CHAPTER 4

Date, Time, and Measurement Utilities

This chapter describes a set of utility routines that you can use to operate on dates and
times. You can use these routines to get and change information about the current date,
time, geographic location, time zone, and units of measurement.

The routines described in this chapter return this information in a format that is best
suited to the current script. As a result, you can facilitate localization of your application
by using these date, time, and measurement utilities.

To understand the material in this chapter, you need to be familiar with the international
resources, especially the numeric-format and long-date-format resources, and the Script
Manager. These topics are described in Inside Macintosh: Text. In addition, the chapter
“Text Utilities” in Inside Macintosh: Text describes how to convert date and time
information into strings of text.

Many of the Date, Time, and Measurement Utilities were previously associated with
other managers in the Macintosh system software, and several of these routines have
been renamed. Table 4-4 on page 4-33 shows the original names and locations of the
modified Date, Time, and Measurement Utilities routines.

The next section provides an introduction to the Date, Time, and Measurement Utilities.

About the Date, Time, and Measurement Utilities

You can use the Date, Time, and Measurement Utilities to manipulate the date-time
information and geographic location data used by a Macintosh computer. A Macintosh
computer contains a battery-operated clock chip that maintains

» the current date-time information

» the geographic location and related time-zone information

The date-time information is stored in a 4-byte value located on the clock chip.The
geographic location and related time-zone information is stored in extended parameter
RAM. For information on extended parameter RAM, see the chapter “Parameter RAM
Utilities” in this book.

You can use the routines provided by the Date, Time, and Measurement Utilities to
manipulate this information. Specifically, the Date, Time, and Measurement Utilities
provide routines that you can use to

= get the current date and time

= set the current date and time, if necessary

= convert between internal date-time structures

= get and set the geographic location and time-zone information

= determine the current measurement system

= determine the number of elapsed microseconds since system startup

The following sections give an overview of these utilities.

About the Date, Time, and Measurement Utilities 4-3

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Date and Time

A Macintosh computer contains a battery-operated clock chip that maintains the current
date-time information. This date-time information is expressed, using 4 bytes, as the
number of seconds elapsed since midnight, January 1, 1904. At system startup the
date-time information is copied into low memory and is accessible through the system
global variable Ti me. System software updates the value of the global variable Ti ne
each second. Doing this is faster than manipulating the clock chip directly.

The Date, Time, and Measurement Utilities provide four data structures that you can use
to access date-time information. You can access date-time information through

» astandard date-time value that consists of a 32-bit long integer indicating the total
number of seconds elapsed since midnight, January 1, 1904

» adate-time record that contains fields to indicate the year, month, day, hour, minute,
second, and day of the week

» along date-time record that extends the date-time record format by adding fields
for era, day of the year, week of the year, and morning/evening designations (for
example, AM. and PM.)

» along date-time value that consists of a 64-bit integer, in SANE conp (computational)
format, which also maintains the total number of seconds relative to midnight on
January 1, 1904

To access date-time information as a date and time, you can use a date-time record or a
long date-time record. A date-time record is defined by a data structure of type
Dat eTi meRec

TYPE Dat eTi neRec =

RECORD
year: I nt eger; {year, ranging from 1904 to 2040}
nont h: I nt eger; {ronth, 1 = January and 12 = Decenber}
day: I nt eger; {day, from1l to 31}
hour : I nt eger; {hour, fromO to 23}
nm nut e: I nt eger; {m nute, fromO to 59}
second: I nt eger; {second, fromO to 59}
dayOf Week: I nteger; {day of the week, 1 = Sunday, }
{ 7 = Saturday}
END;

The year field contains the year of the date, ranging from 1904 to 2040. The nont h
field contains the month of the year, where a value of 1 equals January and 12 equals
December. The day field contains the number of the day, ranging from day 1 to day 31.
The hour field contains the hour, where the value of 0 equals midnight and 23 equals
11 pm. The mi nut e field contains the number of minutes, ranging from 0 to 59 minutes.
The second field contains the number of seconds, ranging from 0 to 59 seconds. The
dayOf Week field specifies the name of the day; a value of 1 equals Sunday and a value
of 7 equals Saturday. For additional information about the fields in a date-time record,
see “The Date-Time Record” beginning on page 4-23.

About the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Note

The date-time record can be used to hold date and time values only for a
Gregorian calendar. The long date-time record, described next, can be
used for a Gregorian calendar as well as other calendar systems. O

Because the values in a date-time record are simply a translation of the long integer
containing the number of seconds since midnight, January 1, 1904, the data structure
suffers the same limitation as the long integer representation: after the long integer has
reached its maximum value of $FFFFFFFF, it resets to 0. Therefore, the date-time record
can track dates and times only between midnight on January 1, 1904 and 6:28:15 AM. on
February 6, 2040.

For some applications, this range might be inadequate. For example, a hotel
management application might need to let managers book reservations for customers
who think ahead to 2050, or a history multimedia application might need to track dates
in the first century B.c. If your application needs to track dates and times beyond the
range supported by the date-time record, you must use a long date-time record. A long
date-time record is defined by a data structure of type LongDat eRec

TYPE LongDat eRec

RECORD
CASE | nt eger

0:

(era:
year:
nont h:

day:

hour :

nm nut e:
second:
dayOf eek:

dayf Year :

week O Year :

pm
resl:
res2:
res3:

(list:

(eraAlt:

OF

I nt eger;
I nt eger;
| nt eger;

I nt eger;
I nt eger;
I nt eger;
I nt eger;
| nt eger;

I nt eger;
| nt eger;
I nt eger;

I nt eger;
| nt eger;
I nt eger);

{era}

{year, from 30081 B.C. to 29940 ap}
{month, 1 = January and }

{ 12 = Decenber}

{day, from1l to 31}

{hour, fromO to 23}

{minute, fromO to 59}
{second, fromO to 59}

{day of the week, 1= Sunday, }
{ 7 = Saturday}

{day of the year, 1 to 365}
{week of the year, 1 to 52}
{which half of day--0 for }

{ nmorning, 1 for evening}
{reserved}

{reserved}

{reserved}

{index by LongDat eFi el d}

ARRAY [0..13] OF Integer);

I nt eger;

{era}

About the Date, Time, and Measurement Utilities 4-5

SanInN WaWaINSea pue ‘awl] ‘areq -

1-6

CHAPTER 4

Date, Time, and Measurement Utilities

{date-tinme record}
ol dDat e: Dat eTi mneRec) ;

END;

You can use a long date-time record for three purposes: to access a date and time, to
specify which of the fields in a long date-time record to verify, and to convert a date
and time represented by a date-time record into a date and time represented by a long
date-time record.

IMPORTANT

The long date-time record covers a much longer time span (30,000 B.c. to
30,000 AD.) than the date-time record. In addition, the long date-time
record allows conversions to different calendar systems, such as a lunar
calendar. a

Along date time-record includes all of the fields available in a date-time record

in addition to fields that describe the era, day of the year, week of the year, and
morning /evening designations (for example, AM. and pMm.). The er a field contains the
era: a value of 0 represents AD,, and -1 represents B.c. The dayf Year field contains a
number that represents a day of a year. For example, the value 300 equals the 300th day
of a year. The weekOf Year field contains a week number. The pmfield contains the
morning or evening half of the 24-hour day cycle, where a value of 0 represents

the morning (for example, Am.) and 1 represents the evening (for example, PM.).

The | i st field contains an array of values that indicate which of the fields in a long
date-time record need to be verified.

The er aAl t field, which indicates the era, and the ol dDat e field, which contains
a date-time record, are used only for conversion from a date-time record to a long
date-time record. For additional information about the fields in the long date-time
record, see “The Long Date-Time Record” beginning on page 4-26.

Note that if you specify, in either record, a value in the nont h, day, hour, ni nut e,

or second field that exceeds the maximum value allowed for that field (for example,

a value larger than 23 for the hour field), the result is a wraparound to a future date
and time when you modify the date-time format. Suppose you set the year field in a
date-time record to a value greater than 2040, for example 2045. When you modify the
date-time format, you get a value of 1909, because the value 2045 caused a wraparound
to 1904 plus 5, the number of years over 2040. See “Calculating Dates” beginning on
page 4-14 to see how you can use a wraparound to calculate and retrieve information
about a specific date.

Note

To present a date and time value as a date and time text string, you need
to use the Text Utilities routines. For a complete description of these
routines, see Inside Macintosh: Text. O

A user can set the current date-time information by using the General Controls control
panel, the Date & Time control panel, or the Alarm Clock. After the user sets the new

About the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

date and time, this new date and time is written to the clock chip, and the global variable
Ti me is updated to reflect the new date and time. Figure 4-1 illustrates how a user might
change the date, using the Date & Time control panel.

Figure 4-1 The Date & Time control panel

[B=———=— Date & Time

% Current date Current time

B 5/94 | | [19:38:50 |

[Date Formats...] [Time Formats...]

Geographic Location and Time Zone

Geographic location and related time-zone information are stored in the Macintosh
parameter RAM (extended parameter RAM). System software provides routines that
allow you to read this information and, if necessary, make changes to it and then store
the new settings in the parameter RAM (extended parameter RAM).

You can read and store values for
= latitude

= longitude

daylight saving time (DST)
s Greenwich mean time (GMT)

The Map control panel allows the user to get geographic location and time-zone
information. Figure 4-2 shows the Map control panel.

Figure 4-2 The Map control panel

ER————— Map

%.. b.. .
\ 'R

(Rdd City] [Remove City
|Eupenhaged

L=
" <
1

Latitude 35 [* |43 || FEN
Longitude 12 |1* (34 | HE
Time Zone 1 o |mE)+

mi 5450 17.57

About the Date, Time, and Measurement Utilities 4-7

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

The Map control panel specifies latitude and longitude, computation of Greenwich mean
time for international time specification (shown as the Time Zone information), and
computation of the distance and time difference between the current location (in this
case, the location of the user’s computer is Cupertino, California) and an arbitrary city
(in this case, Copenhagen, Denmark).

See “Handling Geographic Location and Time-Zone Data” beginning on page 4-18, to
see how you can use Date, Time, and Measurement Utilities routines to work with the
geographic location and time-zone information.

System of Measurement

The Date, Time, and Measurement Utilities provide a routine (the | sMet ri ¢ function)
that you can use to determine the type of measurement used by the current script
system. The system software supports two types of measurement systems:

» the International System of Units (also called the metric system)—for example
centimeters, kilometers, milligrams, degrees Celsius, and so on.

» the English system of measurement (also called the British or British imperial
system)—for example, inches, miles, ounces, degrees Fahrenheit, and so on.

The measurement information is stored in the numeric-format resource (resource
type'itl0")of ascriptsystem. The | sMet ri ¢ function determines whether the
current script system uses the International System of Units or the English system of
measurement by examining the 'i t | 0' resource. Figure 4-3 depicts the window ResEdit
displays for a numeric-format resource. Note that in the bottom of the figure the metric
box is unchecked, indicating that the script system associated with this 'i t | 0' resource
uses the English system of measurement.

4-8

Figure 4-3 The numeric-format resource (resource type 'i t 10"
SO=—— itl0 “U.5.” ID = 0 from System
Numbers: Decimal Point: (<] Leading Currency Symbol

Thousands separator:
($1,23450) List separator: |;
(50.5) ; ($0.5) Currency: B Leading integer zero

$
Short Date: Date separator: (] Leading 0 for day
Date Order:| M/D/Y w| []Leading 0 for month

2/8/94] Include century

1 Minus sign for negative

(4 Trailing decimal zeros

Time: Time separator: |:] Leading O for seconds
10:04:37 &M Morning trailer: | AM tJ Leading O for minutes
12:0437 PM Evening trailer: | PM [JLeading O for hours

24-hour trailer: &d 12-hour time cycle

Country:[00 - USA v | [metric Version: El

About the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Time Measurement

The Date, Time, and Measurement Ultilities provide a routine (the M cr oseconds
procedure) that you can use to measure the number of microseconds that have
elapsed since system startup. The M cr oseconds procedure is not effected by any
user-specified changes to the date and time information, that is, a user can modify
the current date-time information without effecting the value returned by the

M cr oseconds procedure.

The number of microseconds elapsed is returned in a 64-bit unsigned integer, specified
by the unsigned wide record. An unsigned wide record is defined by a data structure of
type Unsi gnedW de.

TYPE Unsi gnedW de =
PACKED RECORD
hi : Longl nt ; {hi gh-order 32 bits}
| o: Longl nt; {l oworder 32 bits}
END;

Using the Date, Time, and Measurement Ultilities

This section describes how to

= get the current date and time

= set the current date and time

= calculate days and dates mathematically

= convert between date-time formats

= convert to different calendar systems

= read and store geographic location and time-zone data
s determine which measurement system to use

= determine the number of elapsed microseconds

Getting the Current Date and Time

The Date, Time, and Measurement Utilities provide

» a function—ReadDat eTi me—that system software uses at system startup time to
copy the current date-time information from the clock chip into low memory. This
low-memory copy of the current date-time is accessible through the global variable
Ti me. You application should never need to use this function.

» two procedures —Cet Dat eTi me and Get Ti me—that allow you to access the current
date-time information stored in the global variable Ti ne.

Using the Date, Time, and Measurement Utilities 4-9

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

You can access the date-time information through a date-time record, representing
the date and time, or you can access the date-time information through a standard
date-time value, a 32-bit integer representing the number of seconds since midnight,
January 1, 1904.

To obtain the current date-time information, you can use the Get Dat eTi ne and

Cet Ti me procedures. The Get Dat eTi ne procedure requires that you pass it a standard
date-time value as a parameter. Listing 4-1 shows how you can get the current date-time
information, expressed as a number of seconds. The application-defined procedure
MyCur r ent Dat eTi nel nt returns in the long integer the number of seconds elapsed
since midnight, January 1, 1904.

Listing 4-1 Getting the current date and time with the Get Dat eTi ne procedure

PROCEDURE MyCurrent Dat eTi mel nt (VAR nySt andar dDat eTi ne: Longlnt);
BEG N

CGet Dat eTi ne(nySt andar dDat eTi ne) ;
END;

The Get Ti me procedure requires that you pass it a date-time record as a parameter, and
it fills in the fields of this record appropriately. Listing 4-2 shows how you can get the
current date-time information, expressed as a date and time. The application-defined
procedure MyCur r ent Dat eTi meRec returns in the fields of the date-time record the
current date and time.

Listing 4-2 Getting the current date and time with the Get Ti me procedure

4-10

PROCEDURE MyCurrent Dat eTi mreRec (VAR nyDat eTi ne: Dat eTi neRec) ;
BEG N

Get Ti me(myDat eTi ne) ;
END;

If you need to access the date-time information through a long date-time value or a long

date-time record, see “Converting Date-Time Formats” beginning on page 4-12 for more
information about converting date-time formats.

Setting the Current Date and Time

Your application can change the current date-time information stored in both the system
global variable Ti me and in the clock chip by calling either the Set Dat eTi me function
or the Set Ti me procedure. The Set Dat eTi me function requires a 32-bit integer as a
parameter. The Set Ti me procedure requires a date-time record as a parameter.

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Note

If you are using formats other than a date-time value or a date-time
record to access date-time information, you must first convert these
formats into a standard date-time value or a date-time record before
you can write the new date-time information to the clock chip. See
“Converting Date-Time Formats” beginning on page 4-12 for more
information about converting date-time formats. O

Listing 4-3 shows an application-defined function that uses the Set Dat eTi e function
to change the current date and time to 5:50 Am. on April 5, 1994.

Listing 4-3 Changing the current date and time with the Set Dat eTi e function

FUNCTI ON MyChangeDat eTi nel nt: OSErr;

VAR
myDat eTi mel nt: Longl nt;
myErr: CSErr;
BEG N

nyDat eTi nel nt : = $A9C6ACSS;
nyErr := SetDateTi me(nyDateTi nmelnt);
END;

Listing 4-4 shows an application-defined procedure that uses the Set Ti ne function to
change the current date and time to 5:50 AM. on April 5, 1994.

Listing 4-4 Changing the current date and time with the Set Ti e function

PROCEDURE My ChangeDat eTi neRec;

VAR
myDat eTi meRec: Dat eTi neRec;
myErr: CSErr;
BEG N
W TH nyDat eTi neRec DO
BEG N
year = 1994,
nmonth : = 4;
day := 5;
hour : = b5;
m nute : = 50;
second : = 0;
dayOf ek : = 3;
END;
Set Ti me(myDat eTi neRec) ;
END;

Using the Date, Time, and Measurement Utilities 4-11

SanInN WaWaINSea pue ‘awl] ‘areq -

4-12

CHAPTER 4

Date, Time, and Measurement Utilities

IMPORTANT

Users can change the current date and time stored in both the system
global variable Ti me and in the clock chip by using the General Controls
control panel, Date & Time control panel, or the Alarm Clock desk
accessory. In general, your application should not directly change the
current date-time information. If your application does need to modify
the current date-time information, it should instruct the user how to
change the date and time. a

Converting Date-Time Formats

The Date, Time, and Measurement Utilities provide four routines—

the Dat eToSeconds, SecondsToDat e, LongDat eToSeconds, and
LongSecondsToDat e procedures—that you can use to convert date-time
formats. You can convert a date and time to a number of seconds and a number
of seconds to a date and time.

Note that when you call one of these routines, system software uses
the Dat eToSeconds, SecondsToDat e, LongDat eToSeconds, and
LongSecondsToDat e procedures provided by the current script system.

Note

The routines that convert between time formats assume that each day
contains 86,400 seconds. Occasionally (approximately once each two
years) astronomers add a second to either June 31 or December 31 to
compensate for imperfections in the earth’s rotation. If you need to
compute the exact number of seconds between two points in time, you
might need to take these occasional additions into account. The routines
that convert between formats are designed not to provide astronomical
accuracy, but merely to convert data between one data structure and
another. O

If you use a standard date-time value or a date-time record to access date-time
information, you can use the SecondsToDat e procedure to convert a number of
seconds to a date and time, and the Dat eToSeconds procedure to convert a date

and time to a number of seconds. Listing 4-5 shows an application-defined procedure,
My Convert SecondsAndDat es, that uses the SecondsToDat e and Dat eToSeconds
procedures to manipulate the date-time information. After calling the Get Dat eTi nme
procedure, MyConver t SecondsAndDat es calls the SecondsToDat e procedure to
convert the number of seconds (returned by the Get Dat eTi e procedure) to a date and
time. The MyConver t SecondsAndDat es procedure manipulates the year field in the
date-time record and then calls Dat eToSeconds to convert the date and time back into
a number of seconds. The Set Dat eTi me procedure writes the new date-time
information to the clock chip.

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Listing 4-5 Manipulating date-time information

PROCEDURE MyConvert SecondsAndDat es;
VAR

nmyDat eTi meRec: Dat eRec;

mySeconds: Dat eTi me;

myErr: CSErr;
BEG N

Cet Dat eTi ne(mySeconds) ;
SecondsToDat e(nySeconds, nyDat eTi neRec);
W TH nyDat eTi neRec DO

year .= year + 1;
Dat eToSeconds (nyDat eTi neRec, mySeconds);
nyErr := SetDateTi ne(mySeconds);

END;

If you access date-time information through a long date-time value or a long date-time
record, you can use the LongSecondsToDat e procedure to convert a number of
seconds to a date and time and use the LongDat eToSeconds procedure to convert

a date and time to a number of seconds.

If the type of data structure that you are using to access date-time information is
insufficient, you can use a different date-time structure.

= To access a number of seconds through a long date-time value instead of a standard

date-time value, set the | Hi gh field of a long date-time conversion record (described
on page 4-25) to 0 and the | Lowfield to the total number of seconds since midnight,
January 1, 1904. Then copy the value of the c field into a variable of type

LongDat eTi ne.

To access a date and time through a long date-time record instead of a date-time
record, set the ol dDat e field of the LongDat eRec to the date-time record, and set the
eraAl t field to 0, indicating that the date you have specified is AD.

To access a number of seconds through a standard date-time value instead of a long
date-time value, truncate the long date-time value to just the low-order 32 bits. The
year of the date being converted must fall within 1904 to 2040 of the Gregorian
calendar.

This type of conversion is important when you work with a script system that uses a
calendar system other than the Gregorian. Because you cannot write a long date-time
value to the clock chip, you must first convert the long date-time value (if possible) to
a standard date-time value. See “Working With Different Calendar Systems”
beginning on page 4-16 for more information about calendar systems.

To access a date and time through a date-time record instead of a long date-time
record, truncate the long date-time record so just the year through dayCf Week fields
are left. Once again, the year of the date being converted must fall within 1904 to 2040
of the Gregorian calendar.

Using the Date, Time, and Measurement Utilities 4-13

SanInN WaWaINSea pue ‘awl] ‘areq -

4-14

CHAPTER 4

Date, Time, and Measurement Utilities

= To access date-time information through a long date-time value instead of a date-time
record, use the Dat eToSeconds procedure to convert the date and time to a number
of seconds. Then set the | Hi gh field of a long date-time conversion record (described
on page 4-25) to 0 and the | Lowfield to the total number of seconds since midnight,
January 1, 1904.

= To access date-time information through a long date-time record (described on
page 4-26) instead of a standard date-time value, use the SecondsToDat e procedure
to translate the number of seconds to a date and time. Then set the ol dDat e field of
the long date-time record to the date-time record, and set the er aAl t field to 0.

= To access date-time information through a date-time value instead of long date-time
record, use the LongDat eToSeconds procedure to translate the date and time to a
number of seconds. Then truncate the long date-time value (returned by the
LongDat eToSeconds procedure) to just the low-order 32 bits. The year of the date
being converted must fall within 1904 to 2040 in the Gregorian calendar.

The Gregorian calendar is the default for converting to and from the long date-time
forms. The current range allowed in conversion is roughly 30,000 B.c. to 30,000 A.D.

To present a date and time value as a date and time text string, you need to use Text
Utilities routines, such as the Dat eSt ri ng, Ti meSt ri ng, Stri ngToDat e,
StringToTi me, LongDat eSt ri ng, and LongTi meSt ri ng routines. (Note that the
date-string conversion routines do not append strings for AD. or B.c.) For a complete
description of these routines, see Inside Macintosh: Text.

Calculating Dates

In the date-time record and long date-time record, any value in the nont h, day, hour,
m nut e, or second field that exceeds the maximum value allowed for that field, will
cause a wraparound to a future date and time when you modify the date-time format.

» In the nont h field, values greater than 12 cause a wraparound to a future year and
month.

» In the day field, values greater than the number of days in a given month cause a
wraparound to a future month and day.

» In the hour field, values greater than 23 cause a wraparound to a future day and hour.

s In the m nut e field, values greater than 59 cause a wraparound to a future hour and
minute.

» In the seconds field, values greater than 59 cause a wraparound to a future minute
and seconds.

You can use these wraparound facts to calculate and retrieve information about a specific
date. For example, you can use a date-time record and the Dat eToSeconds and
SecondsToDat e procedures to calculate the 300th day of 1994. Set the nont h field of
the date-time record to 1 and the year field to 1994. To find the 300th day of 1994, set the
day field of the date-time record to 300. Initialize the rest of the fields in the record to
values that do not exceed the maximum value allowed for that field. (Refer to the
description of the date-time record on page 4-23 for a complete list of possible values).

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

To force a wrap-around, first convert the date and time (in this example, January 1, 1994)
to the number of seconds elapsed since midnight, January 1, 1904 (by calling the

Dat eToSeconds procedure). Once you have converted the date and time to a number
of seconds, you convert the number of seconds back to a date and time (by calling the
SecondsToDat e procedure). The fields in the date-time record now contain the values
that represent the 300th day of 1994. Listing 4-5 shows an application-defined procedure
that calculates the 300th day of the Gregorian calendar year using a date-time record.

Listing 4-6 Calculating the 300th day of the year

PROCEDURE MyCal cul at e300Day;

VAR
nyDat eTi meRec: Dat eTi neRec;
nmy Seconds: Longl nt ;
BEG N
W TH nyDat eTi neRec DO
BEG N
year := 1994;
nmonth := 1;
day := 300;
hour := O;
mnute := 0;
second : = 0;
dayOf Week : = 1;
END;

Dat eToSeconds (nyDat eTi neRec, mySeconds);
SecondsToDat e (mySeconds, myDat eTi neRec);
END;

The Dat eToSeconds procedure converts the date and time to the number of seconds
elapsed since midnight, January 1, 1904, and the SecondsToDat e procedure converts
the number of seconds back to a date and time. After the conversions, the values in the
year, mont h, day, and day Of Week fields of the myDat eTi meRec record represent the
year, month, day of the month, and day of the week for the 300th day of 1994. If the
values in the hour, ni nut e, and second fields do not exceed the maximum value
allowed for each field, the values remain the same after the conversions (in this example,
the time is exactly 12:00 a.m.).

Similarly, you can use a long date-time record and the LongDat eToSeconds and
LongSecondsToDat e procedures to compute the day of the week corresponding to a
given date. Listing 4-7 shows an application-defined procedure that computes and
retrieves the name of the day for July 4, 1776. Note that because the year is prior to 1904,
it is necessary to use a long date-time record.

Using the Date, Time, and Measurement Utilities 4-15

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Listing 4-7 Computing the day of the week

4-16

PROCEDURE DoDayCal c;

VAR
myLongDat eRec: LongDat eRec;
myLongSeconds: LongDat eTi ne;

nmy Day OF Week: I nt eger;
BEA N

W TH nyLongDat eRec DO

BEG N
era := 0; /*initialize era field*/
year = 1776;
month = 7;
day := 4;
hour := 0; /*initialize hour field*/
mnute := 0; /[*initialize mnute field*/
second : = 0; /*initialize second field*/
dayOr Week : = 1; /*initialize dayOiWeek fiel d*/
dayOf Year := 1; [*initialize dayCOf Year field*/
weekOf Year :=1; /*initialize weekOf Year field*/
pm:= 1; [*initialize pmfield*/

END;

LongDat eToSeconds (myLongDat eRec, nyLongSeconds);
LongSecondsToDat e (nyLongSeconds, nyLongDat eRec) ;
nmyDayOf Week : = nyLongDat eRec. dayOf Veek;

END;

The LongDat eToSeconds procedure converts the date and time to the number of
seconds, and the LongSecondsToDat e procedure converts the number of seconds back
to a date and time. After the conversions, the value in the day Of Week field of the
myLongDat eRec record represent the day of the week corresponding to July 4, 1776. If
the values in the hour, ni nut e, and second fields do not exceed the maximum value
allowed for each field, the values remain the same after the conversions (in this example,
the time is exactly 12:00 aAm.). The values in the dayOf Year, weekOf Year, and pmfields
correspond to the date July 4, 1776 and the time 12:00 aAm.

Working With Different Calendar Systems

The additional fields and wider ranges allowed by the long date-time record can help
you to do calculations and conversions for different calendar systems. For example, the
date January 1, 1993 in the Gregorian calendar year converts to 7 Rajab 1413 in the
Arabic Civil Lunar Calendar (CLC) and 4 Tevet 5753 in the Jewish calendar; the years
1413 and 5753 are outside of the year field’s range in the date-time record.

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Note

Depending on the country, the change from the Julian calendar to the
Gregorian calendar occurred in different years. In western European
countries, the change occurred in 1582; in Russia, the calendar changed
in 1918. In these countries, dates before the calendar change should use
the Julian calendar for conversion. (The Julian calendar differs from the
Gregorian calendar by three days every four centuries.) O

In addition, the beginning of the year for one calendar system falls on different dates in
other calendar systems. Table 4-1 shows the equivalent dates for the first day of the
calendar year in the Gregorian, Arabic CLC, and Jewish calendars.

Table 4-1 Equivalent dates in the Gregorian, Arabic CLC, and Jewish calendars
Gregorian calendar Arabic CLC Jewish calendar

January 1, 1993 7 Rajab 1413 4 Tevet 5753

June 20, 1993 1 Muharram 1414 1 Tammuz 5753

September 16, 1993 29 RabiI 1414 1 Tishri 5754

Converting from one calendar system to another produces different values in the

dayOf Year and weekOf Year fields of a long date-time record. For example, assuming
all the data for the date 1 Muharram 1414 is correctly put into a long date-time record,
the dayCf Year field value is 1, and the weekOf Year value is also 1. Converting this
date to the Gregorian calendar results in June 20, 1993. The dayf Year field value is
then 171, and the week Of Year value is 26. Table 4-2 shows these values.

Table 4-2 Values for the dayOf Year and weekOf Year fields for the date 1 Muharram 1414
and equivalent values in the Gregorian calendar

LongDateRec field Arabic CLC Gregorian calendar

dayOf Year 1 171
weekOf Year 1 26
Note

Language-specific information, such as the name of the day, name of
the month, and so on, are stored in the international resources. The
international resources are provided by a script system, and the
information in these resources varies according to the language
associated with the script system. O

Table 4-3 shows how some of the fields in the long date-time record are set to show the
first day of the year 1414 in the Arabic CLC and the equivalent dates in the Gregorian
and Jewish calendars.

Using the Date, Time, and Measurement Utilities 4-17

SanInN WaWaINSea pue ‘awl] ‘areq -

4-18

CHAPTER 4

Date, Time, and Measurement Utilities

Table 4-3 Comparison of settings in fields of the long date-time record for Arabic CLC,
Gregorian, and Jewish calendars

Field of along

date-time record Arabic CLC calendar Gregorian calendar Jewish calendar
era 0 0 0
year 1413 1993 5753
nont h 1 6

day 1 21

dayOf \eek 4 2 3
dayf Year 1 172

weekOf Year 1 26

Note

The Arabic script system supports two lunar calendars: the astronomical
lunar calendar (ALC) and the civil lunar calendar (CLC). The Macintosh
user may choose either of the Arabic calendars or the Gregorian
calendar by clicking buttons in the Arabic Calendar control panel.

The Hebrew script system supports the Jewish calendar besides the
Gregorian calendar.

For more information on the different calendar systems supported
by localized versions of the Macintosh system software, see
Guide to Macintosh Software Localization. O

For calendars that have more than seven day names and 12 month names (for example,
the Jewish calendar sometimes has 13 months), you use the ' i t| 1' resource, defined by
the | t | 1Ext Rec data type. To get more information on the format of the' i t | 1'
resource, see the appendix “International Resources” in Inside Macintosh: Text.

Handling Geographic Location and Time-Zone Data

Geographic locations and time zones can affect date and time information. For example,
time-zone information can be used to derive the Greenwich mean time (GMT) at which
a document or mail message was created. With this information, when the document is
received by an application or user in a different time zone, the creation date and time are
correct. Otherwise, documents can appear to be created after they are read (for example,
a user creates a message in Tokyo on Tuesday and sends it to San Francisco, where it is
received and read on Monday). Geographic location information can also be used by
applications that require it.

The geographic location and time-zone information for a particular Macintosh
computers are stored in parameter RAM. You can work with this information through
the ReadLocat i on and Wi t eLocat i on procedures. These procedures use the

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

geographic location record (of date type Machi neLocat i on) to help you read and store
latitude, longitude, daylight saving time (DST), and GMT values.

TYPE Machi neLocation = {geographic | ocation record}
RECORD
l atitude: Fract; {latitude}
| ongi t ude: Fract; {l ongi t ude}
CASE | nteger OF
0:
(dl sDel t a: Si gnedByt e) ; {daylight saving tine}
1:
(gntDel ta: Longlnt); {G eenwi ch nmean tine}
END;

The daylight savings time value is a signed byte value that you can use to specify the
offset for the hour field—whether to add 1 hour, subtract 1 hour, or make no change
at all.

The Greenwich mean time value is in seconds east of GMT. For example, San Francisco
is at —28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT.

If the geographic location record has never been set, all fields contain 0.

Generally, latitude and longitude are measured in degrees. These values also can be
thought of as fractions of a great circle.

Latitude and longitude information is stored in the geographic location record as values
of type Fr act . These values give accuracy to within 1 foot, which should be sufficient
for most purposes. For example, the Fr act value 1.0 equals 90 degrees; —1.0 equals

-90 degrees; and 2.0 equals —180 degrees.

To store latitude and longitude values, you need to convert them first to the Fi xed data
type, then to the Fr act data type. You can use the Operating System Ultilities routines
Long2Fi x and Fi x2Fr act to accomplish this task. Listing 4-8 is an application-defined
procedure that converts San Francisco’s latitude and longitude to Fr act values, then
writes the Fr act values to parameter RAM using the Wi t eLocat i on procedure.

Listing 4-8 Converting latitude and longitude to Fr act values

PROCEDURE MyConvert Lat Long;

VAR
nyLatitude, myLongitude: Longl nt;
fi xedLatitude, fixedLongitude: Fi xed;
| at Fract, |ongFract: Fract;
nyLocati on: Machi neLocati on;
BEG N
nmyLatitude: = 37.48; {degrees | atitude}
nyLongi tude: = 122. 24; {degrees | ongitude}

Using the Date, Time, and Measurement Utilities 4-19

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

{convert fromlong to fixed data type}
fi xedLatitude: = Long2Fi x(nyLati tude);
fi xedLongi tude: = Long2Fi x(myLongi t ude) ;

{convert fromfixed to Fract data type}
| at Fract: = Fi x2Frac(fi xedLatitude);
| ongFract: = Fi x2Frac(fi xedLongi tude);

{write latitude and | ogitude to nyLocati on}
nyLocation.latitude: = | atFract;
myLocati on. | ongi tude: = | ongFract;

{write latitude and | ongitude to paraneter RAM
WitelLocation(myLocation);

END;

To read the latitude and longitude values from parameter RAM, you use the
ReadLocat i on procedure. To convert these values to a degrees format, you need to
convert the Fr act values first to the Fi xed data type, then to the Longl nt data type.
You can use the Mathematical and Logical Utilities routines Fr act 2Fi x and Fi x2Long
to accomplish this task. (For more information on the Fr act data type and the
conversion routines Long2Fi x, Fi x2Fr act, Fr act 2Fi x, and Fi x2Long, see the
chapter “Mathematical and Logical Utilities” in this book.)

The gnt Del t a field of the geographic location record is a 3-byte value contained in a
long word, so you must take care to get and set it properly. Listing 4-9 shows an
application-defined function for obtaining the value of gnt Del t a.

Listing 4-9 Gettinggnt Del t a

4-20

FUNCTI ON MyGet Gnt Del ta (myLocation: Machi neLocation): Longlnt;
VAR
i nternal Grt Del ta: Longlnt;

BEG N
W TH nyLocati on DO
BEG N
internal GrtDelta := BitAnd(gntDelta, $00FFFFFF);
IF BitTst(internal GrtDelta, 23) THEN
{test sign extend bit}
internal GriDelta := BitO (internal Grt Del ta, $FFO000000);
MyGet Gt Delta := internal GrtDelta;
END;
END;

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

When writing gnt Del t a, you should preserve the value of dl sDel t a. Listing 4-10
shows an application-defined procedure that writes gnt Del t a while preserving the
value of dl sDel t a.

Listing 4-10 Setting gnt Del t a

PROCEDURE MySet Gt Del ta (VAR myLocation: Location;
nmyGrt Del ta: Longlnt);

VAR
t enpSi gnedByt e: Si ghedByt e;
BEG N
W TH nyLocati on DO
BEG N
tenpSi gnedByt e : = dl sDel t a; {preserve dl sDel ta}
gmDelta := nyGnrtDelta; {write gntDelta}
dl sDelta : = tenpSi gnedByt e; {restore dlsDelta}
END;
END;

Note that you should mask off the top byte of the long word containing gnt Del t a
because it is reserved.

Determining the Measurement System

To implement measuring devices in applications, such as rulers in a word processor
or in drawing applications, you need to determine which measurement system your
application should use. You can use the | sMet ri ¢ function to determine if the
measurement system needs to be the metric system or the English system. The

| sMet ri ¢ function reads the numeric-format resource (resource type ' i t1 0") of
the current script system to determine whether the user is using the metric system
or the English system.

Listing 4-11 shows an application-defined procedure that uses the result of the
I sMetri ¢ function to determine which application-defined ruler setup to use for a
document window.

Listing 4-11 Getting the current units of measurement

PROCEDURE DoRul er (wi ndow. W ndowPtr);

VAR

myMeasur e: BOOLEAN,; {response returned by IsMetric}
BEG N

nyMeasure := Ishetric;

| F nyMeasure = TRUE THEN {metric systemis default}

Using the Date, Time, and Measurement Utilities 4-21

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

DoMet ri cRul er Set up {set up nmetric systemruler}
ELSE
DoEngl i shRul er Set up; {set up English systemruler}

END;

If you want to use a measurement system different from that of the current script, you
need to override the value of the et ri cSys field in the current numeric-format
resource (resource type' i t1 0"). You can do this by using your own version of the
numeric-format resource instead of the current script system’s default international
resources. See the chapter “Script Manager” in Inside Macintosh: Text for information on
how to replace a script system’s default international resources.

Determining the Number of Elapsed Microseconds

Your application can use the M cr oseconds procedure to obtain the number of

elapsed microseconds since system startup time. You can use the value returned by

the M cr oseconds procedure to time an event. For example, Listing 4-11 shows an
application-defined function M/Event Ti mer that computes and returns the time it takes
to execute an application-defined procedure DoMyEvent . The application-defined
function MyCal ul at eEl apsedTi ne function uses the returned value of the

M cr oseconds procedure to compute the time it takes to execute the

DoMyEvent procedure.

Listing 4-12 Timing an event using the M cr oseconds procedure

4-22

FUNCTI ON MyEvent Ti mer: Unsi gnedW de;
VAR
myStart Ti ne: Unsi gnedW de;
nyEndTi ne: Unsi gnedW de;
BEG N
M croseconds(&ryStart Ti ne) ;
DoMyEvent ;
M cr oseconds(&ryEndTi ne) ;
MyEvent Ti ner : = MyConput eEl apsedTi ne(&yStart Ti me, &ryEndTi ne);
END;

Because there is no compiler support for 64-bit integers, you must write an
application-defined routine that calculates the elapsed time; you cannot obtain the
elapsed time by subtracting the value in the ny St ar t Ti ne parameter from the value in
the myEndTi me parameter.

Using the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Date, Time, and Measurement Utilities Reference

This section describes the data structures and routines that are specific to the Date,

Time, and Measurement Utilities. The section “Data Structures” shows the Pascal data
structures for the date-time record, long date-time record, standard date-time value, long
date-time value, and more. The section “Routines” describes the routines you can use to
read, write, and manipulate date-time information.

Data Structures

This section describes the data structures that you use to exchange information with the
Date, Time, and Measurement Ultilities.

The Date-Time Record

The date-time record describes the date-time information as a date and time. The Date,
Time, and Measurement Utilities use a date-time record to read and write date-time
information to and from the clock chip. The Dat eTi meRec data type defines the
date-time record.

Note

The date-time record can be used to hold date and time values only for a
Gregorian calendar. The long date-time record (described on page 4-26)
can be used for a Gregorian calendar as well as other calendar

systems. O

TYPE Dat eTi neRec =

RECORD
year: I nt eger; {year, ranging from 1904 to 2040}
nont h: I nt eger; {rmonth, 1= January and 12 = Decenber}
day: I nt eger; {day of the month, from1 to 31}
hour : I nt eger; {hour, fromO to 23}
m nut e: I nt eger; {m nute, fromO to 59}
second: I nt eger; {second, fromO to 59}
dayOf Week: I nteger; {day of the week, 1 = Sunday, }
{ 7 = Saturday}
END;

Field descriptions

year The year, ranging from 1904 to 2040. Note that to indicate the year
1984, this field would store the integer 1984, not just 84. This field
accepts input of 0 or negative values, but these values produce
unpredictable results in the year, nont h, and day fields when you

Date, Time, and Measurement Utilities Reference 4-23

SanInN WaWaINSea pue ‘awl] ‘areq -

4-24

CHAPTER 4

Date, Time, and Measurement Utilities

nont h

day

hour

m nut e

second

use the SecondsToDat e and Dat eToSeconds procedures. In
addition, using SecondsToDat e and Dat eToSeconds with year
values greater than 2040 causes a wraparound to 1904 plus the
number of years over 2040. For example, setting the year to 2045
returns a value of 1909, and the other fields in this record return
unpredictable results.

The month of the year, where 1 represents January, and 12
represents December. Values greater than 12 cause a wraparound to
a future year and month. This field accepts input of 0 or negative
values, but these values produce unpredictable results in the year,
mont h, and day fields when you use the SecondsToDat e and

Dat eToSeconds procedures.

The day of the month, ranging from 1 to 31. Values greater than the
number of days in a given month cause a wraparound to a future
month and day. This feature is useful for working with leap years.
For example, the 366th day of January in 1992 (1992 was a leap year)
evaluates as December 31, 1992, and the 367th day of that year
evaluates as January 1, 1993.

This field accepts 0 or negative values, but when you use the

SecondsToDat e and Dat eToSeconds procedures, a value of 0 in
this field returns the last day of the previous month. For example, a
month value of 2 and a day value of 0 return 1 and 31, respectively.

Using SecondsToDat e and Dat eToSeconds with a negative
number in this field subtracts that number of days from the last day
in the previous month. For example, a month value of 5 and a day
value of -1 return 4 for the month and 29 for the day; a month value
of 2 and a day value of —15 return 1 and 16, respectively.

The hour of the day, ranging from 0 to 23, where 0 represents
midnight and 23 represents 11:00 pMm. Values greater than 23 cause a
wraparound to a future day and hour. This field accepts input of
negative values, but these values produce unpredictable results in
the nont h, day, hour, and m nut e fields you use the
SecondsToDat e and Dat eToSeconds procedures.

The minute of the hour, ranging from 0 to 59. Values greater than 59
cause a wraparound to a future hour and minute. When you use the
SecondsToDat e and Dat eToSeconds procedures, a negative
value in this field has the effect of subtracting that number from the
beginning of the given hour. For example, an hour value of 1 and a
nm nut e value of 10 return 0 hours and 50 minutes. However, if the
negative value causes the hour value to be less than 0, for example
hour =0, m nut e =-61, unpredictable results occur.

The second of the minute, ranging from 0 to 59. Values greater than
59 cause a wraparound to a future minute and second. When you
use the SecondsToDat e and Dat eToSeconds procedures, a
negative value in this field has the effect of subtracting that number
from the beginning of the given minute. For example, a m nut e
value of 1 and a second value of 10 returns 0 minutes and 50
seconds. However, if the negative value causes the hour value to be

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

less than 0, for example hour =0, mi nut e =0, and second =-61,
unpredictable results occur.

dayCOf Week The day of the week, where 1 indicates Sunday and 7 indicates
Saturday. This field accepts 0, negative values, or values greater
than 7. When you use the SecondsToDat e and Dat eToSeconds
procedures, you get correct values because this field is
automatically calculated from the values in the year, nont h, and
day fields.

Long Date-Time Value and Long Date-Time Conversion Record

The long date-time value specifies the date and time as seconds relative to midnight,
January 1, 1904. But where the standard date-time value is an unsigned, 32-bit long
integer, the long date-time value is a signed, 64-bit integer in SANE conp format. This
format lets you use dates and times with a much longer span—roughly 500 billion years.
You can use this value to represent dates and times prior to midnight, January 1, 1904.
The LongDat eTi me data type defines the long date-time value.

TYPE LongDat eTi me = conp;

When storing a long date-time value in files, you can use a 5-byte or 6-byte format for a
range of roughly 35,000 years. You should sign extend this value to restore it to a conp
format.

The Date, Time, and Measurement Utilities provide the LongDat eCvt record to help in
setting up LongDat eTi me values.

TYPE LongDat eCvt =

RECORD
CASE | nteger OF
0:
(c: conp) ; {nunber of seconds relative to }
{ mdnight, January 1, 1904}
1:
(I H gh: Longlnt; {high long integer}
| Low: Longl nt); {low Il ong integer}
END;

Field descriptions

c The date and time, specified in seconds relative to midnight,
January 1, 1904, as a signed, 64-bit integer in SANE conp format.
The high-order bit of this field represents the sign of the 64-bit
integer. Negative values allow you to indicate dates and times prior
to midnight, January 1, 1904.

| Hi gh The high-order 32 bits when converting from a standard date-time
value. Set this field to 0.

Date, Time, and Measurement Utilities Reference 4-25

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

| Low The low-order 32 bits when converting from a standard date-time
value. Set this field to the standard date-time value representing the
total number of seconds since midnight, January 1, 1904.

The Long Date-Time Record

4-26

In addition to the date-time record, system software provides the long date-time record,
which extends the date-time record format by adding several more fields. This format
lets you use dates and times with a much longer span (30,000 B.c. to 30,000 AD.). In
addition, the long date-time record allows conversions to different calendar systems,
such as a lunar calendar.

The LongDat eRec data type defines the format of the long date-time record.

TYPE LongDat eRec =

RECORD
CASE | nteger OF
0:
(era: I nt eger; {era}
year: I nt eger; {year, from 30,081 B.C. }
{ to 29,940 A.D.}
nont h: I nt eger; { ront h}
day: I nt eger; {day of the nonth}
hour : I nt eger; {hour, fromO to 23}
nm nut e: I nt eger; {m nute, fromO to 59}
second: I nt eger; {second, fromO to 59}
dayOf Week: I nt eger; {day of the week}
dayf Year: I nt eger; {day of the year}
weekf Year : I nt eger; {week of the year}
pm I nt eger; { mor ni ng/ eveni ng}
resl: I nt eger; {reserved}
res2: I nt eger; {reserved}
res3: I nt eger); {reserved}
1
{i ndex by LongDat eFi el d}
(list: ARRAY[0. . 13] OF Integer);
2:
(eraAlt: I nt eger; {era}
ol dDat e: Dat eTi mreRec); {date-tine record}
END;

Field descriptions
era The era, where 0 represents AD., and —1 represents B.C.

year The year, ranging from 30,081 B.c. to 29,940 AD. Values outside this
range produce unpredictable results in all fields of the record. Note
that to indicate the year 1984, this field would store the integer 1984,

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

nont h

day

hour

m nut e

second

not just 84. This field accepts input of 0 or negative values, but these
values return the positive result of the value plus one for the year.
For example, a year value of 0 returns 1, and a year value of -1993
returns 1994. Other fields are unaffected.

The month of the year, where 1 represents January, and 12
represents December. When you use the LongSecondsToDat e and
LongDat eToSeconds procedures, nont h values greater than 12
cause a wraparound to a future year and month. A value of 0 in this
field returns the 12th month of the previous year. For example, a
nmont h value of 0 and a year value of 1993 return 12 and 1992,
respectively. A negative value in this field has the effect of
subtracting that number from the first month of the given year. For
example, a nont h value of -2 and a year value of 1993 return 10
and 1992, respectively.

The day of the month, ranging from 1 to 31. When using the
LongSecondsToDat e and LongDat eToSeconds procedures, day
values greater than the number of days in a given month cause a
wraparound to a future month and day. This feature is useful for
working with leap years. For example, the 366th day of January in
1992 (1992 was a leap year) evaluates as December 31, 1992, and the
367th day of that year evaluates as January 1, 1993. A value of 0 in
this field produces unpredictable results in the mont h and day
fields. A negative value in this field has the effect of subtracting that
number from the first day of the given month. For example, a day
value of -10 and a nont h value of 10 return 9 and 20, respectively.

The hour of the day, ranging from 0 to 23, where 0 represents
midnight and 23 represents 11:00 emM. When you use the
LongSecondsToDat e and LongDat eToSeconds procedures,
hour values greater than 23 cause a wraparound to a future day
and hour. A negative value in this field produces unpredictable
results. Note that this field is always maintained in 24-hour time.
The pmfield, if used, is redundant.

The minute of the hour, ranging from 0 to 59. When you use the
LongSecondsToDat e and LongDat eToSeconds procedures,

m nut e values greater than 59 cause a wraparound to a future hour
and minute. A negative value in this field has the effect of
subtracting that number from the first minute of the given hour. For
example, an hour value of 10 and a i nut e value of —10 return 9
and 50, respectively. However, if the negative value causes the hour
value to become less than 0, for example hour =0 and m nut e =
—61, unpredictable results occur.

The second of the minute, ranging from 0 to 59. When you use the
LongSecondsToDat e and LongDat eToSeconds procedures,
second values greater than 59 cause a wraparound to a future
minute and second. A negative value in this field has the effect of
subtracting that number from the first second of the given minute.
For example, an mi nut e value of 10 and a second value of -10
return 9 and 50, respectively. However, if the negative value causes

Date, Time, and Measurement Utilities Reference 4-27

SanInN WaWaINSea pue ‘awl] ‘areq -

4-28

CHAPTER 4

Date, Time, and Measurement Utilities

dayOf eek

dayf Year

weekOf Year

pm

resl
res2
res3
list

eraAl t

ol dDat e

the hour value to become less than 0, for example hour =0,
m nut e =0, and second = -61, unpredictable results occur.

The day number of the week, where 1 indicates Sunday and 7
indicates Saturday. This field accepts 0, negative values, or values
greater than 7. When you use the LongSecondsToDat e and
LongDat eToSeconds procedures, you get correct values because
this field is automatically calculated from the values in the year,
mont h, and day fields. For calendars that have more than 7 day
names and 12 month names (for example, the Jewish calendar
sometimes has 13 months), you use the ' i t| 1' resource, defined
by the | t | 1Ext Rec data type. To get more information on the
format of the " i t1 1" resource, see the appendix “International
Resources” in Inside Macintosh: Text.

The day number of the year, ranging from 1 to 366. Values greater
than the number of days in a given year cause a wraparound to a
future year and day. This feature is useful for working with leap
years. For example, in a Gregorian calendar the 366th day of
January in 1992 (1992 was a leap year) evaluates as December 31,
1992, and the 367th day of that year evaluates as January 1, 1993.

The week number of the year, ranging from 1 to 52. Note that
out-of-range values (such as 0, negative numbers, or numbers
greater than 52) can be set for this field. However, you can use the
LongSecondsToDat e procedure to convert these out-of-range
values to appropriate values.

The morning or evening half of the 24-hour day cycle, where 0
represents the morning (for example, AM.), and 1 represents the
evening (for example, pm.). Note that out-of-range values can be set
for this field. However, you can use the LongSecondsToDat e
procedure to convert these out-of-range values to appropriate
values.

Reserved. Set this field to 0.
Reserved. Set this field to 0.
Reserved. Set this field to 0.

An array of LongDat eFi el d values. The f i el d parameter of the
Toggl eDat e function uses the enumerated data type
LongDat eFi el d to indicate the LongDat eRec fields that the
Val i dDat e function should check. The following values are
available:
TYPE LongDateField =
(eraField, yearField, nonthField, dayField
hour Fi el d, m nuteField, secondField,
dayOf WeekFi el d, dayOf Year Fi el d,
weekOf Year Fi el d, pnField, reslField,
res2Field, res3Field);

The era, where 0 represents AD,, and -1 represents B.c. Use this field
and the ol dDat e field to convert from a date-time record.

The date-time record to convert. Use this field and the er aAl t field
to convert from a date-time record.

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

The Geographic Location Record

The geographic location and time-zone information of a Macintosh computer are stored
in extended parameter RAM. The Machi neLocat i on data type defines the format for
the geographic location record.

TYPE Machi neLocation = {geographic |ocation record}

RECORD
| ati tude:
| ongi t ude:
CASE | nt eger
0:
(dl sDel t a:

(gnDelta:
END;

Field descriptions
latitude

| ongi t ude

dl sDelta

gmDelta

Fract; {latitude}
Fract; {l'ongi t ude}
OF

Si gnedByt e) ; {dayl i ght saving tine}

Longl nt); {Greenwi ch nean tine}

The location’s latitude, in fractions of a great circle. For example,
Copenhagen, Denmark is at 55.43 degrees north latitude. When
writing the latitude to extended parameter RAM with the

W itelLocati on procedure, you must convert this value to a
Fract data type. (For example, a Fr act value of 1.0 equals 90
degrees; —1.0 equals —90 degrees; and —2.0 equals —180 degrees.) For
an example that shows this conversion process, see Listing 4-8 on
page 4-19. For more information on the Fr act data type, see the
chapter “Mathematical and Logical Utilities” in this book.

The location’s longitude, in fractions of a great circle. For example,
Copenhagen, Denmark is at 12.34 degrees east longitude. When
writing the longitude to extended parameter RAM with the

Wi telocati on procedure, you must convert this value to a
Fract data type. (For example, a Fr act value of 1.0 equals 90
degrees; -1.0 equals 90 degrees; and -2.0 equals —180 degrees.) For
an example that shows this conversion process, see Listing 4-8 on
page 4-19. For more information on the Fr act data type, see the
chapter “Mathematical and Logical Utilities” in this book.

A signed byte value representing the hour offset for daylight saving
time. This field is a 1-byte value contained in a long word. It should
be preserved when writing gnt Del t a. See Listing 4-10 on

page 4-21 for an example that writes gnt Del t a while preserving

dl sDel t a.

The Greenwich mean time (GMT). For example, Copenhagen,

Denmark is at 1 hour west of GMT. This field is a 3-byte value

contained in a long word. In addition, the top byte of this field
should be masked off when writing because it is reserved. See

Listing 4-9 on page 4-20 and Listing 4-10 on page 4-21 for code
examples that get and set gnt Del t a properly.

Date, Time, and Measurement Utilities Reference 4-29

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

The ReadLocat i on and Wit eLocat i on procedures use the geographic location
record to read and store the geographic location and time zone information in extended
parameter RAM. If the geographic location record has never been set, all fields contain 0.

The Toggle Parameter Block

4-30

The Toggl eDat e function exchanges information with your application using the
toggle parameter block, defined by the Toggl ePB data type.

TYPE Toggl ePB =

RECORD
t ogFl ags: Longl nt ; {fl ags}
antChars: ResType;
{ resource,
pnChars: ResType;
{ resource,
reserved: ARRAY[0. .3] OF Longlnt;
END;

Field descriptions
t ogFl ags

{A-M characters from'itl0' }

but made uppercase}

{P.M characters from'itl0 }

but made uppercase}
{reserved}

The high-order word of this field contains flags that specify special

conditions for the Toggl eDat e function:

genCdevRangeBi t = 27;
togDel tal2HourBit = 28;
t ogChar ZCycl eBit = 29;
t ogChar 12Hour Bi t =
smal | Dat eBi t =

genCdevRangeBi t

30;

31;

{restrict date/tinme to }
{ range used by }

{ General Controls }

{ control panel}

{if nodifying hour }

{ up/down, restrict to }
{ 12-hour range}
{nodifier for }

{ togChar12HourBit to }
{ accept hours }

{ 0..11 only}

{if nodifying hour by }
{ char, accept hours }

{ 1..12 only}

{restrict valid }

{ date/tine to }

{ range of Tinme gl obal}

If this bit is set in addition to sral | Dat eBi t, then the date range is
restricted to that used by the General Controls control panel—

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

January 1, 1920 to December 31, 2019 in the Gregorian calendar (the
routine works correctly for other calendars as well). For dates
outside this range but within the range specified by the system
global variable Ti me—January 1, 1904 to February 6, 2040 in the
Gregorian calendar—Toggl eDat e adds or subtracts 100 years to
bring the dates into the range of the General Controls control panel
if these bits are set. The Toggl eDat e function returns an error if
the smal | Dat eBi t is set and the date is outside the range specified
by the system global variable Ti nme. This bit works with system
software version 6.0.4 and later.

t ogDel t al2Hour Bi t

If this bit is set, modifying the hour up or down is limited to a
12-hour range. For example, increasing by one from 11 produces 0,
increasing by one from 23 produces 12, and so on. This bit works
with system software version 6.0.4 and later.

t ogChar ZCycl eBi t

If this bit is set, the input character is treated as if it modifies an
hour whose value is in the range 0-11. If this bit is not set, the input
character is treated as if it modifies an hour whose value is in the
range 12, 1-11. This bit works with system software version 6.0.4
and later.

t ogChar 12Hour Bi t

If this bit is set, modifying the hour by character is limited to the
12-hour range defined by t ogChar ZCycl eBi t, mapped to the
appropriate half of the 24-hour range, as determined by the pmfield.
This bit works with system software version 6.0.4 and later.

smal | Dat eBi t

If this bit is set, the valid date and time are restricted to the range of
the system global variable Ti me—that is, between midnight on
January 1, 1904 and 6:28:15 AM. on February 6, 2040.

The low-order word of this field contains masks representing fields
to be checked by the Val i dDat e function. Each mask corresponds
to a value in the enumerated type LongDat eFi el d. You can set
this field to check the er a through second fields by using the
predeclared constant dat eSt dMask. The following constants
specify the LongDat eRec fields for the Val i dDat e function to
check.

CONST

er aMask = $0001; {verify the era}
year Mask = $0002; {verify the year}
nont hvask = $0004; {verify the nonth}
dayMask = $0008; {verify the day}
hour Mask = $0010; {verify the hour}
m nut eMask = $0020; {verify the }

Date, Time, and Measurement Utilities Reference 4-31

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

{ mnute}
secondMask = $0040; {verify the }

{ second}
dat eSt dvask = $007F; {verify the era }

{ through second}
dayOr WeekMask = $0080; {verify the day }

{ of the week}
dayf Year Mask = $0100; {verify the day }

{ of the year}
weekOf Year Mask = $0200; {verify the week }

{ of the year}
pmivask = $0400; {verify the }

{ evening (P.M)}

anChar s The trailing string to display for morning (for example, am.). This

string is read from the numeric-format resource (resource type
"itl0")of the current script system.

prChar s The trailing to display for evening (for example, pm.). This string is
read from the numeric-format resource (resource type ' i t1 0") of
the current script system.

reserved Reserved. Set each of the three elements of this field to 0.

The Unsigned Wide Record

Routines

The Microseconds procedure uses the unsigned wide record to return the number of
microseconds elapsed since system startup time. The Unsi gnedW de data type defines
the format for the unsigned wide record.

Unsi gnedW de = {M croseconds procedure return type}
PACKED RECORD
hi : Longl nt; {hi gh-order 32 bhits}
| o: Longl nt; {I oworder 32 bits}
END;

Field descriptions
hi The high-order 32 bits
l o The low-order 32 bits

4-32

The Date, Time, and Measurement Utilities provide routines you can use to read and
write current date-time information, convert between internal date and time formats (for
example, you can access date-time information as a number of seconds elapsed since
midnight, January 1, 1904 or as a date and time), manipulate date-time information, read
and write location information, and determine the current measurement system.

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

Some of the routines provided by the Date, Time, and Measurement Utilities were
previously associated with the Script Manager or the International Utilities Package. In
addition, some routines have been renamed to reflect their functions more clearly. You
can access the renamed routines using more than one spelling of the routine’s name,
depending on the interface files supported by your development environment. For
example, the | sSMet ri ¢ function is also available as the | UMet r i ¢ function. Table 4-4
provides a summary of these changes.

Table 4-4 Renamed and relocated routines

Current name Previous name Former location
Dat eToSeconds Dat e2Secs (Unchanged)
IsMetric UMetric International Utilities Package
LongDat eToSeconds LongDat e2Secs Script Manager
LongSecondsToDat e LongSecs2Dat e Script Manager
ReadLocat i on ReadLocat i on Script Manager
SecondsToDat e Secs2Dat e (Unchanged)
Toggl eDat e Toggl eDat e Script Manager
Val i dDat e Val i dDat e Script Manager
WitelLocation WitelLocation Script Manager

Getting the Current Date and Time

At system startup time, system software uses the ReadDat eTi ne function to copy the
current date-time information from the clock chip into low memory. You can access this
date-time information as the number of seconds elapsed since midnight of January 1,
1904 or as a date and time. To obtain the current date-time information expressed as the
number of seconds elapsed since midnight of January 1, 1904, use the Get Dat eTi e
procedure. To obtain the current date-time information expressed as a date and time, use
the Get Ti me procedure.

IMPORTANT

If an application disables interrupts for longer than a second, the
date-time information returned by the Get Dat eTi ne and CGet Ti e
procedures might not be exact. The Get Dat eTi me and Cet Ti e
procedures are intended to provide fairly accurate time information, but
not scientifically precise data. a

Date, Time, and Measurement Utilities Reference 4-33

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

ReadDateTime

DESCRIPTION

System software uses at system startup time the ReadDat eTi ne function to copy the
date-time information from the clock chip into low memory. Your application should
never need to use this function.

FUNCTI ON ReadDat eTine (VAR tinme: Longlnt): OSErr;

time On return, the current time expressed as the number of seconds elapsed
since midnight, January 1, 1904.

The ReadDat eTi ne function copies the current date-time information from the clock
chip into low memory. It then returns in the t i me parameter a copy of the date-time
information, expressed as the number of seconds elapsed since midnight, January 1, 1904.

The low-memory copy of the date and time information is accessible through the global
variable Ti me.

If the clock chip cannot be read, ReadDat eTi e returns the ¢l KRAEr r result code. The
operation might fail if the clock chip is damaged. Otherwise, the function returns the
NoEr r result code.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

4-34

You must set up register A0 with a pointer to a long integer in which you wish to store
the current date-time information. On exit, register A0 contains the same pointer to the
now-changed long integer, and register DO contains the result code.

The registers on entry and exit for this routine are

Registers on entry
A0 Pointer to long word

Registers on exit
A0 Pointer to current time

DO Result code

noErr 0 No error
cl kRdErr -85 Unable to read clock

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

GetDateTime

DESCRIPTION

SEE ALSO

GetTime

You can use the Get Dat eTi me procedure to obtain the current date-time information,
expressed as the number of seconds elapsed since midnight, January 1, 1904.

PROCEDURE Get Dat eTi me (VAR secs: Longlnt);

secs On return, the number of seconds elapsed since midnight, January 1, 1904.

The Get Dat eTi ne procedure returns in the secs parameter the number of seconds
elapsed since midnight, January 1, 1904.

The low-memory copy of the date and time information (expressed as the number of
seconds elapsed since midnight, January 1, 1904) is also accessible through the global
variable Ti me.

For an example that uses the Get Dat eTi me procedure to get the current date and time,
see Listing 4-1 on page 4-10.

DESCRIPTION

You can use the Get Ti me procedure to obtain the current date-time information,
expressed as a date and time.

PROCEDURE CGet Ti me (VAR d: DateTi neRec);

d On return, the fields of the date-time record contain the current date and
time.

The Get Ti me procedure returns in the d parameter the current date and time. The

Cet Ti me procedure first calls the Get Dat eTi me procedure to obtain the number of
seconds elapsed since midnight, January 1, 1904. It then calls the SecondsToDat e
procedure to convert the number of seconds (returned by the Get Dat eTi me procedure)
into a date and time.

As an alternative to using the Get Ti me procedure, you can pass the value of the global
variable Ti me to the SecondsToDat e procedure; a SecondsToDat e(Ti nme) procedure
call is identical to a Get Ti ne(d) procedure call.

Date, Time, and Measurement Utilities Reference 4-35

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

SEE ALSO

For more information about the SecondsToDat e procedure, see page 4-38. The
Cet Dat eTi nme procedure is described on page 4-35. For sample code that uses the
Cet Ti me procedure to get the current date and time, see Listing 4-2 on page 4-10.
The date-time record is described in detail beginning on page 4-23.

Setting the Current Date and Time

You can modify the date-time information stored in the clock chip by using the

Set Dat eTi ne function or the Set Ti nme procedure. The two routines differ in the
type of arguments they require. The Set Dat eTi me function requires that the new
date-time information be expressed as the number of seconds elapsed since midnight
of January 1, 1904 (using a value of type Longl nt). The Set Ti ne procedure requires
that the new date-time information be expressed as a date and time (using a value of
type Dat eTi meRec).

IMPORTANT

Users can change the current date and time stored in both the system
global variable Ti me and in the clock chip by using the General Controls
control panel, Date & Time control panel, or the Alarm Clock desk
accessory. In general, your application should not directly change the
current date-time information. If your application does need to modify
the current date-time information, it should instruct the user how to
change the date and time. a

SetDateTime

You can use the Set Dat eTi me function to modify the date-time information stored

in the clock chip. The Set Dat eTi ne function requires that the new date-time
information be passed to the function as the number of seconds elapsed since midnight,
January 1, 1904.

FUNCTI ON SetDateTine (time: Longlnt): OSErr;

tine The number of seconds elapsed since midnight, January 1, 1904; this
value is written to the clock chip.

DESCRIPTION

The Set Dat eTi e function writes the number of seconds, specified by the t i ne
parameter, to the clock chip. The Set Dat eTi e function also updates the low-memory
copy of the date-time information.

The Set Dat eTi e function attempts to verify the value written by reading it back in
and comparing it to the value in the low-memory copy. If a problem occurs, the
Set Dat eTi ne function returns either the cl KRAEr r result code, because the clock chip

4-36 Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

could not be read, or the cl KW Er r result code, because the time written to the clock
chip could not be verified. Otherwise, the function returns the noEr r result code.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register DO with the number of seconds to which you wish to change
the clock chip. When the Set Dat eTi me function returns, register D0 contains the result
code.

The registers on entry and exit for this routine are

Registers on entry
D0 Seconds elapsed since midnight, January 1, 1904

Registers on exit
DO Result code

RESULT CODES

noErr 0 No error

cl KRAEr r -85 Unable to read clock

cl kW Err -86 Time written did not verify
SEE ALSO

For sample code that uses the Set Dat eTi me function to write date-time information
(represented as a number of seconds) to the clock-chip, see Listing 4-3 on page 4-11.

SetTime
You can use the Set Ti me procedure to modify the date-time information in the clock
chip. The Set Ti e requires that the new date-time information be passed to the
function as a date and time.
PROCEDURE Set Ti ne (d: DateTi neRec);
d The date and time to which to set the clock chip.

DESCRIPTION

The Set Ti me procedure writes the date and time specified by the d parameter to the
clock chip. The Set Ti ne procedure first converts the date and time to the number of
seconds elapsed since midnight, January 1, 1904 (by calling the Dat eToSeconds
procedure). It then writes these seconds to the clock chip and to the system global
variable Ti e (by calling the Set Dat eTi e function).

Date, Time, and Measurement Utilities Reference 4-37

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

As an alternative to using the Set Ti me procedure, you can use the Dat eToSeconds
and Set Dat eTi me routines.

Note

The Set Ti me procedure does not return a result code. If you need to
know whether an attempt to change the date and time information in
the clock chip is successful, you must use the Set Dat eTi e function. O

SEE ALSO
See page 4-23 for a description of the fields of a date-time record. For more
information on the Dat eToSeconds procedure, see page 4-39. The Set Dat eTi ne
function is described on page 4-36. For sample code that uses the Set Ti me procedure to
write date-time information (represented as a date and time) to the clock-chip, see
Listing 4-4 on page 4-11.

Converting Between Date-Time Formats

The Date, Time, and Measurement Utilities provide two procedure, SecondsToDat e
and Dat eToSeconds, that you can use to convert between date-time formats. You
can convert a number of seconds to a date and time and a date and time to a number
of seconds.

If you use a standard date-time value (used to access a number of seconds) or a
date-time record (used to access a date and time) to access date-time information, you
can use the SecondsToDat e and Dat eToSeconds procedures to convert between
these date-time formats. Use the SecondsToDat e procedure to convert a number of
seconds to a date and time, and use the Dat eToSeconds procedure to convert a date
and time to a number of seconds.

Note

The system software uses the SecondsToDat e and Dat eToSeconds
procedures provided by the current script system. O

SecondsToDate

You can use the SecondsToDat e procedure to convert a number of seconds elapsed
since midnight, January 1, 1904 to a date and time.

PROCEDURE SecondsToDate (s: Longlnt; VAR d: DateTi neRec);

The number of seconds elapsed since midnight, January 1, 1904.

On return, the fields of the date-time record that contain the date and time
corresponding to the value indicated in the s parameter.

4-38 Date, Time, and Measurement Utilities Reference

DESCRIPTION

CHAPTER 4

Date, Time, and Measurement Utilities

The SecondsToDat e procedure converts the number of seconds, specified in the s
parameter, to a date and time. The date and time values are returned in the d parameter.

The SecondsToDat e procedure is also available as the Secs2Dat e procedure.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The registers on entry and exit for this routine are

Registers on entry
D0 Seconds since midnight, January 1, 1904

A0 Pointer to a date-time record

Registers on exit
A0 Pointer to a date-time record

For a complete description of the date-time record, see page 4-23.

DateToSeconds

DESCRIPTION

You can use the Dat eToSeconds procedure to convert a date and time to a number of
seconds elapsed since midnight, January 1, 1904.

PROCEDURE Dat eToSeconds (d: DateTi neRec; VAR s: Longlnt);

d The date-time record containing the date and time to convert.

s On return, the number of seconds elapsed between midnight,
January 1, 1904, and the time specified in the d parameter.

The Dat eToSeconds procedure converts the date and time specified in the

d parameter to the number of seconds elapsed since midnight, January 1, 1904. The
number of seconds are returned in the s parameter. For example, specifying a date

and time of 5:50 AM. on June 13, 1990 results in 41627 being returned in the S parameter.

The Dat eToSeconds procedure is also available as the Dat e2Secs procedure.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register AQ with a pointer to the date and time record containing the
date and time you wish to convert. When Dat eToSeconds returns, register DO contains
a long integer representing the converted date and time.

Date, Time, and Measurement Utilities Reference 4-39

SanInN WaWaINSea pue ‘awl] ‘areq -

SEE ALSO

CHAPTER 4

Date, Time, and Measurement Utilities

The registers on entry and exit for this routine are

Registers on entry
A0 Pointer to date-time record

Registers on exit
DO Corresponding seconds since midnight, January 1, 1904

For a complete description of the date-time record, see page 4-23.

Converting Between Long Date-Time Format

The Date, Time, and Measurement Utilities provide two procedures,
LongSecondsToDat e and LongDat eToSeconds, that you can use to convert between
long date-time formats. You can convert a number of seconds to a date and time and a
date and time to a number of seconds.

If you use a long date-time value (used to access a number of seconds) or a long
date-time record (used to access a date and time) to access date-time information, you
can use the LongSecondsToDat e and LongDat eToSeconds procedures to convert
between these date-time formats. Use the LongSecondsToDat e procedure to convert a
number of seconds to a date and time, and use the LongDat eToSeconds procedure to
convert a date and time to a number of seconds.

Note

The system software uses the LongSecondsToDat e and
LongDat eToSeconds procedures provided by the current
script system. O

LongSecondsToDate

4-40

You can use the LongSecondsToDat e procedure to convert the number of seconds
elapsed since midnight, January 1, 1904 to a date and time.

PROCEDURE LongSecondsToDate (| Secs: LongDat eTi ne;
VAR | Dat e: LongDat eRec);

| Secs The number of seconds elapsed since midnight, January 1, 1904.

| Dat e On return, the fields of the long date-time record that contain the date and
time corresponding to the value indicated in the | Secs parameter.

Date, Time, and Measurement Utilities Reference

DESCRIPTION

SEE ALSO

CHAPTER 4

Date, Time, and Measurement Utilities

The LongSecondsToDat e procedure converts the representation of the date-time
information from a number of seconds, specified in the | Secs parameter, to a date and
time. The date and time are returned in the | Dat e parameter as values in the date-time
record. For example, specifying the number of seconds 41627 results in the date and
time 5:50 AM. on June 13, 1990 being returned in the | Dat e parameter.

The LongSecondsToDat e procedure is also available as the LongSecs2Dat e
procedure.

To learn more about the long date-time value, see the section page 4-25. For more
information on the long date-time record, see page 4-26.

LongDateToSeconds

DESCRIPTION

SEE ALSO

You can use the LongDat eToSeconds procedure to convert a date and time to the
number of seconds elapsed since midnight, January 1, 1904.

PROCEDURE LongDat eToSeconds (| Date: LongDat eRec;
VAR | Secs: LongDat eTi ne) ;

| Dat e The long date-time record containing the date and time to convert.

| Secs On return, the number of seconds elapsed since midnight,
January 1, 1904, and the time specified in the | Dat e parameter.

The LongDat eToSeconds procedure converts the representation of the date-time
information from a date and time, specified in the | Dat e parameter, to the number of
seconds elapsed since midnight, January 1, 1904. The number of seconds are returned as
a long date-time value in the | Secs parameter. For example, specifying the date and
time 5:50 AM. on June 13, 1990 results in 41627 being returned in the | Secs parameter.

The LongDat eToSeconds procedure is also available as the LongDat e2Secs
procedure.

To learn more about the long date-time value, see page 4-25. For more information on the
long date-time record, see page 4-26.

Date, Time, and Measurement Utilities Reference 4-41

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Modifying and Verifying Long Date-Time Records

ToggleDate

You can modify and verify the values in a long date-time record by using the
Toggl eDat e function and the Val i dDat e function, respectively.

The Toggl eDat e function accepts a pointer to a toggle parameter block as a parameter.
Information about the fields in the toggle parameter block appears in the following
format:

Parameter block

- i nput 1 Longl nt Input parameter comment.
- out put 1 Longl nt Output parameter comment.

The arrow on the far left indicates whether the field is an input or output parameter. You
must supply values for all input parameters. The routine returns values in the output
parameters. The next column shows the field name as defined in the MPW interface files,
followed by the data type of that field. This matches the MPW interface name of the data
type as shown in the parameter block. The fourth column contains a comment about or
brief definition of the field.

4-42

You can use the Toggl eDat e function to modify a date and time, by modifying one
specific component of a date and time (day, hour, minute, seconds, day of week, and
so on). For example, you can use the Toggl eDat e function to increase a date and time
by one minute, decrease a date and time by one minute, or explicitly add or subtract a
number of seconds to or from a date and time.

FUNCTI ON Toggl eDate (VAR | Secs: LongDat eTi ne;
field: LongDateField; delta: DateDelta,;
ch: Integer; parans: Toggl ePB)
Toggl eResul t s;

| Secs The date-time information to modify, expressed as the number of seconds
elapsed since midnight, January 1, 1904.

field The name of the field in the date-time record you want modify. Use one
of the LongDat eFi el d enumeration constants for the value of this
parameter.

delta A signed byte specifying the action you want to perform on the value

specified in the f i el d parameter. Set del t a to 1, to increase the value in
the field by 1. Set del t a to -1, to decrease the value of the field by 1. Set
del t a to 0. If you want to set the value of the field explicitly; pass the
new value through the ch field, described next.

Date, Time, and Measurement Utilities Reference

DESCRIPTION

CHAPTER 4

Date, Time, and Measurement Utilities

ch If the value in the del t a field is 0, the value of the field in the date-time
record (specified by the f i el d parameter) is set to the value in the
ch parameter. If the value in the del t a field is not equal to 0, the value in
the ch parameter is ignored.

par ams The settings of the toggle parameter block settings. Note that you are
responsible for setting this field.

Parameter block

N t ogFl ags Longl nt The fields to be checked by the
Val i dDat e function.
- antChar s ResType AM. characters from ' i t| 0" resource.
- pnChar s ResType PM. characters from ' i t| 0" resource.
- reserved ARRAY [0..3] Reserved; set each element to 0.
CF Longl nt

The Toggl eDat e function first converts the number of seconds, specified in the

| Secs parameter, to a date and time—making each component of the date and time
(day, minute, seconds, day of week, and so on) available through a long date-time
record. The Toggl eDat e function then modifies the value of the field, specified by the
fi el d parameter. If the value in the del t a field is greater than 0, the value of the field
(specified in the f i el d parameter) increases by 1; if the value in the del t a field is less
than 0, the value of the field decreases by 1; and if the value of del t a is 0, the value of
the field is explicitly set to the value specified in the ch field.

After the Toggl eDat e function modifies the field, it calls the Val i dDat e function. The
Val i dDat e function checks the long date-time record for correctness, using the values
of the t ogFl ags field in the toggle parameter block that the Toggl eDat e function
passes to it. If any of the record fields are invalid, the Val i dDat e function returns a
LongDat eFi el d value corresponding to the field in error. Otherwise, it returns the
result code for val i dDat eFi el ds. Note that Val i dDat e reports only the least
significant erroneous field.

After the Toggl eDat e function checks the validity of the modified field, it converts the
modified date and time back into a number of seconds (the number of seconds elapsed
since midnight, January 1, 1904) and returns these seconds in the | Secs parameter.

The following constants specify the LongDat eRec fields for the Val i dDat e function
to check:

CONST
er aMask = $0001; { verify the er a}
year Mask = $0002; { verify the year}
nmont hvask = $0004; { verify the ront h}
dayMask = $0008; { verify the day}
hour Mask = $0010; { verify the hour}
m nut eMask = $0020; { verify the m nut e}
secondMask = $0040; { verify the second}

Date, Time, and Measurement Utilities Reference 4-43

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

dat eSt dvask = $007F; { verify the era through second}

dayOf WeekMask = $0080; { verify the day of the week}

dayOf Year Mask = $0100; { verify the day of the year}

weekOf Year Mask = $0200; { verify the week of the year}

pmvask = $0400; { verify the evening (P.M)}
SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

4-44

Although Toggl eDat e does not move or purge memory, you should not call it at
interrupt time.

The Toggl eDat e function returns its own set of result codes. The Toggl eResul t s data
type defines the result code of the Toggl eDat e function:

TYPE Toggl eResults = Integer; {ToggleDate function return type}

The following list gives the result codes defined for this function:

t oggl eUndefi ned 0 Undefined error

t oggl edX 1 No error

t oggl eBadFi el d 2 Invalid field number

t oggl eBadDel t a 3 Invalid delta value

t oggl eBadChar 4 Invalid character

t oggl eUnknown 5 Unknown error

t oggl eBadNum 6 Tried to use character as number
t oggl eQut O Range 7 Out of range (synonym for t oggl eErr 3)
toggl eErr3 7 Reserved

toggl eErr4 8 Reserved

t oggl eErr5 9 Reserved

To learn more about the LongDat eTi ne data type, see page 4-25. For more information
on the LongDat eRec structure, see page 4-26. The toggle parameter block record is
described on page 4-30.

For more information about the Get | nt | Resour ce function, see the chapter “Script
Manager” in Inside Macintosh: Text. For details on the Upper caseText procedure, see
the chapter “Text Utilities” in Inside Macintosh: Text. The Val i dDat e function is
described next.

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

ValidDate
You can use the Val i dDat e function to verify specific date and time values in a long
date-time record.
FUNCTI ON Val i dDat e (VAR vDate: LongDateRec; flags: Longlnt;
VAR newSecs: LongDateTinme): |nteger;
vDat e The long date-time record whose fields you want to verify.
flags The fields that you want to verify in the long date-time record.
newsSecs The date-time information, passed by the Toggl eDat e function, that you
want to verify.
DESCRIPTION
The Val i dDat e function verifies the fields, specified by the f | ags parameter, in the
long date-time record specified by the vDat e parameter. If any of the specified fields
contain invalid values, the Val i dDat e function returns a LongDat eFi el d value
indicating the field in error. Otherwise, it returns the constant val i dDat eFi el ds.
Note that Val i dDat e reports only the least significant erroneous field.
The following constants specify the LongDat eRec fields for the Val i dDat e function
to check:
CONST
er avask = $0001; {verify the era}
year Mask = $0002; {verify the year}
mont hivask = $0004; {verify the nonth}
dayMask = $0008; {verify the day}
hour Mask = $0010; {verify the hour}
m nut eMask = $0020; {verify the mnute}
secondMask = $0040; {verify the second}
dat eSt divask = $007F; {verify the era through }
{ second}
dayOr WeekMask = $0080; {verify the day of the week}
dayOf Year Mask = $0100; {verify the day of the year}
weekOf Year Mask = $0200; {verify the week of the year}
pnivask = $0400; {verify the evening (P.M)}
SPECIAL CONSIDERATIONS

Although Val i dDat e does not move or purge memory, you should not call it at
interrupt time.

Date, Time, and Measurement Utilities Reference 4-45

SanInN WaWaINSea pue ‘awl] ‘areq -

SEE ALSO

CHAPTER 4

Date, Time, and Measurement Utilities

To learn more about the LongDat eTi e data type, see page 4-25. For more information
on the long date-time record, see page 4-26. The Toggl eDat e function is described on
page 4-42. The enumerated type LongDat eFi el d is described on page 4-29.

Reading and Writing Location Data

You can read and set geographic location and time-zone information using the
Readl ocat i on and Wi t eLocat i on procedures.

ReadLocation

DESCRIPTION

1-46

You can use the ReadLocat i on procedure to get information about a geographic
location or time zone.

PROCEDURE ReadLocati on (VAR | oc: Machi neLocati on);

| oc On return, the fields of the geographic location record containing the
geographic location and the time-zone information.

The ReadLocat i on procedure reads the stored geographic location and time zone
of the Macintosh computer from extended parameter RAM and returns it in the
| oc parameter.

You can get values for the latitude, longitude, daylight savings time (DST), or
Greenwich mean time (GMT). If the geographic location record has never been set,
all fields contain 0.

The latitude and longitude are stored as Fr act values, giving accuracy to within
one foot. For example, a Fr act value of 1.0 equals 90 degrees; —1.0 equals —90 degrees;
and -2.0 equals -180 degrees.

To convert these values to a degrees format, you need to convert the Fr act values first
to the Fi xed data type, then to the Longl nt data type. You can use the Mathematical
and Logical Utilities routines Fr act 2Fi x and Fi x2Long to accomplish this task.

The DST value is a signed byte value that you can use to specify the offset for the
hour field—whether to add one hour, subtract one hour, or make no change at all.

The GMT value is in seconds east of GMT. For example, San Francisco is at
—28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT. The gnt Del t a field
is a 3-byte value contained in a long word, so you must take care to get it properly.

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

SPECIAL CONSIDERATIONS

SEE ALSO

Although the ReadLocat i on procedure does not move or purge memory, you should
not call it at interrupt time.

For more information on the geographic location record, see page 4-29. For an
example of how to use the ReadLocat i on procedure to get latitude and longitude,
see Listing 4-8 on page 4-19. Listing 4-9 on page 4-20 shows an application-defined
procedure for obtaining the value of gnt Del t a.

For more information on the Fr act data type and the conversion routines Long2Fi x,

Fi x2Fr act, Fract 2Fi x, and Fi x2Long, see the chapter “Mathematical and Logical
Utilities” in this book.

WriteLocation

DESCRIPTION

You can use the Wi t eLocat i on procedure to change the geographic location or
time-zone information stored in extended parameter RAM.

PROCEDURE W iteLocation (loc: Machi neLocation);

| oc The geographic location and time-zone information to write to the
extended parameter RAM.

The Wit eLocat i on procedure takes the geographic location and time-zone
information, specified in the | oc parameter, and writes it to the extended
parameter RAM.

The latitude and longitude are stored in the geographic location record as Fr act values,
giving accuracy to within 1 foot. For example, a Fr act value of 1.0 equals 90 degrees;
-1.0 equals -90 degrees; and 2.0 equals —180 degrees.

To store latitude and longitude values, you need to convert them first to the Fi xed data
type, then to the Fr act data type. You can use the Operating System Ultilities routines
Long2Fi x and Fi x2Fr act to accomplish this task. Listing 4-8 on page 4-19 shows a
procedure that converts San Francisco’s latitude and longitude to Fr act values, then
writes the Fr act values to extended parameter RAM using the Wi t eLocat i on
procedure.

The daylight savings time value is a signed byte value that you can use to specify the
offset for the hour field—whether to add one hour, subtract one hour, or make no
change at all.

The Greenwich mean time value is in seconds east of GMT. For example, San Francisco is
at —28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT. The gnt Del t a field is

Date, Time, and Measurement Utilities Reference 4-47

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

a 3-byte value contained in a long word, so you must take care to set it properly. When
writing gnt Del t a, you should mask off the top byte because it is reserved. In addition,
you should preserve the value of dl sDel t a. Listing 4-10 on page 4-21 shows a
procedure that writes gnt Del t a, with the top byte masked off, while preserving

the value of dl sDel t a.

SPECIAL CONSIDERATIONS

SEE ALSO

Although Wit eLocat i on does not move or purge memory, you should not call it at
interrupt time.

For more information on the geographic location record, see page 4-29. For more
information on the Fr act data type and the conversion routines Long2Fi x,

Fi x2Fr act, Fract 2Fi x, and Fi x2Long, see the chapter “Mathematical and Logical
Utilities” in this book.

Determining the Measurement System

You can determine the type of measurement system that is used by the current script
system by the using the | sMet ri ¢ function.

IsMetric
You can use the | sMet ri ¢ function to determine whether the current script system is
using the metric system (also called the International System of Units) or the English
system of measurement (also called the British imperial system). The | sMet ri ¢ function
is also available as the | UMet ri ¢ function.
FUNCTI ON I'sMetric: BOOLEAN

DESCRIPTION

4-48

The | sMet ri ¢ function examines the et r i ¢Sys field of the numeric-format resource
(resource type ' i t1 0") to determine if the current script is using the metric system.

A value of 255 in the met r i ¢Sys field indicates that the metric system (centimeters,
kilometers, milligrams, degrees Celsius, and so on) is being used. In this case, t he

| sMet ri ¢ function returns a value of TRUE. A value of 0 in the met ri cSys field
indicates that the English system of measurement (inches, miles, ounces, degrees
Fahrenheit, and so on) is used. In that case, the | sMet r i ¢ function returns a value

of FALSE.

If you want to use units of measurement different from that of the current script, you
need to override the value of the met ri cSys field in the current numeric-format

Date, Time, and Measurement Utilities Reference

CHAPTER 4

Date, Time, and Measurement Utilities

resource (resource type ' i t1 0"). You can do this by using your own version of the
numeric-format resource instead of the current script system’s default international
resource.

SPECIAL CONSIDERATIONS

SEE ALSO

The | sMet ri ¢ function may move or purge blocks in the heap; calling it may cause
problems if you've dereferenced a handle. You should not call this function from within
interrupt code, such as in a completion routine or a VBL task.

For a complete description of the international numeric-format resource (resource
type'itl0')and how to use it, see the appendix “International Resources” in
Inside Macintosh: Text.

For information on how to replace a script system’s default international resources, see
the chapter “Script Manager” in Inside Macintosh: Text.

Measuring Time

You can measure the number of elapsed microseconds since system startup, using the
M cr oseconds procedure.

Microseconds

DESCRIPTION

SEE ALSO

You can use the M cr oseconds procedure to determine the number of microseconds
that have elapsed since system startup time.

PROCEDURE M croseconds (VAR m croTi ckCount: UnsignedW de);

m cr osecondCount
The number of microseconds elapsed since system startup.

The M cr oseconds procedure returns, in the m cr osecondCount parameter, the
number of microseconds that has elapsed since system startup time.

For information about the return type for this procedure—the Unsi gnedW de record—
see page 4-32. For an example of how to use the M cr oseconds procedure, see
Listing 4-11 on page 4-21.

Date, Time, and Measurement Utilities Reference 4-49

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Summary of the Date, Time, and Measurement Ultilities

Pascal Summary

Constants
CONST
{date equates for Toggl eDate control bits}
val i dDat eFi el ds = -1; {date fields are valid}
genCdevRangeBi t = 27; {restrict date/tinme to range used by }
{ General Controls control panel}
t ogDel t al2Hour Bi t = 28; {if toggling hour up/down, restrict to }
{ 12-hour range}
t ogChar ZCycl eBi t = 29; {nodifier for togChar12HourBit to }
{ accept hours 0..11 only}
t ogChar 12Hour Bi t = 30; {if toggling hour by char, accept }
{ hours 1..12 only}
snal | Dat eBi t = 31; {restrict valid date/time to range }

{ of Tinme global}

{long date-tine record field nasks}

er aMask = $0001; {era}

year Mask = $0002; {year}

nont hMask = $0004; { mont h}

dayMask = $0008; { day}

hour Mask = $0010; {hour}

m nut eMask = $0020; {m nut e}
secondMask = $0040; { second}

dayOf WeekMask = $0080; {day of the week}
dayOf Year Mask = $0100; {day of the year}
weekOf Year Mask = $0200; {week of the year}
pmvask = $0400; {evening (P.M)}

{default value for togFlags field in the toggle paraneter bl ock }
{ and default value for the flags paraneter passed to the Verify function}
dat eSt divask = $007F; {default value for checking era }

{ through second fiel ds}

4-50 Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Data Types
TYPE
Dat eTi mreRec = {date-tinme record}
RECORD
year: I nt eger; {year}
nont h: I nt eger; { nront h}
day: I nt eger; {day of the nonth}
hour : I nt eger; {hour}
nm nut e: I nt eger; {m nut e}
second: I nt eger; {second}
dayOf Week: I nteger; {day of the week}
END;
LongDateFiel d = {long date field enuneration}
(eraField, yearField, nonthField, dayField,
hour Fi el d, m nuteField, secondField, dayOrWekFi el d,
dayOf Year Fi el d, weekOf Year Fi el d, pnField, reslField,
res2Field, res3Field);
LongDat eTi ne = conp; {date and tinme in 64-bit SANE conp fornat}
LongDat eCvt = {long date-time conversion record}
RECORD
CASE | nteger OF
0:
(c: conp) ; {copy field into a variable of type }
{ LongDat eTi ne}
1
(I H gh: Longlnt; {high-order 32 bits}
| Low: Longlnt); {l ow order 32 bits}
END;
LongDat eRec = {long date-tinme record}
RECORD
CASE | nteger OF
0:
(era: I nt eger; {era}
year: I nt eger; {year}
nont h: I nt eger; { ront h}
day: I nt eger; {day of the nonth}
hour : I nt eger; {hour}
nm nut e: I nt eger; {m nut e}
second: I nt eger; {second}

Summary of the Date, Time, and Measurement Utilities 4-51

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

dayOf eek: I nt eger; {day of the week}
dayOf Year : I nt eger; {day of the year}
weekOf Year : I nt eger; {week of the year}
pm I nt eger; {hal f of day--0 for norning,
{ 1 for evening}
resl: I nt eger; {reserved}
res2: I nt eger; {reserved}
res3: I nt eger); {reserved}
1: {index by LongDat eFi el d}
(list: ARRAY[0. . 13] OF Integer);
2:
(eraAlt: I nt eger; {era}
ol dDat e: Dat eTi nreRec); {date-tine record}
END;
Toggl ePB = {toggl e paraneter bl ock}
RECORD
t ogFl ags: Longl nt; {fl ags}
antChars: ResType; {from'itl0" resource, but nade uppercase}
pnChars: ResType; {from'itl 0" resource, but nade uppercase}
{reserved}
reserved: ARRAY[0. . 3] OF Longlnt;
END;
Toggl eResults = Integer; {Toggl eDate function return type}

Dat eDel ta = Si gnedByte

Machi neLocati on =
RECORD
| atitude:
| ongi t ude:
CASE | nteger OF
0:
(dl sDel t a:

(gnt Del t a:
END;

Fract;
Fract;

Longlnt);

{Toggl eDate function delta field type}

{geographic | ocation record}

{latitude}
{l'ongi t ude}

Si gnedByt e) ; {dayl i ght savings tine}

{Greenwi ch nean tine}

4-52 Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Unsi gnedW de = {M croseconds procedure return type}
PACKED RECORD
hi : [ongl nt; {hi gh-order 32 bits}
| o: | ongl nt; {low order 32 bits}
END;
Routines

Getting the Current Date and Time

FUNCTI ON ReadDat eTi e (VAR tine: Longlnt) : OSErr;
PROCEDURE Get Dat eTi ne (VAR secs: Longlnt);
PROCEDURE Get Ti ne (VAR d: DateTi meRec);

Setting the Current Date and Time
FUNCTI ON Set Dat eTi ne (time: Longlnt) : OSErr;
PROCEDURE Set Ti ne (d: DateTi neRec);

Converting Between Date-Time Formats
{each procedure has two spellings, see Table 4-4 for the alternate spelling}
PROCEDURE SecondsToDat e (secs: Longint; VAR d:. DateTi neRec);

PROCEDURE Dat eToSeconds (d: DateTi neRec; VAR secs: Longlnt);

Converting Between Long Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}
PROCEDURE LongSecondsToDate (VAR | Secs: LongDat eTi ne;
VAR | Dat e: LongDat eRec);

PROCEDURE LongDat eToSeconds (| Date: LongDateRec; VAR | Secs: LongDateTi ne);

Modifying and Verifying Long Date-Time Records

FUNCTI ON Toggl eDat e (VAR | Secs: LongDateTinme; field: LongDateField;
delta: DateDelta; ch: Integer;
parans: Toggl ePB): Toggl eResul ts;

FUNCTI ON Val i dDat e (vDat e: LongDateRec; flags: Longlnt;
VAR newSecs: LongDat eTine): | nteger;

Reading and Writing Location Data

PROCEDURE ReadLocati on (VAR | oc: Machi neLocation);
PROCEDURE Wit elocation (VAR | oc: Machi neLocati on);

Summary of the Date, Time, and Measurement Utilities 4-53

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Determining the Measurement System

{this function has two spellings,

FUNCTION | sMetric:

Measuring Time
PROCEDURE M cr oseconds

C Summary

Bool ean;

see Table 4-4 for the alternate spelling}

(VAR i croTi ckCount Unsi gnedW de) ;

Constants

enum

{

/*date equates for ToggleDate control bits*/

val i dDat eFi el ds =
genCdevRangeBi t =

t ogDel t al2Hour Bi t

t ogChar ZCycl eBi t =
t ogChar 12Hour Bi t =

smal | Dat eBi t

-1,
27,

28,

29,

30,

31,

/*date fields are valid*/

/*restrict date/tine to range used by */
/* General Controls control panel*/
/*if toggling hour up/down, restrict */
/* to 12-hour range*/

/*modi fier for TogChar12HourBit to */
/* accept hours 0..11 only*/

/*if toggling hour by char, accept */
/* hours 1..12 only*/

/*restrict valid date/tine to range */
/* of Tinme gl obal*/

/*long date-time record field masks*/

er aMask =
year Mask =
nmont hivask =
dayMask =
hour Mask =
m nut eMask =
secondMask =
day Of WeekMask
dayOf Year Mask
weekOf Year Mask =
pmvask =

0x0001,
0x0002,
0x0004,
0x0008,
0x0010,
0x0020,
0x0040,

= 0x0080,
= 0x0100,

0x0200,
0x0400

/*era*/

/*year*/

[*day*/

/ *mont h*/

/ *hour */

/*m nut e*/

/ *second*/

/*day of the week*/
/*day of the year*/
/*week of the year*/
/*evening (P.M)*/

4-54 Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

enum

{

/*default value for togFlags field in the toggle paraneter block and */

/* default value for the flags paraneter passed to the Verify function*/

dat eSt dMvask = 0x007F, /*default value for checking era */
/* through second fields*/
1
Data Types
struct DateTi meRec /*date-time record*/
{
short year; /*year*/
short nmont h; / *nont h*/
short day; /*day of the nonth*/
short hour ; / *hour */
short m nut e; /*m nut e*/
short second; [*second*/
short dayOf Week; /*day of the week*/
1
t ypedef struct DateTi meRec Dat eTi neRec
enum /*long date field enuneration*/
{

eraField, yearField, nonthField, dayField, hourField, mnuteField,
secondFi el d, dayOf WeekFi el d, dayOf Year Fi el d, weekOf Year Fi el d, pnField,
reslField, res2Field, res3Field

1
t ypedef unsi gned char LongDat eFi el d;
t ypedef conp LongDat eTi ne; /*date and tine in 64-bit SANE conp fornat*/
uni on LongDat eCvt /*1 ong date-time conversion record*/
{
conp C; /*copy field into a LongDateTi me vari abl e*/
struct
{
long | High; / *hi gh-order 32 bits*/
long | Low, /*1 oworder 32 bits*/
} hi;
1

t ypedef uni on LongDat eCvt LongDat eCvt;

Summary of the Date, Time, and Measurement Utilities

4-55

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

uni on LongDat eRec

{

struct

{
short
short
short
short
short
short
short
short
short
short
short
short
short
short

}old;

short i

struct

{

short

Dat eTi nreRec ol dDat e;

} od;
s

era;
year;

nont h;

day;

hour ;

nm nut e;
second;
dayOf eek;
dayf Year ;
weekf Year ;
pm

resil;

res2;

res3;

st[14];

eraAl t;

/*long date-time record*/

/[*era*/

[*year*/

[*mont h*/

/*day of the nonth*/
[*hour */

/*m nut e*/

/ *second*/

/*day of the week*/
/*day of the year*/
/ *week of the year*/
/*hal f of day--0 for
/*reserved*/
/*reserved*/
/*reserved*/

norning, 1 for evening*/

/*index by LongDat eFi el d*/

/| *era*/
/*date-tine record*/

t ypedef uni on LongDateRec LongDat eRec

struct Toggl ePB

{
| ong
ResType
ResType
| ong

b

t ogFl ags;
anChars;
prmChars;
reserved[4];

/*toggl e paraneter bl ock*/
[*flags*/

[*from'itl Q'
/[*from'itl Q'
/*reserved*/

resource, but
resource, but

made uppercase*/
made uppercase*/

t ypedef struct Toggl ePB Toggl ePB

t ypedef short Toggl eResults;

t ypedef char

struct

{

Fract

4-56

Dat eDel t a;

Machi neLocat i on

| atitude;

/*Toggl eDate function return type*/
/*Toggl eDate function delta field type*/

/ *geogr aphi c | ocation record*/

/*l atitude*/

Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Fract | ongi t ude; /*1 ongi tude*/
uni on
{
char dlsDelta; /*dayl i ght saving tinme*/
long gntDelta; /*Geenwi ch nmean tinme*/
} gnt Fl ags;
1
typedef struct Machi neLocati on Machi neLocati on
struct Unsi gnedW de /*M croseconds procedure return type*/
{
unsi gned | ong hi ; /*hi gh-order 32 bits*/
unsi gned | ong | 0; / *hi gh-order 32 bits*/
b

typedef struct Unsi gnedW de Unsi gnedW de;

Routines

Getting the Current Date and Time

pascal OSErr ReadDateTi ne (unsigned long *tine);
pascal void CGetDateTi ne (unsi gned | ong *secs);
pascal void GetTine (Dat eTi neRec *d);

Setting the Current Date and Time

pascal OSErr SetDateTine (unsigned long tine);
pascal void SetTine (const DateTi mreRec *d);

Converting Between Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}
pascal void SecondsToDate (unsi gned | ong secs, DateTinmeRec *d);

pascal void DateToSeconds (const DateTi meRec *d, unsigned |ong *secs);

Converting Between Long Date-Time Formats
{each procedure has two spellings, see Table 4-4 for the alternate spelling}
pascal void LongSecondsToDat e

(LongDat eTi ne *| Secs, LongDateRec *| Date);

pascal void LongDat eToSeconds
(const LongDat eRec *| Date, LongDateTine *| Secs);

Summary of the Date, Time, and Measurement Utilities 4-57

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Modifying and Verifying Long Date-Time Records

pascal Toggl eResults Toggl eDat e
(LongDat eTi ne *| Secs, LongDateField field,
DateDel ta delta, short ch,
const Toggl ePB *parans);

pascal short ValidDate (const LongDat eRec vDate, |ong flags,
LongDat eTi me *newSecs) ;

Reading and Writing Location Data

pascal void ReadLocation (Machi neLocation *loc);
pascal void WitelLocation (Machi neLocation *loc);

Determining the Measurement System

{this functiosn has two spellings, see Table 4-4 for the alternate spelling}
pascal Bool ean IsMetric (void);

Measuring Time

pascal void M croseconds (Unsi gnedWde *m croTi ckCount);

4-58 Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Assembly-Language Summary

Data Structures

Date-Time Record
0 dt Year

2 dt Mont h

4 dt Day

6 dt Hour

8 dt M nute

10 dt Second

12 dt DayOf Week

Long Date Field Enumeration
eraField
yearField
nmont hFi el d
dayFiel d
hour Fi el d

m nut eFi el d
secondFi el d
dayOf WeekFi el d
dayOf Year Fi el d
weekOf Year Fi el d
pnFiel d
resiField
res?2Field
res3Field

O 0 NI O G = W N —»m O

et
W N = O

Long Date-Time Value
0 hi ghLong
4 | owLong

Summary of the Date, Time, and Measurement Utilities

word
word
word
word
word
word

word

byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

long
long

year
month

day of the month
hour

minute

second

day of the week

era
year

month

day of the month
hour

minute

second

day of the week
day of the year
week of the year
pm

reserved
reserved

reserved

high-order 32 bits
low-order 32 bits

4-59

SanInN WaWaINSea pue ‘awl] ‘areq -

CHAPTER 4

Date, Time, and Measurement Utilities

Long Date-Time Record

0 era word era

2 year word year

4 nmont h word month

6 day word day of the month
8 hour word hour

10 m nut e word minute

12 second word second

14 dayOf Week word day of the week
16 dayf Year word day of the year
18 weekOf Year word week of the year
20 pm word half of day, morning or evening
22 | dReser ved 6 bytes reserved

Geographic Location Record

0 | atitude long latitude

4 | ongi t ude long longitude

8 dl sDel ta byte daylight savings time

9 gntDelta 3 bytes Greenwich mean time

Toggle Parameter Block

0 t ogFl ags long flags

2 anChar s word ResType from ' i t| 0' made uppercase
4 pnChar s word ResType from' i t| 0' made uppercase
6 reserved word reserved

Unsigned Wide Record

0 hi long high-order 32 bits

4 lo long low-order 32 bits

Global Variables

Ti me The number of seconds since midnight, January 1, 1904

4-60 Summary of the Date, Time, and Measurement Utilities

CHAPTER 4

Date, Time, and Measurement Utilities

Result Codes

toggl eErr5 9 Reserved

t oggl eErr4 8 Reserved

t oggl eErr3 7 Reserved

t oggl eQut O Range 7 Out of range (synonym for t oggl eErr 3)
t oggl eBadNum 6 Tried to use character as number
t oggl eUnknown 5 Unknown error

t oggl eBadChar 4 Invalid character

t oggl eBadDel t a 3 Invalid delta value

t oggl eBadFi el d 2 Invalid field number

t oggl eX 1 No error

t oggl eUndefi ned 0 Undefined error

noErr 0 No error

cl KRAErr -85 Unable to read clock

cl kW Err -86 Time written did not verify

Summary of the Date, Time, and Measurement Utilities 4-61

SanInN WaWaINSea pue ‘awl] ‘areq -

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Gestalt Manager TOC
	 Gestalt Manager
	 System Error Handler TOC
	 System Error Handler
	 Mathematical and Logical Utilities TOC
	 Mathematical and Logical Utilities
	 Date, Time, and Measurement Utilities TOC
	Date, Time, and Measurement Utilities
	About the Date, Time, and Measurement Utilities
	Date and Time
	Geographic Location and Time Zone
	System of Measurement
	Time Measurement

	Using the Date, Time, and Measurement Utilities
	Getting the Current Date and Time
	Setting the Current Date and Time
	Converting Date-Time Formats
	Calculating Dates
	Working With Different Calendar Systems
	Handling Geographic Location and Time-Zone Data
	Determining the Measurement System
	Determining the Number of Elapsed Microseconds

	Date, Time, and Measurement Utilities Reference
	Data Structures
	The Date-Time Record
	Long Date-Time Value and Long Date-Time Conversion...
	The Long Date-Time Record
	The Geographic Location Record
	The Toggle Parameter Block
	The Unsigned Wide Record

	Routines
	Getting the Current Date and Time
	Setting the Current Date and Time
	Converting Between Date-Time Formats
	Converting Between Long Date-Time Format
	Modifying and Verifying Long Date-Time Records
	Reading and Writing Location Data
	Determining the Measurement System
	Measuring Time

	Summary of the Date, Time, and Measurement Utiliti...
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	Result Codes

	 Control Panels Extensions TOC
	 Control Panels Extensions
	 Queue Utilities TOC
	 Queue Utilities
	 Parameter RAM Utilities TOC
	 Parameter RAM Utilities
	 Trap Manager TOC
	 Trap Manager
	 Start Manager TOC
	 Start Manager
	 Package Manager TOC
	 Package Manager
	 Glossary
	 Index
	 Colophon

