

C H A P T E R 2

2

M
em

ory M
anager

Memory Manager 2

This chapter describes how your application can use the Memory Manager to manage
memory both in its own partition and outside its partition. Ordinarily, you allocate
memory in your application heap only. You might, however, occasionally need to
access memory outside of your application partition, or you might want to create
additional heap zones within your application partition.

You need to read this chapter if you want to use Memory Manager routines other than
those described in the chapter “Introduction to Memory Management” in this book. That
chapter shows how to use the Memory Manager and other system software components
to perform the most common memory-manipulation operations while avoiding heap
fragmentation and low memory situations. This chapter addresses a number of other
important memory-related issues.

This chapter begins with a description of areas of memory that are outside your
application’s partition and their typical uses. Then it describes how you can

■ allocate temporary memory

■ allocate memory in and install code into the system heap

■ read and change the values of system global variables

■ allocate high memory during the startup process

■ create additional heap zones within your application’s partition

■ install a purge-warning procedure for a heap zone

This chapter also addresses some advanced topics that are generally of use only to
developers of very specialized applications or memory utilities. These advanced
topics include

■ how the Memory Manager organizes heap zones

■ how the Memory Manager organizes memory blocks

To use this chapter, you should be familiar with ordinary use of the Memory Manager
and other system software components that allow you to manage memory, as described
in the chapter “Introduction to Memory Management” earlier in this book.

The “Memory Manager Reference” and “Summary of the Memory Manager” sections in
this chapter provide a complete reference and summary of the constants, data types, and
routines provided by the Memory Manager.

About the Memory Manager 2

The Memory Manager is the part of the Macintosh Operating System that controls the
dynamic allocation of memory space. Ordinarily, you need to access information only
within your own application’s heap, stack, and A5 world. Occasionally, however, you
might need to use the Memory Manager to allocate temporary memory outside of your
application’s partition or to initialize new heap zones within your application partition.
You might also need to read a system global variable to obtain information about the
environment in which your application is executing.
About the Memory Manager 2-3

C H A P T E R 2

Memory Manager

The Memory Manager provides a large number of routines that you can use to perform
various operations on blocks within your application partition. You can use the Memory
Manager to

■ set up your application partition

■ allocate and release both relocatable and nonrelocatable blocks in your
application heap

■ copy data from nonrelocatable blocks to relocatable blocks, and vice versa

■ determine how much space is free in your heap

■ determine the location of the top of your stack

■ determine the size of a memory block and, if necessary, change that size

■ change the properties of relocatable blocks

■ install or remove a grow-zone function for your heap

■ obtain the result code of the most recent Memory Manager routine executed

The Memory Manager also provides routines that you can use to access areas of memory
outside your application partition. You can use the Memory Manager to

■ allocate memory outside your partition that is currently unused by any open
application or by the Operating System

■ allocate memory in the system heap

This section describes the areas of memory that lie outside your application partition.
It also describes multiple heap zones.

Temporary Memory 2
In the Macintosh multitasking environment, your application is limited to a particular
memory partition (whose size is determined by information in the 'SIZE' resource of
your application). The size of your application’s partition places certain limits on the size
of your application heap and hence on the sizes of the buffers and other data structures
that your application can use.

If for some reason you need more memory than is currently available in your application
heap, you can ask the Operating System to let you use any available memory that is not
yet allocated to any other application. This memory, called temporary memory, is
allocated from the available unused RAM; in general, that memory is not contiguous
with the memory in your application’s zone

Your application should use temporary memory only for occasional short-term purposes
that could be accomplished in less space, though perhaps less efficiently. For example, if
you want to copy a large file, you might try to allocate a fairly large buffer of temporary
memory. If you receive the temporary memory, you can use the large buffer to copy data
from the source file into the destination file. If, however, the request for temporary
memory fails, you can instead use a smaller buffer within your application heap.
Although the use of a smaller buffer might prolong the copy operation, the file is
nonetheless copied.
2-4 About the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager

One good reason for using temporary memory only occasionally is that you cannot
assume that you will always receive the temporary memory you request. For example, if
two or more applications use all available memory outside the system partition, then a
request by any of them for some temporary memory would fail.

Another strategy for using temporary memory is to use it, when possible, for all
nonessential memory requests. For example, you could allocate window records and any
associated window data using temporary memory. This scheme allows you to keep your
application partition relatively small (because you don’t need space for nonessential
tasks) but assumes that users will not fill up the available memory with other
applications.

Multiple Heap Zones 2
A heap zone is a heap (that is, an area in which you can dynamically allocate and release
memory on demand) together with a zone header and a zone trailer. The zone header is
an area of memory that contains essential information about the heap, such as the
number of free bytes in the heap and the addresses of the heap’s grow-zone function and
purge-warning procedure. The zone trailer is just a minimum-sized block placed as a
marker at the end of the heap zone. (See “Heap Zones” on page 2-19 for a complete
description of zone headers and trailers.)

When your application is executing, there exist at least two heap zones: your
application’s heap zone (created when your application was launched) and the
system heap zone (created when the system was started up). The system heap zone is
the heap zone that contains the system heap. Your application heap zone (also known
as the original application heap zone) is the heap zone initially provided by the
Memory Manager for use by your application and any system software routines your
application calls.

Ordinarily, you allocate and release blocks of memory in the current heap zone, which
by default is your application heap zone. Unless you change the current heap zone (for
example, by calling the InitZone or SetZone procedures), you do not need to worry
about which is the current zone; all blocks that you access are taken from the current
heap zone, that is, your application heap zone.

Occasionally, however, you might need to allocate memory in the system heap zone.
System software uses the system heap to store information it needs. Although, in
general, you should not allocate memory in the system heap, there are several valid
reasons for doing so. First, if you are implementing a system extension, the extension can
use the system heap to store information. Second, if you want the Time Manager or
Vertical Retrace Manager to execute some interrupt code when your application is not
the current application, you might in certain cases need to store the task record and the
task code in the system heap. Third, if you write interrupt code that itself uses heap
memory, you should either place that memory in the system heap or hold it in real RAM
to prevent page faults at interrupt time, as discussed in the chapter “Virtual Memory
Manager” in this book.
About the Memory Manager 2-5

C H A P T E R 2

Memory Manager

You can create additional heap zones for your application’s own use by calling the
InitZone procedure. If you do maintain more than one heap zone, you can find out
which heap zone is the current one at any time by calling the GetZone function, and
you can switch zones by calling the SetZone procedure. Almost all Memory Manager
operations implicitly apply to the current heap zone. To refer to the system heap zone or
to the (original) application heap zone, you can call the functions SystemZone or
ApplicationZone. To find out which zone a particular block resides in, you can call
the HandleZone function (if the block is relocatable) or the PtrZone function (if it’s
nonrelocatable).

▲ W A R N I N G

Be sure, when calling routines that access blocks, that the zone in which
the block is located is the current zone. If, for example, you attempt to
release an empty resource in the system zone when the current zone is
not the system zone, the Operating System might incorrectly update the
list of free master pointers in your partition. ▲

Once you have created a heap zone, it remains fixed in size and location. For this reason,
it usually makes more sense to use the undivided application heap zone for all of your
memory-allocation needs. You might, however, choose to initialize an additional heap
zone in circumstances like these:

■ If you are implementing a software development environment and want to launch
applications within the development environment’s partition, you can initialize a
heap zone for the launched application to use as its heap zone.

■ If you want to avoid heap fragmentation but cannot prevent allocation of small
nonrelocatable blocks in the middle of your program’s execution, you could, soon
after your application starts up, allocate a small heap zone to hold the nonrelocatable
blocks you allocate during execution.

■ If you need to resize a particular handle quite often, you can minimize the resizing
time by creating a heap zone whose size is set to the maximum size the handle will
ever be assigned. Because there is only one relocatable block in the new heap zone, the
resizing is likely to happen more quickly than if that block were in the original heap
zone (where other relocatable blocks in the zone might need to be moved).

Before deciding to create additional heap zones, however, make sure that you really need
to. Maintaining multiple heap zones requires a considerable amount of extra work. You
must always make sure to allocate or release memory in the correct zone, and you must
monitor memory conditions in each zone so that your application doesn’t run out
of memory.

The System Global Variables 2
Just as the Toolbox stores information about your drawing environment in a set of
QuickDraw global variables within your application partition, the Operating System and
Toolbox store information about the entire multiple-application environment in a set of
system global variables, also called low-memory global variables. The system global
variables are stored in the lowest part of the physical RAM, in the system partition.
2-6 About the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager

Most system global variables are intended for use by system software only, and you
should never need to read or write them directly. Current versions of system software
contain functions that return values equivalent to most of the important system global
variables. Use those routines whenever they are available. However, you might
occasionally need to access the value of a system global variable to maintain
compatibility with previous versions of system software, or you might need to access a
system global variable whose value no equivalent function returns.

The MPW interface file SysEqu.p defines the memory locations at which system global
variables are stored in the latest version of system software. For example, SysEqu.p
contains lines like these:

CONST

RndSeed = $156; {random number seed (long)}

Ticks = $16A; {ticks since last boot (unsigned long)}

DeskHook = $A6C; {hook for painting desktop (pointer)}

MBarHeight = $BAA; {height of menu bar (integer)}

You can use these memory locations to examine the value of one of these variables. See
“Reading and Writing System Global Variables” on page 2-8 for instructions on reading
and writing the values of system global variables from a high-level language.

You should avoid relying on the value of a system global variable whenever possible.
The meanings of many global variables have changed in the past and will change again
in the future. Using the system global variables documented in Inside Macintosh is fairly
safe, but you risk incompatibility with future versions of system software if you attempt
to access global variables defined in the interface files but not explicitly documented.

Even when Inside Macintosh does document a particular system global variable, you
should use any available routines to access that variable’s value instead of examining it
directly. For example, you should use the TickCount function to find the number of
ticks since startup instead of examining the Ticks global variable directly.

IMPORTANT

You should read or write the value of a system global variable only
when that variable is documented in Inside Macintosh and when there is
no alternate method of reading or writing the information you need. ▲

Using the Memory Manager 2

This section discusses the techniques you can use both to deal with memory outside of
your application’s partition and to manipulate your own application’s partition.

You can use the techniques in this section to

■ read and write the values of system global variables when there is no Toolbox routine
that would accomplish the work for you
Using the Memory Manager 2-7

C H A P T E R 2

Memory Manager

■ check for the availability of temporary memory and use it to speed operations that
depend on memory buffers

■ allocate memory in the system heap

■ install code into the system heap

■ allocate memory at the high end of the available RAM from within a system extension
during the startup process

■ initialize new heap zones within your application heap zone, on your application’s
stack, or in the application global variables area

■ install a purge-warning procedure for your application heap zone

Reading and Writing System Global Variables 2
In general, you should avoid relying on the values of system global variables whenever
possible. However, you might occasionally need to access the value of one of these
variables. Because the actual values associated with global variables in MPW’s
SysEqu.p interface file are memory locations, you can access the value of a
low-memory variable simply by dereferencing a memory location.

Many system global variables are process-independent, but some are process-specific.
The Operating System swaps the values of the process-specific variables as it switches
processes. If you write interrupt code that reads low memory, that code could execute at
a time when another process’s system global variables are installed. Therefore, before
reading low memory from interrupt code, you should call the Process Manager to ensure
that your process is the current process. If it is not, you should not rely on the value of
system global variables that could conceivably be process-specific.

Note
No available documentation distinguishes process-specific from
process-independent system global variables. ◆

The routine defined in Listing 2-1 illustrates how you can read a system global variable,
in this case the system global variable BufPtr, which gives the address of the highest
byte of allocatable memory.

Listing 2-1 Reading the value of a system global variable

FUNCTION FindHighestByte: LongInt;

TYPE

LongPtr = ^LongInt;

BEGIN

FindHighestByte := LongPtr(BufPtr)^;

END;

In Pascal, the main technique for reading system global variables is to define a new data
type that points to the variable type you want to read. In this example, the address is
2-8 Using the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager

stored as a long integer. Thus, the memory location BufPtr is really a pointer to a long
integer. Because of Pascal’s strict typing rules, you must cast the low-memory address
into a pointer to a long integer. Then, you can dereference the pointer and return the
long integer itself as the function result.

You can use a similar technique to change the value of a system global variable. For
example, suppose you are writing an extension that displays a window at startup time.
To maintain compatibility with pre-Macintosh II systems, you need to clear the system
global variable named DeskHook. This global variable holds a ProcPtr that references
a procedure called by system software to paint the desktop. If the value of the pointer is
NIL, the system software uses the standard desktop pattern. If you do not set DeskHook
to NIL, the system software might attempt to use whatever random data it contains to
call an updating procedure when you move or close your window. The procedure
defined in Listing 2-2 sets DeskHook to NIL.

Listing 2-2 Changing the value of a system global variable

PROCEDURE ClearDeskHook;

TYPE

ProcPtrPtr = ^ProcPtr; {pointer to ProcPtr}

VAR

deskHookProc: ProcPtrPtr;

BEGIN

deskHookProc := ProcPtrPtr(DeskHook); {initialize variable}

deskHookProc^ := NIL; {clear DeskHook proc}

END;

You can use a similar technique to change the value of any other documented system
global variable.

Extending an Application’s Memory 2
Rather than using your application’s 'SIZE' resource to specify a preferred partition
size that is large enough to contain the largest possible application heap, you should
specify a smaller but adequate partition size. When you need more memory for
temporary use, you can use a set of Memory Manager routines for the allocation
of temporary memory.

By using the routines for allocating temporary memory, your application can request
some additional memory for occasional short-term needs. For example, the Finder uses
these temporary-memory routines to secure buffer space for use during file copy
operations. Any available memory (that is, memory currently unallocated to any
application’s partition) is dedicated to this purpose. The Finder releases this memory as
soon as the copy is completed, thus making the memory available to other applications
or to the Operating System for launching new applications.
Using the Memory Manager 2-9

C H A P T E R 2

Memory Manager
Because the requested amount of memory might not be available, you cannot be sure
that every request for temporary memory will be honored. Thus, you should make sure
that your application will work even if your request for temporary memory is denied.
For example, if the Finder cannot allocate a large temporary copy buffer, it uses a
reserved small copy buffer from within its own heap zone, prolonging the copying but
performing it nonetheless.

Temporary memory is taken from RAM that is reserved for (but not yet used by) other
applications. Thus, if you use too much temporary memory or hold temporary memory
for long periods of time, you might prevent the user from being able to launch other
applications. In certain circumstances, however, you can hold temporary memory
indefinitely. For example, if the temporary memory is used for open files and the user
can free that memory simply by closing those files, it is safe to hold onto that memory as
long as necessary.

Temporary memory is tracked (or monitored) for each application, and so you must use
it only for code that is running on an application’s behalf. Moreover, the Operating
System frees all temporary memory allocated to an application when the application
quits or crashes. As a result, you should not use temporary memory for VBL tasks, Time
Manager tasks, or other procedures that should continue to be executed after your
application quits. Similarly, it is wise not to use temporary memory for an interprocess
buffer (that is, a buffer whose address is passed to another application in a high-level
event) because the originating application could crash, quit, or be terminated, thereby
causing the temporary memory to be released before (or even while) the receiving
application uses that memory.

Although you can usually perform ordinary Memory Manager operations on temporary
memory, there are two restrictions. First, you must never lock temporary memory across
calls to GetNextEvent or WaitNextEvent. Second, although you can determine the
zone from which temporary memory is generated (using the HandleZone function),
you should not use this information to make new blocks or perform heap operations on
your own.

Allocating Temporary Memory 2

You can request a block of memory for temporary use by calling the Memory Manager’s
TempNewHandle function. This function attempts to allocate a new relocatable block of
the specified size for temporary use. For example, to request a block that is one-quarter
megabyte in size, you might issue this command:

myHandle := TempNewHandle($40000, myErr); {request temp memory}

If the routine succeeds, it returns a handle to the block of memory. The block of memory
returned by a successful call to TempNewHandle is initially unlocked. If an error occurs
and TempNewHandle fails, it returns a NIL handle. You should always check for NIL
handles before using any temporary memory. If you detect a NIL handle, the second
parameter (in this example, myErr) contains the result code from the function.
2-10 Using the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
Instead of asking for a specific amount of memory and then checking the returned
handle to find out whether it was allocated, you might prefer to determine beforehand
how much temporary memory is available. There are two functions that return
information on the amount of free memory available for temporary allocation. The first
is the TempFreeMem function, which you can use as follows:

memFree := TempFreeMem; {find amount of free temporary memory}

The result is a long integer containing the amount, in bytes, of free memory available for
temporary allocation. It usually isn’t possible to allocate a block of this size because of
fragmentation. Consequently, you’ll probably want to use the second function,
TempMaxMem, to determine the size of the largest contiguous block of space available. To
allocate that block, you can write

mySize := TempMaxMem(grow);

myHandle := TempNewHandle(mySize, myErr);

The TempMaxMem function returns the size, in bytes, of the largest contiguous free block
available for temporary allocation. (The TempMaxMem function is analogous to the
MaxMem function.) The grow parameter is a variable parameter of type Size; after the
function returns, it always contains 0, because the temporary memory does not come
from the application’s heap. Even when you use TempMaxMem to determine the size of
the available memory, you should check that the handle returned by TempNewHandle
is not NIL.

Determining the Features of Temporary Memory 2

Only computers running system software version 7.0 and later can use temporary
memory as described in this chapter. For this reason, you should always check that the
routines are available and that they have the features you require before calling them.

Note
The temporary-memory routines are available in some earlier system
software versions when MultiFinder is running. However, the handles
to blocks of temporary memory are neither tracked nor real. ◆

The Gestalt function includes a selector to determine whether the temporary-memory
routines are present in the operating environment and, if they are, whether
the temporary-memory handles are tracked and whether they are real. If
temporary-memory handles are not tracked, you must release temporary memory before
your next call to GetNextEvent or WaitNextEvent. If temporary-memory handles are
not real, then you cannot use normal Memory Manager routines such as HLock to
manipulate them.
Using the Memory Manager 2-11

C H A P T E R 2

Memory Manager
To determine whether the temporary-memory routines are implemented, you can check
the value returned by the TempMemCallsAvailable function, defined in Listing 2-3.

Listing 2-3 Determining whether temporary-memory routines are available

FUNCTION TempMemCallsAvailable: Boolean;

VAR

myErr: OSErr; {Gestalt result code}

myRsp: LongInt; {response returned by Gestalt}

BEGIN

TempMemCallsAvailable := FALSE;

myErr := Gestalt(gestaltOSAttr, myRsp);

IF myErr <> noErr THEN

DoError(myErr) {Gestalt failed}

ELSE {check bit for temp mem support}

TempMemCallsAvailable :=

BAND(myRsp, gestaltTempMemSupport) <> 0;

END;

You can use similar code to determine whether temporary-memory handles are real and
whether the temporary memory is tracked.

Using the System Heap 2
The system heap is used to store most of the information needed by the Operating
System and other system software components. As a result, it is ideal for storing
information needed by a system extension (which by definition extends the capabilities
of system software). You might also need to use the system heap to store a task record
and the code for an interrupt task that should continue to be executed when your
application is not the current application.

Allocating blocks in the system heap is straightforward. Most ordinary Memory
Manager routines have counterparts that allocate memory in the system heap zone
instead of the current heap zone. For example, the counterpart of the NewPtr function is
the NewPtrSys function. The following line of code allocates a new nonrelocatable
block of memory in the system heap to store a Time Manager task record:

myTaskPtr := QElemPtr(NewPtrSys(SizeOf(TMTask)));

Alternatively, you can change the current zone and use ordinary Memory Manager
operations, as follows:

SetZone(SystemZone);

myTaskPtr := QElemPtr(NewPtr(SizeOf(TMTask)));

...

SetZone(ApplicationZone);
2-12 Using the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
You might also need to store the interrupt code itself in the system heap. For example,
when an application that installed a vertical retrace task with the VInstall function is
in the background, the Vertical Retrace Manager executes the task only if the vblAddr
field of the task record points to a routine in the system heap.

Unfortunately, manually copying a routine into the system heap is difficult in Pascal.
The easiest way to install code into the system heap is to place the code into a separate
stand-alone code resource in your application’s resource fork. You should set the system
heap bit and the locked bit of the code resource’s attributes. Then, when you need to use
the code, you must load the resource from the resource file and cast the resource handle’s
master pointer into a procedure pointer (a variable of type ProcPtr), as follows:

myProcHandle := GetResource(kProcType, kProcID);

IF myProcHandle <> NIL THEN

myTaskPtr^.vblAddr := ProcPtr(myProcHandle^);

Because the resource is locked in memory, you don’t have to worry about creating
a dangling pointer when you dereference a handle to the resource. If you want the
code to remain in the system heap after the user quits your application, you can call
the Resource Manager procedure DetachResource so that closing your application’s
resource fork does not destroy the resource data. Note, however, that if you do so and
your application crashes, the code still remains in the system heap.

Once you have loaded a code resource into memory and created a ProcPtr that
references the entry point of the code resource, you can use that ProcPtr just as you can
use any such variable. For example, you could assign the value of the variable to the
vblAddr field of a vertical retrace task record (as shown just above). If you are
programming in assembly language, you can then call the code directly. To call the
routine from a high-level language such as Pascal, you’ll need to use some inline
assembly-language code. Listing 2-4 defines a routine that you can use to execute a
procedure by address.

Listing 2-4 Calling a procedure by address

PROCEDURE CallByAddress (aRoutine: ProcPtr);

INLINE $205F, {MOVE.L (SP)+,A0}

$4ED0; {JMP (A0)}

Allocating Memory at Startup Time 2
If you are implementing a system extension, you might need to allocate memory at
startup time. As explained in the previous section, an ideal place to allocate such
memory is in the system heap. To allocate memory in the system heap under system
software version 7.0 and later, you merely need to call the appropriate Memory Manager
routines, and the system heap expands dynamically to meet your request. In earlier
versions of system software, you must use a 'sysz' resource to indicate how much the
Operating System should increase the size of the system zone.
Using the Memory Manager 2-13

C H A P T E R 2

Memory Manager
Alternatively, however, you can allocate blocks in high memory. The global variable
BufPtr always references the highest byte in memory that might become part of an
application partition. You can lower the value of BufPtr and then use the memory
between the old and new values of BufPtr.

Note
In general, if you are implementing a system extension, you should
allocate memory in the system heap instead of high memory. In this
way, you avoid the problems associated with lowering the value of
BufPtr too far (described in the following paragraphs) and ensure that
the extension is not paged out if virtual memory is operating. ◆

Lowering the value of BufPtr too far can be dangerous for several reasons. In 128K
ROM Macintosh computers running system software version 4.1, you must avoid
lowering the value of BufPtr so that it points in the system startup blocks. The highest
byte of these blocks can always be found relative to the global variable MemTop, at
MemTop DIV 2 + 1024.

In later versions of the Macintosh system software, the system startup blocks were no
longer barriers to BufPtr, but new barriers arose, including Macintosh IIci video
storage, for example. To maintain compatibility with extensions that rely on the ability to
lower BufPtr relative to MemTop, the system software simply adjusts MemTop so that
the formula still holds. Thus, at startup, the MemTop global variable currently does not
reference any memory location in particular. Instead, it holds a value that guarantees
that the formula allowing you to lower BufPtr as low as MemTop DIV 2 + 1024 but
no further still holds.

Beginning in system software version 7.0, the Operating System can detect excessive
lowering of BufPtr, but only after the fact. When the Operating System does detect
that the value of BufPtr has fallen too low, it generates an out-of-memory system error.

▲ W A R N I N G

Although the above formula has been true since system software version
4.1, a bug in the Macintosh IIci and later ROMs made it invalid in certain
versions of system software 6.x. ▲

Because there is no calling interface for lowering BufPtr, you must do it manually, by
changing the value of the system variable, as explained in “Reading and Writing System
Global Variables” on page 2-8. To obtain the value of the MemTop global variable, you
can use the TopMem function.

Creating Heap Zones 2
You can create heap zones as subzones of your application heap zone or (in rare
instances) either in space reserved for the application global variables or on the stack.
You can also create heap zones in a block of temporary memory or within the system
heap zone. This section describes how to create new heap zones by calling the
InitZone procedure.
2-14 Using the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
Note
Most applications do not need to create heap zones. ◆

To create a new heap zone in the application heap, you must allocate nonrelocatable
blocks in your application heap to hold new subzones of the application heap. In
addition to being able to create subzones of the application zone, you can create
subzones of any other zone to which you have access, including a zone that is itself
a subzone of another zone.

You create a heap zone by calling the InitZone procedure, which takes four
parameters. The first parameter specifies a grow-zone function for the new zone, or NIL
if you do not want the zone to have a grow-zone function. The second parameter
specifies the number of new master pointers that you want each block of master pointers
in the zone to contain. The InitZone procedure allocates one such block to start with,
and you can allocate more by calling the MoreMasters procedure. The third and fourth
parameters specify, respectively, the first byte beyond the end of the new zone and the
first byte of the zone.

When initializing a zone with the InitZone procedure, make sure that you are
subdividing the current zone. When InitZone returns, the new zone becomes
current. Thus, if you subdivide the application zone into several subzones, you must
call SetZone(ApplicationZone) before you create the second and each of the
subsequent subzones. Listing 2-5 shows a technique for creating a single subzone of the
original application zone, assuming that the application zone is the current zone. The
technique for subdividing subzones is similar.

Listing 2-5 Creating a subzone of the original application heap zone

FUNCTION CreateSubZone: THz;

CONST

kZoneSize = 10240; {10K zone}

kNumMasterPointers = 16; {num of master ptrs for new zone}

VAR

start: Ptr; {first byte in zone}

limit: Ptr; {first byte beyond zone}

BEGIN

start := NewPtr(kZoneSize); {allocate storage for zone}

IF MemError <> noErr THEN

BEGIN {allocation successful}

limit := Ptr(ORD4(start) + kZoneSize);

{compute byte beyond end of zone}

InitZone(NIL, kNumMasterPointers, limit, start);

{initialize zone header, trailer}

END;

CreateSubZone := THz(start); {cast storage to a zone pointer}

END;
Using the Memory Manager 2-15

C H A P T E R 2

Memory Manager
To create a subzone in the system heap zone, you can call SetZone(SystemZone) at
the beginning of the procedure in Listing 2-5. You might find this technique useful if you
are implementing a system extension but want to manage your extension’s memory
much as you manage memory in an application. Instead of simply allocating blocks in
the system heap, you can make your zone current whenever your extension is executed.
Then, you can call regular Memory Manager routines to allocate memory in your
subzone of the system heap, and you can compact and purge your subzone without
compacting and purging the entire system heap zone.

When you allocate memory for a subzone, you must allocate that memory in a
nonrelocatable block (as in Listing 2-5) or in a locked relocatable block. If you create a
subzone within an unlocked relocatable block, the Memory Manager might move your
entire subzone during memory operations in the zone containing your subzone. If so,
any references to nonrelocatable blocks that you allocated in the subzone would become
invalid. Even handles to relocatable blocks in the subzone would no longer be valid,
because the Memory Manager does not update the handles’ master pointers correctly.
This happens because the Memory Manager views a subzone of another zone as a
single block. If that subzone is a relocatable block, the Memory Manager updates only
that block’s master pointer when moving it, and does not update the block’s contents
(that is, the blocks allocated within the subzone).

If you use a block of temporary memory as a heap zone, you must lock the temporary
memory immediately after allocating it. Then, you can pass to InitZone a dereferenced
copy of a handle to the temporary memory. If you find (after a call to the Gestalt
function) that temporary memory handles are not real, then you must dispose of the new
zone before any calls to GetNextEvent or WaitNextEvent. You must dispose of the
new zone because you cannot lock a handle to temporary memory across event calls if
the handle is not real.

Once you have created a subzone as a nonrelocatable block or a locked relocatable block,
you can allocate both relocatable and nonrelocatable blocks within it. Although the
Memory Manager can move such relocatable blocks only within the subzone, it correctly
updates those blocks’ master pointers, which are also in the subzone.

Installing a Purge-Warning Procedure 2
You can define a purge-warning procedure that the Memory Manager calls whenever it
is about to purge a block from your application heap. You can use this procedure to save
the data in the block, if necessary, or to perform other processing in response to this
notification.

Note
Most applications don’t need to install a purge-warning procedure. This
capability is provided primarily for applications that require greater
control over their heap. Examples are applications that maintain
purgeable handles containing important data and applications that for
any other reason need notification when a block is about to be purged. ◆
2-16 Using the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
When your purge-warning procedure is called, the Memory Manager passes it a handle
to the block about to be purged. In your procedure, you can test the handle to determine
whether it contains data that needs to be saved; if so, you can save the data (possibly by
writing it to some open file). Listing 2-6 defines a very simple purge-warning procedure.

Listing 2-6 A purge-warning procedure

PROCEDURE MyPurgeProc (h: Handle);

VAR

theA5: LongInt; {value of A5 when procedure is called}

BEGIN

theA5 := SetCurrentA5; {remember current value of A5; install ours}

IF BAND(HGetState(h), $20) = 0 THEN

BEGIN {if the handle isn’t a resource handle}

IF InSaveList(h) THEN

WriteData(h); {save the data in the block}

END;

theA5 := SetA5(theA5); {restore previous value of A5}

END;

The MyPurgeProc procedure defined in Listing 2-6 inspects the handle’s properties
(using HGetState) to see whether its resource bit is clear. If so, the procedure next
determines whether the handle is contained in an application-maintained list of
handles whose data should be saved before purging. If the handle is in that list, the
purge-warning procedure writes its data to disk. (The file into which the data is written
should already be open at the time the procedure is called, because opening a file might
cause memory to move.)

Note that MyPurgeProc sets up the A5 register with the application’s A5 value upon
entry and restores it to its previous value before exiting. This is necessary because you
cannot rely on the A5 register within a purge-warning procedure.

▲ W A R N I N G

Because of the optimizations performed by some compilers, the actual
work of the purge-warning procedure and the setting and restoring of
the A5 register might have to be placed in separate procedures. See the
chapter “Vertical Retrace Manager” in Inside Macintosh: Processes for an
illustration of how you can do this. ▲

To install a purge-warning procedure, you need to install the address of the
procedure into the purgeProc field of your application’s heap zone header.
Listing 2-7 illustrates one way to do this.
Using the Memory Manager 2-17

C H A P T E R 2

Memory Manager
Listing 2-7 Installing a purge-warning procedure

PROCEDURE InstallPurgeProc;

VAR

myZone: THz;

BEGIN

myZone := GetZone; {find the current zone header}

gPrevProc := myZone^.purgeProc; {remember previous procedure}

myZone^.purgeProc := @MyPurgeProc; {install new procedure}

END;

The InstallPurgeProc procedure defined in Listing 2-7 first obtains the address of
the current heap zone by calling the GetZone function. Then it saves the address of any
existing purge-warning procedure in the global variable gPrevProc. Finally,
InstallPurgeProc installs the new procedure by putting its address directly into the
purgeProc field of the zone header. (For more information on zone headers, see “Heap
Zones” on page 2-19.)

Keep in mind that the Memory Manager calls your purge-warning procedure each time
it decides to purge any purgeable block, and it might call your procedure far more often
than you would expect. Your purge-warning procedure might be passed handles not
only to blocks that you explicitly mark as purgeable (by calling HPurge), but also to
resources whose purgeable attribute is set. (In general, applications don’t need to take
any action on handles that belong to the Resource Manager.) Because of the potentially
large number of times your purge-warning procedure might be called, it should be able
to determine quickly whether a handle that is about to be purged needs additional
processing.

Remember that a purge-warning procedure is called during the execution of some
Memory Manager routine. As a result, your procedure cannot cause memory to be
moved or purged. In addition, it should not dispose of the handle it is passed or change
the purge status of the handle. See “Purge-Warning Procedures” on page 2-90 for a
complete description of the limitations on purge-warning procedures.

▲ W A R N I N G

If your application calls the Resource Manager procedure
SetResPurge with the parameter TRUE (to have the Resource Manager
automatically save any modified resources that are about to be purged),
you should avoid using a purge-warning procedure. This is because the
Resource Manager installs its own purge-warning procedure when you
call SetResPurge in this way. If you must install your own
purge-warning procedure, you should remove your procedure, call
SetResPurge, then reinstall your procedure as shown in Listing 2-7.
You then need to make sure that your procedure calls the Resource
Manager’s purge-warning procedure (which is saved in the global
variable gPrevProc) before exiting. Most applications do not need to
call SetResPurge at all. ▲
2-18 Using the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
If your application does call SetResPurge(TRUE), you should use the version of
MyPurgeProc defined in Listing 2-8. It is just like the version defined in Listing 2-6
except that it calls the Resource Manager’s purge-warning procedure before exiting.

Listing 2-8 A purge-warning procedure that calls the Resource Manager’s procedure

PROCEDURE MyPurgeProc (h: Handle);

VAR

theA5: LongInt; {value of A5 when procedure is called}

BEGIN

theA5 := SetCurrentA5; {remember current value of A5; install ours}

IF BAND(HGetState(h), $20) = 0 THEN

BEGIN {if the handle isn’t a resource handle}

IF InSaveList(h) THEN

WriteData(h); {save the data in the block}

END

ELSE IF gPrevProc <> NIL THEN

CallByAddress(gPrevProc);

theA5 := SetA5(theA5); {restore previous value of A5}

END;

See Listing 2-4 on page 2-13 for a definition of the procedure CallByAddress.

Organization of Memory 2

This section describes the organization of heap zones and block headers. In general, you
do not need to know how the Memory Manager organizes heap zones or block headers
if your application simply allocates and releases blocks of memory. The information
described in this section is used by the Memory Manager for its own purposes.
Developers of some specialized applications and utilities might, however, need to know
exactly how zones and block headers are organized. This information is also sometimes
useful for debugging.

▲ W A R N I N G

This section is provided primarily for informational purposes. The
organization and size of heap zones and block headers is subject to
change in future system software versions. ▲

Heap Zones 2
Except for temporary memory blocks, all relocatable and nonrelocatable blocks
exist within heap zones. A heap zone consists of a zone header, a zone trailer block,
and usable bytes in between. The header contains all of the information the
Organization of Memory 2-19

C H A P T E R 2

Memory Manager
Memory Manager needs about that heap zone; the trailer is just a minimum-sized free
block placed as a marker at the end of the zone.

In Pascal, a heap zone is defined as a zone record of type Zone. The zone record contains
all of the fields of the zone header. A heap zone is always referred to with a zone pointer
of data type THz.

▲ W A R N I N G

The fields of the zone header are for the Memory Manager’s own
internal use. You can examine the contents of the zone’s fields, but in
general it doesn’t make sense for your application to try to change them.
The only fields of the zone record that you can safely modify directly are
the moreMast and purgeProc fields. ▲

TYPE Zone =

RECORD

bkLim: Ptr; {first usable byte after zone}

purgePtr: Ptr; {used internally}

hFstFree: Ptr; {first free master pointer}

zcbFree: LongInt; {number of free bytes in zone}

gzProc: ProcPtr; {grow-zone function}

moreMast: Integer; {num. of master ptrs to allocate}

flags: Integer; {used internally}

cntRel: Integer; {reserved}

maxRel: Integer; {reserved}

cntNRel: Integer; {reserved}

maxNRel: Integer; {reserved}

cntEmpty: Integer; {reserved}

cntHandles: Integer; {reserved}

minCBFree: LongInt; {reserved}

purgeProc: ProcPtr; {purge-warning procedure}

sparePtr: Ptr; {used internally}

allocPtr: Ptr; {used internally}

heapData: Integer; {first usable byte in zone}

END;

THz = ^Zone; {zone pointer}

Field descriptions

bkLim A pointer to the byte following the last byte of usable space in
the zone.

purgePtr Used internally.
hFstFree A pointer to the first free master pointer in the zone. All master

pointers that are allocated but not currently in use are linked
together into a list. The hFstFree field references the head node of
this list. The Memory Manager updates this list every time it
allocates a new relocatable block or releases one, so that the list
contains all unused master pointers. If the Memory Manager needs
2-20 Organization of Memory

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
a new master pointer but this field is set to NIL, it allocates a new
nonrelocatable block of master pointers. You can check the value of
this field to see whether allocating a relocatable block would cause a
new block of master pointers to be allocated.

zcbFree The number of free bytes remaining in the zone. As blocks are
allocated and released, the Memory Manager adjusts this field
accordingly. You can use the FreeMem function to determine the
value of this field for the current heap zone.

gzProc A pointer to a grow-zone function that system software uses to
maintain control over the heap. The system’s grow-zone function
subsequently calls the grow-zone function you specify for your
heap, if any. You can change a heap zone’s grow-zone function at
any time but should do so only by calling the InitZone or
SetGrowZone procedures. Note that in current versions of system
software, this field does not contain a pointer to the grow-zone
function that your application defines.

moreMast The number of master pointers the Memory Manager should
allocate at a time. The Memory Manager allocates this many
automatically when a heap zone is initialized. By default, master
pointers are allocated 32 at a time for the system heap zone and 64
at a time for the application heap zone, but this might change in
future versions of system software.

flags Used internally.
cntRel Reserved.
maxRel Reserved.
cntNRel Reserved.
maxNRel Reserved.
cntEmpty Reserved.
cntHandles Reserved.
minCBFree Reserved.
purgeProc A pointer to the zone’s purge-warning procedure, or NIL if there is

none. The Memory Manager calls this procedure before it purges a
block from the zone. Note that whenever you call the Resource
Manager procedure SetResPurge with the parameter set to TRUE,
the Resource Manager installs its own purge-warning procedure,
overriding any purge-warning procedure you have specified here.

sparePtr Used internally.
allocPtr Used internally.
heapData A dummy field marking the beginning of the zone’s usable

memory space. The integer in this field has no significance in
itself; it is just the first 2 bytes in the block header of the first
block in the zone. For example, if myZone is a zone pointer, then
@(myZone^.heapData) is the address of the first usable byte in
the zone, and myZone^.bkLim is a pointer to the byte following
the last usable byte in the zone.
Organization of Memory 2-21

C H A P T E R 2

Memory Manager
The structure of a heap zone is the same in both 24-bit and 32-bit addressing modes. The
use of several of the fields that are reserved or used internally, however, may differ in
24-bit and 32-bit heap zones.

Block Headers 2
Every block in a heap zone, whether allocated or free, has a block header that the
Memory Manager uses to find its way around in the zone. Block headers are completely
transparent to your application. All pointers and handles to allocated blocks reference
the beginning of the block’s logical contents, following the end of the header. Similarly,
whenever you use a variable of type Size, that variable refers to the number of bytes in
the block’s logical contents, not including the block header. That size is known as the
block’s logical size, as opposed to its physical size, the number of bytes it actually
occupies in memory, including the header and any unused bytes at the end of the block.

There are two reasons that a block might contain such unused bytes:

■ The Memory Manager allocates space only in even numbers of bytes. (This practice
guarantees that both the contents and the address of a master pointer are even.)
If a block’s logical size is odd, an extra, unused byte is added at the end to make the
physical size an even number. On computers containing the MC68020, MC68030,
or MC68040 microprocessor, blocks are padded to 4-byte boundaries.

■ The minimum number of bytes in a block is 12. This minimum applies to all
blocks, free as well as allocated. If allocating the required number of bytes from a
free block would leave a fragment of fewer than 12 free bytes, the leftover bytes are
included unused at the end of the newly allocated block instead of being returned to
free storage.

There is no Pascal record type defining the structure of block headers because you
shouldn’t normally need to access them directly. In addition, the structure of a block
header depends on whether the block is located in a 24-bit or 32-bit zone.

In a 24-bit zone, a block header consists of 8 bytes, which together make up two long
words, as shown in Figure 2-1.

Figure 2-1 A block header in a 24-bit zone

Physical size of block

Address of block's zone, or relative handle

7 6 5 4 3 0

Size correction

Unused

Block type
00: Free block
01: Nonrelocatable block
10: Relocatable block
2-22 Organization of Memory

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
In the first long word, the low-order 3 bytes contain the block’s physical size in bytes.
Adding this number to the block’s address gives the address of the next block in the
zone. The first byte of the block header is a tag byte that provides other information on
the block. The bits in the tag byte have these meanings:

In the tag byte, the high-order 2 bits determine whether a block is free (binary 00),
relocatable (binary 10), or nonrelocatable (binary 01). The low-order 4 bits contain a
block’s size correction, the number of unused bytes at the end of the block, beyond the
end of the block’s contents. This correction is equal to the difference between the block’s
logical and physical sizes, excluding the 8 bytes of overhead for the block header, as in
the following formula:

physicalSize = logicalSize + sizeCorrection + 8

The contents of the second long word (4 bytes) in the 24-bit block header depend on the
type of block. For relocatable blocks, the second long word contains the block’s relative
handle: a pointer to the block’s master pointer, expressed as an offset relative to the start
of the heap zone rather than as an absolute memory address. Adding the relative handle
to the zone pointer produces a true handle for this block. For nonrelocatable blocks, the
second long word of the header is just a pointer to the block’s zone. For free blocks, the
contents of these 4 bytes are undefined.

In a 32-bit zone, a block header consists of 12 bytes, which together make up three long
words, as shown in Figure 2-2.

Figure 2-2 A block header in a 32-bit zone

Bit Meaning

0–3 The block’s size correction

4–5 Reserved

6–7 The block type

Physical size of block

7 6 5 0

Size
correction

Unused

Block type
00: Free block
01: Nonrelocatable block
11: Relocatable block

Address of block's zone, or relative handle

ReservedMaster pointer
flag bits
Organization of Memory 2-23

C H A P T E R 2

Memory Manager
The first byte of the block header is a tag byte that indicates the type of the block. The
bits in the tag byte have these meanings:

In the tag byte, the high-order 2 bits determine whether a block is free (binary 00),
relocatable (binary 10), or nonrelocatable (binary 01).

The second byte in the block header contains the master pointer flag bits, if the block is a
relocatable block. Otherwise, this byte is undefined. The bits in this byte have these
meanings:

The low-order byte of the high-order long word contains the block’s size correction. This
correction is equal to the difference between the block’s logical and physical sizes,
excluding the 12 bytes of overhead for the block header, as follows:

physicalSize = logicalSize + sizeCorrection + 12

The second long word in the 32-bit block header contains the block’s physical size, and
the third long word contains the block’s relative handle. These fields have the same
meaning as the corresponding fields in the 24-bit block header.

Memory Manager Reference 2

This section describes the data types and routines provided by the Memory Manager. It
describes the general-purpose data types the Memory Manager defines and all routines
that relate to manipulating blocks of memory or managing memory in the application
heap zone. This section also describes the data structures and routines that allow your
application to allocate temporary memory and to use multiple heap zones.

Data Types 2
This section discusses the general-purpose data types defined by the Memory Manager.
Most of these types are used throughout the system software.

Bit Meaning

0–5 Reserved

6–7 The block type

Bit Meaning

0–4 Reserved

5 If set, block contains resource data

6 If set, block is purgeable

7 If set, block is locked
2-24 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
The Memory Manager uses pointers and handles to reference nonrelocatable and
relocatable blocks, respectively. The data types Ptr and Handle define pointers and
handles as follows:

TYPE

SignedByte = –128..127;

Byte = 0..255;

Ptr = ^SignedByte;

Handle = ^Ptr;

The SignedByte type stands for an arbitrary byte in memory, just to give Ptr and
Handle something to point to. The Byte type is an alternative definition that treats
byte-length data as an unsigned rather than a signed quantity.

Many other data types also use the concept of pointers and handles. For example, the
Macintosh system software stores strings in arrays of up to 255 characters, with the first
byte of the array storing the length of the string. Some Toolbox routines allow you to
pass such a string directly; others require that you pass a pointer or handle to a string.
The following type definitions define character strings:

TYPE

Str255 = STRING[255];

StringPtr = ^Str255;

StringHandle = ^StringPtr;

Some Toolbox routines allow you to execute code after a certain amount of time elapses
or after a certain condition is met. Any such routine requires you to pass the address of
the routine containing the code to be executed so that it knows what routine to call when
the time has elapsed or the condition has been met. You use the data type ProcPtr to
define a pointer to a procedure or function.

TYPE ProcPtr = Ptr;

For example, after the declarations

VAR

aProcPtr: ProcPtr;

PROCEDURE MyProc;

BEGIN

...

END;

you can make aProcPtr reference the MyProc procedure by using the @ operator,
as follows:

aProcPtr := @MyProc;
Memory Manager Reference 2-25

C H A P T E R 2

Memory Manager
With the @ operator, you can assign procedures and functions to variables of type
ProcPtr, embed them in data structures, and pass them as arguments to other routines.
Notice, however, that the data type ProcPtr technically points to an arbitrary byte, not
an actual routine. As a result, there’s no direct way in Pascal to access the underlying
routine via this pointer in order to call it. (See Listing 2-4 on page 2-13 for some
assembly-language code you can use to do so.) The routines in the Operating System
and Toolbox, which are written in assembly language, can however, call routines
designated by pointers of type ProcPtr.

Note
You can’t use the @ operator to reference procedures or functions whose
declarations are nested within other routines. ◆

The Memory Manager uses the Size data type to refer to the size, in bytes, of memory
blocks. For example, when specifying how large a relocatable block you want to allocate,
you pass a parameter of type Size. The Size data type is also defined as a long integer.

TYPE Size = LongInt;

Memory Manager Routines 2
This section describes the routines provided by the Memory Manager. You can use these
routines to set up your application’s partition, allocate and dispose of relocatable and
nonrelocatable blocks, manipulate those blocks, assess the availability of memory in
your application’s heap, free memory from the heap, and install a grow-zone function
for your heap. The Memory Manager also provides routines that allow you to allocate
temporary memory and manipulate heap zones.

Note
The result codes listed for Memory Manager routines are usually not
directly returned to your application. You need to call the MemError
function (or, from assembly language, inspect the MemErr global
variable) to get a routine’s result code. ◆

You cannot call most Memory Manager routines at interrupt time for several reasons.
You cannot allocate memory at interrupt time because the Memory Manager might
already be handling a memory-allocation request and the heap might be in an
inconsistent state. More generally, you cannot call at interrupt time any Memory
Manager routine that returns its result code via the MemError function, even if that
routine doesn’t allocate or move memory. Resetting the MemErr global variable at
interrupt time can lead to unexpected results if the interrupted code depends on the
value of MemErr. Note that Memory Manager routines like HLock return their results
via MemError and therefore should not be called in interrupt code.
2-26 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
Setting Up the Application Heap 2

The Operating System automatically initializes your application’s heap when your
application is launched. To help prevent heap fragmentation, you should call the
procedures in this section before you allocate any blocks of memory in your heap.

Use the MaxApplZone procedure to extend the application heap zone to the application
heap limit so that the Memory Manager does not do so gradually as memory requests
require. Use the MoreMasters procedure to preallocate enough blocks of master
pointers so that the Memory Manager never needs to allocate new master pointer blocks
for you.

MaxApplZone 2

To help ensure that you can use as much of the application heap zone as possible, call the
MaxApplZone procedure. Call this once near the beginning of your program, after you
have expanded your stack.

PROCEDURE MaxApplZone;

DESCRIPTION

The MaxApplZone procedure expands the application heap zone to the application heap
limit. If you do not call MaxApplZone, the application heap zone grows as necessary to
fulfill memory requests. The MaxApplZone procedure does not purge any blocks
currently in the zone. If the zone already extends to the limit, MaxApplZone does
nothing.

It is a good idea to call MaxApplZone once at the beginning of your program if you
intend to maintain an effectively partitioned heap. If you do not call MaxApplZone and
then call MoveHHi to move relocatable blocks to the top of the heap zone before locking
them, the heap zone could later grow beyond these locked blocks to fulfill a memory
request. If the Memory Manager were to allocate a nonrelocatable block in this new
space, your heap would be fragmented.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MaxApplZone are

RESULT CODES

Registers on exit

D0 Result code

noErr 0 No error
Memory Manager Reference 2-27

C H A P T E R 2

Memory Manager
MoreMasters 2

Call the MoreMasters procedure several times at the beginning of your program to
prevent the Memory Manager from running out of master pointers in the middle of
application execution. If it does run out, it allocates more, possibly causing heap
fragmentation.

PROCEDURE MoreMasters;

DESCRIPTION

The MoreMasters procedure allocates another block of master pointers in the current
heap zone. In the application heap, a block of master pointers consists of 64 master
pointers, and in the system heap, a block consists of 32 master pointers. (These values,
however, might change in future versions of system software.) When you initialize
additional heap zones, you can specify the number of master pointers you want to have
in a block of master pointers.

The Memory Manager automatically calls MoreMasters once for every new heap zone,
including the application heap zone.

You should call MoreMasters at the beginning of your program enough times to ensure
that the Memory Manager never needs to call it for you. For example, if your application
never allocates more than 300 relocatable blocks in its heap zone, then five calls to the
MoreMasters should be enough. It’s better to call MoreMasters too many times than
too few. For instance, if your application usually allocates about 100 relocatable blocks
but might allocate 1000 in a particularly busy session, call MoreMasters enough times
at the beginning of the program to accommodate times of greater memory use.

If you are forced to call MoreMasters so many times that it causes a significant
slowdown, you could change the moreMast field of the zone header to the total number
of master pointers you need and then call MoreMasters just once. Afterward, be sure to
restore the moreMast field to its original value.

SPECIAL CONSIDERATIONS

Because MoreMasters allocates memory, you should not call it at interrupt time.

The calls to MoreMasters at the beginning of your application should be in the main
code segment of your application or in a segment that the main segment never unloads.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MoreMasters are

Registers on exit

D0 Result code
2-28 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
RESULT CODES

SEE ALSO

If you initialize a new zone, you can specify the number of master pointers that a master
pointer block should contain. See the description of the InitZone procedure on
page 2-86 for details.

Allocating and Releasing Relocatable Blocks of Memory 2

You can use the NewHandle function to allocate a relocatable block of memory, or the
NewEmptyHandle function to allocate handles for which you do not yet need blocks of
memory. If you want to allocate new blocks of memory in the system heap or with their
bits precleared to 0, you can use the functions NewHandleSys, NewHandleClear, and
NewHandleSysClear.

▲ W A R N I N G

You should not call any of these memory-allocation routines at
interrupt time. ▲

You can use the DisposeHandle procedure to free relocatable blocks of memory you
have allocated.

NewHandle 2

You can use the NewHandle function to allocate a relocatable memory block of a
specified size.

FUNCTION NewHandle (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block.

DESCRIPTION

The NewHandle function attempts to allocate a new relocatable block in the current heap
zone with a logical size of logicalSize bytes and then return a handle to the block.

noErr 0 No error
memFullErr –108 Not enough memory
Memory Manager Reference 2-29

C H A P T E R 2

Memory Manager
The new block is unlocked and unpurgeable. If NewHandle cannot allocate a block of
the requested size, it returns NIL.

▲ W A R N I N G

Do not try to manufacture your own handles without this function by
simply assigning the address of a variable of type Ptr to a variable of
type Handle. The resulting “fake handle” would not reference a
relocatable block and could cause a system crash. ▲

The NewHandle function pursues all available avenues to create a block of the requested
size, including compacting the heap zone, increasing its size, and purging blocks from it.
If all of these techniques fail and the heap zone has a grow-zone function installed,
NewHandle calls the function. Then NewHandle tries again to free the necessary amount
of memory, once more compacting and purging the heap zone if necessary. If memory
still cannot be allocated, NewHandle calls the grow-zone function again, unless that
function had returned 0, in which case NewHandle gives up and returns NIL.

SPECIAL CONSIDERATIONS

Because NewHandle allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NewHandle are

You can specify that the NewHandle function apply to the system heap zone instead of
the current zone by setting bit 10 of the routine trap word. In most development systems,
you can do this by supplying the word SYS as the second argument to the routine macro,
as follows:

_NewHandle ,SYS

If you want to clear the bytes of a block of memory to 0 when you allocate it with the
NewHandle function, set bit 9 of the routine trap word. You can usually do this by
supplying the word CLEAR as the second argument to the routine macro, as follows:

_NewHandle ,CLEAR

You can combine SYS and CLEAR in the same macro call, but SYS must come first.

_NewHandle ,SYS,CLEAR

Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block’s master pointer or NIL

D0 Result code
2-30 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
RESULT CODES

SEE ALSO

If you allocate a relocatable block that you plan to lock for long periods of time, you can
prevent heap fragmentation by allocating the block as low as possible in the heap zone.
To do this, see the description of the ReserveMem procedure on page 2-55.

If you plan to lock a relocatable block for short periods of time, you might want to move
it to the top of the heap zone to prevent heap fragmentation. For more information, see
the description of the MoveHHi procedure on page 2-56.

NewHandleSys 2

You can use the NewHandleSys function to allocate a relocatable block of memory of a
specified size in the system heap.

FUNCTION NewHandleSys (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block.

DESCRIPTION

The NewHandleSys function works much as the NewHandle function does, but
attempts to allocate the requested block in the system heap zone instead of in the current
heap zone. If it cannot, it returns NIL.

RESULT CODES

NewHandleClear 2

You can use the NewHandleClear function to allocate prezeroed memory in a
relocatable block of a specified size.

FUNCTION NewHandleClear (logicalSize: Size): Handle;

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

noErr 0 No error
memFullErr –108 Not enough memory in heap zone
Memory Manager Reference 2-31

C H A P T E R 2

Memory Manager
logicalSize
The requested size (in bytes) of the relocatable block. The
NewHandleClear function sets each of these bytes to 0.

DESCRIPTION

The NewHandleClear function works much as the NewHandle function does but sets
all bytes in the new block to 0 instead of leaving the contents of the block undefined.

Currently, NewHandleClear clears the block one byte at a time. For a large block, it
might be faster to clear the block manually a long word at a time.

RESULT CODES

NewHandleSysClear 2

You can use the NewHandleSysClear function to allocate, in the system heap,
prezeroed memory in a relocatable block of a specified size.

FUNCTION NewHandleSysClear (logicalSize: Size): Handle;

logicalSize
The requested size (in bytes) of the relocatable block. The
NewHandleSysClear function sets each of these bytes to 0.

DESCRIPTION

The NewHandleSysClear function works much as the NewHandleClear function
does, but attempts to allocate the requested block in the system heap zone instead of in
the current heap zone. NewHandleSysClear sets all bytes in the new block to 0 instead
of leaving the contents of the block undefined.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

noErr 0 No error
memFullErr –108 Not enough memory in heap zone
2-32 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
NewEmptyHandle 2

If you want to initialize a handle but not allocate any space for it, use the
NewEmptyHandle function. The Resource Manager uses this function extensively,
but you probably won’t need to use it.

FUNCTION NewEmptyHandle: Handle;

DESCRIPTION

The NewEmptyHandle function initializes a new handle by allocating a master pointer
for it, but it does not allocate any memory for the handle to control. NewEmptyHandle
sets the handle’s master pointer to NIL.

SPECIAL CONSIDERATIONS

Because NewEmptyHandle might need to call the MoreMasters procedure to
allocate new master pointers, it might allocate memory. Thus, you should not call
NewEmptyHandle at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for NewEmptyHandle are

You can specify that the NewEmptyHandle function apply to the system heap zone
instead of the current zone. To do so, set bit 10 of the routine trap word. In most
development systems, you can do this by supplying the word SYS as the second
argument to the routine macro, as follows:

_NewEmptyHandle ,SYS

RESULT CODES

SEE ALSO

When you want to allocate memory for the empty handle, use the ReallocateHandle
procedure, described on page 2-52.

Registers on exit

A0 Address of the new block’s master pointer

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
Memory Manager Reference 2-33

C H A P T E R 2

Memory Manager
NewEmptyHandleSys 2

If you want to initialize a handle in the system heap but not allocate any space for it, use
the NewEmptyHandleSys function. The Resource Manager uses this function
extensively, but you probably won’t need to use it.

FUNCTION NewEmptyHandleSys: Handle;

DESCRIPTION

The NewEmptyHandleSys function initializes a new handle in the system heap by
allocating a master pointer for it, but it does not allocate any memory for the handle to
control. NewEmptyHandleSys sets the handle’s master pointer to NIL.

SPECIAL CONSIDERATIONS

Because NewEmptyHandleSys might need to call the MoreMasters procedure to
allocate new master pointers, it might allocate memory. Thus, you should not call
NewEmptyHandleSys at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for NewEmptyHandleSys are

RESULT CODES

SEE ALSO

When you want to allocate memory for the empty handle, use the ReallocateHandle
procedure, described on page 2-52.

DisposeHandle 2

When you are completely done with a relocatable block, call the DisposeHandle
procedure to free it and its master pointer for other uses.

PROCEDURE DisposeHandle (h: Handle);

Registers on exit

A0 Address of the new block’s master pointer

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
2-34 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
h A handle to a relocatable block.

DESCRIPTION

The DisposeHandle procedure releases the memory occupied by the relocatable block
whose handle is h. It also frees the handle’s master pointer for other uses.

▲ W A R N I N G

After a call to DisposeHandle, all handles to the released block
become invalid and should not be used again. Any subsequent calls to
DisposeHandle using an invalid handle might damage the master
pointer list. ▲

Do not use DisposeHandle to dispose of a handle obtained from the Resource
Manager (for example, by a previous call to GetResource); use ReleaseResource
instead. If, however, you have called DetachResource on a resource handle, you
should dispose of the storage by calling DisposeHandle.

SPECIAL CONSIDERATIONS

Because DisposeHandle purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DisposeHandle are

RESULT CODES

Allocating and Releasing Nonrelocatable Blocks of Memory 2

You can use the NewPtr function to allocate a nonrelocatable block of memory. If you
want to allocate new blocks of memory in the system heap or with their bits precleared
to 0, you can use the NewPtrSys, NewPtrClear, and NewPtrSysClear functions.

▲ W A R N I N G

You should not call any of these memory-allocation routines at
interrupt time. ▲

You can use the DisposePtr procedure to free nonrelocatable blocks of memory you
have allocated.

Registers on entry

A0 Handle to the relocatable block to be disposed of

Registers on exit

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
Memory Manager Reference 2-35

C H A P T E R 2

Memory Manager
NewPtr 2

You can use the NewPtr function to allocate a nonrelocatable block of memory of a
specified size.

FUNCTION NewPtr (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtr function attempts to allocate, in the current heap zone, a nonrelocatable
block with a logical size of logicalSize bytes and then return a pointer to the block. If
the requested number of bytes cannot be allocated, NewPtr returns NIL.

The NewPtr function attempts to reserve space as low in the heap zone as possible for
the new block. If it is able to reserve the requested amount of space, NewPtr allocates
the nonrelocatable block in the gap ReserveMem creates. Otherwise, NewPtr returns
NIL and generates a memFullErr error.

SPECIAL CONSIDERATIONS

Because NewPtr allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for NewPtr are

You can specify that the NewPtr function apply to the system heap zone instead of the
current zone. To do so, set bit 10 of the routine trap word. In most development systems,
you can do this by supplying the word SYS as the second argument to the routine macro,
as follows:

_NewPtr ,SYS

If you want to clear the bytes of a block of memory to 0 when you allocate it with the
NewPtr function, set bit 9 of the routine trap word. You can usually do this by supplying
the word CLEAR as the second argument to the routine macro, as follows:

_NewPtr ,CLEAR

Registers on entry

A0 Number of logical bytes requested

Registers on exit

A0 Address of the new block or NIL

D0 Result code
2-36 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
You can combine SYS and CLEAR in the same macro call, but SYS must come first.

_NewPtr ,SYS,CLEAR

RESULT CODES

NewPtrSys 2

You can use the NewPtrSys function to allocate a nonrelocatable block of memory of a
specified size in the system heap.

FUNCTION NewPtrSys (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtrSys function works much as the NewPtr function does, but attempts to
allocate the requested block in the system heap zone instead of in the current heap zone.

RESULT CODES

NewPtrClear 2

You can use the NewPtrClear function to allocate prezeroed memory in a
nonrelocatable block of a specified size.

FUNCTION NewPtrClear (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtrClear function works much as the NewPtr function does, but sets all bytes
in the new block to 0 instead of leaving the contents of the block undefined.

noErr 0 No error
memFullErr –108 Not enough memory

noErr 0 No error
memFullErr –108 Not enough memory
Memory Manager Reference 2-37

C H A P T E R 2

Memory Manager
Currently, NewPtrClear clears the block one byte at a time. For a large block, it might
be faster to clear the block manually a long word at a time.

RESULT CODES

NewPtrSysClear 2

You can use the NewPtrSysClear function to allocate, in the system heap, prezeroed
memory in a nonrelocatable block of a specified size.

FUNCTION NewPtrSysClear (logicalSize: Size): Ptr;

logicalSize
The requested size (in bytes) of the nonrelocatable block.

DESCRIPTION

The NewPtrSysClear function works much as the NewPtr function does, but attempts
to allocate the requested block in the system heap zone instead of in the current heap
zone. Also, it sets all bytes in the new block to 0 instead of leaving the contents of the
block undefined.

RESULT CODES

DisposePtr 2

When you are completely done with a nonrelocatable block, call the DisposePtr
procedure to free it for other uses.

PROCEDURE DisposePtr (p: Ptr);

p A pointer to the nonrelocatable block you want to dispose of.

noErr 0 No error
memFullErr –108 Not enough memory

noErr 0 No error
memFullErr –108 Not enough memory
2-38 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
DESCRIPTION

The DisposePtr procedure releases the memory occupied by the nonrelocatable block
specified by p.

▲ W A R N I N G

After a call to DisposePtr, all pointers to the released block become
invalid and should not be used again. Any subsequent use of a pointer
to the released block might cause a system error. ▲

SPECIAL CONSIDERATIONS

Because DisposePtr purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for DisposePtr are

RESULT CODES

Changing the Sizes of Relocatable and Nonrelocatable Blocks 2

You can use the GetHandleSize function and the SetHandleSize procedure to find
out and change the logical size of a relocatable block, and you can use the GetPtrSize
function and the SetPtrSize procedure to find out and change the logical size of a
nonrelocatable block.

GetHandleSize 2

You can use the GetHandleSize function to find out the logical size of the relocatable
block corresponding to a handle.

FUNCTION GetHandleSize (h: Handle): Size;

h A handle to a relocatable block.

Registers on entry

A0 Pointer to the nonrelocatable block to be disposed of

Registers on exit

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
Memory Manager Reference 2-39

C H A P T E R 2

Memory Manager
DESCRIPTION

The GetHandleSize function returns the logical size, in bytes, of the relocatable block
whose handle is h. In case of an error, GetHandleSize returns 0.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for GetHandleSize are

The trap dispatcher sets the condition codes before returning from a trap by testing the
low-order word of register D0 with a TST.W instruction. Because the block size returned
in D0 by _GetHandleSize is a full 32-bit long word, the word-length test sets the
condition codes incorrectly in this case. To branch on the contents of D0, use your own
TST.L instruction on return from the trap to test the full 32 bits of the register.

SPECIAL CONSIDERATIONS

You shouldn’t call GetHandleSize at interrupt time because the heap might be in an
inconsistent state.

RESULT CODES

SetHandleSize 2

You can use the SetHandleSize procedure to change the logical size of the relocatable
block corresponding to a handle.

PROCEDURE SetHandleSize (h: Handle; newSize: Size);

h A handle to a relocatable block.

newSize The desired new logical size, in bytes, of the relocatable block.

DESCRIPTION

The SetHandleSize procedure attempts to change the logical size of the relocatable
block whose handle is h. The new logical size is specified by newSize.

Registers on entry

A0 Handle to the relocatable block

Registers on exit

D0 If >=0, number of bytes in relocatable block

If <0, result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
2-40 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
SetHandleSize might need to move the relocatable block to obtain enough space for
the resized block. Thus, for best results you should unlock a block before resizing it.

An attempt to increase the size of a locked block might fail, because of blocks above and
below it that are either nonrelocatable or locked. You should be prepared for this
possibility.

SPECIAL CONSIDERATIONS

Because SetHandleSize allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetHandleSize are

RESULT CODES

SEE ALSO

Instead of using the SetHandleSize procedure to set the size of a handle to 0, you can
use the EmptyHandle procedure, described on page 2-51.

GetPtrSize 2

You can use the GetPtrSize function to find out the logical size of the nonrelocatable
block corresponding to a pointer.

FUNCTION GetPtrSize (p: Ptr): Size;

p A pointer to a nonrelocatable block.

Registers on entry

A0 Handle to the relocatable block

D0 Desired new size of relocatable block

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
Memory Manager Reference 2-41

C H A P T E R 2

Memory Manager
DESCRIPTION

The GetPtrSize function returns the logical size, in bytes, of the nonrelocatable block
pointed to by p. In case of an error, GetPtrSize returns 0.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for GetPtrSize are

The trap dispatcher sets the condition codes before returning from a trap by testing the
low-order word of register D0 with a TST.W instruction. Because the block size returned
in D0 by _GetPtrSize is a full 32-bit long word, the word-length test sets the condition
codes incorrectly in this case. To branch on the contents of D0, use your own TST.L
instruction on return from the trap to test the full 32 bits of the register.

RESULT CODES

SetPtrSize 2

You can use the SetPtrSize procedure to change the logical size of the nonrelocatable
block corresponding to a pointer.

PROCEDURE SetPtrSize (p: Ptr; newSize: Size);

p A pointer to a nonrelocatable block.

newSize The desired new logical size, in bytes, of the nonrelocatable block.

DESCRIPTION

The SetPtrSize procedure attempts to change the logical size of the nonrelocatable
block pointed to by p. The new logical size is specified by newSize.

An attempt to increase the size of a nonrelocatable block might fail because of a block
above it that is either nonrelocatable or locked. You should be prepared for this
possibility.

Registers on entry

A0 Pointer to the nonrelocatable block

Registers on exit

D0 If >=0, number of bytes in nonrelocatable block

If <0, result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
2-42 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
SPECIAL CONSIDERATIONS

Because SetPtrSize allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetPtrSize are

RESULT CODES

Setting the Properties of Relocatable Blocks 2

A relocatable block can be either locked or unlocked and either purgeable or
unpurgeable. In addition, it can have its resource bit either set or cleared. To determine
the state of any of these properties, use the HGetState function. To change these
properties, use the HLock, HUnlock, HPurge, HNoPurge, HSetRBit, and HClrRBit
procedures. To restore these properties, use the HSetState procedure.

▲ W A R N I N G

Be sure to use these procedures to get and set the properties of
relocatable blocks. In particular, do not rely on the structure of master
pointers, because their structure in 24-bit mode is different from their
structure in 32-bit mode. ▲

HGetState 2

You can use the HGetState function to get the current properties of a relocatable block
(perhaps so that you can change and then later restore those properties).

FUNCTION HGetState (h: Handle): SignedByte;

h A handle to a relocatable block.

Registers on entry

A0 Pointer to the nonrelocatable block

D0 Desired new size of nonrelocatable block

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
memWZErr –111 Attempt to operate on a free block
Memory Manager Reference 2-43

C H A P T E R 2

Memory Manager
DESCRIPTION

The HGetState function returns a signed byte containing the flags of the master pointer
for the given handle. You can save this byte, change the state of any of the flags using the
routines described on page 2-45 through page 2-50, and then restore their original states
by passing the byte to the HSetState procedure, described next.

You can use bit-manipulation functions on the returned signed byte to determine the
value of a given attribute. Currently the following bits are used:

If an error occurs during an attempt to get the state flags of the specified relocatable
block, HGetState returns the low-order byte of the result code as its function result. For
example, if the handle h points to a master pointer whose value is NIL, then the signed
byte returned by HGetState will contain the value –109.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HGetState are

RESULT CODES

HSetState 2

You can use the HSetState procedure to restore properties of a block after a call to
HGetState.

PROCEDURE HSetState (h: Handle; flags: SignedByte);

h A handle to a relocatable block.

flags A signed byte specifying the properties to which you want to set the
relocatable block.

Bit Meaning

0–4 Reserved

5 Set if relocatable block is a resource

6 Set if relocatable block is purgeable

7 Set if relocatable block is locked

Registers on entry

A0 Handle whose properties you want to get

Registers on exit

D0 Byte containing flags

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
2-44 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
DESCRIPTION

The HSetState procedure restores to the handle h the properties specified in the flags
signed byte. See the description of the HGetState function for a list of the currently
used bits in that byte. Because additional bits of the flags byte could become significant
in future versions of system software, use HSetState only with a byte returned by
HGetState. If you need to set two or three properties of a relocatable block at once, it is
better to use the procedures that set individual properties than to manipulate the bits
returned by HGetState and then call HSetState.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HSetState are

RESULT CODES

HLock 2

You can use the HLock procedure to lock a relocatable block so that it does not move in
the heap. If you plan to dereference a handle and then allocate, move, or purge memory
(or call a routine that does so), then you should lock the handle before using the
dereferenced handle.

PROCEDURE HLock (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HLock procedure locks the relocatable block to which h is a handle, preventing it
from being moved within its heap zone. If the block is already locked, HLock does
nothing.

Registers on entry

A0 Handle whose properties you want to set

D0 Byte containing flags indicating the handle’s new properties

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
Memory Manager Reference 2-45

C H A P T E R 2

Memory Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HLock are

RESULT CODES

SEE ALSO

If you plan to lock a relocatable block for long periods of time, you can prevent
fragmentation by ensuring that the block is as low as possible in the heap zone. To do
this, see the description of the ReserveMem procedure on page 2-55.

If you plan to lock a relocatable block for short periods of time, you can prevent heap
fragmentation by moving the block to the top of the heap zone before locking. For more
information, see the description of the MoveHHi procedure on page 2-56.

HUnlock 2

You can use the HUnlock procedure to unlock a relocatable block so that it is free to
move in its heap zone.

PROCEDURE HUnlock (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HUnlock procedure unlocks the relocatable block to which h is a handle, allowing it
to be moved within its heap zone. If the block is already unlocked, HUnlock does
nothing.

Registers on entry

A0 Handle to lock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
2-46 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HUnlock are

RESULT CODES

HPurge 2

You can use the HPurge procedure to mark a relocatable block so that it can be purged if
a memory request cannot be fulfilled after compaction.

PROCEDURE HPurge (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HPurge procedure makes the relocatable block to which h is a handle purgeable. If
the block is already purgeable, HPurge does nothing.

The Memory Manager might purge the block when it needs to purge the heap zone
containing the block to satisfy a memory request. A direct call to the PurgeMem
procedure or the MaxMem function would also purge blocks marked as purgeable.

Once you mark a relocatable block as purgeable, you should make sure that handles to
the block are not empty before you access the block. If they are empty, you must
reallocate space for the block and recopy the block’s data from another source, such as a
resource file, before using the information in the block.

If the block to which h is a handle is locked, HPurge does not unlock the block but does
mark it as purgeable. If you later call HUnlock on h, the block is subject to purging.

Registers on entry

A0 Handle to unlock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
Memory Manager Reference 2-47

C H A P T E R 2

Memory Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HPurge are

RESULT CODES

SEE ALSO

If the Memory Manager has purged a block, you can reallocate space for it by using the
ReallocateHandle procedure, described on page 2-52.

You can immediately free the space taken by a handle without disposing of it by calling
EmptyHandle. This procedure, described on page 2-51, does not require that the block
be purgeable.

HNoPurge 2

You can use the HNoPurge procedure to mark a relocatable block so that it cannot be
purged.

PROCEDURE HNoPurge (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HNoPurge procedure makes the relocatable block to which h is a handle
unpurgeable. If the block is already unpurgeable, HNoPurge does nothing.

The HNoPurge procedure does not reallocate memory for a handle if it has already
been purged.

Registers on entry

A0 Handle to make purgeable

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
2-48 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HNoPurge are

RESULT CODES

SEE ALSO

If you want to reallocate memory for a relocatable block that has already been purged,
you can use the ReallocateHandle procedure, described on page 2-52.

HSetRBit 2

You can use the HSetRBit procedure to set the resource flag of a relocatable block. The
Resource Manager uses this routine extensively, but you should never need to use it.

PROCEDURE HSetRBit (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HSetRBit procedure sets the resource flag of the relocatable block to which h is a
handle. It does nothing if the flag is already set.

▲ W A R N I N G

When the resource flag is set, the Resource Manager identifies the
associated relocatable block as belonging to a resource. This can cause
problems if that block wasn’t actually read from a resource. ▲

Registers on entry

A0 Handle to make unpurgeable

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
Memory Manager Reference 2-49

C H A P T E R 2

Memory Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HSetRBit are

RESULT CODES

HClrRBit 2

You can use the HClrRBit procedure to clear the resource flag of a relocatable block.
The Resource Manager uses this routine extensively, but you probably won’t need
to use it.

PROCEDURE HClrRBit (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HClrRBit procedure clears the resource flag of a relocatable block. It does nothing
if the flag is already cleared.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HClrRBit are

RESULT CODES

Registers on entry

A0 Handle whose resource flag you want to set

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

Registers on entry

A0 Handle whose resource flag you want to clear

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
2-50 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
SEE ALSO

To disassociate the data in a resource handle from the resource file, you should use the
Resource Manager procedure DetachResource instead of this procedure.

Managing Relocatable Blocks 2

The Memory Manager provides routines that allow you to purge and later reallocate
space for relocatable blocks, recreate handles to relocatable blocks if you have access to
their master pointers, and control where in their heap zone relocatable blocks are located.

To free the memory taken up by a relocatable block without releasing the master pointer
to the block for other uses, use the EmptyHandle procedure. To reallocate space for a
handle that you have emptied or the Memory Manager has purged, use the
ReallocateHandle procedure.

If, because you have dereferenced a handle, you no longer have access to it but do
have access to its master pointer, you can use the RecoverHandle function to recreate
the handle.

To ensure that a relocatable block that you plan to lock for short or long periods of time
does not cause heap fragmentation, use the MoveHHi and the ReserveMem procedures,
respectively.

EmptyHandle 2

The EmptyHandle procedure allows you to free memory taken by a relocatable block
without freeing the relocatable block’s master pointer for other uses.

PROCEDURE EmptyHandle (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The EmptyHandle procedure purges the relocatable block whose handle is h and sets
the handle’s master pointer to NIL. The block whose handle is h must be unlocked but
need not be purgeable.

Note
If there are multiple handles to the relocatable block, then calling
the EmptyHandle procedure empties them all, because all of the
handles share a common master pointer. When you later use
ReallocateHandle to reallocate space for the block, the master
pointer is updated, and all of the handles reference the new block
correctly. ◆
Memory Manager Reference 2-51

C H A P T E R 2

Memory Manager
SPECIAL CONSIDERATIONS

Because EmptyHandle purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for EmptyHandle are

RESULT CODES

SEE ALSO

To purge all of the blocks in a heap zone that are marked purgeable, use the PurgeMem
procedure, described on page 2-73.

To free the memory taken up by a relocatable block and release the block’s master
pointer for other uses, use the DisposeHandle procedure, described on page 2-34.

ReallocateHandle 2

To recover space for a relocatable block that you have emptied or the Memory Manager
has purged, use the ReallocateHandle procedure.

PROCEDURE ReallocateHandle (h: Handle; logicalSize: Size);

h A handle to a relocatable block.

logicalSize
The desired new logical size (in bytes) of the relocatable block.

DESCRIPTION

The ReallocateHandle procedure allocates a new relocatable block with a logical size
of logicalSize bytes. It updates the handle h by setting its master pointer to point to
the new block. The new block is unlocked and unpurgeable.

Registers on entry

A0 Handle to relocatable block

Registers on exit

A0 Handle to relocatable block

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
2-52 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
Usually you use ReallocateHandle to reallocate space for a block that you have
emptied or the Memory Manager has purged. If the handle references an existing block,
ReallocateHandle releases that block before creating a new one.

Note
To reallocate space for a resource that has been purged, you should call
LoadResource, not ReallocateHandle. ◆

If many handles reference a single purged, relocatable block, you need to call
ReallocateHandle on just one of them.

In case of an error, ReallocateHandle neither allocates a new block nor changes the
master pointer to which handle h points.

SPECIAL CONSIDERATIONS

Because ReallocateHandle might purge and allocate memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for ReallocateHandle are

RESULT CODES

SEE ALSO

Because ReallocateHandle releases any existing relocatable block referenced by the
handle h before allocating a new one, it does not provide an efficient technique for
resizing relocatable blocks. To do that, use the SetHandleSize procedure, described on
page 2-40.

Registers on entry

A0 Handle for new relocatable block

D0 Desired logical size, in bytes, of new block

Registers on exit

D0 Result code

noErr 0 No error
memROZErr –99 Heap zone is read-only
memFullErr –108 Not enough memory
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
Memory Manager Reference 2-53

C H A P T E R 2

Memory Manager
RecoverHandle 2

The Memory Manager does not allow you to change relocatable blocks into
nonrelocatable blocks, or vice-versa. However, if you no longer have access to a handle
but still have access to its master pointer, you can use the RecoverHandle function to
recreate a handle to the relocatable block referenced by the master pointer.

FUNCTION RecoverHandle (p: Ptr): Handle;

p The master pointer to a relocatable block.

DESCRIPTION

The RecoverHandle function returns a handle to the relocatable block pointed to by p.
If p doesn’t point to a valid block, the results of RecoverHandle are undefined.

SPECIAL CONSIDERATIONS

Even though RecoverHandle does not move or purge memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for RecoverHandle are

Unlike most other Memory Manager routines, RecoverHandle does not return a
result code in register D0; the previous contents of D0 are preserved unchanged.
The result code is, however, returned by MemError.

The RecoverHandle function looks only in the current heap zone for the relocatable
block pointed to by the parameter p. If you want to use the RecoverHandle function to
recover a handle for a relocatable block in the system heap, set bit 10 of the routine trap
word. In most development systems, you can do this by supplying the word SYS as the
second argument to the routine macro, as follows:

_RecoverHandle ,SYS

Registers on entry

A0 Master pointer

Registers on exit

A0 Handle to master pointer’s relocatable block

D0 Unchanged
2-54 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
RESULT CODES

ReserveMem 2

Use the ReserveMem procedure when you allocate a relocatable block that you intend to
lock for long periods of time. This helps prevent heap fragmentation because it reserves
space for the block as close to the bottom of the heap as possible. Consistent use of
ReserveMem for this purpose ensures that all locked, relocatable blocks and
nonrelocatable blocks are together at the bottom of the heap zone and thus do not
prevent unlocked relocatable blocks from moving about the zone.

PROCEDURE ReserveMem (cbNeeded: Size);

cbNeeded The number of bytes to reserve near the bottom of the heap.

DESCRIPTION

The ReserveMem procedure attempts to create free space for a block of cbNeeded
contiguous logical bytes at the lowest possible position in the current heap zone. It
pursues every available means of placing the block as close as possible to the bottom
of the zone, including moving other relocatable blocks upward, expanding the zone
(if possible), and purging blocks from it.

Because ReserveMem does not actually allocate the block, you must combine calls to
ReserveMem with calls to the NewHandle function.

Do not use the ReserveMem procedure for a relocatable block you intend to lock for
only a short period of time. If you do so and then allocate a nonrelocatable block above
it, the relocatable block becomes trapped under the nonrelocatable block when you
unlock that relocatable block.

Note
It isn’t necessary to call ReserveMem to reserve space for a
nonrelocatable block, because the NewPtr function calls it automatically.
Also, you do not need to call ReserveMem to reserve memory before
you load a locked resource into memory, because the Resource Manager
calls ReserveMem automatically. ◆

SPECIAL CONSIDERATIONS

Because the ReserveMem procedure could move and purge memory, you should not call
it at interrupt time.

noErr 0 No error
memBCErr –115 Block check failed
Memory Manager Reference 2-55

C H A P T E R 2

Memory Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for ReserveMem are

The ReserveMem procedure reserves memory in the current heap zone. If you want to
reserve memory in the system heap zone rather than in the current heap zone, set bit 10
of the routine trap word. In most development systems, you can do this by supplying
the word SYS as the second argument to the routine macro, as follows:

_ResrvMem ,SYS

RESULT CODES

ReserveMemSys 2

If you plan to lock a relocatable block for long periods of time in the system heap zone,
use the ReserveMemSys procedure to reserve space for the block as low in the system
heap as possible.

PROCEDURE ReserveMemSys (cbNeeded: Size);

cbNeeded The number of bytes to reserve near the bottom of the system heap.

DESCRIPTION

The ReserveMemSys procedure works much as the ReserveMem procedure does, but
reserves memory in the system heap zone rather than in the current heap zone.

MoveHHi 2

If you plan to lock a relocatable block for a short period of time, use the MoveHHi
procedure, which moves the block to the top of the heap and thus helps prevent heap
fragmentation.

PROCEDURE MoveHHi (h: Handle);

Registers on entry

D0 Number of bytes to reserve

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
2-56 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
h A handle to a relocatable block.

DESCRIPTION

The MoveHHi procedure attempts to move the relocatable block referenced by the handle
h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of
the heap.

▲ W A R N I N G

If you call MoveHHi to move a handle to a resource that has its
resChanged bit set, the Resource Manager updates the resource by
using the WriteResource procedure to write the contents of the block
to disk. If you want to avoid this behavior, call the Resource Manager
procedure SetResPurge(FALSE) before you call MoveHHi, and then
call SetResPurge(TRUE) to restore the default setting. ▲

By using the MoveHHi procedure on relocatable blocks you plan to allocate for short
periods of time, you help prevent islands of immovable memory from accumulating in
(and thus fragmenting) the heap.

Do not use the MoveHHi procedure to move blocks you plan to lock for long periods of
time. The MoveHHi procedure moves such blocks to the top of the heap, perhaps
preventing other blocks already at the top of the heap from moving down once they are
unlocked. Instead, use the ReserveMem procedure before allocating such blocks, thus
keeping them in the bottom partition of the heap, where they do not prevent relocatable
blocks from moving.

If you frequently lock a block for short periods of time and find that calling MoveHHi
each time slows down your application, you might consider leaving the block always
locked and calling the ReserveMem procedure before allocating it.

Once you move a block to the top of the heap, be sure to lock it if you do not want the
Memory Manager to move it back to the middle partition as soon as it can. (The
MoveHHi procedure cannot move locked blocks; be sure to lock blocks after, not before,
calling MoveHHi.)

Note
Using the MoveHHi procedure without taking other precautionary
measures to prevent heap fragmentation is useless, because even one
small nonrelocatable or locked relocatable block in the middle of the
heap might prevent MoveHHi from moving blocks to the top of
the heap. ◆

SPECIAL CONSIDERATIONS

Because the MoveHHi procedure moves memory, you should not call it at interrupt time.

Don’t call MoveHHi on blocks in the system heap. Don’t call MoveHHi from a desk
accessory.
Memory Manager Reference 2-57

C H A P T E R 2

Memory Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for MoveHHi are

RESULT CODES

HLockHi 2

You can use the HLockHi procedure to move a relocatable block to the top of the heap
and lock it.

PROCEDURE HLockHi (h: Handle);

h A handle to a relocatable block.

DESCRIPTION

The HLockHi procedure attempts to move the relocatable block referenced by the handle
h upward until it reaches a nonrelocatable block, a locked relocatable block, or the top of
the heap. Then HLockHi locks the block.

The HLockHi procedure is simply a convenient replacement for the pair of procedures
MoveHHi and HLock.

SPECIAL CONSIDERATIONS

Because the HLockHi procedure moves memory, you should not call it at interrupt time.

Don’t call HLockHi on blocks in the system heap. Don’t call HLockHi from a desk
accessory.

Registers on entry

A0 Handle to move

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memLockedErr –117 Block is locked
2-58 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HLockHi are

RESULT CODES

Manipulating Blocks of Memory 2

The Memory Manager provides three routines for copying blocks of memory referenced
by pointers. To copy a block of memory to a nonrelocatable block, use the BlockMove
procedure. To copy to a new relocatable block, use the PtrToHand function. To copy to
an existing relocatable block, use the PtrToXHand function. If you want to use any of
these routines to copy memory you access with a handle, you must first dereference and
lock the handle. A fourth routine, HandToHand, allows you to copy information from
one handle to another.

To concatenate blocks of memory, you can use the HandAndHand and PtrAndHand
functions.

BlockMove 2

To copy a sequence of bytes from one location in memory to another, you can use the
BlockMove procedure.

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

sourcePtr The address of the first byte to copy.

destPtr The address of the first byte to copy to.

byteCount The number of bytes to copy. If the value of byteCount is 0, BlockMove
does nothing.

DESCRIPTION

The BlockMove procedure moves a block of byteCount consecutive bytes from
the address designated by sourcePtr to that designated by destPtr. It updates
no pointers.

Registers on entry

A0 Handle to move and lock

Registers on exit

D0 Result code

noErr 0 No error
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memLockedErr –117 Block is locked
Memory Manager Reference 2-59

C H A P T E R 2

Memory Manager
The BlockMove procedure works correctly even if the source and destination
blocks overlap.

SPECIAL CONSIDERATIONS

You can safely call BlockMove at interrupt time. Even though it moves memory,
BlockMove does not move relocatable blocks, but simply copies bytes.

The BlockMove procedure currently flushes the processor caches whenever the number
of bytes to be moved is greater than 12. This behavior can adversely affect your
application’s performance. You might want to avoid calling BlockMove to move small
amounts of data in memory if there is no possibility of moving stale data or instructions.
For more information about stale data and instructions, see the discussion of the
processor caches in the chapter “Memory Management Utilities” in this book.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for BlockMove are

RESULT CODE

PtrToHand 2

To copy data referenced by a pointer to a new relocatable block, use the PtrToHand
function.

FUNCTION PtrToHand (srcPtr: Ptr; VAR dstHndl: Handle;

size: LongInt): OSErr;

srcPtr The address of the first byte to copy.

dstHndl A handle for which you have not yet allocated any memory. The
PtrToHand function allocates memory for the handle and copies size
bytes beginning at srcPtr into it.

size The number of bytes to copy.

Registers on entry

A0 Pointer to source

A1 Pointer to destination

D0 Number of bytes to copy

Registers on exit

D0 Result code

noErr 0 No error
2-60 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
DESCRIPTION

The PtrToHand function returns, in dstHndl, a newly created handle to a copy of the
number of bytes specified by the size parameter, beginning at the location specified by
srcPtr. The dstHndl parameter must be a handle variable that is not empty and is not
a handle to an allocated block of size 0.

SPECIAL CONSIDERATIONS

Because PtrToHand allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PtrToHand are

RESULT CODES

SEE ALSO

You can use the PtrToHand function to copy data from one handle to a new handle
if you dereference and lock the source handle. However, if you want to copy all of
the data from one handle to another, the HandToHand function (described on page 2-62)
is more efficient.

PtrToXHand 2

To copy data referenced by a pointer to an already existing relocatable block, use the
PtrToXHand function.

FUNCTION PtrToXHand (srcPtr: Ptr; dstHndl: Handle; size: LongInt):

OSErr;

srcPtr The address of the first byte to copy.

Registers on entry

A0 Pointer to source

D0 Number of bytes to copy

Registers on exit

A0 Destination handle

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
Memory Manager Reference 2-61

C H A P T E R 2

Memory Manager
dstHndl A handle to an already existing relocatable block to which to copy size
bytes, beginning at srcPtr.

size The number of bytes to copy.

DESCRIPTION

The PtrToXHand function makes the existing handle, specified by dstHndl, a handle to
a copy of the number of bytes specified by the size parameter, beginning at the location
specified by srcPtr.

SPECIAL CONSIDERATIONS

Because PtrToXHand affects memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PtrToXHand are

RESULT CODES

HandToHand 2

Use the HandToHand function to copy all of the data from one relocatable block to a new
relocatable block.

FUNCTION HandToHand (VAR theHndl: Handle): OSErr;

theHndl On entry, a handle to the relocatable block whose data is to be copied. On
exit, a handle to a new relocatable block whose data duplicates that of
the original.

Registers on entry

A0 Pointer to source

A1 Handle to destination

D0 Number of bytes to copy

Registers on exit

A0 Handle to destination

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
2-62 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
DESCRIPTION

The HandToHand function attempts to copy the information in the relocatable block to
which theHndl is a handle; if successful, HandToHand returns a handle to the new
relocatable block in theHndl. The new relocatable block is created in the same heap
zone as the original block (which might not be the current heap zone).

Because HandToHand replaces its input parameter with the new handle, you should
retain the original value of the input parameter somewhere else, or you won’t be able to
access it. Here is an example:

VAR

original, copy: Handle;

myErr: OSErr;

...

copy := original; {both handles access same block}

myErr := HandToHand(copy); {copy now points to copy of block}

SPECIAL CONSIDERATIONS

If successful in creating a new relocatable block, the HandToHand function does not
duplicate the properties of the original block. The new block is unlocked, unpurgeable,
and not a resource. You might need to call HLock, HPurge, or HSetRBit (or the
combination of HGetState and HSetState) to adjust the properties of the new block.

Because HandToHand allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HandToHand are

RESULT CODES

Registers on entry

A0 Handle to original data

Registers on exit

A0 Handle to copy of data

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
Memory Manager Reference 2-63

C H A P T E R 2

Memory Manager
SEE ALSO

If you want to copy only part of a relocatable block into a new relocatable block, use the
PtrToHand function, described on page 2-60, after locking and dereferencing a handle
to the relocatable block to be copied.

HandAndHand 2

Use the HandAndHand function to concatenate two relocatable blocks.

FUNCTION HandAndHand (aHndl, bHndl: Handle): OSErr;

aHndl A handle to the first relocatable block, whose contents do not change but
are concatenated to the end of the second relocatable block.

bHndl A handle to the second relocatable block, whose size the Memory
Manager expands so that it can concatenate the information from aHndl
to the end of the contents of this block.

DESCRIPTION

The HandAndHand function concatenates the information from the relocatable block to
which aHndl is a handle onto the end of the relocatable block to which bHndl is a
handle. The aHndl variable remains unchanged.

▲ W A R N I N G

The HandAndHand function dereferences the handle aHndl. You must call the
HLock procedure to lock the block before calling HandAndHand. Afterward,
you can call the HUnlock procedure to unlock it. Alternatively, you can save
the block’s original state by calling the HGetState function, lock the block by
calling HLock, and then restore the original settings by calling HSetState. ▲

SPECIAL CONSIDERATIONS

Because HandAndHand moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HandAndHand are

Registers on entry

A0 Handle to be concatenated

A1 Handle to contain itself, data from A0’s handle

Registers on exit

A0 Handle to concatenated data

D0 Result code
2-64 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
RESULT CODES

PtrAndHand 2

Use the PtrAndHand function to concatenate part or all of a memory block to the end of
a relocatable block.

FUNCTION PtrAndHand (pntr: Ptr; hndl: Handle; size: LongInt):

OSErr;

pntr A pointer to the beginning of the data that the Memory Manager is to
concatenate onto the end of the relocatable block.

hndl A handle to the relocatable block, whose size the Memory Manager
expands so that it can concatenate the information from pntr onto the
end of this block.

size The number of bytes of the block referenced by pntr to be copied.

DESCRIPTION

The PtrAndHand function takes the number of bytes specified by the size parameter,
beginning at the location specified by pntr, and concatenates them onto the end of the
relocatable block to which hndl is a handle.

The contents of the source block remain unchanged.

SPECIAL CONSIDERATIONS

Because PtrAndHand allocates memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PtrAndHand are

noErr 0 No error
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

Registers on entry

A0 Pointer to data to copy

A1 Handle to relocatable block at whose end the copied data concatenated

A2 Number of bytes to concatenate

Registers on exit

A0 Handle to now-concatenated relocatable block

D0 Result code
Memory Manager Reference 2-65

C H A P T E R 2

Memory Manager
RESULT CODES

Assessing Memory Conditions 2

The Memory Manager provides four routines to test how much memory is available, one
routine used after memory operations to determine if an error occurred, and one routine
to determine the location in memory of the top of your application’s partition.

To determine the total amount of free space in the current heap zone or the size of the
maximum block that could be obtained after compacting the heap, use the FreeMem and
MaxBlock functions, respectively. To determine what those values would be after a
purge of the heap zone, call the PurgeSpace procedure. Finally, to find out how much
your stack can grow before it collides with the heap, use the StackSpace function.

To find out whether a Memory Manager operation finished successfully, use the
MemError function.

FreeMem 2

By calling the FreeMem function, you can find out the total amount of free space, in
bytes, in the current heap zone.

FUNCTION FreeMem: LongInt;

DESCRIPTION

The FreeMem function returns the total amount of free space (in bytes) in the current
heap zone. Note that it usually isn’t possible to allocate a block of that size, because
of heap fragmentation due to nonrelocatable or locked blocks.

SPECIAL CONSIDERATIONS

Even though FreeMem does not move or purge memory, you should not call it at
interrupt time because the heap might be in an inconsistent state.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for FreeMem are

noErr 0 No error
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block

Registers on exit

D0 Number of bytes available in heap zone
2-66 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
The FreeMem function reports the number of free bytes in the current heap zone. If you
want to know how many bytes are available in the system heap zone rather than in the
current heap zone, set bit 10 of the routine trap word. In most development systems, you
can do this by supplying the word SYS as the second argument to the routine macro,
as follows:

_FreeMem ,SYS

RESULT CODES

FreeMemSys 2

To determine how much free space remains in the system heap zone, use the
FreeMemSys function.

FUNCTION FreeMemSys: LongInt;

DESCRIPTION

The FreeMemSys function works much as the FreeMem function does, but returns the
total amount of free memory in the system heap zone instead of in the current heap zone.

RESULT CODES

MaxBlock 2

Use the MaxBlock function to determine the size of the largest block you could allocate
in the current heap zone after a compaction.

FUNCTION MaxBlock: LongInt;

DESCRIPTION

The MaxBlock function returns the maximum contiguous space, in bytes, that you could
obtain after compacting the current heap zone. MaxBlock does not actually do the
compaction.

noErr 0 No error

noErr 0 No error
Memory Manager Reference 2-67

C H A P T E R 2

Memory Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MaxBlock are

If you want to know the size of the largest allocatable block in the system heap zone,
rather than in the current heap zone, set bit 10 of the routine trap word. In most
development systems, you can do this by supplying the word SYS as the second
argument to the routine macro, as follows:

_MaxBlock ,SYS

RESULT CODES

MaxBlockSys 2

Use the MaxBlockSys function to determine the size of the largest block you could
allocate in the system heap after a compaction.

FUNCTION MaxBlockSys: LongInt;

DESCRIPTION

The MaxBlockSys function works much as the MaxBlock function does, but returns
the maximum contiguous space, in bytes, that you could obtain after compacting the
system heap. MaxBlockSys does not actually do the compaction.

RESULT CODES

PurgeSpace 2

Use the PurgeSpace procedure to determine the total amount of free memory and the
size of the largest allocatable block after a purge of the heap.

PROCEDURE PurgeSpace (VAR total: LongInt; VAR contig: LongInt);

total On exit, the total amount of free memory in the current heap zone if it
were purged.

Registers on exit

D0 Size of largest allocatable block

noErr 0 No error

noErr 0 No error
2-68 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
contig On exit, the size of the largest contiguous block of free memory in the
current heap zone if it were purged.

DESCRIPTION

The PurgeSpace procedure returns, in the total parameter, the total amount of space
(in bytes) that could be obtained after a general purge of the current heap zone; this
amount includes space that is already free. In the contig parameter, PurgeSpace
returns the size of the largest allocatable block in the current heap zone that could be
obtained after a purge of the zone.

The PurgeSpace procedure does not actually purge the current heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for PurgeSpace are

If you want to test the system heap zone instead of the current zone, set bit 10 of the
routine trap word. In most development systems, you can do this by supplying the word
SYS as the second argument to the routine macro, as follows:

_PurgeSpace ,SYS

RESULT CODES

StackSpace 2

Use the StackSpace function to find out how much space there is between the bottom
of the stack and the top of the application heap.

FUNCTION StackSpace: LongInt;

DESCRIPTION

The StackSpace function returns the current amount of stack space (in bytes) between
the current stack pointer and the application heap at the instant of return from the trap.

Registers on exit

A0 Maximum number of contiguous bytes after purge

D0 Total free memory after purge

noErr 0 No error
Memory Manager Reference 2-69

C H A P T E R 2

Memory Manager
SPECIAL CONSIDERATIONS

Ordinarily, you determine the maximum amount of stack space you need before you
ship your application. In general, therefore, this routine is useful only during debugging
to determine how big to make the stack. However, if your application calls a recursive
function that conceivably could call itself many times, that function should keep track of
the stack space and take appropriate action if it becomes too low.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for StackSpace are

RESULT CODES

MemError 2

To find out whether your application’s last direct call to a Memory Manager routine
executed successfully, use the MemError function.

FUNCTION MemError: OSErr;

DESCRIPTION

The MemError function returns the result code produced by the last Memory Manager
routine your application called directly.

This function is useful during application debugging. You might also use the function as
one part of a memory-management scheme to identify instances in which the Memory
Manager rejects overly large memory requests by returning the error code memFullErr.

▲ W A R N I N G

Do not rely on the MemError function as the only component of a
memory-management scheme. For example, suppose you call
NewHandle or NewPtr and receive the result code noErr, indicating
that the Memory Manager was able to allocate sufficient memory. In this
case, you have no guarantee that the allocation did not deplete your
application’s memory reserves to levels so low that simple operations
might cause your application to crash. Instead of relying on MemError,
check before making a memory request that there is enough memory
both to fulfill the request and to support essential operations. ▲

Registers on exit

D0 Number of bytes between stack and heap

noErr 0 No error
2-70 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
ASSEMBLY-LANGUAGE INFORMATION

Because most Memory Manager routines return a result code in register D0, you do not
ordinarily need to call the MemError function if you program in assembly language. See
the description of an individual routine to find out whether it returns a result code in
register D0. If not, you can examine the global variable MemErr. When MemError
returns, register D0 contains the result code.

RESULT CODES

Freeing Memory 2

The Memory Manager compacts and purges the heap whenever necessary to satisfy
requests for memory. You can also compact or purge the heap manually. To compact the
current heap zone manually, use the CompactMem function. To purge it manually, use
the PurgeMem procedure. To do both at once, use the MaxMem function. To perform the
same operations on the system heap zone, use the CompactMemSys function, the
PurgeMemSys procedure, and the MaxMemSys function.

Note
Most applications don’t need to call the routines described in this
section. Normally you should let the Memory Manager compact or
purge your application heap. ◆

CompactMem 2

The Memory Manager compacts the heap for you when you make a memory request
that it can’t fill. However, you can use the CompactMem function to compact the current
heap zone manually.

FUNCTION CompactMem (cbNeeded: Size): Size;

cbNeeded The size, in bytes, of the block for which CompactMem should attempt to
make room.

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
memROZErr –99 Operation on a read-only zone
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
memBCErr –115 Block check failed
memLockedErr –117 Block is locked
Memory Manager Reference 2-71

C H A P T E R 2

Memory Manager
DESCRIPTION

The CompactMem function compacts the current heap zone by moving unlocked,
relocatable blocks down until they encounter nonrelocatable blocks or locked, relocatable
blocks, but not by purging blocks. It continues compacting until it either finds a
contiguous block of at least cbNeeded free bytes or has compacted the entire zone.

The CompactMem function returns the size, in bytes, of the largest contiguous free block
for which it could make room, but it does not actually allocate that block.

To compact the entire heap zone, call CompactMem(maxSize). The Memory Manager
defines the constant maxSize for the largest contiguous block possible in the 24-bit
Memory Manager:

CONST

maxSize = $800000; {maximum size of a block}

SPECIAL CONSIDERATIONS

Because CompactMem moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for CompactMem are

The CompactMem function compacts the current heap zone. If you want to compact the
system heap zone rather than the current heap zone, set bit 10 of the routine trap word.
In most development systems, you can do this by supplying the word SYS as the second
argument to the routine macro, as follows:

_CompactMem ,SYS

RESULT CODES

CompactMemSys 2

You can use the CompactMemSys function to compact the system heap zone manually.

FUNCTION CompactMemSys (cbNeeded: Size): Size;

Registers on entry

D0 Size of block to make room for

Registers on exit

D0 Size of largest allocatable block

noErr 0 No error
2-72 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
cbNeeded The size in bytes of the block for which CompactMemSys should attempt
to make room.

DESCRIPTION

The CompactMemSys function works much as the CompactMem function does, but
compacts the system heap instead of the current heap.

RESULT CODES

PurgeMem 2

The Memory Manager purges the heap for you when you make a memory request that it
can’t fill. However, you can use the PurgeMem procedure to purge the current heap zone
manually.

PROCEDURE PurgeMem (cbNeeded: Size);

cbNeeded The size, in bytes, of the block for which PurgeMem should attempt to
make room.

DESCRIPTION

The PurgeMem procedure sequentially purges blocks from the current heap zone until it
either allocates a contiguous block of at least cbNeeded free bytes or has purged the
entire zone. If it purges the entire zone without creating a contiguous block of at least
cbNeeded free bytes, PurgeMem generates a memFullErr.

The PurgeMem procedure purges only relocatable, unlocked, purgeable blocks.

The PurgeMem procedure does not actually attempt to allocate a block of
cbNeeded bytes.

To purge the entire heap zone, call PurgeMem(maxSize).

SPECIAL CONSIDERATIONS

Because PurgeMem purges memory, you should not call it at interrupt time.

noErr 0 No error
Memory Manager Reference 2-73

C H A P T E R 2

Memory Manager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PurgeMem are

The PurgeMem procedure purges the current heap zone. If you want to purge the system
heap zone rather than the current heap zone, set bit 10 of the routine trap word. In most
development systems, you can do this by supplying the word SYS as the second
argument to the routine macro, as follows:

_PurgeMem ,SYS

RESULT CODES

PurgeMemSys 2

You can use the PurgeMemSys procedure to purge the system heap manually.

PROCEDURE PurgeMemSys (cbNeeded: Size);

cbNeeded The size, in bytes, of the block for which PurgeMemSys should attempt
to make room.

DESCRIPTION

The PurgeMemSys procedure works much as the PurgeMem procedure does, but purges
the system heap instead of the current heap.

RESULT CODES

MaxMem 2

Use the MaxMem function to compact and purge the current heap zone.

FUNCTION MaxMem (VAR grow: Size): Size;

Registers on entry

D0 Size of block to make room for

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory

noErr 0 No error
memFullErr –108 Not enough memory
2-74 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
grow On exit, the maximum number of bytes by which the current heap zone
can grow. After a call to MaxApplZone, MaxMem always returns 0 in this
parameter.

DESCRIPTION

The MaxMem function compacts the current heap zone and purges all relocatable,
unlocked, and purgeable blocks from the zone. It returns the size, in bytes, of the largest
contiguous free block in the zone after the compacting and purging. If the current zone is
the original application zone, the grow parameter is set to the maximum number of
bytes by which the zone can grow. For any other heap zone, grow is set to 0. MaxMem
doesn’t actually expand the zone or call the zone’s grow-zone function.

SPECIAL CONSIDERATIONS

Because MaxMem moves and purges memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for MaxMem are

The MaxMem function compacts the current heap zone. If you want to compact and purge
the system heap zone rather than the current heap zone, set bit 10 of the routine trap
word. In most development systems, you can do this by supplying the word SYS as the
second argument to the routine macro, as follows:

_MaxMem ,SYS

RESULT CODES

MaxMemSys 2

You can use the MaxMemSys function to purge and compact the system heap zone
manually.

FUNCTION MaxMemSys (VAR grow: Size): Size;

grow On exit, the MaxMemSys function sets this parameter to 0. Ignore this
parameter.

Registers on exit

A0 Number of bytes zone can grow

D0 Size in bytes of largest allocatable block

noErr 0 No error
Memory Manager Reference 2-75

C H A P T E R 2

Memory Manager
DESCRIPTION

The MaxMemSys function works much as the MaxMem function does, but compacts and
purges the system heap instead of the current heap. It returns the size, in bytes, of the
largest block you can allocate in the system heap.

RESULT CODES

Grow-Zone Operations 2

You can implement a grow-zone function that the Memory Manager calls when it cannot
fulfill a memory request. You should use the grow-zone function only as a last resort to
free memory when all else fails. For explanations of how grow-zone functions work and
an example of a memory-management scheme that uses a grow-zone function, see the
discussion of low-memory conditions in the chapter “Introduction to Memory
Management” in this book.

The SetGrowZone procedure specifies which function the Memory Manager should use
for the current zone. The grow-zone function should call the GZSaveHnd function to
receive a handle to a relocatable block that the grow-zone function must not move
or purge.

SetGrowZone 2

To specify a grow-zone function for the current heap zone, pass a pointer to that function
to the SetGrowZone procedure. Ordinarily, you call this procedure early in the
execution of your application.

If you initialize your own heap zones besides the application and system zones, you can
alternatively specify a grow-zone function as a parameter to the InitZone procedure.

PROCEDURE SetGrowZone (growZone: ProcPtr);

growZone A pointer to the grow-zone function.

DESCRIPTION

The SetGrowZone procedure sets the current heap zone’s grow-zone function as
designated by the growZone parameter. A NIL parameter value removes any grow-zone
function the zone might previously have had.

The Memory Manager calls the grow-zone function only after exhausting all other
avenues of satisfying a memory request, including compacting the zone, increasing its
size (if it is the original application zone and is not yet at its maximum size), and purging
blocks from it.

noErr 0 No error
2-76 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
See “Grow-Zone Functions” on page 2-89 for a complete description of a grow-zone
function.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetGrowZone are

RESULT CODES

GZSaveHnd 2

Your grow-zone function must call the GZSaveHnd function to obtain a handle to a
protected relocatable block that the grow-zone function must not move, purge, or delete.

FUNCTION GZSaveHnd: Handle;

DESCRIPTION

The GZSaveHnd function returns a handle to a relocatable block that the grow-zone
function must not move, purge, or delete. It returns NIL if there is no such block.
The returned handle is a handle to the block of memory being manipulated by the
Memory Manager at the time that the grow-zone function is called.

ASSEMBLY-LANGUAGE INFORMATION

You can find the same handle in the global variable GZRootHnd.

Allocating Temporary Memory 2

In system software version 7.0 and later, you can manipulate temporary memory
with three routines that are counterparts to other Memory Manager routines.
The TempNewHandle function allocates a new block of relocatable memory, the
TempFreeMem function returns the total amount of free memory available for temporary

Registers on entry

A0 Pointer to new grow-zone function

Registers on exit

D0 Result code

noErr 0 No error
Memory Manager Reference 2-77

C H A P T E R 2

Memory Manager
allocation, and the TempMaxMem function compacts the heap zone and returns the size
of the largest contiguous block available for temporary allocation.

▲ W A R N I N G

You should not call any of these memory-allocation routines at
interrupt time. ▲

TempNewHandle 2

To allocate a new relocatable block of temporary memory, call the TempNewHandle
function after making sure that there is enough free space to satisfy the request.

FUNCTION TempNewHandle (logicalSize: Size;

VAR resultCode: OSErr): Handle;

logicalSize
The requested logical size, in bytes, of the new temporary block of
memory.

resultCode
On exit, the result code from the function call.

DESCRIPTION

The TempNewHandle function returns a handle to a block of size logicalSize. If it
cannot allocate a block of that size, the function returns NIL. Before you use the returned
handle, make sure its value is not NIL.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for TempNewHandle are

SPECIAL CONSIDERATIONS

Because TempNewHandle might allocate memory, you should not call it at
interrupt time.

Note that TempNewHandle returns its result code in a parameter, not through
MemError.

RESULT CODES

Trap macro Selector

_OSDispatch $001D

noErr 0 No error
memFullErr –108 Not enough memory
2-78 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
TempFreeMem 2

To find out the total amount of memory available for temporary allocation, use the
TempFreeMem function.

FUNCTION TempFreeMem: LongInt;

DESCRIPTION

The TempFreeMem function returns the total amount of free temporary memory that
you could allocate by calling TempNewHandle. The returned value is the total number
of free bytes. Because these bytes might be dispersed throughout memory, it is ordinarily
not possible to allocate a single relocatable block of that size.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for TempFreeMem are

SPECIAL CONSIDERATIONS

Even though TempFreeMem does not move or purge memory, you should not call it at
interrupt time.

TempMaxMem 2

To find the size of the largest contiguous block available for temporary allocation, use the
TempMaxMem function.

FUNCTION TempMaxMem (VAR grow: Size): Size;

grow On exit, this parameter always contains 0 after the function call because
temporary memory does not come from the application’s heap zone, and
only that zone can grow. Ignore this parameter.

DESCRIPTION

The TempMaxMem function compacts the current heap zone and returns the size of the
largest contiguous block available for temporary allocation.

Trap macro Selector

_OSDispatch $0018
Memory Manager Reference 2-79

C H A P T E R 2

Memory Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for TempMaxMem are

SPECIAL CONSIDERATIONS

Because TempMaxMem could move memory, you should not call it at interrupt time.

Accessing Heap Zones 2

The majority of applications, which allocate memory in their application heap zone
only, do not need to use any of the routines in this section. The few applications
that do allocate memory in zones other than the application heap zone can use the
GetZone function and the SetZone procedure to get and set the current zone, the
ApplicationZone and SystemZone functions to obtain pointers to the application
and system zones, and the HandleZone and PtrZone functions to find the zones in
which relocatable and nonrelocatable blocks lie.

GetZone 2

To find which zone is current, use the GetZone function.

FUNCTION GetZone: THz;

DESCRIPTION

The GetZone function returns a pointer to the current heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for GetZone are

The global variable TheZone contains a pointer to the current heap zone.

RESULT CODES

Trap macro Selector

_OSDispatch $0015

Registers on exit

A0 Pointer to current heap zone

D0 Result code

noErr 0 No error
2-80 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
SetZone 2

To change the current heap zone, you can use the SetZone procedure.

PROCEDURE SetZone (hz: THz);

hz A pointer to the heap zone to make current.

DESCRIPTION

The SetZone procedure makes the zone to which hz points the current
heap zone. Often, you use the SetZone procedure in conjunction with one of
the ApplicationZone, SystemZone, HandleZone, and PtrZone functions. For
example, the code SetZone(SystemZone) makes the system heap zone current.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetZone are

RESULT CODES

ApplicationZone 2

To obtain a pointer to the application heap zone, you can use the ApplicationZone
function.

FUNCTION ApplicationZone: THz;

DESCRIPTION

The ApplicationZone function returns a pointer to the original application heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The global variable ApplZone contains a pointer to the original application heap zone.

Registers on entry

A0 Pointer to new current heap zone

Registers on exit

D0 Result code

noErr 0 No error
Memory Manager Reference 2-81

C H A P T E R 2

Memory Manager
SystemZone 2

To obtain a pointer to the system heap zone, you can use the SystemZone function.

FUNCTION SystemZone: THz;

DESCRIPTION

The SystemZone function returns a pointer to the system heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The global variable SysZone contains a pointer to the system heap zone.

HandleZone 2

If you need to know which heap zone contains a particular relocatable block, you can
use the HandleZone function.

FUNCTION HandleZone (h: Handle): THz;

h A handle to a relocatable block.

DESCRIPTION

The HandleZone function returns a pointer to the heap zone containing the relocatable
block whose handle is h. In case of an error, the result returned by HandleZone is
undefined and should be ignored.

IMPORTANT

If the handle h is empty (that is, if it points to a NIL master pointer),
HandleZone returns a pointer to the heap zone that contains the master
pointer. ▲

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for HandleZone are

Registers on entry

A0 Handle whose zone is to be found

Registers on exit

A0 Pointer to handle’s heap zone

D0 Result code
2-82 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
RESULT CODES

PtrZone 2

If you have allocated a nonrelocatable block and need to know in which zone it lies, you
can use the PtrZone function.

FUNCTION PtrZone (p: Ptr): THz;

p A pointer to a nonrelocatable block.

DESCRIPTION

The PtrZone function returns a pointer to the heap zone containing the nonrelocatable
block pointed to by p.

In case of an error, the result returned by PtrZone is undefined and should be ignored.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for PtrZone are

RESULT CODES

Manipulating Heap Zones 2

The Memory Manager provides several routines for initializing and resizing heap zones.

To obtain information about the current application partition, applications can call the
GetApplLimit function and the TopMem function. If your application uses the stack
extensively, you might want to ensure that the stack is set to at least some minimum size,
at the expense of the heap. To do so, use the SetApplLimit procedure to change the
application heap limit before you call the MaxApplZone procedure.

noErr 0 No error
memWZErr –111 Attempt to operate on a free block

Registers on entry

A0 Pointer whose zone is to be found

Registers on exit

A0 Pointer to heap zone of nonrelocatable block

D0 Result code

noErr 0 No error
memWZErr –111 Attempt to operate on a free block
Memory Manager Reference 2-83

C H A P T E R 2

Memory Manager
To initialize a new heap zone, use the InitZone procedure. The Operating System
automatically initializes the application zone by calling the SetApplBase procedure,
which subsequently calls the InitApplZone procedure.

GetApplLimit 2

Use the GetApplLimit function to get the application heap limit, beyond which the
application heap cannot expand.

FUNCTION GetApplLimit: Ptr;

DESCRIPTION

The GetApplLimit function returns the current application heap limit. The Memory
Manager expands the application heap only up to the byte preceding this limit.

Nothing prevents the stack from growing below the application limit. If the Operating
System detects that the stack has crashed into the heap, it generates a system error. To
avoid this, use GetApplLimit and the SetApplLimit procedure to set the application
limit low enough so that a growing stack does not encounter the heap.

Note
The GetApplLimit function does not indicate the amount of memory
available to your application. ◆

ASSEMBLY-LANGUAGE INFORMATION

The global variable ApplLimit contains the current application heap limit.

SetApplLimit 2

Use the SetApplLimit procedure to set the application heap limit, beyond which the
application heap cannot expand.

PROCEDURE SetApplLimit (zoneLimit: Ptr);

zoneLimit A pointer to a byte in memory demarcating the upper boundary of the
application heap zone. The zone can grow to include the byte preceding
zoneLimit in memory, but no further.

DESCRIPTION

The SetApplLimit procedure sets the current application heap limit to zoneLimit.
The Memory Manager then can expand the application heap only up to the byte
2-84 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
preceding the application limit. If the zone already extends beyond the specified limit,
the Memory Manager does not cut it back but does prevent it from growing further.

Note
The zoneLimit parameter is not a byte count, but an absolute byte in
memory. Thus, you should use the SetApplLimit procedure only with
a value obtained from the Memory Manager functions GetApplLimit
or ApplicationZone. ◆

You cannot change the limit of zones other than the application heap zone.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SetApplLimit are

RESULT CODES

TopMem 2

To find out the location of the top of an application’s partition, you can use the TopMem
function, which exhibits special behavior during the startup process.

FUNCTION TopMem: Ptr;

DESCRIPTION

Except during the startup process, the TopMem function returns a pointer to the byte at
the top of an application’s partition, directly above the jump table. The function does this
to maintain compatibility with programs that check TopMem to find out how much
memory is installed in a computer. To obtain this information, you can currently use the
Gestalt function.

The function exhibits special behavior at startup time, and the value it returns controls
the amount by which an extension can lower the value of the global variable BufPtr at
startup time. If you are writing a system extension, you should not lower the value of
BufPtr by more than MemTop DIV 2 + 1024. If you do lower BufPtr too far, the
startup process generates an out-of-memory system error.

Registers on entry

A0 Pointer to desired new zone limit

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough memory
Memory Manager Reference 2-85

C H A P T E R 2

Memory Manager
You should never need to call TopMem except during the startup process.

ASSEMBLY-LANGUAGE INFORMATION

The TopMem function returns the value of the MemTop global variable.

InitZone 2

If you want to use heap zones other than the original application heap zone, a temporary
memory zone, or the system heap zone, you can use the InitZone procedure to
initialize a new heap zone.

PROCEDURE InitZone (pGrowZone: ProcPtr; cMoreMasters: Integer;

limitPtr, startPtr: Ptr);

pGrowZone A pointer to a grow-zone function for the new heap zone. If you do not
want the new zone to have a grow-zone function, set this parameter
to NIL.

cMoreMasters
The number of master pointers that should be allocated at a time for the
new zone. The Memory Manager allocates this number initially, and, if it
needs to allocate more later, allocates them in increments of this same
number.

limitPtr The first byte beyond the end of the zone.

startPtr The first byte of the new zone.

DESCRIPTION

The InitZone procedure creates a new heap zone, initializes its header and trailer, and
makes it the current zone. Although the new zone occupies memory addresses from
startPtr through limitPtr–1, the new zone includes a zone header and a zone
trailer. In addition, the new zone contains a block header for the master pointer block
and 4 bytes for each master pointer. If you need to create a zone with some specific
number of usable bytes, see “Organization of Memory,” beginning on page 2-19, for
details on the sizes of the zone header, zone trailer, and block header.

Note
The sizes of zones and block headers may change in future system
software versions. You should ensure that your zones are large enough
to accommodate a reasonable increase in the sizes of those structures. ◆

SPECIAL CONSIDERATIONS

Because InitZone changes the current zone, you should not call it at interrupt time.
2-86 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for InitZone are

The parameter block whose address is passed in register A0 has no Pascal type
definition. It has this structure:

Parameter block

RESULT CODES

InitApplZone 2

The Process Manager calls the InitApplZone procedure indirectly when it
starts up your application. You should never need to call it. It is documented for
completeness only.

PROCEDURE InitApplZone;

DESCRIPTION

The InitApplZone procedure initializes the application heap zone and makes it the
current zone. The Memory Manager discards the contents of any previous application
zone and discards all previously existing blocks in that zone. The procedure sets
the zone’s grow-zone function to NIL.

▲ W A R N I N G

Reinitializing the application zone from within a running program is
dangerous, because the application’s code itself normally resides in the
application zone. To do so safely, you must make sure that the code
containing the InitApplZone call is not in the application zone. ▲

Registers on entry

A0 Pointer to parameter block

Registers on exit

D0 Result code

→ startPtr Ptr The first byte of the new zone.
→ limitPtr Ptr The first byte beyond the new zone.
→ cMoreMasters Integer The number of master pointers to be allocated

at a time.
→ pGrowZone ProcPtr A pointer to the new zone’s grow-zone

function, or NIL if none.

noErr 0 No error
Memory Manager Reference 2-87

C H A P T E R 2

Memory Manager
SPECIAL CONSIDERATIONS

You should not call InitApplZone at all, but, if you must, be sure not to call it at
interrupt time because it could purge and allocate memory.

ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for InitApplZone are

RESULT CODES

SetApplBase 2

The Process Manager calls the SetApplBase procedure when it starts up your
application. You should never need to call it. It is documented for completeness only.

PROCEDURE SetApplBase (startPtr: Ptr);

startPtr The starting address for the application heap zone to be initialized.

DESCRIPTION

The SetApplBase procedure sets the starting address of the application heap zone
for the application being initialized to the address designated by startPtr, and
then calls the InitApplZone procedure.

▲ W A R N I N G

Like InitApplZone, SetApplBase is a potentially dangerous
operation, because the program’s code itself normally resides in the
application heap zone. To do so safely, you must make sure that the code
containing the SetApplBase call is not in the application zone. ▲

SPECIAL CONSIDERATIONS

You should not call SetApplBase at all, but, if you must, be sure not to call it at
interrupt time because it affects memory.

Registers on exit

D0 Result code

noErr 0 No error
2-88 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
ASSEMBLY-LANGUAGE INFORMATION

The registers on exit for SetApplBase are

RESULT CODES

Application-Defined Routines 2
The Memory Manager provides a means for you to intervene in its otherwise automatic
operations by allowing you to define a grow-zone function and a purge-warning
procedure.

Note
Many applications use a grow-zone function as part of a general
strategy to prevent low-memory situations. Most applications, however,
do not need to use purge-warning procedures. ◆

Grow-Zone Functions 2

The Memory Manager calls your application’s grow-zone function whenever it cannot
find enough contiguous memory to satisfy a memory allocation request and has
exhausted other means of obtaining the space.

MyGrowZone 2

A grow-zone function should have the following form:

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

cbNeeded The physical size, in bytes, of the needed block, including the block
header. The grow-zone function should attempt to create a free block of at
least this size.

DESCRIPTION

Whenever the Memory Manager has exhausted all available means of creating space
within your application heap—including purging, compacting, and (if possible)
expanding the heap—it calls your application-defined grow-zone function. The
grow-zone function can do whatever is necessary to create free space in the heap.
Typically, a grow-zone function marks some unneeded blocks as purgeable or releases an
emergency memory reserve maintained by your application.

Registers on exit

D0 Result code

noErr 0 No error
Memory Manager Reference 2-89

C H A P T E R 2

Memory Manager
The grow-zone function should return a nonzero value equal to the number of bytes of
memory it has freed, or zero if it is unable to free any. When the function returns a
nonzero value, the Memory Manager once again purges and compacts the heap zone
and tries to reallocate memory. If there is still insufficient memory, the Memory Manager
calls the grow-zone function again (but only if the function returned a nonzero value the
previous time it was called). This mechanism allows your grow-zone function to release
just a little bit of memory at a time. If the amount it releases at any time is not enough,
the Memory Manager calls it again and gives it the opportunity to take more drastic
measures.

The Memory Manager might designate a particular relocatable block in the heap as
protected; your grow-zone function should not move or purge that block. You can
determine which block, if any, the Memory Manager has protected by calling the
GZSaveHnd function in your grow-zone function.

Remember that a grow-zone function is called while the Memory Manager is attempting
to allocate memory. As a result, your grow-zone function should not allocate memory
itself or perform any other actions that might indirectly cause memory to be allocated
(such as calling routines in unloaded code segments or displaying dialog boxes).

You install a grow-zone function by passing its address to the InitZone procedure
when you create a new heap zone or by calling the SetGrowZone procedure at any
other time.

SPECIAL CONSIDERATIONS

Your grow-zone function might be called at a time when the system is attempting to
allocate memory and the value in the A5 register is not correct. If your function accesses
your application’s A5 world or makes any trap calls, you need to set up and later restore
the A5 register by calling SetCurrentA5 and SetA5. See the chapter “Memory
Management Utilities” in this book for a description of these two functions.

Because of the optimizations performed by some compilers, the actual work of the
grow-zone function and the setting and restoring of the A5 register might have to be
placed in separate procedures.

SEE ALSO

See the chapter “Introduction to Memory Management” in this book for a definition of a
sample grow-zone function.

Purge-Warning Procedures 2

The Memory Manager calls your application’s purge-warning procedure whenever it is
about to purge a relocatable block from your application heap.
2-90 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
MyPurgeProc 2

A purge-warning procedure should have the following form:

PROCEDURE MyPurgeProc (h: Handle);

h A handle to the block that is about to be purged.

DESCRIPTION

Whenever the Memory Manager needs to purge a block from the application heap, it
first calls any application-defined purge-warning procedure that you have installed. The
purge-warning procedure can, if necessary, save the contents of that block or otherwise
respond to the warning.

Your purge-warning procedure is called during a memory-allocation request. As a result,
you should not call any routines that might cause memory to be moved or purged. In
particular, if you save the data of the block in a file, the file should already be open when
your purge-warning procedure is called, and you should write the data synchronously.

You should not dispose of or change the purgeable status of the block whose handle is
passed to your procedure.

To install a purge-warning procedure, you need to assign its address to the purgeProc
field of the associated zone header.

Note
If you call the Resource Manager procedure SetResPurge with the
parameter TRUE, any existing purge-warning procedure is replaced
by a purge-warning procedure installed by the Resource Manager.
You can execute both warning procedures by calling SetResPurge,
saving the existing value of the purgeProc field of the zone
header, and then reinstalling your purge-warning procedure.
Your purge-warning procedure should call the Resource Manager’s
purge-warning procedure internally. ◆

SPECIAL CONSIDERATIONS

Your purge-warning procedure might be called at a time when the system is attempting
to allocate memory and the value in the A5 register is not correct. If your function
accesses your application’s A5 world or makes any trap calls, you need to set up and
later restore the A5 register by calling SetCurrentA5 and SetA5.

Because of the optimizations performed by some compilers, the actual work of the
purge-warning procedure and the setting and restoring of the A5 register might have to
be placed in separate procedures.
Memory Manager Reference 2-91

C H A P T E R 2

Memory Manager
Your purge-warning procedure is called for every handle that is about to be purged
(not necessarily for every purgeable handle in your heap, however). Your procedure
should be able to determine quickly whether the handle it is passed is one whose
associated data needs to be saved or otherwise processed.

SEE ALSO

See “Installing a Purge-Warning Procedure” on page 2-16 for a definition of a sample
purge-warning procedure and for instructions on installing the procedure.
2-92 Memory Manager Reference

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
Summary of the Memory Manager 2

Pascal Summary 2

Constants 2

CONST

{Gestalt constants}

gestaltOSAttr = 'os '; {O/S attributes}

gestaltTempMemSupport = 4; {temp memory support present}

gestaltRealTempMemory = 5; {temp memory handles are real}

gestaltTempMemTracked = 6; {temp memory handles tracked}

maxSize = $800000; {maximum size of a block}

Data Types 2

TYPE

SignedByte = -128..127; {arbitrary byte of memory}

Byte = 0..255; {unsigned, arbitrary byte}

Ptr = ^SignedByte; {pointer to nonrelocatable block}

Handle = ^Ptr; {handle to relocatable block}

Str255 = STRING[255]; {Pascal string}

StringPtr = ^Str255;

StringHandle = ^StringPtr;

ProcPtr = Ptr; {procedure pointer}

Size = LongInt; {size in bytes of block}
Summary of the Memory Manager 2-93

C H A P T E R 2

Memory Manager
Zone =

RECORD

bkLim: Ptr; {first usable byte after zone}

purgePtr: Ptr; {used internally}

hFstFree: Ptr; {first free master pointer}

zcbFree: LongInt; {number of free bytes}

gzProc: ProcPtr; {grow-zone function}

moreMast: Integer; {number of master ptrs to allocate}

flags: Integer; {used internally}

cntRel: Integer; {reserved}

maxRel: Integer; {reserved}

cntNRel: Integer; {reserved}

maxNRel: Integer; {reserved}

cntEmpty: Integer; {reserved}

cntHandles: Integer; {reserved}

minCBFree: LongInt; {reserved}

purgeProc: ProcPtr; {purge-warning procedure}

sparePtr: Ptr; {used internally}

allocPtr: Ptr; {used internally}

heapData: Integer; {first usable byte in zone}

END;

THz = ^Zone; {zone pointer}

Memory Manager Routines 2

Setting Up the Application Heap

PROCEDURE MaxApplZone;

PROCEDURE MoreMasters;

Allocating and Releasing Relocatable Blocks of Memory

FUNCTION NewHandle (logicalSize: Size): Handle;

FUNCTION NewHandleSys (logicalSize: Size): Handle;

FUNCTION NewHandleClear (logicalSize: Size): Handle;

FUNCTION NewHandleSysClear (logicalSize: Size): Handle;

FUNCTION NewEmptyHandle : Handle;

FUNCTION NewEmptyHandleSys : Handle;

PROCEDURE DisposeHandle (h: Handle);
2-94 Summary of the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
Allocating and Releasing Nonrelocatable Blocks of Memory

FUNCTION NewPtr (logicalSize: Size): Ptr;

FUNCTION NewPtrSys (logicalSize: Size): Ptr;

FUNCTION NewPtrClear (logicalSize: Size): Ptr;

FUNCTION NewPtrSysClear (logicalSize: Size): Ptr;

PROCEDURE DisposePtr (p: Ptr);

Changing the Sizes of Relocatable and Nonrelocatable Blocks

FUNCTION GetHandleSize (h: Handle): Size;

PROCEDURE SetHandleSize (h: Handle; newSize: Size);

FUNCTION GetPtrSize (p: Ptr): Size;

PROCEDURE SetPtrSize (p: Ptr; newSize: Size);

Setting the Properties of Relocatable Blocks

FUNCTION HGetState (h: Handle): SignedByte;

PROCEDURE HSetState (h: Handle; flags: SignedByte);

PROCEDURE HLock (h: Handle);

PROCEDURE HUnlock (h: Handle);

PROCEDURE HPurge (h: Handle);

PROCEDURE HNoPurge (h: Handle);

PROCEDURE HSetRBit (h: Handle);

PROCEDURE HClrRBit (h: Handle);

Managing Relocatable Blocks

PROCEDURE EmptyHandle (h: Handle);

PROCEDURE ReallocateHandle (h: Handle; logicalSize: Size);

FUNCTION RecoverHandle (p: Ptr): Handle;

PROCEDURE ReserveMem (cbNeeded: Size);

PROCEDURE ReserveMemSys (cbNeeded: Size);

PROCEDURE MoveHHi (h: Handle);

PROCEDURE HLockHi (h: Handle);

Manipulating Blocks of Memory

PROCEDURE BlockMove (sourcePtr, destPtr: Ptr; byteCount: Size);

FUNCTION PtrToHand (srcPtr: Ptr; VAR dstHndl: Handle;
size: LongInt): OSErr;

FUNCTION PtrToXHand (srcPtr: Ptr; dstHndl: Handle; size: LongInt):
OSErr;
Summary of the Memory Manager 2-95

C H A P T E R 2

Memory Manager
FUNCTION HandToHand (VAR theHndl: Handle): OSErr;

FUNCTION HandAndHand (aHndl, bHndl: Handle): OSErr;

FUNCTION PtrAndHand (pntr: Ptr; hndl: Handle; size: LongInt): OSErr;

Assessing Memory Conditions

FUNCTION FreeMem : LongInt;

FUNCTION FreeMemSys : LongInt;

FUNCTION MaxBlock : LongInt;

FUNCTION MaxBlockSys : LongInt;

PROCEDURE PurgeSpace (VAR total: LongInt; VAR contig: LongInt);

FUNCTION StackSpace : LongInt;

FUNCTION MemError : OSErr;

Freeing Memory

FUNCTION CompactMem (cbNeeded: Size): Size;

FUNCTION CompactMemSys (cbNeeded: Size): Size;

PROCEDURE PurgeMem (cbNeeded: Size);

PROCEDURE PurgeMemSys (cbNeeded: Size);

FUNCTION MaxMem (VAR grow: Size): Size;

FUNCTION MaxMemSys (VAR grow: Size): Size;

Grow-Zone Operations

PROCEDURE SetGrowZone (growZone: ProcPtr);

FUNCTION GZSaveHnd : Handle;

Allocating Temporary Memory

FUNCTION TempNewHandle (logicalSize: Size; VAR resultCode: OSErr):
Handle;

FUNCTION TempFreeMem : LongInt;

FUNCTION TempMaxMem (VAR grow: Size): Size;

Accessing Heap Zones

FUNCTION GetZone : THz;

PROCEDURE SetZone (hz: THz);

FUNCTION ApplicationZone : THz;

FUNCTION SystemZone : THz;

FUNCTION HandleZone (h: Handle): THz;

FUNCTION PtrZone (p: Ptr): THz;
2-96 Summary of the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
Manipulating Heap Zones

FUNCTION GetApplLimit : Ptr;

PROCEDURE SetApplLimit (zoneLimit: Ptr);

FUNCTION TopMem : Ptr;

PROCEDURE InitZone (pGrowZone: ProcPtr; cMoreMasters: Integer;
limitPtr, startPtr: Ptr);

PROCEDURE InitApplZone;

PROCEDURE SetApplBase (startPtr: Ptr);

Application-Defined Routines 2

Grow-Zone Functions

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

Purge-Warning Procedures

PROCEDURE MyPurgeProc (h: Handle);

C Summary 2

Constants 2

/*Gestalt constants*/

#define gestaltOSAttr 'os '; /*O/S attributes*/

#define gestaltTempMemSupport 4; /*temp memory support present*/

#define gestaltRealTempMemory 5; /*temp memory handles are real*/

#define gestaltTempMemTracked 6; /*temp memory handles tracked*/

#define maxSize 0x800000; /*maximum size of a block*/

Data Types 2

typedef char SignedByte; /*arbitrary byte of memory*/

typedef unsigned char Byte; /*unsigned, arbitrary byte*/

typedef char *Ptr; /*pointer to nonrelocatable block*/

typedef Ptr *Handle; /*handle to relocatable block*/
Summary of the Memory Manager 2-97

C H A P T E R 2

Memory Manager
typedef unsigned char Str255[256]; /*Pascal string*/

typedef unsigned char *StringPtr;

typedef unsigned char **StringHandle;

typedef long (*ProcPtr)(); /*procedure pointer*/

typedef long Size; /*size in bytes of block*/

struct Zone {

Ptr bkLim; /*first usable byte after zone*/

Ptr purgePtr; /*used internally*/

Ptr hFstFree; /*first free master pointer*/

long zcbFree; /*number of free bytes*/

GrowZoneProcPtr gzProc; /*grow-zone function*/

short moreMast; /*number of master ptrs to allocate*/

short flags; /*used internally*/

short cntRel; /*reserved*/

short maxRel; /*reserved*/

short cntNRel; /*reserved*/

short maxNRel; /*reserved*/

short cntEmpty; /*reserved*/

short cntHandles; /*reserved*/

long minCBFree; /*reserved*/

ProcPtr purgeProc; /*purge-warning procedure*/

Ptr sparePtr; /*used internally*/

Ptr allocPtr; /*used internally*/

short heapData; /*first usable byte in zone*/

};

typedef struct Zone Zone;

typedef Zone *THz; /*zone pointer*/

Memory Manager Routines 2

Setting Up the Application Heap

pascal void MaxApplZone (void);

pascal void MoreMasters (void);

Allocating and Releasing Relocatable Blocks of Memory

pascal Handle NewHandle (Size byteCount);

pascal Handle NewHandleSys (Size byteCount);

pascal Handle NewHandleClear (Size byteCount);
2-98 Summary of the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
pascal Handle NewHandleSysClear

(Size byteCount);

pascal Handle NewEmptyHandle (void);

pascal Handle NewEmptyHandleSys

(void);

pascal void DisposeHandle (Handle h);

Allocating and Releasing Nonrelocatable Blocks of Memory

pascal Ptr NewPtr (Size byteCount);

pascal Ptr NewPtrSys (Size byteCount);

pascal Ptr NewPtrClear (Size byteCount);

pascal Ptr NewPtrSysClear (Size byteCount);

pascal void DisposePtr (Ptr p);

Changing the Sizes of Relocatable and Nonrelocatable Blocks

pascal Size GetHandleSize (Handle h);

pascal void SetHandleSize (Handle h, Size newSize);

pascal Size GetPtrSize (Ptr p);

pascal void SetPtrSize (Ptr p, Size newSize);

Setting the Properties of Relocatable Blocks

pascal char HGetState (Handle h);

pascal void HSetState (Handle h, char flags);

pascal void HLock (Handle h);

pascal void HUnlock (Handle h);

pascal void HPurge (Handle h);

pascal void HNoPurge (Handle h);

pascal void HSetRBit (Handle h);

pascal void HClrRBit (Handle h);

Managing Relocatable Blocks

pascal void EmptyHandle (Handle h);

pascal void ReallocateHandle (Handle h, Size byteCount);

pascal Handle RecoverHandle (Ptr p);

pascal void ReserveMem (Size cbNeeded);

pascal void ReserveMemSys (Size cbNeeded);

pascal void MoveHHi (Handle h);

pascal void HLockHi (Handle h);
Summary of the Memory Manager 2-99

C H A P T E R 2

Memory Manager
Manipulating Blocks of Memory

pascal void BlockMove (const void *srcPtr, void *destPtr,
Size byteCount);

pascal OSErr PtrToHand (Ptr srcPtr, Handle *dstHndl, long size);

pascal OSErr PtrToXHand (Ptr srcPtr, Handle dstHndl, long size);

pascal OSErr HandToHand (Handle *theHndl);

pascal OSErr HandAndHand (Handle hand1, Handle hand2);

pascal OSErr PtrAndHand (Ptr ptr1, Handle hand2, long size);

Assessing Memory Conditions

pascal long FreeMem (void);

pascal long FreeMemSys (void);

pascal long MaxBlock (void);

pascal long MaxBlockSys (void);

pascal void PurgeSpace (long *total, long *contig);

pascal long StackSpace (void);

#define MemError() (* (OSErr*) 0x0220)

Freeing Memory

pascal Size CompactMem (Size cbNeeded);

pascal Size CompactMemSys (Size cbNeeded);

pascal void PurgeMem (Size cbNeeded);

pascal void PurgeMemSys (Size cbNeeded);

pascal Size MaxMem (Size *grow);

pascal Size MaxMemSys (Size *grow);

Grow-Zone Operations

pascal void SetGrowZone (GrowZoneProcPtr growZone);

#define GZSaveHnd() (* (Handle*) 0x0328)

Allocating Temporary Memory

pascal Handle TempNewHandle (Size logicalSize, OSErr *resultCode);

pascal long TempFreeMem (void);

pascal Size TempMaxMem (Size *grow);
2-100 Summary of the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
Accessing Heap Zones

pascal THz GetZone (void);

pascal void SetZone (THz hz);

#define ApplicationZone() (* (THz*) 0x02AA)

#define SystemZone() (* (THz*) 0x02A6)

pascal THz HandleZone (Handle h);

pascal THz PtrZone (Ptr p);

Manipulating Heap Zones

#define GetApplLimit() (* (Ptr*) 0x0130)

pascal void SetApplLimit (void *zoneLimit);

#define TopMem() (* (Ptr*) 0x0108)

pascal void InitZone (GrowZoneProcPtr pgrowZone, short cmoreMasters,
void *limitPtr, void *startPtr);

pascal void InitApplZone (void);

pascal void SetApplBase (void *startPtr);

Application-Defined Routines 2

Grow-Zone Functions

pascal long MyGrowZone (Size cbNeeded);

Purge-Warning Procedures

pascal void MyPurgeProc (Handle h);

Assembly-Language Summary 2

Constants 2

;flags in trap words

CLEAR EQU $200 ;set all bytes in block to 0

SYS EQU $400 ;use the system heap

;values for the tag byte of a block header

tyBkFree EQU 0 ;free block

tyBkNRel EQU 1 ;nonrelocatable block

tyBkRel EQU 2 ;relocatable block
Summary of the Memory Manager 2-101

C H A P T E R 2

Memory Manager
;flags for the high-order byte of a 24-bit master pointer

lock EQU 7 ;lock bit

purge EQU 6 ;purge bit

resource EQU 5 ;resource bit

Data Structures 2

Zone Data Structure

Parameter Block for InitZone Procedure

Trap Macros 2

Trap Macro Names

0 bkLim long pointer to first usable byte after zone
4 purgePtr long used internally
8 hFstFree long first free master pointer

12 zcbFree 4 bytes number of free bytes in zone
16 gzProc long grow-zone function
20 mAllocCnt word number of master pointers to allocate
22 flags word used internally
24 cntRel word reserved
26 maxRel word reserved
28 cntNRel word reserved
30 maxNRel word reserved
32 cntEmpty word reserved
34 cntHandles word reserved
36 minCBFree long reserved
40 purgeProc long purge-warning procedure
44 sparePtr long used internally
48 allocPtr long used internally
52 heapData word first usable byte in zone

0 startPtr long first byte of new zone
4 limitPtr long first byte beyond new zone
8 cMoreMasters word number of master pointers to be allocated at a time

10 pGrowZone long pointer to grow-zone function for new zone

Pascal name Trap macro name

BlockMove _BlockMove

CompactMem _CompactMem

CompactMemSys _CompactMem

DisposeHandle _DisposeHandle

DisposePtr _DisposePtr
2-102 Summary of the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
EmptyHandle _EmptyHandle

FreeMem _FreeMem

FreeMemSys _FreeMem

GetHandleSize _GetHandleSize

GetPtrSize _GetPtrSize

GetZone _GetZone

HandAndHand _HandAndHand

HandleZone _HandleZone

HandToHand _HandToHand

HClrRBit _HClrRBit

HGetState _HGetState

HLock _HLock

HNoPurge _HNoPurge

HPurge _HPurge

HSetRBit _HSetRBit

HSetState _HSetState

HUnlock _HUnlock

InitApplZone _InitApplZone

InitZone _InitZone

MaxApplZone _MaxApplZone

MaxBlock _MaxBlock

MaxBlockSys _MaxBlock

MaxMem _MaxMem

MaxMemSys _MaxMem

MoreMasters _MoreMasters

MoveHHi _MoveHHi

NewEmptyHandle _NewEmptyHandle

NewEmptyHandleSys _NewEmptyHandle

NewHandle _NewHandle

NewHandleClear _NewHandle

NewHandleSys _NewHandle

NewHandleSysClear _NewHandle

NewPtr _NewPtr

NewPtrClear _NewPtr

NewPtrSys _NewPtr

NewPtrSysClear _NewPtr

Pascal name Trap macro name
Summary of the Memory Manager 2-103

C H A P T E R 2

Memory Manager
Trap Macro Requiring Routine Selectors

_OSDispatch

Global Variables 2

PtrAndHand _PtrAndHand

PtrToHand _PtrToHand

PtrToXHand _PtrToXHand

PtrZone _PtrZone

PurgeMem _PurgeMem

PurgeMemSys _PurgeMem

PurgeSpace _PurgeSpace

ReallocateHandle _ReallocHandle

RecoverHandle _RecoverHandle

ReserveMem _ResrvMem

ReserveMemSys _ResrvMem

SetApplBase _SetApplBase

SetApplLimit _SetApplLimit

SetGrowZone _SetGrowZone

SetHandleSize _SetHandleSize

SetPtrSize _SetPtrSize

SetZone _SetZone

StackSpace _StackSpace

Selector Routine

$0015 TempMaxMem

$0018 TempFreeMem

$001D TempNewHandle

ApplLimit long The application heap limit, beyond which the heap cannot expand.
ApplZone long A pointer to the original application heap zone.
BufPtr long Address of highest byte of allocatable memory.
CurStackBase long Address of base of stack; start of application global variables.
GZRootHnd long A handle to a block that the grow-zone function must not move.
HeapEnd long Address of end of application heap zone.
MemErr word The current value that MemError would return.
MemTop long After startup time, the address at the end of an application’s partition.
SysZone long A pointer to the system heap zone.
TheZone long A pointer to the current heap zone.

Pascal name Trap macro name
2-104 Summary of the Memory Manager

C H A P T E R 2

Memory Manager

2

M
em

ory M
anager
Result Codes 2
noErr 0 No error
paramErr –50 Error in parameter list
memROZErr –99 Operation on a read-only zone
memFullErr –108 Not enough memory
nilHandleErr –109 NIL master pointer
memWZErr –111 Attempt to operate on a free block
memPurErr –112 Attempt to purge a locked block
memBCErr –115 Block check failed
memLockedErr –117 Block is locked
Summary of the Memory Manager 2-105

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Memory Management TOC
	 Introduction to Memory Management
	 Memory Manager TOC
	Memory Manager
	About the Memory Manager
	Temporary Memory
	Multiple Heap Zones
	The System Global Variables

	Using the Memory Manager
	Reading and Writing System Global Variables
	Extending an Application’s Memory
	Allocating Temporary Memory
	Determining the Features of Temporary Memory

	Using the System Heap
	Allocating Memory at Startup Time
	Creating Heap Zones
	Installing a Purge-Warning Procedure

	Organization of Memory
	Heap Zones
	Block Headers

	Memory Manager Reference
	Data Types
	Memory Manager Routines
	Setting Up the Application Heap
	Allocating and Releasing Relocatable Blocks of Mem...
	Allocating and Releasing Nonrelocatable Blocks of ...
	Changing the Sizes of Relocatable and Nonrelocatab...
	Setting the Properties of Relocatable Blocks
	Managing Relocatable Blocks
	Manipulating Blocks of Memory
	Assessing Memory Conditions
	Freeing Memory
	Grow-Zone Operations
	Allocating Temporary Memory
	Accessing Heap Zones
	Manipulating Heap Zones

	Application-Defined Routines
	Grow-Zone Functions
	Purge-Warning Procedures

	Summary of the Memory Manager
	Pascal Summary
	Constants
	Data Types
	Memory Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Memory Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Constants
	Data Structures
	Trap Macros
	Global Variables

	Result Codes

	 Virtual Memory Manager TOC
	 Virtual Memory Manager
	 Memory Management Utilities TOC
	 Memory Management Utilities
	 Glossary
	 Index
	 Colophon

