

C H A P T E R 1 2

12

M
ultinode A

rchitecture

Multinode Architecture 12

This chapter describes how you can use AppleTalk’s multinode architecture to acquire
one or more node IDs, called multinodes, in addition to the standard user node ID.
Multinode architecture is an AppleTalk feature that is provided to meet the needs of
special-purpose applications that receive and process AppleTalk packets in a custom
manner instead of passing them directly on to a higher-level AppleTalk protocol for
processing. A multinode ID allows the system that is running your application to appear
as multiple nodes on the network. The prime example of a multinode application is
Apple Remote Access (ARA).

A multinode ID is distinct from the user node ID. AppleTalk separates packets addressed
to a multinode from those addressed to the user node sockets on the same machine,
and it passes the multinode packets on to a receive routine that you must supply for
the multinode.

Multinode architecture is implemented in the .MPP driver and exists at the same level of
the AppleTalk protocol stack as does the Datagram Delivery Protocol (DDP), but unlike
DDP, multinode does not use DDP sockets, nor is it connected to the AppleTalk protocol
stack above the data-link level.

This chapter describes the fundamental tasks that you perform to

■ add a multinode for your application’s use

■ write a required routine that receives packets addressed to the multinode

■ prepare and send data from the multinode

■ remove a multinode when you are finished with it

Because multinode is not connected to the AppleTalk protocol stack above the data-link
level, if you want your multinode application to be compatible with AppleTalk, you must
implement the higher-level AppleTalk protocols. Multinode also requires that you code
a receive routine in assembly language. For these reasons, you should consider using
multinode only if your application requires that you process AppleTalk packets in a
custom manner. You do not need to use the multinode architecture for other application
requirements.

The receive routine that you must provide to handle packets addressed to your multinode
ID is similar to the DDP socket-listener code that an application must include to receive
packets addressed to its DDP socket. The chapter “Datagram Delivery Protocol (DDP)”
in this book describes how to write a socket listener, which provides useful background
information on how to write a multinode receive routine.

At the data-link level, multinode architecture relies on the AppleTalk connection file
of type 'adev' that is implemented for a particular link type. For more informa-
tion about AppleTalk connection files, see the Macintosh AppleTalk Connections
Programmer’s Guide.

For information describing how to implement the higher-level AppleTalk protocols, see
Inside AppleTalk, second edition.
12-3

C H A P T E R 1 2

Multinode Architecture

About Multinode Architecture 12

AppleTalk multinode architecture lets you acquire multiple node addresses for a single
machine, allowing that machine to act and appear as several nodes on a network. You
can think of a multinode as a virtual node and the user node as the physical node. A
single machine or physical node can have associated with it one or more multinodes.
You can obtain a multinode ID after a node that is running your application connects to
the AppleTalk network and AppleTalk assigns the standard user node ID to that system.
The use of multinode addresses does not affect the functions of the standard user node
address, which uniquely identifies the physical node on the network and forms part of
the internet socket address of a DDP socket-client application.

Multinode architecture communicates similarly to DDP in that you send data from a
multinode as discrete packets, with each packet carrying the full addressing information
required to deliver the data to its destination.

Multinode architecture is a client of the data-link layer and all of the supported data-link
types. It is connected to the AppleTalk protocol stack from the data-link layer down
through the hardware. It is not connected to the AppleTalk protocols above it, and there
are no hooks that a multinode application can use to pass a packet up through the
AppleTalk protocol stack for processing by a higher-level protocol.

Therefore, a multinode application that receives DDP packets for higher-level AppleTalk
protocols must process these packets itself, in its own way. For example, if a multinode
application receives an AppleTalk AEP Echoer request packet, it must determine how
to handle the request packet, that is, whether or not to respond to the packet as the
AppleTalk Echo Protocol (AEP) implementation does. (For more information on AEP, see
the discussion in the chapter “Datagram Delivery Protocol [DDP]” in this book and the
AEP protocol specification in Inside AppleTalk, second edition.)

After a packet is delivered to the node, the .MPP driver checks the DDP packet header
and passes packets addressed to a user node socket on to the appropriate socket listener,
while passing packets addressed to a multinode on to the receive routine that you
provide as part of your multinode application. Your receive routine must receive both
packets addressed to the multinode and broadcast packets. A receive routine is similar
to a socket listener. You must code the receive routine in assembly language because
the .MPP driver passes values to your routine in registers when it calls the routine.

Multinode architecture does not provide for the establishing of sessions—that is, the
ability to set up a connection and send streams of data over it, nor does it include
support for error recovery. If you want these features, you need to provide them in your
multinode application.

AppleTalk delivers all packets to the physical node based on the user node ID assigned
to the node, which is carried in the frame header as the destination node ID. Multinode
architecture always uses a long DDP packet header; Figure 12-1 shows the structure of
the long DDP packet header. It also shows the frame header.
12-4 About Multinode Architecture

C H A P T E R 1 2

Multinode Architecture

12

M
ultinode A

rchitecture

Figure 12-1 The long DDP packet header used for multinode

When you send a packet from a multinode:

■ The frame header always contains the source user node ID, which identifies the
physical node on the network from which the packet was transmitted.

■ The DDP packet header always contains the source multinode ID, which identifies
the virtual multinode from which you are sending the packet.

A packet is always transmitted from the physical node’s network hardware, and the
frame header contains the user node ID of the physical node that transmitted the packet.
Your multinode application uses a multinode ID, which you can think of as a virtual
node from which you are sending data. The DDP header identifies this multinode. Your
application sends data, but the networking hardware and its device driver actually
transmit the packet containing the data across the network to its destination.

A single networked machine may have associated with it one or more multinode IDs.
Packets sent from several multinode applications running on the same machine include
different source multinode IDs, but because they are all transmitted from the same
physical node, the packets all have the same source user node ID.

Because the source multinode ID is associated with the application that sent the packet
and the source user node ID is associated with the machine that transmitted the packet,
the source user node ID in the frame header and the source multinode ID in the DDP
packet header are always different values.

Note
Even if the destination node of a packet is on the same LocalTalk
network as the source user node, a packet sent from a multinode always
contains a long DDP header to allow for the inclusion of the two
separate source node IDs: the user node ID and the multinode ID. ◆

Bytes

Destination node ID 1
Source user node ID 1

DDP header type 1
Hop count 1

1

Frame
header

DDP
packet
header

2

2

2

1
1
1
1
1

Unused
Datagram length (10 bits)

Checksum

Destination network number

Source network number
for multinode

Destination node ID
Source multinode ID

Destination socket number
Source socket number

DDP protocol type
About Multinode Architecture 12-5

C H A P T E R 1 2

Multinode Architecture

To acquire a multinode, you call the AddNode routine. You can obtain only one multinode
at a time. The number of multinodes that a single machine can support is limited by the
maximum number of multinodes supported by the underlying AppleTalk connection file
of type 'adev' for the data link that is being used:

■ For LocalTalk, the maximum is 254 node addresses ($0 and $FF are not valid
addresses).

■ For EtherTalk, TokenTalk, or FDDITalk, the maximum is 253 node addresses ($0, $FF,
and $FE are not valid addresses).

Because the multinode is considered another unique node ID, the number of multi-
nodes that can be acquired is further limited by the number of nodes already active
on the network.

As an example of one use of multinodes, consider how a multinode application that
includes server and client components might handle a broadcast NBP lookup packet.
The following events occur on the user node that runs the client component of the
multinode application:

1. A DDP socket-client application on the user node calls an NBP function that generates
a broadcast NBP lookup packet.

2. The .MPP driver sends the packet out to the network. Because it is a broadcast packet,
the .MPP driver also sends the NBP lookup packet to the multinode on the same
machine.

3. The multinode client application’s receive routine receives the packet.

4. The multinode client application processes the packet’s contents and repackages them
in its own multinode packet, which it sends out through the serial port over the
modem and telephone line to the multinode application on the server node.

The following events occur on the node that is running the server component of the
multinode application.

1. The server multinode application receives the multinode packet through the system’s
serial port.

2. This application uses the NetWrite routine to decode the multinode packet and uses
the packet contents as the data for a DDP packet. It builds the required data structure
to contain the data for a standard DDP packet.

3. The server multinode application then sends the broadcast packet down through
the AppleTalk protocol stack from the link-access layer, through the hardware, and
out to the network for a response. It also sends the packet to the user node on the
same machine.

Figure 12-2 illustrates this process.
12-6 About Multinode Architecture

C H A P T E R 1 2

Multinode Architecture

12

M
ultinode A

rchitecture

Figure 12-2 How a server-client multinode application might send a broadcast NBP
lookup packet

The primary use of the multinode architecture for an application is to provide router-like
services as part of the application. One of the advantages of multinode is that your
application receives all Name-Binding Protocol (NBP) request packets because they are
broadcast packets. In fact, the first packets that your application is likely to receive are
NBP lookup packets. These include NBP register requests that generate an NBP lookup
request if the sender specified that NBP should verify the uniqueness of the entity name
to be registered. (For an explanation of NBP and its components, see the chapter “Name-
Binding Protocol [NBP]” in this book.)

How you handle the NBP lookup packets is application-specific. However, if you want
your application to be visible throughout the network, you need to meet certain
AppleTalk compatibility requirements. In this case, your application needs to implement
the NBP protocol. You can implement your own NBP names table for the multinode to
determine if your application handles the services requested in the lookup packet. For
example, your application can check to determine if an NBP lookup packet’s entity name
object and type fields match the object and type fields of any of the entity name entries in
your NBP names table. Any response that you return to the requester must conform to
the AppleTalk packet format. You may also want to implement the AppleTalk Echo
Protocol (AEP), and in this case, too, any responses that you return to the sender must
meet the specifications for an AEP AppleTalk packet. (For a description of AEP, see the
chapter “Datagram Delivery Protocol [DDP]” in this book.) Inside AppleTalk, second
edition, describes how to implement NBP and AEP.

NBP
lookup
packet

AppleTalk stack

Client node

Multinode application

(Process packet)

NBP

DDP

LAP

Hardware

MN

Telephone
line

Server node

Multinode application

(Decode packet
NetWrite)

MN

AppleTalk stack

DDP

LAP

Hardware

Serial
ports

Network Network

LAP

Hardware
About Multinode Architecture 12-7

C H A P T E R 1 2

Multinode Architecture

Using Multinode Architecture 12

This section describes how to

■ acquire a multinode (AddNode)

■ receive data addressed to the multinode

■ prepare to send data and then send it from the multinode (NetWrite)

■ remove a multinode when you are finished with it (RemoveNode)

It also mentions the cable-range-change AppleTalk transition event that you must handle
and directs you to the chapter “Link-Access Protocol (LAP) Manager” for information
describing what you must do.

The routines that you use to add and remove a multinode and send data from your
multinode application are not defined in the MPW interface files. To use these routines
from a high-level language, you must call the Device Manager directly and specify
the routine’s csCode in the parameter block. For the AddNode routine, you must issue
the function as an immediate control call and define a function for this purpose. (For
an example of how to do this, see Listing 12-1 on page 12-9.) For the NetWrite and
RemoveNode routines, you call the Device Manager’s PBControl function. (For infor-
mation about how to do this, see “Routines” beginning on page 12-20.)

Note
AppleTalk version 57 or later must be installed on the system that is
running your application if you use the multinode feature. AppleTalk
version 57 is compatible with system software version 6.0.5 and later.
You should include AppleTalk version 57 with any product that uses
multinodes. Contact Apple’s Software Licensing department for
information on licensing AppleTalk. ◆

Acquiring and Removing Multinodes 12
You can add an AppleTalk multinode once the physical node that runs your application
has connected to the AppleTalk network and AppleTalk has assigned to it a user node
ID. After you are finished using the multinode, your application must remove it. This
section describes how to do these tasks.

To acquire a multinode address, perform the following steps:

1. Use the Device Manager’s OpenDriver function to open the .MPP driver.
n The .MPP driver must be opened before you call the multinode routines. The
OpenDriver function call returns the .MPP driver’s reference number.

n Save the returned value because you must supply this reference number as an
input parameter in the ioRefNum field of the multinode parameter block when
you call the multinode routines.
12-8 Using Multinode Architecture

C H A P T E R 1 2

Multinode Architecture

12

M
ultinode A

rchitecture

2. Create a receive routine to receive broadcast messages and packets addressed to your
multinode. See “Receiving Packets Addressed to Your Multinode” beginning on
page 12-10 for details.
n You pass the address of the receive routine to the .MPP driver when you call the

AddNode routine to acquire a multinode.
n When the .MPP driver receives a packet addressed to your multinode or a

broadcast message, it calls your receive routine for that multinode to handle
the packet reception.

3. Allocate storage and set parameter block fields as needed.
n Define a multinode parameter block of type MNParamBlock. Allocate storage for

a multinode parameter block that includes the fields required for the AddNode
routine. See “The Multinode Parameter Block” on page 12-19.

n You must set the csCode parameter block field to the numeric value of 262 for the
AddNode routine. For the other required parameter block fields, see “AddNode”
beginning on page 12-22.

4. Call the AddNode routine once for each multinode that you need.
n You can acquire only one multinode through each request. You can request a

specific multinode address, and if that multinode is available, the .MPP driver will
assign it to you. Otherwise, the .MPP driver will return a multinode address that
it selects randomly.

n Because the AddNode routine is not defined in the MPW interface files, you must
call the Device Manager directly and execute the AddNode routine as an immediate
synchronous control call.

From assembly language, you can directly make an immed _Control trap macro call. To
issue the AddNode routine as an immediate synchronous control call from a high-level
language such as Pascal or C, you must define a function as part of your application.
Listing 12-1 shows how to do this in the Pascal language.

Listing 12-1 Defining a Pascal function that makes an immediate AddNode call

FUNCTION PBControlImmedSync(paramBlock: ParmBlkPtr): OSErr;

INLINE $205F,$A204,$3E80;

FUNCTION AddNode(thePBptr: MNParmBlkPtr): OSErr;

CONST

tryAddNodeAgainErr = -1021;

VAR

err: OSErr;

BEGIN

thePBptr^.csCode := 262; {addNode}

thePBptr^.ioRefNum := mppUnitNum;

{If the call returns tryAddNodeAgainErr, make the call repeatedly

until it no longer returns this error.}
Using Multinode Architecture 12-9

C H A P T E R 1 2

Multinode Architecture

REPEAT

err := PBControlImmedSync(ParmBlkPtr(thePBptr));

UNTIL (err <> tryAddNodeAgainErr);

AddNode := err;

END;

You must issue the AddNode call synchronously because you need to call AddNode
repeatedly if the call returns an error of –1021, which indicates that the .MPP driver could
not satisfy the AddNode request and that you should try the request again immediately.

The .MPP driver internally associates the address of your receive routine with the
multinode address that it returns to you. See “AddNode” beginning on page 12-22
for a complete description of this routine and the parameters that you must pass it.

When you are finished using the multinode, you call the RemoveNode routine to remove
the multinode.

1. Allocate nonrelocatable memory for a multinode parameter block that includes the
fields required for the RemoveNode routine. See “The Multinode Parameter Block”
beginning on page 12-19. The multinode parameter block belongs to the .MPP driver
for the life of the RemoveNode call.

2. You issue the RemoveNode routine as a Device Manager’s PBControl call. See
“RemoveNode” beginning on page 12-24 for details on this routine and the
parameters it requires. You must specify the csCode numeric value 263 for the
RemoveNode routine.

Handling an AppleTalk Cable-Range-Change Transition Event 12
A cable range is a range of network numbers beginning with the lowest network number
and ending with the highest network number defined by a seed router for a network. All
node addresses, including multinode addresses, that a system on a network acquires
must have a network number within the defined cable range.

An AppleTalk cable-range-change transition event occurs when the current cable range
for a network changes. Your multinode application needs to be able to receive notifica-
tion of a cable-range-change transition and respond to that event by checking the new
cable range to determine if all the multinode IDs that the application acquired before the
transition event occurred are still valid. If you discover multinode IDs that are no longer
valid, you must remove them with the RemoveNode function. You can obtain new
multinodes to replace them with the AddNode function.

Receiving Packets Addressed to Your Multinode 12
Your application must provide a routine that receives packets addressed to the multinode
and broadcast packets. Because the .MPP driver passes values to your multinode receive
routine in registers when it calls the routine, you must code the receive routine in
assembly language.
12-10 Using Multinode Architecture

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture

You pass the address of your receive routine to the .MPP driver when you call the
AddNode routine to open a multinode. The .MPP driver internally associates your
receive routine with the multinode address that it assigns, and it calls your receive
routine to handle a packet addressed to the multinode or a broadcast packet.

If your application acquires more than one multinode, you can use the same receive
routine for each of these multinodes. If you use the same receive routine to receive and
process packets for more than one multinode, the .MPP driver will call that receive
routine only once for each broadcast packet that it receives.

A multinode receive routine is similar in concept to a socket listener that receives packets
addressed to a specific socket. The chapter “Datagram Delivery Protocol (DDP)” in
this book includes a sample socket listener. To create a receive routine, perform the
following steps:

1. Allocate a buffer to hold the data that you expect to receive.
n The maximum amount of data in a DDP packet is 586 bytes. All packets addressed

to multinodes use a long header, which is 13 bytes long. If your receive routine
places the packet header as well as the data portion in the buffer, make the buffer
large enough to hold both parts of the packet contents.

n If you use the same receive routine to receive and process packets for more than
one multinode, you should provide a separate buffer to store the data for each
multinode. You can define a single buffer for each multinode to hold the contents of
both the header and data portions of a packet, or you can define a pair of buffers
for each multinode to separate the packet’s contents.

2. Determine the number of bytes that have already been read into the .MPP driver’s
internal buffer, called the RHA.
n To do this, subtract the beginning address of the read-header area (RHA) from the

value in register A3, which points past the last byte read into the RHA. To locate
the offset at the beginning of the RHA, you can use the toRHA equate.

When a frame that contains either a DDP packet that is addressed to your multinode
or a broadcast packet is delivered to the node that is running your multinode applica-
tion, the node’s CPU is interrupted and the .MPP driver’s interrupt handler gets
control to service the interrupt. As the frame’s first 3 bytes are read into a FIFO buffer,
the .MPP driver’s interrupt handler moves these bytes into the RHA.

3. Use the ReadPacket and ReadRest routines to read the rest of the incoming data
that constitutes the packet.
How you handle a packet after you read it is particular to your application. For
example, if your application implements NBP, you can check the packet’s entity name
object and type fields against entries in your names table to determine whether to
process the packet and respond to the sender. If you respond, the packet you send
must adhere to the structure of a standard AppleTalk packet. (See Inside AppleTalk,
second edition, for the AppleTalk packet structure.) For a brief description of how
ARA uses multinode, see the discussion on page 12-6.
n You can call the ReadPacket routine as many times as you like to read the data

piece by piece into one or more data buffers that you have defined, but you must
always use the ReadRest routine to read the final piece of the data packet. The
ReadRest routine restores the machine state (the stack pointers, status register,
and so forth) and checks for error conditions.
Using Multinode Architecture 12-11

C H A P T E R 1 2

Multinode Architecture

n Before you call the ReadPacket routine, you must place a pointer to the data
buffer for which you allocated memory in the A3 register. You must also place the
number of bytes you want to read in the D3 register. You must not request more
bytes than remain in the data packet.

n After you have called the ReadRest routine, you can use registers A0 through A3
and D0 through D3 for your own use, but you must preserve all other registers.
You cannot depend on having access to your application’s global variables.

Calling ReadPacket and ReadRest when LocalTalk is the data link

If LocalTalk is the data link that is being used, your receive routine
has less than 95 microseconds (best case) to read more data with a
ReadPacket or ReadRest routine. If you need more time, you
can read another 3 bytes into the RHA, which will allow you an
additional 95 microseconds. Note that the RHA may only have 8 bytes
still available. ◆

4. If the packet header contains a checksum, you can calculate a checksum for both the
header and data portions of the packet and then verify the sum of these two values
against the value in the checksum field of the packet header. If the checksum you
calculate does not match the one in the header, the data has been corrupted in
some way. (Figure 12-1 on page 12-5 shows the DDP packet header, including the
checksum field.)
The chapter “Datagram Delivery Protocol (DDP)” in this book contains a sample
checksum routine to be used for a socket listener; this routine is equally applicable to
a multinode receive routine.

Calling ReadPacket to Read in the Packet Contents 12

To call the ReadPacket routine, execute a JSR instruction to the address in the A4
register. The ReadPacket routine uses the registers as follows:

Registers on entry to the ReadPacket routine

A3 Pointer to a buffer to hold the data you want to read

D3 Size in of bytes to be read; must be nonzero

Registers on exit from the ReadPacket routine

A0 Unchanged

A1 Unchanged

A2 Unchanged

A3 Pointer to the first byte after the last byte read into buffer

A4 Unchanged

D0 Changed

D1 Number of bytes left to be read

D2 Unchanged

D3 Equals 0 if the requested number of bytes were read, nonzero if error
12-12 Using Multinode Architecture

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture
After every time that you call ReadPacket, you must check the zero (z) flag in the
status register for errors because the ReadPacket routine indicates an error by clearing
it to 0. If the ReadPacket routine returns an error, you must terminate execution of your
receive routine with an RTS instruction without calling ReadPacket again or calling
ReadRest at all.

Calling ReadRest to Complete Reading in the Packet Contents 12

Call the ReadRest routine to read the last portion of the data packet, or call it after
you have read all the data with ReadPacket routines and before you do any other
processing or terminate execution. After you call ReadRest, you must check the zero (z)
flag in the status register for errors.

After you call the ReadRest routine, you must terminate execution of your receive
routine with an RTS instruction whether or not the ReadRest routine returns an error.

When you call the ReadRest routine, you must provide in the A3 register a pointer to
a data buffer and you must indicate in the D3 register the size of the data buffer. If
you have already read all of the data using the ReadPacket routine, specify a buffer
of size 0.

▲ W A R N I N G

If you do not call the ReadRest routine after the last time you call the
ReadPacket routine successfully, the system will crash. ▲

To call the ReadRest routine, execute a JSR instruction to an address 2 bytes past the
address in the A4 register:

JSR 2(A4)

The ReadRest routine uses the registers as follows:

Registers on entry to the ReadRest routine

A3 Pointer to a buffer to hold the data you want to read

D3 Size of the buffer (word length); may be 0

Registers on exit from the ReadRest routine

A0 Unchanged

A1 Unchanged

A2 Unchanged

A3 Pointer to first byte after the last byte read into buffer

D0 Changed

D1 Changed: number of bytes left to be read

D2 Unchanged

D3 Equals 0 if the requested number of bytes were read, is less than 0 if the
packet data was too large to fit in the buffer and the data was truncated, and
is greater than 0 to indicate the number of bytes that were not read
Using Multinode Architecture 12-13

C H A P T E R 1 2

Multinode Architecture

For more information on how your receive routine can use the registers, see the
discussion of the socket listener routine in the chapter “Datagram Delivery Protocol
(DDP)” in this book.

Sending Packets Using a Multinode 12
You can use a multinode to send packets that contain data that you have already
received; in this case you forward the data from the multinode using the NetWrite call.
You can also use the multinode to send original data using the NetWrite call. In both
cases, you must use a structure called the write-data structure to indicate to the .MPP
driver where the DDP packet header portion and the data portion to be sent are stored.
Why you send data is particular to your application. For example, if your application
implements AEP, it would send an Echo Reply packet in response to the Echo Request
packet that the application receives. For a brief description of using multinode, see the
discussion on page 12-6.

To send data from the multinode, you perform the following steps:

1. Create a write-data structure, as described in the next section, “Preparing a Write-
Data Structure.”

2. Allocate nonrelocatable memory for a multinode parameter block that includes the
fields required for the NetWrite routine. See “The Multinode Parameter Block”
beginning on page 12-19. The multinode parameter block belongs to the .MPP driver
for the life of the NetWrite call.

3. Call the NetWrite routine to send the data. You issue the NetWrite routine as a
Device Manager’s PBControl call. See “NetWrite” beginning on page 12-25 for
details on this routine and the parameters it requires.
n Set the parameter block field values belonging to the NetWrite call, including

the checksum flag (checkSumFlag) parameter. See “Using a Checksum” on
page 12-16.

n You must set the csCode parameter block field to the numeric value of 261 for the
NetWrite routine.

Preparing a Write-Data Structure 12

The .MPP driver uses a write-data structure that you create to locate the header and data
portions of the packet to be transmitted. When you call the NetWrite routine to send
data from a multinode, you pass it a pointer to the write-data structure that you have
already prepared. A write-data structure contains a series of pairs of length words and
pointers, and each pair indicates the length and location of a portion of the data. The first
pair must indicate the DDP header of the packet to be transmitted. It ends with a 0 word.

The .MPP driver constructs the packet to be transmitted, building the packet contents
from the header and data information that you provide.

The write-data structure that you use for a multinode is similar to the write-data
structure that you use to send a packet from a DDP socket except that for a multinode
write-data structure, you must also include the source network number and the source
multinode ID. This is because the source user node ID of the physical node, which is
carried in the frame header, is different from the source multinode ID, which is carried in
12-14 Using Multinode Architecture

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture
the DDP packet header. The source address information that you provide identifies the
multinode from which you are sending the data. The multinode write-data structure also
contains a checksum field that you can set to 0 if you do not want a checksum calculated
for this packet. Figure 12-3 shows the write-data structure; it also shows how you must
define the header information in the storage that you allocate for it.

You create a write-data structure in one of three different forms:

■ You can provide a single length-pointer pair that identifies one storage block that
contains both the header and data information. In this case, the header information
must come first, and it must begin at an odd address.

■ You can use two length-pointer pairs, one for the header portion and one for the
data portion.

■ You could also use more than two length-pointer pairs, one for the header, and one for
each separate block of data.

In many cases, the header and data components of a packet are not stored contiguously,
which requires that the write-data structure contain at least two length-pointer pairs.
Typically, the data portion is stored as a single block. However, some implementations
send blocks of data that are stored separately as parts of the same datagram; if the
complete data portion is stored as several separate blocks, then the write-data structure
needs to contain a length-pointer pair for each block of data.

Figure 12-3 The write-data structure for a multinode

Bytes Bytes

DDP checksum

Data

Reserved

2

Variable
length

5

Variable
length

Destination network number 2

Data Variable
length

Odd address

4

Reserved 2

Pointer to first entry

Length of second entry 2

Pointer to second entry

Length of last entry 2

Pointer to last entry

0 2

4

4
2Source network number

for multinode
Destination node ID 1
Source multinode ID 1

Destination socket number 1
Source socket number 1

DDP protocol type 1
Using Multinode Architecture 12-15

C H A P T E R 1 2

Multinode Architecture
Note
The header block that the write-data structure points to consists of
16 bytes. The first pointer in the write-data structure must point to an
odd address, so if you create the write-data structure in Pascal, the
first byte is not used. ◆

For the header, you must fill in the following:

■ the destination network number

■ the source network number of the multinode

■ the destination node ID

■ the source multinode ID

■ the destination socket number

■ the source socket number (if you are forwarding from the multinode a DDP packet
that contains an existing value for the source socket number, you can pass that value
on in this field)

■ DDP protocol type (DDP protocol types 1 through 15 are reserved for use by Apple)

Note
A multinode is not associated with a DDP socket. If the source socket
field contains a value, it must adhere to the conventions that the
AppleTalk DDP protocol specification describes for the use of sockets.
For example, this field must not specify socket number 0 ($00); rather
the value should be constrained to socket number values belonging to
the user-defined range stated in the DDP protocol specification; see
Inside AppleTalk, second edition, for this information. ◆

Using a Checksum 12

The long DDP packet header that you create for a multinode can include a checksum
value that is used to verify that the packet data has not been corrupted by memory or
data bus errors within routers on the internet. When you call the NetWrite routine to
send data from a multinode, you specify a value for the checkSumFlag parameter of
the multinode parameter block. You use the checkSumFlag parameter differently to
send data from a multinode than how you would use it to send data from a DDP socket,
even though in both cases the flag’s value controls the use of the long DDP packet
header’s checksum field.

Any application that uses a multinode can receive packets through that multinode. The
application can then repackage and forward the packet through the serial port and
modem to its multinode-application counterpart on a remote system. The multinode
application at the remote end can then decode the package and send the packet on
through a NetWrite call to a node on the network or a user-node process on the same
machine. An existing packet that is to be forwarded could already contain a checksum
12-16 Using Multinode Architecture

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture
value. When you issue the NetWrite call, you can preserve that checksum value and
pass it on as part of the header in the packet. You use the checkSumFlag parameter of
the NetWrite routine for this purpose.

■ If you do not want the current value in the packet header’s checksum field to be
altered, you set checkSumFlag to 0, and the existing checksum value in the DDP
header will not be changed. (If a checksum has already been calculated, it will be
passed along unmodified.)

■ If you want the checksum for the datagram to be calculated and placed in the DDP
packet header’s checksum field before the .MPP driver transmits the packet, set
checkSumFlag to a nonzero number.

Note that if you want to send a packet that does not include a checksum, you must
hardcode the value by setting to 0 the checksum field of the data structure that contains
the packet header that you point to from the write-data structure.

How the Apple Remote Access program uses the checksum flag

The Apple Remote Access (ARA) program is an example of an applica-
tion that sets the checkSumFlag flag to 0 in order to preserve a packet’s
original checksum value. The ARA client multinode can receive a DDP
packet addressed to that multinode or a broadcast packet, such as an
NBP lookup packet. In either case, the packet is a standard DDP packet
that could contain a checksum value. The client ARA software passes
the packet on to the ARA software on the server through the serial port
and modem. The ARA software on the server node sets checkSumFlag
to 0 when it calls the NetWrite routine to send the packet down from
the multinode through the AppleTalk stack and out to a node on the
network. ◆

Multinode Architecture Reference 12

This section describes the data structures and routines that are specific to the multinode
architecture.

The “Data Structures” section shows the Pascal data structures for the write-data
structure, the address block record, and the multinode parameter block to the
.MPP driver.

The “Routines” section describes the routines that you use to add a multinode address,
remove a multinode address, and send data from the multinode to be transmitted over
the network. Unlike most of the routines comprising the protocol implementations
described in this book, the multinode routines are not defined in the MPW interface files.
To call these routines from a high-level language, you must use the Device Manager’s
interface. The “Routines” section describes how to do this.
Multinode Architecture Reference 12-17

C H A P T E R 1 2

Multinode Architecture
Data Structures 12
This section describes the data structures that you use to provide information to the
multinode architecture implementation in the .MPP driver.

■ You use the write-data structure to pass information to the NetWrite routine that
identifies the length and location of the header and data portions of a packet to be
sent from the multinode.

■ You use the address block record to pass to the AddNode routine the address of the
multinode that you wish to acquire and to receive from the routine the actual multi-
node address that the .MPP driver assigns.

■ You use the multinode parameter block to pass and receive the input and output
parameters for each multinode call.

The Write-Data Structure 12

A write-data structure contains a series of pairs of length words and pointers. Each pair
indicates the length and location of a portion of the data, including the header informa-
tion, that constitutes the packet to be sent over the network.

You create a write-data structure, then pass its pointer to the NetWrite routine to send a
packet from a multinode.

TYPE WDSElement =

RECORD

entryLength: Integer;

entryPtr: Ptr;

END;

Field descriptions

entryLength The length of the data pointed to by entryPtr.
entryPtr A pointer to the data that is part of the packet to be sent using the

NetWrite routine. The data storage area pointed to can contain the
header information, the data to be transmitted, or both.

The Address Block Record 12

The address block record defines a data structure of AddrBlock type. You use this
record type for

■ the reqNodeAddr field value of the multinode parameter block to specify the
preferred network number and multinode ID of the multinode that you wish to
acquire when you execute the AddNode routine

■ the actNodeAddr parameter block field for the AddNode routine for the .MPP driver
to return the multinode address that it assigns to you

■ the nodeAddr parameter block field for the RemoveNode routine to specify the
address of the multinode to be removed
12-18 Multinode Architecture Reference

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture
TYPE AddrBlock =

PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

aSocket: Byte; {socket number}

END;

Field descriptions

aNet The number of the desired network to which the multinode node
that you are requesting or assigned belongs.

aNode The node ID of the multinode that you request or that MPP assigns.
aSocket The value of this field should always be 0.

The Multinode Parameter Block 12

The multinode routines that you use to add and remove a node and send a packet from a
multinode require a pointer to a multinode parameter block. The multinode parameter
block holds all of the input and output values associated with the routine. The multinode
parameter block is a variant record parameter block, defined by the MNParamBlock
data type.

IMPORTANT

For the multinode parameter block, you must define the
MNParamBlock type in your application because it is not
included in the MPW interface files. ▲

This section defines the fields that are common to the three multinode routines that use
the multinode parameter block. It does not define reserved fields, which are used either
internally by the .MPP driver or not at all. The fields that are used for specific routines
only are defined in the description of the routines to which they apply.

TYPE

MNParmType = (AddNodeParm,RemoveNodeParm);

MNParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {command code}

filler1: Byte;
Multinode Architecture Reference 12-19

C H A P T E R 1 2

Multinode Architecture
checkSumFlag: Byte; {perform checksum on datagram}

wdsPointer: Ptr; {pointer to write-data structure}

filler2: Integer;

CASE MNParmType of

AddNodeParm:

(reqNodeAddr: AddrBlock; {preferred address requested}

actNodeAddr: AddrBlock; {actual node address acquired}

recvRoutine: ProcPtr; {address of packet receive routine}

reqCableLo: Integer; {preferred network range for the }

reqCableHi: Integer; { node being acquired}

reserved: PACKED ARRAY[1..70] OF Byte);

RemoveNodeParm:

(nodeAddr: AddrBlock); {node address to be deleted}

END;

Field descriptions

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

ioRefNum The .MPP driver reference number. You must fill in this value.
csCode The command code of the multinode command to be executed. You

must fill in a numeric value for this field.

Routines 12
This section describes the multinode routines that you use to

■ acquire a multinode address

■ remove a multinode address once you are finished with it

■ send packets from a specific multinode

The multinode architecture is implemented in the .MPP driver. To pass parameters
required for a multinode routine, you use the multinode parameter block of type
MNParamBlock. You must define this parameter block type in your application. (See
“The Multinode Parameter Block” on page 12-19.) An arrow preceding a parameter
indicates whether the parameter is an input or an output parameter:

The AddNode, RemoveNode, and NetWrite routines use different fields of the multi-
node parameter block for parameters specific to the routine. The description of each
routine identifies the parameter block values that the routine requires.

Arrow Meaning

→ Input

← Output
12-20 Multinode Architecture Reference

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture
Assembly-language note

You call the multinode commands from assembly language by putting a
routine selector in the csCode field of the parameter block and calling
the _Control trap. To execute the _Control trap asynchronously,
include the value ,ASYNC in the operand field. Note, however, that
you must execute the AddNode routine as an immediate (immed)
synchronous routine. ◆

Because the MPW interface files do not define an interface for the multinode architecture,
you must use the Device Manager’s interface to call the multinode routines from a
high-level language.

To acquire a multinode address, you execute the AddNode routine specifying a routine
selector of 262 in the csCode field. You must issue the AddNode routine as an immediate
control call to the Device Manager. See Listing 12-1 on page 12-9 for an example of how
to make an immediate control call from the Pascal language.

To issue the RemoveNode (csCode equals 263) and NetWrite (csCode equals 261)
routines, you use the Device Manager’s PBControl function. The PBControl function
is defined as follows:

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to the multinode parameter block of type MNParamBlock that
contains the parameters required by the multinode routine to be executed.

async A Boolean value that specifies whether the function is to be executed
synchronously or asynchronously. Set the async parameter to TRUE to
execute the function asynchronously.

DESCRIPTION

You can execute the PBControl function synchronously or asynchronously by setting
the async flag. The PBControl function takes a pointer to a multinode parameter block
that contains a csCode field in which you specify the routine selector for the particular
routine to be executed; you must specify a numeric value for this field. You must also
specify the .MPP driver reference number as the value of the multinode parameter
block’s ioRefNum field. The Device Manager’s OpenDriver function returns the .MPP
driver reference number when you call it to open the .MPP driver.

Adding and Removing Multinode Addresses 12

This section describes the multinode routines that you call to add or remove a multinode
address for your application or process to use. You use the AddNode routine to add a
multinode ID after you open the .MPP driver. You use the RemoveNode routine to
remove the multinode ID when you no longer require the additional node address.
Multinode Architecture Reference 12-21

C H A P T E R 1 2

Multinode Architecture
AddNode 12

You use the AddNode routine to acquire a multinode ID that is separate from and in
addition to the standard user node ID assigned to the system. You call the AddNode
routine once for each additional multinode that you require. You use the PBControl
function to call the AddNode routine. See “Routines” on page 12-20 for a description of
the PBControl function. You use a synchronous immediate control call to issue the
AddNode routine.

Parameter block

Field descriptions

reqNodeAddr The desired network address of the multinode to be acquired. You
specify a value for this field in AddrBlock format. (See “The
Address Block Record” on page 12-18.) The value of the aSocket
field of the AddrBlock record must always be 0. Set the aNet and
aNode fields to the desired network number and multinode ID. If
the address that you specify is in use or is invalid, the .MPP driver
will assign a different multinode address. To allow the .MPP driver
to randomly generate the multinode address to be assigned, specify
0 for all three fields of the AddrBlock record. The .MPP driver
returns in the actNodeAddr field of the parameter block either the
multinode address that you request or the one that it selects.

actNodeAddr The actual network address of the multinode that the .MPP driver
assigned and returned to you.

recvRoutine The address of the routine that you provide as part of your
application to receive packets addressed to this multinode. The
.MPP driver calls this routine when it receives either a packet
addressed to the multinode or a broadcast packet.

reqCableLo The network number that defines the low end of the range of
network numbers from which you would like the .MPP driver to
select a multinode ID for your use. The reqCableHi field contains
the network number that defines the high end of this range. The

← ioResult OSErr The result code.
→ ioRefNum Integer The .MPP driver reference number. You

must fill in this value.
→ csCode Integer The routine selector. Always equal to 262 for

this routine. You must fill in this value.
→ reqNodeAddr AddrBlock The requested multinode address.
← actNodeAddr AddrBlock The actual multinode address assigned and

returned by the .MPP driver.
→ recvRoutine LongInt The address of the application’s

receive routine.
→ reqCableLo Integer The start of requested network number

range for the multinode.
→ reqCableHi Integer The end of the requested network number

range for the multinode.
→ reserved char 70 reserved bytes required by the

.MPP driver.
12-22 Multinode Architecture Reference

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture
.MPP driver uses the values that you specify for the cable range if all
of the following conditions are true: the .MPP driver could not assign
the multinode number that you specified in the reqNodeAddr field
(if you specified one), there is no router on the network, and all the
multinode addresses belonging to the network whose number is
specified in the NetHint field are being used. The NetHint field
contains the last used network number stored in RAM.
The network range for the system on which your application is
running is defined by the seed router on a network.
If your application does not require that the multinode ID that the
.MPP driver assigns to it belong to a specific network cable range,
you can set the reqCableLo and reqCableHi fields to 0.

reqCableHi The network number that defines the high end of the range of
network numbers from which you would like the .MPP driver to
select a multinode ID for your use. The reqCableLo field value
delimits the low end of the range.

reserved 70 bytes that are reserved for internal use by the .MPP driver.

DESCRIPTION

The AddNode routine acquires the multinode address that you specify as the value of the
reqNodeAddr parameter if that multinode ID is available and the .MPP driver is able to
service the call.

If the requested node is already in use or is invalid, or if you do not request a specific
multinode ID, the .MPP driver will randomly select a multinode ID and return it as the
value of the actNodeAddr parameter.

If the .MPP driver is unable to service the call, it will return a result code of –1021, which
indicates that you should try the AddNode routine again. If you receive this result code,
you can retry the AddNode routine call repeatedly until either the .MPP driver assigns
and returns a multinode ID to you or you receive a different error message. Because of
this need to be able to retry this call repeatedly, you cannot issue the AddNode call
asynchronously.

Your application must provide the address of a receive routine that it uses to receive both
packets addressed to the multinode and broadcast packets. You pass the address of this
routine to the .MPP driver in the recvRoutine parameter. For more information about
the receive routine, see “Receiving Packets Addressed to Your Multinode” beginning on
page 12-10.

SPECIAL CONSIDERATIONS

You must issue the AddNode routine as a synchronous immediate control call at system
task time.

ASSEMBLY-LANGUAGE INFORMATION

To execute the AddNode routine from assembly language, call the _Control trap macro
with a value of 262 in the csCode field of the parameter block. You must issue the
routine request as an immediate call.
Multinode Architecture Reference 12-23

C H A P T E R 1 2

Multinode Architecture
RESULT CODES

SEE ALSO

For an example of how to issue the AddNode routine as a synchronous immediate
control call from the Pascal language, see Listing 12-1 on page 12-9.

RemoveNode 12

You use the RemoveNode routine to remove a multinode address that you acquired
through the AddNode routine. You use the PBControl function to call the RemoveNode
routine. See “Routines” on page 12-20 for a description of the PBControl function.

Parameter block

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, AppleTalk calls your completion
routine when it completes execution of the function if you specify
a pointer to the routine as the value of this field. Specify NIL for
this field if you do not wish to provide a completion routine.
If you execute a function synchronously, AppleTalk ignores the
ioCompletion field. For information about completion routines,
see the chapter “Introduction to AppleTalk” in this book.

nodeAddr The address of the multinode to be removed. You specify a value for
this field in AddrBlock format. (See “The Address Block Record”
on page 12-18.) The value of the aSocket field of the AddrBlock
record must always be 0. Set the aNet and aNode fields to the
network number and multinode ID values of the multinode to
be deleted.

noErr 0 No error
tryAddNodeAgainErr -1021 The .MPP driver was not able to add the

multinode; try again
mnNotSupported –1022 Multinode is not supported by the current

AppleTalk connection file of type 'adev'
noMoreMultiNodes –1023 No multinode addresses are available on

the network

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code.
→ ioRefNum Integer The .MPP driver reference number. You

must fill in this value.
→ csCode Integer A routine selector. Always equal to 263 for

this routine. You must fill in this value.
→ nodeAddr AddrBlock An address of the multinode to be removed.
12-24 Multinode Architecture Reference

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture
DESCRIPTION

The RemoveNode routine removes the multinode address that you specify. You should
remove only a multinode address using this routine; you must not attempt to remove the
user node address.

ASSEMBLY-LANGUAGE INFORMATION

To execute the RemoveNode routine from assembly language, call the _Control trap
macro with a value of 263 in the csCode field of the parameter block.

RESULT CODES

Sending Datagrams Through Multinodes 12

This section describes the NetWrite routine that you use to send a packet from a
multinode. You can use a multinode to send a packet down through the AppleTalk
protocol stack and across the AppleTalk network to another multinode or to a socket
client application or process, or you can send the packet from the multinode to a
socket-client application of the user node on the same system.

NetWrite 12

You use the NetWrite routine to send a packet from a multinode to another multinode
or socket-client application. You use the PBControl function to call the NetWrite
routine. See “Routines” on page 12-20 for a description of the PBControl call.

Parameter block

noErr 0 No error
paramErr –50 Bad parameter value

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The result code.
→ ioRefNum Integer The .MPP driver reference number. You

must fill in this value.
→ csCode Integer A routine selector. Always equal to 261 for

this routine. You must fill in this value.
→ checkSumFlag Byte A flag indicating whether the checksum

should be calculated or the existing
checksum left unmodified.

→ wdsPointer Ptr A pointer to the write-data structure
for the function.
Multinode Architecture Reference 12-25

C H A P T E R 1 2

Multinode Architecture
Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, AppleTalk calls your completion
routine when it completes execution of the function if you specify
a pointer to the routine as the value of this field. Specify NIL for
this field if you do not wish to provide a completion routine.
If you execute a function synchronously, AppleTalk ignores the
ioCompletion field. For information about completion routines,
see the chapter “Introduction to AppleTalk” in this book.

checkSumFlag A flag whose value you set to a nonzero number if you want the
checksum for the datagram to be calculated and placed in the DDP
header of the packet. If you do not want the current value in the
packet header’s checksum field to be altered, you set this field to 0.

wdsPointer A pointer to the write-data structure that contains a series of length
words and pointers that indicate the length and location of a portion
of the data, including the header information, that constitutes the
packet to be sent over the network.

DESCRIPTION

To send a packet over an AppleTalk network from a multinode, you must first prepare
a write-data structure, and then call the NetWrite routine, passing it a pointer to the
write-data structure.

The write-data structure that you create for multinodes differs slightly from the standard
write-data structure that you create to send a DDP packet using the PWriteDDP
function. For a multinode, you must specify both the source multinode address and the
destination address in the packet header information data areas that you point to from
the write-data structure. You can also set the checksum field of the write-data structure
to 0 to direct AppleTalk to not calculate a checksum for this packet.

You specify the source network number and the source multinode ID of the multinode;
the .MPP driver does not set these values for you in the header area of a packet sent from
a multinode as it does for a standard DDP packet, although both packets are transmitted
as DDP datagrams.

If you are sending the contents of an existing DDP packet through the NetWrite call,
you can leave the value of the source socket field unchanged. The value in the source
socket field should adhere to the conventions that the AppleTalk DDP protocol speci-
fication describes for the use of sockets. The socket number value must fall within the
defined user range as stated in the DDP protocol specification. (See Inside AppleTalk,
second edition, for this information.)

The checkSumFlag parameter block field of the NetWrite routine relates to the
standard DDP header checksum field. However, the multinode architecture uses this
flag differently than the DDP interface uses it.

■ If you want the checksum for the datagram to be calculated and placed in the
DDP header before the .MPP driver transmits the packet, you set this field to a
nonzero number.
12-26 Multinode Architecture Reference

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture
■ If you want the checksum field of the DDP packet header not to be modified, you
set this field to 0, and the existing checksum value in the DDP header will not
be changed.

Note that if you want to send a packet that does not include a checksum, you must
hardcode the value by setting to 0 the checksum field of the data structure that contains
the packet header that you point to from the write-data structure.

All packets that you send using the NetWrite routine are built with the long DDP
packet header to allow for inclusion of the source multinode address. The DDP packet
header includes the source multinode address even when the destination and source
nodes are on the same LocalTalk network.

Because the source multinode ID is associated with the application that sent the packet
and the source user node ID is associated with the machine that transmitted the packet,
the source user node ID in the frame header and the source multinode ID in the DDP
packet header are always different values.

IMPORTANT

Do not set the socket number to 0 ($00) for the source socket number
that you specify in the data area pointed to by the write-data structure.
You do this in the address block record socket field for the AddNode
routine because the socket number does not apply when you are
acquiring a multinode, but you must not do it for the NetWrite
call because NetWrite causes the .MPP driver to build a DDP packet,
and socket number 0 has special meaning to DDP that is outside the
valid user socket range. ▲

SPECIAL CONSIDERATIONS

Memory used for the write-data structure belongs to the multinode implementation in
the .MPP driver for the life of the NetWrite call and must be nonrelocatable. After the
NetWrite call completes execution, you must release the memory that you used for
the write-data structure.

ASSEMBLY-LANGUAGE INFORMATION

To execute the NetWrite routine from assembly language, call the _Control trap
macro with a value of 261 in the csCode field of the parameter block.

RESULT CODES

SEE ALSO

See the section “Preparing a Write-Data Structure” on page 12-14 for information on how
to create the write-data structure.

noErr 0 No error
ddpLenErr –92 Datagram is too long
noBridgeErr –93 No router found
excessCollsns –95 Excessive collisions on write
Multinode Architecture Reference 12-27

C H A P T E R 1 2

Multinode Architecture
Summary of Multinode Architecture 12

The multinode architecture MPP parameter block data structure and symbolic constants
for routines and result codes are not defined in the MPW interface files. (The write-data
structure and the address block record are defined in the MPW interface files for use
with other protocols, but you can use them for multinode also.)

You must declare the MPP parameter block for multinode in your application. If you
want to use the symbolic constants for the routines and result codes, you need to declare
them also.

You use the Device Manager’s PBControl function to call the RemoveNode and
NetWrite routines from the Pascal and C languages. You must issue the AddNode
routine as an immediate synchronous control call from the Pascal and C languages. You
must define a function as part of your application. (See Listing 12-1 on page 12-9 for an
example of how to do this in Pascal.) From assembly language, you can directly make an
immed _Control trap macro call.

Pascal Summary 12

Constants 12

(Declare the following constants in your application.)

CONST

{csCodes}

netWrite = 261; {send packet through multinode}

addNode = 262; {request a multinode}

removeNode = 263; {remove multinode}

Data Types 12

The Write-Data Structure

TYPE WDSElement =

RECORD

entryLength: Integer;

entryPtr: Ptr;

END;
12-28 Summary of Multinode Architecture

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture
The Address Block Record

TYPE AddrBlock =

PACKED RECORD

aNet: Integer; {network number for multinode}

aNode: Byte; {multinode ID}

aSocket: Byte; {socket number; always 0}

END;

The Multinode Parameter Block

(Declare this data type in your application.)

TYPEMNParmType = (AddNodeParm,RemoveNodeParm);

TYPE MNParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {call command code}

filler1: Byte; {reserved}

checkSumFlag: Byte; {perform checksum on datagram}

wdsPointer: Ptr; {pointer to write-data structure}

filler2: Integer; {reserved}

CASE MNParmType OF

AddNodeParm:

(reqNodeAddr: AddrBlock; {preferred address requested}

 actNodeAddr: AddrBlock; {actual node address returned}

 recvRoutine: ProcPtr; {pointer to packet receive routine}

 reqCableLo: Integer; {preferred network range for the }

 reqCableHi: Integer; { node being acquired}

 reserved: PACKED ARRAY[1..70] OF Byte);

RemoveNodeParm:

(nodeAddr: AddrBlock); {node address to be deleted}

END;

MNParmBlkPtr = ^MNParamBlock;
Summary of Multinode Architecture 12-29

C H A P T E R 1 2

Multinode Architecture
C Summary 12

Constants 12

(Declare the following constants in your application.)

/*csCodes*/

enum {

netWrite = 261, /*send packet through multinode*/

addNode = 262, /*request a multinode*/

removeNode = 263 /*remove multinode*/

};

Data Types 12

The Write-Data Structure

struct WDSElement {

short entryLength;

Ptr entryPtr;

} WDSElement;

The Address Block Record

struct AddrBlock {

short aNet; /*network number for multinode*/

unsigned char aNode; /*multinode ID*/

unsigned char aSocket; /*socket number; always 0*/

};

typedef struct AddrBlock AddrBlock;

The MPP Parameter Block for Multinode

(Declare this data type in your application.)

typedef struct {

MPPATPHeader

char filler1; /*reserved*/

unsigned char checkSumFlag; /*perform checksum on datagram*/

Ptr wdsPointer; /*pointer to write-data structure*/

char filler2[2]; /*reserved*/

union {
12-30 Summary of Multinode Architecture

C H A P T E R 1 2

Multinode Architecture

12
M

ultinode A
rchitecture
AddrBlock reqNodeAddr; /*preferred address requested*/

AddrBlock nodeAddr; /*node address to be deleted*/

} MNaddrs;

AddrBlock actNodeAddr; /*actual node address acquired*/

Ptr recvRoutine; /*address of packet receive routine*/

short reqCableLo; /*preferred network range for the */

short reqCableHi; /* node being acquired*/

char reserved[70];

} MNParamBlock;

typedef MNParamBlock*MNParmBlkPtr;

Assembly-Language Summary 12

MPP Parameter Block Common Fields for Multinode Routines

AddNode Parameter Variant

(Note that to execute the AddNode routine from assembly language, you call the
_Control trap macro and issue the routine request as an immediate call.)

RemoveNode Parameter Variant

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

26 csCode word routine selector; always 262 for this routine
36 reqNodeAddr long requested multinode address
40 actNodeAddr long actual multinode address assigned
44 recvRoutine long address of the application’s receive routine
48 reqCableLo word beginning of requested network number range

for the multinode
50 reqCableHi word end of the requested network number range for the multinode
52 reserved array 70 reserved bytes required by the .MPP driver

26 csCode word routine selector; always 263 for this routine
36 nodeAddr long actual multinode address assigned
Summary of Multinode Architecture 12-31

C H A P T E R 1 2

Multinode Architecture
NetWrite Parameter Variant

Result Codes 12

26 csCode word routine selector; always 261 for this routine
29 checkSumFlag byte a flag indicating whether the checksum should be calculated or

the existing checksum left unmodified
30 wdsPointer long a pointer to the write-data structure for this routine

noErr 0 No error
paramErr –50 Bad parameter value
ddpLenErr –92 Datagram is too long
noBridgeErr –93 No router found
excessCollsns –95 Excessive collisions on write
tryAddNodeAgainErr –1021 The .MPP driver was not able to add node; try again
mnNotSupported –1022 Multinode is not supported by the current AppleTalk

connection file of type 'adev'
noMoreMultiNodes –1023 No node address is available on the network
12-32 Summary of Multinode Architecture

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	Multinode Architecture
	About Multinode Architecture
	Using Multinode Architecture
	Acquiring and Removing Multinodes
	Handling an AppleTalk Cable-Range-Change Transitio...
	Receiving Packets Addressed to Your Multinode
	Calling ReadPacket to Read in the Packet Contents
	Calling ReadRest to Complete Reading in the Packet...

	Sending Packets Using a Multinode
	Preparing a Write-Data Structure
	Using a Checksum

	Multinode Architecture Reference
	Data Structures
	The Write-Data Structure
	The Address Block Record
	The Multinode Parameter Block

	Routines
	Adding and Removing Multinode Addresses
	Sending Datagrams Through Multinodes

	Summary of Multinode Architecture
	Pascal Summary
	Constants
	Data Types

	C Summary
	Constants
	Data Types

	Assembly-Language Summary
	Result Codes

	 Glossary
	 Index
	 Colophon

