

C H A P T E R 1 0

10

Link-A
ccess P

rotocol (LA
P

) M
anager

Link-Access Protocol (LAP) Manager 10

The Link-Access Protocol (LAP) Manager is a set of operating-system utilities that
provide a standard interface between the higher-level AppleTalk protocols and the
various link-access protocols, such as LocalTalk (LLAP), EtherTalk (ELAP), TokenTalk
(TLAP), and FDDITalk (FLAP). This chapter describes the LAP Manager programming
interfaces to the AppleTalk Transition Queue and the 802.2 packet protocol handlers
only. This chapter does not discuss the LAP Manager interface to AppleTalk connection
files of type 'adev' that comprise the data links. Apple Computer, Inc. recommends
that you not write your own 'adev' files. However, for a description of the LAP
Manager that includes the interface to AppleTalk connection files for EtherTalk and other
AppleTalk connections, see the Macintosh AppleTalk Connections Programmer’s Guide.

You should read this chapter if you want the LAP Manager to notify you when a
transition occurs or is about to occur. An AppleTalk transition is an event, such as an
AppleTalk driver being opened or closed, that can affect your AppleTalk application.
This chapter also describes how you can define a transition to notify other applications
of a transition event that your application effects.

You should also read this chapter if your application processes 802.2 Type 1 packets. In
this case, you must write a protocol handler that reads 802.2 Type 1 data packets and
install your protocol handler as a client of the LAP Manager.

For an overview of the LAP Manager and how it fits within the AppleTalk protocol
stack, read the chapter “Introduction to AppleTalk” in this book, which also introduces
and defines some of the terminology used in this chapter. For additional information on
the IEEE 802.2 standard, see Inside AppleTalk, second edition.

About the LAP Manager 10

A Macintosh computer on an AppleTalk network can include one or more AppleTalk
connection files. An AppleTalk connection file is a file of type 'adev' that contains a
link-access protocol implementation for a data link (ELAP for EtherTalk, for example).
One important function of an AppleTalk connection file is to implement the AppleTalk
Address Resolution Protocol (AARP) that maps hardware layer addresses to AppleTalk
node addresses. The LAP Manager makes it possible for the user to select among
AppleTalk connection files by using the Network control panel to specify which network
is to be used for the node’s AppleTalk connection. When the user selects a connection
from the Network control panel, the LAP Manager routes AppleTalk communications
through the selected link-access protocol and hence through the selected hardware. The
LAP Manager acts as a switching mechanism, interceding between the higher-level
AppleTalk protocols and the data links so that when a user selects or changes the type of
data link to be used, the process is transparent to the higher-level AppleTalk protocols
and has no effect on applications that are clients of these protocols. Figure 10-1 shows
this service that the LAP Manager provides. This figure does not show an AppleTalk
connection file for LLAP because AARP is not used for LLAP and address mapping is
not necessary.
About the LAP Manager 10-3

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

Figure 10-1 LAP Manager connecting the higher-level AppleTalk protocols with the
selected data link

In addition to providing an interface to AppleTalk connection files, the LAP Manager
also maintains the AppleTalk Transition Queue, which is an operating-system queue
that can notify your application each time an AppleTalk transition occurs. An AppleTalk
transition is an event, such as an AppleTalk driver being opened or closed or a network
connection being broken, that can affect your AppleTalk application.

At any given time there might be two or more applications running that use AppleTalk.
If one of these applications opens the .MPP driver, the other AppleTalk applications that
use the driver are affected. If the operating system closes the AppleTalk .MPP driver, all
AppleTalk applications using the driver are affected. To ensure that your application
is not adversely affected by such an event, your application can place an entry in the
AppleTalk Transition Queue. The LAP Manager sends a message to each entry each time
the operating system or any routine performs any of these operations:

■ opens the .MPP driver

■ closes the .MPP driver

■ indicates that it intends to close the .MPP driver

■ cancels its intention to close the .MPP driver

■ reports that it is changing the flagship name (This is a personalized name that a user
can enter to identify the system when it is connected to an AppleTalk network.)

■ indicates that it intends to change the flagship name

■ cancels its intention to change the flagship name

■ reports that the network connectivity has changed (for example, that a previously
interconnected network is no longer available)

■ reports that the cable range for the current network has been changed

■ changes the speed of the CPU

■ defines its own AppleTalk event and calls the AppleTalk Transition Queue to inform it
that such an event occurred

LAP Manager

FLAP

FLAP 'adev' file

TLAP

TLAP 'adev' file

ELAP

ELAP 'adev' file
LLAP

AppleTalk protocols
10-4 About the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10

Link-A
ccess P

rotocol (LA
P

) M
anager

Each of these events is referred to as an AppleTalk transition.

The LAP Manager also includes a protocol handler that reads 802.2 packets and provides
an interface that allows you to attach your own protocol handler to receive 802.2 Type 1
packets. An 802.2 protocol handler is an application or process that receives, reads, and
processes these 802.2 data packets. An 802.2 packet conforms to the 802.2 data-link
standard called Logical Link Control (LLC) defined by the Institute of Electrical and
Electronics Engineers (IEEE) for use on Ethernet, token ring, FDDI, and certain other
data links. The 802.2 Type 1 protocol specifies a connectionless or datagram service. (The
AppleTalk ELAP, TLAP, and FLAP implementations process 802.2 Type 1 packets.)

Using the LAP Manager 10

This section describes how you can use the LAP Manager’s AppleTalk Transition Queue.
Then it describes how to attach and detach protocol handlers for 802.2 Type 1 data
packets using the L802Attach and L802Detach routines.

To use the AppleTalk Transition Queue, you add an entry for your application that
contains a pointer to a transition event handler routine that you must provide to receive
notification of transitions and to perform any additional processing that you want to
perform in reaction to the transition.

After you add your entry, the LAP Manager will call your transition event handler
routine to notify you that an AppleTalk transition either is about to occur or has
occurred. The description of how to use the AppleTalk Transition Queue includes

■ how to determine if the LAP Manager is installed on the node running your application

■ how to add an entry to the AppleTalk Transition Queue

■ how to write the routine that you must provide that the LAP Manager calls to notify
you of the transition

■ how to handle each of the standard AppleTalk transitions that can occur and about
which your routine will be notified

■ how to handle developer-defined transitions

■ how to define your own transition events

Determining if the LAP Manager Is Installed 10
Before you issue any calls to the LAP Manager, you should check to determine if the
LAP Manager is installed on the node that is running your application. The LAP
Manager is implemented beginning with AppleTalk version 53. To determine if the
LAP Manager is installed, you can check the low-memory global variable LAPMgrPtr.
However, Apple Computer, Inc. recommends that you use a higher-level method to
perform this check, such as the one that the code in Listing 10-1 shows.
Using the LAP Manager 10-5

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

Listing 10-1 Checking to determine if the LAP Manager is installed

FUNCTION GestaltAvailable: Boolean;

CONST

_Gestalt = $A1AD;

BEGIN

GestaltAvailable := TrapAvailable(_Gestalt);

END;

FUNCTION AppleTalkVersion: Integer;

CONST

versionRequested = 1; {version of SysEnvRec}

VAR

refNum: Integer;

world: SysEnvRec;

attrib: LongInt;

BEGIN

AppleTalkVersion := 0; {default to no AppleTalk}

IF OpenDriver('.MPP', refNum) = noErr THEN

{open the AppleTalk driver}

IF GestaltAvailable THEN

BEGIN

IF (Gestalt(gestaltAppleTalkVersion, attrib) = noErr)

THEN

AppleTalkVersion := BAND(attrib, $000000FF);

END

ELSE {Gestalt or gestaltAppleTalkVersion selector isn't }

{ available.}

IF SysEnvirons(versionRequested, world) = noErr THEN

AppleTalkVersion := world.atDrvrVersNum;

END;

FUNCTION LAPMgrExists: Boolean;

BEGIN

{AppleTalk Phase 2 is AppleTalk version 53 and later}

LAPMgrExists := (AppleTalkVersion >= 53);

END;
10-6 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10

Link-A
ccess P

rotocol (LA
P

) M
anager

Here is the declaration for the TrapAvailable function that the code in
Listing 10-1 calls:

FUNCTION TrapAvailable (theTrap: Integer): Boolean;

VAR

tType: TrapType;

BEGIN

tType := GetTrapType(theTrap);

IF tType = ToolTrap THEN

BEGIN

theTrap := BAND(theTrap, $07FF);

IF theTrap >= NumToolboxTraps THEN

theTrap := _Unimplemented, ToolTrap;

END;

Adding an Entry to the AppleTalk Transition Queue 10
To ensure that your application is not adversely affected by a transition event, your
application places an entry in the AppleTalk Transition Queue.

To do this, you must create an AppleTalk Transition Queue entry record of type
ATQentry and give the LAP Manager a pointer to it. See “The AppleTalk Transition
Queue Entry” on page 10-33 for a description of the AppleTalk Transition Queue entry
record. This record includes a CallAddr field that holds a pointer to a transition event
handler routine that you provide, which is described in the following section “How the
LAP Manager Calls Your Transition Event Handler Routine.”

Because you provide the memory for the queue entry, you can add as many fields to the
end of the entry as you wish for your own purposes. Whenever the LAP Manager calls
your transition event handler routine, it provides you with a pointer to the queue entry
so that you can have access to the information you stored at the end of your queue entry.

After you have created the AppleTalk Transition Queue entry record, you use the
LAPAddATQ function to add the entry to the AppleTalk Transition Queue. You pass a
pointer to the entry record as the value of the function’s theATQEntry parameter.
Listing 10-2 shows how to do this using assembly language: you place a routine selector
in the D0 register, place a pointer to your AppleTalk Transition Queue entry in the A0
register, and execute a JSR instruction to an offset past the start of the LAP Manager. The
start of the LAP Manager is contained in the global variable LAPMgrPtr ($B18). The
offset to the LAP Manager routines is given by the constant LAPMgrCall (2).
Using the LAP Manager 10-7

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

Listing 10-2 Adding an AppleTalk Transition Queue entry

LAPMgrPtr EQU $B18 ;entry point for LAP Manager

LAPMgrCall EQU 2 ;offset to LAP Manager

; routines

ATQEntry EQU * ;pointer to ATQ entry

MOVEQ #23,D0 ;place routine selector

; in D0

MOVE.L LAPMgrPtr,An ;put pointer to LAP Mgr in An
MOVE.L ATQEntry,A0 ;put ATQ entry in A0

JSR LAPMgrCall(An) ;jump to start of LAP Mgr

; routines

When you no longer want to be notified of transition events or before your program
exits, you use the LAPRmvATQ function to remove your AppleTalk Transition Queue
entry from the queue. Listing 10-3 shows how to do this from assembly language; you
place the routine selector in the D0 register, place a pointer to your AppleTalk Transition
Queue entry in the A0 register, and execute a JSR instruction to an offset past the start
of the LAP Manager. The start of the LAP Manager is contained in the global variable
LAPMgrPtr ($B18). The offset to the LAP Manager routines is given by the constant
LAPMgrCall (2).

Listing 10-3 Removing an AppleTalk Transition Queue entry

LAPMgrPtr EQU $B18 ;entry point for LAP Manager

LAPMgrCall EQU 2 ;offset to LAP Manager

; routines

ATQEntry EQU * ;pointer to ATQ entry

MOVEQ #24,D0 ;place routine selector

; in D0 (24 to remove an

; entry)

MOVE.L LAPMgrPtr,An ;put pointer to LAP Mgr in An
MOVE.L ATQEntry,A0 ;put ATQ entry in A0

JSR LAPMgrCall(An) ;jump to start of LAP Mgr

; routines
10-8 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10

Link-A
ccess P

rotocol (LA
P

) M
anager

How the LAP Manager Calls Your Transition Event
Handler Routine 10
This section describes how to write a transition event handler routine that responds to
notification of AppleTalk transitions. Because the LAP Manager calls your transition
event routine using C conventions, a transition event handler routine written in Pascal
requires glue code to function correctly. To help solve this problem, this section includes
a discussion of how to write a transition event routine using Pascal, and it also
includes glue code that you will need. This section also describes the standard AppleTalk
transitions and how your routine can respond to a particular transition.

When you have used the LAPAddATQ function to add an entry to the AppleTalk Transition
Queue, the LAP Manager calls the transition event handler routine, whose pointer you
pass to the LAP Manager in the AppleTalk Transition Queue entry record, whenever an
AppleTalk transition occurs.

Table 10-1 shows the standard AppleTalk transitions (each of which is discussed later in
this section) and their constants and routine selectors.

* The constants marked with an asterisk are not included in the header files; you can use the
routine selectors for these transitions, or you can define the constants in your application.

Table 10-1 AppleTalk transitions and their constants and routine selectors

AppleTalk transition Constant
Routine
selector

Open ATTransOpen 0

Prepare-to-close ATTransClose 2

Permission-to-close ATTransClosePrep 3

Cancel-close ATTransCancelCATTransCancelClose 4

Network-connection-
change

ATTransNetworkTransition* 5

Flagship-name-change ATTransNameChangeTellTask* 6

Permission-to-change-
flagship-name

ATTransNameChangeAskTask* 7

Cancel-flagship-name-
change

ATTransCancelNameChange* 8

Cable-range-change ATTransCableChange* 'rnge'

CPU-speed-change ATTransSpeedChange* 'sped'
Using the LAP Manager 10-9

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
From assembly language, when the LAP Manager calls your routine, the stack looks
like this:

The first item on the stack (after the 4-byte-long return address) is a routine selector.
There is one routine selector for each type of transition. Some transition events have a
single-digit routine selector. Other transition events are four-character codes. Codes
starting with an uppercase letter (A through Z) are reserved for use by developers. All
other codes are reserved for use by Apple Computer, Inc.

The second item passed to your routine on the stack is a pointer to your routine’s entry
in the AppleTalk Transition Queue. You can use this pointer to gain access to any fields at
the end of the queue entry that you allocated for your own use. The last item passed to
your routine on the stack is a 4-byte-long parameter whose meaning depends on the
type of transition.

With the exception of the open transition, the prepare-to-close transition, the flagship-
name-change transition, the permission-to-change-flagship-name transition, and the
cancel-flagship-name transition, the interface between the AppleTalk Transition Queue
and your routine must follow these conventions:

■ Your routine must preserve all registers except D0, D1, D2, A0, and A1.

■ All parameters are passed on the stack as long words.

■ Because your routine might be called at interrupt time, your routine must not make
any direct or indirect calls to the Memory Manager, and it cannot depend on handles
to unlocked blocks being valid, unless otherwise noted in the description of the
transition event.

Return address

Routine selector

Pointer to

AppleTalk Transition Queue entry

Routine-dependent parameter

Previous contents

Stack pointer
10-10 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
■ If you want to use any of your application’s global variables, you must save the
contents of the A5 register before using the variables and you must restore the
A5 register before your routine terminates.

Again, these restrictions do not apply to the open transition, the prepare-to-close
transition, and the three flagship-name transitions.

IMPORTANT

It is important that you return a 0 in the D0 register whenever you
receive a transition event routine selector that you do not recognize or
do not choose to handle. Returning a nonzero value in the D0 register
might cause the system to cancel an attempt to close AppleTalk, for
example, or it might be misinterpreted in some other way. You should
only return a nonzero result to known transition events. ▲

Writing a Transition Event Handler Routine Using Pascal 10

The LAP Manager assumes that you will use the CallAddr field of your event record to
pass it a pointer to a transition event handler routine that is written in the C program-
ming language. The LAP Manager use C calling conventions when it calls your routine.

If you write your transition event handler routine in Pascal, you must include a glue
code wrapper routine. You can use either the sample glue code provided in this section
or your own method. To use this glue code, you must modify the AppleTalk Transition
Queue entry record to include a field to hold a pointer to your Pascal transition event
handler routine. You must add this field directly after the CallAddr field. You use the
CallAddr field to pass the address of the assembly-language glue code routine. Here is
the type declaration for an AppleTalk Transition Queue entry record that includes the
additional field that is required if you use the glue code:

TYPE myATQEntry =

RECORD

qlink: Ptr; {ptr to next queue entry}

qType: Integer; {reserved}

CallAddr: ProcPtr; {ptr to the glue code}

PATQProcPtr: ProcPtr; {ptr to Pascal ATQ }

{ routine; this field must }

{ follow the CallAddr field. }

{ Do not change the order of }

{ these fields.}

globs: TransEventPtr; {ptr to user defined globals}

END;

myATQEntryPtr = ^myATQEntry;

myATQEntryHdl = ^myATQEntryPtr;
Using the LAP Manager 10-11

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
The following segment of code shows how to add an AppleTalk Transition Queue entry
to the queue. In this example, the actual transition event handler routine is called
ATQueueProc. The glue code routine is called CallTransQueue. The LAPAddATQ
function passes the glue code routine to the LAP Manager in the CallAddr field of
the AppleTalk Transition Queue entry myATQEntry.

VAR

gATQEntry: myATQEntry;

OSErr: err;

BEGIN

gATQEntry.CallAddr := ProcPtr(@CallTransQueue);

gATQEntry.PATQProcPtr := ProcPtr(@ATQueueProc);

err := LAPAddATQ(ATQEntryPtr(@gATQEntry));

Listing 10-4 shows the sample assembly-language glue code routine CallTransQueue
that you can use if you write your transition event handler routine in Pascal. The glue
routine takes the parameters from the stack and sets up a Pascal stack, then calls the
function pointed to by the PATQProcPtr field of the AppleTalk Transition Queue entry
record. On return, the glue code pulls the result from the stack and puts it into the D0
register, where the LAP Manager expects to find it.

Listing 10-4 Glue code for a Pascal transition event handler routine

;FUNCTION CallTransQueue (selector: LongInt; q: ATQEntryPtr;

; p: Ptr): LongInt;

;EXTERNAL;

CallTransQueue PROCEXPORT

LINK A6,#$0000 ;set up a local stack frame

CLR.L -(A7) ;set space for return result

MOVE.L $0008(A6),-(A7) ;move selector to stack

MOVE.L $000C(A6),-(A7) ;move ATQPtr to stack

MOVEA.L (A7),A0 ;put copy ATQPtr in A0

MOVEA.L $000A(A0),A0 ;put pointer to real ATQ in A0

MOVE.L $0010(A6),-(A7) ;move last parameter:

; pointer to stack

JSR (A0) ;call the Pascal ATQ function

MOVE.L (A7)+,D0 ;move result into D0

UNLK A6 ;tear down local stack frame

RTS ;return

ENDP

END
10-12 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
Open Transition 10

When an application calls the MPPOpen function or the Device Manager’s OpenDriver
function, AppleTalk attempts to open the .MPP driver. If the .MPP driver is already
open, the LAP Manager does not call the AppleTalk Transition Queue transition event
handler routines. If AppleTalk successfully opens the .MPP driver, the LAP Manager
then calls every routine listed in the AppleTalk Transition Queue with an open transition
(ATTransOpen).

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

The last item on the stack for an open transition is a pointer to the start of the Device
Manager extended parameter block used by the routine that opened the .MPP driver.
This pointer is provided for your information only; you must not change any of the
fields in this parameter block.

Your transition event handler routine can perform any tasks you wish in response to the
notification that the .MPP driver has been opened, such as using the Name-Binding
Protocol (NBP) to register a name on the internet. Return 0 in the D0 register to indicate
that your routine executed with no error.

Note
The open transition event occurs at system task time, during which you
can allocate memory. ◆

Address of caller

0 (ATTransOpen)

Pointer to

AppleTalk Transition Queue entry

Pointer to MPP parameter block

Previous contents

Stack pointer
Using the LAP Manager 10-13

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
Prepare-to-Close Transition 10

When any routine calls the MPPClose function or the Device Manager’s CloseDriver
function to close the .MPP driver, the LAP Manager calls every routine listed in the
AppleTalk Transition Queue before the .MPP driver closes with an ATTransClose
transition; if the .MPP driver is already closed when a routine calls either MPPClose or
CloseDriver, the LAP Manager does not call the transition event handler routines in
the AppleTalk Transition Queue.

When the system closes the .MPP driver

Whereas it is unlikely that opening the .MPP driver will adversely affect
another program, an application should never close the .MPP driver
because another program might be using it. Under certain circum-
stances, however, the system might close the .MPP driver, for example,
when the user changes the network connection. In this case, the system
will send a permission-to-close transition to each routine in the
AppleTalk Transition Queue. This transition indicates that the system
intends to close the .MPP driver, and in this way, each transition event
handler routine in the queue has the opportunity to deny it permission
to do so. When the system sends the permission-to-close transition, any
routine in the AppleTalk Transition Queue that wishes to deny
permission to close the .MPP driver can return a pointer to a Pascal
string that gives the name of the application that placed the entry in the
queue. If any routine denies permission to close the .MPP driver, the
LAP Manager sends a cancel-close transition to every routine in the
AppleTalk Transition Queue that previously received the permission-to-
close transition. The application that caused the system to send a
permission-to-close transition application may display a dialog box
informing the user that another application is using the .MPP driver and
showing the name (if any) returned by the transition event handler
routine. The dialog box gives the user the option of canceling the request
to close AppleTalk or of closing AppleTalk anyway. If the user chooses to
close AppleTalk despite the fact that an application is using it, the
system calls the MPPClose function. The LAP Manager then sends a
prepare-to-close transition to each application in the AppleTalk
Transition Queue, informing each one that AppleTalk is about to close.
In this case, your transition event handler routine must prepare for the
imminent closing of AppleTalk; it cannot deny permission to the
MPPClose function. ◆
10-14 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
When the LAP Manager calls your transition event handler routine, the stack looks
like this:

Your routine can perform any tasks you wish to prepare for the imminent closing of
AppleTalk, such as ending a session with a remote terminal and informing the user that
the connection is being closed. You must return control to the LAP Manager as quickly as
possible. Return 0 in the D0 register to indicate that your routine executed with no error.

Note
When the LAP Manager calls your routine with a prepare-to-close
transition (that is, a routine selector of ATTransClose), you cannot
prevent the .MPP driver from closing. ◆

Permission-to-Close Transition 10

When a routine calls AppleTalk to inform AppleTalk that it wants to close the .MPP
driver, the LAP Manager calls every transition event handler routine to request
permission to close the .MPP driver with an ATTransClosePrep transition.

Address of caller

2 (ATTransClose)

Pointer to

AppleTalk Transition Queue entry

Not used

Previous contents

Stack pointer
Using the LAP Manager 10-15

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
When the LAP Manager calls your transition event handler routine, the stack looks
like this:

The last parameter on the stack is a pointer to a 4-byte buffer. If you intend to deny the
request to close the .MPP driver, you place in the buffer a pointer to a Pascal string
containing the name of your application. This string belongs to the LAP Manager until
the LAP Manager finishes processing the cancel-close transition. The routine that issued
the request to close the .MPP driver can then display a dialog box telling the user the
name of the application that is currently using AppleTalk.

Your routine can return either a function result of 0 in the D0 register, indicating that it
accepts the request to close, or a 1 in the D0 register, indicating that it denies the request
to close. Note that the operating system might elect to close the .MPP driver anyway; for
example, if the user grants permission to close in response to a dialog box.

Because the LAP Manager calls your routine again (with the routine selector set to
ATTransClose) before the .MPP driver actually closes, it is not necessary for your
routine to do anything other than grant or deny permission in response to being called
for a permission-to-close transition. However, you might want to prohibit users from
opening new sessions or establishing new connections while you are waiting for the
.MPP driver to close.

Note
Earlier versions of Inside Macintosh referred to the PATalkClosePrep
function as a means of requesting permission to close the .MPP driver.
The PATalkClosePrep function is now only used internally by the
.MPP driver. ◆

Address of caller

3 (ATTransClosePrep)

Pointer to

AppleTalk Transition Queue entry

Pointer to 4-byte buffer

Previous contents

Stack pointer
10-16 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
Cancel-Close Transition 10

When any routine in the AppleTalk Transition Queue denies permission for the .MPP
driver to close, the LAP Manager calls each routine that has already received the
permission-to-close transition with an ATTransCancelClose transition to inform it
that the request to close the .MPP driver has been canceled.

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

If your routine performed any tasks to prepare for the closing of AppleTalk, it
should reverse their effects when it is called with the routine selector set to
ATTransCancelClose. Return 0 in the D0 register to indicate that your routine
executed with no errors.

Network-Connection-Change Transition 10

To receive notification of network connection changes or transitions, your application
should process ATTransNetworkTransition transitions. All applications running on
an AppleTalk network should handle this event, but especially those applications that
use multinode IDs.

For example, Apple Remote Access (ARA), which uses multinode architecture, allows
a user to establish a connection between two Macintosh computers over standard
telephone lines. If the Macintosh that the user dials into is on an AppleTalk network,
such as LocalTalk or EtherTalk, the Macintosh effectively becomes a node on that
network, and all of the services on that network become available to the user. Because
of this relationship, any application that establishes an ARA connection needs to be
notified when new AppleTalk connections are established or broken.

Address of caller

4 (ATTransCancelClose)

Pointer to

AppleTalk Transition Queue entry

Not used

Previous contents

Stack pointer
Using the LAP Manager 10-17

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
Note
Both the AppleTalk Session Protocol (ASP) and the AppleTalk Data
Stream Protocol (ADSP) have been modified to respond to network-
connection-change transitions. When the AppleTalk drivers that
implement these protocols receive notification of a network
disconnect transition, they close down sessions on the remote side
of the connection. ◆

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

Note
If you want to use the constant ATTransNetworkTransition for this
transition event, you must first declare it in your application because it
is not defined in the MPW interface files. ◆

When the LAP Manager calls your routine, the last parameter on the stack contains a
pointer to a record that contains a pointer to a network validation procedure. The
process that sends notification of the network connection change uses this record to pass
to the transition event handler routines a pointer to the network validation procedure;
the transition event handler routines can then use this procedure to determine which
networks are no longer connected, which networks remain connected, and which new

Address of caller

5 (ATTransNetworkTransition)

Pointer to

AppleTalk Transition Queue entry

Pointer to a record containing

network transition information

Previous contents

Stack pointer
10-18 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
networks have been added. To read the data in the record that this field points to, you
must declare the following record type in your application:

TNetworkTransition =

RECORD

private: Ptr; {pointer used internally by ARA}

netValidProc: ProcPtr; {pointer to the network }

{ validation procedure}

newConnectivity: Boolean; {TRUE = new connectivity, }

{ FALSE = loss of connectivity}

END;

You cannot access a ProcPtr directly from Pascal. Therefore, if you write your
application in Pascal and you want to handle the ATTransNetworkTransition
event, you need to include the following glue code so that you can access the
network validation procedure pointed to by the netValidProc field. Listing 10-5
shows the CallNetValidProc function glue code that you can use to call the
netValidProc validation procedure passed in the TNetworkTransition record.

Listing 10-5 Glue code to handle the network-connection-change transition from Pascal

FUNCTION CallNetValidProc (netTrans: TNetworkTransitionPtr;

 theNet: LongInt; p: ProcPtr): LongInt;

INLINE

$205F, { MOVEA.L (SP)+,A0 ;get ProcPtr into A0, and make stack

; right for call }

$4E90; { JSR (A0) ;call ProcPtr, and return to caller}

The code in Listing 10-6 demonstrates the calling sequence of events for the
CallNetValidProc glue code.

Listing 10-6 Using the glue code for the network validation procedure

CASE selector OF

ATTransNetworkTransition:

BEGIN

myTNetworkTransitionPtr := TNetworkTransitionPtr(p);

if (myTNetworkTransitionPtr^.newConnectivity) THEN

BEGIN

{

/*Determine if there is a new connection.*/

}

END
Using the LAP Manager 10-19

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
ELSE

BEGIN

{

/*If there is a new connection, determine which network */

/* address needs to be validated and assign the value to */

/* checkThisNet.*/

}

checkThisNet = $1234FD00;

/*network $1234, node $FD, socket not used*/

if (CallNetValidProc(myTNetworkTransitionPtr, checkThisNet

myTNetworkTransitionPtr^.netValidProc) <> 0) THEN

/*Take the appropriate action depending on result.*/

Apple Remote Access (ARA) is an example of a process that generates network-
connection-change transitions to inform transition event handler routines and resident
processes that network connectivity has changed. ARA uses the TNetworkTransition
record to inform the routines about the changes. The newConnectivity field of the
TNetworkTransition record identifies the type of change that has occurred:

■ If this flag is TRUE, the network that your node is connected to through ARA has
connected to a new internet. In this case, the LAP Manager will return all network
addresses identifying them as reachable.

■ If this flag is FALSE, specific networks are no longer reachable.

Because ARA is connection oriented, it can identify the location of a specific network and
inform transition event handler routines that a network is no longer reachable. You can
use this information to identify the loss of connections immediately instead of waiting to
discover that the other end of the connection is no longer responding.

The netValidProc field of the TNetWorkTransition record contains a network
validation hook for a function that you can use to query ARA about a specific network to
determine if that network is still reachable. If the network is reachable, the validation
function returns TRUE. You can call this function repeatedly to determine the status of
each network that you are interested in. If you use the Pascal language to write your
transition event handler routine, you must implement glue code to use the network
validation procedure.

The information that the validation function returns is valid only for those routines that
use the function in response to a network-connection-change transition.

Note
A network-connection-change transition can be sent at interrupt time.
Because of this, you should follow the conventions that apply when a
routine is called during an interrupt. For example, your routine should
not call routines that move memory and you should not call AppleTalk
functions synchronously. ◆
10-20 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
Flagship-Name-Change Transition 10

System 7 allows a user to enter a personalized name that identifies the system when
it is connected to an AppleTalk network. This is called the flagship name. An application
that provides network services for a workstation should use the flagship name so
that the user can personalize the name that identifies the workstation to the network
while reserving the use of the Chooser name for server connection identification.
If your application utilizes flagship names, your routine should process
ATTransNameChangeTellTask transitions. When the LAP Manager calls your
routine with an ATTransNameChangeTellTask transition, you cannot prevent the
flagship name from being changed.

When a routine calls the ATEvent procedure to change the flagship name, the LAP
Manager calls every routine listed in the AppleTalk Transition Queue with an
ATTransNameChangeTellTask transition. When the LAP Manager calls your
transition event handler routine, the stack looks like this:

The last item on the stack is a pointer to a Pascal string that is the new flagship name to
be registered. Your routine should remove the NBP registrations of entities under the old
flagship name. You can make synchronous calls to NBP to remove a registered entity.
Return a result of 0 in the D0 register to indicate that your routine executed with no error.

Note
Your application should only respond to flagship name changes
about which it receives notification. Do not attempt to change
the flagship name. ◆

Address of caller

6 (ATTransNameChangeTellTask)

Pointer to

AppleTalk Transition Queue entry

Pointer to buffer containing

new flagship name

Previous contents

Stack pointer
Using the LAP Manager 10-21

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
Permission-to-Change-Flagship-Name Transition 10

If your application utilizes flagship names, your transition event handler routine should
process ATTransChangeNameAskTask transitions. When a process makes a request to
change the flagship name, the LAP Manager calls every routine listed in the AppleTalk
Transition Queue with an ATTransChangeNameAsk transition to request permission to
change the name. When the LAP Manager calls your transition event handler routine,
the stack looks like this:

The last item on the stack contains a pointer to a record that holds the new flagship
name. The NameChangeInfo record also includes a field that you use to identify your
application if you deny the name-change request. To read from and write to the record,
you must declare the following record type in your application:

NameChangeInfo =

RECORD

newObjStr: Str32; {new flagship name}

name: StringPtr; {pointer to }

END; { application's name}

The newObjStr field contains the proposed flagship name change. Your routine can
inspect the newObjStr field. If your routine denies the name-change request, you
must provide as the value of the name field a pointer to a buffer containing a Pascal

Address of caller

7 (ATTransNameChangeAskTask)

Pointer to

AppleTalk Transition Queue entry

Pointer to a record containing the new

flagship name and a pointer to a Pascal string

Previous contents

Stack pointer
10-22 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
string that names your application. The LAP Manager returns this pointer to the process
that requested the flagship name change so that the process can then display a dialog
box telling the user the name of the application that refused the name change.

If your application does not deny the request, you can make synchronous calls to NBP to
attempt to register your application under the new flagship name while your transaction
event handler routine is processing the request. Apple Computer, Inc. recommends that
you register your application with NBP under the new flagship name while you handle
the ATTransChangeNameAskTask transition. However, you should not remove the old
NBP registration until you are certain that other applications have not denied the request
to change the flagship name. If another application denies the name-change request, the
LAP Manager will send an ATTransCancelNameChange transition to cancel the name-
change request.

Return 0 in the D0 register to indicate that you accept the request to change the flagship
name. To deny the request, return a nonzero number in the D0 register.

Cancel-Flagship-Name-Change Transition 10

When any routine in the AppleTalk Transition Queue refuses a request to change
the flagship name, the LAP Manager will send an ATTransCancelNameChange
transition to any transition event handler routines that acknowledged the
ATTransNameChangeAskTask transition.

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

Address of caller

8 (ATTransCancelNameChange)

Pointer to

AppleTalk Transition Queue entry

Not used

Previous contents

Stack pointer
Using the LAP Manager 10-23

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
If your routine registered any entities with NBP under the new flagship name while it
processed the ATTransNameChangeAskTask, it should remove those entries now. You
can make synchronous calls to NBP to remove registration of the entities.

Return a result of 0 in the D0 register to indicate that your routine executed with
no errors.

Cable-Range-Change Transition 10

A cable range is a range of network numbers beginning with the lowest network number
and ending with the highest network number defined by a seed router for a network. All
node addresses, including multinode addresses, that a system on a network acquires
must have a network number within the defined cable range. (For information on
multinodes, see the chapter “Multinode Architecture” in this book.)

Note
For nonextended networks, the lowest and the highest
numbers are the same. ◆

When the cable range of a network changes because, for example, a router on the
network shuts down, the LAP Manager will call your transition event handler routine
with an ATTransCableChange transition. This transition notifies you that the cable
range has changed for the network to which your node is connected.

Applications that use multinodes are examples of processes that should handle this
transition. For multinode applications, after receiving notification of the cable range
change, you should check the new cable range and determine if all the multinode IDs
that the application acquired before the transition event occurred are still valid. If you
discover multinode IDs that are no longer valid, you should call the RemoveNode
function to remove them. Then you can call the AddNode function to obtain new
multinode IDs that are within the valid cable range. See the chapter “Multinode
Architecture” for information on RemoveNode and AddNode.

The LAP Manager sends you notice of a change in the cable range when the following
events occur: AppleTalk first identifies the network router, the last router ages out, or
AppleTalk first receives a Routing Table Maintenance Protocol (RTMP) broadcast packet
that is different from the current range. The ATTransCableChange transition is
implemented beginning with AppleTalk version 57. This transition event is issued at
system task time only.
10-24 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
When the LAP Manager calls your transition event handler routine, the stack looks
like this:

The last item on the stack contains a pointer to a record that holds the new high and low
cable numbers that identify the cable range. To access this information, you must declare
a record of type TNewCRTrans. Here is the TNewCRTrans record type declaration:

TNewCRTrans =

RECORD

newCableLo: Integer; {new low cable in the range, }

{ received from RTMP}

newCableHigh: Integer; {new high cable in the range, }

{ received from RTMP}

END;

CPU-Speed-Change Transition 10

Some applications change the CPU speed without rebooting the system. For example, an
application may alter the cache states on the 68030 or 68040 CPUs or a third-party
accelerator card may support dynamic speed changes made through a control panel
'cdev' file. Time-dependent processes need to be notified of changes to the CPU speed
when these changes occur. If your application changes the CPU speed, you should use
the ATEvent procedure to send notification of an ATTransSpeedChange transition to

Address of caller

'rnge' (ATTransCableChange)

Pointer to

AppleTalk Transition Queue entry

Pointer to a record containing

new cable range information

Previous contents

Stack pointer
Using the LAP Manager 10-25

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
time-dependent processes. You must issue this transition event at system task time only.
When you call the ATEvent procedure, pass ATTransSpeedChange as the value of the
event parameter.

You must always notify LocalTalk when a CPU speed change occurs. LocalTalk includes
a module that is time-dependent; the low-level timer values used in this code must be
recalculated when the CPU speed changes. Altering the cache state on the 68030 does not
affect LocalTalk, whereas altering the cache state on the 68040 does affect the LocalTalk
timers. Therefore, an application that dynamically toggles caching on the 68040 should
send notification of an ATTransSpeedChange transition. If the application does not do
this and LocalTalk is the current network connection, the connection will be broken.
LocalTalk implemented in AppleTalk version 57 or later recognizes the CPU-speed-
change transition event notification.

The transition event handler routine of any time-dependent process should handle the
ATTransSpeedChange transition notification. When the LAP Manager calls your
transition event handler routine, the stack looks like this:

Developer-Defined Transitions 10

Any AppleTalk transition event code that begins with an uppercase letter (that is, any
value in the range $41 00 00 00 through $5A FF FF FF) indicates a developer-defined
event. Because you cannot tell how the originator of such an event might interpret a
nonzero function result, you must always return 0 in the D0 register for any AppleTalk
transition event code that you do not recognize.

When you return a nonzero result code for certain developer-defined transitions, the
LAP Manager may call your transition event handler routine a second time with a cancel
transition analogous to the cancel-close transition.

Address of caller

'sped' (ATTransSpeedChange)

Pointer to

AppleTalk Transition Queue entry

Not used

Previous contents

Stack pointer
10-26 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
Defining Your Own AppleTalk Transition 10
You can define AppleTalk transitions and use such events to send messages to your own
entries in the AppleTalk Transition Queue, or you can define events and make them
public for others to use.

You can define your own AppleTalk transition to have any meaning you choose. For
example, you might want to call every routine in the AppleTalk Transition Queue each
time you open or close a custom protocol stack.

You can use either the ATEvent procedure or the ATPreFlightEvent function to
notify all of the routines in the AppleTalk Transition Queue that your AppleTalk
transition has occurred. Whereas the ATEvent procedure only calls the routines in
the queue with a transition event, the ATPreFlightEvent function also allows each
routine in the AppleTalk Transition Queue to return a result code and other information
to your calling routine.

A developer-defined event, as with any event, always begins with an uppercase letter
(that is, any value in the range $41 00 00 00 through $5A FF FF FF).

Note
You can call the ATEvent and ATPreFlightEvent routines only at
virtual-memory safe time. See Inside Macintosh: Memory for information
on virtual memory. ◆

The LAP Manager and 802.2 Protocol Packets 10
The Institute of Electrical and Electronics Engineers (IEEE) has defined a series of
communications protocols for use on a variety of networks. At the physical level, these
protocols include the 802.3 CSMA/CD protocol, the 802.4 token bus protocol, and the
802.5 token ring protocol. At the data-link level, you access these protocols through the
IEEE 802.2 Logical Link Control (LLC) protocol. If you write an application that handles
802.2 Type 1 data packets, you must include a protocol handler to read the data. You can
install your application as a client of the LAP Manager to receive 802.2 packets from an
Ethernet, token ring, or FDDI driver.

The LAP Manager includes two routines that allow you to attach and detach protocol
handlers for 802.2 Type 1 data packets: the L802Attach and L802Detach routines. The
LAP Manager contains a generic protocol handler that receives data from the hardware
device drivers and determines for which application the 802.2 packet is meant based
on the protocol type. The LAP Manager’s protocol handler then calls the destination
application’s protocol handler to read in the data. This section uses Ethernet to
illustrate how this process works; however, the same process applies to token ring and
FDDI packets.

The ANSI/IEEE standards for the 802 protocols are published by the IEEE. The first
14 bytes of a packet sent or received by the .ENET driver constitute the header. The first
12 bytes consist of the destination and source data-link addresses, such as the Ethernet
hardware addresses. If the value of the last 2 bytes in the header is greater than 1500,
then the .ENET driver treats that field as an Ethernet protocol type discriminator; this
Using the LAP Manager 10-27

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
indicates that the packet is an Ethernet Phase 1 packet. If the value of the last 2 bytes in
the header is less than or equal to 1500, then the field contains the length of the 802.2
packet, not including the 14-byte header, and this indicates that the packet is an Ethernet
Phase 2 packet. The .ENET driver passes all Phase 2 packets to the LAP Manager.

The IEEE LLC standard defines the concept of a Service Access Point (SAP). A SAP is a
1-byte value that is used to distinguish the different protocols using 802.2 in a single
node. Most SAPs are reserved for use by IEEE standard protocols. IEEE has reserved one
SAP, whose value is $AA, for use by protocols other than the standard IEEE protocols.
AppleTalk and many other protocol families use SAP $AA. Because other protocol
families can also use this SAP, the value of another field that contains the subnetwork
access protocol (SNAP) type is used to discriminate for which protocol family a packet
with a destination subnetwork access protocol value of $AA is intended.

At the physical level, a packet contains the 802.3 header, the data field of which contains
either an Ethernet protocol type discriminator (for Phase 1 packets) or the 802.2 packet
length (for Phase 2 packets). For all Phase 2 packets, the LAP Manager receives the entire
802.3 packet from the .ENET driver. The first 14 bytes of the 802.3 data constitute the
frame header, and they are followed by the 802.2 protocol header.

The first byte of the 802.2 header is the destination service access point (DSAP). If the
DSAP value is equal to $AA, then the first 5 bytes of the 802.2 data constitute a SNAP
protocol type discriminator. If the SNAP type value is $00000080F3, indicating the
AppleTalk Address Resolution Protocol (AARP), then the next 4 bytes of the 802.2 data
constitute the AARP packet type field. AARP is not discussed at length in this book; for
complete information about AARP, see Inside AppleTalk, second edition.

Figure 10-2 shows an Ethernet packet containing AppleTalk Phase 1 data. Phase 1
packets are the original version of Ethernet packets. The last 2 bytes in the header
contain a value greater than 1500, indicating that this field is to be treated as a
protocol type discriminator.

Figure 10-2 Ethernet Phase 1 packet formats

Ethernet hardware

 destination

address

Ethernet Phase 1

data frame

Bytes

Ethernet hardware

source

address

6

6

Ethernet protocol

type discriminator 2

AppleTalk

Phase 1 data

$80

$9B

Variable

length
10-28 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
Figure 10-3 shows two Phase 2 packets. For Phase 2 packets, the last 2 bytes of the
802.3 header contain the 802.2 packet length, not including the 14-byte header; the
802.2 packet length is a value from 0 through 1500.

The data frame on the left shows an Ethernet 802.3 packet containing an 802.2 packet
that holds AppleTalk Phase 2 data. The Ethernet driver would deliver this entire packet
to the LAP Manager; the 802.2 packet is enclosed in the 802.3 packet, which is also
referred to as a frame. The data frame on the right shows an Ethernet 802.3 packet
containing an 802.2 packet to be delivered to the Phase 2 Ethernet AARP handler;
the SNAP type value is $00000080F3, indicating the AppleTalk Address Resolution
Protocol (AARP).

Figure 10-3 Ethernet Phase 2 packet formats

When you call the L802Attach routine, you provide a pointer to your protocol handler,
the reference number of the .ENET driver, and a pointer to a string containing one or
more type fields. The type fields indicate the DSAP value and any other protocol type
fields (such as the SNAP type and the AARP type). The LAP Manager delivers to your
protocol handler any 802.2 data packets that have the protocol type you specify.

802.3 destination

address

Ethernet Phase 2

data frame

Bytes

802.3 source

address

6

6

Data length 2

802.2 header 3

SNAP type 6

802.3 destination

address

AARP Ethernet Phase 2

AARP data frame

Bytes

802.3 source

address

6

6

Data length 2

802.2 header

AARP packet type

3

4

AARP data

SNAP type 6

AppleTalk

Phase 2 data $00

$01

$80

$9B

$00

$00

$00

$80

$F3

$AA

$AA

$03

(Less than or

equal to 1500)

$AA

$AA

$03

(Less than or

equal to 1500)

$08

$00

$07

$80

$9B

802.2

packet

802.2

packetVariable

length

Variable

length
Using the LAP Manager 10-29

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
Attaching and Detaching 802.2 Protocol Handlers 10

You must use the LAP Manager to attach your protocol handler for 802.2 protocols to
receive Ethernet Phase 2 packets and all token ring and FDDI packets.

The LAP Manager is designed to install a generic protocol handler that receives packets
from the hardware device drivers for 802.2 protocols and that also serves as a dispatcher.
The LAP Manager’s protocol handler maintains an index of registered protocol types
and pointers to their protocol handlers. When an application calls the LAP Manager to
attach a protocol handler, the LAP Manager adds an entry for the application’s protocol
type and protocol handler to its protocol handler index.

The LAP Manager’s protocol handler determines for which application data is meant.
When processing a packet, the LAP Manager reads the destination SAP; if the SAP value
is $AA, the LAP Manager then checks the SNAP header for the protocol type, and then it
searches for a protocol type match in its protocol handler index. If the LAP Manager
finds a protocol type match, it calls the destination application’s protocol handler to read
in the data. You cannot replace or override the permanent LAP Manager protocol handler.

The first time that a process or application calls the LAP Manager to attach a protocol
handler for 802.2 packets, the LAP Manager calls the specified hardware device driver
directly to install its own generic protocol handler. The LAP Manager then registers in its
index the protocol handler and the protocol type for the process that initially called it.
When a process or application subsequently calls the LAP Manager to attach a protocol
handler to receive 802.2 packets from the same type of hardware device driver, the LAP
Manager simply adds the protocol handler and protocol type information for that
process to its index.

The LAP Manager allows for the concurrent use of hardware device drivers by more
than one application. For example, Figure 10-4 shows three scenarios. In the first instance
at the top of the figure, only AppleTalk is using the Ethernet driver to receive data;
AppleTalk always uses the LAP Manager, which provides for its link independence.

In the second instance in the middle of the figure, both AppleTalk and a developer-
written application have attached their protocol handlers to the LAP Manager.
AppleTalk is configured to use the Ethernet driver; when the LAP Manager’s protocol
handler reads a packet, it determines if the data is meant for AppleTalk, and if so, the
LAP Manager calls the DDP protocol handler to receive the data. If the data is meant
for the other application, the LAP Manager calls that application’s protocol handler.

In the third instance at the bottom of the figure, both AppleTalk and the developer-
written application have attached their protocol handlers to the LAP Manager to receive
data from the token ring driver. The LAP Manager receives the data, determines the
destination, then calls the appropriate protocol handler, either the DDP protocol handler
or the developer-written application’s protocol handler to receive the data.
10-30 Using the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
Figure 10-4 Using the LAP Manager to receive data for 802.2 protocols

There are no high-level interfaces for the LAP Manager 802.2 protocol routines. You call
these routines from assembly language by placing a routine selector in the D0 register
and executing a JSR instruction to an offset 2 bytes past the start of the LAP Manager.
The start of the LAP Manager is contained in the global variable LAPMgrPtr ($B18).

Before you call these routines, you must place the reference number of the .ENET driver
in the D2 register and a pointer to the protocol type specification in the A1 register.
Before you call the L802Attach routine, you must also place a pointer to your protocol
handler in the A0 register. Both routines return a nonzero value in the D0 register if there
is an error.

DDP

LAP

Manager

protocol

handler

Ethernet

driver

Card

Developer-

written

protocol

Token ring

driver

Card

DDP

LAP

Manager

protocol

handler

Ethernet

driver

Card

Developer-

written

protocol

Token ring

driver

Card

DDP

LAP

Manager

protocol

handler

Ethernet

driver

Card
Using the LAP Manager 10-31

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
Listing 10-7 shows how to call either the LAP Manager’s L802Attach or L802Detach
routine from assembly language. To specify either of these routines, you place the
routine selector in register D0, as indicated in the sample code.

Listing 10-7 Calling a LAP Manager 802.2 routine from assembly language

LAPMgrPtr EQU $B18 ;entry point for LAP Manager

LAPMgrCall EQU 2 ;offset to LAP Manager

; routines

L802Entry EQU * ;802 routine entry

MOVEQ #RSel,D0 ;place the routine selector

; in D0

MOVEQ #refNum,D2 ;place the driver reference

; number in D2

MOVE.L PHndlrPtr,A0 ;put pointer to protocol

; handler in A0 (L802Attach

; only)

MOVE.L PSpecPtr,A1 ;put pointer to protocol

; specification in A1

MOVE.L LAPMgrPtr,An ;put pointer to LAP Mgr in An
JSR LAPMgrCall(An) ;jump to start of LAP Mgr

; routines

For information on the protocol type specification whose pointer you place in register A1,
see “L802Attach” beginning on page 10-40.

LAP Manager Reference 10

This section describes the data structures and routines that are specific to the
LAP Manager.

The “Data Structures” section shows the Pascal data structure for the AppleTalk
Transition Queue entry record.

The “Routines” section describes routines for adding and removing an AppleTalk
Transition Queue entry, requesting permission to close the .MPP driver, notifying the
routines specified by AppleTalk Transition Queue entries when a transition occurs that
your application has defined, and attaching and detaching your own 802.2 protocol
handler for Type 1 packets.
10-32 LAP Manager Reference

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
Data Structures 10
This section describes the ATQEntry record that you use to specify your AppleTalk
Transition Queue entry routine to be called when a transition event occurs. You pass a
pointer to this record as a parameter to the LAPAddATQ function, which you call to place
your entry in the AppleTalk Transition Queue.

The AppleTalk Transition Queue Entry 10

You use the AppleTalk Transition Queue entry record to specify an entry to be added
to the transition queue. The ATQEntry data type defines an AppleTalk Transition
Queue entry.

TYPE ATQEntry =

RECORD

qLink: ATQEntryPtr; {next queue entry}

qType: Integer; {reserved}

CallAddr: ProcPtr; {pointer to your routine}

END;

Field descriptions

qLink A pointer to the next queue entry. Set this field to NIL; the LAP
Manager fills it in when an application adds another entry to
the queue.

qType Reserved.
CallAddr A pointer to a transition event handler routine that you provide.

The LAP Manager calls your routine when an AppleTalk transition
event occurs.

Because you provide the memory for the AppleTalk Transition Queue entry, you can add
as many fields to the end of the entry as you wish for your own purposes. Whenever
your routine is called, the caller provides you with a pointer to the queue entry so that
you can have access to the information you stored at the end of your queue entry.

Routines 10
This section describes the LAP Manager’s Pascal interface to the AppleTalk Transition
Queue that allows you to place an entry for your application in the queue so that you
will be notified when an AppleTalk transition occurs.

The Pascal interface to the AppleTalk Transition Queue consists of four routines:

■ The LAPAddATQ function adds an entry to the AppleTalk Transition Queue.

■ The LAPRmvATQ function removes an entry from the AppleTalk Transition Queue.

■ The ATEvent procedure calls all the entries in the AppleTalk Transition Queue with
an AppleTalk transition event code that you specify.
LAP Manager Reference 10-33

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
■ The ATPreFlightEvent function calls all the entries in the AppleTalk Transition
Queue with an AppleTalk transition event code that you specify in the event
parameter. If any routine returns a nonzero function result, the LAP Manager calls all
of the entries with the transition event code that you specify in ATPreFlightEvent
function’s cancel parameter.

This section also describes the LAP Manager’s assembly-language interface that allows
you to install and remove your own protocol handler for a specific IEEE 802.2 protocol
type. You can write a protocol handler application that reads 802.2 Type 1 data packets,
and you can install your application as a client of the LAP Manager.

The assembly-language routines that allow you to attach and detach protocol handlers
for 802.2 Type 1 data packets are

■ the L802Attach routine, which installs your protocol handler for a specific IEEE
802.2 protocol type

■ the L802Detach routine, which detaches from the LAP Manager your protocol
handler for a specific IEEE 802.2 protocol type

Note
The ANSI/IEEE standards for the 802 protocols
are published by the IEEE. ◆

Adding and Removing AppleTalk Transition Queue Entries 10

This section describes the LAPAddATQ function that you use to add an entry to the
AppleTalk Transition Queue and the LAPRmvATQ function that you use to remove an
entry from the queue.

LAPAddATQ 10

The LAPAddATQ function adds an entry to the AppleTalk Transition Queue.

FUNCTION LAPAddATQ (theATQEntry: ATQEntryPtr): OSErr;

theATQEntry
A pointer to a record of type ATQEntry to be added to the AppleTalk
Transition Queue.

DESCRIPTION

You use the LAPAddATQ function to add an entry for your application to the AppleTalk
Transition Queue. Before you call the LAPAddATQ function, you must create an
AppleTalk Transition Queue entry record of type ATQEntry that defines your entry.
“The AppleTalk Transition Queue Entry” on page 10-33 describes the ATQEntry record.
You provide a pointer to this record as the value of the theATQEntry parameter when
you call the LAPAddATQ function.
10-34 LAP Manager Reference

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
In the CallAddr field of the AppleTalk Transition Queue entry record, you provide a
pointer to a routine that the LAP Manager is to call when an AppleTalk transition event
occurs. The LAP Manager calls your routine to notify you when any of the following
events occurs:

■ A process opens the .MPP driver.

■ A process requests permission to close AppleTalk.

■ A process closes the .MPP driver.

■ A request to close AppleTalk is canceled. One of the routines pointed to by an entry in
the AppleTalk Transition Queue denies permission to close AppleTalk, and so the
request to do so is canceled.

■ A process calls the ATEvent procedure or the ATPreFlightEvent function to send
its own AppleTalk transition event to the entries in the AppleTalk Transition Queue.

■ A process reports that it is changing the flagship name.

■ A process makes a request to change the flagship name.

■ A request to change the flagship name is canceled. One process denies another’s
request to change the flagship name, and so the request is canceled.

■ The network connectivity has changed. This transition event is sent if a node is
connected to an AppleTalk network and, for some reason, a particular interconnected
AppleTalk network is longer be reachable.

■ The cable range for the current network has been changed.

■ The speed of the CPU has been changed.

SPECIAL CONSIDERATIONS

You must allocate nonrelocatable memory for the ATQEntry record and not alter or
manipulate this memory until you remove the AppleTalk Transition Queue entry from
the transition queue using the LAPRmvATQ function.

When LAP Manager calls your transition event handler routine, the LAP Manager
passes parameters to your routine using the C stack calling conventions, and expects
your routine to return a result in register D0. If you write your transition event handler
routine in Pascal, you must use an assembly glue code routine. For a sample glue code
routine, see “Writing a Transition Event Handler Routine Using Pascal” beginning on
page 10-11.

ASSEMBLY-LANGUAGE INFORMATION

From assembly language, you add an AppleTalk Transition Queue entry by placing a
routine selector in the D0 register, placing a pointer to your AppleTalk Transition Queue
entry in the A0 register, and executing a JSR instruction to an offset past the start of the
LAP Manager. The start of the LAP Manager is contained in the global variable
LAPMgrPtr ($B18). The offset to the LAP Manager routines is given by the constant
LAPMgrCall (2).
LAP Manager Reference 10-35

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
RESULT CODES

SEE ALSO

“Adding an Entry to the AppleTalk Transition Queue” on page 10-7 describes the process
of creating an AppleTalk Transition Queue entry and adding it to the queue.

For the details of each transition, see “How the LAP Manager Calls Your Transition
Event Handler Routine” beginning on page 10-9.

LAPRmvATQ 10

The LAPRmvATQ function removes an entry from the AppleTalk Transition Queue.

FUNCTION LAPRmvATQ (theATQEntry: ATQEntryPtr): OSErr;

theATQEntry
A pointer to the ATQEntry record to be removed from the AppleTalk
Transition Queue.

DESCRIPTION

You use the LAPRmvATQ function to remove your application’s entry from the AppleTalk
Transition Queue. To identify the entry to be removed, you pass the LAPRmvATQ
function the same pointer to the AppleTalk Transition Queue entry record that you
provided as the value of the theATQEntry parameter when you called the LAPAddATQ
function to place the entry in the queue.

SPECIAL CONSIDERATIONS

You must not call the LAPRmvATQ function at interrupt time or through a callback
routine. This restriction is to prevent any routine from removing an entry from the
AppleTalk Transition Queue while another routine is in the process of adding or
removing an entry.

Registers on entry

D0 23

A0 Pointer to AppleTalk Transition Queue entry

Registers on exit

D0 Result code

noErr 0 No error
10-36 LAP Manager Reference

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
ASSEMBLY-LANGUAGE INFORMATION

From assembly language, you remove an AppleTalk Transition Queue entry by placing a
routine selector in the D0 register, placing a pointer to your AppleTalk Transition Queue
entry in the A0 register, and executing a JSR instruction to an offset past the start of the
LAP Manager. The start of the LAP Manager is contained in the global variable
LAPMgrPtr ($B18). The offset to the LAP Manager routines is given by the constant
LAPMgrCall (2).

RESULT CODES

Notifying Routines When Your Application-Defined Transition Occurs 10

This section describes the ATEvent and ATPreFlightEvent routines that you can use
to notify all of the entries in the AppleTalk Transition Queue that an AppleTalk transition
that you have defined has occurred.

You can define your own AppleTalk transition to have any meaning you choose. For
example, you might want to call every routine in the AppleTalk Transition Queue each
time you open an AppleTalk Data Stream Protocol (ADSP) connection.

ATEvent 10

The ATEvent procedure calls the routines specified by each of the entries in the
AppleTalk Transition Queue with notification of a transition event that you have defined.

PROCEDURE ATEvent (event: LongInt; infoPtr: Ptr);

event The AppleTalk transition event code for your application-defined
transition. This can be any four-character string that starts with an
uppercase letter—that is, any value in the range $41 00 00 00 through
$5A FF FF FF.

infoPtr A pointer to information that you make available to the AppleTalk
Transition Queue entry routines. If you do not want to pass any
information to these routines, set the infoPtr parameter to NIL.

Registers on entry

D0 24

A0 Pointer to AppleTalk Transition Queue entry

Registers on exit

D0 Result code

noErr 0 No error
qErr –1 Queue element not found
LAP Manager Reference 10-37

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
DESCRIPTION

The ATEvent procedure calls the routines in the queue with the AppleTalk transition
event code you specify in the event parameter. You can use the infoPtr parameter to
point to any information that you want to make available to the transition event handler
routines; for an ADSP-open transition, for example, you might pass a pointer to the
parameter block used by the dspOpen routine.

You use the ATEvent procedure to send notification of an ATTransSpeedChange
transition to time-dependent processes. You must send this transition event notification
if your application changes the CPU speed. Note that you must issue this transition
event at system task time only.

For transition events that you define, you can issue the ATEvent procedure at interrupt
time provided that the transition event handler routines follow the standard rules for
interrupt operation.

SPECIAL CONSIDERATIONS

You can call the ATEvent procedure only at virtual-memory safe time.

AppleTalk transitions defined by developers might return other result codes.

RESULT CODES

SEE ALSO

For more information about the ATTransSpeedChange event, see “CPU-Speed-Change
Transition” on page 10-25.

For more information about developer-defined transition events, see
“Developer-Defined Transitions” on page 10-26 and “Defining Your Own AppleTalk
Transition” on page 10-27.

For information on virtual memory, see Inside Macintosh: Memory.

ATPreFlightEvent 10

The ATPreFlightEvent function calls the routines specified by each of the entries in
the AppleTalk Transition Queue with notification of a transition event that you have
defined and allows each routine in the AppleTalk Transition Queue to return a result
code and other information to your calling routine.

FUNCTION ATPreFlightEvent (event,cancel: LongInt;

infoPtr: Ptr): OSErr;

noErr 0 No error, or unrecognized event code
10-38 LAP Manager Reference

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
event The AppleTalk transition event code for the initial transition about which
you want to notify the AppleTalk Transition Queue event routines. This
code can be any four-character string that starts with an uppercase letter—
that is, any value in the range $41 00 00 00 through $5A FF FF FF.

cancel The AppleTalk transition event code for the transition that notifies
the AppleTalk Transition Queue event routines that your original
transition notification is canceled. This code can be any four-character
string that starts with an uppercase letter—that is, any value in the
range $41 00 00 00 through $5A FF FF FF.

infoPtr A pointer to information that you make available to the AppleTalk
Transition Queue entry routines. If you do not want to pass any
information to these routines, set the infoPtr parameter to NIL.

DESCRIPTION

The ATPreFlightEvent function calls all of the routines in the AppleTalk Transition
Queue with the AppleTalk transition event code you specify in the event parameter. If
any routine in the AppleTalk Transition Queue returns a nonzero function result, the
ATPreFlightEvent function calls each of the routines that it has already called, this
time with the AppleTalk transition event code you specify in the cancel parameter.

SPECIAL CONSIDERATIONS

You can call the ATPreFlightEvent function only at virtual-memory safe time.

AppleTalk transitions defined by developers might return other result codes.

RESULT CODES

SEE ALSO

See Inside Macintosh: Memory for information on virtual memory.

For information about developer-defined transition events, see “Developer-Defined
Transitions” on page 10-26 and “Defining Your Own AppleTalk Transition” on page 10-27.

Attaching and Detaching 802.2 Protocol Handlers 10

You can attach to the LAP Manager your own protocol handler for 802.2 protocols. The
LAP Manager has a generic protocol handler that it attaches at the hardware device
driver level for all 802.2 packets; you must not replace or override this protocol handler.
You can also detach from the LAP Manager any 802.2 protocol handler that you have
provided and attached.

noErr 0 No error, or unrecognized event code
LAP Manager Reference 10-39

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
You use the L802Attach routine to attach your protocol handler and the L802Detach
routine to detach your protocol handler. There are no high-level interfaces for the LAP
Manager 802.2 protocol routines. You must call these routines from assembly language.

L802Attach 10

The L802Attach routine attaches to the LAP Manager a protocol handler for a specific
IEEE 802.2 protocol type.

DESCRIPTION

You call the L802Attach routine from assembly language by placing the routine selector
of 21 in the D0 register and the reference number of the Ethernet, token ring, or FDDI
driver in the D2 register that the OpenSlot or OpenDriver function returns. Then, you
execute a JSR instruction to an offset 2 bytes past the start of the LAP Manager. The start
of the LAP Manager is contained in the global variable LAPMgrPtr ($B18).

Here are the register contents that you supply on entry and the value that is returned
to you.

You must put a pointer to your protocol handler in the A0 register and a pointer to the
protocol-type specification for this protocol handler in the A1 register. The protocol-type
specification consists of one or more protocol-type fields, each preceded by a length byte.
The LAP Manager reads the fields in the 802.2 data packet header to determine to which
protocol handler (if any) to deliver the packet. The first type field in your protocol
specification is the 1-byte DSAP. If the DSAP type field is equal to $AA, then the packet is
a SNAP packet. In this case, the protocol-type specification must contain a second type
field, the 5-byte SNAP type. If the SNAP type field is $00000080F3, indicating the
AppleTalk Address Resolution Protocol (AARP), then the protocol-type specification
must contain a third type field, the 4-byte AARP protocol type. Terminate the list of
protocol-type fields with a byte of zeros.

Registers on entry

D0 21

D2 Reference number of hardware device driver

A0 Pointer to your protocol handler

A1 Pointer to protocol-type specification

Registers on exit

D0 Nonzero if error
10-40 LAP Manager Reference

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
The following protocol-type specification, for example, is for the permanent LAP
Manager protocol handler for an 802.3 packet containing AppleTalk data. The .ENET
driver would deliver this packet to the LAP Manager. The first byte, $01, is the length
byte for the first protocol-type field (the DSAP type field), $AA, contained in the second
byte. The DSAP value of $AA is reserved for use with protocol-type specifications that
include a SNAP field. The third byte, $05, is the length byte for the next protocol-type
field, the SNAP type field, $0800078098. The SNAP value of $08 00 07 80 9B is
reserved for AppleTalk data. The final byte ($00) terminates the type specification.

01 AA 05 08 00 07 80 9B 00

The following protocol-type specification is for the permanent LAP Manager protocol
handler for an 802.3 packet to be delivered to the EtherTalk AARP handler. Notice that
the SNAP field is followed by an additional type field, the AARP protocol type.

01 AA 05 00 00 00 80 F3 04 00 01 80 9B 00

The SNAP value of $00 00 00 80 F3 is reserved for AARP data. The AARP protocol
type value of $00 01 80 9B is reserved for Ethernet AARP packets.

SPECIAL CONSIDERATIONS

For token ring, the Apple Computer, Inc. specification for the device driver that
the hardware vendor must implement requires that the driver process only SNAP
packets, that is, packets with a SAP value of $AA. For Ethernet and FDDI, your
protocol can receive packets with a SAP value of $AA or any other SAP value.

You can only use the L802Attach routine if the hardware device driver interface
conforms to the Apple specification for that driver type.

RESULT CODES

The L802Attach routine returns a nonzero value in the D0 register if there is an error.

SEE ALSO

See the “The LAP Manager and 802.2 Protocol Packets” on page 10-27 and the ANSI/
IEEE standard 802.2 for more information about 802.2 protocols, and see Inside AppleTalk,
second edition, for more information about AARP.

See Inside Macintosh: Devices for information on the OpenSlot function.
LAP Manager Reference 10-41

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
L802Detach 10

The L802Detach routine detaches from the LAP Manager a protocol handler for a
specific IEEE 802.2 protocol type.

DESCRIPTION

You use the L802Detach routine to remove a protocol handler that you have written
and attached using the L802Attach routine. You call the L802Detach routine from
assembly language by placing the routine selector of 22 in the D0 register and the
reference number of the Ethernet, token ring, or FDDI driver in the D2 register that the
OpenSlot or OpenDriver function returns. Then, you execute a JSR instruction to an
offset 2 bytes past the start of the LAP Manager. The start of the LAP Manager is
contained in the global variable LAPMgrPtr ($B18).

Here are the register contents that you supply on entry and the value that is returned
to you.

You must put a pointer to the protocol-type specification for this protocol handler in the
A1 register. You must specify exactly the same protocol type as you specified for the
L802Attach routine when you attached the protocol handler.

RESULT CODES

L802Detach routine returns a nonzero value in the D0 register if there is an error.

SEE ALSO

See Inside Macintosh: Devices for information on the OpenSlot and
OpenDriver functions.

Registers on entry

D0 22

D2 Reference number of the hardware device driver

A1 Pointer to protocol specification

Registers on exit

D0 Nonzero if error
10-42 LAP Manager Reference

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
Summary of the LAP Manager 10

Pascal Summary 10

Constants 10

CONST

{Transition Queue transition types}

ATTransOpen = 0; {AppleTalk has been opened}

ATTransClose = 2; {AppleTalk is about to close}

ATTransClosePrep = 3; {permission to close AppleTalk}

ATTransCancelClose = 4; {cancel the ClosePrep transition}

{To use the following six constants, you must first declare them in your }

{ application. They are not included in the MPW interface files.}

ATTransNetworkTransition = 5; {change in network connection for }

{ Apple Remote Access (ARA)}

ATTransNameChangeTellTask = 6; {flagship name change}

ATTransNameChangeAskTask = 7; {permission to change flagship }

{ name}

ATTransCancelNameChange = 8; {cancel flagship name change}

ATTransCableChange = 'rnge'; {change in cable range}

ATTransSpeedChange = 'sped'; {change in CPU speed}

Data Types 10

AppleTalk Transition Queue Entry

TYPE ATQEntry =

RECORD

qLink: ATQEntryPtr; {next queue entry}

qType: Integer; {reserved}

CallAddr: ProcPtr; {pointer to your routine}

END;

ATQEntryPtr = ^ATQEntry;
Summary of the LAP Manager 10-43

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
Routines 10

Adding and Removing AppleTalk Transition Queue Entries

FUNCTION LAPAddATQ (theATQEntry: ATQEntryPtr): OSErr;

FUNCTION LAPRmvATQ (theATQEntry: ATQEntryPtr): OSErr;

Notifying Routines When Your Application-Defined Transition Occurs

PROCEDURE ATEvent (event: LongInt; infoPtr: Ptr);

FUNCTION ATPreFlightEvent (event: LongInt; cancel: LongInt; infoPtr: Ptr):
OSErr;

C Summary 10

Constants 10

/*LAP Manager parameter constants*/

#define LAPprotType LAP.protType

#define LAPwdsPointer LAP.LAPptrs.wdsPointer

#define LAPhandler LAP.LAPptrs.handler

enum { /*AppleTalk Transition Queue */

/* transition types*/

ATTransOpen = 0, /*AppleTalk has opened*/

ATTransClose = 2, /*AppleTalk is about to close*/

ATTransClosePrep = 3, /*permission to close AppleTalk*/

ATTransCancelClose = 4, /*cancel ClosePrep transition*/

/*To use the following six constants, you must first define them in */

/* your application. They are not defined in the MPW interface files.*/

ATTransNetworkTransition = 5, /*change in network connection */

/* for ARA*/

ATTransNameChangeTellTask = 6, /*flagship name change*/

ATTransNameChangeAskTask = 7, /*permission to change */

/* flagship name*/

ATTransCancelNameChange = 8, /*cancel flagship name change*/

ATTransCableChange = 'rnge', /*change in cable range*/

ATTransSpeedChange = 'sped', /*change in CPU speed*/

};
10-44 Summary of the LAP Manager

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager

10
Link-A

ccess P
rotocol (LA

P
) M

anager
Data Types 10

AppleTalk Transition Queue Entry

struct ATQEntry {

struct ATQEntry *qLink; /*reserved*/

short qType; /*reserved*/

ProcPtr CallAddr; /*pointer to your routine*/

};

typedef struct ATQEntry ATQEntry;

typedef ATQEntry *ATQEntryPtr;

Routines 10

Adding and Removing AppleTalk Transition Queue Entries

pascal OSErr LAPAddATQ(ATQEntryPtr theATQEntry);

pascal OSErr LAPRmvATQ(ATQEntryPtr theATQEntry);

Notifying Routines When Your Application-Defined Transition Occurs

pascal void ATEvent(long event, Ptr infoPtr);

pascal OSErr ATPreFlightEvent(long event, long cancel, Ptr
infoPtr);

Assembly-Language Summary 10

Constants 10

;routine selectors to attach and detach an 802.2 protocol handler

L802Attach EQU 21 ;attach an 802.2 protocol handler

L802Detach EQU 22 ;detach an 802.2 protocol handler

;miscellaneous LAP Manager values

LAPMgrPtr EQU $B18 ;entry point for LAP Manager

LAPMgrCall EQU 2 ;offset to LAP routines

LAddAEQ EQU 23 ;LAPAddATQ routine selector

LRmvAEQ EQU 24 ;LAPRmvATQ routine selector
Summary of the LAP Manager 10-45

C H A P T E R 1 0

Link-Access Protocol (LAP) Manager
Data Structures 10

AppleTalk Transition Queue Entry Data Structure

Result Codes 10

0 AeQQLink long next queue entry
4 AeQQType word reserved
6 AeQCallAddr long pointer to your transition event handler routine

noErr 0 No error, or unrecognized event code
qErr –1 Queue element not found
10-46 Summary of the LAP Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	Link-Access Protocol (LAP) Manager
	About the LAP Manager
	Using the LAP Manager
	Determining if the LAP Manager Is Installed
	Adding an Entry to the AppleTalk Transition Queue
	How the LAP Manager Calls Your Transition Event Ha...
	Writing a Transition Event Handler Routine Using P...
	Open Transition
	Prepare-to-Close Transition
	Permission-to-Close Transition
	Cancel-Close Transition
	Network-Connection-Change Transition
	Flagship-Name-Change Transition
	Permission-to-Change-Flagship-Name Transition
	Cancel-Flagship-Name-Change Transition
	Cable-Range-Change Transition
	CPU-Speed-Change Transition
	Developer-Defined Transitions

	Defining Your Own AppleTalk Transition
	The LAP Manager and 802.2 Protocol Packets
	Attaching and Detaching 802.2 Protocol Handlers

	LAP Manager Reference
	Data Structures
	The AppleTalk Transition Queue Entry

	Routines
	Adding and Removing AppleTalk Transition Queue Ent...
	Notifying Routines When Your Application-Defined T...
	Attaching and Detaching 802.2 Protocol Handlers

	Summary of the LAP Manager
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

