

C H A P T E R 3

3

N
am

e-B
inding P

rotocol (N
B

P
)

Name-Binding Protocol (NBP) 3

This chapter describes the Name-Binding Protocol (NBP) that you can use to make your
process or application available to other processes or applications across the network.
This chapter also describes how you can use NBP to obtain the addresses of other
processes and applications on the network.

This chapter uses the term entity to refer to processes and applications that run on an
AppleTalk network. You use NBP in conjunction with another protocol that allows you
to send and receive data. For example, you can register your entity with NBP and then
use a transport protocol such as ADSP to communicate with other entities; ADSP opens
a socket for your entity to use and assigns that socket number to the entity. Your entity
registers an NBP name in conjunction with this socket number.

You should read this chapter if you want to

■ register an entity with NBP to make it available for other network entities to contact

■ obtain another entity’s address so that you can contact it

■ obtain the NBP names and internet socket addresses of all registered entities whose
NBP names match your partial specified name

For an overview of the Name-Binding Protocol and how it fits within the AppleTalk
protocol stack, read the chapter “Introduction to AppleTalk” in this book, which also
introduces and defines some of the terminology used in this chapter. For a description
of the Name-Binding Protocol specification, see Inside AppleTalk, second edition.

About NBP 3

NBP allows you to bind a name to the internal storage address for your entity and
register this mapping so that other entities can look it up. Applications can display NBP
names to users and use addresses internally to locate entities. When you register your
entity’s name and address pair, NBP validates its uniqueness.

An entity name consists of three fields: object, type, and zone. The value for each of
these fields can be an alphanumeric string of up to 31 characters. The entity name is not
case sensitive. You specify the value for the object and type fields.

The object field typically identifies the user of the system, or the system itself, in the case
of a server. Applications commonly set this value to the owner name, which the user
specifies through the Sharing Setup control panel.

The type field generally identifies the type of service that the entity provides, for
example, “Mailbox” for an electronic mailbox on a server. Entities of the same type can
find one another and identify potential partners by looking up addresses based on the
type portion of the name alone.

The zone field identifies the zone to which the node belongs. You do not specify this
value; when you register your process, you specify an asterisk (*) for this field. NBP
interprets the asterisk to mean the current zone or no zone, in the case of a simple
network configuration not divided into zones.
About NBP 3-3

C H A P T E R 3

Name-Binding Protocol (NBP)

The mapping of names to addresses that NBP maintains is important for AppleTalk
because the addressing numbers that AppleTalk uses are not fixed. AppleTalk assigns
an address dynamically to a node when the node first joins the network and whenever
the node is rebooted. Because of this, the address of a node on an AppleTalk network
can change from time to time. Although a network number corresponds to a particular
wire and the network number portion of an address is relatively stable, the socket
number that is assigned to an entity is usually randomly generated. (For an overview
of AppleTalk addresses and the addressing scheme, see the chapter “Introduction to
AppleTalk” in this book.) Although NBP is not a transport protocol, that is, you do not
use it to send and receive data, NBP is a client of DDP. Figure 3-1 shows NBP and its
underlying protocols.

Figure 3-1 The Name-Binding Protocol and the underlying AppleTalk protocols

NBP provides network entities with access to current addresses of other entities. The
name part of an NBP mapping is also important in identifying and locating an entity on
the network. The NBP entity name is different from the application name. An application
can display entity names to users and look up addresses based on names.

For example, an entity name can include a portion that identifies that entity type. An
application can request NBP to return the names of all of the registered entities of a
certain type, such as a particular type of game. The application can then display those
entity names to a user to allow the user to select a partner. When the user selects
an entity name, the application can request NBP to return the address that is mapped to
the entity name.

NBP

DDP

LAP Manager

Port
3-4 About NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3

N
am

e-B
inding P

rotocol (N
B

P
)

When you register your entity with NBP, it is made visible to other entities throughout
the network. A network entity that is registered with NBP is referred to as a network-
visible entity. A mail server application is an example of a network-visible entity. When
a mail server is registered with NBP, workstation clients with mailboxes can access the
mail server program to send and receive mail.

A server application might call NBP to register itself at initialization time so that its
clients can access the server when they come online. However, a game application
might register itself when a user launches it so that partner applications of the same
type can locate it, then remove its entry from the NBP names directory when the user
quits the application.

You use the NBP routines to register your entity so that other entities can find it and
to retrieve the addresses of other entities with which you want to communicate. You
specify an entity name that adheres to a defined format and register that name with
NBP in conjunction with the socket number that your entity uses. NBP then makes your
entity’s complete address available to other entities. To retrieve the address of another
entity that is registered with NBP, you supply that entity’s NBP name. You can retrieve
the addresses of more than one entity by using wildcards instead of a fully qualified
NBP name.

Although you register your entity’s NBP name in association with the socket that it uses,
NBP maintains an entry that contains your entity’s complete internet socket address. The
internet socket address, also called the internet address, includes the socket number, the
node ID, and the network number. All network-visible entities on an internet are socket
clients, which means that each one is associated with a socket. Each socket has a unique
number, and every entity has a unique internet socket address that identifies it. The
socket number part of the internet address ensures that data intended for an entity is
delivered to that particular entity.

The link-access protocol dynamically assigns a unique node ID to each node when it
joins the network. When the user reboots the system, sometimes the same node ID is
available and sometimes a new node ID is assigned. The network number is the number
of the network to which the node is directly connected, and it remains the same as
long as the node is physically connected to that network. NBP fills in the node ID
and the network number in a names table entry. You don’t supply these parts of the
internet address.

NBP maintains a names table in each node that contains the name and internet address
of each registered entity in that node. Each name and address pair is called a tuple.
When you register your process with NBP, you provide a names table entry. NBP builds
its names table on a node from the entries that entities supply.

The NBP routines include a procedure, NPBSetNTE, that you can use to fill in a names
table entry that is in the format that NBP expects. The NPBSetNTE procedure takes the
name and the socket ID that you specify and builds a names table entry in the buffer that
you provide. (For information on using NPBSetNTE, see “Registering Your Entity With
NBP” beginning on page 3-7.)
About NBP 3-5

C H A P T E R 3

Name-Binding Protocol (NBP)

To form a names table for a node, NBP connects together as a linked list the names table
entries of all the registered entities on that node. The collection of names tables on all the
nodes in an internet is known as the NBP names directory. Figure 3-2 shows a number
of nodes on a network, each with its own names table; each names table contains an
entry for each registered entity on its node.

Figure 3-2 The NBP names table on each node, collectively forming an NBP names directory

Whenever a node receives an NBP lookup request, NBP searches through its names table
for a match and, if it finds a match, returns the information to the requester.

Using NBP 3

This section describes how you can use NBP to

■ set up a names table entry for your entity and register your entity’s name and address
pair with NBP for other entities to access

■ look up an address based on a name

■ confirm a name and address that you already have

■ remove your entity’s name and address from the NBP names directory

■ cancel a pending NBP request

The .MPP driver implements the NBP protocol. Your application should check to ensure
that the .MPP driver is already loaded on the system running your application before it
attempts to call NBP. If the driver is not already open, your application should open it by

NBP names
table

NBP names
table

NBP names
table
3-6 Using NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3

N
am

e-B
inding P

rotocol (N
B

P
)

calling the Device Manager’s OpenDriver function. The following example shows how
to open the .MPP driver.

BEGIN

myErr := OpenDriver('.MPP', mppRefNum); {open .MPP driver}

IF myErr <> noErr THEN DoErr(myErr); {check and handle }

{ error}

For more information on determining if the .MPP driver is open and opening the
AppleTalk drivers, see the chapter “AppleTalk Utilities” in this book.

Your application can have multiple concurrent active NBP requests. For example,
your application can perform a number of PRegisterName, PLookupName and
PConfirmName requests concurrently. The maximum number of concurrent requests
is machine dependent. You can use the PGetAppleTalkInfo function to determine
the maximum number of concurrent NBP requests supported by the .MPP driver
on the node running your application. For information about the PGetAppleTalkInfo
function, see the chapter “AppleTalk Utilities” in this book.

All of the NBP functions use parameter blocks to hold input and output values. Whether
you execute a function synchronously or asynchronously, you must not alter the contents
of the parameter block until after the NBP function that uses it completes the operation.
In effect, the parameter block belongs to the NBP function until the function completes
execution. (For a discussion of synchronous and asynchronous execution, see the chapter
“Introduction to AppleTalk” in this book.) When the operation completes, you can either
reuse the memory allocated for the parameter block or release it.

In addition to the parameter block used for the function, the memory that you allocate
for any records and buffers whose pointers you pass to NBP through a parameter block
field must also be nonrelocatable until the function completes execution. When the
operation completes, you can reuse these data structures or release the memory that you
allocated for them.

To allocate nonrelocatable memory, you can use the Memory Manager’s NewPtr or
NewPtrSys function. If you use NewHandle instead, you need to lock the memory. For
more information about these functions, see Inside Macintosh: Memory.

Registering Your Entity With NBP 3
You register your entity with NBP to make its services available to other entities through-
out the network. Once the entity is registered, other entities can look up its name and
address pair based on its name or a part of that name.

Your process can register itself with several names all associated with the same socket.

To register itself, your entity calls two NBP routines:

■ the set names table entry (NBPSetNTE) procedure, which prepares the names
table entry

■ the register name (PRegisterName) function, which provides NBP with a pointer to
the names table entry so that NBP can register the entry on the node
Using NBP 3-7

C H A P T E R 3

Name-Binding Protocol (NBP)

Setting Up a Names Table Entry 3

The NBPSetNTE procedure creates a names table entry in the format that Figure 3-4 on
page 3-9 shows. You associate an NBP entity name with the socket number assigned to
your entity.

When you create the names table entry, you provide NBP with the socket number that
your entity uses. This is the socket ID that was assigned to your entity when it opened
a socket.

Figure 3-3 shows a complete internet socket address belonging to an entity and the entity
name that is associated with the address.

Figure 3-3 The internet socket address and entity name of an application

Along with the individual fields of the name and the socket number, you pass
NBPSetNTE a pointer to a buffer that is 108 bytes long. You create a record of type
NamesTableEntry as the buffer to be used for the names table entry. When you
register your entity, NBP uses the buffer that you pass it as the actual names table entry
for that entity; it does not make a copy of the buffer. NBP links the NamesTableEntry
record that you provide to other names table entries on the node to create a names
table for that node. For this reason, memory that you allocate for the buffer must be
nonrelocatable.

Figure 3-4 shows the structure of the names table entry record.

Notice that the first field in the NamesTableEntry record is a pointer to the next entry
in the linked list. NBP maintains the value of this field. You do not supply this value.
However, you can get a pointer to the first entry in the names table on the node
where the entity is running by calling the PGetAppleTalkInfo function. For informa-
tion about the PGetAppleTalkInfo function, see the chapter “AppleTalk Utilities” in
this book.

Internet socket address

Network number Node ID

Entity name

Socket
number

Peggy:SurfPaint@GraphicsGroup
3-8 Using NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3

N
am

e-B
inding P

rotocol (N
B

P
)

Figure 3-4 Names table entry record format

Registering a Names Table Entry 3

After you create the names table entry using NBPSetNTE, you register it by calling the
PRegisterName function. When you call PRegisterName, NBP fills in the network
number and node ID for the names table entry; because these values are the same for all
entities on the node, you do not need to supply them.

Before you call the PRegisterName function, you must supply values for the function’s
parameter block input fields. These fields are interval, count, entityPtr, and
verifyFlag. If you execute the function asynchronously, you must also supply a value
for the ioCompletion field. After you call the PRegisterName function, you must not
alter the contents of the parameter block until the function completes execution, and you
must not modify or manipulate the names table entry until you remove it from the NBP
name and address pair directory.

You set the parameter block’s entityPtr field to the names table entry’s pointer. For
released software, you should always set the verifyFlag field to a nonzero number.
This directs NBP to check throughout the network to determine that the name you want
to register is unique. Ensuring that a name is unique avoids the occurrence of problems
that can arise when two entities are registered with the same name. If the entity name is
already registered for another entity, the PRegisterName function result indicates that
the name is a duplicate by returning a function result of nbpDuplicate.

Internet address

Name of network-
visible entity

Bytes

4Pointer to next entry

Network number 4

1
1
1
1

Node ID
Socket number

Reserved
Length of object name

Variable
length

1Length of type name

Variable
length

1Length of zone name

Variable
length

Object name (ASCII)

Type name (ASCII)

Zone name (ASCII)
Using NBP 3-9

C H A P T E R 3

Name-Binding Protocol (NBP)
You can specify how many times NBP should attempt to verify the name’s uniqueness
by assigning a value to the count field. You can control how long NBP waits between
each check by assigning a value to the interval field.

The interval and count parameters are both 1 byte long, which limits them to a value
within the range of 0 to 255 ($00–$FF). However, you should not specify a value of 0
(which is equivalent to 256) for the retransmit interval; the task will never be executed if
you do.

You measure intervals in 8-tick units. You can use this equation to determine how long in
ticks a function will take to complete:

TimeToCompleteInTicks := count * interval * 8;

A value of 7 for the interval field is usually sufficient (7 × 8 = 56 ticks equals approxi-
mately 1 second). A retry count of 5 is usually sufficient. However, on a large network,
base the interval value on the speed of the network. Base the retry count on how likely it
is for a particular kind of device to catch or miss the NBP lookup request and how many
devices of this kind are on the network.

Some kinds of devices are more likely to receive the NBP lookup request than are others.
For example, the AppleTalk ImageWriter has a dedicated processor on the LocalTalk
option card to handle AppleTalk processing. A dedicated processor is likely to be
available to receive an NBP lookup request, so the count for a device of this type can be
relatively low. However, most Macintosh computers and LaserWriter printers depend on
the system’s shared processor to handle all processing, so the count for these kinds of
devices should be higher. On a network with slow connections, for example, one that
uses a modem bridge, you should increase the interval.

You can use different values for different types of devices. You can store these values in a
preferences resource so that you can easily change them to correspond to changes in the
network. For example, you could include values such as the following for these devices:

You pass to the PRegisterName function a pointer to a parameter block and a Boolean
value indicating if the function is to be executed asynchronously or synchronously. If
you set the async Boolean parameter to TRUE, you must either provide a completion
routine or set the ioCompletion field value to NIL, in which case, your process must
poll the parameter block’s ioResult field to determine when the function completes
the operation. For a discussion of synchronous and asynchronous execution, see the
chapter “Introduction to AppleTalk” in this book.

Listing 3-1 shows a segment of code that registers an application with NBP. First the code
allocates nonrelocatable memory for the names table entry. Then the code calls
NBPSetNTE to set up the names table entry in the format that the PRegisterName
function expects.

Device Interval Count

AppleShare $07 $05

AppleTalk ImageWriter $07 $02

LaserWriter $0B $05
3-10 Using NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

Next, the code assigns values to the input fields of the parameter block to be used for
the PRegisterName function. The code doesn’t assign values to the ioRefNum and
csCode fields because these field values are filled in by the PRegisterName function’s
glue code in the MPW interface.

Notice that the code assigns to the entityPtr field the ntePtr pointer to the buffer
that the code passed to the NBPSetNTE function. After it sets up the parameter block,
the code makes a synchronous call to the PRegisterName function to register the
names table entry. If the PRegisterName function returns an error, the code releases
the nonrelocatable memory that it allocated for the names table entry.

Listing 3-1 Registering an application with NBP

FUNCTION MyRegisterName (entityObject: Str32; entityType: Str32;

 socket: Integer; VAR ntePtr: Ptr): OSErr;

VAR

mppPB: MPPParamBlock;

result: OSErr;

BEGIN

ntePtr := NewPtrSys(sizeof(NamesTableEntry));

IF ntePtr = NIL THEN

BEGIN

result := MemError; {return memory error}

ntePtr := NIL;

END

ELSE

BEGIN

{Build the names table entity.}

NBPSetNTE(ntePtr, entityObject, entityType, '*', socket);

WITH mppPB DO

BEGIN

interval := $0F; {reasonable values for the }

count := $03; { interval and retry count}

entityPtr := ntePtr; {pointer to NamesTableEntry}

verifyFlag := Byte(TRUE); {ensure that name is unique}

END;

result := PRegisterName(@mppPB, FALSE);{register the name}

IF (result <> noErr) THEN

BEGIN

DisposPtr(ntePtr); {if error, release memory}

ntePtr := NIL;

END;

END;

MyRegisterName := result;

END;
Using NBP 3-11

C H A P T E R 3

Name-Binding Protocol (NBP)
Handling Names Table Entry Requests 3
In addition to providing services that let you register an entity name and socket address
for your process, NBP lets you look up addresses of other entities based on a name,
confirm that a process whose entity name and address you already have is still registered
with NBP and that the address is correct, remove your process’s name and address from
the names table when you no longer want to make the entity available, and cancel a
pending request. You use

■ the NBPSetEntity procedure to prepare an entity name in the format required by
the NBP functions

■ the PLookupName function to retrieve another entity’s address based on the entity’s
complete NBP name, or to retrieve the addresses of multiple entities that match an
NBP name that includes wildcards

■ the NBPExtract function to read a retrieved address from the return buffer

■ the PConfirmName function to verify a name and address

■ the PRemoveName function to remove your process’s name and address from the
NBP names directory

■ the PKillNBP function to cancel a request to register, confirm, or look up a names
table entry if the function was called asynchronously and it has not already been
executed

Preparing an Entity Name 3

To prepare an entity name using NBPSetEntity, you allocate a buffer that is at least
99 bytes long. You can allocate a record of type EntityName for this buffer. You pass
NBPSetEntity a pointer to the buffer along with the three parts of the name (object,
type, and zone), and NBPSetEntity writes the entity name to the buffer in the
format that the PLookupName, PConfirmName, and PRemoveName functions require.
Figure 3-5 shows the format of the entity name record.

Figure 3-5 Entity name record format

Bytes

1Length of object name

Variable
length

1Length of type name

Variable
length

1Length of zone name

Variable
length

Object name (ASCII)

Type name (ASCII)

Zone name (ASCII)
3-12 Using NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

For the PConfirmName and PRemoveName functions, you must specify explicit values
for the nbpObject, nbpType, and nbpZone parameters. However, you can specify
wildcards for these parameters for PLookupName.

Looking Up a Name 3

You can use the PLookupName function to look up the address of a particular entity
whose NBP name you know. You can also use the PLookupName function to find the
addresses of more than one entity whose NBP names match a partial name that includes
wildcards.

If you want to retrieve the address of a particular entity, you assign to the entityPtr
field of the parameter block a pointer to a fully qualified entity name that you provided
using NBPSetEntity. You create a buffer to hold the name and address that
PLookupName returns and set the parameter block’s return buffer pointer (retBuffPtr)
field to this buffer’s pointer. Because the data is packed and each tuple takes a maximum
of 104 bytes, to look up a particular name you need to set the return buffer size
(retBuffSize) field to the buffer size of 104 bytes. Figure 3-6 shows the format of
the record for a tuple that PLookupName returns.

Figure 3-6 Tuple returned by the PLookupName function

If you want only one name and address pair returned, you set the maximum number of
matches (maxToGet) field to 1. When you call the function asynchronously, you must
assign to the ioCompletion field a pointer to your completion routine or set this field
to NIL. For more information about executing routines synchronously or asynchro-
nously, see the chapter “Introduction to AppleTalk” in this book.

Internet address

Name of network-
visible entity

Bytes

Network number 2

1
1
1
1

Node ID
Socket number

Reserved
Length of object name

Variable
length

1Length of type name

Variable
length

1Length of zone name

Variable
length

Object name (ASCII)

Type name (ASCII)

Zone name (ASCII)
Using NBP 3-13

C H A P T E R 3

Name-Binding Protocol (NBP)
If you want to obtain the addresses of other instances of the same type of entity that are
running on other nodes in the network, you can look up the addresses of these entities
by specifying wildcards. In this case, you specify a type field value and wildcards for the
object and zone fields.

Table 3-1 shows the wildcards that you can use to control the kind of matches that you
want NBP to return.

For example, if you want to retrieve the names and addresses of all the mailboxes in the
same zone as one in which your process is running, you can set the entity name object
field to the equal sign (=), the type field to Mailbox, and the zone field to the asterisk (*).
The PLookupName function will return the entity names and internet addresses of all
mailboxes in that zone excluding your own entity’s name and address.

You can specify how thorough the lookup should be by defining the number of times
that NBP should broadcast the lookup packets and the time interval between these
retries. To do this, you assign values to the parameter block’s count and interval
fields. See the discussion on how to determine these values in the section “Registering a
Names Table Entry” beginning on page 3-9.

You must also create a buffer large enough to hold all of the tuples for the matches that
NBP returns. (See Listing 3-3 on page 3-17.) You assign the buffer’s pointer to the
parameter block’s retBuffPtr field and the buffer’s size in bytes to the retBuffSize
field. Allow 104 bytes for each match. You set the maximum number of matches for NBP
to return as the value of the maxToGet field.

The PLookupName function keeps track of the number of matches it writes to the return
buffer each time it receives a returned packet containing one or more matches, and it
updates the number of matches returned (numGotten) field after it returns each match.
Because PLookupName maintains numGotten, you can start reading the names and
addresses in the buffer and storing them or displaying them for the user before the
function completes execution.

Table 3-1 NBP wildcards

Character Meaning

= All possible values. You can use the equal sign (=) alone instead of
specifying a name in the object or type field.

≈ Any or no characters in this position. You can use the double tilde (≈) to
obtain matches for object or type fields. For example, pa≈l matches pal,
paul, paper ball, and so forth. You can use only one double tilde in any
string. Press Option-X to type the double tilde character on a Macintosh
keyboard. If you use the double tilde alone, it has the same meaning as
the equal sign (=).

NOTE Any node not running AppleTalk Phase 2 drivers will not recognize this character.

* This zone. You can use the asterisk (*) in place of the name of the zone to
which this node belongs.
3-14 Using NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

A single lookup request or retry can return more than one match in a reply packet. When
this happens, the PLookupName function will return as many of the matches that the
packet contains as will fit in the buffer. In cases such as this, you will find that the
number of tuples that PLookupName writes to the return buffer may exceed the
maximum number of matches to be returned as specified by maxToGet. When this
occurs you can assume that there may be additional matches that did not fit in the buffer
or additional reply packets containing matches that PLookupName did not process. To
receive all the matches, you should increase the size of the buffer and the maxToGet
number, and call the PLookupName function again.

If the buffer is too small to accommodate all of the returned matches in a packet,
the PLookupName function returns a function result of nbpBuffOvr. In any case,
the numGotten field always indicates the actual number of tuples returned in the
buffer. (See also “PLookupName” beginning on page 3-30 for more information
about this function.)

The code in Listing 3-2 assigns values to the fields of the parameter block to be used for
the PLookupName function call. The value theEntity points to a packed entity-name
record that you prepared using NBPSetEntity. This is the name that will be looked
for. The value returnBufferPtr points to the buffer where PLookupName will return
any matches that it finds. The buffer must be able to hold the number of matches
specified by the input value of entityCount; each match is 104 bytes long. On return,
entityCount contains the number of matches that the PLookupName function found
and returned in the buffer pointed to by returnBufferPtr. The PLookupName
function’s glue code in the MPW interface fills in the values for the ioRefNum and
csCode fields.

Listing 3-2 Calling PLookupName to find matches for an entity name

FUNCTION MyLookupName (theEntity: EntityName; VAR entityCount: Integer;

returnBufferPtr: Ptr): OSErr;

CONST

kTupleSize = 104; {sizeof(AddrBlock) + a one-byte enumerator + }

{ sizeof(EntityName)}

VAR

mppPB: MPPParamBlock;

BEGIN

WITH mppPB DO

BEGIN

interval := $0F; {reasonable values for the }

count := $03; { interval and retry count}

entityPtr := @theEntity; {pointer to the entity name to }

{ look for}

retBuffPtr := returnBufferPtr; {pointer to the buffer for the }

{ tuples}
Using NBP 3-15

C H A P T E R 3

Name-Binding Protocol (NBP)
RetBuffSize := entityCount * kTupleSize;

{return buffer size}

maxToGet := entityCount; {the number of entities that the }

{ return buffer can hold}

END;

MyLookupName := PLookupName(@mppPB, FALSE);

{look up the entity name}

entityCount := mppPB.numGotten;

{return the number of matches found}

END;

The tuples in the buffer are in the format used in the NBP names table, as shown in
Figure 3-6 on page 3-13. Because data is packed, the object, type, and zone names in this
format are of arbitrary length; you cannot use Pascal to read these tuples. You can use
the NBPExtract function to read tuples from the buffer.

Extracting a Name From a List of Returned Names 3

After NBP returns the matches to your buffer, you need to extract the match or matches
that you want to use. You can use the NBPExtract function to read a name and address
pair from the return buffer that you supplied to PLookupName. Before you call
NBPExtract, you need to allocate memory for two buffers: one buffer that is at least
102 bytes long to hold the name part of the tuple and another buffer that is 4 bytes long
to hold the address. You pass the NBPExtract function pointers to these buffers. The
NBPExtract function unpacks the name and address data and writes it to the buffers
that you supply.

You also pass NBPExtract a pointer to the buffer containing the returned tuples; this is
the pointer that you assigned to the PLookupName function’s retBuffPtr parameter
block field. For the numInBuf parameter, you specify the number of tuples in the return
buffer; this is the value that the PLookupName function returned in the numGotten
parameter block field. Counting the first returned tuple as one and following in sequence
to the value of numGotten, you identify which name and address pair you want to
extract as the value of the whichOne parameter. You can use the NBPExtract function
in a loop that varies the value of the whichOne parameter (entityCount in the
following code example) from 1 to the total number of tuples in the list to extract all the
names in the list.

Listing 3-3 shows an application-defined procedure, DoMyLookupName, that allocates a
buffer to hold the matches that the PLookupName function returns; the MyLookupName
function, shown in Listing 3-2 on page 3-15, calls the PLookupName function. The
DoMyLookupName procedure calls the MyLookupName function.

If the MyLookupName function returns a result code of noErr, then the code calls the
NBPExtract function to read the matches that are in the buffer and write them to
the application’s buffer with an application-defined routine, MyAddToMatchList; the
listing does not show the MyAddToMatchList routine. After the matches are extracted,
the code disposes of the return buffer.
3-16 Using NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

Listing 3-3 Creating a buffer to hold name matches found, then using NBPExtract to read
the matches

PROCEDURE DoMyLookupName;

CONST

kTupleSize = 104; {sizeof(AddrBlock) + a one-byte enumerator + }

{ sizeof(EntityName)}

kMaxMatches = 100; {number of matches to get}

VAR

result: OSErr;

returnBufferPtr: Ptr;

theEntity: EntityName;

entityCount: Integer;

index: Integer;

entityAddress: AddrBlock;

BEGIN

returnBufferPtr := NewPtr(kMaxMatches * LongInt(kTupleSize));

IF returnBufferPtr <> NIL THEN

BEGIN

{Create a packed entity name.}

NBPSetEntity(@theEntity, '=', 'AFPServer', '*');

entityCount := kMaxMatches; {maximum number of matches we want}

result := MyLookupName(theEntity, entityCount, returnBufferPtr);

IF result = noErr THEN

{Extract the matches and add them to the match list.}

FOR index := 1 TO entityCount DO

IF NBPExtract(returnBufferPtr, entityCount, index, theEntity,

 entityAddress) = noErr THEN

AddToMatchList(theEntity, entityAddress)

DiposPtr(returnBufferPtr); {release the memory}

END;

END;

Confirming a Name 3

If you know the name and address of an entity, and you only want to confirm that the
tuple is still registered with NBP and that the address hasn’t been changed, you should
call the PConfirmName function instead of calling PLookupName.

The PConfirmName function is faster than PLookupName because NBP can send a
request packet directly to the node based on the address that you supply rather than
having to broadcast lookup packets throughout the network to locate the names table
entry based on the entity name alone.

The code in Listing 3-4 sets up the parameter block to be used for the PConfirmName
function and calls PConfirmName to verify that the name and address still exist, and
Using NBP 3-17

C H A P T E R 3

Name-Binding Protocol (NBP)
that the address is unchanged. If the application is using a different socket,
PConfirmName returns a function result of nbpConfDiff and gives the new
socket number in the parameter block’s newSocket field.

Listing 3-4 Confirming an existing NBP name and address

FUNCTION MyConfirmName (theEntity: EntityName; entityAddress: AddrBlock;

VAR socket: Integer): OSErr;

VAR

mppPB: MPPParamBlock;

BEGIN

WITH mppPB DO

BEGIN

interval := $0F; {reasonable values for the interval }

count := $03; { and retry count}

entityPtr := @theEntity; {entity name to look for}

confirmAddr := entityAddress; {entity's network address}

END;

MyConfirmName := PConfirmName(@mppPB, FALSE);

socket := mppPB.newSocket; {return the socket number, which is }

{ the new socket number if }

{ PConfirmName's result is }

{ nbpConfDiff}

END;

Removing an Entry From the Names Table 3

After you close the socket that your process uses or when you no longer want to make
the process available throughout the network, you remove the names table entry from
the node on which it resides using the PRemoveName function.

There are two ways to remove a names table entry:

■ For the first method, you use the NBPSetEntity procedure to put the entity name of
an existing registered entity into the structure that NBP requires. Then you specify the
pointer to this record as the value of the entityPtr field of the parameter block.

■ For the second method, you provide the PRemoveName function with a pointer to the
names table entry record that you used to register the name.

The PRemoveName function removes the entry from the node’s names table unless the
name is no longer registered, in which case, PRemoveName returns a function result of
nbpNotFound. An entity name may not be included in the node’s names table if, for
example, the request to register the name had been canceled by the PKillNBP function
before the PRegisterName function used to register the name was executed.

The code in Listing 3-5 shows how to remove a names table entry using PRemoveName.
The PRemoveName function’s glue code fills in the ioRefNum and csCode values. The
code in Listing 3-5 provides the pointer to the names table entry record that was used to
3-18 Using NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

register the name; it assigns this value to the entityPtr field of the parameter block
used for the PRemoveName function call. (The code in Listing 3-1 on page 3-11 created the
names table entry record.) If the application-defined MyRemoveName function returns a
function result of noErr, the code disposes of the memory block pointed to by ntePtr.

Listing 3-5 Removing an NBP names table entry

FUNCTION MyRemoveName (ntePtr: Ptr): OSErr;

VAR

mppPB: MPPParamBlock;

result: OSErr;

BEGIN

mppPB.entityPtr := Ptr(ORD4(ntePtr) + 9);

{the entity name is at offset 9 in the NTE}

result := PRemoveName(@mppPB, FALSE);{remove the name}

IF (result = noErr) THEN

DisposPtr(ntePtr); {release the memory}

MyRemoveName := result;

END;

Canceling a Request 3

You can use the PKillNBP function to cancel a request to register, look up, or confirm
a names table entry if the function was called asynchronously and it has not already
been executed.

When you call PRegisterName, PLookupName, or PConfirmName, NBP calls the
Device Manager, which places your request in the .MPP driver queue with other
requests waiting to be executed. To queue the request, the Device Manager places
a pointer to the function’s parameter block in the .MPP driver queue. You assign this
pointer to the PKillNPB parameter block’s queue element (nKillQEl) field.

If the function request that you want to cancel is not in the queue, PKillNBP returns
a function result of cbNotFound. If PKillNBP cancels the function, it returns a
function result of noErr, and the function that it canceled returns a function result
of reqAborted.

The code in Listing 3-6 on page 3-20 shows how to cancel a PRegisterName,
PLookupName, or PConfirmName function call. The application-defined MyKillNBP
function takes as an input parameter a pointer to the parameter block that was used
to make the PLookupName, PRegisterName, or PConfirmName function call to be
canceled. The code assigns this pointer to the nKillQEl field of the parameter block to
be passed to the PKillNBP function. The ioRefNum and csCode field values are filled
in by the PKillNBP function’s glue code in the MPW interface.
Using NBP 3-19

C H A P T E R 3

Name-Binding Protocol (NBP)
Listing 3-6 Canceling a request to look up a name

FUNCTION MyKillNBP (requestPBPtr: MPPPBptr): OSErr;

VAR

mppPB: MPPParamBlock;

BEGIN

mppPB.nKillQEl := Ptr(requestPBPtr);

MyKillNBP := PKillNBP(@mppPB, FALSE);

END;

NBP Reference 3

This section describes the data structures and routines that are specific to the Name-
Binding Protocol (NBP). The “Data Structures” section shows the Pascal data structures
for the records and the parameter block that the NBP functions use. The “Routines”
section describes the NBP routines.

Data Structures 3
This section describes the data structures that you use to provide information to and
receive it from NBP.

Address Block Record 3

The address block record is a data structure of type AddrBlock that defines a packed
record that is used to contain an internet socket address. The names table entry record
includes a field that takes a value of this record type.

AddrBlock = PACKED RECORD

aNet: Integer;

aNode: Byte;

aSocket: Byte;

END;

Field descriptions

aNet The network number.
aNode The node ID.
aSocket The socket number.
3-20 NBP Reference

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

Names Table Entry Record 3

The names table entry record is a data structure of type NamesTableEntry that is used
to hold an NBP names table tuple, consisting of a name and address. Because the object,
type, and zone names in a names table entry are packed data of arbitrary length, you
cannot create this record in Pascal (which requires you to declare the length of character
strings when you define the record). If you are using the NBP Pascal interface, you use
the NPBSetNTE procedure to create a names table entry. For illustration of the names
table record format, see Figure 3-4 on page 3-9.

TYPE

NamesTableEntry =

 RECORD

qLink: QElemPtr;

nteAddress: AddrBlock;

nteData: PACKED ARRAY[1..100] OF Char;

END;

Field descriptions

qLink A pointer to the next names table entry in the names table linked
list that NBP maintains on the node. (This field is used internally
by NBP.)

nteAddress The internet socket address.
nteData The NBP name associated with the entity’s address.

Entity Name Record 3

The entity name record is a data structure of type EntityName that is used to hold the
NBP name for an entity that is associated with a socket address. Your application looks
up or confirms an address or removes a names table entry based on an entity name.

Because the object, type, and zone names that constitute the entity name in this format
are packed data and of arbitrary length, you cannot create this record in Pascal (which
requires you to declare the length of character strings when you define the record). If you
are using the NBP Pascal interface, you put an existing entity name into the structure
that NBP requires using the NBPSetEntity procedure.

TYPE

EntityName =

RECORD

objStr: Str32;

typeStr: Str32;

zoneStr: Str32;

END;

EntityPtr = ^EntityName;
NBP Reference 3-21

C H A P T E R 3

Name-Binding Protocol (NBP)
Field descriptions

objStr The object part of an entity name. It consists of an alphanumeric
string of up to 31 characters. The object part of the name can be any
valid string; it is commonly used to identify the user of the system.

typeStr The type part of an entity name. It consists of an alphanumeric
string of up to 31 characters. The type part of the name can be any
valid string, but it is commonly used to identify the type of service
that the entity provides.

zoneStr The zone part of an entity name. It consists of an alphanumeric
string of up to 31 characters that identifies the zone to which the
node belongs that is running the process.

The MPP Parameter Block for NBP 3

The NBP functions use the MPP parameter block defined by the MPPParamBlock data
type to pass information to and receive it from the .MPP driver. You use these fields to
specify input values to and receive output values from an NBP function. This section
defines the fields common to all NBP functions, except those that are reserved for
internal use by the .MPP driver or not used.

TYPE

MPPParmType = (...RegisterNameParm, LookupNameParm,

ConfirmNameParm,RemoveNameParm, KillNBPParm...);

MPPPBPtr = ^MPPParamBlock;

MPPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}

CASE MPPParmType OF

RegisterNameParm,

LookupNameParm,

ConfirmNameParm,

RemoveNameParm:

(interval: Byte; {retry interval}

count: Byte; {retry count}

entityPtr: Ptr; {pointer to entity name or }

{ names table element}
3-22 NBP Reference

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

CASE MPPParmType OF

RegisterNameParm:

(verifyFlag: Byte; {verify uniqueness of name or not}

 filler3: Byte;)

LookupNameParm:

(retBuffPtr: Ptr; {pointer to return buffer}

retBuffSize: Integer; {return buffer size}

maxToGet: Integer; {matches to get}

numGotten: Integer;) {matches gotten}

ConfirmNameParm:

(confirmAddr: AddrBlock; {pointer to entity name}

newSocket: Byte; {socket number}

filler4: Byte);

)

KillNBPParm:

(nKillQEl: Ptr;) {pointer to queue element to cancel}

END;

The fields for each variant record are defined in the function description that uses
the record.

Routines 3
This section describes the NBP routines. The NBP routines allow you to

■ create an NBP names table entry

■ register an NBP names table entry with the NBP names directory

■ put an existing NBP entity name into the structure that NBP requires for you to look
up, confirm, or remove an existing registered entity name

■ look up the address of a network entity based on its NBP name

■ read a name and address from a list of pairs that NBP returns

■ confirm that a name and address pair is registered with NBP

■ remove a registered name from the NBP names directory

■ cancel an NBP request

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning

→ Input

← Output

↔ Both
NBP Reference 3-23

C H A P T E R 3

Name-Binding Protocol (NBP)
You can use the PGetAppleTalkInfo function to determine the maximum number of
concurrent NBP requests that the .MPP driver installed on the system that is running
your process supports. See the chapter “AppleTalk Utilities” for information on the
PGetAppleTalkInfo function.

Registering an Entity 3

This section describes the NBPSetNTE and the PRegisterName routines. You can use
the NBPSetNTE procedure to create an NBP names table entry to be used to register the
name and address of an entity with NBP so that the entity is made visible throughout the
network. You use the PRegisterName function to register a names table entry that you
created through the NBPSetNTE procedure.

NBPSetNTE 3

The NBPSetNTE procedure creates a new NBP names table entry to be added to the NBP
names table through the PRegisterName function.

PROCEDURE NBPSetNTE (ntePtr: Ptr; nbpObject,nbpType,nbpZone: Str32;

socket: Integer);

ntePtr A pointer to a buffer that you provide that is at least 108 bytes long. The
NBPSetNTE procedure fills this buffer with a names table entry based on
the remaining parameter values that you specify. This buffer should be a
record of type NamesTableEntry.

nbpObject The object part of the name for the names table entry. This value can be
up to 31 characters long. You cannot use any wildcard characters in this
name. (An object name typically identifies the node and is commonly set
to the Chooser name that the user specified.)

nbpType The type part of the name for the names table entry. This value can be up
to 31 characters long. You cannot use any wildcard characters in this
name. This part of an NBP name usually identifies the type of service to
which the name is assigned.

nbpZone The zone part of the name for the names table entry. You must use an
asterisk (*) for this name, indicating the local zone.

socket The number of the socket that was returned and assigned to your process
when you opened a socket using one of the AppleTalk transport
protocols. The NBP entity name is associated with the socket number that
you specify.
3-24 NBP Reference

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

DESCRIPTION

The NBPSetNTE procedure creates a names table entry that you can register with
the NBP names directory using the PRegisterName function. When you call
PRegisterName to register the name, you must provide a pointer to the NBP names
table entry that you created previously.

Because the object, type, and zone names in a names table entry are packed data of
arbitrary length, you cannot create this record in Pascal (which requires you to declare
the length of character strings when you define the record). Use the NBPSetNTE
procedure to create the names table entry.

SPECIAL CONSIDERATIONS

The names table entry that you provide remains the property of NBP once you register it
using PRegisterName and until you remove it using the PRemoveName function. You
can allocate a block of nonrelocatable memory for the names table entry buffer using the
Memory Manager’s NewPtr or NewPtrSys function.

If instead you use the NewHandle function to allocate the buffer memory, you must lock
the memory before you call PRegisterName to register the name because NBP adds the
actual names table entry to the NBP names table for that node, and the names table entry
remains part of the table until you remove it.

ASSEMBLY-LANGUAGE INFORMATION

The NBPSetNTE procedure is implemented entirely in the MPW interface files. There is
no assembly-language equivalent for this procedure.

SEE ALSO

For the names table entry record format, see Figure 3-4 on page 3-9.

For the NamesTableEntry data type declaration, see “Data Structures” on page 3-20.

For information on allocating memory, see Inside Macintosh: Memory.

The PRegisterName function is described next.

PRegisterName 3

The PRegisterName function adds a unique names table entry to the local node’s NBP
names table.

FUNCTION PRegisterName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that indicates whether the function should be executed asyn-
chronously or synchronously. Specify TRUE for asynchronous execution.
NBP Reference 3-25

C H A P T E R 3

Name-Binding Protocol (NBP)
Parameter block

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function
result of noErr as soon as the function begins execution. When
the function completes execution, it sets the ioResult field to the
actual result code.

ioRefNum The .MPP driver reference number. The MPW interface fills in
this field.

csCode The command code of the .MPP command to be executed. The
MPW interface fills in this field.

interval The retry interval to be used by NBP when it verifies the uniqueness
of the name. The retry interval value specifies how long the
function is to wait between retries in 8-tick units. A value of 7 for
the interval field is usually sufficient (7 × 8 = 56 ticks equals
approximately 1 second).

count On input, the retry count to be used by NBP when it verifies the
uniqueness of the name. Its value tells the PRegisterName
function how many times to retry. A retry count of 5 is usually
sufficient. On return, the number of times that NBP actually
attempted to verify the uniqueness of the name.

entityPtr A pointer to a names table entry. You can use the NBPSetNTE
procedure to create a names table entry.You cannot use wildcard
characters in the object name and type name fields of the names
table entry, but you must use an asterisk (*)—indicating the local
zone—for the zone name field.

verifyFlag A flag that determines whether NBP attempts to verify that the
name you are adding to the names table is unique. Set this flag to a
nonzero number to have NBP verify the name. You can set this flag
to zero during program development, but to avoid confusion
caused by duplicate names on a network, you should always set the
verifyFlag parameter to a nonzero number in released software.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .MPP driver reference number.
→ csCode Integer Always registerName.
→ interval Byte The retry interval.
↔ count Byte The retry count.
→ entityPtr Ptr A pointer to a names table entry.
→ verifyFlag Byte A flag to indicate whether NBP is to verify

NBP names as unique.
3-26 NBP Reference

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

DESCRIPTION

Before another entity can send information to your entity over AppleTalk, it must have
your entity’s internet socket address. Also, for users to be able to select your application,
the entity must be made visible throughout the network.

The PRegisterName function adds an entry for a network entity to the node’s NBP
names table, making it possible for a user or another process to locate that entity through
its NBP name (consisting of object, type, and zone names). The process whose name is
registered with NBP is referred to as a network-visible entity.

Because the object, type, and zone names in a names table entry are of arbitrary length,
you cannot create this record in Pascal (which requires you to declare the length of
character strings when you define the record). Use the NBPSetNTE procedure to create
the names table entry. If you execute the function asynchronously and you do not specify
a completion routine, your process can poll the ioResult field to determine when the
function completes execution.

You can assign any number of names to a single socket. If you use a single socket for
more than one process, you must provide a socket listener.

If you use the PKillNPB function to cancel the PRegisterName function and the cancel
request is successful, PRegisterName returns a function result of reqAborted.

SPECIAL CONSIDERATIONS

The names table entry that you provide remains the property of NBP until you use the
PRemoveName function to remove the entry from the names table. You must allocate a
nonrelocatable block for the names table entry, or lock any relocatable block that you use
for it until you are ready to remove the entry.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PRegisterName function from assembly language, call the _Control
trap macro with a value of registerName in the csCode field of the parameter block.
To execute the _Control trap asynchronously, include the value ,ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

RESULT CODES

noErr 0 No error
nbpDuplicate –1027 Name already exists
tooManyReqs –1097 Too many concurrent requests; wait a few minutes, then

try the request again
reqAborted –1105 Request canceled
NBP Reference 3-27

C H A P T E R 3

Name-Binding Protocol (NBP)
SEE ALSO

To create a names table entry, use the NBPSetNTE procedure, described on page 3-24.

For the names table entry record format, see Figure 3-2 on page 3-6.

For the NamesTableEntry data type declaration, see “Names Table Entry Record” on
page 3-21.

To cancel a name registration request, use the PKillNBP function, described on
page 3-38.

For information about socket listeners, see the chapter “Datagram Delivery Protocol
(DDP)” in this book.

Handling Name and Address Requests 3

This section describes

■ the NBPSetEntity procedure, which you can use to put an existing NBP entity name
into the structure that NBP requires for you to look up, confirm, or remove an existing
registered entity name

■ the PLookupName function, which you can use to look up the network address of an
entity, based on the NBP registered name for that entity, or using wildcards

■ the NBPExtract function, which you can use to read a name and address pair from
the buffer containing the list of tuples that PLookupName returns

■ the PConfirmName function, which you can use to confirm that a name whose
address you know is still associated with that address, and that the pair is still
registered with the NBP names directory

■ the PRemoveName function, which you can use to remove a name and address pair
from the NBP names directory when you no longer want to make the service
associated with the tuple available throughout the network

■ the PKillNBP function, which you can use to cancel requests to NBP

NBPSetEntity 3

The NBPSetEntity procedure puts an existing NBP name of a network-visible
entity into the packed-record format that the PLookupName, PConfirmName, and
PRemoveName functions require.

PROCEDURE NBPSetEntity (buffer: Ptr;

nbpObject,nbpType,nbpZone: Str32);

buffer A pointer to a buffer that you provide that is at least 99 bytes long. The
NBPSetEntity procedure fills this buffer with the entity name you
specify in the other three parameters.
3-28 NBP Reference

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

nbpObject The object part of the registered NBP name. You can specify wildcard
characters in this part of the name only for use with the PLookupName
function.

nbpType The type part of the registered NBP name. You can use wildcard
characters in this part of the name only for use with the PLookupName
function.

nbpZone The zone part of the registered NBP name. You can use wildcard
characters in this part of the name only for use with the PLookupName
function.

Table 3-1 on page 3-14 describes the wildcard characters that you can specify for the
nbpObject, nbpType, and nbpZone fields for use with the PLookupName function.

DESCRIPTION

When you call the PRemoveName function to remove the name of a network-visible
entity from the NBP names table, or call the PLookupName or PConfirmName function
to look up network-visible entities, you must specify an entity name in the format shown
in Figure 3-5 on page 3-12. (For PRemoveName, instead of creating the entity-name
record, you can provide a pointer to the names table entry record that you used to
register the name.)

The object, type, and zone names that constitute the entity name in this format are
packed data and of arbitrary length. Therefore, you cannot create this record in Pascal
(which requires you to declare the length of character strings when you define the
record). Use the NBPSetEntity procedure to provide the entity name in the format
that NBP requires.

SPECIAL CONSIDERATIONS

The memory that you allocate for the entity name buffer belongs to NBP until the
function completes execution. You can reuse it or dispose of it after the operation
completes.

ASSEMBLY-LANGUAGE INFORMATION

The NBPSetEntity procedure is implemented entirely in the MPW interface files. There
is no assembly-language equivalent for this procedure.

SEE ALSO

The PLookupName function is described next.

For a discussion of how to use NBPSetEntity, see “Preparing an Entity Name”
beginning on page 3-12.

To confirm that an entity is still registered with NBP, use the PConfirmName function,
described on page 3-34.

To remove a registered name from the NBP names table, use the PRemoveName function,
described on page 3-36.
NBP Reference 3-29

C H A P T E R 3

Name-Binding Protocol (NBP)
PLookupName 3

The PLookupName function returns the names and addresses of all the network-visible
entities that match a name that you supply, which can include wildcard characters.

FUNCTION PLookupName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

ioRefNum The .MPP driver reference number. The MPW interface fills in
this field.

csCode The command code of the .MPP command to be executed. The
MPW interface fills in this field.

interval The retry interval to be used by NBP when it looks on the internet
for matching names. The retry interval value specifies how long the
function is to wait between retries in 8-tick units. The retry interval
equals the interval field value × 8 ticks. A value of 7 for the

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .MPP driver reference number.
→ csCode Integer Always lookupName.
→ interval Byte The retry interval.
↔ count Byte The retry count.
→ entityPtr Ptr A pointer to an entity name.
→ retBuffPtr Ptr A pointer to the return data buffer.
→ retBuffSize Integer The return buffer size in bytes.
→ maxToGet Integer The maximum number of matches to get.
← numGotten Integer The number of addresses found and returned.
3-30 NBP Reference

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

interval field is usually sufficient (7 × 8 = 56 ticks equals approxi-
mately 1 second). However, on a large network, you should base
the interval value on the speed of the network and how many
devices of this type you expect to be on the network.

count The retry count to be used by NBP when it looks on the internet
for matching names. Its value specifies the number of times
PLookupName is to retry the operation. A retry count of 3 or 4 is
usually sufficient. However, on a large network, you should base
the value on how likely it is for the type of device to miss the NBP
request. For example, the AppleTalk ImageWriter has a dedicated
processor on the LocalTalk option card to handle AppleTalk
processing, so the retry count for a device of this type can be low,
whereas most Macintosh systems and LaserWriter printers depend
on their shared processor to handle all system processing, so
a retry count for a device of these types should be higher. The
PLookupName function decrements this field each time it looks
for names.

entityPtr A pointer to an entity name in the format shown in Figure 3-5 on
page 3-12. You can use the NBPSetEntity procedure to prepare
the entity name record.

retBuffPtr A pointer to a buffer you provide into which the PLookupName
function puts the names and addresses that it finds. Each matching
tuple takes a maximum of 104 bytes, and you use the maxToGet
field to specify the maximum number of tuples to be returned.

retBuffSize The size of the buffer you are providing.
maxToGet The maximum number of matches to be returned.
numGotten The actual number of matches that PLookupName returned. The

PLookupName function updates this field each time it receives an
NBP returned packet and adds names to the return buffer. If there is
space remaining in the buffer, NBP may return more matches than
the number specified by maxToGet. If numGotten is greater than
or equal to maxToGet, there may be additional matches. In this
case, you should increase the size of the buffer pointed to by
retBuffPtr and call the PLookupName function again.

DESCRIPTION

Before you can send data to another entity, you must have the network address of
that entity. The PLookupName function returns the names and addresses of any
network-visible entities whose names match the entity name you specify. The entity
name can include any of the wildcard characters given in Table 3-1 on page 3-14.

The PLookupName function completes execution when the number of matches
returned is equal to or greater than the number in the maxToGet field, the function
exceeds the retry count, the buffer overflows, or the request is canceled through the
PKillNBP function.

The number of matches returned can be greater than the number specified in the
maxToGet field under the following circumstances: A single lookup request or retry can
return more than one match in a reply packet. If there is space remaining in the buffer
NBP Reference 3-31

C H A P T E R 3

Name-Binding Protocol (NBP)
and NBP receives a packet containing multiple matches, PLookupName will return
as many of the matches as fit in the buffer. If this occurs, you should increase the size
of the buffer and call the PLookupName function again to ensure that you obtain all of
the matches.

If all of the tuples returned in a reply packet do not fit in the buffer, then the function
completes with as many tuples as can fit. Whether NBP returns more or fewer matches
than you specify as the value of maxToGet, the value of numGotten reflects the actual
number of tuples that PLookupName writes to the return buffer.

Because the function updates the numGotten field each time it receives a returned
packet containing one or more matches and writes those name and address pairs to
the return buffer, you can start reading the names in the buffer and displaying them
for the user before the function completes execution.

The tuples in the buffer are in the format used in the NBP names table, as shown in
Figure 3-6 on page 3-13. Because the object, type, and zone names in this format are
of arbitrary length, you cannot use Pascal to read these tuples. Use the NBPExtract
function to read tuples from the buffer.

SPECIAL CONSIDERATIONS

Memory used for the entity name record and the return buffer belongs to PLookupName
until the function completes execution and must be nonrelocatable.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PLookupName function from assembly language, call the _Control trap
macro with a value of lookupName in the csCode field of the parameter block. To
execute the _Control trap asynchronously, include the value ,ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

RESULT CODES

SEE ALSO

To read tuples from the buffer, use the NBPExtract function, described next.

To create the entity name record, use the NBPSetEntity procedure, described on
page 3-28.

To check that a network-visible entity whose name and address you already know is still
available on the network, use the PConfirmName function, described on page 3-34.

To cancel a name lookup request, use the PKillNBP function, described on page 3-38.

noErr 0 No error
tooManyReqs –1097 Too many concurrent requests; wait a few minutes, then

try the request again
reqAborted –1105 Request canceled
3-32 NBP Reference

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

NBPExtract 3

The NBPExtract function returns one tuple (entity name and internet address) from the
list of tuples placed in a buffer by the PLookupName function.

FUNCTION NBPExtract (theBuffer: Ptr; numInBuf: Integer;

whichOne: Integer;

VAR abEntity: EntityName;

VAR address: AddrBlock): OSErr;

theBuffer A pointer to the buffer containing the tuples returned by the
PLookupName function.

numInBuf The number of tuples returned by the PLookupName function in the
numGotten parameter.

whichOne The sequence number of the tuple that you want the function to return.
This parameter can be any integer in the range 1 through numInBuf.

abEntity A pointer to a buffer that you provide to hold the name returned by the
function. This buffer must be at least 102 bytes long.

address A pointer to a buffer that you provide to hold the address returned by the
function. The buffer must be at least 4 bytes long.

DESCRIPTION

The NBPExtract function extracts a name and address pair from the list of tuples that
the PLookupName function returns. The PLookupName function returns the names of
network-visible entities in a packed format that you cannot read from Pascal. Use the
NBPExtract function in a loop that varies the value of the whichOne parameter from 1
to the total number of tuples in the list to extract all the names in the list.

ASSEMBLY-LANGUAGE INFORMATION

The NBPExtract function is implemented entirely in the MPW interface files. There is
no assembly-language equivalent to this procedure.

RESULT CODES

SEE ALSO

To look up the name and address of an entity registered with NBP, use the PLookupName
function, described on page 3-30.

For a description of the EntityName data type, see “Entity Name Record” on page 3-21.

For a description of the AddrBlock data type, see “Address Block Record” on page 3-20.

noErr 0 No error
extractErr –3104 Can’t find tuple in buffer
NBP Reference 3-33

C H A P T E R 3

Name-Binding Protocol (NBP)
PConfirmName 3

The PConfirmName function confirms that a network-visible entity whose name you
know is still available on the network and that the address associated with the name has
not been changed.

FUNCTION PConfirmName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

ioRefNum The .MPP driver reference number. The MPW interface fills in
this field.

csCode The command code of the .MPP command to be executed. The
MPW interface fills in this field.

interval The retry interval to be used by NBP when it looks on the internet
for the entity. The retry interval value specifies how long the
function is to wait between retries in 8-tick units. A value of 7 for
the interval field is usually sufficient (7 × 8 = 56 ticks equals
approximately 1 second).

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .MPP driver reference number.
→ csCode Integer Always confirmName.
→ interval Byte The retry interval.
↔ count Byte The retry count.
→ entityPtr Ptr A pointer to an entity name.
→ confirmAddr AddrBlock The entity address.
← newSocket Byte The current socket number.
3-34 NBP Reference

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

count The retry count to be used by NBP when it looks on the internet for
the entity. The value of count specifies the number of times the
PConfirmName function is to retry the operation. A retry count of 3
or 4 is usually sufficient. The PConfirmName function decrements
this field each time it looks for names.

entityPtr A pointer to an entity name that you want to confirm. The entity
name must be in the format that Figure 3-5 on page 3-12 shows.
You can use the NBPSetEntity procedure to create the entity
name record.

confirmAddr The last known address of the network-visible entity whose
existence you wish to confirm.

newSocket The current socket number of the entity. If the socket number of
the entity has changed, the PConfirmName function returns the
new socket number in this field and returns the nbpConfDiff
result code.

DESCRIPTION

If you already know the name and address of a network-visible entity, but want to
confirm that the name is still registered with NBP and that the address hasn’t changed
before you attempt to send data to it, you can use the PConfirmName function. If the
address is no longer associated with the name, PConfirmName returns a result code
of nbpNoConfirm, indicating that the name may have been removed from the socket.
If the name is assigned to another socket, PConfirmName returns the current socket
number in the parameter block’s newSocket field and a result code of nbpConfDiff.
This function generates less network traffic than the PLookupName function.

SPECIAL CONSIDERATIONS

Memory used for the buffer containing the entity name and the record containing the
entity address belongs to PConfirmName until the function completes execution.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PConfirmName function from assembly language, call the _Control
trap macro with a value of confirmName in the csCode field of the parameter block. To
execute the _Control trap asynchronously, include the value ,ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

RESULT CODES

noErr 0 No error
nbpNoConfirm –1025 Name not confirmed
nbpConfDiff –1026 Name confirmed for different socket
tooManyReqs –1097 Too many concurrent requests; wait a few minutes, then

try the request again
reqAborted –1105 Request canceled
NBP Reference 3-35

C H A P T E R 3

Name-Binding Protocol (NBP)
SEE ALSO

For a description of the AddrBlock data type, see “Address Block Record” on page 3-20.

To find the address of a network-visible entity whose name or address you do not
already know, use the PLookupName function, described on page 3-30.

To cancel a name confirmation request, use the PKillNBP function, described on
page 3-38.

PRemoveName 3

The PRemoveName function removes a previously registered name from the NBP
names table.

FUNCTION PRemoveName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function
result of noErr as soon as the function begins execution. When
the function completes execution, it sets the ioResult field to the
actual result code.

ioRefNum The .MPP driver reference number. The MPW interface fills in
this field.

csCode The command code of the .MPP command to be executed. The
MPW interface fills in this field.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .MPP driver reference number.
→ csCode Integer Always removeName.
→ entityPtr Ptr A pointer to an entity name.
3-36 NBP Reference

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

entityPtr A pointer to the name of the network-visible entity that you wish
to remove from the names table. The name must be in the format
shown in Figure 3-5 on page 3-12. You cannot use any wildcard
characters in the name.

DESCRIPTION

When you close a socket or terminate an application or process that you registered in the
NBP names table as a network-visible entity, you must use the PRemoveName function
to remove the name from the names table.

To remove the names table entry, you assign to the entityPtr field of the parameter
block a pointer to a fully qualified entity name. The entity name is a packed array of
Pascal strings. Because the object, type, and zone names in this format are of arbitrary
length, you cannot create this record in Pascal (which requires you to declare the length
of character strings when you define the record). You can use the NBPSetEntity
procedure to create this record, or you can provide PRemoveName with a pointer to the
names table entry record that you used to register the name.

SPECIAL CONSIDERATIONS

Memory used for the buffer containing the entity name belongs to the PRemoveName
function until the function completes execution and must be nonrelocatable. After you
remove the names table entry, you can reuse the memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PRemoveName function from assembly language, call the _Control trap
macro with a value of removeName in the csCode field of the parameter block. To
execute the _Control trap asynchronously, include the value ,ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

RESULT CODES

SEE ALSO

To create an entity name record of the form required by the PRemoveName function, use
the NBPSetEntity procedure, described on page 3-28.

noErr 0 No error
nbpNotFound –1028 Name not found
reqAborted –1105 Request canceled
NBP Reference 3-37

C H A P T E R 3

Name-Binding Protocol (NBP)
PKillNBP 3

The PKillNBP function cancels NBP function calls to the PLookupName,
PRegisterName, or PConfirmName function.

FUNCTION PKillNBP (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

ioRefNum The .MPP driver reference number. The MPW interface fills in
this field.

csCode The command code of the .MPP command to be executed. The
MPW interface fills in this field.

nKillQEl A pointer to the MPP parameter block for the NBP request you
want to cancel.

DESCRIPTION

When you call the PLookupName, PRegisterName, or PConfirmName function asyn-
chronously, the Device Manager puts your request in the .MPP driver’s queue with
other requests. If you want to cancel a pending NBP request, you pass a pointer to the
parameter block for that request to the PKillNBP function.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .MPP driver reference number.
→ csCode Integer Always killNBP.
→ nKillQEl Ptr A pointer to a queue element.
3-38 NBP Reference

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

If the function’s parameter block is in the .MPP driver’s queue waiting for the function
to be executed, the PKillNBP function deletes the entry from the queue and returns
a function result of noErr. The function whose parameter block is deleted completes
execution and returns a function result of reqAborted, indicating that the function
was canceled.

If the function has already been executed, that is, it is no longer in the queue, PKillNBP
returns a function result of cbNotFound, indicating that the parameter block for the
function to be canceled was not in the .MPP driver’s queue.

The function also calls the completion routine for the canceled request with the result
code reqAborted (–1105) in the D0 register.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PKillNBP function from assembly language, call the _Control trap
macro with a value of killNBP in the csCode field of the parameter block. To execute
the _Control trap asynchronously, include the value ,ASYNC in the operand field.
To execute this function from assembly language, you must also specify the driver
reference number.

RESULT CODES

noErr 0 No error
cbNotFound –1102 NBP queue element not found
NBP Reference 3-39

C H A P T E R 3

Name-Binding Protocol (NBP)
Summary of NBP 3

Pascal Summary 3

Constants 3

CONST

{.MPP driver unit and reference number}

mppUnitNum = 9; {MPP driver unit number}

mppRefNum = -10; {MPP reference number}

{csCodes for NBP}

confirmName = 250; {confirm name}

lookupName = 251; {lookup name}

removeName = 252; {remove name from names table}

registerName = 253; {register name in names table}

killNBP = 254; {kill outstanding NBP request}

Data Types 3

Address Block Record

AddrBlock =

PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

aSocket: Byte; {socket number}

END;

Names Table Entry Record

TYPE NamesTableEntry =

 RECORD

qLink: QElemPtr; {pointer to next NTE in names table}

nteAddress: AddrBlock; {pointer to this names table entry}

nteData: PACKED ARRAY[1..100] OF Char;

{names table entry}

END;
3-40 Summary of NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

Entity Name Record

EntityName =

RECORD

objStr: Str32; {object name}

typeStr: Str32; {type name}

zoneStr: Str32; {zone name}

END;

EntityPtr = ^EntityName;

MPP Parameter Block for NBP

MPPParmType = (...RegisterNameParm, LookupNameParm,

ConfirmNameParm,RemoveNameParm...);

TYPE MPPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}

CASE MPPParmType OF

RegisterNameParm,

LookupNameParm,

ConfirmNameParm,

RemoveNameParm:

(interval: Byte; {retry interval}

count: Byte; {retry count}

entityPtr: Ptr; {pointer to entity name or }

{ names table entry}

CASE MPPParmType OF

RegisterNameParm:

(verifyFlag: Byte; {verify uniqueness of name or not}

 filler3: Byte;)

LookupNameParm:

(retBuffPtr: Ptr; {pointer to return buffer}

retBuffSize: Integer; {return buffer size}

maxToGet: Integer; {matches to get}

numGotten: Integer;) {matches gotten}
Summary of NBP 3-41

C H A P T E R 3

Name-Binding Protocol (NBP)
ConfirmNameParm:

(confirmAddr: AddrBlock; {pointer to entity name}

newSocket: Byte; {socket number}

filler4: Byte);

)

KillNBPParm:

(nKillQEl: Ptr;) {pointer to queue element to cancel}

END;

MPPPBPtr = ^MPPParamBlock;

Routines 3

Registering an Entity

PROCEDURE NBPSetNTE (ntePtr: Ptr; nbpObject,nbpType,nbpZone: Str32;
socket: Integer);

FUNCTION PRegisterName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

Handling Name and Address Requests

PROCEDURE NBPSetEntity (buffer: Ptr; nbpObject,nbpType,nbpZone: Str32);

FUNCTION PLookupName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

FUNCTION NBPExtract (theBuffer: Ptr; numInBuf: Integer; whichOne:
Integer; VAR abEntity: EntityName; VAR address:
AddrBlock): OSErr;

FUNCTION PConfirmName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

FUNCTION PRemoveName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

FUNCTION PKillNBP (thePBptr: MPPPBPtr; async: Boolean): OSErr;

C Summary 3

Constants 3

/*NBP parameter constants*/

#define MPPioCompletion MPP.ioCompletion

#define MPPioResult MPP.ioResult

#define MPPioRefNum MPP.ioRefNum

#define MPPcsCode MPP.csCode
#define NBPinterval NBP.interval

#define NBPcount NBP.count
3-42 Summary of NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

#define NBPntQElPtr NBP.NBPPtrs.ntQElPtr

#define NBPentityPtr NBP.NBPPtrs.entityPtr

#define NBPverifyFlag NBP.parm.verifyFlag

#define NBPretBuffPtr NBP.parm.Lookup.retBuffPtr

#define NBPretBuffSize NBP.parm.Lookup.retBuffSize

#define NBPmaxToGet NBP.parm.Lookup.maxToGet

#define NBPnumGotten NBP.parm.Lookup.numGotten

#define NBPconfirmAddr NBP.parm.Confirm.confirmAddr

#define NBPnKillQEl NBPKILL.nKillQEl

#define NBPnewSocket NBP.parm.Confirm.newSocket

enum { /*.MPP driver unit and reference */

/* number*/

mppUnitNum = 9, /*.MPP driver unit number*/

mppRefNum = -10}; /*MPP reference number*/

enum { /*.MPP csCodes*/

confirmName = 250, /*confirm name*/

lookupName = 251, /*lookup name*/

removeName = 252, /*remove name from names table*/

registerName = 253, /*register name in names table*/

killNBP = 254}; /*kill outstanding NBP request*/

Data Types 3

Address Block Record

struct AddrBlock {

short aNet; /*network name*/

unsigned char aNode; /*node name*/

unsigned char aSocket; /*socket number*/

};

typedef struct AddrBlock AddrBlock;

Names Table Entry Data Structure

struct {

Ptr qNext; /*pointer to next names table element*/

NTElement nt;

}NamesTableEntry;
Summary of NBP 3-43

C H A P T E R 3

Name-Binding Protocol (NBP)
Entity Name Record

struct EntityName {

Str32 objStr; /*object name*/

char pad1; /*Str32's aligned on even word boundaries*/

Str32 typeStr; /*type name*/

char pad2;

Str32 zoneStr; /*zone name*/

char pad3;

};

typedef struct EntityName EntityName;

typedef EntityName *EntityPtr;

MPP Parameter Block for NBP

#define MPPATPHeader \

QElem *qLink; /*reserved*/\

short qType; /*reserved*/\

short ioTrap; /*reserved*/\

Ptr ioCmdAddr; /*reserved*/\

ProcPtr ioCompletion; /*completion routine*/\

OSErr ioResult; /*result code*/\

long userData; /*command result (ATP user bytes)*/\

short reqTID; /*request transaction ID*/\

short ioRefNum; /*driver reference number*/\

short csCode; /*primary command code*/

typedef struct {

MPPATPHeader

}MPPparms;

typedef struct {

MPPATPHeader

char interval; /*retry interval*/

char count; /*retry count*/

union {

Ptr ntQElPtr; /*pointer to queue element to cancel*/

Ptr entityPtr;

/*pointer to entity name or names */

/* table entry*/

} NBPPtrs;
3-44 Summary of NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

union {

char verifyFlag; /*verify uniqueness of name or not*/

struct {

Ptr retBuffPtr; /*pointer to return buffer*/

short retBuffSize; /*return buffer size*/

short maxToGet; /*matches to get*/

short numGotten; /*matches gotten*/

} Lookup;

struct {

AddrBlock confirmAddr; /*pointer to entity name*/

char newSocket; /*socket number*/

} Confirm;

} parm;

}NBPparms;

struct {

MPPATPHeader

Ptr nKillQEl;

/*pointer to queue element to cancel*/

}NBPKillparms;

union ParamBlockRec {

MPPparms MPP; /*general MPP parms*/

NBPparms NBP; /*NBP calls*/

NBPKillparms NBPKILL; /*cancel call to NBP*/

};

typedef MPPParamBlock *MPPPBPtr;

Routines 3

Registering an Entity

pascal void NBPSetNTE (Ptr ntePtr, Ptr nbpObject, Ptr nbpType,
Ptr nbpZone, short socket);

pascal OSErr PRegisterName (MPPPBPtr thePBpt, Boolean async);

Handling Name and Address Requests

pascal void NBPSetEntity (Ptr buffer, Ptr nbpObject, Ptr nbpType,
Ptr nbpZone);

pascal OSErr PLookupName (MPPPBPtr thePBptr, Boolean async);
Summary of NBP 3-45

C H A P T E R 3

Name-Binding Protocol (NBP)
pascal OSErr NBPExtract (Ptr theBuffer, short numInBuf, short whichOne,
EntityName *abEntity, AddrBlock *address);

pascal OSErr PConfirmName (MPPPBPtr thePBptr, Boolean async);

pascal OSErr PRemoveName (MPPPBPtr thePBptr, Boolean async);

pascal OSErr PKillNBP (MPPPBPtr thePBptr, Boolean async);

Assembly-Language Summary 3

Constants 3

Unit Number for the .MPP Driver

mppUnitNum EQU 9 ;MPP unit number

NBP Symbolic Characters

equals EQU '=' ;wildcard symbol

NBPWildCard EQU '≈' ;wildcard symbol
star EQU '*' ;"This zone" symbol

NBP Command Codes

registerName EQU 253 ;register name in names table

lookupReply EQU 242 ;used internally

lookupName EQU 251 ;look up an NBP name

confirmName EQU 250 ;confirm name

removeName EQU 252 ;remove name from names table

killNBP EQU 254 ;kill outstanding NBP request

NBP Packet

nbp EQU $02 ;DDP protocol type code for NBP

nbpControl EQU 0 ;control code

nbpTCount EQU 0 ;tuple count

nbpID EQU 1 ;NBP ID

nbpTuple EQU 2 ;start of the first tuple

NBP Tuple Header Offsets

tupleNet EQU 0 ;offset to network number (word)

tupleNode EQU 2 ;offset to node ID (byte)

tupleSkt EQU 3 ;offset to socket number (byte)
3-46 Summary of NBP

C H A P T E R 3

Name-Binding Protocol (NBP)

3
N

am
e-B

inding P
rotocol (N

B
P

)

tupleEnum EQU 4 ;offset to enumerator (byte)

tupleName EQU 5 ;offset to name part of tuple (byte)

tupleAddrSz EQU 5 ;tuple address field size

NBP Packet Types

brRq EQU 1 ;broadcast request

lkUp EQU 2 ;lookup request

lkUpReply EQU 3 ;lookup reply

NBP Names Information Socket (NIS) Number

nis EQU 2 ;NIS number

Maximum Number of Tuples in NBP Packet, Maximum Size of a Tuple Name

tupleMax EQU 15 ;maximum number of tuples returned from

; a lookup request

NBPMaxTupleSize EQU 32 ;maximum size of a tuple name

Data Structures 3

MPP Parameter Block Common Fields for NBP

PRegisterName Parameter Variant

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

26 csCode word command code; always registerName
28 interval byte retry interval
29 count byte retry count
30 entityPtr

(ntQElPtr)
long names table queue element pointer

34 verifyFlag byte verify name flag
40 filler byte reserved
Summary of NBP 3-47

C H A P T E R 3

Name-Binding Protocol (NBP)
PLookupName Parameter Variant

PConfirmName Parameter Variant

PRemoveName Parameter Variant

PKillNBP Parameter Variant

Result Codes 3

26 csCode word command code; always lookupName
28 interval byte retry interval
29 count byte retry count
30 entityPtr long pointer to entity name
34 retBuffPtr long pointer to return data buffer
38 retBuffSize word size in bytes of return buffer
40 maxToGet word maximum number of matches to get
42 numGotten word number of matches returned

26 csCode word command code; always confirmName
28 interval byte retry interval
29 count byte retry count
30 entityPtr long pointer to entity name
34 confirmAddr long address of names table entry to confirm
38 newSocket byte socket number, if different from specified one
39 filler byte reserved

26 csCode word command code; always removeName
28 filler word reserved
30 entityPtr long pointer to entity name

26 csCode word command code; always killNBP
28 nKillQEl long pointer to queue element to remove

noErr 0 No error
nbpNoConfirm –1025 Name not confirmed
nbpConfDiff –1026 Name confirmed for different socket
nbpDuplicate –1027 Name already exists
nbpNotFound –1028 Name not found
tooManyReqs –1097 Too many concurrent requests; wait a few minutes, then try the

request again
cbNotFound –1102 NBP queue element not found
reqAborted –1105 Request canceled
extractErr –3104 Can’t find tuple in buffer
3-48 Summary of NBP

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	Name-Binding Protocol (NBP)
	About NBP
	Using NBP
	Registering Your Entity With NBP
	Setting Up a Names Table Entry
	Registering a Names Table Entry

	Handling Names Table Entry Requests
	Preparing an Entity Name
	Looking Up a Name
	Extracting a Name From a List of Returned Names
	Confirming a Name
	Removing an Entry From the Names Table
	Canceling a Request

	NBP Reference
	Data Structures
	Address Block Record
	Names Table Entry Record
	Entity Name Record
	The MPP Parameter Block for NBP

	Routines
	Registering an Entity
	Handling Name and Address Requests

	Summary of NBP
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

