725 The logical operator in a logical descriptor
record is not kAEAND, kAEOR, or kAENOT

errAEBadTestKey –1726 The descriptor record in a test key is
neither a comparison descriptor record nor
a logical descriptor record

errAENotAnObjectSpec –1727 The objSpecifier parameter of
AEResolve is not an object specifier record

errAENegativeCount –1729 An object-counting function returned a
negative result

errAEEmptyListContainer –1730 The container for an Apple event object is
specified by an empty list
6-86 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
If any object accessor function or object callback function returns a result code other than
noErr or errAEEventNotHandled, AEResolve immediately disposes of any existing
tokens and returns. The result code it returns in this case is the result code returned by
the object accessor function or the object callback function.

SEE ALSO

For an overview of the way AEResolve works with object accessor functions, see
“Resolving Object Specifier Records,” which begins on page 6-4.

Deallocating Memory for Tokens 6

Whenever the AEResolve function returns a final token to your event handler as the
result of the resolution of an object specifier record passed to AEResolve, your
application can call the AEDisposeToken function to deallocate the memory used by
the token.

AEDisposeToken 6

You can use the AEDisposeToken function to deallocate the memory used by a token.

FUNCTION AEDisposeToken (VAR theToken: AEDesc): OSErr;

theToken The token to be disposed of.

DESCRIPTION

When your application calls the AEDisposeToken function, the Apple Event Manager
first calls your application’s token disposal function, if you have provided one. If you
haven’t provided a token disposal function, or if your application’s token disposal
function returns errAEEventNotHandled as the function result, the Apple Event
Manager calls the system token disposal function if one is available. If there is no system
token disposal function or the function returns errAEEventNotHandled as the
function result, the Apple Event Manager calls the AEDisposeDesc function to dispose
of the token.

RESULT CODES

In addition to the following result codes, AEDisposeToken also returns result codes
returned by the token disposal function that disposed of the token.

noErr 0 No error occurred
paramErr –50 AEObjectInit was not called before this

function was called
notASpecialFunction –1714 The keyword is not valid for a special function
Reference to Resolving and Creating Object Specifier Records 6-87

C H A P T E R 6

Resolving and Creating Object Specifier Records
SEE ALSO

For information about writing a token disposal function, see page 6-99.

Creating Object Specifier Records 6

The Apple Event Manager provides five functions that you can use to create some of the
components of an object specifier record or to assemble an object specifier record:

■ The CreateOffsetDescriptor function creates an offset descriptor record, which
specifies the position of an element in relation to the beginning or end of its container.

■ The CreateCompDescriptor function creates a comparison descriptor record,
which specifies how to compare one or more Apple event objects with either another
Apple event object or a descriptor record.

■ The CreateLogicalDescriptor function creates a logical descriptor record, which
specifies a logical operator and one or more logical terms for the Apple Event
Manager to evaluate.

■ The CreateRangeDescriptor function creates a range descriptor record, which
specifies a series of consecutive elements in the same container.

■ The CreateObjSpecifier function assembles an object specifier record, which
identifies one or more Apple event objects, from other descriptor records.

Instead of using these functions, you can create the corresponding descriptor records
yourself using the AECreateDesc function, add them to an AE record using other
Apple Event Manager routines, and coerce the AE record to a descriptor record of type
typeObjectSpecifier. However, in most cases it is easier to use the functions listed
in this section.

All of these functions except for CreateOffsetDescriptor include a
disposeInputs parameter. If the value of this parameter is TRUE, the function
automatically disposes of any descriptor records you have provided as parameters to the
function. If the value is FALSE, the application must dispose of the records itself. A value
of FALSE may be more efficient for some applications because it allows them to reuse
descriptor records.

For more information about these functions and examples of their use, see “Creating
Object Specifier Records,” which begins on page 6-55.

CreateOffsetDescriptor 6

You can use the CreateOffsetDescriptor function to create an offset descriptor
record.

FUNCTION CreateOffsetDescriptor (theOffset: LongInt;

VAR theDescriptor: AEDesc)

: OSErr;
6-88 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
theOffset A positive integer that specifies the offset from the beginning of the
container (the first element has an offset of 1), or a negative integer that
specifies the offset from the end (the last element has an offset of –1).

theDescriptor
The offset descriptor record created by CreateOffsetDescriptor.

DESCRIPTION

The CreateOffsetDescriptor function creates an offset descriptor record that
specifies the position of an element in relation to the beginning or end of its container.

RESULT CODES

CreateCompDescriptor 6

You can use the CreateCompDescriptor function to create a comparison descriptor
record.

FUNCTION CreateCompDescriptor (comparisonOperator: DescType;

 VAR operand1: AEDesc;

 VAR operand2: AEDesc;

 disposeInputs: Boolean;

 VAR theDescriptor: AEDesc)

 : OSErr;

comparisonOperator
The comparison operator for comparing the descriptor records in the
operand1 and operand2 parameters. The operator is specified by the
constants listed in the description that follows.

operand1 An object specifier record.

operand2 A descriptor record (which can be an object specifier record or any other
descriptor record) whose value is to be compared to the value of
operand1.

disposeInputs
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records for the two
operands.

theDescriptor
The comparison descriptor record created by CreateCompDescriptor.

noErr 0 No error occurred
memFullErr –108 Not enough room in heap zone
Reference to Resolving and Creating Object Specifier Records 6-89

C H A P T E R 6

Resolving and Creating Object Specifier Records
DESCRIPTION

The CreateCompDescriptor function creates a comparison descriptor record, which
specifies how to compare one or more Apple event objects with either another Apple
event object or a descriptor record.

The actual comparison of the two operands is performed by the object-comparison
function provided by the client application. The way a comparison operator is
interpreted is up to each application.

These are the currently defined standard comparison operators:

RESULT CODES

SEE ALSO

For an example of how to use the CreateCompDescriptor function to create a
comparison descriptor record, see “Specifying a Test,” which begins on page 6-64.

Constant Meaning

kAEGreaterThan The value of operand1 is greater than the value of
operand2.

kAEGreaterThanEquals The value of operand1 is greater than or equal to the
value of operand2.

kAEEquals The value of operand1 is equal to the value of
operand2.

kAELessThan The value of operand1 is less than the value of
operand2.

kAELessThanEquals The value of operand1 is less than or equal to the value
of operand2.

kAEBeginsWith The value of operand1 begins with the value of
operand2 (for example, the string "operand" begins
with the string "opera").

kAEEndsWith The value of operand1 ends with the value of
operand2 (for example, the string "operand" ends
with the string "and").

kAEContains The value of operand1 contains the value of operand2
(for example, the string "operand" contains the string
"era").

noErr 0 No error occurred
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested Apple

event data type
errAEWrongDataType –1703 Wrong Apple event data type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
6-90 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
CreateLogicalDescriptor 6

You can use the CreateLogicalDescriptor function to create a logical descriptor
record.

FUNCTION CreateLogicalDescriptor

(VAR theLogicalTerms: AEDescList;

 theLogicOperator: DescType;

 disposeInputs: Boolean;

 VAR theDescriptor: AEDesc): OSErr;

theLogicalTerms
A list containing comparison descriptor records, logical descriptor
records, or both. If the value of the parameter theLogicOperator is
kAEAND or kAEOR, the list can contain any number of descriptors. If the
value of the parameter theLogicOperator is kAENOT, logically this list
should contain a single descriptor record. However, the function will not
return an error if the list contains more than one descriptor record for a
logical operator of kAENOT.

theLogicOperator
A logical operator represented by one of the following constants:

CONST kAEAND = 'AND ';

kAEOR = 'OR ';

kAENOT = 'NOT ';

disposeInputs
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records in the other
parameters.

theDescriptor
The logical descriptor record created by CreateLogicalDescriptor.

DESCRIPTION

The CreateLogicalDescriptor function creates a logical descriptor record, which
specifies a logical operator and one or more logical terms for the Apple Event Manager
to evaluate.
Reference to Resolving and Creating Object Specifier Records 6-91

C H A P T E R 6

Resolving and Creating Object Specifier Records
RESULT CODES

SEE ALSO

For an example of how to use the CreateLogicalDescriptor function to create a
logical descriptor record, see “Specifying a Test,” which begins on page 6-64.

CreateRangeDescriptor 6

You can use the CreateRangeDescriptor function to create a range descriptor record.

FUNCTION CreateRangeDescriptor (VAR rangeStart: AEDesc;

 VAR rangeStop: AEDesc;

 disposeInputs: Boolean;

 VAR theDescriptor: AEDesc): OSErr;

rangeStart
An object specifier record that identifies the first Apple event object in the
range.

rangeStop An object specifier record that identifies the last Apple event object in the
range.

disposeInputs
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records for the
rangeStart and rangeStop parameters.

theDescriptor
The range descriptor record created by CreateRangeDescriptor.

DESCRIPTION

The CreateRangeDescriptor function creates a range descriptor record, which
specifies a series of consecutive elements in the same container. Although the
rangeStart and rangeStop parameters can be any object specifier records—including
object specifier records that specify more than one Apple event object—most applications
expect these parameters to specify single Apple event objects.

noErr 0 No error occurred
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to requested Apple

event data type
errAEWrongDataType –1703 Wrong Apple event data type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
6-92 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
RESULT CODES

SEE ALSO

For an example of how to use the CreateRangeDescriptor function to create a range
descriptor record, see “Specifying a Range” on page 6-72.

CreateObjSpecifier 6

You can use the CreateObjSpecifier function to create an object specifier record.

FUNCTION CreateObjSpecifier (desiredClass: DescType;

 VAR theContainer: AEDesc;

 keyForm: DescType;

 VAR keyData: AEDesc;

 disposeInputs: Boolean;

 VAR objSpecifier: AEDesc): OSErr;

desiredClass
The object class of the desired Apple event objects.

theContainer
A description of the container for the requested object, usually in the form
of another object specifier record.

keyForm The key form for the object specifier record.

keyData The key data for the object specifier record.

disposeInputs
A Boolean value indicating whether the function (TRUE) or your
application (FALSE) should dispose of the descriptor records for the other
parameters.

objSpecifier
The object specifier record created by the CreateObjSpecifier
function.

noErr 0 No error occurred
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested Apple

event data type
errAEWrongDataType –1703 Wrong Apple event data type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
Reference to Resolving and Creating Object Specifier Records 6-93

C H A P T E R 6

Resolving and Creating Object Specifier Records
DESCRIPTION

The CreateObjSpecifier function assembles an object specifier record from the
specified constants and other descriptor records.

RESULT CODES

SEE ALSO

For information about how to assemble the components of an object specifier record with
the CreateObjSpecifier function, see “Creating Object Specifier Records,” which
begins on page 6-55.

Application-Defined Routines 6
The AEResolve function performs tasks that are required to resolve any object specifier
record, such as parsing its contents, keeping track of the results of tests, and handling
memory management. When necessary, AEResolve calls application-defined functions
to perform tasks that are unique to the application, such as locating a specific Apple
event object in the application’s data structures or counting the number of Apple event
objects in a container.

AEResolve can call two kinds of application-defined functions:

■ Object accessor functions locate Apple event objects. Every application that supports
simple object specifier records must provide one or more object accessor functions.

■ Object callback functions perform other tasks that only an application can perform, such
as counting, comparing, or marking Apple event objects. You can provide up to seven
object callback functions, depending on the needs of your application.

This section provides model declarations for the object accessor functions and object
callback functions that your application can provide.

Object Accessor Functions 6

You must provide one or more object accessor functions that can locate all the
element classes and properties listed in the Apple Event Registry: Standard Suites for the
object classes supported by your application. This section provides the routine
declaration for an object accessor function.

noErr 0 No error occurred
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
errAECoercionFail –1700 Data could not be coerced to the requested Apple

event data type
errAEWrongDataType –1703 Wrong Apple event data type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
6-94 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
MyObjectAccessor 6

Object accessor functions locate Apple event objects of a specified object class in a
container identified by a token of a specified descriptor type.

FUNCTION MyObjectAccessor (desiredClass: DescType;

containerToken: AEDesc;

containerClass: DescType;

keyForm: DescType; keyData: AEDesc;

VAR theToken: AEDesc;

theRefcon: LongInt): OSErr;

desiredClass
The object class of the desired Apple event objects.

containerToken
A token that specifies the container of the desired Apple event objects.

containerClass
The object class of the container.

keyForm The key form specified by the object specifier record being resolved.

keyData The key data specified by the object specifier record being resolved.

theToken The token returned by the MyObjectAccessor function.

theRefcon A reference constant that the Apple Event Manager passes to the object
accessor function each time it is called.

DESCRIPTION

Each object accessor function provided by your application should either find elements
of a specified object class or find properties of an Apple event object. The AEResolve
function uses the object class ID of the specified Apple event object and the descriptor
type of the token that identifies the object’s container to determine which object accessor
function to call. To install an object accessor function either in your application’s object
accessor dispatch table or in the system object accessor dispatch table, use the
AEInstallObjectAccessor function, which is described on page 6-78.

SPECIAL CONSIDERATIONS

If the Apple Event Manager receives the result code errAEEventNotHandled after
calling an object accessor function, it attempts to use other methods of locating the
requested objects, such as calling an equivalent system object accessor function. Thus, an
object accessor function that can’t locate a requested object should return
errAEEventNotHandled. This allows the Apple Event Manager to try other object
accessor functions that may be available.
Reference to Resolving and Creating Object Specifier Records 6-95

C H A P T E R 6

Resolving and Creating Object Specifier Records
RESULT CODES

SEE ALSO

For information about installing object accessor functions, see “Installing Entries in the
Object Accessor Dispatch Tables,” which begins on page 6-21.

For information about writing object accessor functions, see “Writing Object Accessor
Functions,” which begins on page 6-28.

Object Callback Functions 6

If an Apple event parameter consists of an object specifier record, your handler for
the Apple event typically calls AEResolve to begin the process of locating the requested
Apple event objects. The AEResolve function in turn calls object accessor functions and,
if necessary, object callback functions provided by your application when it needs the
information they can provide.

This section provides declarations for the seven object callback functions that your
application can provide: the object-counting function (MyCountObjects),
object-comparison function (MyCompareObjects), token disposal function
(MyDisposeToken), error callback function (MyGetErrorDesc), mark token
function (MyGetMarkToken), object-marking function (MyMark), and
mark-adjusting function (MyAdjustMarks).

For information about writing and installing object callback functions, see “Writing
Object Callback Functions,” which begins on page 6-45.

MyCountObjects 6

If you want the Apple Event Manager to help your application resolve object specifier
records of key form formTest (and if your application doesn’t specify kAEIDoWhose
as described on page 6-48), you should provide an object-counting function and
an object-comparison function. An object-counting function counts the number of
Apple event objects of a specified class in a specified container.

FUNCTION MyCountObjects (desiredClass: DescType;

 containerClass: DescType;

 theContainer: AEDesc;

 VAR result: LongInt): OSErr;

desiredClass
The object class of the Apple event objects to be counted.

noErr 0 No error occurred
errAEEventNotHandled –1708 The object accessor function is unable to locate

the requested Apple event object or objects
6-96 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
containerClass
The object class of the container for the Apple event objects to be counted.

theContainer
A token that identifies the container for the Apple event objects to be
counted.

result Your object-counting function should return in this parameter the number
of Apple objects of the specified class in the specified container.

DESCRIPTION

The Apple Event Manager calls your object-counting function when, in the course of
resolving an object specifier record, the manager requires a count of the number of Apple
event objects of a given class in a given container.

SPECIAL CONSIDERATIONS

If the Apple Event Manager receives the result code errAEEventNotHandled after
calling an object-counting function, it attempts to use other methods of counting the
specified objects, such as calling an equivalent system object-counting function. Thus, an
object-counting function that can’t count the specified objects should return
errAEEventNotHandled. This allows the Apple Event Manager to try other
object-counting functions that may be available.

RESULT CODES

SEE ALSO

For more information, see “Writing an Object-Counting Function” on page 6-48.

MyCompareObjects 6

If you want the Apple Event Manager to help your application resolve object specifier
records of key form formTest (and if your application doesn’t specify kAEIDoWhose as
described on page 6-48), you should provide an object-counting function and an
object-comparison function. After comparing one Apple event object to another or to the
data for a descriptor record, an object-comparison function should return TRUE or
FALSE in the result parameter.

noErr 0 No error occurred
errAEEventNotHandled –1708 The object-counting function is unable to

count the specified Apple event objects
Reference to Resolving and Creating Object Specifier Records 6-97

C H A P T E R 6

Resolving and Creating Object Specifier Records
FUNCTION MyCompareObjects (comparisonOperator: DescType;

object: AEDesc;

objectOrDescToCompare: AEDesc;

VAR result: Boolean): OSErr;

comparisonOperator
The comparison operator. See the description of
CreateCompDescriptor on page 6-89 for standard comparison
operators at the time of publication of this book. The current version of
the Apple Event Registry: Standard Suites lists all the constants for
comparison operators.

object A token.

objectOrDescToCompare
A token or some other descriptor record that specifies either an Apple
event object or a value to compare to the Apple event object specified by
the object parameter.

result Your object-comparison function should return, in this parameter, a
Boolean value that indicates whether the values of the object and
objectOrDescToCompare parameters have the relationship specified
by the comparisonOperator parameter (TRUE) or not (FALSE).

DESCRIPTION

The Apple Event Manager calls your object-comparison function when, in the course of
resolving an object specifier record, the manager needs to compare an Apple event object
with another or with a value.

It is up to your application to interpret the comparison operators it receives. The
meaning of comparison operators differs according to the Apple event objects being
compared, and not all comparison operators apply to all object classes.

SPECIAL CONSIDERATIONS

If the Apple Event Manager receives the result code errAEEventNotHandled after
calling an object-comparison function, it attempts to use other methods of comparison,
such as calling an equivalent system object-comparison function. Thus, an
object-comparison function that can’t perform a requested comparison should
return errAEEventNotHandled. This allows the Apple Event Manager to try other
object-comparison functions that may be available.

RESULT CODES

noErr 0 No error occurred
errAEEventNotHandled –1708 The object-comparison function is unable to

compare the specified Apple event objects
6-98 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
SEE ALSO

For more information, see “Writing an Object-Comparison Function” on page 6-50.

MyDisposeToken 6

If your application requires more than a call to the AEDisposeDesc function to dispose
of a token, or if it supports marking callback functions, you must provide one token
disposal function. A token disposal function disposes of a specified token.

FUNCTION MyDisposeToken (VAR unneededToken: AEDesc): OSErr;

unneededToken
The token to dispose of.

DESCRIPTION

The Apple Event Manager calls your token disposal function whenever it needs to
dispose of a token. It also calls your disposal function when your application calls the
AEDisposeToken function. If your application does not provide a token disposal
function, the Apple Event Manager calls AEDisposeDesc instead.

Your token disposal function must be able to dispose of all of the token types used by
your application.

If your application supports marking, a call to MyDisposeToken to dispose of a mark
token lets your application know that it can unmark the objects marked with that
mark token.

SPECIAL CONSIDERATIONS

If the Apple Event Manager receives the result code errAEEventNotHandled after
calling a token disposal function, it attempts to dispose of the token by some other
method, such as calling an equivalent system token disposal function if one is available
or, if that fails, by calling AEDisposeDesc. Thus, a token disposal function that can’t
dispose of a token should return errAEEventNotHandled. This allows the Apple
Event Manager to try other token disposal functions that may be available.

RESULT CODES

noErr 0 No error occurred
errAEEventNotHandled –1708 The token disposal function is unable to

dispose of the token
Reference to Resolving and Creating Object Specifier Records 6-99

C H A P T E R 6

Resolving and Creating Object Specifier Records
MyGetErrorDesc 6

If you want to find out which descriptor record is responsible for an error that occurs
during a call to the AEResolve function, you can provide an error callback function. An
error callback function returns a pointer to an address. The Apple Event Manager uses
this address to store the descriptor record it is currently working with if an error occurs
during a call to AEResolve.

FUNCTION MyGetErrorDesc (VAR errDescPtr: DescPtr): OSErr;

errDescPtr
A pointer to an address.

DESCRIPTION

Your error callback function simply returns an address. Shortly after your application
calls AEResolve, the Apple Event Manager calls your error callback function and writes
a null descriptor record to the address returned, overwriting whatever was there
previously. If an error occurs during the resolution of the object specifier record, the
Apple Event Manager calls your error callback function again and writes the descriptor
record—often an object specifier record—to the address returned. If AEResolve returns
an error during the resolution of an object specifier record, this address contains the
descriptor record responsible for the error.

Normally you should maintain a single global variable of type AEDesc whose address
your error callback function returns no matter how many times it is called. Be careful
if you use any other method. When recovering from an error, the Apple Event Manager
never writes to the address you provide unless it already contains a null descriptor
record. Thus, if you don’t maintain a single global variable as just described, you should
write null descriptor records to any addresses passed by your error callback function
that are different from the addresses returned the first time your function is called after a
given call to AEResolve.

If the result code returned by the MyGetErrorDesc function has a nonzero value, the
Apple Event Manager continues to resolve the object specifier record as if it had never
called the error callback function.

RESULT CODE

noErr 0 No error occurred
6-100 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
MyGetMarkToken 6

If your application supports marking, you must provide one mark token function. A
mark token function returns a mark token.

FUNCTION MyGetMarkToken (containerToken: AEDesc;

 containerClass: DescType;

 VAR result: AEDesc): OSErr;

containerToken
The Apple event object that contains the elements to be marked with the
mark token.

containerClass
The object class of the container that contains the objects to be marked.

result Your mark token function should return a mark token in this parameter.

DESCRIPTION

To get a mark token, the Apple Event Manager calls your mark token function. Like
other tokens, the mark token returned can be a descriptor record of any type; however,
unlike other tokens, a mark token identifies the way your application will mark Apple
event objects during the current session while resolving a single object specifier record
that specifies the key form formTest.

A mark token is valid until the Apple Event Manager either disposes of it (by calling
AEDisposeToken) or returns it as the result of the AEResolve function. If the final
result of a call to AEResolve is a mark token, the Apple event objects currently marked
for that mark token are those specified by the object specifier record passed to
AEResolve, and your application can proceed to do whatever the Apple event has
requested. Note that your application is responsible for disposing of a final mark token
with a call to AEDisposeToken, just as for any other final token.

If your application supports marking, it should also provide a token disposal function
modeled after the token disposal function described on page 6-99. When the Apple
Event Manager calls AEDisposeToken to dispose of a mark token that is not the final
result of a call to AEResolve, the subsequent call to your token disposal function lets
you know that you can unmark the Apple event objects marked with that mark token. A
call to AEDisposeDesc to dispose of a mark token (which would occur if you did not
provide a token disposal function) would go unnoticed.

RESULT CODES

noErr 0 No error occurred
errAEEventNotHandled –1708 The mark token function is unable to return a

mark token; if the Apple Event Manager gets
this result, it attempts to get a mark token by
calling the equivalent system marking callback
function
Reference to Resolving and Creating Object Specifier Records 6-101

C H A P T E R 6

Resolving and Creating Object Specifier Records
SEE ALSO

For more information, see “Writing Marking Callback Functions,” which begins on
page 6-53.

MyMark 6

If your application supports marking, you must provide one object-marking function.
An object-marking function marks a specific Apple event object.

FUNCTION MyMark (theToken: AEDesc; markToken: AEDesc;

 markCount: LongInt): OSErr;

theToken The token for the Apple event object to be marked.

markToken The mark token used to mark the Apple event object.

markCount The number of times MyMark has been called for the current mark token
(that is, the number of Apple event objects that have so far passed the test,
including the element to be marked).

DESCRIPTION

To mark an Apple event object using the current mark token, the Apple Event Manager
calls the object-marking function provided by your application. In addition to marking
the specified object, your MyMark function should record the mark count for each object
that it marks. The mark count recorded for each marked object allows your application
to determine which of a set of marked tokens pass a test, as described in the next section
for the MyAdjustMarks function.

RESULT CODES

SEE ALSO

For more information, see “Writing Marking Callback Functions,” which begins on
page 6-53.

noErr 0 No error occurred
errAEEventNotHandled –1708 The MyMark function is unable to mark the

specified Apple event object; if the Apple Event
Manager gets this result, it attempts to mark
the object by calling the equivalent system
object-marking function
6-102 Reference to Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
MyAdjustMarks 6

If your application supports marking, you must provide one mark-adjusting function. A
mark-adjusting function adjusts the marks made with the current mark token.

FUNCTION MyAdjustMarks (newStart, newStop: LongInt;

markToken: AEDesc): OSErr;

newStart The mark count value (provided when the MyMark callback routine was
called to mark the object) for the first object in the new set of marked
objects.

newStop The mark count value (provided when the MyMark callback routine was
called to mark the object) for the last object in the new set of marked
objects.

markToken The mark token for the marked objects.

DESCRIPTION

When the Apple Event Manager needs to identify either a range of elements or the
absolute position of an element in a group of Apple event objects that pass a test, it can
use your application’s mark-adjusting function to unmark objects previously marked by
a call to your marking function. For example, suppose an object specifier record specifies
“any row in the table ‘MyCustomers’ for which the City column is ‘San Francisco.’” The
Apple Event Manager first uses the appropriate object accessor function to locate all the
rows in the table for which the City column is “San Francisco” and calls the application’s
marking function repeatedly to mark them. It then generates a random number between
1 and the number of rows it found that passed the test and calls the application’s
mark-adjusting function to unmark all the rows whose mark count does not match the
randomly generated number. If the randomly chosen row has a mark count value of 5,
the Apple Event Manager passes the value 5 to the mark-adjusting function in both the
newStart parameter and the newStop parameter, and passes the current mark token in
the markToken parameter.

When the Apple Event Manager calls your MyAdjustMarks function, your application
must dispose of any data structures that it created to mark the previously marked objects.

RESULT CODES

SEE ALSO

For more information, see “Writing Marking Callback Functions” on page 6-53.

noErr 0 No error occurred
errAEEventNotHandled –1708 The MyAdjustMarks function is unable to

adjust the marks as requested; if the Apple
Event Manager gets this result, it attempts to
adjust the marks by calling the equivalent
system mark-adjusting function
Reference to Resolving and Creating Object Specifier Records 6-103

C H A P T E R 6

Resolving and Creating Object Specifier Records
Summary of Resolving and Creating Object Specifier Records 6

Pascal Summary 6

Constants 6

CONST

gestaltAppleEventsAttr = 'evnt'; {selector for Apple events}

gestaltAppleEventsPresent = 0; {if this bit is set, Apple }

{ Event Manager is available}

{logical operators for descriptor records with keyword }

{ keyAELogicalOperator}

kAEAND = 'AND ';

kAEOR = 'OR ';

kAENOT = 'NOT ';

{absolute ordinals used as key data in an object specifier }

{ record with key form formAbsolutePosition}

kAEFirst = 'firs';

kAELast = 'last';

kAEMiddle = 'midd';

kAEAny = 'any ';

kAEAll = 'all ';

{relative ordinals used as key data in an object specifier record }

{ with key form formRelativePosition}

kAENext = 'next';

kAEPrevious = 'prev';

{keywords for object specifier records}

keyAEDesiredClass = 'want'; {object class ID}

keyAEContainer = 'from'; {description of container}

keyAEKeyForm = 'form'; {key form}

keyAEKeyData = 'seld'; {key data for specified key form}

{keywords for range descriptor records}

keyAERangeStart = 'star'; {beginning of range}
6-104 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
keyAERangeStop = 'stop'; {end of range}

{values for the keyAEKeyForm field of an object specifier record}

formAbsolutePosition = 'indx'; {for example, 1 = first }

{ element in container, -2 = }

{ second from end of container}

formRelativePosition = 'rele'; {key data specifies element }

{ before or after container}

formTest = 'test'; {key data specifies a test}

formRange = 'rang'; {key data specifies a range}

formPropertyID = 'prop'; {key data is property ID}

formName = 'name'; {key data is element's name}

{descriptor types used to identify Apple event objects}

typeObjectSpecifier = 'obj '; {object specifier record, often }

{ used as keyAEContainer}

typeObjectBeingExamined = 'exmn'; {used as keyAEContainer}

typeCurrentContainer = 'ccnt'; {used as keyAEContainer}

typeToken = 'toke'; {substituted for 'ccnt' }

{ before accessor called}

typeAbsoluteOrdinal = 'abso'; {formAbsolutePosition}

typeRangeDescriptor = 'rang'; {formRange}

typeLogicalDescriptor = 'logi'; {formTest}

typeCompDescriptor = 'cmpd'; {formTest}

{various relevant keywords}

keyAECompOperator = 'relo'; {operator for comparison: }

{ '=', '<=', etc.}

keyAELogicalTerms = 'term'; {an AEList of terms to be }

{ related by 'logc' below}

keyAELogicalOperator = 'logc'; {kAEAND, kAEOR, or kAENOT}

keyAEObject1 = 'obj1'; {first of two objects being }

{ compared; must be object }

{ specifier record}

keyAEObject2 = 'obj2'; {the other object; may be }

{ simple descriptor record }

{ or object specifier record}

{special handler selectors used with AESetObjectCallbacks}

keyDisposeTokenProc = 'xtok';

keyAECompareProc = 'cmpr';

keyAECountProc = 'cont';

keyAEMarkTokenProc = 'mkid';
Summary of Resolving and Creating Object Specifier Records 6-105

C H A P T E R 6

Resolving and Creating Object Specifier Records
keyAEMarkProc = 'mark';

keyAEAdjustMarksProc = 'adjm';

keyAEGetErrDescProc = 'indc';

{additive values for callbackFlags parameter to AEResolve}

kAEIDoMinimum = $0000; {server does not support whose }

{ descriptor records or marking}

kAEIDoWhose = $0001; {server supports whose }

{ descriptor records}

kAEIDoMarking = $0004; {server supports marking}

{constants for whose descriptor records}

typeWhoseDescriptor = 'whos'; {whose descriptor record}

formWhose = 'whos'; {key form for key data of descriptor }

{ type typeWhoseDescriptor}

typeWhoseRange = 'wrng'; {whose range descriptor record}

keyAEWhoseRangeStart = 'wstr'; {beginning of range}

keyAEWhoseRangeStop = 'wstp'; {end of range}

keyAEIndex = 'kidx'; {index for whose descriptor record}

keyAETest = 'ktst'; {test for whose descriptor record}

Data Types 6

TYPE

ccntTokenRecord = {used for rewriting tokens in }

RECORD { place of 'ccnt' descriptor }

tokenClass: DescType; { records; only of interest to }

token: AEDesc; { those who, when they get ranges }

END; { as key data in their object }

{ accessor functions, resolve }

ccntTokenRecPtr = ^ccntTokenRecord; { the object specifier records }

ccntTokenRecHandle = ^ccntTokenRecPtr; { for the end points manually}

DescPtr = ^AEDesc;

DescHandle = ^DescPtr;

AccessorProcPtr = ProcPtr;

Routines for Resolving and Creating Object Specifier Records 6

Initializing the Object Support Library

FUNCTION AEObjectInit : OSErr;
6-106 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Setting Object Accessor Functions and Object Callback Functions

FUNCTION AEInstallObjectAccessor
(desiredClass: DescType;
containerType: DescType;
theAccessor: AccessorProcPtr;
accessorRefcon: LongInt;
isSysHandler: Boolean): OSErr;

FUNCTION AESetObjectCallbacks
(myCompareProc, myCountProc,
myDisposeTokenProc,
myGetMarkTokenProc, myMarkProc,
myAdjustMarksProc, myGetErrDescProc:
ProcPtr): OSErr;

Getting, Calling, and Removing Object Accessor Functions

FUNCTION AEGetObjectAccessor
(desiredClass: DescType;
containerType: DescType;
VAR theAccessor: AccessorProcPtr;
VAR accessorRefcon: LongInt;
isSysHandler: Boolean): OSErr;

FUNCTION AECallObjectAccessor
(desiredClass: DescType;
containerToken: AEDesc;
containerClass: DescType;
keyForm: DescType;
keyData: AEDesc;
VAR theToken: AEDesc): OSErr;

FUNCTION AERemoveObjectAccessor
(desiredClass: DescType;
containerType: DescType;
theAccessor: AccessorProcPtr;
isSysHandler: Boolean): OSErr;

Resolving Object Specifier Records

FUNCTION AEResolve (objectSpecifier: AEDesc;
callbackFlags: Integer;
VAR theToken: AEDesc): OSErr;

Deallocating Memory for Tokens

FUNCTION AEDisposeToken (VAR theToken: AEDesc): OSErr;
Summary of Resolving and Creating Object Specifier Records 6-107

C H A P T E R 6

Resolving and Creating Object Specifier Records
Creating Object Specifier Records

FUNCTION CreateOffsetDescriptor
(theOffset: LongInt;
VAR theDescriptor: AEDesc):
OSErr;

FUNCTION CreateCompDescriptor
(comparisonOperator: DescType;
VAR operand1: AEDesc;
VAR operand2: AEDesc;
disposeInputs: Boolean;
VAR theDescriptor: AEDesc): OSErr;

FUNCTION CreateLogicalDescriptor
(VAR theLogicalTerms: AEDescList;
theLogicOperator: DescType;
disposeInputs: Boolean;
VAR theDescriptor: AEDesc): OSErr;

FUNCTION CreateRangeDescriptor
(VAR rangeStart: AEDesc;
VAR rangeStop: AEDesc;
disposeInputs: Boolean;
VAR theDescriptor: AEDesc): OSErr;

FUNCTION CreateObjSpecifier (desiredClass: DescType;
VAR theContainer: AEDesc;
keyForm: DescType;
VAR keyData: AEDesc;
disposeInputs: Boolean;
VAR objSpecifier: AEDesc): OSErr;

Application-Defined Routines 6

Object Accessor Functions

FUNCTION MyObjectAccessor (desiredClass: DescType;
containerToken: AEDesc;
containerClass: DescType;
keyForm: DescType; keyData: AEDesc;
VAR theToken: AEDesc;
theRefcon: LongInt): OSErr;

Object Callback Functions
FUNCTION MyCountObjects (desiredClass: DescType;

containerClass: DescType;
theContainer: AEDesc;
VAR result: LongInt): OSErr;
6-108 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
FUNCTION MyCompareObjects (comparisonOperator: DescType;
theobject: AEDesc;
objectOrDescToCompare: AEDesc;
VAR result: Boolean): OSErr;

FUNCTION MyDisposeToken (VAR unneededToken: AEDesc): OSErr;

FUNCTION MyGetErrorDesc (VAR errDescPtr: DescPtr): OSErr;

FUNCTION MyGetMarkToken (containerToken: AEDesc;
containerClass: DescType;
VAR result: AEDesc): OSErr;

FUNCTION MyMark (theToken: AEDesc; markToken: AEDesc;
markCount: LongInt): OSErr;

FUNCTION MyAdjustMarks (newStart, newStop: LongInt;
markToken: AEDesc): OSErr;

C Summary 6

Constants 6

enum {

#define gestaltAppleEventsAttr 'evnt' /*selector for Apple events*/

gestaltAppleEventsPresent = 0 /*if this bit is set, then */

/* Apple Event Manager is */

}; /* available*/

/*logical operators for descriptor records with keyword */

/* keyAELogicalOperator*/

#define kAEAND 'AND '

#define kAEOR 'OR '

#define kAENOT 'NOT '

/*absolute ordinals used as key data in an object specifier */

/* record with key form formAbsolutePosition*/

#define kAEFirst 'firs'

#define kAELast 'last'

#define kAEMiddle 'midd'

#define kAEAny 'any '

#define kAEAll 'all '

/*relative ordinals used as key data in an object specifier record */

/* with key form formRelativePosition*/

#define kAENext 'next'
Summary of Resolving and Creating Object Specifier Records 6-109

C H A P T E R 6

Resolving and Creating Object Specifier Records
#define kAEPrevious 'prev'

/*keywords for object specifier records*/

#define keyAEDesiredClass 'want' /*object class ID*/

#define keyAEContainer 'from' /*description of container*/

#define keyAEKeyForm 'form' /*key form*/

#define keyAEKeyData 'seld' /*key data for specified key */

/* form*/

/*keywords for range descriptor records*/

#define keyAERangeStart 'star' /*beginning of range*/

#define keyAERangeStop 'stop' /*end of range*/

/*values for the keyAEKeyForm field of an object specifier record*/

#define formAbsolutePosition 'indx' /*for example, 1 = first */

/* element in container, -2 = */

/* second from end of */

/* container*/

#define formRelativePosition 'rele' /*key data specifies element */

/* before or after container*/

#define formTest 'test' /*key data specifies a test*/

#define formRange 'rang' /*key data specifies a range*/

#define formPropertyID 'prop' /*key data is property ID*/

#define formName 'name' /*key data is element's name*/

/* descriptor types used to identify Apple event objects*/

#define typeObjectSpecifier 'obj ' /*object specifier record, */

/* often used as */

/* keyAEContainer*/

#define typeObjectBeingExamined 'exmn' /*used as keyAEContainer*/

#define typeCurrentContainer 'ccnt' /*used as keyAEContainer*/

#define typeToken 'toke' /*substituted for 'ccnt' */

/* before accessor called*/

#define typeAbsoluteOrdinal 'abso' /*formAbsolutePosition*/

#define typeRangeDescriptor 'rang' /*formRange*/

#define typeLogicalDescriptor 'logi' /*formTest*/

#define typeCompDescriptor 'cmpd' /*formTest*/

/*various relevant keywords*/

#define keyAECompOperator 'relo' /*operator for comparison: */

/* '=', '<=', etc.*/

#define keyAELogicalTerms 'term' /*an AEList of terms to be */

/* related by 'logc' below*/

#define keyAELogicalOperator 'logc' /*kAEAND, kAEOR, or kAENOT*/
6-110 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
#define keyAEObject1 'obj1' /*first of two objects being */

/* compared; must be object */

/* specifier record*/

#define keyAEObject2 'obj2' /*the other object; may be */

/* simple descriptor record */

/* or object specifier record*/

/*special handler selectors used with AESetObjectCallbacks*/

#define keyDisposeTokenProc 'xtok'

#define keyAECompareProc 'cmpr'

#define keyAECountProc 'cont'

#define keyAEMarkTokenProc 'mkid'

#define keyAEMarkProc 'mark'

#define keyAEAdjustMarksProc 'adjm'

#define keyAEGetErrDescProc 'indc'

/*additive values for callbackFlags parameter to AEResolve*/

#define kAEIDoMinimum 0x0000 /*server does not support */

/* whose descriptor records */

/* or marking*/

#define kAEIDoWhose 0x0001 /*server supports whose */

/* descriptor records*/

#define kAEIDoMarking 0x0004 /*server supports marking*/

/*constants for whose descriptor records*/

#define typeWhoseDescriptor 'whos' /*whose descriptor record*/

#define formWhose 'whos' /*key form for key data of */

/* descriptor type */

/* typeWhoseDescriptor*/

#define typeWhoseRange 'wrng' /*whose range descriptor */

/* record*/

#define keyAEWhoseRangeStart 'wstr' /*beginning of range*/

#define keyAEWhoseRangeStop 'wstp' /*end of range*/

#define keyAEIndex 'kidx' /*index for whose descriptor */

/* record*/

#define keyAETest 'ktst' /*test for whose descriptor */

/* record*/

Data Types 6

struct ccntTokenRecord { /*used for rewriting tokens */

DescType tokenClass; /* in place of 'ccnt' */

AEDesc token; /* descriptor records; only */

}; /* of interest to those who, */
Summary of Resolving and Creating Object Specifier Records 6-111

C H A P T E R 6

Resolving and Creating Object Specifier Records
/* when they get ranges as */

typedef struct ccntTokenRecord ccntTokenRecord, /* key data in their object */

*ccntTokenRecPtr, **ccntTokenRecHandle; /* accessor functions, */

/* resolve them manually*/

typedef AEDesc *DescPtr, **DescHandle;

/*typedefs providing type checking for procedure pointers*/

typedef pascal OSErr (*accessorProcPtr) (DescType desiredClass,

const AEDesc *container,

DescType containerClass,

DescType form,

const AEDesc *selectionData,

AEDesc *value, long LongInt);

typedef pascal OSErr (*compareProcPtr)(DescType oper, const AEDesc *obj1,

const AEDesc *obj2,

Boolean *result);

typedef pascal OSErr (*countProcPtr)(DescType desiredClass,

DescType containerClass,

const AEDesc *container,

long *result);

typedef pascal OSErr (*disposeTokenProcPtr)(AEDesc *unneededToken);

typedef pascal OSErr (*getMarkTokenProcPtr)(const AEDesc *ContainerToken,

DescType containerClass,

AEDesc *result);

typedef pascal OSErr (*getErrDescProcPtr)(DescPtr *appDescPtr);

Routines for Resolving and Creating Object Specifier Records 6

Initializing the Object Support Library

pascal OSErr AEObjectInit ();

Setting Object Accessor Functions and Object Callback Functions

pascal OSErr AEInstallObjectAccessor
(DescType desiredClass, DescType containerType,
accessorProcPtr theAccessor,
long accessorRefcon, Boolean isSysHandler);

pascal OSErr AESetObjectCallbacks
(compareProcPtr myCompareProc,
countProcPtr myCountProc,
disposeTokenProcPtr myDisposeTokenProc,
6-112 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
getMarkTokenProcPtr myGetMarkTokenProc,
markProcPtr myMarkProc,
adjustMarksProcPtr myAdjustMarksProc,
getErrDescProcPtr myGetErrDescProc);

Getting, Calling, and Removing Object Accessor Functions

pascal OSErr AEGetObjectAccessor
(DescType desiredClass, DescType containerType,
accessorProcPtr *theAccessor,
long *accessorRefcon, Boolean isSysHandler);

pascal OSErr AECallObjectAccessor
(DescType desiredClass,
const AEDesc *containerToken,
DescType containerClass, DescType keyForm,
const AEDesc *keyData, AEDesc *theToken);

pascal OSErr AERemoveObjectAccessor
(DescType desiredClass, DescType containerType,
accessorProcPtr theAccessor,
Boolean isSysHandler);

Resolving Object Specifier Records

pascal OSErr AEResolve (const AEDesc *objectSpecifier,
short callbackFlags, AEDesc *theToken);

Deallocating Memory for Tokens

pascal OSErr AEDisposeToken (AEDesc *theToken);

Creating Object Specifier Records

pascal OSErr CreateOffsetDescriptor
(long theOffset, AEDesc *theDescriptor);

pascal OSErr CreateCompDescriptor
(DescType comparisonOperator, AEDesc* operand1,
AEDesc* operand2, Boolean disposeInputs,
AEDesc* theDescriptor);

pascal OSErr CreateLogicalDescriptor
(AEDescList *theLogicalTerms,
DescType theLogicOperator,
Boolean disposeInputs, AEDesc *theDescriptor);

pascal OSErr CreateRangeDescriptor
(AEDesc *rangeStart, AEDesc *rangeStop,
Boolean disposeInputs, AEDesc *theDescriptor);
Summary of Resolving and Creating Object Specifier Records 6-113

C H A P T E R 6

Resolving and Creating Object Specifier Records
pascal OSErr CreateObjSpecifier
(DescType desiredClass, AEDesc *theContainer,
DescType keyForm, AEDesc *keyData,
Boolean disposeInputs, AEDesc *objSpecifier);

Application-Defined Routines 6

Object Accessor Functions

pascal OSErr MyObjectAccessor
(DescType desiredClass,
const AEDesc *containerToken,
DescType containerClass,
DescType keyForm, const AEDesc *keyData,
AEDesc *theToken, long *theRefcon);

Object Callback Functions

pascal OSErr MyCountObjects (DescType desiredClass, DescType containerClass,
const AEDesc *theContainer, long *result);

pascal OSErr MyCompareObjects
(DescType comparisonOperator,
const AEDesc *theObject,
const AEDesc *objectOrDescToCompare,
Boolean *result);

pascal OSErr MyDisposeToken (AEDesc *unneededToken);

pascal OSErr MyGetErrorDesc (DescPtr *errDescPtr);

pascal OSErr MyGetMarkToken (const AEDesc *containerToken,
DescType containerClass, AEDesc *result);

pascal OSErr MyMark (const AEDesc *theToken,
const AEDesc *markToken, long markCount);

pascal OSErr MyAdjustMarks (long newStart, long newStop,
const AEDesc *markToken);
6-114 Summary of Resolving and Creating Object Specifier Records

C H A P T E R 6

Resolving and Creating Object Specifier Records

6
R

esolving and C
reating O

bject
S

pecifier R
ecords
Assembly-Language Summary 6

Trap Macros 6

Trap Macros Requiring Routine Selectors

_Pack8

Result Codes 6

Selector Routine

$023A AEDisposeToken

$0536 AEResolve

$0738 AERemoveObjectAccessor

$0937 AEInstallObjectAccessor

$0939 AEGetObjectAccessor

$0C3B AECallObjectAccessor

$0E35 AESetObjectCallbacks

noErr 0 No error
paramErr –50 Parameter error (for example, value of handler pointer

is NIL or odd)
eLenErr –92 Buffer too big to send
memFullErr –108 Not enough room in heap zone
userCanceledErr –128 User canceled an operation
procNotFound –600 No eligible process with specified process serial

number
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event
connectionInvalid –609 Nonexistent signature or session ID
noUserInteractionAllowed –610 Background application sends event requiring

authentication
noPortErr –903 Client hasn’t set 'SIZE' resource to indicate

awareness of high-level events
destPortErr –906 Server hasn’t set 'SIZE' resource to indicate

awareness of high-level events, or else is not present
sessClosedErr –917 The kAEDontReconnect flag in the sendMode

parameter was set, and the server quit and then
restarted

errAECoercionFail –1700 Data could not be coerced to the requested descriptor
type

errAEDescNotFound –1701 Descriptor record was not found
errAECorruptData –1702 Data in an Apple event could not be read
errAEWrongDataType –1703 Wrong descriptor type
errAENotAEDesc –1704 Not a valid descriptor record
errAEBadListItem –1705 Operation involving a list item failed
Summary of Resolving and Creating Object Specifier Records 6-115

C H A P T E R 6

Resolving and Creating Object Specifier Records
errAENewerVersion –1706 Need a newer version of the Apple Event Manager
errAENotAppleEvent –1707 Event is not an Apple event
errAEEventNotHandled –1708 Event wasn’t handled by an Apple event handler
errAEReplyNotValid –1709 AEResetTimer was passed an invalid reply
errAEUnknownSendMode –1710 Invalid sending mode was passed
errAEWaitCanceled –1711 User canceled out of wait loop for reply or receipt
errAETimeout –1712 Apple event timed out
errAENoUserInteraction –1713 No user interaction allowed
errAENotASpecialFunction –1714 The keyword is not valid for a special function
errAEParamMissed –1715 Handler cannot understand a parameter the client

considers required
errAEUnknownAddressType –1716 Unknown Apple event address type
errAEHandlerNotFound –1717 No handler found for an Apple event or a coercion, or

no object callback function found
errAEReplyNotArrived –1718 Reply has not yet arrived
errAEIllegalIndex –1719 Not a valid list index
errAEImpossibleRange –1720 The range is not valid because it is impossible for a

range to include the first and last objects that were
specified; an example is a range in which the offset of
the first object is greater than the offset of the last object

errAEWrongNumberArgs –1721 The number of operands provided for the kAENOT
logical operator is not 1

errAEAccessorNotFound –1723 There is no object accessor function for the specified
object class and token descriptor type

errAENoSuchLogical –1725 The logical operator in a logical descriptor record is
not kAEAND, kAEOR, or kAENOT

errAEBadTestKey –1726 The descriptor record in a test key is neither a
comparison descriptor record nor a logical descriptor
record

errAENotAnObjectSpec –1727 The objSpecifier parameter of AEResolve is not
an object specifier record

errAENoSuchObject –1728 A run-time resolution error, for example: object
specifier record asked for the third element, but there
are only 2.

errAENegativeCount –1729 Object-counting function returned negative value
errAEEmptyListContainer –1730 The container for an Apple event object is specified by

an empty list
errAEUnknownObjectType –1731 Descriptor type of token returned by AEResolve is

not known to server application
errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when it is already on
6-116 Summary of Resolving and Creating Object Specifier Records

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Interapplication Communication TOC
	 Introduction to Interapplication Communication
	 Edition Manager TOC
	 Edition Manager
	 Introduction to Apple Events TOC
	 Introduction to Apple Events
	 Responding to Apple Events TOC
	 Responding to Apple Events
	 Creating and Sending Apple Events TOC
	 Creating and Sending Apple Events
	 Resolving and Creating Object Specifier Records TOC
	Resolving and Creating Object Specifier Records
	Resolving Object Specifier Records
	Descriptor Records Used in Object Specifier Record...
	Object Class
	Container
	Key Form
	Key Data
	Key Data for a Property ID
	Key Data for an Object’s Name

	Key Data for a Unique ID
	Key Data for Absolute Position
	Key Data for Relative Position
	Key Data for a Test
	Key Data for a Range

	Installing Entries in the Object Accessor Dispatch...
	Installing Object Accessor Functions That Find App...
	Installing Object Accessor Functions That Find Pro...

	Writing Object Accessor Functions
	Writing Object Accessor Functions That Find Apple�...
	Writing Object Accessor Functions That Find Proper...
	Defining Tokens
	Handling Whose Tests

	Writing Object Callback Functions
	Writing an Object-Counting Function
	Writing an Object-Comparison Function
	Writing Marking Callback Functions

	Creating Object Specifier Records
	Creating a Simple Object Specifier Record
	Specifying the Container Hierarchy
	Specifying a Property
	Specifying a Relative Position

	Creating a Complex Object Specifier Record
	Specifying a Test
	Specifying a Range

	Reference to Resolving and Creating Object Specifi...
	Data Structures Used in Object Specifier Records
	Routines for Resolving and Creating Object Specifi...
	Initializing the Object Support Library
	Setting Object Accessor Functions and Object Callb...
	Getting, Calling, and Removing Object Accessor Fun...
	Resolving Object Specifier Records
	Deallocating Memory for Tokens
	Creating Object Specifier Records

	Application-Defined Routines
	Object Accessor Functions
	Object Callback Functions

	Summary of Resolving and Creating Object Specifier...
	Pascal Summary
	Constants
	Data Types
	Routines for Resolving and Creating Object Specifi...
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Routines for Resolving and Creating Object Specifi...
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Introduction to Scripting TOC
	 Introduction to Scripting
	 Apple Event Terminology Resources TOC
	 Apple Event Terminology Resources
	 Recording Apple Events TOC
	 Recording Apple Events
	 Scripting Components TOC
	 Scripting Components
	 Program-to-Program Communications Toolbox TOC
	 Program-to-Program Communications Toolbox
	 Data Access Manager TOC
	 Data Access Manager
	 Glossary
	 Index
	 Colophon

