

C H A P T E R 4

4

D
ate, T

im
e, and M

easurem
ent U

tilities

Date, Time, and Measurement Utilities 4

This chapter describes a set of utility routines that you can use to operate on dates and
times. You can use these routines to get and change information about the current date,
time, geographic location, time zone, and units of measurement.

The routines described in this chapter return this information in a format that is best
suited to the current script. As a result, you can facilitate localization of your application
by using these date, time, and measurement utilities.

To understand the material in this chapter, you need to be familiar with the international
resources, especially the numeric-format and long-date-format resources, and the Script
Manager. These topics are described in Inside Macintosh: Text. In addition, the chapter
“Text Utilities” in Inside Macintosh: Text describes how to convert date and time
information into strings of text.

Many of the Date, Time, and Measurement Utilities were previously associated with
other managers in the Macintosh system software, and several of these routines have
been renamed. Table 4-4 on page 4-33 shows the original names and locations of the
modified Date, Time, and Measurement Utilities routines.

The next section provides an introduction to the Date, Time, and Measurement Utilities.

About the Date, Time, and Measurement Utilities 4

You can use the Date, Time, and Measurement Utilities to manipulate the date-time
information and geographic location data used by a Macintosh computer. A Macintosh
computer contains a battery-operated clock chip that maintains

■ the current date-time information

■ the geographic location and related time-zone information

The date-time information is stored in a 4-byte value located on the clock chip.The
geographic location and related time-zone information is stored in extended parameter
RAM. For information on extended parameter RAM, see the chapter “Parameter RAM
Utilities” in this book.

You can use the routines provided by the Date, Time, and Measurement Utilities to
manipulate this information. Specifically, the Date, Time, and Measurement Utilities
provide routines that you can use to

■ get the current date and time

■ set the current date and time, if necessary

■ convert between internal date-time structures

■ get and set the geographic location and time-zone information

■ determine the current measurement system

■ determine the number of elapsed microseconds since system startup

The following sections give an overview of these utilities.
About the Date, Time, and Measurement Utilities 4-3

C H A P T E R 4

Date, Time, and Measurement Utilities

Date and Time 4
A Macintosh computer contains a battery-operated clock chip that maintains the current
date-time information. This date-time information is expressed, using 4 bytes, as the
number of seconds elapsed since midnight, January 1, 1904. At system startup the
date-time information is copied into low memory and is accessible through the system
global variable Time. System software updates the value of the global variable Time
each second. Doing this is faster than manipulating the clock chip directly.

The Date, Time, and Measurement Utilities provide four data structures that you can use
to access date-time information. You can access date-time information through

■ a standard date-time value that consists of a 32-bit long integer indicating the total
number of seconds elapsed since midnight, January 1, 1904

■ a date-time record that contains fields to indicate the year, month, day, hour, minute,
second, and day of the week

■ a long date-time record that extends the date-time record format by adding fields
for era, day of the year, week of the year, and morning/evening designations (for
example, A.M. and P.M.)

■ a long date-time value that consists of a 64-bit integer, in SANE comp (computational)
format, which also maintains the total number of seconds relative to midnight on
January 1, 1904

To access date-time information as a date and time, you can use a date-time record or a
long date-time record. A date-time record is defined by a data structure of type
DateTimeRec

TYPE DateTimeRec =

RECORD

year: Integer; {year, ranging from 1904 to 2040}

month: Integer; {month, 1 = January and 12 = December}

day: Integer; {day, from 1 to 31}

hour: Integer; {hour, from 0 to 23}

minute: Integer; {minute, from 0 to 59}

second: Integer; {second, from 0 to 59}

dayOfWeek: Integer; {day of the week, 1 = Sunday, }

{ 7 = Saturday}

END;

The year field contains the year of the date, ranging from 1904 to 2040. The month
field contains the month of the year, where a value of 1 equals January and 12 equals
December. The day field contains the number of the day, ranging from day 1 to day 31.
The hour field contains the hour, where the value of 0 equals midnight and 23 equals
11 P.M. The minute field contains the number of minutes, ranging from 0 to 59 minutes.
The second field contains the number of seconds, ranging from 0 to 59 seconds. The
dayOfWeek field specifies the name of the day; a value of 1 equals Sunday and a value
of 7 equals Saturday. For additional information about the fields in a date-time record,
see “The Date-Time Record” beginning on page 4-23.
4-4 About the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4

D
ate, T

im
e, and M

easurem
ent U

tilities

Note
The date-time record can be used to hold date and time values only for a
Gregorian calendar. The long date-time record, described next, can be
used for a Gregorian calendar as well as other calendar systems. ◆

Because the values in a date-time record are simply a translation of the long integer
containing the number of seconds since midnight, January 1, 1904, the data structure
suffers the same limitation as the long integer representation: after the long integer has
reached its maximum value of $FFFFFFFF, it resets to 0. Therefore, the date-time record
can track dates and times only between midnight on January 1, 1904 and 6:28:15 A.M. on
February 6, 2040.

For some applications, this range might be inadequate. For example, a hotel
management application might need to let managers book reservations for customers
who think ahead to 2050, or a history multimedia application might need to track dates
in the first century B.C. If your application needs to track dates and times beyond the
range supported by the date-time record, you must use a long date-time record. A long
date-time record is defined by a data structure of type LongDateRec

TYPE LongDateRec =

RECORD

CASE Integer OF

0:

(era: Integer; {era}

year: Integer; {year, from 30081 B.C. to 29940 A.D}

month: Integer; {month, 1 = January and }

{ 12 = December}

day: Integer; {day, from 1 to 31}

hour: Integer; {hour, from 0 to 23}

minute: Integer; {minute, from 0 to 59}

second: Integer; {second, from 0 to 59}

dayOfWeek: Integer; {day of the week, 1= Sunday, }

{ 7 = Saturday}

dayOfYear: Integer; {day of the year, 1 to 365}

weekOfYear: Integer; {week of the year, 1 to 52}

pm: Integer; {which half of day--0 for }

{ morning, 1 for evening}

res1: Integer; {reserved}

res2: Integer; {reserved}

res3: Integer); {reserved}

1:

{index by LongDateField}

(list: ARRAY [0..13] OF Integer);

2:

(eraAlt: Integer; {era}
About the Date, Time, and Measurement Utilities 4-5

C H A P T E R 4

Date, Time, and Measurement Utilities

{date-time record}

oldDate: DateTimeRec);

END;

You can use a long date-time record for three purposes: to access a date and time, to
specify which of the fields in a long date-time record to verify, and to convert a date
and time represented by a date-time record into a date and time represented by a long
date-time record.

IMPORTANT

The long date-time record covers a much longer time span (30,000 B.C. to
30,000 A.D.) than the date-time record. In addition, the long date-time
record allows conversions to different calendar systems, such as a lunar
calendar. ▲

A long date time-record includes all of the fields available in a date-time record
in addition to fields that describe the era, day of the year, week of the year, and
morning /evening designations (for example, A.M. and P.M.). The era field contains the
era: a value of 0 represents A.D., and –1 represents B.C. The dayOfYear field contains a
number that represents a day of a year. For example, the value 300 equals the 300th day
of a year. The weekOfYear field contains a week number. The pm field contains the
morning or evening half of the 24-hour day cycle, where a value of 0 represents
the morning (for example, A.M.) and 1 represents the evening (for example, P.M.).

The list field contains an array of values that indicate which of the fields in a long
date-time record need to be verified.

The eraAlt field, which indicates the era, and the oldDate field, which contains
a date-time record, are used only for conversion from a date-time record to a long
date-time record. For additional information about the fields in the long date-time
record, see “The Long Date-Time Record” beginning on page 4-26.

Note that if you specify, in either record, a value in the month, day, hour, minute,
or second field that exceeds the maximum value allowed for that field (for example,
a value larger than 23 for the hour field), the result is a wraparound to a future date
and time when you modify the date-time format. Suppose you set the year field in a
date-time record to a value greater than 2040, for example 2045. When you modify the
date-time format, you get a value of 1909, because the value 2045 caused a wraparound
to 1904 plus 5, the number of years over 2040. See “Calculating Dates” beginning on
page 4-14 to see how you can use a wraparound to calculate and retrieve information
about a specific date.

Note
To present a date and time value as a date and time text string, you need
to use the Text Utilities routines. For a complete description of these
routines, see Inside Macintosh: Text. ◆

A user can set the current date-time information by using the General Controls control
panel, the Date & Time control panel, or the Alarm Clock. After the user sets the new
4-6 About the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4

D
ate, T

im
e, and M

easurem
ent U

tilities

date and time, this new date and time is written to the clock chip, and the global variable
Time is updated to reflect the new date and time. Figure 4-1 illustrates how a user might
change the date, using the Date & Time control panel.

Figure 4-1 The Date & Time control panel

Geographic Location and Time Zone 4
Geographic location and related time-zone information are stored in the Macintosh
parameter RAM (extended parameter RAM). System software provides routines that
allow you to read this information and, if necessary, make changes to it and then store
the new settings in the parameter RAM (extended parameter RAM).

You can read and store values for

■ latitude

■ longitude

■ daylight saving time (DST)

■ Greenwich mean time (GMT)

The Map control panel allows the user to get geographic location and time-zone
information. Figure 4-2 shows the Map control panel.

Figure 4-2 The Map control panel
About the Date, Time, and Measurement Utilities 4-7

C H A P T E R 4

Date, Time, and Measurement Utilities

The Map control panel specifies latitude and longitude, computation of Greenwich mean
time for international time specification (shown as the Time Zone information), and
computation of the distance and time difference between the current location (in this
case, the location of the user’s computer is Cupertino, California) and an arbitrary city
(in this case, Copenhagen, Denmark).

See “Handling Geographic Location and Time-Zone Data” beginning on page 4-18, to
see how you can use Date, Time, and Measurement Utilities routines to work with the
geographic location and time-zone information.

System of Measurement 4
The Date, Time, and Measurement Utilities provide a routine (the IsMetric function)
that you can use to determine the type of measurement used by the current script
system. The system software supports two types of measurement systems:

■ the International System of Units (also called the metric system)—for example
centimeters, kilometers, milligrams, degrees Celsius, and so on.

■ the English system of measurement (also called the British or British imperial
system)—for example, inches, miles, ounces, degrees Fahrenheit, and so on.

The measurement information is stored in the numeric-format resource (resource
type 'itl0') of a script system. The IsMetric function determines whether the
current script system uses the International System of Units or the English system of
measurement by examining the 'itl0' resource. Figure 4-3 depicts the window ResEdit
displays for a numeric-format resource. Note that in the bottom of the figure the metric
box is unchecked, indicating that the script system associated with this 'itl0' resource
uses the English system of measurement.

Figure 4-3 The numeric-format resource (resource type 'it10')
4-8 About the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
Time Measurement 4
The Date, Time, and Measurement Utilities provide a routine (the Microseconds
procedure) that you can use to measure the number of microseconds that have
elapsed since system startup. The Microseconds procedure is not effected by any
user-specified changes to the date and time information, that is, a user can modify
the current date-time information without effecting the value returned by the
Microseconds procedure.

The number of microseconds elapsed is returned in a 64-bit unsigned integer, specified
by the unsigned wide record. An unsigned wide record is defined by a data structure of
type UnsignedWide.

TYPE UnsignedWide =

PACKED RECORD

hi: LongInt; {high-order 32 bits}

lo: LongInt; {low-order 32 bits}

END;

Using the Date, Time, and Measurement Utilities 4

This section describes how to

■ get the current date and time

■ set the current date and time

■ calculate days and dates mathematically

■ convert between date-time formats

■ convert to different calendar systems

■ read and store geographic location and time-zone data

■ determine which measurement system to use

■ determine the number of elapsed microseconds

Getting the Current Date and Time 4
The Date, Time, and Measurement Utilities provide

■ a function—ReadDateTime—that system software uses at system startup time to
copy the current date-time information from the clock chip into low memory. This
low-memory copy of the current date-time is accessible through the global variable
Time. You application should never need to use this function.

■ two procedures —GetDateTime and GetTime—that allow you to access the current
date-time information stored in the global variable Time.
Using the Date, Time, and Measurement Utilities 4-9

C H A P T E R 4

Date, Time, and Measurement Utilities
You can access the date-time information through a date-time record, representing
the date and time, or you can access the date-time information through a standard
date-time value, a 32-bit integer representing the number of seconds since midnight,
January 1, 1904.

To obtain the current date-time information, you can use the GetDateTime and
GetTime procedures. The GetDateTime procedure requires that you pass it a standard
date-time value as a parameter. Listing 4-1 shows how you can get the current date-time
information, expressed as a number of seconds. The application-defined procedure
MyCurrentDateTimeInt returns in the long integer the number of seconds elapsed
since midnight, January 1, 1904.

Listing 4-1 Getting the current date and time with the GetDateTime procedure

PROCEDURE MyCurrentDateTimeInt (VAR myStandardDateTime: LongInt);

BEGIN

GetDateTime(myStandardDateTime);

END;

The GetTime procedure requires that you pass it a date-time record as a parameter, and
it fills in the fields of this record appropriately. Listing 4-2 shows how you can get the
current date-time information, expressed as a date and time. The application-defined
procedure MyCurrentDateTimeRec returns in the fields of the date-time record the
current date and time.

Listing 4-2 Getting the current date and time with the GetTime procedure

PROCEDURE MyCurrentDateTimeRec (VAR myDateTime: DateTimeRec);

BEGIN

GetTime(myDateTime);

END;

If you need to access the date-time information through a long date-time value or a long
date-time record, see “Converting Date-Time Formats” beginning on page 4-12 for more
information about converting date-time formats.

Setting the Current Date and Time 4
Your application can change the current date-time information stored in both the system
global variable Time and in the clock chip by calling either the SetDateTime function
or the SetTime procedure. The SetDateTime function requires a 32-bit integer as a
parameter. The SetTime procedure requires a date-time record as a parameter.
4-10 Using the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
Note
If you are using formats other than a date-time value or a date-time
record to access date-time information, you must first convert these
formats into a standard date-time value or a date-time record before
you can write the new date-time information to the clock chip. See
“Converting Date-Time Formats” beginning on page 4-12 for more
information about converting date-time formats. ◆

Listing 4-3 shows an application-defined function that uses the SetDateTime function
to change the current date and time to 5:50 A.M. on April 5, 1994.

Listing 4-3 Changing the current date and time with the SetDateTime function

FUNCTION MyChangeDateTimeInt: OSErr;

VAR

myDateTimeInt: LongInt;

myErr: OSErr;

BEGIN

myDateTimeInt := $A9C6AC88;

myErr := SetDateTime(myDateTimeInt);

END;

Listing 4-4 shows an application-defined procedure that uses the SetTime function to
change the current date and time to 5:50 A.M. on April 5, 1994.

Listing 4-4 Changing the current date and time with the SetTime function

PROCEDURE MyChangeDateTimeRec;

VAR

myDateTimeRec: DateTimeRec;

myErr: OSErr;

BEGIN

WITH myDateTimeRec DO

BEGIN

year := 1994;

month := 4;

day := 5;

hour := 5;

minute := 50;

second := 0;

dayOfWeek := 3;

END;

SetTime(myDateTimeRec);

END;
Using the Date, Time, and Measurement Utilities 4-11

C H A P T E R 4

Date, Time, and Measurement Utilities
IMPORTANT

Users can change the current date and time stored in both the system
global variable Time and in the clock chip by using the General Controls
control panel, Date & Time control panel, or the Alarm Clock desk
accessory. In general, your application should not directly change the
current date-time information. If your application does need to modify
the current date-time information, it should instruct the user how to
change the date and time. ▲

Converting Date-Time Formats 4
The Date, Time, and Measurement Utilities provide four routines—
the DateToSeconds, SecondsToDate, LongDateToSeconds, and
LongSecondsToDate procedures—that you can use to convert date-time
formats. You can convert a date and time to a number of seconds and a number
of seconds to a date and time.

Note that when you call one of these routines, system software uses
the DateToSeconds, SecondsToDate, LongDateToSeconds, and
LongSecondsToDate procedures provided by the current script system.

Note
The routines that convert between time formats assume that each day
contains 86,400 seconds. Occasionally (approximately once each two
years) astronomers add a second to either June 31 or December 31 to
compensate for imperfections in the earth’s rotation. If you need to
compute the exact number of seconds between two points in time, you
might need to take these occasional additions into account. The routines
that convert between formats are designed not to provide astronomical
accuracy, but merely to convert data between one data structure and
another. ◆

If you use a standard date-time value or a date-time record to access date-time
information, you can use the SecondsToDate procedure to convert a number of
seconds to a date and time, and the DateToSeconds procedure to convert a date
and time to a number of seconds. Listing 4-5 shows an application-defined procedure,
MyConvertSecondsAndDates, that uses the SecondsToDate and DateToSeconds
procedures to manipulate the date-time information. After calling the GetDateTime
procedure, MyConvertSecondsAndDates calls the SecondsToDate procedure to
convert the number of seconds (returned by the GetDateTime procedure) to a date and
time. The MyConvertSecondsAndDates procedure manipulates the year field in the
date-time record and then calls DateToSeconds to convert the date and time back into
a number of seconds. The SetDateTime procedure writes the new date-time
information to the clock chip.
4-12 Using the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
Listing 4-5 Manipulating date-time information

PROCEDURE MyConvertSecondsAndDates;

VAR

myDateTimeRec: DateRec;

mySeconds: DateTime;

myErr: OSErr;

BEGIN

GetDateTime(mySeconds);

SecondsToDate(mySeconds, myDateTimeRec);

WITH myDateTimeRec DO

year := year + 1;

DateToSeconds (myDateTimeRec, mySeconds);

myErr := SetDateTime(mySeconds);

END;

If you access date-time information through a long date-time value or a long date-time
record, you can use the LongSecondsToDate procedure to convert a number of
seconds to a date and time and use the LongDateToSeconds procedure to convert
a date and time to a number of seconds.

If the type of data structure that you are using to access date-time information is
insufficient, you can use a different date-time structure.

■ To access a number of seconds through a long date-time value instead of a standard
date-time value, set the lHigh field of a long date-time conversion record (described
on page 4-25) to 0 and the lLow field to the total number of seconds since midnight,
January 1, 1904. Then copy the value of the c field into a variable of type
LongDateTime.

■ To access a date and time through a long date-time record instead of a date-time
record, set the oldDate field of the LongDateRec to the date-time record, and set the
eraAlt field to 0, indicating that the date you have specified is A.D.

■ To access a number of seconds through a standard date-time value instead of a long
date-time value, truncate the long date-time value to just the low-order 32 bits. The
year of the date being converted must fall within 1904 to 2040 of the Gregorian
calendar.

This type of conversion is important when you work with a script system that uses a
calendar system other than the Gregorian. Because you cannot write a long date-time
value to the clock chip, you must first convert the long date-time value (if possible) to
a standard date-time value. See “Working With Different Calendar Systems”
beginning on page 4-16 for more information about calendar systems.

■ To access a date and time through a date-time record instead of a long date-time
record, truncate the long date-time record so just the year through dayOfWeek fields
are left. Once again, the year of the date being converted must fall within 1904 to 2040
of the Gregorian calendar.
Using the Date, Time, and Measurement Utilities 4-13

C H A P T E R 4

Date, Time, and Measurement Utilities
■ To access date-time information through a long date-time value instead of a date-time
record, use the DateToSeconds procedure to convert the date and time to a number
of seconds. Then set the lHigh field of a long date-time conversion record (described
on page 4-25) to 0 and the lLow field to the total number of seconds since midnight,
January 1, 1904.

■ To access date-time information through a long date-time record (described on
page 4-26) instead of a standard date-time value, use the SecondsToDate procedure
to translate the number of seconds to a date and time. Then set the oldDate field of
the long date-time record to the date-time record, and set the eraAlt field to 0.

■ To access date-time information through a date-time value instead of long date-time
record, use the LongDateToSeconds procedure to translate the date and time to a
number of seconds. Then truncate the long date-time value (returned by the
LongDateToSeconds procedure) to just the low-order 32 bits. The year of the date
being converted must fall within 1904 to 2040 in the Gregorian calendar.

The Gregorian calendar is the default for converting to and from the long date-time
forms. The current range allowed in conversion is roughly 30,000 B.C. to 30,000 A.D.

To present a date and time value as a date and time text string, you need to use Text
Utilities routines, such as the DateString, TimeString, StringToDate,
StringToTime, LongDateString, and LongTimeString routines. (Note that the
date-string conversion routines do not append strings for A.D. or B.C.) For a complete
description of these routines, see Inside Macintosh: Text.

Calculating Dates 4
In the date-time record and long date-time record, any value in the month, day, hour,
minute, or second field that exceeds the maximum value allowed for that field, will
cause a wraparound to a future date and time when you modify the date-time format.

■ In the month field, values greater than 12 cause a wraparound to a future year and
month.

■ In the day field, values greater than the number of days in a given month cause a
wraparound to a future month and day.

■ In the hour field, values greater than 23 cause a wraparound to a future day and hour.

■ In the minute field, values greater than 59 cause a wraparound to a future hour and
minute.

■ In the seconds field, values greater than 59 cause a wraparound to a future minute
and seconds.

You can use these wraparound facts to calculate and retrieve information about a specific
date. For example, you can use a date-time record and the DateToSeconds and
SecondsToDate procedures to calculate the 300th day of 1994. Set the month field of
the date-time record to 1 and the year field to 1994. To find the 300th day of 1994, set the
day field of the date-time record to 300. Initialize the rest of the fields in the record to
values that do not exceed the maximum value allowed for that field. (Refer to the
description of the date-time record on page 4-23 for a complete list of possible values).
4-14 Using the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
To force a wrap-around, first convert the date and time (in this example, January 1, 1994)
to the number of seconds elapsed since midnight, January 1, 1904 (by calling the
DateToSeconds procedure). Once you have converted the date and time to a number
of seconds, you convert the number of seconds back to a date and time (by calling the
SecondsToDate procedure). The fields in the date-time record now contain the values
that represent the 300th day of 1994. Listing 4-5 shows an application-defined procedure
that calculates the 300th day of the Gregorian calendar year using a date-time record.

Listing 4-6 Calculating the 300th day of the year

PROCEDURE MyCalculate300Day;

VAR

myDateTimeRec: DateTimeRec;

mySeconds: LongInt;

BEGIN

WITH myDateTimeRec DO

BEGIN

year := 1994;

month := 1;

day := 300;

hour := 0;

minute := 0;

second := 0;

dayOfWeek := 1;

END;

DateToSeconds (myDateTimeRec, mySeconds);

SecondsToDate (mySeconds, myDateTimeRec);

END;

The DateToSeconds procedure converts the date and time to the number of seconds
elapsed since midnight, January 1, 1904, and the SecondsToDate procedure converts
the number of seconds back to a date and time. After the conversions, the values in the
year, month, day, and dayOfWeek fields of the myDateTimeRec record represent the
year, month, day of the month, and day of the week for the 300th day of 1994. If the
values in the hour, minute, and second fields do not exceed the maximum value
allowed for each field, the values remain the same after the conversions (in this example,
the time is exactly 12:00 A.M.).

Similarly, you can use a long date-time record and the LongDateToSeconds and
LongSecondsToDate procedures to compute the day of the week corresponding to a
given date. Listing 4-7 shows an application-defined procedure that computes and
retrieves the name of the day for July 4, 1776. Note that because the year is prior to 1904,
it is necessary to use a long date-time record.
Using the Date, Time, and Measurement Utilities 4-15

C H A P T E R 4

Date, Time, and Measurement Utilities
Listing 4-7 Computing the day of the week

PROCEDURE DoDayCalc;

VAR

myLongDateRec: LongDateRec;

myLongSeconds: LongDateTime;

myDayOfWeek: Integer;

BEGIN

WITH myLongDateRec DO

BEGIN

era := 0; /*initialize era field*/

year := 1776;

month := 7;

day := 4;

hour := 0; /*initialize hour field*/

minute := 0; /*initialize minute field*/

second := 0; /*initialize second field*/

dayOfWeek := 1; /*initialize dayOfWeek field*/

dayOfYear := 1; /*initialize dayOfYear field*/

weekOfYear := 1; /*initialize weekOfYear field*/

pm := 1; /*initialize pm field*/

END;

LongDateToSeconds (myLongDateRec, myLongSeconds);

LongSecondsToDate (myLongSeconds, myLongDateRec);

myDayOfWeek := myLongDateRec.dayOfWeek;

END;

The LongDateToSeconds procedure converts the date and time to the number of
seconds, and the LongSecondsToDate procedure converts the number of seconds back
to a date and time. After the conversions, the value in the dayOfWeek field of the
myLongDateRec record represent the day of the week corresponding to July 4, 1776. If
the values in the hour, minute, and second fields do not exceed the maximum value
allowed for each field, the values remain the same after the conversions (in this example,
the time is exactly 12:00 A.M.). The values in the dayOfYear, weekOfYear, and pm fields
correspond to the date July 4, 1776 and the time 12:00 A.M.

Working With Different Calendar Systems 4
The additional fields and wider ranges allowed by the long date-time record can help
you to do calculations and conversions for different calendar systems. For example, the
date January 1, 1993 in the Gregorian calendar year converts to 7 Rajab 1413 in the
Arabic Civil Lunar Calendar (CLC) and 4 Tevet 5753 in the Jewish calendar; the years
1413 and 5753 are outside of the year field’s range in the date-time record.
4-16 Using the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
Note
Depending on the country, the change from the Julian calendar to the
Gregorian calendar occurred in different years. In western European
countries, the change occurred in 1582; in Russia, the calendar changed
in 1918. In these countries, dates before the calendar change should use
the Julian calendar for conversion. (The Julian calendar differs from the
Gregorian calendar by three days every four centuries.) ◆

In addition, the beginning of the year for one calendar system falls on different dates in
other calendar systems. Table 4-1 shows the equivalent dates for the first day of the
calendar year in the Gregorian, Arabic CLC, and Jewish calendars.

Converting from one calendar system to another produces different values in the
dayOfYear and weekOfYear fields of a long date-time record. For example, assuming
all the data for the date 1 Muharram 1414 is correctly put into a long date-time record,
the dayOfYear field value is 1, and the weekOfYear value is also 1. Converting this
date to the Gregorian calendar results in June 20, 1993. The dayOfYear field value is
then 171, and the weekOfYear value is 26. Table 4-2 shows these values.

Note
Language-specific information, such as the name of the day, name of
the month, and so on, are stored in the international resources. The
international resources are provided by a script system, and the
information in these resources varies according to the language
associated with the script system. ◆

Table 4-3 shows how some of the fields in the long date-time record are set to show the
first day of the year 1414 in the Arabic CLC and the equivalent dates in the Gregorian
and Jewish calendars.

Table 4-1 Equivalent dates in the Gregorian, Arabic CLC, and Jewish calendars

Gregorian calendar Arabic CLC Jewish calendar

January 1, 1993 7 Rajab 1413 4 Tevet 5753

June 20, 1993 1 Muharram 1414 1 Tammuz 5753

September 16, 1993 29 Rabi I 1414 1 Tishri 5754

Table 4-2 Values for the dayOfYear and weekOfYear fields for the date 1 Muharram 1414
and equivalent values in the Gregorian calendar

LongDateRec field Arabic CLC Gregorian calendar

dayOfYear 1 171

weekOfYear 1 26
Using the Date, Time, and Measurement Utilities 4-17

C H A P T E R 4

Date, Time, and Measurement Utilities
Note
The Arabic script system supports two lunar calendars: the astronomical
lunar calendar (ALC) and the civil lunar calendar (CLC). The Macintosh
user may choose either of the Arabic calendars or the Gregorian
calendar by clicking buttons in the Arabic Calendar control panel.

The Hebrew script system supports the Jewish calendar besides the
Gregorian calendar.

For more information on the different calendar systems supported
by localized versions of the Macintosh system software, see
Guide to Macintosh Software Localization. ◆

For calendars that have more than seven day names and 12 month names (for example,
the Jewish calendar sometimes has 13 months), you use the 'itl1' resource, defined by
the Itl1ExtRec data type. To get more information on the format of the 'itl1'
resource, see the appendix “International Resources” in Inside Macintosh: Text.

Handling Geographic Location and Time-Zone Data 4

Geographic locations and time zones can affect date and time information. For example,
time-zone information can be used to derive the Greenwich mean time (GMT) at which
a document or mail message was created. With this information, when the document is
received by an application or user in a different time zone, the creation date and time are
correct. Otherwise, documents can appear to be created after they are read (for example,
a user creates a message in Tokyo on Tuesday and sends it to San Francisco, where it is
received and read on Monday). Geographic location information can also be used by
applications that require it.

The geographic location and time-zone information for a particular Macintosh
computers are stored in parameter RAM. You can work with this information through
the ReadLocation and WriteLocation procedures. These procedures use the

Table 4-3 Comparison of settings in fields of the long date-time record for Arabic CLC,
Gregorian, and Jewish calendars

Field of a long
date-time record Arabic CLC calendar Gregorian calendar Jewish calendar

era 0 0 0

year 1413 1993 5753

month 1 6

day 1 21

…

dayOfWeek 4 2 3

dayOfYear 1 172

weekOfYear 1 26
4-18 Using the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
geographic location record (of date type MachineLocation) to help you read and store
latitude, longitude, daylight saving time (DST), and GMT values.

TYPE MachineLocation = {geographic location record}

RECORD

latitude: Fract; {latitude}

longitude: Fract; {longitude}

CASE Integer OF

0:

(dlsDelta: SignedByte); {daylight saving time}

1:

(gmtDelta: LongInt); {Greenwich mean time}

END;

The daylight savings time value is a signed byte value that you can use to specify the
offset for the hour field—whether to add 1 hour, subtract 1 hour, or make no change
at all.

The Greenwich mean time value is in seconds east of GMT. For example, San Francisco
is at –28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT.

If the geographic location record has never been set, all fields contain 0.

Generally, latitude and longitude are measured in degrees. These values also can be
thought of as fractions of a great circle.

Latitude and longitude information is stored in the geographic location record as values
of type Fract. These values give accuracy to within 1 foot, which should be sufficient
for most purposes. For example, the Fract value 1.0 equals 90 degrees; –1.0 equals
–90 degrees; and –2.0 equals –180 degrees.

To store latitude and longitude values, you need to convert them first to the Fixed data
type, then to the Fract data type. You can use the Operating System Utilities routines
Long2Fix and Fix2Fract to accomplish this task. Listing 4-8 is an application-defined
procedure that converts San Francisco’s latitude and longitude to Fract values, then
writes the Fract values to parameter RAM using the WriteLocation procedure.

Listing 4-8 Converting latitude and longitude to Fract values

PROCEDURE MyConvertLatLong;

VAR

myLatitude, myLongitude: LongInt;

fixedLatitude, fixedLongitude: Fixed;

latFract, longFract: Fract;

myLocation: MachineLocation;

BEGIN

myLatitude:= 37.48; {degrees latitude}

myLongitude:= 122.24; {degrees longitude}
Using the Date, Time, and Measurement Utilities 4-19

C H A P T E R 4

Date, Time, and Measurement Utilities
{convert from long to fixed data type}

fixedLatitude:= Long2Fix(myLatitude);

fixedLongitude:= Long2Fix(myLongitude);

{convert from fixed to Fract data type}

latFract:= Fix2Frac(fixedLatitude);

longFract:= Fix2Frac(fixedLongitude);

{write latitude and logitude to myLocation}

myLocation.latitude:= latFract;

myLocation.longitude:= longFract;

{write latitude and longitude to parameter RAM}

WriteLocation(myLocation);

END;

To read the latitude and longitude values from parameter RAM, you use the
ReadLocation procedure. To convert these values to a degrees format, you need to
convert the Fract values first to the Fixed data type, then to the LongInt data type.
You can use the Mathematical and Logical Utilities routines Fract2Fix and Fix2Long
to accomplish this task. (For more information on the Fract data type and the
conversion routines Long2Fix, Fix2Fract, Fract2Fix, and Fix2Long, see the
chapter “Mathematical and Logical Utilities” in this book.)

The gmtDelta field of the geographic location record is a 3-byte value contained in a
long word, so you must take care to get and set it properly. Listing 4-9 shows an
application-defined function for obtaining the value of gmtDelta.

Listing 4-9 Getting gmtDelta

FUNCTION MyGetGmtDelta (myLocation: MachineLocation): LongInt;

VAR

internalGmtDelta: LongInt;

BEGIN

WITH myLocation DO

BEGIN

internalGmtDelta := BitAnd(gmtDelta, $00FFFFFF);

IF BitTst(internalGmtDelta, 23) THEN

{test sign extend bit}

internalGmtDelta := BitOr(internalGmtDelta, $FF000000);

MyGetGmtDelta := internalGmtDelta;

END;

END;
4-20 Using the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
When writing gmtDelta, you should preserve the value of dlsDelta. Listing 4-10
shows an application-defined procedure that writes gmtDelta while preserving the
value of dlsDelta.

Listing 4-10 Setting gmtDelta

PROCEDURE MySetGmtDelta (VAR myLocation: Location;

 myGmtDelta: LongInt);

VAR

tempSignedByte: SignedByte;

BEGIN

WITH myLocation DO

BEGIN

tempSignedByte := dlsDelta; {preserve dlsDelta}

gmtDelta := myGmtDelta; {write gmtDelta}

dlsDelta := tempSignedByte; {restore dlsDelta}

END;

END;

Note that you should mask off the top byte of the long word containing gmtDelta
because it is reserved.

Determining the Measurement System 4

To implement measuring devices in applications, such as rulers in a word processor
or in drawing applications, you need to determine which measurement system your
application should use. You can use the IsMetric function to determine if the
measurement system needs to be the metric system or the English system. The
IsMetric function reads the numeric-format resource (resource type 'itl0') of
the current script system to determine whether the user is using the metric system
or the English system.

Listing 4-11 shows an application-defined procedure that uses the result of the
IsMetric function to determine which application-defined ruler setup to use for a
document window.

Listing 4-11 Getting the current units of measurement

PROCEDURE DoRuler (window: WindowPtr);

VAR

myMeasure: BOOLEAN; {response returned by IsMetric}

BEGIN

myMeasure := IsMetric;

IF myMeasure = TRUE THEN {metric system is default}
Using the Date, Time, and Measurement Utilities 4-21

C H A P T E R 4

Date, Time, and Measurement Utilities
DoMetricRulerSetup {set up metric system ruler}

ELSE

DoEnglishRulerSetup; {set up English system ruler}

END;

If you want to use a measurement system different from that of the current script, you
need to override the value of the metricSys field in the current numeric-format
resource (resource type 'itl0'). You can do this by using your own version of the
numeric-format resource instead of the current script system’s default international
resources. See the chapter “Script Manager” in Inside Macintosh: Text for information on
how to replace a script system’s default international resources.

Determining the Number of Elapsed Microseconds 4

Your application can use the Microseconds procedure to obtain the number of
elapsed microseconds since system startup time. You can use the value returned by
the Microseconds procedure to time an event. For example, Listing 4-11 shows an
application-defined function MyEventTimer that computes and returns the time it takes
to execute an application-defined procedure DoMyEvent. The application-defined
function MyCalulateElapsedTime function uses the returned value of the
Microseconds procedure to compute the time it takes to execute the
DoMyEvent procedure.

Listing 4-12 Timing an event using the Microseconds procedure

FUNCTION MyEventTimer: UnsignedWide;

VAR

myStartTime:UnsignedWide;

myEndTime: UnsignedWide;

BEGIN

Microseconds(&myStartTime);

DoMyEvent;

Microseconds(&myEndTime);

MyEventTimer := MyComputeElapsedTime(&myStartTime, &myEndTime);

END;

Because there is no compiler support for 64-bit integers, you must write an
application-defined routine that calculates the elapsed time; you cannot obtain the
elapsed time by subtracting the value in the myStartTime parameter from the value in
the myEndTime parameter.
4-22 Using the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
Date, Time, and Measurement Utilities Reference 4

This section describes the data structures and routines that are specific to the Date,
Time, and Measurement Utilities. The section “Data Structures” shows the Pascal data
structures for the date-time record, long date-time record, standard date-time value, long
date-time value, and more. The section “Routines” describes the routines you can use to
read, write, and manipulate date-time information.

Data Structures 4
This section describes the data structures that you use to exchange information with the
Date, Time, and Measurement Utilities.

The Date-Time Record 4

The date-time record describes the date-time information as a date and time. The Date,
Time, and Measurement Utilities use a date-time record to read and write date-time
information to and from the clock chip. The DateTimeRec data type defines the
date-time record.

Note
The date-time record can be used to hold date and time values only for a
Gregorian calendar. The long date-time record (described on page 4-26)
can be used for a Gregorian calendar as well as other calendar
systems. ◆

TYPE DateTimeRec =

RECORD

year: Integer; {year, ranging from 1904 to 2040}

month: Integer; {month, 1= January and 12 = December}

day: Integer; {day of the month, from 1 to 31}

hour: Integer; {hour, from 0 to 23}

minute: Integer; {minute, from 0 to 59}

second: Integer; {second, from 0 to 59}

dayOfWeek: Integer; {day of the week, 1 = Sunday, }

{ 7 = Saturday}

END;

Field descriptions

year The year, ranging from 1904 to 2040. Note that to indicate the year
1984, this field would store the integer 1984, not just 84. This field
accepts input of 0 or negative values, but these values produce
unpredictable results in the year, month, and day fields when you
Date, Time, and Measurement Utilities Reference 4-23

C H A P T E R 4

Date, Time, and Measurement Utilities
use the SecondsToDate and DateToSeconds procedures. In
addition, using SecondsToDate and DateToSeconds with year
values greater than 2040 causes a wraparound to 1904 plus the
number of years over 2040. For example, setting the year to 2045
returns a value of 1909, and the other fields in this record return
unpredictable results.

month The month of the year, where 1 represents January, and 12
represents December. Values greater than 12 cause a wraparound to
a future year and month. This field accepts input of 0 or negative
values, but these values produce unpredictable results in the year,
month, and day fields when you use the SecondsToDate and
DateToSeconds procedures.

day The day of the month, ranging from 1 to 31. Values greater than the
number of days in a given month cause a wraparound to a future
month and day. This feature is useful for working with leap years.
For example, the 366th day of January in 1992 (1992 was a leap year)
evaluates as December 31, 1992, and the 367th day of that year
evaluates as January 1, 1993.
This field accepts 0 or negative values, but when you use the
SecondsToDate and DateToSeconds procedures, a value of 0 in
this field returns the last day of the previous month. For example, a
month value of 2 and a day value of 0 return 1 and 31, respectively.
Using SecondsToDate and DateToSeconds with a negative
number in this field subtracts that number of days from the last day
in the previous month. For example, a month value of 5 and a day
value of –1 return 4 for the month and 29 for the day; a month value
of 2 and a day value of –15 return 1 and 16, respectively.

hour The hour of the day, ranging from 0 to 23, where 0 represents
midnight and 23 represents 11:00 P.M. Values greater than 23 cause a
wraparound to a future day and hour. This field accepts input of
negative values, but these values produce unpredictable results in
the month, day, hour, and minute fields you use the
SecondsToDate and DateToSeconds procedures.

minute The minute of the hour, ranging from 0 to 59. Values greater than 59
cause a wraparound to a future hour and minute. When you use the
SecondsToDate and DateToSeconds procedures, a negative
value in this field has the effect of subtracting that number from the
beginning of the given hour. For example, an hour value of 1 and a
minute value of –10 return 0 hours and 50 minutes. However, if the
negative value causes the hour value to be less than 0, for example
hour = 0, minute = –61, unpredictable results occur.

second The second of the minute, ranging from 0 to 59. Values greater than
59 cause a wraparound to a future minute and second. When you
use the SecondsToDate and DateToSeconds procedures, a
negative value in this field has the effect of subtracting that number
from the beginning of the given minute. For example, a minute
value of 1 and a second value of –10 returns 0 minutes and 50
seconds. However, if the negative value causes the hour value to be
4-24 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
less than 0, for example hour = 0, minute = 0, and second = –61,
unpredictable results occur.

dayOfWeek The day of the week, where 1 indicates Sunday and 7 indicates
Saturday. This field accepts 0, negative values, or values greater
than 7. When you use the SecondsToDate and DateToSeconds
procedures, you get correct values because this field is
automatically calculated from the values in the year, month, and
day fields.

Long Date-Time Value and Long Date-Time Conversion Record 4

The long date-time value specifies the date and time as seconds relative to midnight,
January 1, 1904. But where the standard date-time value is an unsigned, 32-bit long
integer, the long date-time value is a signed, 64-bit integer in SANE comp format. This
format lets you use dates and times with a much longer span—roughly 500 billion years.
You can use this value to represent dates and times prior to midnight, January 1, 1904.
The LongDateTime data type defines the long date-time value.

TYPE LongDateTime = comp;

When storing a long date-time value in files, you can use a 5-byte or 6-byte format for a
range of roughly 35,000 years. You should sign extend this value to restore it to a comp
format.

The Date, Time, and Measurement Utilities provide the LongDateCvt record to help in
setting up LongDateTime values.

TYPE LongDateCvt =

RECORD

CASE Integer OF

0:

(c: comp); {number of seconds relative to }

{ midnight, January 1, 1904}

1:

(lHigh: LongInt; {high long integer}

 lLow: LongInt); {low long integer}

END;

Field descriptions

c The date and time, specified in seconds relative to midnight,
January 1, 1904, as a signed, 64-bit integer in SANE comp format.
The high-order bit of this field represents the sign of the 64-bit
integer. Negative values allow you to indicate dates and times prior
to midnight, January 1, 1904.

lHigh The high-order 32 bits when converting from a standard date-time
value. Set this field to 0.
Date, Time, and Measurement Utilities Reference 4-25

C H A P T E R 4

Date, Time, and Measurement Utilities
lLow The low-order 32 bits when converting from a standard date-time
value. Set this field to the standard date-time value representing the
total number of seconds since midnight, January 1, 1904.

The Long Date-Time Record 4

In addition to the date-time record, system software provides the long date-time record,
which extends the date-time record format by adding several more fields. This format
lets you use dates and times with a much longer span (30,000 B.C. to 30,000 A.D.). In
addition, the long date-time record allows conversions to different calendar systems,
such as a lunar calendar.

The LongDateRec data type defines the format of the long date-time record.

TYPE LongDateRec =

RECORD

CASE Integer OF

0:

(era: Integer; {era}

 year: Integer; {year, from 30,081 B.C. }

{ to 29,940 A.D.}

 month: Integer; {month}

 day: Integer; {day of the month}

 hour: Integer; {hour, from 0 to 23}

 minute: Integer; {minute, from 0 to 59}

 second: Integer; {second, from 0 to 59}

 dayOfWeek: Integer; {day of the week}

 dayOfYear: Integer; {day of the year}

 weekOfYear: Integer; {week of the year}

 pm: Integer; {morning/evening}

 res1: Integer; {reserved}

 res2: Integer; {reserved}

 res3: Integer); {reserved}

1:

{index by LongDateField}

(list: ARRAY[0..13] OF Integer);

2:

(eraAlt: Integer; {era}

oldDate: DateTimeRec); {date-time record}

END;

Field descriptions

era The era, where 0 represents A.D., and –1 represents B.C.

year The year, ranging from 30,081 B.C. to 29,940 A.D. Values outside this
range produce unpredictable results in all fields of the record. Note
that to indicate the year 1984, this field would store the integer 1984,
4-26 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
not just 84. This field accepts input of 0 or negative values, but these
values return the positive result of the value plus one for the year.
For example, a year value of 0 returns 1, and a year value of –1993
returns 1994. Other fields are unaffected.

month The month of the year, where 1 represents January, and 12
represents December. When you use the LongSecondsToDate and
LongDateToSeconds procedures, month values greater than 12
cause a wraparound to a future year and month. A value of 0 in this
field returns the 12th month of the previous year. For example, a
month value of 0 and a year value of 1993 return 12 and 1992,
respectively. A negative value in this field has the effect of
subtracting that number from the first month of the given year. For
example, a month value of –2 and a year value of 1993 return 10
and 1992, respectively.

day The day of the month, ranging from 1 to 31. When using the
LongSecondsToDate and LongDateToSeconds procedures, day
values greater than the number of days in a given month cause a
wraparound to a future month and day. This feature is useful for
working with leap years. For example, the 366th day of January in
1992 (1992 was a leap year) evaluates as December 31, 1992, and the
367th day of that year evaluates as January 1, 1993. A value of 0 in
this field produces unpredictable results in the month and day
fields. A negative value in this field has the effect of subtracting that
number from the first day of the given month. For example, a day
value of –10 and a month value of 10 return 9 and 20, respectively.

hour The hour of the day, ranging from 0 to 23, where 0 represents
midnight and 23 represents 11:00 P.M. When you use the
LongSecondsToDate and LongDateToSeconds procedures,
hour values greater than 23 cause a wraparound to a future day
and hour. A negative value in this field produces unpredictable
results. Note that this field is always maintained in 24-hour time.
The pm field, if used, is redundant.

minute The minute of the hour, ranging from 0 to 59. When you use the
LongSecondsToDate and LongDateToSeconds procedures,
minute values greater than 59 cause a wraparound to a future hour
and minute. A negative value in this field has the effect of
subtracting that number from the first minute of the given hour. For
example, an hour value of 10 and a minute value of –10 return 9
and 50, respectively. However, if the negative value causes the hour
value to become less than 0, for example hour = 0 and minute =
–61, unpredictable results occur.

second The second of the minute, ranging from 0 to 59. When you use the
LongSecondsToDate and LongDateToSeconds procedures,
second values greater than 59 cause a wraparound to a future
minute and second. A negative value in this field has the effect of
subtracting that number from the first second of the given minute.
For example, an minute value of 10 and a second value of –10
return 9 and 50, respectively. However, if the negative value causes
Date, Time, and Measurement Utilities Reference 4-27

C H A P T E R 4

Date, Time, and Measurement Utilities
the hour value to become less than 0, for example hour = 0,
minute = 0, and second = –61, unpredictable results occur.

dayOfWeek The day number of the week, where 1 indicates Sunday and 7
indicates Saturday. This field accepts 0, negative values, or values
greater than 7. When you use the LongSecondsToDate and
LongDateToSeconds procedures, you get correct values because
this field is automatically calculated from the values in the year,
month, and day fields. For calendars that have more than 7 day
names and 12 month names (for example, the Jewish calendar
sometimes has 13 months), you use the 'itl1' resource, defined
by the Itl1ExtRec data type. To get more information on the
format of the 'itl1' resource, see the appendix “International
Resources” in Inside Macintosh: Text.

dayOfYear The day number of the year, ranging from 1 to 366. Values greater
than the number of days in a given year cause a wraparound to a
future year and day. This feature is useful for working with leap
years. For example, in a Gregorian calendar the 366th day of
January in 1992 (1992 was a leap year) evaluates as December 31,
1992, and the 367th day of that year evaluates as January 1, 1993.

weekOfYear The week number of the year, ranging from 1 to 52. Note that
out-of-range values (such as 0, negative numbers, or numbers
greater than 52) can be set for this field. However, you can use the
LongSecondsToDate procedure to convert these out-of-range
values to appropriate values.

pm The morning or evening half of the 24-hour day cycle, where 0
represents the morning (for example, A.M.), and 1 represents the
evening (for example, P.M.). Note that out-of-range values can be set
for this field. However, you can use the LongSecondsToDate
procedure to convert these out-of-range values to appropriate
values.

res1 Reserved. Set this field to 0.
res2 Reserved. Set this field to 0.
res3 Reserved. Set this field to 0.
list An array of LongDateField values. The field parameter of the

ToggleDate function uses the enumerated data type
LongDateField to indicate the LongDateRec fields that the
ValidDate function should check. The following values are
available:
TYPE LongDateField =
 (eraField, yearField, monthField, dayField,
 hourField, minuteField, secondField,
 dayOfWeekField, dayOfYearField,
 weekOfYearField, pmField, res1Field,
 res2Field, res3Field);

eraAlt The era, where 0 represents A.D., and –1 represents B.C. Use this field
and the oldDate field to convert from a date-time record.

oldDate The date-time record to convert. Use this field and the eraAlt field
to convert from a date-time record.
4-28 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
The Geographic Location Record 4

The geographic location and time-zone information of a Macintosh computer are stored
in extended parameter RAM. The MachineLocation data type defines the format for
the geographic location record.

TYPE MachineLocation = {geographic location record}

RECORD

latitude: Fract; {latitude}

longitude: Fract; {longitude}

CASE Integer OF

0:

(dlsDelta: SignedByte); {daylight saving time}

1:

(gmtDelta: LongInt); {Greenwich mean time}

END;

Field descriptions

latitude The location’s latitude, in fractions of a great circle. For example,
Copenhagen, Denmark is at 55.43 degrees north latitude. When
writing the latitude to extended parameter RAM with the
WriteLocation procedure, you must convert this value to a
Fract data type. (For example, a Fract value of 1.0 equals 90
degrees; –1.0 equals –90 degrees; and –2.0 equals –180 degrees.) For
an example that shows this conversion process, see Listing 4-8 on
page 4-19. For more information on the Fract data type, see the
chapter “Mathematical and Logical Utilities” in this book.

longitude The location’s longitude, in fractions of a great circle. For example,
Copenhagen, Denmark is at 12.34 degrees east longitude. When
writing the longitude to extended parameter RAM with the
WriteLocation procedure, you must convert this value to a
Fract data type. (For example, a Fract value of 1.0 equals 90
degrees; –1.0 equals –90 degrees; and –2.0 equals –180 degrees.) For
an example that shows this conversion process, see Listing 4-8 on
page 4-19. For more information on the Fract data type, see the
chapter “Mathematical and Logical Utilities” in this book.

dlsDelta A signed byte value representing the hour offset for daylight saving
time. This field is a 1-byte value contained in a long word. It should
be preserved when writing gmtDelta. See Listing 4-10 on
page 4-21 for an example that writes gmtDelta while preserving
dlsDelta.

gmtDelta The Greenwich mean time (GMT). For example, Copenhagen,
Denmark is at 1 hour west of GMT. This field is a 3-byte value
contained in a long word. In addition, the top byte of this field
should be masked off when writing because it is reserved. See
Listing 4-9 on page 4-20 and Listing 4-10 on page 4-21 for code
examples that get and set gmtDelta properly.
Date, Time, and Measurement Utilities Reference 4-29

C H A P T E R 4

Date, Time, and Measurement Utilities
The ReadLocation and WriteLocation procedures use the geographic location
record to read and store the geographic location and time zone information in extended
parameter RAM. If the geographic location record has never been set, all fields contain 0.

The Toggle Parameter Block 4

The ToggleDate function exchanges information with your application using the
toggle parameter block, defined by the TogglePB data type.

TYPE TogglePB =

RECORD

togFlags: LongInt; {flags}

amChars: ResType; {A.M. characters from 'itl0' }

{ resource, but made uppercase}

pmChars: ResType; {P.M. characters from 'itl0' }

{ resource, but made uppercase}

reserved: ARRAY[0..3] OF LongInt; {reserved}

END;

Field descriptions

togFlags The high-order word of this field contains flags that specify special
conditions for the ToggleDate function:

genCdevRangeBit = 27; {restrict date/time to }

{ range used by }

{ General Controls }

{ control panel}

togDelta12HourBit = 28; {if modifying hour }

{ up/down, restrict to }

{ 12-hour range}

togCharZCycleBit = 29; {modifier for }

{ togChar12HourBit to }

{ accept hours }

{ 0…11 only}

togChar12HourBit = 30; {if modifying hour by }

{ char, accept hours }

{ 1…12 only}

smallDateBit = 31; {restrict valid }

{ date/time to }

{ range of Time global}

genCdevRangeBit
If this bit is set in addition to smallDateBit, then the date range is
restricted to that used by the General Controls control panel—
4-30 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
January 1, 1920 to December 31, 2019 in the Gregorian calendar (the
routine works correctly for other calendars as well). For dates
outside this range but within the range specified by the system
global variable Time—January 1, 1904 to February 6, 2040 in the
Gregorian calendar—ToggleDate adds or subtracts 100 years to
bring the dates into the range of the General Controls control panel
if these bits are set. The ToggleDate function returns an error if
the smallDateBit is set and the date is outside the range specified
by the system global variable Time. This bit works with system
software version 6.0.4 and later.

togDelta12HourBit
If this bit is set, modifying the hour up or down is limited to a
12-hour range. For example, increasing by one from 11 produces 0,
increasing by one from 23 produces 12, and so on. This bit works
with system software version 6.0.4 and later.

togCharZCycleBit
If this bit is set, the input character is treated as if it modifies an
hour whose value is in the range 0–11. If this bit is not set, the input
character is treated as if it modifies an hour whose value is in the
range 12, 1–11. This bit works with system software version 6.0.4
and later.

togChar12HourBit
If this bit is set, modifying the hour by character is limited to the
12-hour range defined by togCharZCycleBit, mapped to the
appropriate half of the 24-hour range, as determined by the pm field.
This bit works with system software version 6.0.4 and later.
smallDateBit
If this bit is set, the valid date and time are restricted to the range of
the system global variable Time—that is, between midnight on
January 1, 1904 and 6:28:15 A.M. on February 6, 2040.

The low-order word of this field contains masks representing fields
to be checked by the ValidDate function. Each mask corresponds
to a value in the enumerated type LongDateField. You can set
this field to check the era through second fields by using the
predeclared constant dateStdMask. The following constants
specify the LongDateRec fields for the ValidDate function to
check.

CONST

eraMask = $0001; {verify the era}

yearMask = $0002; {verify the year}

monthMask = $0004; {verify the month}

dayMask = $0008; {verify the day}

hourMask = $0010; {verify the hour}

minuteMask = $0020; {verify the }
Date, Time, and Measurement Utilities Reference 4-31

C H A P T E R 4

Date, Time, and Measurement Utilities
{ minute}

secondMask = $0040; {verify the }

{ second}

dateStdMask = $007F; {verify the era }

{ through second}

dayOfWeekMask = $0080; {verify the day }

{ of the week}

dayOfYearMask = $0100; {verify the day }

{ of the year}

weekOfYearMask = $0200; {verify the week }

{ of the year}

pmMask = $0400; {verify the }

{ evening (P.M.)}

amChars The trailing string to display for morning (for example, A.M.). This
string is read from the numeric-format resource (resource type
'itl0') of the current script system.

pmChars The trailing to display for evening (for example, P.M.). This string is
read from the numeric-format resource (resource type 'itl0') of
the current script system.

reserved Reserved. Set each of the three elements of this field to 0.

The Unsigned Wide Record 4

The Microseconds procedure uses the unsigned wide record to return the number of
microseconds elapsed since system startup time. The UnsignedWide data type defines
the format for the unsigned wide record.

UnsignedWide = {Microseconds procedure return type}

PACKED RECORD

hi: LongInt; {high-order 32 bits}

lo: LongInt; {low-order 32 bits}

END;

Field descriptions

hi The high-order 32 bits
lo The low-order 32 bits

Routines 4
The Date, Time, and Measurement Utilities provide routines you can use to read and
write current date-time information, convert between internal date and time formats (for
example, you can access date-time information as a number of seconds elapsed since
midnight, January 1, 1904 or as a date and time), manipulate date-time information, read
and write location information, and determine the current measurement system.
4-32 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
Some of the routines provided by the Date, Time, and Measurement Utilities were
previously associated with the Script Manager or the International Utilities Package. In
addition, some routines have been renamed to reflect their functions more clearly. You
can access the renamed routines using more than one spelling of the routine’s name,
depending on the interface files supported by your development environment. For
example, the IsMetric function is also available as the IUMetric function. Table 4-4
provides a summary of these changes.

Getting the Current Date and Time 4

At system startup time, system software uses the ReadDateTime function to copy the
current date-time information from the clock chip into low memory. You can access this
date-time information as the number of seconds elapsed since midnight of January 1,
1904 or as a date and time. To obtain the current date-time information expressed as the
number of seconds elapsed since midnight of January 1, 1904, use the GetDateTime
procedure. To obtain the current date-time information expressed as a date and time, use
the GetTime procedure.

IMPORTANT

If an application disables interrupts for longer than a second, the
date-time information returned by the GetDateTime and GetTime
procedures might not be exact. The GetDateTime and GetTime
procedures are intended to provide fairly accurate time information, but
not scientifically precise data. ▲

Table 4-4 Renamed and relocated routines

Current name Previous name Former location

DateToSeconds Date2Secs (Unchanged)

IsMetric IUMetric International Utilities Package

LongDateToSeconds LongDate2Secs Script Manager

LongSecondsToDate LongSecs2Date Script Manager

ReadLocation ReadLocation Script Manager

SecondsToDate Secs2Date (Unchanged)

ToggleDate ToggleDate Script Manager

ValidDate ValidDate Script Manager

WriteLocation WriteLocation Script Manager
Date, Time, and Measurement Utilities Reference 4-33

C H A P T E R 4

Date, Time, and Measurement Utilities
ReadDateTime 4

System software uses at system startup time the ReadDateTime function to copy the
date-time information from the clock chip into low memory. Your application should
never need to use this function.

FUNCTION ReadDateTime (VAR time: LongInt): OSErr;

time On return, the current time expressed as the number of seconds elapsed
since midnight, January 1, 1904.

DESCRIPTION

The ReadDateTime function copies the current date-time information from the clock
chip into low memory. It then returns in the time parameter a copy of the date-time
information, expressed as the number of seconds elapsed since midnight, January 1, 1904.

The low-memory copy of the date and time information is accessible through the global
variable Time.

If the clock chip cannot be read, ReadDateTime returns the clkRdErr result code. The
operation might fail if the clock chip is damaged. Otherwise, the function returns the
noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with a pointer to a long integer in which you wish to store
the current date-time information. On exit, register A0 contains the same pointer to the
now-changed long integer, and register D0 contains the result code.

The registers on entry and exit for this routine are

RESULT CODES

Registers on entry

A0 Pointer to long word

Registers on exit

A0 Pointer to current time

D0 Result code

noErr 0 No error
clkRdErr –85 Unable to read clock
4-34 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
GetDateTime 4

You can use the GetDateTime procedure to obtain the current date-time information,
expressed as the number of seconds elapsed since midnight, January 1, 1904.

PROCEDURE GetDateTime (VAR secs: LongInt);

secs On return, the number of seconds elapsed since midnight, January 1, 1904.

DESCRIPTION

The GetDateTime procedure returns in the secs parameter the number of seconds
elapsed since midnight, January 1, 1904.

The low-memory copy of the date and time information (expressed as the number of
seconds elapsed since midnight, January 1, 1904) is also accessible through the global
variable Time.

SEE ALSO

For an example that uses the GetDateTime procedure to get the current date and time,
see Listing 4-1 on page 4-10.

GetTime 4

You can use the GetTime procedure to obtain the current date-time information,
expressed as a date and time.

PROCEDURE GetTime (VAR d: DateTimeRec);

d On return, the fields of the date-time record contain the current date and
time.

DESCRIPTION

The GetTime procedure returns in the d parameter the current date and time. The
GetTime procedure first calls the GetDateTime procedure to obtain the number of
seconds elapsed since midnight, January 1, 1904. It then calls the SecondsToDate
procedure to convert the number of seconds (returned by the GetDateTime procedure)
into a date and time.

As an alternative to using the GetTime procedure, you can pass the value of the global
variable Time to the SecondsToDate procedure; a SecondsToDate(Time) procedure
call is identical to a GetTime(d) procedure call.
Date, Time, and Measurement Utilities Reference 4-35

C H A P T E R 4

Date, Time, and Measurement Utilities
SEE ALSO

For more information about the SecondsToDate procedure, see page 4-38. The
GetDateTime procedure is described on page 4-35. For sample code that uses the
GetTime procedure to get the current date and time, see Listing 4-2 on page 4-10.
The date-time record is described in detail beginning on page 4-23.

Setting the Current Date and Time 4

You can modify the date-time information stored in the clock chip by using the
SetDateTime function or the SetTime procedure. The two routines differ in the
type of arguments they require. The SetDateTime function requires that the new
date-time information be expressed as the number of seconds elapsed since midnight
of January 1, 1904 (using a value of type LongInt). The SetTime procedure requires
that the new date-time information be expressed as a date and time (using a value of
type DateTimeRec).

IMPORTANT

Users can change the current date and time stored in both the system
global variable Time and in the clock chip by using the General Controls
control panel, Date & Time control panel, or the Alarm Clock desk
accessory. In general, your application should not directly change the
current date-time information. If your application does need to modify
the current date-time information, it should instruct the user how to
change the date and time. ▲

SetDateTime 4

You can use the SetDateTime function to modify the date-time information stored
in the clock chip. The SetDateTime function requires that the new date-time
information be passed to the function as the number of seconds elapsed since midnight,
January 1, 1904.

FUNCTION SetDateTime (time: LongInt): OSErr;

time The number of seconds elapsed since midnight, January 1, 1904; this
value is written to the clock chip.

DESCRIPTION

The SetDateTime function writes the number of seconds, specified by the time
parameter, to the clock chip. The SetDateTime function also updates the low-memory
copy of the date-time information.

The SetDateTime function attempts to verify the value written by reading it back in
and comparing it to the value in the low-memory copy. If a problem occurs, the
SetDateTime function returns either the clkRdErr result code, because the clock chip
4-36 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
could not be read, or the clkWrErr result code, because the time written to the clock
chip could not be verified. Otherwise, the function returns the noErr result code.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register D0 with the number of seconds to which you wish to change
the clock chip. When the SetDateTime function returns, register D0 contains the result
code.

The registers on entry and exit for this routine are

RESULT CODES

SEE ALSO

For sample code that uses the SetDateTime function to write date-time information
(represented as a number of seconds) to the clock-chip, see Listing 4-3 on page 4-11.

SetTime 4

You can use the SetTime procedure to modify the date-time information in the clock
chip. The SetTime requires that the new date-time information be passed to the
function as a date and time.

PROCEDURE SetTime (d: DateTimeRec);

d The date and time to which to set the clock chip.

DESCRIPTION

The SetTime procedure writes the date and time specified by the d parameter to the
clock chip. The SetTime procedure first converts the date and time to the number of
seconds elapsed since midnight, January 1, 1904 (by calling the DateToSeconds
procedure). It then writes these seconds to the clock chip and to the system global
variable Time (by calling the SetDateTime function).

Registers on entry

D0 Seconds elapsed since midnight, January 1, 1904

Registers on exit

D0 Result code

noErr 0 No error
clkRdErr –85 Unable to read clock
clkWrErr –86 Time written did not verify
Date, Time, and Measurement Utilities Reference 4-37

C H A P T E R 4

Date, Time, and Measurement Utilities
As an alternative to using the SetTime procedure, you can use the DateToSeconds
and SetDateTime routines.

Note
The SetTime procedure does not return a result code. If you need to
know whether an attempt to change the date and time information in
the clock chip is successful, you must use the SetDateTime function. ◆

SEE ALSO

See page 4-23 for a description of the fields of a date-time record. For more
information on the DateToSeconds procedure, see page 4-39. The SetDateTime
function is described on page 4-36. For sample code that uses the SetTime procedure to
write date-time information (represented as a date and time) to the clock-chip, see
Listing 4-4 on page 4-11.

Converting Between Date-Time Formats 4

The Date, Time, and Measurement Utilities provide two procedure, SecondsToDate
and DateToSeconds, that you can use to convert between date-time formats. You
can convert a number of seconds to a date and time and a date and time to a number
of seconds.

If you use a standard date-time value (used to access a number of seconds) or a
date-time record (used to access a date and time) to access date-time information, you
can use the SecondsToDate and DateToSeconds procedures to convert between
these date-time formats. Use the SecondsToDate procedure to convert a number of
seconds to a date and time, and use the DateToSeconds procedure to convert a date
and time to a number of seconds.

Note
The system software uses the SecondsToDate and DateToSeconds
procedures provided by the current script system. ◆

SecondsToDate 4

You can use the SecondsToDate procedure to convert a number of seconds elapsed
since midnight, January 1, 1904 to a date and time.

PROCEDURE SecondsToDate (s: LongInt; VAR d: DateTimeRec);

s The number of seconds elapsed since midnight, January 1, 1904.

d On return, the fields of the date-time record that contain the date and time
corresponding to the value indicated in the s parameter.
4-38 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
DESCRIPTION

The SecondsToDate procedure converts the number of seconds, specified in the s
parameter, to a date and time. The date and time values are returned in the d parameter.

The SecondsToDate procedure is also available as the Secs2Date procedure.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for this routine are

SEE ALSO

For a complete description of the date-time record, see page 4-23.

DateToSeconds 4

You can use the DateToSeconds procedure to convert a date and time to a number of
seconds elapsed since midnight, January 1, 1904.

PROCEDURE DateToSeconds (d: DateTimeRec; VAR s: LongInt);

d The date-time record containing the date and time to convert.

s On return, the number of seconds elapsed between midnight,
January 1, 1904, and the time specified in the d parameter.

DESCRIPTION

The DateToSeconds procedure converts the date and time specified in the
d parameter to the number of seconds elapsed since midnight, January 1, 1904. The
number of seconds are returned in the s parameter. For example, specifying a date
and time of 5:50 A.M. on June 13, 1990 results in 41627 being returned in the s parameter.

The DateToSeconds procedure is also available as the Date2Secs procedure.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with a pointer to the date and time record containing the
date and time you wish to convert. When DateToSeconds returns, register D0 contains
a long integer representing the converted date and time.

Registers on entry

D0 Seconds since midnight, January 1, 1904

A0 Pointer to a date-time record

Registers on exit

A0 Pointer to a date-time record
Date, Time, and Measurement Utilities Reference 4-39

C H A P T E R 4

Date, Time, and Measurement Utilities
The registers on entry and exit for this routine are

SEE ALSO

For a complete description of the date-time record, see page 4-23.

Converting Between Long Date-Time Format 4

The Date, Time, and Measurement Utilities provide two procedures,
LongSecondsToDate and LongDateToSeconds, that you can use to convert between
long date-time formats. You can convert a number of seconds to a date and time and a
date and time to a number of seconds.

If you use a long date-time value (used to access a number of seconds) or a long
date-time record (used to access a date and time) to access date-time information, you
can use the LongSecondsToDate and LongDateToSeconds procedures to convert
between these date-time formats. Use the LongSecondsToDate procedure to convert a
number of seconds to a date and time, and use the LongDateToSeconds procedure to
convert a date and time to a number of seconds.

Note
The system software uses the LongSecondsToDate and
LongDateToSeconds procedures provided by the current
script system. ◆

LongSecondsToDate 4

You can use the LongSecondsToDate procedure to convert the number of seconds
elapsed since midnight, January 1, 1904 to a date and time.

PROCEDURE LongSecondsToDate (lSecs: LongDateTime;

 VAR lDate: LongDateRec);

lSecs The number of seconds elapsed since midnight, January 1, 1904.

lDate On return, the fields of the long date-time record that contain the date and
time corresponding to the value indicated in the lSecs parameter.

Registers on entry

A0 Pointer to date-time record

Registers on exit

D0 Corresponding seconds since midnight, January 1, 1904
4-40 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
DESCRIPTION

The LongSecondsToDate procedure converts the representation of the date-time
information from a number of seconds, specified in the lSecs parameter, to a date and
time. The date and time are returned in the lDate parameter as values in the date-time
record. For example, specifying the number of seconds 41627 results in the date and
time 5:50 A.M. on June 13, 1990 being returned in the lDate parameter.

The LongSecondsToDate procedure is also available as the LongSecs2Date
procedure.

SEE ALSO

To learn more about the long date-time value, see the section page 4-25. For more
information on the long date-time record, see page 4-26.

LongDateToSeconds 4

You can use the LongDateToSeconds procedure to convert a date and time to the
number of seconds elapsed since midnight, January 1, 1904.

PROCEDURE LongDateToSeconds (lDate: LongDateRec;

 VAR lSecs: LongDateTime);

lDate The long date-time record containing the date and time to convert.

lSecs On return, the number of seconds elapsed since midnight,
January 1, 1904, and the time specified in the lDate parameter.

DESCRIPTION

The LongDateToSeconds procedure converts the representation of the date-time
information from a date and time, specified in the lDate parameter, to the number of
seconds elapsed since midnight, January 1, 1904. The number of seconds are returned as
a long date-time value in the lSecs parameter. For example, specifying the date and
time 5:50 A.M. on June 13, 1990 results in 41627 being returned in the lSecs parameter.

The LongDateToSeconds procedure is also available as the LongDate2Secs
procedure.

SEE ALSO

To learn more about the long date-time value, see page 4-25. For more information on the
long date-time record, see page 4-26.
Date, Time, and Measurement Utilities Reference 4-41

C H A P T E R 4

Date, Time, and Measurement Utilities
Modifying and Verifying Long Date-Time Records 4

You can modify and verify the values in a long date-time record by using the
ToggleDate function and the ValidDate function, respectively.

The ToggleDate function accepts a pointer to a toggle parameter block as a parameter.
Information about the fields in the toggle parameter block appears in the following
format:

Parameter block

The arrow on the far left indicates whether the field is an input or output parameter. You
must supply values for all input parameters. The routine returns values in the output
parameters. The next column shows the field name as defined in the MPW interface files,
followed by the data type of that field. This matches the MPW interface name of the data
type as shown in the parameter block. The fourth column contains a comment about or
brief definition of the field.

ToggleDate 4

You can use the ToggleDate function to modify a date and time, by modifying one
specific component of a date and time (day, hour, minute, seconds, day of week, and
so on). For example, you can use the ToggleDate function to increase a date and time
by one minute, decrease a date and time by one minute, or explicitly add or subtract a
number of seconds to or from a date and time.

FUNCTION ToggleDate (VAR lSecs: LongDateTime;

field: LongDateField; delta: DateDelta;

ch: Integer; params: TogglePB)

: ToggleResults;

lSecs The date-time information to modify, expressed as the number of seconds
elapsed since midnight, January 1, 1904.

field The name of the field in the date-time record you want modify. Use one
of the LongDateField enumeration constants for the value of this
parameter.

delta A signed byte specifying the action you want to perform on the value
specified in the field parameter. Set delta to 1, to increase the value in
the field by 1. Set delta to -1, to decrease the value of the field by 1. Set
delta to 0. If you want to set the value of the field explicitly; pass the
new value through the ch field, described next.

→ input1 LongInt Input parameter comment.
← output1 LongInt Output parameter comment.
4-42 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
ch If the value in the delta field is 0, the value of the field in the date-time
record (specified by the field parameter) is set to the value in the
ch parameter. If the value in the delta field is not equal to 0, the value in
the ch parameter is ignored.

params The settings of the toggle parameter block settings. Note that you are
responsible for setting this field.

Parameter block

DESCRIPTION

The ToggleDate function first converts the number of seconds, specified in the
lSecs parameter, to a date and time—making each component of the date and time
(day, minute, seconds, day of week, and so on) available through a long date-time
record. The ToggleDate function then modifies the value of the field, specified by the
field parameter. If the value in the delta field is greater than 0, the value of the field
(specified in the field parameter) increases by 1; if the value in the delta field is less
than 0, the value of the field decreases by 1; and if the value of delta is 0, the value of
the field is explicitly set to the value specified in the ch field.

After the ToggleDate function modifies the field, it calls the ValidDate function. The
ValidDate function checks the long date-time record for correctness, using the values
of the togFlags field in the toggle parameter block that the ToggleDate function
passes to it. If any of the record fields are invalid, the ValidDate function returns a
LongDateField value corresponding to the field in error. Otherwise, it returns the
result code for validDateFields. Note that ValidDate reports only the least
significant erroneous field.

After the ToggleDate function checks the validity of the modified field, it converts the
modified date and time back into a number of seconds (the number of seconds elapsed
since midnight, January 1, 1904) and returns these seconds in the lSecs parameter.

The following constants specify the LongDateRec fields for the ValidDate function
to check:

CONST

eraMask = $0001; {verify the era}
yearMask = $0002; {verify the year}
monthMask = $0004; {verify the month}
dayMask = $0008; {verify the day}
hourMask = $0010; {verify the hour}
minuteMask = $0020; {verify the minute}
secondMask = $0040; {verify the second}

→ togFlags LongInt The fields to be checked by the
ValidDate function.

→ amChars ResType A.M. characters from 'itl0' resource.
→ pmChars ResType P.M. characters from 'itl0' resource.
→ reserved ARRAY [0…3]

OF LongInt
Reserved; set each element to 0.
Date, Time, and Measurement Utilities Reference 4-43

C H A P T E R 4

Date, Time, and Measurement Utilities
dateStdMask = $007F; {verify the era through second}
dayOfWeekMask = $0080; {verify the day of the week}
dayOfYearMask = $0100; {verify the day of the year}
weekOfYearMask = $0200; {verify the week of the year}
pmMask = $0400; {verify the evening (P.M.)}

SPECIAL CONSIDERATIONS

Although ToggleDate does not move or purge memory, you should not call it at
interrupt time.

RESULT CODES

The ToggleDate function returns its own set of result codes. The ToggleResults data
type defines the result code of the ToggleDate function:

TYPE ToggleResults = Integer; {ToggleDate function return type}

The following list gives the result codes defined for this function:

SEE ALSO

To learn more about the LongDateTime data type, see page 4-25. For more information
on the LongDateRec structure, see page 4-26. The toggle parameter block record is
described on page 4-30.

For more information about the GetIntlResource function, see the chapter “Script
Manager” in Inside Macintosh: Text. For details on the UppercaseText procedure, see
the chapter “Text Utilities” in Inside Macintosh: Text. The ValidDate function is
described next.

toggleUndefined 0 Undefined error
toggleOK 1 No error
toggleBadField 2 Invalid field number
toggleBadDelta 3 Invalid delta value
toggleBadChar 4 Invalid character
toggleUnknown 5 Unknown error
toggleBadNum 6 Tried to use character as number
toggleOutOfRange 7 Out of range (synonym for toggleErr3)
toggleErr3 7 Reserved
toggleErr4 8 Reserved
toggleErr5 9 Reserved
4-44 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
ValidDate 4

You can use the ValidDate function to verify specific date and time values in a long
date-time record.

FUNCTION ValidDate (VAR vDate: LongDateRec; flags: LongInt;

 VAR newSecs: LongDateTime): Integer;

vDate The long date-time record whose fields you want to verify.

flags The fields that you want to verify in the long date-time record.

newSecs The date-time information, passed by the ToggleDate function, that you
want to verify.

DESCRIPTION

The ValidDate function verifies the fields, specified by the flags parameter, in the
long date-time record specified by the vDate parameter. If any of the specified fields
contain invalid values, the ValidDate function returns a LongDateField value
indicating the field in error. Otherwise, it returns the constant validDateFields.
Note that ValidDate reports only the least significant erroneous field.

The following constants specify the LongDateRec fields for the ValidDate function
to check:

CONST

eraMask = $0001; {verify the era}

yearMask = $0002; {verify the year}

monthMask = $0004; {verify the month}

dayMask = $0008; {verify the day}

hourMask = $0010; {verify the hour}

minuteMask = $0020; {verify the minute}

secondMask = $0040; {verify the second}

dateStdMask = $007F; {verify the era through }

{ second}

dayOfWeekMask = $0080; {verify the day of the week}

dayOfYearMask = $0100; {verify the day of the year}

weekOfYearMask = $0200; {verify the week of the year}

pmMask = $0400; {verify the evening (P.M.)}

SPECIAL CONSIDERATIONS

Although ValidDate does not move or purge memory, you should not call it at
interrupt time.
Date, Time, and Measurement Utilities Reference 4-45

C H A P T E R 4

Date, Time, and Measurement Utilities
SEE ALSO

To learn more about the LongDateTime data type, see page 4-25. For more information
on the long date-time record, see page 4-26. The ToggleDate function is described on
page 4-42. The enumerated type LongDateField is described on page 4-29.

Reading and Writing Location Data 4

You can read and set geographic location and time-zone information using the
Readlocation and WriteLocation procedures.

ReadLocation 4

You can use the ReadLocation procedure to get information about a geographic
location or time zone.

PROCEDURE ReadLocation (VAR loc: MachineLocation);

loc On return, the fields of the geographic location record containing the
geographic location and the time-zone information.

DESCRIPTION

The ReadLocation procedure reads the stored geographic location and time zone
of the Macintosh computer from extended parameter RAM and returns it in the
loc parameter.

You can get values for the latitude, longitude, daylight savings time (DST), or
Greenwich mean time (GMT). If the geographic location record has never been set,
all fields contain 0.

The latitude and longitude are stored as Fract values, giving accuracy to within
one foot. For example, a Fract value of 1.0 equals 90 degrees; –1.0 equals –90 degrees;
and –2.0 equals –180 degrees.

To convert these values to a degrees format, you need to convert the Fract values first
to the Fixed data type, then to the LongInt data type. You can use the Mathematical
and Logical Utilities routines Fract2Fix and Fix2Long to accomplish this task.

The DST value is a signed byte value that you can use to specify the offset for the
hour field—whether to add one hour, subtract one hour, or make no change at all.

The GMT value is in seconds east of GMT. For example, San Francisco is at
–28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT. The gmtDelta field
is a 3-byte value contained in a long word, so you must take care to get it properly.
4-46 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
SPECIAL CONSIDERATIONS

Although the ReadLocation procedure does not move or purge memory, you should
not call it at interrupt time.

SEE ALSO

For more information on the geographic location record, see page 4-29. For an
example of how to use the ReadLocation procedure to get latitude and longitude,
see Listing 4-8 on page 4-19. Listing 4-9 on page 4-20 shows an application-defined
procedure for obtaining the value of gmtDelta.

For more information on the Fract data type and the conversion routines Long2Fix,
Fix2Fract, Fract2Fix, and Fix2Long, see the chapter “Mathematical and Logical
Utilities” in this book.

WriteLocation 4

You can use the WriteLocation procedure to change the geographic location or
time-zone information stored in extended parameter RAM.

PROCEDURE WriteLocation (loc: MachineLocation);

loc The geographic location and time-zone information to write to the
extended parameter RAM.

DESCRIPTION

The WriteLocation procedure takes the geographic location and time-zone
information, specified in the loc parameter, and writes it to the extended
parameter RAM.

The latitude and longitude are stored in the geographic location record as Fract values,
giving accuracy to within 1 foot. For example, a Fract value of 1.0 equals 90 degrees;
–1.0 equals –90 degrees; and –2.0 equals –180 degrees.

To store latitude and longitude values, you need to convert them first to the Fixed data
type, then to the Fract data type. You can use the Operating System Utilities routines
Long2Fix and Fix2Fract to accomplish this task. Listing 4-8 on page 4-19 shows a
procedure that converts San Francisco’s latitude and longitude to Fract values, then
writes the Fract values to extended parameter RAM using the WriteLocation
procedure.

The daylight savings time value is a signed byte value that you can use to specify the
offset for the hour field—whether to add one hour, subtract one hour, or make no
change at all.

The Greenwich mean time value is in seconds east of GMT. For example, San Francisco is
at –28,800 seconds (8 hours * 3,600 seconds per hour) east of GMT. The gmtDelta field is
Date, Time, and Measurement Utilities Reference 4-47

C H A P T E R 4

Date, Time, and Measurement Utilities
a 3-byte value contained in a long word, so you must take care to set it properly. When
writing gmtDelta, you should mask off the top byte because it is reserved. In addition,
you should preserve the value of dlsDelta. Listing 4-10 on page 4-21 shows a
procedure that writes gmtDelta, with the top byte masked off, while preserving
the value of dlsDelta.

SPECIAL CONSIDERATIONS

Although WriteLocation does not move or purge memory, you should not call it at
interrupt time.

SEE ALSO

For more information on the geographic location record, see page 4-29. For more
information on the Fract data type and the conversion routines Long2Fix,
Fix2Fract, Fract2Fix, and Fix2Long, see the chapter “Mathematical and Logical
Utilities” in this book.

Determining the Measurement System 4

You can determine the type of measurement system that is used by the current script
system by the using the IsMetric function.

IsMetric 4

You can use the IsMetric function to determine whether the current script system is
using the metric system (also called the International System of Units) or the English
system of measurement (also called the British imperial system). The IsMetric function
is also available as the IUMetric function.

FUNCTION IsMetric: BOOLEAN;

DESCRIPTION

The IsMetric function examines the metricSys field of the numeric-format resource
(resource type 'itl0') to determine if the current script is using the metric system.
A value of 255 in the metricSys field indicates that the metric system (centimeters,
kilometers, milligrams, degrees Celsius, and so on) is being used. In this case, the
IsMetric function returns a value of TRUE. A value of 0 in the metricSys field
indicates that the English system of measurement (inches, miles, ounces, degrees
Fahrenheit, and so on) is used. In that case, the IsMetric function returns a value
of FALSE.

If you want to use units of measurement different from that of the current script, you
need to override the value of the metricSys field in the current numeric-format
4-48 Date, Time, and Measurement Utilities Reference

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
resource (resource type 'itl0'). You can do this by using your own version of the
numeric-format resource instead of the current script system’s default international
resource.

SPECIAL CONSIDERATIONS

The IsMetric function may move or purge blocks in the heap; calling it may cause
problems if you’ve dereferenced a handle. You should not call this function from within
interrupt code, such as in a completion routine or a VBL task.

SEE ALSO

For a complete description of the international numeric-format resource (resource
type 'itl0') and how to use it, see the appendix “International Resources” in
Inside Macintosh: Text.

For information on how to replace a script system’s default international resources, see
the chapter “Script Manager” in Inside Macintosh: Text.

Measuring Time 4

You can measure the number of elapsed microseconds since system startup, using the
Microseconds procedure.

Microseconds 4

You can use the Microseconds procedure to determine the number of microseconds
that have elapsed since system startup time.

PROCEDURE Microseconds (VAR microTickCount: UnsignedWide);

microsecondCount
The number of microseconds elapsed since system startup.

DESCRIPTION

The Microseconds procedure returns, in the microsecondCount parameter, the
number of microseconds that has elapsed since system startup time.

SEE ALSO

For information about the return type for this procedure—the UnsignedWide record—
see page 4-32. For an example of how to use the Microseconds procedure, see
Listing 4-11 on page 4-21.
Date, Time, and Measurement Utilities Reference 4-49

C H A P T E R 4

Date, Time, and Measurement Utilities
Summary of the Date, Time, and Measurement Utilities 4

Pascal Summary 4

Constants 4

CONST

{date equates for ToggleDate control bits}

validDateFields = -1; {date fields are valid}

genCdevRangeBit = 27; {restrict date/time to range used by }

{ General Controls control panel}

togDelta12HourBit = 28; {if toggling hour up/down, restrict to }

{ 12-hour range}

togCharZCycleBit = 29; {modifier for togChar12HourBit to }

{ accept hours 0..11 only}

togChar12HourBit = 30; {if toggling hour by char, accept }

{ hours 1..12 only}

smallDateBit = 31; {restrict valid date/time to range }

{ of Time global}

{long date-time record field masks}

eraMask = $0001; {era}

yearMask = $0002; {year}

monthMask = $0004; {month}

dayMask = $0008; {day}

hourMask = $0010; {hour}

minuteMask = $0020; {minute}

secondMask = $0040; {second}

dayOfWeekMask = $0080; {day of the week}

dayOfYearMask = $0100; {day of the year}

weekOfYearMask = $0200; {week of the year}

pmMask = $0400; {evening (P.M.)}

{default value for togFlags field in the toggle parameter block }

{ and default value for the flags parameter passed to the Verify function}

dateStdMask = $007F; {default value for checking era }

{ through second fields}
4-50 Summary of the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
Data Types 4

TYPE

DateTimeRec = {date-time record}

RECORD

year: Integer; {year}

month: Integer; {month}

day: Integer; {day of the month}

hour: Integer; {hour}

minute: Integer; {minute}

second: Integer; {second}

dayOfWeek: Integer; {day of the week}

END;

LongDateField = {long date field enumeration}

(eraField, yearField, monthField, dayField,

hourField, minuteField, secondField,dayOfWeekField,

dayOfYearField,weekOfYearField, pmField, res1Field,

res2Field, res3Field);

LongDateTime = comp; {date and time in 64-bit SANE comp format}

LongDateCvt = {long date-time conversion record}

RECORD

CASE Integer OF

0:

(c: comp); {copy field into a variable of type }

{ LongDateTime}

1:

(lHigh: LongInt; {high-order 32 bits}

 lLow: LongInt);{low-order 32 bits}

END;

LongDateRec = {long date-time record}

RECORD

CASE Integer OF

0:

(era: Integer; {era}

 year: Integer; {year}

 month: Integer; {month}

 day: Integer; {day of the month}

 hour: Integer; {hour}

 minute: Integer; {minute}

 second: Integer; {second}
Summary of the Date, Time, and Measurement Utilities 4-51

C H A P T E R 4

Date, Time, and Measurement Utilities
 dayOfWeek: Integer; {day of the week}

 dayOfYear: Integer; {day of the year}

 weekOfYear: Integer; {week of the year}

 pm: Integer; {half of day--0 for morning, }

{ 1 for evening}

 res1: Integer; {reserved}

 res2: Integer; {reserved}

 res3: Integer); {reserved}

1: {index by LongDateField}

(list: ARRAY[0..13] OF Integer);

2:

(eraAlt: Integer; {era}

 oldDate: DateTimeRec); {date-time record}

END;

TogglePB = {toggle parameter block}

RECORD

togFlags: LongInt; {flags}

amChars: ResType; {from 'itl0' resource, but made uppercase}

pmChars: ResType; {from 'itl0' resource, but made uppercase}

{reserved}

reserved: ARRAY[0..3] OF LongInt;

END;

ToggleResults = Integer; {ToggleDate function return type}

DateDelta = SignedByte; {ToggleDate function delta field type}

MachineLocation = {geographic location record}

RECORD

latitude: Fract; {latitude}

longitude: Fract; {longitude}

CASE Integer OF

0:

(dlsDelta: SignedByte);{daylight savings time}

1:

(gmtDelta: LongInt); {Greenwich mean time}

END;
4-52 Summary of the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
UnsignedWide = {Microseconds procedure return type}

PACKED RECORD

hi: longInt; {high-order 32 bits}

lo: longInt; {low-order 32 bits}

END;

Routines 4

Getting the Current Date and Time
FUNCTION ReadDateTime (VAR time: LongInt) : OSErr;

PROCEDURE GetDateTime (VAR secs: LongInt);

PROCEDURE GetTime (VAR d: DateTimeRec);

Setting the Current Date and Time
FUNCTION SetDateTime (time: LongInt) : OSErr;

PROCEDURE SetTime (d: DateTimeRec);

Converting Between Date-Time Formats
{each procedure has two spellings, see Table 4-4 for the alternate spelling}

PROCEDURE SecondsToDate (secs: LongInt; VAR d: DateTimeRec);

PROCEDURE DateToSeconds (d: DateTimeRec; VAR secs: LongInt);

Converting Between Long Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}

PROCEDURE LongSecondsToDate (VAR lSecs: LongDateTime;
VAR lDate: LongDateRec);

PROCEDURE LongDateToSeconds (lDate: LongDateRec; VAR lSecs: LongDateTime);

Modifying and Verifying Long Date-Time Records

FUNCTION ToggleDate (VAR lSecs: LongDateTime; field: LongDateField;
delta: DateDelta; ch: Integer;
params: TogglePB): ToggleResults;

FUNCTION ValidDate (vDate: LongDateRec; flags: LongInt;
VAR newSecs: LongDateTime): Integer;

Reading and Writing Location Data

PROCEDURE ReadLocation (VAR loc: MachineLocation);

PROCEDURE WriteLocation (VAR loc: MachineLocation);
Summary of the Date, Time, and Measurement Utilities 4-53

C H A P T E R 4

Date, Time, and Measurement Utilities
Determining the Measurement System

{this function has two spellings, see Table 4-4 for the alternate spelling}

FUNCTION IsMetric: Boolean;

Measuring Time

PROCEDURE Microseconds (VAR microTickCount UnsignedWide);

C Summary 4

Constants 4

enum

{

/*date equates for ToggleDate control bits*/

validDateFields = -1, /*date fields are valid*/

genCdevRangeBit = 27, /*restrict date/time to range used by */

/* General Controls control panel*/

togDelta12HourBit = 28, /*if toggling hour up/down, restrict */

/* to 12-hour range*/

togCharZCycleBit = 29, /*modifier for TogChar12HourBit to */

/* accept hours 0..11 only*/

togChar12HourBit = 30, /*if toggling hour by char, accept */

/* hours 1..12 only*/

smallDateBit = 31, /*restrict valid date/time to range */

/* of Time global*/

/*long date-time record field masks*/

eraMask = 0x0001, /*era*/

yearMask = 0x0002, /*year*/

monthMask = 0x0004, /*day*/

dayMask = 0x0008, /*month*/

hourMask = 0x0010, /*hour*/

minuteMask = 0x0020, /*minute*/

secondMask = 0x0040, /*second*/

dayOfWeekMask = 0x0080, /*day of the week*/

dayOfYearMask = 0x0100, /*day of the year*/

weekOfYearMask = 0x0200, /*week of the year*/

pmMask = 0x0400 /*evening (P.M.)*/

};
4-54 Summary of the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
enum

{

/*default value for togFlags field in the toggle parameter block and */

/* default value for the flags parameter passed to the Verify function*/

dateStdMask = 0x007F, /*default value for checking era */

/* through second fields*/

};

Data Types 4

struct DateTimeRec /*date-time record*/

{

short year; /*year*/

short month; /*month*/

short day; /*day of the month*/

short hour; /*hour*/

short minute; /*minute*/

short second; /*second*/

short dayOfWeek; /*day of the week*/

};

typedef struct DateTimeRec DateTimeRec;

enum /*long date field enumeration*/

{

eraField, yearField, monthField, dayField, hourField, minuteField,

secondField,dayOfWeekField, dayOfYearField, weekOfYearField, pmField,

res1Field, res2Field, res3Field

};

typedef unsigned char LongDateField;

typedef comp LongDateTime; /*date and time in 64-bit SANE comp format*/

union LongDateCvt /*long date-time conversion record*/

{

comp c; /*copy field into a LongDateTime variable*/

struct

{

long lHigh; /*high-order 32 bits*/

long lLow; /*low-order 32 bits*/

} hl;

};

typedef union LongDateCvt LongDateCvt;
Summary of the Date, Time, and Measurement Utilities 4-55

C H A P T E R 4

Date, Time, and Measurement Utilities
union LongDateRec /*long date-time record*/

{

struct

{

short era; /*era*/

short year; /*year*/

short month; /*month*/

short day; /*day of the month*/

short hour; /*hour*/

short minute; /*minute*/

short second; /*second*/

short dayOfWeek; /*day of the week*/

short dayOfYear; /*day of the year*/

short weekOfYear; /*week of the year*/

short pm; /*half of day--0 for morning, 1 for evening*/

short res1; /*reserved*/

short res2; /*reserved*/

short res3; /*reserved*/

} ld;

short list[14]; /*index by LongDateField*/

struct

{

short eraAlt; /*era*/

DateTimeRec oldDate; /*date-time record*/

} od;

};

typedef union LongDateRec LongDateRec;

struct TogglePB /*toggle parameter block*/

{

long togFlags; /*flags*/

ResType amChars; /*from 'itl0' resource, but made uppercase*/

ResType pmChars; /*from 'itl0' resource, but made uppercase*/

long reserved[4]; /*reserved*/

};

typedef struct TogglePB TogglePB;

typedef short ToggleResults; /*ToggleDate function return type*/

typedef char DateDelta; /*ToggleDate function delta field type*/

struct MachineLocation /*geographic location record*/

{

Fract latitude; /*latitude*/
4-56 Summary of the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
Fract longitude; /*longitude*/

union

{

char dlsDelta; /*daylight saving time*/

long gmtDelta; /*Greenwich mean time*/

} gmtFlags;

};

typedef struct MachineLocation MachineLocation;

struct UnsignedWide /*Microseconds procedure return type*/

{

unsigned long hi; /*high-order 32 bits*/

unsigned long lo; /*high-order 32 bits*/

};

typedef struct UnsignedWide UnsignedWide;

Routines 4

Getting the Current Date and Time

pascal OSErr ReadDateTime (unsigned long *time);

pascal void GetDateTime (unsigned long *secs);

pascal void GetTime (DateTimeRec *d);

Setting the Current Date and Time

pascal OSErr SetDateTime (unsigned long time);

pascal void SetTime (const DateTimeRec *d);

Converting Between Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}

pascal void SecondsToDate (unsigned long secs, DateTimeRec *d);

pascal void DateToSeconds (const DateTimeRec *d, unsigned long *secs);

Converting Between Long Date-Time Formats

{each procedure has two spellings, see Table 4-4 for the alternate spelling}

pascal void LongSecondsToDate

(LongDateTime *lSecs, LongDateRec *lDate);

pascal void LongDateToSeconds
(const LongDateRec *lDate, LongDateTime *lSecs);
Summary of the Date, Time, and Measurement Utilities 4-57

C H A P T E R 4

Date, Time, and Measurement Utilities
Modifying and Verifying Long Date-Time Records

pascal ToggleResults ToggleDate
(LongDateTime *lSecs, LongDateField field,
DateDelta delta, short ch,
const TogglePB *params);

pascal short ValidDate (const LongDateRec vDate, long flags,
 LongDateTime *newSecs);

Reading and Writing Location Data

pascal void ReadLocation (MachineLocation *loc);

pascal void WriteLocation (MachineLocation *loc);

Determining the Measurement System

{this functiosn has two spellings, see Table 4-4 for the alternate spelling}

pascal Boolean IsMetric (void);

Measuring Time

pascal void Microseconds (UnsignedWide *microTickCount);
4-58 Summary of the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
Assembly-Language Summary 4

Data Structures 4

Date-Time Record

Long Date Field Enumeration

Long Date-Time Value

0 dtYear word year

2 dtMonth word month

4 dtDay word day of the month

6 dtHour word hour

8 dtMinute word minute

10 dtSecond word second

12 dtDayOfWeek word day of the week

0 eraField byte era

1 yearField byte year

2 monthField byte month

3 dayField byte day of the month

4 hourField byte hour

5 minuteField byte minute

6 secondField byte second

7 dayOfWeekField byte day of the week

8 dayOfYearField byte day of the year

9 weekOfYearField byte week of the year

10 pmField byte pm

11 res1Field byte reserved

12 res2Field byte reserved

13 res3Field byte reserved

0 highLong long high-order 32 bits

4 lowLong long low-order 32 bits
Summary of the Date, Time, and Measurement Utilities 4-59

C H A P T E R 4

Date, Time, and Measurement Utilities
Long Date-Time Record

Geographic Location Record

Toggle Parameter Block

Unsigned Wide Record

Global Variables 4

0 era word era

2 year word year

4 month word month

6 day word day of the month

8 hour word hour

10 minute word minute

12 second word second

14 dayOfWeek word day of the week

16 dayOfYear word day of the year

18 weekOfYear word week of the year

20 pm word half of day, morning or evening

22 ldReserved 6 bytes reserved

0 latitude long latitude

4 longitude long longitude

8 dlsDelta byte daylight savings time

9 gmtDelta 3 bytes Greenwich mean time

0 togFlags long flags

2 amChars word ResType from 'itl0' made uppercase

4 pmChars word ResType from 'itl0' made uppercase

6 reserved word reserved

0 hi long high-order 32 bits

4 lo long low-order 32 bits

Time The number of seconds since midnight, January 1, 1904
4-60 Summary of the Date, Time, and Measurement Utilities

C H A P T E R 4

Date, Time, and Measurement Utilities

4
D

ate, T
im

e, and M
easurem

ent U
tilities
Result Codes 4
toggleErr5 9 Reserved
toggleErr4 8 Reserved
toggleErr3 7 Reserved
toggleOutOfRange 7 Out of range (synonym for toggleErr3)
toggleBadNum 6 Tried to use character as number
toggleUnknown 5 Unknown error
toggleBadChar 4 Invalid character
toggleBadDelta 3 Invalid delta value
toggleBadField 2 Invalid field number
toggleOK 1 No error
toggleUndefined 0 Undefined error
noErr 0 No error
clkRdErr –85 Unable to read clock
clkWrErr –86 Time written did not verify
Summary of the Date, Time, and Measurement Utilities 4-61

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Gestalt Manager TOC
	 Gestalt Manager
	 System Error Handler TOC
	 System Error Handler
	 Mathematical and Logical Utilities TOC
	 Mathematical and Logical Utilities
	 Date, Time, and Measurement Utilities TOC
	Date, Time, and Measurement Utilities
	About the Date, Time, and Measurement Utilities
	Date and Time
	Geographic Location and Time Zone
	System of Measurement
	Time Measurement

	Using the Date, Time, and Measurement Utilities
	Getting the Current Date and Time
	Setting the Current Date and Time
	Converting Date-Time Formats
	Calculating Dates
	Working With Different Calendar Systems
	Handling Geographic Location and Time-Zone Data
	Determining the Measurement System
	Determining the Number of Elapsed Microseconds

	Date, Time, and Measurement Utilities Reference
	Data Structures
	The Date-Time Record
	Long Date-Time Value and Long Date-Time Conversion...
	The Long Date-Time Record
	The Geographic Location Record
	The Toggle Parameter Block
	The Unsigned Wide Record

	Routines
	Getting the Current Date and Time
	Setting the Current Date and Time
	Converting Between Date-Time Formats
	Converting Between Long Date-Time Format
	Modifying and Verifying Long Date-Time Records
	Reading and Writing Location Data
	Determining the Measurement System
	Measuring Time

	Summary of the Date, Time, and Measurement Utiliti...
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	Result Codes

	 Control Panels Extensions TOC
	 Control Panels Extensions
	 Queue Utilities TOC
	 Queue Utilities
	 Parameter RAM Utilities TOC
	 Parameter RAM Utilities
	 Trap Manager TOC
	 Trap Manager
	 Start Manager TOC
	 Start Manager
	 Package Manager TOC
	 Package Manager
	 Glossary
	 Index
	 Colophon

