

C H A P T E R 7

7

D
atagram

 D
elivery P

rotocol (D
D

P
)

Datagram Delivery Protocol (DDP) 7

This chapter describes how you can use the Datagram Delivery Protocol (DDP) to send
data to and receive it from another socket across an AppleTalk internet. To use DDP, you
send and receive data as discrete packets, each packet carrying its own addressing
information. DDP does not allow you to set up a connection between two sockets, nor
does DDP ensure that data is delivered error free as do some of the AppleTalk protocols
that are built on top of it.

You should use DDP if your application does not require reliable delivery of data and
you do not want to incur the additional processing associated with the use of a protocol
that entails setting up and breaking down a connection. Because it is connectionless
and does not include reliability services, DDP offers faster performance than do the
higher-level protocols that add these services. Applications such as diagnostic tools that
retransmit packets at regular intervals to estimate averages or games that can tolerate
packet loss are good candidates for the use of DDP.

A series of DDP packets transmitted over an AppleTalk internet from one node to
another may traverse a single high-speed EtherTalk network or they may wind across
multiple intermediate data links such as LocalTalk or TokenTalk, which are connected
by routers. During the course of this process, some packet loss can occur, for example,
as a result of collisions. If you do not plan on implementing recovery from packet loss
in your application, but your application requires it, you should consider using an
AppleTalk transport protocol, such as the AppleTalk Data Stream Protocol (ADSP) or
the AppleTalk Transaction Protocol (ATP); these protocols protect against packet loss
and ensure reliability by using positive acknowledgment with packet retransmission
mechanisms.

This chapter describes how to

■ open and close sockets for sending and receiving DDP packets

■ prepare the data and addressing information for each packet that you want to send

■ write a socket listener that receives packets addressed to the DDP socket associated
with your application

■ measure packet-delivery performance

This chapter includes a sample socket listener that you can use as a model for your own
socket listener or modify to fit your application’s requirements.

For an overview of DDP and how it fits within the AppleTalk protocol stack, read the
chapter “Introduction to AppleTalk” in this book, which also introduces and defines
some of the terminology used in this chapter.

For an explanation of the DDP specification, see Inside AppleTalk, second edition.

About DDP 7

The protocol implementations at the physical and data-link layers of the AppleTalk
protocol stack provide node-to-node delivery of data on the internet. DDP is a client
of the link-access protocol—whether LLAP, ELAP, TLAP, or FDDILAP—and it uses the
node-to-node delivery services provided by the data link to send and receive data. DDP
is responsible for delivering data from socket to socket over an AppleTalk internet.
About DDP 7-3

C H A P T E R 7

Datagram Delivery Protocol (DDP)

DDP is central to the process of sending and receiving data across an AppleTalk internet.
Regardless of which data link is being used and which (if any) higher-level protocols are
processing data, all AppleTalk data is carried in the form of DDP packets known as
datagrams. (This chapter uses the terms datagram and DDP packet interchangeably.) A
datagram consists of a header followed by data.

DDP lets you send and receive data a packet at a time. If you use DDP, you must address
each data packet to the socket for which it is intended. A socket is a piece of software
that serves as an addressable entity in a networked node. Sockets are numbered, and
each application that uses DDP to transfer data is associated with a unique socket. You
cannot open and maintain a session between two sockets using DDP, and for this reason,
DDP is called a connectionless protocol.

To use DDP, you must provide a socket listener and a routine that reads packets from
the socket listener code after it receives them. A socket listener is a process that receives
packets addressed to the DDP socket associated with your application. Because the
driver that implements DDP, the .MPP driver, uses registers not accessible from higher-
level languages such as Pascal to pass information to your socket listener, you must
write the socket listener code in assembly language.

DDP is said to provide a best-effort socket-to-socket delivery of datagrams over
the internet.

■ Socket-to-socket delivery means that when the data link delivers a packet to a node,
the DDP implementation in that node determines the socket for which the packet
is intended and calls the socket listener for that socket.

■ Best-effort delivery means that DDP attempts to deliver any datagram that has a valid
address to an open socket, as long as the length of the datagram received is the same
as the length indicated by the header, the data is not longer than 586 bytes, and the
datagram does not include an invalid checksum. DDP has no provision for requesting
the sender to retransmit a lost or damaged datagram.

Note
You can send DDP packets to another socket in your own node if you
have enabled the intranode delivery feature of AppleTalk. By default,
intranode delivery is disabled; to turn it on, you use the PSetSelfSend
function, which is described in the chapter “AppleTalk Utilities” in
this book. ◆

About Sockets and Socket Listeners 7
Every application that uses DDP to transfer data must send or receive that data through
a socket. The use of sockets allows DDP to determine for which application a packet
is intended. Each node supports up to 254 sockets, and each socket is identified by an
8-bit number that combines with the network number and the node ID to form the
internet socket address of the application. When an application or process calls DDP to
open a socket, DDP associates the number of that socket with the application, making
the application distinct from other applications on the same node. An application
that is associated with a specific socket through DDP is the client of that socket, or a
socket client.
7-4 About DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7

D
atagram

 D
elivery P

rotocol (D
D

P
)

The use of sockets allows multiple processes or applications that run on a single node
connected to AppleTalk to be open at the same time. In Figure 7-1, a printer server client
application and a file server client application are open on the same node at the same
time. Each application is associated with a unique socket, and packets for that applica-
tion are addressed to that socket number.

Figure 7-1 Two applications running on the same node, each with its own socket

Applications exchange data with each other through their sockets. A socket client can
send and receive datagrams only through its associated socket. Moreover, every
socket-client application that uses DDP directly to transfer data must have associated
with it a socket listener that receives datagrams addressed to the socket on behalf of
that socket’s client application.

A socket listener is a process that you provide as part of your client application. You must
write your socket listener in assembly language and adhere to specific requirements in
regard to the use of registers and the routines that you call to receive packets. Beyond
meeting these AppleTalk requirements, your socket listener can perform any other
functions that your socket-client application requires. See “A Sample Socket Listener”
beginning on page 7-20 for more details.

When you call DDP to open a socket, you provide a pointer to your socket listener for
that socket. DDP maintains a socket table that includes an entry for every open socket
and its socket listener. When the .MPP driver receives a packet, it does not read and
process the packet. Instead, it reads the socket number portion of the internet socket
address and then checks the socket table to determine if that socket is open. If so, the
.MPP driver calls the socket listener associated with the socket to handle reception of
the packet for the client application. The use of socket listeners helps to maximize
throughput between DDP and the link-access protocol layer by eliminating unnecessary
buffer copying.

User
computer

File server
client application

Socket 191

Printer server
client application

Socket 202
About DDP 7-5

C H A P T E R 7

Datagram Delivery Protocol (DDP)

Figure 7-2 shows a socket-client application that calls DDP to send data to another
socket. The socket-client application includes code that comprises its socket listener.
When DDP receives a packet addressed to this socket, it checks the socket table for the
entry that contains the socket number and the address of the socket listener belonging to
the application that owns the socket; then DDP calls the socket listener to receive the
packet for the application.

Figure 7-2 Sending and receiving data using DDP

Assigning Socket Numbers 7
DDP maintains two classes of sockets: sockets that are assigned statically and sockets
that are assigned dynamically. There are some restrictions on which socket numbers
they use:

■ Statically assigned sockets have numbers in the range of 1–127.
n Socket numbers 1–63 are reserved for use by Apple Computer, Inc.
n Socket numbers 64–127 are available for program development.

■ Dynamically assigned sockets have numbers within the range of 128–254.

To use a statically assigned socket, an application must request a specific socket number.
In most cases, you should not use statically assigned sockets.

IMPORTANT

Although you can use statically assigned sockets whose numbers fall
within the range of 64–127 for program development, you must not
use a statically assigned socket number for a released product. To do
so creates the possibility of conflicts arising, for example, when two
applications that both use the same statically assigned socket are open
on the same node at the same time. Data intended for one application
could be delivered to the other application, and vice versa. ▲

DDP maintains a pool of available sockets from which it selects a socket number to
assign dynamically for your use when you call DDP to open a socket and you do not
specify a number within the range of statically assigned sockets.

Figure 7-3 illustrates conceptually what happens when an application calls DDP to open
and assign a socket dynamically. In this example, DDP assigns socket number 130
to the application that requests a socket. (Socket number 129 is already assigned to
an application.)

Dialog with
remote end
of DDP

Socket
listener

Socket client
application

DDP
7-6 About DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7

D
atagram

 D
elivery P

rotocol (D
D

P
)

Figure 7-3 Assigning sockets

To let DDP choose a socket number from the pool of available sockets within the range of
dynamically assigned sockets, you specify 0 for the socket number. However, you can
choose a specific socket within that range and pass the number of that socket to DDP
to open. If that socket is available, DDP opens it, assigns it to your application, and
associates your socket listener with it. If the socket number you specify is not available,
DDP returns an error result.

DDP Client Protocol Types 7
AppleTalk allows for the implementation of up to 254 parallel protocols that are clients
of DDP. The DDP protocol type field, which is the last field of the DDP packet header,
specifies the type of protocol that the packet is intended for. Figure 7-6 on page 7-15
shows the 1-byte DDP protocol type field of the DDP packet header.

The socket listener for a single socket can receive packets whose protocol type fields
contain different values. It is the responsibility of your socket-client application to define
its own protocol types. Your socket-client application can define more than one DDP
protocol type and receive packets for any of the protocol types it handles, sorting them
by reading the value of the DDP protocol type field.

For example, if you are implementing a server, you might define one protocol type
for data and another for attention messages, and have separate routines to handle
the different packet types. You fill in the DDP protocol type field when you build the
contents of a DDP packet to be sent to another socket.

For more information on how to specify a protocol type for a DDP client application
and the range of valid values for the DDP protocol type field, see Appendix C in Inside
AppleTalk, second edition.

Socket client
application

Open socket

DDP

Socket table

Socket client
application

Socket 129

Socket 130

Socket 131

Socket 130

Socket n
About DDP 7-7

C H A P T E R 7

Datagram Delivery Protocol (DDP)

Obtaining Data From the Network 7
DDP supports a number of client protocols that are built on top of it, and DDP itself is a
client protocol of the underlying data-link protocol. DDP has its own protocol handler
that the link-access protocol calls when it receives a DDP packet. A protocol handler
is a process that receives packets for a specific protocol type much like a socket listener
receives packets for a specific socket. A DDP packet or datagram is sent from its source
socket through one or more AppleTalk networks to its destination network.

A datagram is sent across the network enclosed in a frame. The frame contains addi-
tional information that the link-access protocol requires, such as addressing information
that identifies the node and the socket number for which the frame is meant. The frame
addressing information is contained in the frame’s header, which is followed by the
datagram. The frame header also identifies the protocol type of the enclosed packet. In
addition to a header, a frame also contains a trailer that follows the datagram. The frame
trailer contains a frame check sequence number that the AppleTalk hardware generates
and uses to detect transmission errors.

The link-access protocol in the destination network delivers the frame to the node
containing the destination socket. When a frame addressed to a particular node arrives
at that node, the node’s CPU is interrupted and the .MPP driver’s interrupt handler gets
control to service the interrupt. As the frame’s first 3 bytes are read into the first-in
first-out (FIFO) buffer, the .MPP driver’s interrupt handler moves these bytes into its
own internal buffer.

If the frame is a data frame containing a packet intended for a higher-level protocol, the
.MPP driver’s interrupt handler passes control to the protocol handler for the protocol
type specified in the frame’s header. For example, when a frame whose header specifies
the DDP protocol type is delivered to a node, the link-access protocol passes control to
the .MPP driver. The .MPP driver then calls the DDP protocol handler. DDP, which is
implemented by the .MPP driver, determines for which socket the packet is meant and
calls the socket listener that is associated with the socket. The socket listener, in turn,
actually reads in the packet.

Using DDP 7

This section describes how to send data packets to a socket and how to receive them
from another socket over an AppleTalk network or internet using DDP. It also describes
how to use the AEP Echoer to measure packet-delivery performance and to determine if
a node is on the network.

Note
You do not need to use the AEP Echoer to send and receive data using
DDP. This chapter describes the AEP Echoer because you must use
the programming interface to DDP in order to use the AEP Echoer.
Applications that use higher-level AppleTalk protocols, such as ATP
or ADSP, can also use the AEP Echoer to measure packet-delivery
performance. ◆
7-8 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7

D
atagram

 D
elivery P

rotocol (D
D

P
)

Sending and Receiving Data: An Overview 7
To send data, you must address each packet to the socket for which it is intended
because you cannot open and maintain a connection between two sockets using DDP. To
receive a data packet using DDP, you must provide a socket listener process that DDP
associates with the socket that your application uses. When you open the socket for your
application to use, you must provide a pointer to the socket listener. DDP associates the
address of the socket listener with your application’s socket so that the .MPP driver can
call your socket listener when it receives a packet that is addressed to your socket-client
application. DDP maintains a separate entry in its socket table for each socket and socket
listener pair.

Applications developers commonly write a single socket-client application that both
sends and receives data and that includes a socket listener process to receive data.
To clarify the steps involved in sending and receiving data, this section gives you an
overview of these tasks as separate sequences after it explains how to open a socket.
The steps for sending and receiving data refer to sections that are provided later in
this chapter that describe how to

■ create a write-data structure, which you need to send data

■ use the registers that the .MPP driver uses to pass parameters to your socket listener

■ write a socket listener, with sample code illustrating this

If you want to provide features in addition to the DDP checksum feature to check data
and correct errors, you can include them in your application, you can define your own
AppleTalk protocol, or you can use a higher-level AppleTalk protocol such as ATP or
ADSP instead of calling DDP directly. (For information about DDP checksums, see
“Using Checksums” beginning on page 7-19.)

To make your application available to other users of AppleTalk, you must use the NBP
PRegisterName function to register the name that represents your socket-client applica-
tion. When you are finished using the socket, you must use the NBP PRemoveName
function to remove this name from the NBP names table. See the chapter “Name-Binding
Protocol (NBP)” in this book for more information about these functions.

Opening a Socket 7

To send and receive data using DDP, your application must first open a socket. Opening
a socket makes your application a client of that socket. You open a socket with the
POpenSkt function. When you open a socket, you must provide a pointer to your socket
listener and you must specify 0 for the socket number if you want DDP to dynamically
assign a socket.

The POpenSkt function assigns a socket number to your application and enters the
number in the socket table along with the pointer to the socket listener that you provide.
The POpenSkt function returns the socket number to you in the socket field of the
parameter block.
Using DDP 7-9

C H A P T E R 7

Datagram Delivery Protocol (DDP)

Associating a single socket listener with more than one socket

If your application includes processes that each have their own sockets,
you can assign a single socket listener to more than one socket, but each
socket should have its own buffer or set of buffers for receiving data. ◆

If you do not want DDP to randomly assign a socket number to your application, you
can specify the number of a particular socket for DDP to open. For information on the
range of socket numbers from which you can select, see “Assigning Socket Numbers” on
page 7-6.

IMPORTANT

You cannot specify a NIL pointer to the socket listener. If you do,
the system on which your application is running will crash. ▲

When your application is finished using a socket, you must use the PCloseSkt function
to close the socket.

Sending Data 7

To send data, you must create a write-data structure that contains the data in a specific
format and then call a DDP function to send the data. After you have opened a socket
using the POpenSkt function, here are the steps that you follow to send data using DDP:

1. Create a write-data structure.

2. Use the DDP function PWriteDDP to send the data.

See “Creating a DDP Write-Data Structure” beginning on page 7-12 for information
about how to create a write-data structure using the DDP procedure BuildDDPwds
or your own code.

Packets with long headers can include a checksum that can be used to verify the
integrity of the packet data. For information on how to direct DDP to calculate a
checksum for data that you want to send, see “Using Checksums” beginning on
page 7-19. For details of the contents of a long header, see “The DDP Packet and
Frame Headers” beginning on page 7-14.

Receiving Data 7

To receive data using DDP, you must provide a socket listener that is part of your socket-
client application. The socket listener code must

■ be written in assembly language because it must read from and write to the
CPU’s registers

■ include buffers to hold the data that it reads

■ use the register values that the .MPP driver passes to your socket listener

■ determine the type of packet, if you have defined more than one protocol type that
your application handles

■ if the packet includes a long header, calculate the checksum value, if one is used
7-10 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7

D
atagram

 D
elivery P

rotocol (D
D

P
)

There are many ways to design and write a socket-client application and socket listener.
This chapter offers one possibility. For details of this sample socket listener and for its
code, see “A Sample Socket Listener” beginning on page 7-20.

Note
Your socket-client application should test to find out when the socket
listener finishes processing a packet so that the socket-client application
can begin its own packet reading and processing. ◆

To receive data, your application must have already opened a socket using the
POpenSkt function and have passed the POpenSkt function a pointer to your
socket listener.

Here are the tasks involved in receiving data using DDP:

1. The .MPP driver calls your socket listener when it receives a packet addressed to your
socket-client application. The .MPP driver passes values to you in the CPU’s registers.
You need to know how the .MPP driver uses these registers and how you can use
them. For information about these registers, see “How the .MPP Driver Calls Your
Socket Listener” beginning on page 7-13. One of the values that the .MPP driver
passes to you is a pointer to the buffer that holds the DDP packet header. You need
to know how the DDP packet header and the frame header are structured. For
information about these headers, see “The DDP Packet and Frame Headers”
beginning on page 7-14.

2. To hold the data that it reads, your socket listener must allocate memory for buffers.
In addition to allocating data buffers, either your socket-client application or the
socket listener (if you write the socket listener code to carry out this function) must
perform some initialization tasks. For information about these tasks and how the
sample socket listener handles them, see “Socket Listener Queues and Buffers”
beginning on page 7-20, “Setting Up the Socket Listener” beginning on page 7-22,
and “Initializing the Socket Listener” beginning on page 7-24.

3. When the .MPP driver calls your socket listener, the socket listener must read the
incoming packet into one or more data buffers. To do this, the socket listener uses two
processes, ReadPacket and ReadRest, which are implemented as a single routine
in the hardware driver. The .MPP driver passes you the address of this routine in one
of the CPU’s registers. For more information, see “Reading an Incoming Packet”
beginning on page 7-17.

4. If you have defined more than one DDP protocol type that your application handles,
check the DDP protocol type field of the datagram header (see Figure 7-6 on
page 7-15) to determine the protocol type of the packet you have just received.
The AppleTalk internet address (network number, node ID, and socket number) is
insufficient to distinguish between packets intended for different processes that are
using the same socket. Your socket listener must use some other information (such as
the DDP protocol type or a higher-level protocol header imbedded in the DDP packet
data) to make this distinction.

5. If the packet contains a long header, the socket listener needs to find out if the header
contains a checksum. If it does, the socket listener needs to calculate the checksum to
determine if the packet’s data has been corrupted. For more information, see “Using
Checksums” beginning on page 7-19.
Using DDP 7-11

C H A P T E R 7

Datagram Delivery Protocol (DDP)

6. The socket listener can now process the packet or pass it to the client application for
processing. The sample socket listener provided here writes the packet buffer to a
queue that it uses for successfully processed packets and removes the packet from the
queue for incoming packets. For a description of how the sample socket listener does
this, see “Processing a Packet” beginning on page 7-25.

7. The client application can now read in the packet for its own purposes. The client
application should include code that periodically checks to determine whether the
socket listener has finished processing an incoming packet. For a description of how
the sample socket listener’s client application performs this task and some sample
code, see “Testing for Available Packets” beginning on page 7-31.

Creating a DDP Write-Data Structure 7
When you use the PWriteDDP function to send a DDP packet to another socket, you
provide a pointer to a write-data structure that you have already created. A write-data
structure contains a series of pairs of length words and pointers and ends with a 0 word.
Each pair indicates the length and location of a portion of the data that constitutes the
packet to be sent over the network. The first entry in the write-data structure consists of
only a pointer. It does not include a length word, because the length is always the same.

The first pointer indicates a 16-byte header block, which must start at an odd address.
You fill in the destination network number, destination node ID, destination socket
number, and DDP protocol type, and the .MPP driver fills in the other fields of the
packet header. DDP protocol types 1 through 15 are reserved for use by Apple. A DDP
packet may have a maximum of 586 bytes of data. Figure 7-4 shows the write-data
structure and the header block.

Because the first pointer in the write-data structure must point to an odd address, it is
difficult to use Pascal to create a write-data structure. If you are programming in Pascal,
you can use the BuildDDPwds procedure to create a write-data structure. You must
provide a 17-byte buffer for the header block, a 14-byte buffer to hold the write-data
structure, and a pointer to the data you want to send. The header block is only 16 bytes,
but because it begins on an odd address, the first byte is not used. The write-data
structure created by the BuildDDPwds procedure is 14 bytes long, consisting of only a
pointer to the header, a length-pointer pair for the data block, and the terminating 0
word. Although a write-data structure allows you to divide the data into as many blocks
as you wish, the BuildDDPwds procedure assumes that the data is in a single block.

In most cases, if you are using DDP directly to send data across a network, a single block
of data should be adequate. However, if you are implementing a protocol on top of DDP
and you want to send blocks of data that are stored separately as parts of the same
datagram, you will have to build your own write-data structure that includes multiple
pairs of pointers and lengths. For a description of the write-data structure that you need
to build in this case, see “The Write-Data Structure” on page 7-35. Notice that the pointer
to the first entry indicates an odd address and that there is no length word for the
first entry.
7-12 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

Figure 7-4 DDP write-data structure

Using Registers and Packet Headers 7
To receive data at the DDP level, you need to include as part of your socket-client
application a socket listener that reads packets addressed to your application and passes
them to the application for further processing. DDP maintains a table with an entry
for each socket and socket listener pair.

When the .MPP driver receives a packet addressed to your socket-client application, it
calls your socket listener, using the CPU’s registers to pass pointers to the internal buffer
where it has stored the packet’s headers and to some data values that your socket
listener uses during its processing.

The CPU’s registers that the .MPP driver uses to pass parameters to your socket listener
are not directly accessible from Pascal. Because a DDP socket listener must read from
and write to the CPU’s registers, you must write a socket listener in assembly language;
you cannot use Pascal. However, you can write the remainder of the client application
that includes the socket listener in a high-level language such as Pascal. The client
application sample code that this chapter shows is written in the Pascal language.

How the .MPP Driver Calls Your Socket Listener 7

When a frame addressed to a particular node arrives at that node and the frame contains
a DDP packet, the node’s CPU is interrupted and the link-access protocol calls the .MPP
driver to receive the packet. When the .MPP driver receives a DDP packet, it reads the

Bytes Bytes

Destination network number

Data

Reserved

2

Variable
length

7

Variable
length

Reserved 2

Destination node ID 1
Reserved 1

Destination socket number 1
Reserved 1

DDP protocol type 1

Data Variable
length

Odd address

4

Reserved 2

Pointer to first entry

Length of second entry 2

Pointer to second entry

Length of nth entry 2

Pointer to nth entry

0 2

4

4

Using DDP 7-13

C H A P T E R 7

Datagram Delivery Protocol (DDP)
first 3 bytes of the frame header into an internal buffer called the read-header area
(RHA). After the frame header is read into the RHA, 8 bytes of the RHA are still
available for your use.

Next, the .MPP driver reads the socket address and calls the socket listener for that
socket. The .MPP driver uses the CPU’s registers to pass parameters to your socket
listener as follows:

When the .MPP driver calls your socket listener, you can read the destination socket
number that is in the D0 register and the frame header that is in the RHA. You should
assume that only 8 bytes are still available in the RHA for your use. Figure 7-5 shows the
beginning of the RHA where the frame header begins; the frame header is followed by
either a short or a long DDP header.

The DDP Packet and Frame Headers 7

A DDP packet includes a packet header followed by data. The DDP packet header is
preceded by the frame header. Figure 7-6 shows both headers; they do not include the
data portion. The DDP packet header can be long or short; if the destination and source
network numbers are different, DDP uses a long header, which includes some additional
fields.

The frame header includes

■ the source and destination node IDs

■ the DDP header type (1 = short, 2 = long)

Registers on call to DDP socket listener

A0 Reserved for internal use by the .MPP driver. You must preserve this register
until after the ReadRest routine has completed execution.

A1 Reserved for internal use by the .MPP driver. You must preserve this register
until after the ReadRest routine has completed execution.

A2 Pointer to the .MPP driver’s local variables. The value at the offset toRHA from
the value in the A2 register points to the start of the RHA.

A3 Pointer to the first byte in the RHA past the DDP header bytes (the first byte
after the DDP protocol type field).

A4 Pointer to the ReadPacket routine. The ReadRest routine starts 2 bytes after
the start of the ReadPacket routine.

A5 Free for your use before and until your socket listener calls
the ReadRest routine.

D0 Lower byte is the destination socket number of the packet.

D1 Word indicating the number of bytes in the DDP packet left to be read (that is,
the number of bytes following the DDP header).

D2 Free for your use.

D3 Free for your use.
7-14 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

Figure 7-5 The RHA for both long and short DDP headers

Figure 7-6 Data-link frame header and DDP packet header

The DDP long and short packet headers have these fields in common:

■ the datagram length (10 bits)

■ the destination socket number

■ the source socket number

■ the DDP protocol type

Bytes

Frame header 3

5

DDP short header
toRHA (A2)

Register A3

Bytes

3

DDP long header
toRHA (A2)

Register A3

13

DDP short header

Frame header

DDP long header

Bytes

Destination node ID 1
Source node ID 1

DDP header type, value 1 1
1
1
1
1
1

DDP short header

Frame
header

DDP
packet
header

Bytes

Destination node ID 1
Source user node ID 1

DDP header type, value 2 1
Hop count 1

1

DDP long header

Frame
header

DDP
packet
header

2

2

2

1
1
1
1
1

Unused
Datagram length (10 bits)

DDP checksum

Destination network number

Source network number

Destination node ID
Source node ID

Destination socket number
Source socket number

DDP protocol type

Unused
Datagram length (10 bits)

Destination socket number
Source socket number

DDP protocol type
Using DDP 7-15

C H A P T E R 7

Datagram Delivery Protocol (DDP)
A long DDP packet header also includes

■ a hop count

■ a checksum value, if one was calculated

■ the source network number and node ID

■ the destination network number and node ID

The MPW Equates 7

You can use the following equates from the MPW interface files in writing your socket
listener process and the client application that includes it:

;frame header

;

lapDstAdr EQU 0 ;destination node address [byte]

lapSrcAdr EQU 1 ;source node address [byte]

lapType EQU 2 ;LAP type field [byte]

lapHdSz EQU 3 ;size of LAP header

;DDP packet header

;

ddpHopCnt EQU 0 ;hop count (only used in long

; header) [byte]

ddpLength EQU 0 ;packet length (from this word

; onward) [word]

ddpChecksum EQU 2 ;checksum [word]

ddpDstNet EQU 4 ;destination network no. [word]

ddpSrcNet EQU 6 ;network of origin [word]

ddpDstNode EQU 8 ;destination node address [byte]

ddpSrcNode EQU 9 ;node of origin [byte]

ddpDstSkt EQU 10 ;destination socket number [byte]

ddpSrcSkt EQU 11 ;source socket number [byte]

ddpType EQU 12 ;DDP protocol type field [byte]

sddpDstSkt EQU 2 ;destination socket number (short

; header) [byte]

sddpSrcSkt EQU 3 ;source socket number (short

; header) [byte]

sddpType EQU 4 ;DDP protocol type field (short header)

; [byte]

;

ddphSzLong EQU 13 ;size of extended DDP header

ddphSzShort EQU 5 ;size of short DDP header

;

shortDDP EQU $01 ;LAP type code for DDP (short header)

longDDP EQU $02 ;LAP type code for DDP (long header)
7-16 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

Reading an Incoming Packet 7

Your socket listener calls the ReadPacket and ReadRest processes to read the incoming
data packet. You can call ReadPacket as many times as you like to read the data piece by
piece into one or more data buffers, but you must always use ReadRest to read the final
piece of the data packet. Alternatively, you can read all of the data using only ReadRest.
The ReadRest routine restores the machine state (the stack pointers, status register, and
so forth) and checks for error conditions.

Note
You can ignore any remaining data instead of reading it
by setting the D3 register to 0 and calling ReadRest. ◆

Before you call the ReadPacket routine, you must allocate memory for a data buffer
and place a pointer to the buffer in the A3 register. You must also place the number of
bytes you want to read in the D3 register. You must not request more bytes than remain
in the data packet.

The buffer that you allocate must be large enough to hold all of the data and—if your
socket listener places the packet header in the buffer—the header as well. The maximum
amount of data in a DDP data packet is 586 bytes. A long DDP packet header is 13 bytes
long; a short header is 5 bytes. The frame header is 3 bytes. Therefore, the maximum
amount of data from the packet that the socket listener can return is 602 bytes. You can
use the buffer as a data structure to hold other information as well, such as the number
of bytes of data actually read by the socket listener, a flag that indicates when the data
has been returned, and result codes.

After you have called the ReadRest routine, you can use registers A0 through A3 and
D0 through D3 for your own use, but you must preserve all other registers. You cannot
depend on having access to your application’s global variables.

To call the ReadPacket routine, execute a JSR instruction to the address in the A4
register. The ReadPacket routine uses the registers as follows:

Registers on entry to the ReadPacket routine

A3 Pointer to a buffer to hold the data you want to read

D3 Number of bytes to read; must be nonzero

Registers on exit from the ReadPacket routine

A0 Unchanged

A1 Unchanged

A2 Unchanged

A3 Address of the first byte after the last byte read into buffer

A4 Unchanged

D0 Changed

D1 Number of bytes left to be read

D2 Unchanged

D3 Equals 0 if requested number of bytes were read, nonzero if error
Using DDP 7-17

C H A P T E R 7

Datagram Delivery Protocol (DDP)
After every time you call ReadPacket or ReadRest, you must check the zero (z) flag
in the status register for errors because the ReadPacket routine indicates an error
by clearing it to 0. If the ReadPacket routine returns an error, you must terminate
execution of your socket listener with an RTS instruction without calling ReadPacket
again or calling ReadRest at all.

Call the ReadRest routine to read the last portion of the data packet, or call it after
you have read all the data with ReadPacket routines and before you do any other
processing or terminate execution. After you call the ReadRest routine, you must
terminate execution of your socket listener with an RTS instruction whether or not the
ReadRest routine returns an error.

When you call the ReadRest routine, you must provide in the A3 register a pointer to
a data buffer and must indicate in the D3 register the size of the data buffer. If you
have already read all of the data with calls to the ReadPacket routine, specify a buffer
of size 0.

▲ W A R N I N G

If you do not call the ReadRest routine after the last time you call the
ReadPacket routine successfully, the system will crash. You do not
need to call the ReadPacket routine; you can call only the ReadRest
routine to read in the entire packet. However, you must call the
ReadRest routine. ▲

To call the ReadRest routine, execute a JSR instruction to an address 2 bytes past the
address in the A4 register. The ReadRest routine uses the registers as follows:

Registers on entry to the ReadRest routine

A3 Pointer to a buffer to hold the data you want to read

D3 Size of the buffer (word length); may be 0

Registers on exit from the ReadRest routine

A0 Unchanged

A1 Unchanged

A2 Unchanged

A3 Pointer to first byte after the last byte read into buffer

D0 Changed

D1 Changed

D2 Unchanged

D3 Equals 0 if requested number of bytes exactly equaled the size of the buffer;
less than 0 if more data was left than would fit in buffer (extra data equals –D3
bytes); greater than 0 if less data was left than the size of the buffer (extra buffer
space equals D3 bytes)
7-18 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

Calling ReadPacket and ReadRest when LocalTalk is the data link

If LocalTalk is the data link that is being used, your socket listener
has less than 95 microseconds (best case) to read more data with a
ReadPacket or ReadRest call. If you need more time, you can read
another 3 bytes into the RHA, which will allow you an additional
95 microseconds. ◆

In implementing your socket listener, you can use the registers as follows:

■ You can use registers D0, D2, and D3 freely throughout the socket listener code.

■ You must preserve the contents of registers A6 and D4 to D7.

■ From entry to your socket listener until you call ReadRest
n you can use A5 register
n you must preserve registers A0 to A2, A4, and D1

■ From ReadRest until your application exits from the socket listener
n you must preserve register A5
n you can use registers A0 to A3 and D0 to D3

Using Checksums 7

For packets that include a long header, DDP includes a checksum feature that you can
use to verify that the packet data has not been corrupted by memory or data bus errors
within routers on the internet.

When you use the PWriteDDP function to send a DDP packet across an AppleTalk
internet, you can set a flag (checksumFlag) to direct DDP to calculate a checksum
for the packet.

If the checksum flag is set and the socket to which you are sending the packet (the
destination socket) has a network number that is different from that of the socket from
which you are sending the packet (the source socket), then the PWriteDDP function
calculates a checksum for the datagram and includes it in the datagram packet header. In
this case, DDP uses a long header for the packet; Figure 7-6 on page 7-15 shows both the
long and short DDP headers.

When your socket listener receives a packet that has a long header, the socket listener
must determine whether DDP calculated a checksum for the packet, and if so, use the
checksum to verify that the data was delivered intact. You can use the equates from the
MPW interface files in calculating checksums: see “The MPW Equates” on page 7-16.

To determine this, your socket listener code should take the following steps:

1. Check the DDP header type field. This is set to 2 for a packet with a long header and 1
for a packet with a short header.

2. Check the checksum field (checksumFlag). This is set to a nonzero value if the
sender specified that DDP should calculate a checksum for the packet; a short header
does not include a checksum field.
Using DDP 7-19

C H A P T E R 7

Datagram Delivery Protocol (DDP)
3. Calculate the checksum using the following algorithm to calculate the checksum,
starting with the byte immediately following the checksum field in the header and
ending with the last data byte:
checksum := checksum + next byte; {unsigned addition}
Rotate the most significant bit to the least significant bit
Repeat

4. Compare the calculated checksum against the value set in the checksum field of the
DDP packet header.
You can use the equates from the MPW interface files in calculating checksums: see
“The MPW Equates” on page 7-16.

A Sample Socket Listener 7
There are many ways to implement a socket listener that follow the requirements
described previously for using and preserving registers and reading packets. This
section uses a sample socket listener that shows one way to implement the process
within a DDP socket-client application that reads in the packet contents. The sample
code also shows those segments of the sample client application that set up the socket
listener and check to determine when a packet that the socket listener has read is
available for processing by the client application.

Some of the tasks that your socket listener can do that this sample socket listener does
not illustrate are how to

■ route packets to different sockets based on the socket number in register D0 when
more than one socket uses your socket listener

■ check the DDP protocol type field and ignore any packets that do not match the
desired packet types that your socket listener is set up to receive

■ check the source node ID and ignore any packets that don’t come from a desired node

■ implement a completion routine to be executed after a packet is processed

The sample socket listener does, however, show you how to

■ buffer multiple packets

■ retrieve the frame and DDP packet header information that DDP has already read into
the RHA

■ calculate and compare the packet checksum when a packet uses a long DDP header
that includes the checksum value

Socket Listener Queues and Buffers 7

The sample socket listener uses two standard operating-system queues to manage the
contents of the packets that it receives and makes available to the socket-client
application. It calls these linked lists a free queue and a used queue. The use of two queues
allows the socket listener to receive and process packets while the client application is
reading the data from those packets that the socket listener has already processed.
7-20 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

The free queue is used to manage available buffers that consist of data structures
declared as PacketBuffer records. The sample socket listener uses the buffers in the
free queue one at a time to hold the contents of an incoming packet as it processes
the packet header and data fields. The socket listener’s initialization module,
SL_InitSktListener, shown in Listing 7-5 on page 7-24, releases the first element
or buffer of the free queue and points to it from the current queue element
(current_qelem) variable; it is this buffer that the socket listener uses when the .MPP
driver calls the socket listener with a packet for it to process.

After the socket listener fills in the fields of the record pointed to by current_qelem
with the processed contents of the packet, it moves the buffer into the used queue,
pointed to by used_queue, for the client application to read. Then the socket listener
releases the next record buffer from the free queue and points to it using the
current_qelem variable. The sample code in Listing 7-7 on page 7-31 shows that when
the client application has finished reading the contents of a used queue buffer element, it
returns the buffer to the free queue pointed to by free_queue to make the buffer
available again to the socket listener.

The socket listener uses the variables declared in Listing 7-1 to point to

■ the free queue’s queue header

■ the used queue’s queue header

■ the current buffer queue element

Listing 7-1 Declarations for pointers to the sample socket listener’s queues and packet buffer

SL_Locals PROC

ENTRY free_queue,used_queue,current_qelem

free_queue DC.L 0 ;pointer to freeQ QHdr ;

; initialized by InitSktListener

used_queue DC.L 0 ;pointer to usedQ QHdr ;

; initialized by InitSktListener

current_qelem DC.L 0 ;pointer to current

; PacketBuffer record

ENDP;

Listing 7-4 on page 7-23 shows the Pascal-language client application
SetUpSocketListener procedure. This procedure calls the SL_InitSktListener
function to pass to the socket listener pointers to these two operating-system queues.

When the .MPP driver calls the socket listener, if there is an available buffer, the socket
listener processes the packet and returns in the fields of the packet buffer record the DDP
type, the destination node ID, the source address in AddrBlock format, the hop count,
the size of the packet, a flag to indicate whether a checksum error occurred, and the data
delivered in the packet. If you use the sample record data structure as a model, you can
extend it to include fields to hold additional values, such as the tick count at the time
when the .MPP driver called your socket listener. Listing 7-2 shows the assembly-
language declaration for the PacketBuffer record.
Using DDP 7-21

C H A P T E R 7

Datagram Delivery Protocol (DDP)
Listing 7-2 Declaration for the sample socket listener’s packet buffer record

PacketBuffer RECORD 0

qLink DS.L 1

qType DS.W 1

buffer_Type DS.W 1 ;DDP protocol type

buffer_NodeID DS.W 1 ;destination node

buffer_Address DS.L 1 ;source address in AddrBlock format

buffer_Hops DS.W 1 ;hop count

buffer_ActCount DS.W 1 ;length of DDP datagram

buffer_CheckSum DS.W 1 ;chksum error returned here

; (cksumErr or noErr)

buffer_Data DS.B ddpMaxData

;the DDP datagram

 ENDR

Listing 7-3 shows the socket listener’s declaration for the queue header record, which is
defined and used to make the code easier to read.

Listing 7-3 Declaration for the sample socket listener’s queue header record

QHdr RECORD 0

qFlags DS.W 1

qHead DS.L 1

qTail DS.L 1

ENDR

Setting Up the Socket Listener 7

The client application that includes the sample socket listener uses a Pascal procedure,
SetUpSocketListener, to set up the socket listener’s initialization routine.
The SetUpSocketListener procedure defines

■ the free and used queue variables of type QHdr

■ a packet buffer record of type PacketBuffer to match the data structure defined
in the socket listener code (The sample Pascal code declares an array of 10 packet
buffer records.)

If you base your own code on the sample code, you can add new fields to the record
declaration, if you need them. If you do this, you must modify the packet buffer data
structure defined in the socket listener code to match the high-level language record
declaration.

Listing 7-4 shows the client-application’s Pascal code that initializes the packet buffer
records and then adds them to the free queue using the _Enqueue trap. The code calls
the SL_InitSktListener routine and passes to it pointers to the queue header for the
free queue and the queue header for the used queue.
7-22 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

Listing 7-4 Setting up the socket listener from the client application

CONST

ddpMaxData = 586;

TYPE

PacketBuffer = RECORD

qLink: QElemPtr;

qType: Integer;

buffer_Type: Integer;

buffer_NodeID: Integer;

buffer_Address: AddrBlock;

buffer_Hops: Integer;

buffer_ActCount: Integer;

buffer_CheckSum: OSErr;

buffer_Data: ARRAY[1..ddpMaxData] OF SignedByte;

END;

VAR

freeQ, usedQ: QHdr;

Buffers: ARRAY[1..10] OF PacketBuffer;

PROCEDURE SL_TheListener;

External;

FUNCTION SL_InitSktListener (freeQ, usedQ: QHdrPtr): OSErr;

External;

PROCEDURE SetUpSocketListener;

VAR

err: OSErr;

i: Integer;

BEGIN

freeQ.QHead := NIL; {initialize to nil to indicate empty queue}

freeQ.QTail := NIL; {initialize to nil to indicate end of queue}

usedQ.QHead := NIL; {initialize to nil to indicate empty queue}

usedQ.QTail := NIL; {initialize to nil to indicate end of queue}

 FOR i := 1 TO 10 DO {add all buffers to the free queue}

 Enqueue(@Buffers[i], @freeQ);

err := SL_InitSktListener(@freeQ, @usedQ);

{initialize the socket listener code}
Using DDP 7-23

C H A P T E R 7

Datagram Delivery Protocol (DDP)
IF err <> noErr THEN

BEGIN

{Perform error processing here}

END;

{You can now call POpenSkt because the socket listener is ready to }

{ process packets.}

END;

Initializing the Socket Listener 7

The sample socket-client application procedure SetUpSocketListener (shown in the
preceding listing) calls the socket listener SL_InitSktListener initialization routine
provided in Listing 7-5 to pass it pointers to the two operating-system queues (used and
free) that the socket listener uses after the SetUpSocketListener procedure initializes
these queues.

The SL_InitSktListener routine sets up its local variables used_queue and
free_queue to point to the queue headers for the two queues. Then the routine releases
from the free queue the first buffer and sets the current_qelem variable to point to it.
This is the buffer that the socket listener uses when it next reads a packet.

Listing 7-5 Initializing the socket listener

;Function SL_InitSktListener(freeQ, usedQ: QHdrPtr): OSErr;

;

SL_InitSktListener PROC EXPORT

StackFrame RECORD {A6Link},DECR ;build a stack frame record

Result1 DS.W 1 ;function's result returned to caller

ParamBegin EQU * ;start parameters after this point

freeQ DS.L 1 ;freeQ parameter

usedQ DS.L 1 ;usedQ parameter

ParamSize EQU ParamBegin-* ;size of all the passed parameters

RetAddr DS.L 1 ;placeholder for return address

A6Link DS.L 1 ;placeholder for A6 link

LocalSize EQU * ;size of all the local variables

ENDR

WITH StackFrame,QHdr; ;use these record types

LINK A6,#LocalSize ;allocate your local stack frame

;Copy the queue header pointers into our local storage for use in the

; listener
7-24 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

LEA used_queue,A0 ;copy usedQ into used_queue

MOVE.L usedQ(A6),(A0)

LEA free_queue,A0 ;copy freeQ into free_queue

MOVE.L freeQ(A6),(A0)

;Release the first buffer record from freeQ and set current_qelem to it

MOVEA.L freeQ(A6),A1 ; A1 = ^freeQ

LEA current_qelem,A0 ;copy freeQ.qHead into current_qelem

MOVE.L qHead(A1),(A0)

MOVEA.L qHead(A1),A0 ;A0 = freeQ.qHead

_Dequeue

MOVE.W D0,Result1(A6) ;return status

@1 UNLK A6 ;destroy the link

MOVEA.L (SP)+,A0 ;pull off the return address

ADDA.L #ParamSize,SP ;strip all of the caller's parameters

JMP (A0) ;return to the caller

ENDP

END

Processing a Packet 7

When the .MPP driver calls the sample socket listener, the socket listener’s main module,
the SL_TheListener procedure, reads and processes a packet addressed to the socket-
client application. However, the socket listener can only process a packet if there is a
packet buffer record available to hold the processed packet.

The code shown in Listing 7-6 determines if the current_qelem variable is NIL or not.
If it is not NIL, the code gets a buffer, if one is available.

■ If there is no buffer available, the code ignores the packet and calls the ReadRest
routine with a buffer size value of 0. Before returning to the calling program, the code
calls its GetNextBuffer routine to set up the current_qelem variable to point to
the next available buffer, if there is one.

■ If there is a buffer available, the code reads in the packet data and processes it.

If the socket listener reads the packet successfully, it processes the header information
that the hardware driver has stored in the .MPP driver’s local variable space pointed to
by the value in register A2. To do this, the socket listener

■ fills in a value for the hop count field of the packet buffer record and determines the
packet length

■ determines whether the DDP header is short or long and fills in the remaining fields
of the packet buffer
Using DDP 7-25

C H A P T E R 7

Datagram Delivery Protocol (DDP)
■ tests the checksum field of long DDP headers to determine if they are nonzero,
indicating that the packet contains a checksum, and, if so, calculates the checksum

■ adds the packet buffer to the used queue and then gets the next free buffer from the
free queue and points to it with current_qelem

The socket listener then returns control to the calling program and waits until the .MPP
driver calls it again when the .MPP driver next receives a packet addressed to a socket
that is associated with the socket listener. Listing 7-6 shows the SL_TheListener
procedure.

Listing 7-6 Receiving and processing a DDP packet

;SL_TheListener

;Input:

; D0 (byte) = packet's destination socket number

; D1 (word) = number of bytes left to read in packet

; A0 points to the bytes to checksum

; A1 points to the bytes to checksum

; A2 points to MPP's local variables

; A3 points to next free byte in read-header area

; A4 points to ReadPacket and ReadRest jump table

;

;Return:

; D0 is modified

; D3 (word) = accumulated checksum

SL_TheListener PROC EXPORT

WITH PacketBuffer

;Get pointer to current PacketBuffer.

GetBuffer:

LEA current_qelem,A3 ;get the pointer to PacketBuffer

MOVE.L (A3),A3

MOVE.L A3,D0 ;if no PacketBuffer

BEQ.S NoBuffer ; then ignore packet

;Read rest of packet into PacketBuffer.datagramData.

MOVE.L D1,D3 ;read rest of packet

LEA buffer_data(A3),A3 ;A3 = ^bufferData

JSR 2(A4) ;call ReadRest

BEQ.S ProcessPacket ;if no error, continue

BRA RcvRTS ;if error, ignore the packet

;No buffer; ignore the packet.

NoBuffer CLR D3 ;set to ignore packet (buffer size = 0)
7-26 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

JSR 2(A4) ;call ReadRest

BRA GetNextBuffer ;no buffer available, so read next packet;

; maybe there will be a buffer

; for the next packet

;Process the packet you just read in.

; ReadRest has been called so registers A0-A3 and D0-D3 are free

; to use. Use registers this way:

PktBuff EQU A0 ;current PacketBuffer

MPPLocals EQU A2 ;pointer to MPP's local variables

; (still set up from entry to

; socket listener)

HopCount EQU D0 ;gets the hop count

DatagramLength EQU D1 ;determines the datagram length

SourceNetAddr EQU D2 ;builds the source network address

ProcessPacket:

LEA current_qelem,PktBuff

;PktBuff = current_qelem

MOVE.L (PktBuff),PktBuff

;Do everything that's common to both long and short DDP headers

; first, clear buffer_Type and buffer_NodeID to ensure their high

; bytes are 0.

CLR.W buffer_Type(PktBuff)

;clear buffer_Type

CLR.W buffer_NodeID(PktBuff)

;clear buffer_NodeID

;Clear SourceNetAddr to prepare to build network address.

MOVEQ #0,SourceNetAddr ;build the network address in

; SourceNetAddr

;Get the hop count

MOVE.W toRHA+lapHdSz+ddpLength(MPPLocals),HopCount

;get hop/length field

ANDI.W #DDPHopsMask,HopCount

;mask off the hop count bits

LSR.W #2,HopCount ;shift hop count into low bits

; of high byte

LSR.W #8,HopCount ;shift hop count into low byte

MOVE.W HopCount,buffer_Hops(PktBuff)

; and move it into the

; PacketBuffer

Using DDP 7-27

C H A P T E R 7

Datagram Delivery Protocol (DDP)
;Get the packet length (including the DDP header).

MOVE.W toRHA+lapHdSz+ddpLength(MPPLocals),DatagramLength

;get length field

ANDI.W #ddpLenMask,DatagramLength

;mask off the hop count bits

;Now, find out if the DDP header is long or short.

MOVE.B toRHA+lapType(MPPLocals),D3

;get LAP type

CMPI.B #shortDDP,D3 ;is this a long or short DDP

; header?

BEQ.S IsShortHdr ;skip if short DDP header

;It's a long DDP header.

MOVE.B toRHA+lapHdSz+ddpType(MPPLocals),buffer_Type+1(PktBuff)

;get DDP type

MOVE.B

toRHA+lapHdSz+ddpDstNode(MPPLocals),buffer_NodeID+1(PktBuff)

;get destination node from frame header

MOVE.L toRHA+lapHdSz+ddpSrcNet(MPPLocals),SourceNetAddr

;source network in high word,

; source node in low byte

LSL.W #8,SourceNetAddr ;shift source node up to high byte

; of low word; get source socket

; from DDP header

MOVE.B toRHA+lapHdSz+ddpSrcSkt(MPPLocals),SourceNetAddr

SUB.W #ddpType+1,DatagramLength

;DatagramLength = number of

; bytes in datagram

BRA.S MoveToBuffer

;Determine if there is a checksum.

TST.W toRHA+lapHdSz+ddpChecksum(MPPLocals)

;does packet have checksum?

BEQ.S noChecksum

;Calculate checksum for the DDP header.

MOVE.L DatagramLength,-(SP);save DatagramLength (D1)

CLR D3 ;set checksum to 0

MOVEQ #ddphSzLong-ddpDstNet,D1

;D1 = length of header part to

; checksum pointer to destination

; network number in DDP header
7-28 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

LEA toRHA+lapHdSz+ddpDstNet(MPPLocals),A1

JSR SL_DoChksum ;checksum of DDP header part

 ; (D3 holds accumulated

 ; checksum)

;Calculate checksum for the data portion of the packet (if any).

MOVE.L buffer_Data(PktBuff),A1

;pointer to datagram

MOVE.L (SP)+,DatagramLength

;restore DatagramLength (D1)

MOVE.L DatagramLength,-(SP)

;save DatagramLength (D1)

; before calling SL_DoChksum

BEQ.S TestChecksum ;don't checksum datagram if

; its length = 0

JSR SL_DoChksum ;checksum of DDP datagram part

; (D3 holds accumulated checksum)

TestChecksum:

MOVE.L (SP)+,DatagramLength

;restore DatagramLength (D1)

;Now make sure the checksum is OK.

TST.W D3 ;is the calculated value 0?

BNE.S NotZero ;if nonzero, go and use it

SUBQ.W #1,D3 ;if 0, make it -1

NotZero:

CMP.W toRHA+lapHdSz+ddpChecksum(MPPLocals),D3

BNE.S ChecksumErr ;bad checksum

MOVE.W #0,buffer_CheckSum(A0)

;no errors

BRA.S noChecksum

ChecksumErr:

MOVE.W #ckSumErr,buffer_CheckSum(PktBuff)

;checksum error

noChecksum:

BRA.S MoveToBuffer
Using DDP 7-29

C H A P T E R 7

Datagram Delivery Protocol (DDP)
;It's a short DDP header.

IsShortHdr:

MOVE.B toRHA+lapHdSz+sddpType(MPPLocals),buffer_Type+1(PktBuff)

;get DDP type

MOVE.B toRHA+lapDstAdr(MPPLocals),buffer_NodeID+1(PktBuff)

;get destination node from LAP header

MOVE.B toRHA+lapSrcAdr(MPPLocals),SourceNetAddr

;get source node from LAP header

LSL.W #8,SourceNetAddr ;shift src node up to high byte of low word

MOVE.B toRHA+lapHdSz+sddpSrcSkt(MPPLocals),SourceNetAddr

;get source socket from short DDP header

SUB.W #sddpType+1,DatagramLength

;DatagramLength = number of bytes in

; datagram

MoveToBuffer:

MOVE.L SourceNetAddr,buffer_Address(PktBuff)

;move source network address into

; PacketBufffer

MOVE.W DatagramLength,buffer_ActCount(PktBuff)

;move datagram length into PacketBuffer

;Write the packet into the used queue and

; get another buffer from the free queue for the next packet.

LEA used_queue,A1 ;A1 = ^used_queue

MOVE.L (A1),A1 ;A1 = used_queue (pointer to usedQ)

_Enqueue ;put the PacketBuffer in the used queue

GetNextBuffer:

LEA free_queue,A1 ;A1 = ^free_queue

MOVE.L (A1),A1 ;A1 = free_queue (pointer to freeQ)

LEA current_qelem,A0 ;copy freeQ.qHead into current_qelem

MOVE.L qHead(A1),(A0)

MOVEA.L qHead(A1),A0 ;A0 = freeQ.qHead

_Dequeue

RcvRTS:

RTS ;return to caller

ENDP
7-30 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

Testing for Available Packets 7

Your client application must include a routine that determines if the socket listener has
processed a packet for a socket associated with your client application. If it has, your
client application routine must itself read and process the packet’s contents, which are
made available by the socket listener.

If your client application includes several processes each with its own socket that use the
same socket listener, your client application routine must include a mechanism to scan
for packets addressed to specific sockets.

If you expect to receive multiple packets for a specific socket, you should anticipate the
possibility that the client application might handle the first packet for a socket before
the socket listener processes the second packet for that socket. For example, to prepare
for reception of multiple related packets addressed to the same socket, the sample client
application’s routine could check the socket listener’s used queue QHead field for addi-
tional packets periodically after it read the first packet.

If you design your socket listener based on the sample one, your client’s application
should define a sufficient number of packet buffers so that as the client application
releases a buffer from the used queue, processes its contents, and then moves that buffer
back into the free queue for the socket listener to use, there are always buffers available
in the free queue.

Listing 7-7 shows the code that the sample client application uses for this purpose. It
periodically checks the QHead element of the socket listener’s used queue. When QHead
is not NIL, the client application knows that a packet is available for processing.

Listing 7-7 Determining if the socket listener has processed a packet

TYPE

PacketBuffer = RECORD

qLink: QElemPtr;

qType: Integer;

buffer_Type: Integer;

buffer_NodeID: Integer;

buffer_Address: AddrBlock;

buffer_Hops: Integer;

buffer_ActCount: Integer;

buffer_CheckSum: OSErr;

buffer_Data: ARRAY[1..ddpMaxData] OF SignedByte;

END;

PacketPtr = ^PacketBuffer;

VAR

freeQ, usedQ: QHdr;

bufPtr : PacketPtr;
Using DDP 7-31

C H A P T E R 7

Datagram Delivery Protocol (DDP)
.

.

.

WHILE (usedQ.QHead <> nil) DO

BEGIN

bufPtr := PacketPtr(usedQ.QHead); {get the packet ptr}

IF (Dequeue(QElemPtr(bufPtr), @usedQ) <> noErr) THEN

BEGIN

{process the packet information}

Enqueue(QElemPtr(bufPtr), @freeQ);

{requeue the packet buffer for use}

END

ELSE

BEGIN

{Error occurred dequeueing packet - perform error }

{ processing here. However, because this is the only }

{ place in the code where buffers are dequeued, your error }

{ code should never be called. You can include a debugging }

{ statement here.}

END;

END;

Measuring Packet-Delivery Performance 7
You use the AppleTalk Echo Protocol (AEP) to measure the performance of an AppleTalk
network. Knowing the approximate speed at which an AppleTalk internet delivers
packets is helpful in tuning the behavior of an application that uses one of the
higher-level AppleTalk protocols, such as ATP and ADSP. You can also use AEP to test
whether a node is on the network.

To tune an application, you need to know the round-trip time of a packet between two
nodes on an AppleTalk internet. This is dependent on such factors as the network
configuration, the number of routers and bridges that a packet must traverse, and the
amount of traffic on the network; as these change, so does the packet transmission time.
Routines belonging to the interfaces of both ATP and ADSP let you specify retry count
and interval numbers whose optimum values you can better assess if you know the
average round-trip time of a packet on your application’s network.

AEP is implemented in each node as a DDP client process referred to as the AEP Echoer.
The AEP Echoer uses a statically assigned socket, socket number 4, known as the echoer
socket. The AEP Echoer listens for packets received through this socket.
7-32 Using DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

Whenever it receives a packet, the AEP Echoer examines the packet’s protocol type field
to determine if the packet is an AEP packet, indicated by a value of 4. If it is, the first byte
of the data portion of the packet serves as a function field. AEP uses two function codes:

■ A value of 1 identifies the packet as an Echo Request packet.

■ A value of 2 identifies the packet as an Echo Reply packet.

The AEP Echoer sets this field to a value of 2 to indicate that the packet is now a reply
packet, then it calls DDP to send a copy of the packet back to the socket from which it
originated. The AEP packet that you send is referred to as an Echo Request packet; the
modified AEP packet that the AEP Echoer sends back to you is referred to as an Echo
Reply packet.

Here are some general guidelines that you should follow in using the AEP Echoer:

■ Use the maximum packet size that you plan on using in your application.

■ To test if a node is on the network, send several packets to that node because DDP can
sometimes drop a packet.

■ To test packet-delivery performance, send more than one packet and calculate the
average round-trip time.
Typically, you should receive an Echo Reply packet within a few milliseconds. If you
do not get a response after about 10 seconds, you can assume that DDP dropped or
lost your Echo Request packet, and you should resend the packet.
The Echo Reply packet contains the same data that you sent in the Echo Request
packet. If you send multiple packets to determine an average turnaround time and
to compensate for the possibility of lost or dropped packets, you should include
different data in the data portion of each packet; this will allow you to distinguish
between replies to different request packets in the event that some replies are not
delivered in the same order that you sent them or that some packets are dropped.

■ To test packet-delivery performance time, your socket listener can include a field in its
packet buffer record that saves the time in ticks when you sent the packet to compare
against the response time.

■ Accept only packets from the target node. Use your socket listener to filter out packets
from nodes other than the target node to which you sent the Echo Request packet.

Follow these steps to send a packet to a target node and have AEP echo that packet back
to your socket listener:

1. Write a socket listener to be used to receive an Echo Reply packet back from the target
node to which you are sending the Echo Request packet.
The AEP Echoer will send the Echo Reply packet to the socket from which you send
the Echo Request packet. Follow the general instructions described earlier in this
chapter that explain how to write a socket listener.

2. Call the POpenSkt function to open a socket from which to send an Echo Request
packet, and assign your socket listener to that socket.
Using DDP 7-33

C H A P T E R 7

Datagram Delivery Protocol (DDP)
3. Determine the internet address of the target node to which you want to send an Echo
Request packet.
You can use the Name-Binding Protocol (NBP) to get the address of the destination
application for which you want to measure round-trip packet delivery, and substitute
the socket ID of the AEP Echoer; the socket number of the AEP Echoer is always 4
on every node. NBP routines are described in the chapter “Name-Binding Protocol
(NBP)” in this book.

4. Prepare the datagram to be sent to the AEP Echoer on the target node by building
a write-data structure with specific values for certain fields. You can use the
BuildDDPwds procedure for this purpose.
Set the destination socket number equal to 4 to indicate that it’s the Echoer socket; set
the DDP protocol type field also equal to 4 to indicate that the packet belongs to the
AEP implementation on the target node; set the first byte of the data portion equal to
1 to indicate that this is an Echo Request packet. Fill in the destination network
number and node ID for the target system; these are the numbers that NBP returned
to you (see the preceding step).

5. Call the PWriteDDP function to send the Echo Request to the target node. As the
value of the wdsPointer parameter, specify the pointer to the write data structure
that you created.

DDP Reference 7

This section describes the data structures and routines that are specific to DDP. The
“Data Structures” section shows the Pascal data structures for the records and parameter
block that functions use for the protocol interface. The “Routines” section describes the
DDP routines.

Data Structures 7
This section describes the data structures that you use to provide information to and
receive it from DDP. It includes

■ the write-data structure

■ the address block record

■ the MPP parameter block
7-34 DDP Reference

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

The Write-Data Structure 7

A write-data structure is of type WDSElement and contains a series of pairs of length
words and pointers. Each pair indicates the length and location of a portion of the data,
including the header information, that constitutes the packet to be sent over the network.

You pass the PWriteDDP function a pointer to a write-data structure to send a DDP
packet to another socket. You can use the BuildDDPwds procedure described on
page 7-42 to create a write-data structure.

TYPE WDSElement =

RECORD

entryLength: Integer;

entryPtr: Ptr;

END;

Field descriptions

entryLength The length of the data pointed to by entryPtr.
entryPtr A pointer to the DDP packet data to be sent using the PWriteDDP

function.

The Address Block Record 7

The address block record defines a data structure of AddrBlock type. The destAddress
parameter of the BuildDDPwds procedure takes an AppleTalk internet address value
specified in this format.

You use NBP routines to get the address of an application that is registered with NBP.
For more information about these routines, see the chapter “Name-Binding Protocol
(NBP)” in this book.

TYPE AddrBlock =

PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

aSocket: Byte; {socket number}

END;

Field descriptions

aNet The number of the network to which the node belongs that
is running the DDP client application whose address you
are specifying.

aNode The node ID of the machine running the DDP client application
whose address you are specifying.

aSocket The number of the socket used for the DDP client application.
DDP Reference 7-35

C H A P T E R 7

Datagram Delivery Protocol (DDP)
MPP Parameter Block 7

The DDP POpenSkt, PCloseSkt, and PWriteDDP functions use the following variant
record of the MPP parameter block, defined by the MPPParamBlock data type, to pass
information to and receive it from the .MPP driver.

This section defines the fields that are common to all of the DDP functions that use the
MPP parameter block. (The BuildDDPwds procedure does not use the MPP parameter
block.) The fields that are used for specific functions only are defined in the descriptions
of the functions to which they apply. This section does not define reserved fields, which
are used either internally by the .MPP driver or not at all.

TYPE MPPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}

CASE MPPParmType OF

OpenSktParm,

CloseSktParm,

WriteDDPParm:

(

socket: Byte; {socket number}

checksumFlag: Byte; {checksum flag}

listener: Ptr; {For POpenSkt, pointer to socket }

{ listener routine. For PWriteDDP, }

{ pointer to write-data structure.}

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute the POpenSkt function asynchronously, DDP calls your
completion routine when it completes execution of the function.
Specify NIL for this field if you do not wish to provide a completion
routine. If you execute the POpenSkt function synchronously, it
ignores the ioCompletion field.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.
7-36 DDP Reference

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

ioRefNum The .MPP driver reference number. The MPW interface fills in
this field.

csCode The command code of the MPP command to be executed. The MPW
interface fills in this field.

socket The number of the socket to be opened, closed, or from which to
send data.

Routines 7
This section describes these DDP interface routines:

■ the POpenSkt function that you use to open a DDP socket

■ the PCloseSkt function that you use to close a socket that you opened with the
POpenSkt function

■ the PWriteDDP function that you use to send a datagram to another socket

■ the BuildDDPwds procedure that you use to create a data structure to hold the
header and data information that you want DDP to send

You pass parameters to and receive them from DDP in the fields of the parameter block
whose pointer you pass directly to the routine that you call. An arrow preceding each
parameter indicates whether it is an input parameter, an output parameter, or both:

Opening and Closing DDP Sockets 7

DDP delivers datagrams from socket to socket. You must open a socket before you
use DDP to send or receive a DDP datagram.

■ You use the POpenSkt function to open a DDP socket and associate your socket
listener with it.

■ You use the PCloseSkt function to close a socket that you opened with the
POpenSkt function.

To receive a DDP datagram from another socket, you must provide a socket listener to
receive packets and your own routine to read the data. When you open a socket, you
specify a pointer to the socket listener for that socket.

Arrow Meaning

→ Input

← Output

↔ Both
DDP Reference 7-37

C H A P T E R 7

Datagram Delivery Protocol (DDP)
POpenSkt 7

The POpenSkt function opens a socket for your application to use, and it adds that
socket to the socket table along with a pointer to the socket listener that you provide.

FUNCTION POpenSkt (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether or not the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

Parameter block

Field descriptions

socket The number of the socket you wish to open. Specify 0 for this field
to have DDP assign a socket number in the range 128 through 254
and return it in this field. Socket numbers 1 through 63 are reserved
for use by Apple Computer, Inc. You can use socket numbers 64
through 127 for this field during program development; however, it
is recommended that you not use these numbers in a commercial
product as there is no mechanism for resolving conflicts in the case
that someone else uses the same socket number.

listener Pointer to a socket listener that you provide. You cannot specify
NIL for this field. See “A Sample Socket Listener” beginning on
page 7-20 for information on writing a socket listener.

DESCRIPTION

The POpenSkt function opens a DDP socket and associates that socket with the
socket listener whose pointer you specify. If you specify 0 for the socket field, DDP
dynamically assigns a socket, which it opens, and DDP returns the number of that
socket to you.

Alternatively, you can specify a socket number as the value of the socket field. The
POpenSkt function returns a result code of ddpSktErr if any of the following conditions
is true:

■ You specify the number of an already open socket.

■ You pass a socket number greater than 127.

■ The socket table is full.

The POpenSkt function is equivalent to calling the PBControl function with a value of
openSkt in the csCode field of the parameter block.

→ ioCompletion ProcPtr A pointer to completion routine.
← ioResult OSErr The result code.
→ csCode Integer Always openSkt for this function.
↔ socket Byte The socket number.
→ listener Ptr A pointer to socket listener.
7-38 DDP Reference

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

You must provide a socket listener when you call the POpenSkt function. If you do not
intend to listen for DDP datagrams through the socket you open with this function, you
can provide a socket listener that does nothing but immediately return control to DDP.

DDP reads the destination socket address and delivers datagrams to the socket listener
associated with the socket. The socket listener can be part of a DDP client application or
a higher-level AppleTalk protocol that is also a client of DDP.

If you want a process using a socket to be visible to other processes using the AppleTalk
network, use the NBP PRegisterName function to register the name that is associated
with the socket and address of the process. See the chapter “Name-Binding Protocol
(NBP)” in this book for more information about NBP.

SPECIAL CONSIDERATIONS

You cannot specify NIL for the listener parameter; if you do so, your application will
crash and the computer on which it is running will hang.

ASSEMBLY-LANGUAGE INFORMATION

To execute the POpenSkt function from assembly language, call the _Control trap
macro with a value of openSkt in the csCode field of the parameter block. You must
also specify the .MPP driver reference number. To execute the _Control trap
asynchronously, include the value ,ASYNC in the operand field.

RESULT CODES

SEE ALSO

For information about how to use the POpenSkt function in sequence with other
routines to send and receive data over an AppleTalk network, see “Sending and
Receiving Data: An Overview” beginning on page 7-9.

PCloseSkt 7

The PCloseSkt function removes the entry for a specific socket from the socket table.

FUNCTION PCloseSkt (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether or not the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

noErr 0 No error
ddpSktErr –91 Bad socket number or socket table is full
DDP Reference 7-39

C H A P T E R 7

Datagram Delivery Protocol (DDP)
Parameter block

Field descriptions

socket The number of the socket you wish to close. You cannot use 0 for
this field.

DESCRIPTION

Use the PCloseSkt function to close a socket that you opened with the POpenSkt
function. The PCloseSkt function returns a result code of ddpSktErr if you specify a
socket number of 0 or if there is no open socket with the socket number you specify.

The PCloseSkt function is equivalent to calling the PBControl function with a value
of closeSkt in the csCode field of the parameter block.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PCloseSkt function from assembly language, call the _Control trap
macro with a value of closeSkt in the csCode field of the parameter block. You must
also specify the .MPP driver reference number. To execute the _Control trap
asynchronously, include the value ,ASYNC in the operand field.

RESULT CODES

SEE ALSO

For information on the assignment of socket numbers, see “POpenSkt” beginning on
page 7-38.

Sending DDP Datagrams 7

To send a DDP datagram to another socket, you must first open a socket with the
POpenSkt function, prepare a write-data structure, and finally send the packet using the
PWriteDDP function described in this section. You can use the BuildDDPwds procedure
described in this section to create the write-data structure.

→ ioCompletion ProcPtr A completion routine.
← ioResult OSErr The result code.
→ csCode Integer Always closeSkt for this function.
→ socket Byte The number of the socket to close.

noErr 0 No error
ddpSktErr –91 Bad socket number
7-40 DDP Reference

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

PWriteDDP 7

The PWriteDDP function sends a DDP datagram to another socket.

FUNCTION PWriteDDP (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

Parameter block

Field descriptions

socket The number of the socket from which you want to send data. See
the description of the POpenSkt function for information on the
assignment of socket numbers.

checksumFlag The checksum flag. If you set this field to a nonzero value and if
DDP uses a long header for the datagram (that is, if the destination
socket has a network number different from that of the source
socket), then the PWriteDDP function calculates a checksum for the
datagram and includes it in the datagram header. Set this field to 0
if you do not want the PWriteDDP function to calculate a checksum.

wdsPointer A pointer to a write-data structure. The write-data structure
provides the destination address and the data for the datagram.
The DDP write-data structure is described in “Creating a DDP
Write-Data Structure” on page 7-12.

DESCRIPTION

Before you call the PWriteDDP function, you must prepare a write-data structure.
The write-data structure, shown in Figure 7-4 on page 7-13, includes a pointer to the
destination address and pointers to buffers containing the data you wish to send.
You can use the BuildDDPwds procedure to build a write-data structure.

Set the checksum flag field when you call the PWriteDDP function to have the function
calculate the checksum and include it in the packet header. Note, however, that only
long packet headers include a checksum field, and that whether the checksum is used
for error checking depends on how the socket listener code at the destination socket is
implemented.

The PWriteDDP function is equivalent to calling the PBControl function with a value
of writeDDP in the csCode field of the parameter block.

→ ioCompletion ProcPtr A completion routine.
← ioResult OSErr The result code.
→ csCode Integer Always writeDDP for this function.
→ socket Byte The number of socket to send data from.
→ checksumFlag Byte The checksum flag; nonzero to

compute checksum.
→ wdsPointer Ptr A pointer to write-data structure.
DDP Reference 7-41

C H A P T E R 7

Datagram Delivery Protocol (DDP)
SPECIAL CONSIDERATIONS

Memory used for the write-data structure belongs to DDP and must be nonrelocatable
until the PWriteDDP function completes execution, after which you can either reuse the
memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PWriteDDP function from assembly language, call the _Control trap
macro with a value of writeDDP in the csCode field of the parameter block. You must
also specify the .MPP driver reference number. To execute the _Control trap asynchro-
nously, include the value ,ASYNC in the operand field.

RESULT CODES

SEE ALSO

For a description of the DDP write-data structure, see “Creating a DDP Write-Data
Structure” on page 7-12.

If you are programming in Pascal or C, see the description of the BuildDDPwds
procedure that follows for help in creating a write-data structure.

BuildDDPwds 7

The BuildDDPwds procedure creates a write-data structure that you can use to send a
DDP packet to a remote socket.

PROCEDURE BuildDDPwds (wdsPtr,headerPtr,dataPtr: Ptr;

destAddress: AddrBlock; DDPType: Integer;

dataLen: Integer);

wdsPtr A pointer to a buffer that you provide that will contain the write-
data structure. The write-data structure created by BuildDDPwds is
14 bytes long.

headerPtr A pointer to a buffer that you provide that will contain the packet header.
This buffer must be at least 17 bytes long.

dataPtr A pointer to the data that you want to send. The maximum amount of
data that you can include in a DDP data packet is 586 bytes.

noErr 0 No error
ddpSktErr –91 Bad socket number
ddpLenErr –92 Datagram data exceeds 586 bytes
noBridgeErr –93 Could not find router to forward packet
7-42 DDP Reference

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

destAddress
The address of the socket to which you want to send the data. The
address consists of the network number, the node ID, and the socket
number in AddrBlock format; see “The Address Block Record” on
page 7-35.

A node ID of 255 is the broadcast address; that is, the datagram is
broadcast to all nodes in the network. Note, however, that broadcast
datagrams are not forwarded by routers and so are not sent to nodes
on other networks in the internet.

DDPType The DDP protocol type of the packet you are sending. DDP protocol types
1 through 15 are reserved for use by Apple Computer, Inc. You can use
other protocol types as you see fit.

dataLen The length of the data pointed to by the dataPtr parameter.

DESCRIPTION

The BuildDDPwds procedure creates a write-data structure that consists of a pointer for
the header, a length word and pointer for the data, and a terminating 0 word. Because
the first pointer in the write-data structure must point to an odd address, it is difficult
to use Pascal to create a write-data structure. In this case, using the BuildDDPwds
procedure simplifies the process. However, the BuildDDPwds procedure assumes that
the data that you are sending is in a single block. In most cases, if you are using DDP
directly to send data across a network, a single block of data should be adequate.

You must provide a 17-byte buffer for the header block, a 14-byte buffer to hold the
write-data structure, and a pointer to the data you want to send. (The header block
is only 16 bytes, but because it begins on an odd address, the first byte is not used.)

SPECIAL CONSIDERATIONS

Memory that you allocate for the write-data structure buffers belongs to DDP and must
be nonrelocatable until the PWriteDDP function completes execution, after which you
can either reuse the memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

The BuildDDPwds procedure is implemented entirely in the MPW interface files. There
is no assembly-language equivalent to this procedure.

SEE ALSO

The write-data structure is defined in “Creating a DDP Write-Data Structure” on
page 7-12.

To send the data pointed to by your write-data structure, use the PWriteDDP function
described on page 7-41.
DDP Reference 7-43

C H A P T E R 7

Datagram Delivery Protocol (DDP)
Summary of DDP 7

Pascal Summary 7

Constants 7

CONST

{.MPP driver unit and reference numbers}

mppUnitNum = 9; {MPP unit number}

mppRefNum = -10; {MPP reference number}

{csCodes}

writeDDP = 246; {write out DDP packet, csCode}

closeSkt = 247; {close DDP socket, csCode}

openSkt = 248; {open DDP socket, csCode}

Data Types 7

The Write-Data Structure

TYPE WDSElement =

RECORD

entryLength: Integer;

entryPtr: Ptr;

END;

The Address Block Record

TYPE AddrBlock =

PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

aSocket: Byte; {socket number}

END;
7-44 Summary of DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

MPP Parameter Block

MPPParmType = (...OpenSktParm,CloseSktParm,WriteDDPParm ...)

TYPE MPPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {command code}

CASE MPPParmType OF

OpenSktParm,

CloseSktParm,

WriteDDPParm:

(

socket: Byte; {socket number}

checksumFlag: Byte; {checksum flag}

listener: Ptr; {For POpenSkt, pointer to socket }

{ listener routine. For PWriteDDP, }

{ pointer to write-data structure.}

)

END;

MPPPBPtr = ^MPPParamBlock;

Routines 7

Opening and Closing DDP Sockets

FUNCTION POpenSkt (thePBptr: MPPPBPtr; async: Boolean): OSErr;

FUNCTION PCloseSkt (thePBptr: MPPPBPtr; async: Boolean): OSErr;

Sending DDP Datagrams

FUNCTION PWriteDDP (thePBptr: MPPPBPtr; async: Boolean): OSErr;

PROCEDURE BuildDDPwds (wdsPtr,headerPtr,dataPtr: Ptr;
destAddress: AddrBlock; DDPType: Integer;
dataLen: Integer);
Summary of DDP 7-45

C H A P T E R 7

Datagram Delivery Protocol (DDP)
C Summary 7

Constants 7

/*DDP parameter constants*/

#define MPPioCompletion MPP.ioCompletion

#define MPPioResult MPP.ioResult

#define MPPioRefNum MPP.ioRefNum

#define MPPcsCode MPP.csCode

#define DDPsocket DDP.socket

#define DDPchecksumFlag DDP.checksumFlag

#define DDPwdsPointer DDP.DDPptrs.wdsPointer

#define DDPlistener DDP.DDPptrs.listener

/*.MPP driver unit and reference number*/

enum {

mppUnitNum = 9, /*MPP unit number*/

mppRefNum = -10 /*MPP reference number*/

};

/*DDP csCodes*/

enum {

writeDDP = 246, /*send DDP packet*/

closeSkt = 247, /*close DDP socket*/

openSkt = 248 /*open DDP socket*/

};

Data Types 7

The Write-Data Structure

struct WDSElement {

short entryLength;

Ptr entryPtr;

} WDSElement;

The Address Block Record

struct AddrBlock {

short aNet; /*network number*/

unsigned char aNode; /*node ID*/

unsigned char aSocket; /*socket number*/

};

typedef struct AddrBlock AddrBlock;
7-46 Summary of DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

MPP Parameter Block

#define MPPATPHeader\

QElem *qLink; /*reserved*/\

short qType; /*reserved*/\

short ioTrap; /*reserved */\

Ptr ioCmdAddr; /*reserved*/\

ProcPtr ioCompletion; /*completion routine*/\

OSErr ioResult; /*result code*/\

long ioNameptr; /*command result (ATP user bytes)*/\

short ioVRefNum; /*request transaction ID*/\

short ioRefNum; /*driver reference number*/\

short csCode; /*command code*/

typedef struct {

MPPATPHeader

}MPPparms;

union ParamBlockRec {

MPPparms MPP; /*general MPP parms*/

DDPparms DDP; /*DDP calls*/

};

typedef MPPParamBlock *MPPPBtr;

typedef struct {

MPPATPHeader

char socket; /*socket number*/

char checksumFlag; /*checksum flag*/

 union {

Ptr wdsPointer; /*pointer to write-data structure*/

Ptr listener; /*pointer to write-data structure or */

/* pointer to socket listener*/

} DDPptrs;

}DDPparms;

Routines 7

Opening and Closing DDP Sockets

pascal OSErr POpenSkt (MPPPBPtr the PBptr, Boolean async);

pascal OSErr PCloseSkt (MPPPBPtr thePBptr, Boolean async);
Summary of DDP 7-47

C H A P T E R 7

Datagram Delivery Protocol (DDP)
Sending DDP Datagrams

pascal OSErr PWriteDDP (MPPPBPtr the PBptr, Boolean async);

pascal void BuildDDPwds (Ptr wdsPtr, header Ptr, Ptr dataPtr,
const AddrBlock netAddr, short ddpType,
short dataLen);

Assembly-Language Summary 7

Constants 7

mppUnitNum EQU 9 ;MPP unit number

;csCodes for DDP

writeDDP EQU 246 ;write out DDP packet

closeSkt EQU 247 ;close DDP socket

openSkt EQU 248 ;open DDP socket

;long DDP packet header

ddpHopCnt EQU 0 ;hop count (byte)

ddpLength EQU 0 ;packet length (word)

ddpChecksum EQU 2 ;checksum (word)

ddpDstNet EQU 4 ;destination network number (word)

ddpSrcNet EQU 6 ;source network number (word)

ddpDstNode EQU 8 ;destination node address (byte)

ddpSrcNode EQU 9 ;source node address (byte)

ddpDstSkt EQU 10 ;destination socket number (byte)

ddpSrcSkt EQU 11 ;source socket number (byte)

ddpType EQU 12 ;DDP protocol type field (byte)

;short DDP packet header

sddpDstSkt EQU 2 ;destination socket number (byte)

sddpSrcSkt EQU 3 ;source socket number (byte)

sddpType EQU 4 ;DDP protocol type field (byte)

;DDP long header size

ddphSzLong EQU 13 ;size of extended DDP header

DDP short header size

ddphSzShort EQU 5 ;size of short DDP header

shortDDP EQU $01 ;LAP type code for DDP (short header)

longDDP EQU $02 ;LAP type code for DDP (long header)
7-48 Summary of DDP

C H A P T E R 7

Datagram Delivery Protocol (DDP)

7
D

atagram
 D

elivery P
rotocol (D

D
P

)

;DDP miscellaneous

ddpMaxWKS EQU $7F ;highest valid well-known socket

ddpMaxData EQU 586 ;maximum DDP data size

ddpLenMask EQU $03FF ;mask for DDP length

rhaSize EQU $18 ;size of read-header area

toRHA EQU 1 ;top of the read-header area

wdsEntrySz EQU 6 ;size of a write-data structure entry

DDPHopsMask EQU $3C00 ;mask hop count bits from field in DDP

; header

;command codes (csCodes)

writeDDP EQU 246 ;write out DDP packet

closeSkt EQU 247 ;close DDP socket

openSkt EQU 248 ;open DDP socket

Data Structures 7

MPP Parameter Block Common Fields for DDP Routines

OpenSkt Parameter Variant

CloseSkt Parameter Variant

WriteDDP Parameter Variant

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

26 csCode word command code; always openSkt
28 socket byte socket number
30 listener long pointer to socket listener

26 csCode word command code; always closeSkt
28 socket byte number of socket to be closed

26 csCode word command code; always writeDDP
28 socket byte number of socket to write from
30 listener long pointer to write-data structure
Summary of DDP 7-49

C H A P T E R 7

Datagram Delivery Protocol (DDP)
Result Codes 7
noErr 0 No error
ddpSktErr –91 Bad socket number or socket table is full
ddpLenErr –92 Datagram data exceeds 586 bytes
noBridgeErr –93 Could not find router to forward packet
7-50 Summary of DDP

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	Datagram Delivery Protocol (DDP)
	About DDP
	About Sockets and Socket Listeners
	Assigning Socket Numbers
	DDP Client Protocol Types
	Obtaining Data From the Network

	Using DDP
	Sending and Receiving Data: An Overview
	Opening a Socket
	Sending Data
	Receiving Data

	Creating a DDP Write-Data Structure
	Using Registers and Packet Headers
	How the .MPP Driver Calls Your Socket Listener
	The DDP Packet and Frame Headers
	The MPW Equates
	Reading an Incoming Packet
	Using Checksums

	A Sample Socket Listener
	Socket Listener Queues and Buffers
	Setting Up the Socket Listener
	Initializing the Socket Listener
	Processing a Packet
	Testing for Available Packets

	Measuring Packet-Delivery Performance

	DDP Reference
	Data Structures
	The Write-Data Structure
	The Address Block Record
	MPP Parameter Block

	Routines
	Opening and Closing DDP Sockets
	Sending DDP Datagrams

	Summary of DDP
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

