

C H A P T E R 4

4

E
xception M

anager

Exception Manager 4

This chapter describes the Exception Manager, the part of the Macintosh system software
that handles exceptions that occur during the execution of PowerPC applications or
other software. The Exception Manager provides a simple way for your application to
handle exceptions that occur in its context.

You need the information in this chapter if you need to handle exceptions that occur in
native PowerPC code. If your application or other software is written in 680x0 code and
therefore executes under the 68LC040 Emulator on PowerPC processor-based Macintosh
computers, you do not in general need to read this chapter, because the existing 680x0
mechanism for handling exceptions is fully supported by the emulator.

IMPORTANT

The Exception Manager is available only in the system software for
PowerPC processor-based Macintosh computers. In addition, not all
features described here are available in the first version. For example,
the Exception Manager in the first version does not return exceptions
that arise during floating-point calculations. If your application
performs floating-point operations and needs to handle any exceptions
that arise during those operations, you should use the exception-
handling mechanisms provided by the PowerPC Numerics library. See
Inside Macintosh: PowerPC Numerics for complete information. ▲

To use this chapter, you should already be generally familiar with the Macintosh
Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory
for information about the run-time architecture of the 680x0 environment. You also need
to be familiar with the run-time architecture of PowerPC processor-based Macintosh
computers, as explained in the chapter “Introduction to PowerPC System Software.”

This chapter begins with a description of exceptions and their handling in the PowerPC
native environment. Then it shows how to use the Exception Manager to install your
own exception handler.

About the Exception Manager 4

An exception is an error or other special condition detected by the microprocessor in the
course of program execution. When an exception occurs, the Operating System transfers
control synchronously to the relevant exception handler, which attempts to recover
gracefully from the error or special condition. The kinds of errors or other conditions
that give rise to exceptions differ from one processor to another. On 680x0 processors, for
example, an exception is generated if the currently executing program attempts to divide
by zero. By contrast, the PowerPC processor does not generate an exception under
that condition.

In general, applications or other types of software (including much of the Macintosh
Operating System and the Macintosh Toolbox) cannot tolerate the occurrence of
exceptions. To provide some measure of protection from potentially fatal exceptions, the
Operating System installs its own set of exception handlers. You can, if necessary, use the
About the Exception Manager 4-3

C H A P T E R 4

Exception Manager

Exception Manager to install application-specific exception handlers. Any exception
handlers that you install apply only to your current context and only to exceptions that
are not first intercepted and handled by the Operating System.

IMPORTANT

Not all exceptions that occur in your application’s context are passed to
your exception handler. Certain exceptions (for example, page faults) are
handled completely by the Operating System’s exception handlers. As a
result, those exceptions do not affect the normal execution of your
application or other software. ▲

When your exception handler is called, the Exception Manager passes it a parameter that
contains information about the state of the machine at the time the exception occurred.
On PowerPC processor-based Macintosh computers, this information includes

■ the kind of exception that occurred

■ the contents of the 32 general-purpose registers

■ the contents of the special-purpose registers (such as the Link Register and the
Condition Register)

■ the contents of the 32 floating-point registers

Your exception handler can handle the exception in various ways. For example, it might
modify the machine state and then resume execution. Similarly, your exception handler
might simply transfer control to some other code. In rare instances, however, your
exception handler might not be able to handle the exception; when this happens, the
exception is usually fatal to your application.

Exception Contexts 4
In the first version of the system software for PowerPC processor-based Macintosh
computers, each application can install its own exception handler, which remains the
active handler as long as that application is the current application. In other words, the
exception handler of the current application is called for all exceptions not intercepted
by the Operating System. In general, this mechanism results in the execution of the
appropriate exception handler. It’s possible, however, for code you install to cause
exceptions that are handled by some other application’s exception handler. For instance,
exceptions that arise during the asynchronous execution of code (such as VBL tasks,
Time Manager tasks, and I/O completion routines) are handled by the exception handler
of whatever application happens to be the current application at the time the exception
occurs. If that application has not installed an exception handler, the exception might not
be handled.

All asynchronous code executed in the first version of the system software for PowerPC
processor-based Macintosh computers is executed under the 68LC040 Emulator, in
which case the exceptions are handled using the existing 680x0 mechanisms. If, however,
a routine executed asynchronously calls some code that is native PowerPC code, and if
that native code causes an exception to occur, then the current application’s exception
handler (if any) is called to handle the exception.
4-4 About the Exception Manager

C H A P T E R 4

Exception Manager

4

E
xception M

anager

Types of Exceptions 4
In the first version of the system software for PowerPC processor-based Macintosh
computers, the following conditions can cause exceptions while your application or
other software is executing in native mode:

■ an attempt to write to write-protected memory

■ an attempt to access (that is, read, write, or fetch) data at a logical address that is
not assigned

■ an attempt to execute trap instructions or other instructions that are not part of the
supported application programming interface

■ an attempt to execute invalid instructions or an invalid form of a valid instruction

■ an attempt to execute privileged instructions when the system is not in
privileged mode

■ in appropriate circumstances, reaching a breakpoint

■ in appropriate circumstances, reaching a trace point

The Exception Manager defines a number of exception codes that indicate these and
other conditions. An exception code is a constant that indicates which kind of exception
has occurred.

typedef unsigned long ExceptionKind; /*kind of exception*/

enum {

/*exception codes*/

unknownException = 0, /*unknown exception type*/

illegalInstructionException = 1, /*illegal instruction*/

trapException = 2, /*unknown trap type*/

accessException = 3, /*failed memory access*/

unmappedMemoryException = 4, /*memory is unmapped*/

excludedMemoryException = 5, /*memory is excluded*/

readOnlyMemoryException = 6, /*memory is read-only*/

unresolvablePageFaultException = 7, /*unresolvable page fault*/

privilegeViolationException = 8, /*privilege violation*/

traceException = 9, /*trace*/

instructionBreakpointException = 10, /*instruction breakpoint*/

dataBreakpointException = 11, /*data breakpoint*/

integerException = 12, /*unused*/

floatingPointException = 13, /*floating point*/

stackOverflowException = 14, /*stack overflow*/

terminationException = 15 /*task is being terminated*/

};
About the Exception Manager 4-5

C H A P T E R 4

Exception Manager

Not all of these exception codes are used in the first version of the system software for
PowerPC processor-based Macintosh computers; see “Exception Kinds” on page 4-9 for
a complete explanation of these constants.

Using the Exception Manager 4

The Exception Manager provides a routine that you can use to install an exception
handler and remove an exception handler. This section describes how to use this routine
and how to write an exception handler.

Installing an Exception Handler 4
You can install an exception handler for your application’s context by calling the
InstallExceptionHandler routine. You pass InstallExceptionHandler the
address of your exception handler:

prevHandler = InstallExceptionHandler((ExceptionHandler)myHandler);

The InstallExceptionHandler function replaces any existing exception handler
already installed for the current execution context (that is, for the current application)
and returns the address of that previously installed handler. Listing 4-1 shows a
routine that installs an exception handler as part of a wrapper around the
NewEmptyHandle function.

Listing 4-1 Installing an exception handler

static jump_buf *curJmpBuf;

Handle __NewEmptyHandle (ushort trapWord)

{

Handle returnVal;

OSErr myErr;

jmp_buf localJump, *oldJump;

ExceptionHandler prevHandler;

oldJump = curJmpBuf; /*save current jump address*/

curJmpBuf = &localJump; /*install new jump address*/

prevHandler = InstallExceptionHandler((ExceptionHandler)MyHandler);

if (myErr = setjmp(localJump)) {

LMSetMemErr(theErr); /*set memory error*/

returnVal = 0; /*no bytes allocated*/

}

4-6 Using the Exception Manager

C H A P T E R 4

Exception Manager

4

E
xception M

anager

else

myErr = c_NewEmptyHandle(&returnVal, trapWord);

InstallExceptionHandler(prevHandler); /*restore previous handler*/

curJmpBuf = oldJump; /*restore original jump address*/

return (returnVal);

}

You can remove the current exception handler from your application’s context by
passing the value nil as the parameter to InstallExceptionHandler, as follows:

prevHandler = InstallExceptionHandler(nil);

Writing an Exception Handler 4
An exception handler has the following prototype:

typedef OSStatus (*ExceptionHandler) (ExceptionInformation *theException);

When your handler is called, the Exception Manager passes it the address of an exception
information record, which contains information about the exception, such as its type and
the state of the machine at the time the exception occurred. The exception information
record is defined by the ExceptionInformation data type.

struct ExceptionInformation {

ExceptionKind theKind;

MachineInformation *machineState;

RegisterInformation *registerImage;

FPUInformation *FPUImage;

union {

MemoryExceptionInformation *memoryInfo;

} info;

};

typedef struct ExceptionInformation ExceptionInformation;

The theKind field contains an exception code. The fields machineState and
registerImage contain information about the special-purpose and general-purpose
registers, respectively. The values in the special-purpose registers are contained in a
machine information record, defined by the MachineInformation data type.

struct MachineInformation {

UnsignedWide CTR; /*Count Register*/

UnsignedWide LR; /*Link Register*/

UnsignedWide PC; /*Program Counter Register*/

unsigned long CR; /*Condition Register*/

unsigned long XER; /*Fixed-Point Exception Register*/
Using the Exception Manager 4-7

C H A P T E R 4

Exception Manager

unsigned long MSR; /*Machine State Register*/

};

typedef struct MachineInformation MachineInformation;

As you can see, this record contains primarily the values in the special-purpose registers.
The values in the general-purpose registers are encoded using a structure of type
RegisterInformation, which is effectively an array of 32 register values.

Note
For a more detailed description of the exception information record
and its associated data types, see “Data Structures” beginning on
page 4-12. ◆

Your exception handler can perform any actions necessary or useful for handling the
exception. You might attempt to recover from the error or simply terminate your
application gracefully. The specific actions you perform depend, of course, on the type
of exception that has occurred. In general, however, you will probably want to use
one or the other of two basic techniques for recovering from the exception.

■ Your exception handler might simply transfer control away from the point of
execution. For example, you might jump back into your main event loop or into
some error recovery code.

■ Alternatively, your exception handler might attempt to repair the cause of the excep-
tion by suitably modifying the state of the machine (as reported to your exception
handler in an exception information record). You can alter any piece of that machine
state, including the PC register. After you have suitably modified the relevant data,
your handler should return, passing back a result code. The Exception Manager
inspects the result code you return and determines what further actions to take. If you
pass back noErr, then the Exception Manager restores the machine state to the state
contained in the exception information record and resumes execution. If you pass
back any other result code, the Operating System proceeds as if the exception had
occurred but no exception handler was present.

Listing 4-2 shows a simple exception handler MyHandler.

Listing 4-2 A native exception handler

OSStatus MyHandler (ExceptionInformation *theException)

{

if ((theException->theKind >= accessException)

&& (theException ->theKind <= unresolvablePageFaultException))

longjmp(*curJmpBuf, memWZErr);

else

return (-1);

}

As you can see, the MyHandler exception handler looks for memory-related exceptions
and, if it finds any, transfers control by calling the longjmp function.
4-8 Using the Exception Manager

C H A P T E R 4

Exception Manager

4

E
xception M

anager

▲ W A R N I N G

Returning a value other than noErr from your exception handler is
likely to cause the current application to be terminated. ▲

▲ W A R N I N G

Your exception handler must be reentrant if it might itself cause any
exceptions to be generated. For example, if your exception handler
calls the Debugger or DebugStr routine, the trap exception (of type
trapException) is generated. Normally, a debugger intercepts and
handles those kinds of exceptions. If, however, no debugger is installed
in the system, your exception handler might be called repeatedly.
Eventually, the stack will grow to the lowest memory address,
overwriting essential data and causing a system crash. ▲

Exception Manager Reference 4

This section describes the constants, data structures, and routine provided by the
Exception Manager. See “Using the Exception Manager” beginning on page 4-6
for detailed instructions on using that routine.

Constants 4
This section describes the constants provided by the Exception Manager.

Exception Kinds 4

The Exception Manager indicates to your exception handler the kind of exception
that has occurred by passing it an exception code. The exception kind is indicated by
a constant.

Note
Some kinds of exceptions occur only on specific types of
processors or only in specific system software versions. ◆

enum {

/*exception codes*/

unknownException = 0, /*unknown exception type*/

illegalInstructionException = 1, /*illegal instruction*/

trapException = 2, /*unknown trap type*/

accessException = 3, /*failed memory access*/

unmappedMemoryException = 4, /*memory is unmapped*/

excludedMemoryException = 5, /*memory is excluded*/

readOnlyMemoryException = 6, /*memory is read-only*/

unresolvablePageFaultException = 7, /*unresolvable page fault*/
Exception Manager Reference 4-9

C H A P T E R 4

Exception Manager

privilegeViolationException = 8, /*privilege violation*/

traceException = 9, /*trace*/

instructionBreakpointException = 10, /*instruction breakpoint*/

dataBreakpointException = 11, /*data breakpoint*/

integerException = 12, /*unused*/

floatingPointException = 13, /*floating point*/

stackOverflowException = 14, /*stack overflow*/

terminationException = 15 /*task is being terminated*/

};

Constant descriptions

unknownException
Unknown kind of exception. This exception code is defined for
completeness only; it is never actually passed to an exception
handler.

illegalInstructionException
Illegal instruction exception. The processor attempted to decode an
instruction that is either illegal or unimplemented.

trapException Unknown trap type exception. The processor decoded a trap type
instruction that is not used by the system software.

accessException
Memory access exception. A memory reference resulted in a page
fault because the physical address is not accessible.

unmappedMemoryException
Unmapped memory exception. A memory reference was made to
an address that is unmapped.

excludedMemoryException
Excluded memory exception. A memory reference was made to an
excluded address.

readOnlyMemoryException
Read-only memory exception. A memory reference was made to an
address that cannot be written to.

unresolvablePageFaultException
Unresolvable page fault exception. A memory reference resulted in
a page fault that could not be resolved. The theError field of the
memory exception record contains a status value indicating the
reason for this unresolved page fault.

privilegeViolationException
Privilege violation exception. The processor decoded a privileged
instruction but was not executing in the privileged mode.

traceException
Trace exception. This exception is used by debuggers to support
single-step operations.

instructionBreakpointException
Instruction breakpoint exception. This exception is used by
debuggers to support breakpoint operations.
4-10 Exception Manager Reference

C H A P T E R 4

Exception Manager

4
E

xception M
anager
dataBreakpointException
Data breakpoint exception. This exception is used by debuggers to
support breakpoint operations.

integerException
Integer exception. This exception is not used by PowerPC
processors.

floatingPointException
Floating-point arithmetic exception. The floating-point processor
has exceptions enabled and an exception has occurred. (This
exception is not used in the first version of the system software
for PowerPC processor-based Macintosh computers.)

stackOverflowException
Stack overflow exception. The stack limits have been exceeded and
the stack cannot be expanded. (This exception is not used in the first
version of the system software for PowerPC processor-based
Macintosh computers.)

terminationException
Termination exception. The task is being terminated. (This exception
is not used in the first version of the system software for PowerPC
processor-based Macintosh computers.)

Memory Reference Kinds 4

For each memory-related exception, the Exception Manager returns a memory exception
record. The theReference field of that record contains a memory reference code that
indicates the kind of memory operation that caused the exception.

enum {

/*memory reference codes*/

writeReference = 0, /*write operation*/

readReference = 1, /*read operation*/

fetchReference = 2 /*fetch operation*/

};

Constant descriptions

writeReference
The operation was an attempt to write data to memory.

readReference The operation was an attempt to read data from memory.
fetchReference The operation was an attempt to fetch a processor instruction. (Not

all processors are able to distinguish read operations from fetch
operations. As a result, fetch operation failures might instead be
reported as failed read operations.)
Exception Manager Reference 4-11

C H A P T E R 4

Exception Manager
Data Structures 4
This section describes the data structures provided by the Exception Manager.

Machine Information Records 4

The Exception Manager uses a machine information record to encode the state of the
special-purpose registers at the time an exception occurs. A machine information record
is defined by the MachineInformation data type.

struct MachineInformation {

UnsignedWide CTR; /*Count Register*/

UnsignedWide LR; /*Link Register*/

UnsignedWide PC; /*Program Counter Register*/

unsigned long CR; /*Condition Register*/

unsigned long XER; /*Fixed-Point Exception Register*/

unsigned long MSR; /*Machine State Register*/

};

typedef struct MachineInformation MachineInformation;

Note
The fields CTR, LR, and PC are declared as the 64-bit type
UnsignedWide to allow compatibility with 64-bit processors.
On 32-bit processors, the register values are returned in the
low-order 32 bits. The high-order 32 bits are undefined. ◆

Field descriptions

CTR The contents of the Count Register (CTR).
LR The contents of the Link Register (LR).
PC The contents of the Program Counter Register (PC).
CR The contents of the Condition Register (CR).
XER The contents of the Fixed-Point Exception Register (XER).
MSR The contents of the Machine State Register (MSR).

IMPORTANT

The fields of a machine information record are aligned in memory in
accordance with 680x0 alignment conventions. ▲

Register Information Records 4

The Exception Manager uses a register information record to encode the state of the
general-purpose registers at the time an exception occurs. A register information record
is defined by the RegisterInformation data type.
4-12 Exception Manager Reference

C H A P T E R 4

Exception Manager

4
E

xception M
anager
struct RegisterInformation {

UnsignedWide R0;

UnsignedWide R1;

UnsignedWide R2;

UnsignedWide R3;

UnsignedWide R4;

UnsignedWide R5;

UnsignedWide R6;

UnsignedWide R7;

UnsignedWide R8;

UnsignedWide R9;

UnsignedWide R10;

UnsignedWide R11;

UnsignedWide R12;

UnsignedWide R13;

UnsignedWide R14;

UnsignedWide R15;

UnsignedWide R16;

UnsignedWide R17;

UnsignedWide R18;

UnsignedWide R19;

UnsignedWide R20;

UnsignedWide R21;

UnsignedWide R22;

UnsignedWide R23;

UnsignedWide R24;

UnsignedWide R25;

UnsignedWide R26;

UnsignedWide R27;

UnsignedWide R28;

UnsignedWide R29;

UnsignedWide R30;

UnsignedWide R31;

};

typedef struct RegisterInformation RegisterInformation;

Field descriptions

R0 The contents of general-purpose register GPR0.
R1 The contents of general-purpose register GPR1.
R2 The contents of general-purpose register GPR2.
R3 The contents of general-purpose register GPR3.
R4 The contents of general-purpose register GPR4.
R5 The contents of general-purpose register GPR5.
Exception Manager Reference 4-13

C H A P T E R 4

Exception Manager
R6 The contents of general-purpose register GPR6.
R7 The contents of general-purpose register GPR7.
R8 The contents of general-purpose register GPR8.
R9 The contents of general-purpose register GPR9.
R10 The contents of general-purpose register GPR10.
R11 The contents of general-purpose register GPR11.
R12 The contents of general-purpose register GPR12.
R13 The contents of general-purpose register GPR13.
R14 The contents of general-purpose register GPR14.
R15 The contents of general-purpose register GPR15.
R16 The contents of general-purpose register GPR16.
R17 The contents of general-purpose register GPR17.
R18 The contents of general-purpose register GPR18.
R19 The contents of general-purpose register GPR19.
R20 The contents of general-purpose register GPR20.
R21 The contents of general-purpose register GPR21.
R22 The contents of general-purpose register GPR22.
R23 The contents of general-purpose register GPR23.
R24 The contents of general-purpose register GPR24.
R25 The contents of general-purpose register GPR25.
R26 The contents of general-purpose register GPR26.
R27 The contents of general-purpose register GPR27.
R28 The contents of general-purpose register GPR28.
R29 The contents of general-purpose register GPR29.
R30 The contents of general-purpose register GPR30.
R31 The contents of general-purpose register GPR31.

IMPORTANT

The fields of a register information record are aligned in memory
in accordance with 680x0 alignment conventions. ▲

Floating-Point Information Records 4

The Exception Manager uses a floating-point information record to encode the state of
the floating-point unit at the time an exception occurs. A floating-point information
record is defined by the FPUInformation data type.

struct FPUInformation {

UnsignedWide Registers[32]; /*FPU registers*/

unsigned long FPSCR; /*status/control reg*/

};

typedef struct FPUInformation FPUInformation;
4-14 Exception Manager Reference

C H A P T E R 4

Exception Manager

4
E

xception M
anager
Field descriptions

Registers The contents of the 32 floating-point registers. This array is
zero-based; for example, the contents of FPR0 are accessed
as Registers[0].

FPSCR The contents of the Floating-Point Status and Control
Register (FPSCR).

IMPORTANT

The fields of a floating-point information record are aligned in memory
in accordance with 680x0 alignment conventions. ▲

Memory Exception Records 4

The Exception Manager uses a memory exception record to present additional informa-
tion about an exception that occurs as the result of a failed memory reference. A memory
exception record is defined by the MemoryExceptionInformation data type.

struct MemoryExceptionInformation {

AreaID theArea;

LogicalAddress theAddress;

OSStatus theError;

MemoryReferenceKind theReference;

};

typedef struct MemoryExceptionInformation MemoryExceptionInformation;

Field descriptions

theArea The area containing the logical address of the exception. When the
memory reference that caused the exception is to an unmapped
range of the logical address space, this field contains the value
kNoAreaID.

theAddress The logical address of the exception.
theError A status value. When the exception kind is

unresolvablePageFaultException, this field contains a value
that indicates the reason the page fault could not be resolved.

theReference The type of memory reference that caused the exception. This field
contains one of these constants:

enum {

writeReference = 0, /*write operation*/

readReference = 1, /*read operation*/

fetchReference = 2 /*fetch operation*/

};

See “Memory Reference Kinds” on page 4-11 for a description of
these constants.
Exception Manager Reference 4-15

C H A P T E R 4

Exception Manager
IMPORTANT

The fields of a memory exception record are aligned in memory in
accordance with 680x0 alignment conventions. ▲

Exception Information Records 4

The Exception Manager passes an exception information record to your exception
handler whenever your handler is called as the result of some exception. The exception
information record indicates the nature of the exception and provides other information
that might be useful to your handler. An exception information record is defined by the
ExceptionInformation data type.

struct ExceptionInformation {

ExceptionKind theKind;

MachineInformation *machineState;

RegisterInformation *registerImage;

FPUInformation *FPUImage;

union {

MemoryExceptionInformation *memoryInfo;

} info;

};

typedef struct ExceptionInformation ExceptionInformation;

Field descriptions

theKind An exception code indicating the kind of exception that occurred.
See “Exception Kinds” on page 4-9 for a list of the available
exception codes.

machineState The state of the machine at the time the exception occurred. See
“Machine Information Records” on page 4-12 for details on the
MachineInformation data type.

registerImage The contents of the general-purpose registers at the time the
exception occurred. See “Register Information Records” on
page 4-12 for details on the RegisterInformation data type.

FPUImage The state of the floating-point processor at the time the exception
occurred. See “Floating-Point Information Records” on page 4-14
for details on the FPUInformation data type.

memoryInfo The logical address of the location in memory that triggered
the exception.

IMPORTANT

The fields of an exception information record are aligned in memory in
accordance with 680x0 alignment conventions. ▲
4-16 Exception Manager Reference

C H A P T E R 4

Exception Manager

4
E

xception M
anager
Exception Manager Routines 4
You can use the Exception Manager’s InstallExceptionHandler routine to install
an exception handler or to remove an existing exception handler.

InstallExceptionHandler 4

You can use the InstallExceptionHandler function to install an exception handler.

extern ExceptionHandler InstallExceptionHandler

(ExceptionHandler theHandler);

theHandler
The address of the exception handler to be installed.

DESCRIPTION

The InstallExceptionHandler function installs the exception handler specified by
the theHandler parameter. That handler replaces any existing exception handler
associated with the current execution context. The newly installed handler remains
active until you install some other handler or until you remove the current handler by
calling InstallExceptionHandler with theHandler set to nil.

IMPORTANT

The theHandler parameter must be the address of a transition vector
for the exception handler, not a universal procedure pointer. ▲

The InstallExceptionHandler function returns the address of any existing
exception handler as its function result. If there is no exception handler in place
for the current execution context, InstallExceptionHandler returns nil.

SPECIAL CONSIDERATIONS

The InstallExceptionHandler function is available to any code executing in the
PowerPC native environment. You do not need to call it if your application or other
software exists as 680x0 code and hence executes under the 68LC040 Emulator on
PowerPC processor-based Macintosh computers.

Application-Defined Routines 4
This section describes exception handlers, routines that you install using the
InstallExceptionHandler routine to handle specific types of exceptions.
Exception Manager Reference 4-17

C H A P T E R 4

Exception Manager
MyExceptionHandler 4

An exception handler should have this prototype:

OSStatus MyExceptionHandler (ExceptionInformation *theException);

theException
The address of an exception information block describing the exception
that triggered the exception handler.

DESCRIPTION

You pass the address of your MyExceptionHandler routine to the Exception Manager’s
InstallExceptionHandler function. The Exception Manager subsequently calls your
exception handler for all exceptions that arise in your application’s context that are not
intercepted by the Operating System.

Your exception handler can take whatever steps are necessary to handle the exception or
to correct the error or special condition that caused the exception. If your handler is
successful, it should return the noErr result code. If you pass back noErr, the Exception
Manager restores the machine state to the state contained in the exception information
record pointed to by the theException parameter and resumes execution.

If your handler is not able to handle the exception, it should return some other result
code. However, if your handler returns a nonzero result code, the current application is
likely to be terminated by the Process Manager.

An exception handler uses the same stack that is active at the time an exception occurs.
To ensure that no stack data is destroyed, the Exception Manager advances the stack
pointer prior to calling the exception handler.

SPECIAL CONSIDERATIONS

An exception handler must follow the same general guidelines as other kinds of
asynchronous software. For instance, it cannot cause memory to be purged or
compacted, and it should not use any handles that are not locked. See Inside Macintosh:
Processes for a description of the restrictions applying to interrupt tasks and other
asynchronous software.

An exception handler must be reentrant if it can itself generate exceptions.

SEE ALSO

See “Writing an Exception Handler” on page 4-7 for more information about writing an
exception handler.
4-18 Exception Manager Reference

C H A P T E R 4

Exception Manager

4
E

xception M
anager
Summary of the Exception Manager 4

C Summary 4

Constants 4

enum {

/*exception codes*/

unknownException = 0, /*unknown exception type*/

illegalInstructionException = 1, /*illegal instruction*/

trapException = 2, /*unknown trap type*/

accessException = 3, /*failed memory access*/

unmappedMemoryException = 4, /*memory is unmapped*/

excludedMemoryException = 5, /*memory is excluded*/

readOnlyMemoryException = 6, /*memory is read-only*/

unresolvablePageFaultException = 7, /*unresolvable page fault*/

privilegeViolationException = 8, /*privilege violation*/

traceException = 9, /*trace*/

instructionBreakpointException = 10, /*instruction breakpoint*/

dataBreakpointException = 11, /*data breakpoint*/

integerException = 12, /*unused*/

floatingPointException = 13, /*floating point*/

stackOverflowException = 14, /*stack overflow*/

terminationException = 15 /*task is being terminated*/

};

enum {

/*memory reference codes*/

writeReference = 0, /*write operation*/

readReference = 1, /*read operation*/

fetchReference = 2 /*fetch operation*/

};

Data Types 4

typedef unsigned long ExceptionKind; /*kind of exception*/

typedef unsigned long MemoryReferenceKind;
Summary of the Exception Manager 4-19

C H A P T E R 4

Exception Manager
typedef void *Ref;

typedef Ref AreaID;

typedef Ref LogicalAddress;

struct UnsignedWide {

unsigned long hi;

unsigned long lo;

};

typedef struct UnsignedWide UnsignedWide;

struct RegisterInformation {

UnsignedWide R0;

UnsignedWide R1;

UnsignedWide R2;

UnsignedWide R3;

UnsignedWide R4;

UnsignedWide R5;

UnsignedWide R6;

UnsignedWide R7;

UnsignedWide R8;

UnsignedWide R9;

UnsignedWide R10;

UnsignedWide R11;

UnsignedWide R12;

UnsignedWide R13;

UnsignedWide R14;

UnsignedWide R15;

UnsignedWide R16;

UnsignedWide R17;

UnsignedWide R18;

UnsignedWide R19;

UnsignedWide R20;

UnsignedWide R21;

UnsignedWide R22;

UnsignedWide R23;

UnsignedWide R24;

UnsignedWide R25;

UnsignedWide R26;

UnsignedWide R27;

UnsignedWide R28;

UnsignedWide R29;

UnsignedWide R30;
4-20 Summary of the Exception Manager

C H A P T E R 4

Exception Manager

4
E

xception M
anager
UnsignedWide R31;

};

typedef struct RegisterInformation RegisterInformation;

typedef long OSStatus;

typedef OSStatus (*ExceptionHandler) (ExceptionInformation *theException);

struct MachineInformation {

UnsignedWide CTR; /*Count Register*/

UnsignedWide LR; /*Link Register*/

UnsignedWide PC; /*Program Counter Register*/

unsigned long CR; /*Condition Register*/

unsigned long XER; /*Fixed-Point Exception Register*/

unsigned long MSR; /*Machine State Register*/

};

typedef struct MachineInformation MachineInformation;

struct FPUInformation {

UnsignedWide Registers[32]; /*FPU registers*/

unsigned long FPSCR; /*status/control reg*/

};

typedef struct FPUInformation FPUInformation;

struct MemoryExceptionInformation {

AreaID theArea;

LogicalAddress theAddress;

OSStatus theError;

MemoryReferenceKind theReference;

};

typedef struct MemoryExceptionInformation MemoryExceptionInformation;

struct ExceptionInformation {

ExceptionKind theKind;

MachineInformation *machineState;

RegisterInformation *registerImage;

FPUInformation *FPUImage;

union {

MemoryExceptionInformation *memoryInfo;

} info;

};

typedef struct ExceptionInformation ExceptionInformation;
Summary of the Exception Manager 4-21

C H A P T E R 4

Exception Manager
Exception Manager Routines 4

Installing Exception Handlers

extern ExceptionHandler InstallExceptionHandler
(ExceptionHandler theHandler);

Application-Defined Routines 4

Exception Handlers

OSStatus MyExceptionHandler
(ExceptionInformation *theException);
4-22 Summary of the Exception Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to PowerPC TOC
	 Introduction to PowerPC
	 Mixed Mode Manager TOC
	 Mixed Mode Manager
	 Code Fragment Manager TOC
	 Code Fragment Manager
	 Exception Manager TOC
	 Exception Manager
	About the Exception Manager
	Exception Contexts
	Types of Exceptions

	Using the Exception Manager
	Installing an Exception Handler
	Writing an Exception Handler

	Exception Manager Reference
	Constants
	Exception Kinds
	Memory Reference Kinds

	Data Structures
	Machine Information Records
	Register Information Records
	Floating-Point Information Records
	Memory Exception Records
	Exception Information Records

	Exception Manager Routines
	Application-Defined Routines

	Summary of the Exception Manager
	C Summary
	Constants
	Data Types
	Exception Manager Routines
	Application-Defined Routines

	 Glossary
	 Index
	 Colophon

