

C H A P T E R 2

2

M
ixed M

ode M
anager

Mixed Mode Manager 2

This chapter describes the Mixed Mode Manager, the part of the Macintosh system
software that manages the mixed-mode architecture of PowerPC processor-based
computers running 680x0-based code (including system software, applications, and
stand-alone code modules). The Mixed Mode Manager cooperates with the 68LC040
Emulator to provide a fast, efficient, and virtually transparent method for code in
one instruction set architecture to call code in another architecture. The Mixed Mode
Manager handles all the details of switching between architectures.

The Mixed Mode Manager is intended to operate transparently to most applications and
other software. You need the information in this chapter only if

■ you want to recompile your application into PowerPC code and your application
passes the address of some routine to the system software using a reference of
type ProcPtr

■ your application—written in either PowerPC or 680x0 code—supports installable
code modules that might be written in a different architecture

■ you are writing stand-alone code (for example, a VBL task or a component) that could
be called from either the PowerPC native environment or the 680x0 emulated
environment

■ you are writing a debugger or other software that needs to know about the structure
of the stack at any time (for example, during a mode switch)

You do not need to read this chapter if you’re simply writing 680x0 code that doesn’t call
external code modules of unknown type, or if you are writing PowerPC code that calls
other PowerPC code using a procedure pointer. In these cases, any environment switching
that might occur is handled completely transparently by the Mixed Mode Manager.

IMPORTANT

This chapter describes the operation and features of the Mixed
Mode Manager and the 68LC040 Emulator as they exist in the
first version of the system software for PowerPC processor-based
Macintosh computers. ▲

To use this chapter, you should already be generally familiar with the Macintosh
Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory
for information about the run-time architecture of the 680x0 environment. You also need
to be familiar with the run-time architecture of PowerPC processor-based Macintosh
computers, as explained in the chapter “Introduction to PowerPC System Software.”

This chapter begins by describing the mixed-mode architecture of PowerPC processor-
based Macintosh computers and the operations of the Mixed Mode Manager. Then it
shows how to use the Mixed Mode Manager to call external code.
2-3

C H A P T E R 2

Mixed Mode Manager

About the Mixed Mode Manager 2

The Mixed Mode Manager is the part of the Macintosh Operating System that allows
PowerPC processor-based Macintosh computers to cooperatively run 680x0 applications,
PowerPC applications, 680x0 system software, and PowerPC system software. It
provides a number of capabilities, including

■ transparent access to 680x0-based system software from PowerPC applications

■ transparent access to PowerPC processor-based system software from 680x0
applications

■ a method—independent of the instruction set architecture—of calling an external
piece of code. This includes
n transparent access to PowerPC code by 680x0 applications
n system support for calling 680x0 code from PowerPC code
n system support for calling PowerPC code from 680x0 code

■ support for patching PowerPC or 680x0 code with PowerPC or 680x0 code

■ support for stand-alone code resources containing either 680x0 or PowerPC code

In short, the Mixed Mode Manager is intended to provide both PowerPC processor-
based and 680x0-based code transparent access to code written in another instruction set
(or in an instruction set whose type is unknown). It does this by keeping track of what
kind of code is currently executing and, when necessary, switching modes. For example,
if some PowerPC code calls a Macintosh Operating System routine that exists only in
680x0 form, the Mixed Mode Manager translates the routine’s parameters from their
PowerPC arrangement (for example, stored in registers GPR3 and GPR4) into the
appropriate 680x0 arrangement (for example, stored in registers D0 and D1, with the
result placed into register A0).

The Mixed Mode Manager is an integral part of the system software for PowerPC
processor-based Macintosh computers. It is designed to hide, as much as possible, the
dual nature of the operating environment supported on PowerPC processor-based
Macintosh computers running the 68LC040 Emulator. Except in specific cases described
later, your application or other software should not need to call the routines provided by
the Mixed Mode Manager.

External Code 2
To appreciate when and why you might need to use the routines provided by the Mixed
Mode Manager, you need to understand the circumstances in which you might directly
or indirectly call code in an instruction set architecture different from that of the calling
code. There are several ways to execute external code (code that is not directly contained
in your application or software), including

■ calling a trap

■ calling a device driver (for example, by calling the driver’s Open, Status, or
Control routines)
2-4 About the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2

M
ixed M

ode M
anager

■ loading and then executing code contained in a resource

■ using the address of a procedure or function obtained from an unknown source

In any of these four cases, the external code that you call might be in an instruction set
architecture that is different from the instruction set architecture of the calling code. (For
example, an application that uses the PowerPC instruction set might call a ROM-based
Toolbox trap that uses the 680x0 instruction set.) As a result, in all these cases, the Mixed
Mode Manager might have to switch environments to allow the called routine to execute
and then switch back to allow your application or other software to continue execution.

In the first two of the four cases, the Mixed Mode Manager is able to handle all required
mode switching virtually transparently to the calling software. In the two last cases,
however, you might need to intervene in the otherwise automatic operations of the
Mixed Mode Manager. This is because the Mixed Mode Manager cannot tell, from a
given pointer to some executable code, what kind of code the pointer references.

The following section describes in greater detail the extent of this problem and the way
you need to solve it, using universal procedure pointers in place of procedure pointers.
See “Using the Mixed Mode Manager” beginning on page 2-14 for code samples that
illustrate how to create and use universal procedure pointers.

Procedure Pointers 2
For present purposes, a procedure pointer is any reference generated by a compiler
when taking the address of a routine. On 680x0-based Macintosh computers, a procedure
pointer is simply the address of the routine’s executable code (and is defined by the
ProcPtr data type). On PowerPC processor-based Macintosh computers, a procedure
pointer is the address of the routine’s transition vector. Figure 2-1 illustrates the structure
of procedure pointers in each environment.

Figure 2-1 680x0 and PowerPC procedure pointers

A transition vector is a set of two addresses: the address of the routine’s executable code
and the address of the fragment’s table of contents (TOC).

Pointer

Transition vector

Code pointer

TOC pointer

680x0 procedure pointer PowerPC procedure pointer

680x0
code

Pointer PowerPC
code
About the Mixed Mode Manager 2-5

C H A P T E R 2

Mixed Mode Manager

The Macintosh programming interfaces allow you to use procedure pointers in several
ways. A procedure pointer can be

■ passed as a parameter to a system software routine (for example, the growZone
parameter to the SetGrowZone routine)

■ passed in a field of a parameter block or other data structure (for example, the
gzProc field of a Zone parameter block)

■ stored in an application-specific global data structure (for example, the addresses
stored in a grafProcs field of a graphics port)

■ installed into a vector accessed through system global variables (for example, the
jGNEFilter global variable)

■ installed into the trap dispatch table or into a patch daisy chain using the
SetToolTrapAddress or SetOSTrapAddress routine

As indicated previously, the Mixed Mode Manager cannot tell, from a given procedure
pointer, what kind of code the pointer references (either directly through a pointer of
type ProcPtr or indirectly through a transition vector). The Mixed Mode Manager
solves this problem by requiring you to use generalized procedure pointers, known as
universal procedure pointers, whenever you would previously have used a procedure
pointer. A universal procedure pointer is either a normal 680x0 procedure pointer
(that is, the address of a routine) or the address of a routine descriptor, a data structure
that the Mixed Mode Manager uses to encapsulate information about an externally
referenced routine. A routine descriptor describes the address of the routine, its
parameters, and its calling conventions.

typedef RoutineDescriptor *UniversalProcPtr;

Note
See “Routine Descriptors” on page 2-37 for a description
of the fields of a routine descriptor. ◆

The Macintosh application programming interfaces have been revised for the PowerPC
platform to change all references to procedure pointers to references to universal
procedure pointers. (The new interfaces are called the universal interface files.) For
example, the SetGrowZone function was previously declared in the interface file
Memory.h like this:

typedef ProcPtr GrowZoneProcPtr;

pascal void SetGrowZone (GrowZoneProcPtr growZone);

In the updated interface file Memory.h, SetGrowZone is declared like this:

typedef UniversalProcPtr GrowZoneUPP;

extern pascal void SetGrowZone (GrowZoneUPP growZone);

This redefinition of all procedure pointers as universal procedure pointers ensures that at
the time a procedure is to be executed, the Operating System has enough information
to determine the routine’s instruction set architecture and hence to determine whether
2-6 About the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2

M
ixed M

ode M
anager

a mode switch is necessary. In addition, if a mode switch is necessary, the universal
procedure pointer (if it is a pointer to a routine descriptor) provides information about
the routine’s calling conventions, the number and sizes of its parameters, and so forth.

It’s important to understand exactly when you need to be concerned about routine
descriptors and when you need to use the new programming interfaces when writing
your application. The following cases cover most of the relevant possibilities:

■ If your application uses the 680x0 instruction set (and therefore executes under the
68LC040 Emulator on PowerPC processor-based Macintosh computers) and does not
support external code modules, you do not need to use routine descriptors or the new
programming interfaces.

■ If your application uses the PowerPC instruction set, you must use the new program-
ming interfaces.

■ If your application uses either the 680x0 instruction set or the PowerPC instruction set
and makes calls only to code of the same type, you do not need to create routine
descriptors.

■ If your code uses the PowerPC instruction set and passes a routine’s address to code
that might be in the 680x0 instruction set, then you need instead to pass the address of
a routine descriptor. This applies to all the methods of passing a routine address listed
earlier in this section (as a parameter to a system software routine, in a field of a
parameter block, and so forth).

■ If you create a resource containing PowerPC code that might be called either by 680x0
code or by PowerPC code, that code must be preceded by a routine descriptor. It’s
possible that the calling code simply loads the resource and jumps to its beginning;
if the resource does not begin with a routine descriptor, the Mixed Mode Manager
will not be called to determine whether a mode switch is necessary. See “Executing
Resource-Based Code” on page 2-24 for more details.

IMPORTANT

In short, you need to convert procedure pointers to universal procedure
pointers only if you pass a routine’s address to code that is external to
your application. See “Using Universal Procedure Pointers” beginning
on page 2-21 for details on making the appropriate modifications to
your application. ▲

Mode Switches 2
This section describes the operations of the Mixed Mode Manager in switching modes
(from PowerPC native mode to 680x0 emulation mode, or vice versa). It describes the
circumstances under which mode switches are performed and the mechanism that the
Mixed Mode Manager uses to switch modes.

IMPORTANT

The information in this section is provided for debugging purposes only.
Your application (or other code) should not rely on the details of mode
switching presented here. ▲
About the Mixed Mode Manager 2-7

C H A P T E R 2

Mixed Mode Manager

Every mode switch occurs as a result of either an explicit or an implicit cross-mode
call. An explicit cross-mode call occurs when the calling software itself calls the
CallUniversalProc function and passes a universal procedure pointer of a routine
that exists in an instruction set architecture other than that of the caller. An implicit
cross-mode call occurs when the calling software executes a routine descriptor for a
routine that exists in an instruction set architecture other than that of the caller.

The mixed-mode architecture of PowerPC processor-based computers running 680x0-
based code gives rise to four possible situations when a piece of code calls a system
software routine:

■ When 680x0 code calls a system software routine that exists as 680x0 code, the
routine is called directly, using the trap dispatch mechanism provided in the
68LC040 Emulator.

■ When 680x0 code calls a system software routine that exists as PowerPC code, the
routine is called indirectly, using the address—contained in the trap dispatch table—
of a routine descriptor, which invokes a mode switch to the PowerPC environment.
When the PowerPC code returns, the executing environment is switched back to the
68LC040 Emulator. See the next section, “Calling PowerPC Code From 680x0 Code,”
for more details.

■ When PowerPC code calls a system software routine that exists as PowerPC code, the
routine is called through glue in the system software import library. The glue code
calls CallUniversalProc, which determines that the routine is PowerPC code and
then calls it directly.

■ When PowerPC code calls a system software routine that exists as 680x0 code, the
routine is called through glue code contained in the system software import library.
The glue code sets up a 680x0 universal procedure pointer (which is simply a 680x0
procedure pointer) and executes the 680x0 code by calling the CallUniversalProc
function. See “Calling 680x0 Code From PowerPC Code” on page 2-12 for more details.

IMPORTANT

Only 680x0 code can make implicit cross-mode calls. Native PowerPC
code must always make explicit cross-mode calls. The Mixed Mode
Manager determines whether a mode switch is necessary. ▲

Calling PowerPC Code From 680x0 Code 2

This section describes how the Mixed Mode Manager switches modes from the 680x0
emulated environment to the PowerPC native environment. This usually happens
when 680x0 code calls a system software routine that is implemented in the PowerPC
instruction set.

Suppose that a 680x0 application calls some system software routine. The application is
not aware that it is running under the 68LC040 Emulator, so it just pushes the routine’s
parameters onto the stack (or stores them into registers) and then jumps to the routine
or calls a trap that internally jumps to the routine. If the routine exists as 680x0 code,
no mode switch is required and the routine is called as usual. If, however, the routine
2-8 About the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2

M
ixed M

ode M
anager

exists as PowerPC code, the calling application must implicitly invoke the Mixed
Mode Manager.

If the calling application merely jumps to the PowerPC code, the code must begin with
a routine descriptor, as explained in “Executing Resource-Based Code” on page 2-24. If
the calling application calls a trap, the trap dispatch table must contain—instead of the
address of the routine’s executable code—the address of a routine descriptor for that
routine. This routine descriptor is created at system startup time.

Figure 2-2 shows the path followed when a 680x0 application calls a system software
routine implemented as PowerPC code. The trap dispatch table contains the address
of the native routine’s routine descriptor. The routine descriptor contains the address
of the routine’s transition vector, which in turn contains the routine’s entry point and
TOC value.

Figure 2-2 Calling PowerPC code from a 680x0 application

For example, suppose that your application calls the CountResources function,
as follows:

myResCount = CountResources('PROC');

Suppose further that CountResources has been ported to the PowerPC instruction set.
When your application calls CountResources, the stack looks like the one shown in
Figure 2-3.

Trap dispatch table

Routine descriptor

Transition vector PowerPC code
About the Mixed Mode Manager 2-9

C H A P T E R 2

Mixed Mode Manager

Figure 2-3 The stack before a mode switch

The trap dispatcher executes the CountResources routine descriptor, which begins
with an executable instruction that invokes the Mixed Mode Manager. The Mixed Mode
Manager retrieves the transition vector and creates a switch frame on the stack. A switch
frame is a stack frame that contains information about the routine to be executed, the
state of various registers, and the address of the previous frame. Figure 2-4 shows the
structure of a 680x0-to-PowerPC switch frame.

IMPORTANT

Notice in Figure 2-4 that the low-order bit in the back chain pointer to
the saved A6 value is set. The Mixed Mode Manager uses that bit
internally as a signal that a switch frame is on the stack. The Mixed
Mode Manager will fail if the stack pointer has an odd value. ▲

SP

4

8

10
Result space

Parameter

Return address

 0

PROC

1000E

Stack grows
down
2-10 About the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
Figure 2-4 A 680x0-to-PowerPC switch frame

In addition to creating a switch frame, the Mixed Mode Manager also sets up several
CPU registers:

■ The Table of Contents Register (RTOC) must be set to the TOC address of the
fragment containing the CountResources routine. This value is obtained from
the transition vector whose address is extracted from the routine descriptor.

■ The Link Register (LR) must be set to point to code that cleans up the stack and
restarts the emulator.

At this point, it’s safe to execute the native CountResources code. When
CountResources completes, the Mixed Mode Manager copies the return value from R3
into its proper location (in a register or on the stack). The RTOC, LR, and CR are restored
to their saved values, and the switch frame is popped off the stack. The Mixed Mode
Manager also pops the return address off the stack, as well as the parameters of routines

Result space

Parameter

Saved A6

28

24

20

12

8

4

0

Local variables

Return address

Saved RTOC

Reserved

Saved LR

Saved CR

Back chain (low bit is set)

680x0
caller stack

frame

680x0-to-
PowerPC

switch frame

PowerPC
callee stack

frame

Parameters
(8 words minimum,
more if needed)

Stack grows
down

1

0

PROC

PROC

1000E

Reserved
About the Mixed Mode Manager 2-11

C H A P T E R 2

Mixed Mode Manager
of type pascal. Finally, the Mixed Mode Manager jumps back into the 68LC040
Emulator and the application continues execution.

Calling 680x0 Code From PowerPC Code 2

This section describes how the Mixed Mode Manager switches modes from the PowerPC
native environment to the 680x0 emulated environment. This usually happens when
PowerPC code calls a system software routine that is implemented in the 680x0
instruction set.

For example, suppose that a PowerPC application calls a system software routine that
exists only as 680x0 code. In the system software import library must exist a small piece
of glue code that

■ allocates space on the stack for the routine’s result, if any

■ determines the address of the 680x0 routine from the trap dispatch table

■ provides the procedure information for the routine

■ calls the CallUniversalProc function

Listing 2-1 illustrates a sample glue routine for the QuickDraw text-measuring routine
TextWidth.

IMPORTANT

Glue routines like the one illustrated in Listing 2-1 are part of
the system software import library. You do not need to write
glue routines like this. ▲

Listing 2-1 Sample glue code for a 680x0 routine

enum {

uppTextWidthProcInfo = kPascalStackBased

| RESULT_SIZE(kTwoByteCode)

| STACK_ROUTINE_PARAMETER(1, kFourByteCode)

| STACK_ROUTINE_PARAMETER(2, kTwoByteCode)

| STACK_ROUTINE_PARAMETER(3, kTwoByteCode)

};

short TextWidth (Ptr textBuf, short firstByte, short byteCount)

{

ProcPtr textWidth_68K;

textWidth_68K = NGetTrapAddress(_TextWidth, ToolTrap);

return CallUniversalProc((UniversalProcPtr)textWidth_68K,

uppTextWidthProcInfo, textBuf, firstByte, byteCount);

}

2-12 About the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
See “Specifying Procedure Information” beginning on page 2-14 for a description of the
constants and macros used to define the procedure information (that is, the myProcInfo
parameter).

Note
For Operating System traps (that is, traps of type OSTrap), the
trap dispatcher copies the trap number into register D1. As a result,
the glue code illustrated in Listing 2-1 would need to call the
function CallOSTrapUniversalProc. ◆

The call to CallUniversalProc invokes the Mixed Mode Manager, which verifies that
a mode switch is necessary. At that point, the Mixed Mode Manager saves all nonvolatile
registers and other necessary information on the stack in a switch frame. Figure 2-5
shows the structure of a PowerPC-to-680x0 switch frame.

Figure 2-5 A PowerPC-to-680x0 switch frame

Saved LR

Saved CR

Switch frame indicator
0

Local variables

Back chain

Return address

A6 back chain

PowerPC-to-
680x0 switch

frame

680x0 input
parameters

Stack grows
down

680x0
caller stack

frame

Reserved

Saved PowerPC
registers
(GPR13–GPR31)

PowerPC
stack frame

Result space

0xffffffff
About the Mixed Mode Manager 2-13

C H A P T E R 2

Mixed Mode Manager
Once the switch frame is set up, the Mixed Mode Manager sets up the 68LC040
Emulator’s context block and then jumps into the emulator. When the routine has
finished executing, it attempts to jump to the return address pushed onto the stack. That
return address points to a mode-switching structure contained in the Reserved area in
the switch frame. The emulator encounters the instruction in the goMixedModeTrap
field of the routine descriptor and then saves the current 680x0 state in its context block.
Once this is done, the Mixed Mode Manager restores native registers that were
previously saved and deallocates the switch frame. Control then returns to the caller of
CallUniversalProc.

IMPORTANT

As currently implemented, the instruction that causes a return from the
68LC040 Emulator to the native PowerPC environment clears the
low-order 5 bits of the Condition Code Register (CCR). This prevents
680x0 callback procedures from returning information in the CCR. If you
want to port 680x0 code that calls an external routine that returns results
in the CCR, you must instead call a 680x0 stub that saves that
information in some other place. ▲

Using the Mixed Mode Manager 2

You can use the Mixed Mode Manager to specify the procedure information for a
routine, create routine descriptors, and execute the code referenced by a universal
procedure pointer. Typically, you’ll call NewRoutineDescriptor to create a routine
descriptor and CallUniversalProc to execute the code described by a routine
descriptor. You can dispose of routine descriptors you no longer need by calling the
DisposeRoutineDescriptor function.

Remember that if you are compiling code for the 680x0 environment, you don’t need to
worry about creating, calling, or disposing of routine descriptors. For 680x0 code, the
compiler variable USESROUTINEDESCRIPTORS is set to false (the default setting). Any
calls in your source code to the NewRoutineDescriptor function are replaced by the
code address passed as a parameter to NewRoutineDescriptor. Similarly, any calls to
DisposeRoutineDescriptor are simply removed.

Note
Your development environment sets the USESROUTINEDESCRIPTOR
variable to the value appropriate for the kind of code you are compiling,
You don’t need to set or reset this variable. ◆

Specifying Procedure Information 2
The primary task of the Mixed Mode Manager is to convert routine parameters between
the 680x0 and PowerPC environments. The parameter passing conventions in the
PowerPC environment are identical for all routines, so you’ll need to specify the calling
conventions only for 680x0 routines.
2-14 Using the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
In the Macintosh Operating System, there are five basic kinds of calling conventions:

■ Pascal routines with the parameters passed on the stack

■ C routines with the parameters passed on the stack

■ routines with the parameters passed in registers

■ dispatched Pascal or C routines with the selector in a register and the parameters on
the stack

■ dispatched Pascal routines with the selector and the parameters on the stack

In addition to these five basic kinds of calling conventions, there exist a number of cases
that the Mixed Mode Manager treats specially. For example, an ADB service routine is
passed information in registers A0, A1, A2, and D0.

The Mixed Mode Manager uses a long word of type ProcInfoType to encode a
routine’s procedure information, which contains essential information about the calling
conventions and other features of a routine. You need to specify procedure information
when you create a new routine descriptor by calling the NewRoutineDescriptor
function.

typedef unsigned long ProcInfoType;

IMPORTANT

In all likelihood, you do not need to read the remainder of this section,
which explains in detail the structure of the ProcInfoType long word
and shows how to create custom procedure information. The universal
interface files define procedure information for each universal procedure
pointer used by the system. For example, the interfaces define the
constant uppGrowZoneProcInfo for you to use when specifying
the procedure information for a grow-zone function. You need to create
procedure information only for routines not defined in the programming
interfaces. You can probably skip to the section “Using Universal
Procedure Pointers” on page 2-21. ▲

The lower-order 4 bits of the procedure information encode the routine’s calling
conventions. You specify calling conventions using these constants:

enum {

/*calling conventions*/

kPascalStackBased = (CallingConventionType)0,

kCStackBased = (CallingConventionType)1,

kRegisterBased = (CallingConventionType)2,

kThinkCStackBased = (CallingConventionType)5,

kD0DispatchedPascalStackBased = (CallingConventionType)8,

kD0DispatchedCStackBased = (CallingConventionType)9,

kD1DispatchedPascalStackBased = (CallingConventionType)12,

kStackDispatchedPascalStackBased = (CallingConventionType)14,

kSpecialCase = (CallingConventionType)15

};
Using the Mixed Mode Manager 2-15

C H A P T E R 2

Mixed Mode Manager
For example, a routine that passes its parameters on the stack according to normal C
language conventions would have the rightmost 4 bits of the procedure information set
to 0001 (hexadecimal 0x00000001).

Except for routines having calling conventions of type kSpecialCase, the 2 bits to the
left of the calling convention bits encode the size of the result returned by the routine.
You can access those bits using a constant:

#define kResultSizePhase 4

The Mixed Mode Manager provides four constants and a macro that you can use to set a
routine’s result size in its procedure information.

enum {

kNoByteCode = 0,

kOneByteCode = 1,

kTwoByteCode = 2,

kFourByteCode = 3

};

#define RESULT_SIZE(sizeCode) \

((ProcInfoType)(sizeCode) << kResultSizePhase)

Except as already noted, every set of procedure information uses its rightmost 6 bits to
specify the calling conventions and result size information. The calling conventions,
which take up the rightmost 4 bits, determine how the remaining bits of a routine’s
procedure information are interpreted. For example, if the rightmost 4 bits contain
the value kCStackBased or the value kPascalStackBased, then the remaining bits
encode the sizes and number of the parameters passed on the stack. Figure 2-6 shows
how the Mixed Mode Manager interprets the procedure information for a stack-
based routine.
2-16 Using the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
Figure 2-6 Procedure information for a stack-based routine

Once again, the Mixed Mode Manager provides a set of constants and macros that you
can use to specify a stack-based routine’s procedure information.

#define kStackParameterPhase 6

#define kStackParameterWidth 2

#define STACK_ROUTINE_PARAMETER(whichParam, sizeCode) \

((ProcInfoType)(sizeCode) << (kStackParameterPhase + \

(((whichParam) - 1) * kStackParameterWidth)))

As you can see, the maximum number of stack-based parameters whose sizes you can
specify using a variable of type ProcInfoType is 13. The procedure information
encoding used by the Mixed Mode Manager places limits on the number of specifiable
register-based parameters as well. See Table 3-1 at the end of this section (page 2-20) for a
complete list of these limits.

The new application programming interface files described earlier (on page 2-6) include
constants that define procedure information for each type of routine to which you might
need to create a universal procedure pointer. For example, the interface file Memory.h
includes these definitions:

enum {

uppGrowZoneProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(sizeof(long)))

| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Size))),

uppPurgeProcProcInfo = kPascalStackBased

| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Handle)))

};

13

0 31

Calling conventions

28

3 2

Sizes of parameters

Result size

00 = 0 bytes
01 = 1 byte
10 = 2 bytes
11 = 4 bytes

24 25 26 271

1

20 21 22 23
Using the Mixed Mode Manager 2-17

C H A P T E R 2

Mixed Mode Manager
A grow-zone function follows normal Pascal calling conventions, returns a value that is 4
bytes long, and takes a single 4-byte parameter on the stack. A purge-warning procedure
follows normal Pascal calling conventions, returns no value, and takes a single 4-byte
parameter on the stack.

The Mixed Mode Manager provides similar constants and macros for specifying
procedure information for register-based routines.

#define kRegisterResultLocationPhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kRegisterResultLocationWidth 5

#define kRegisterParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kRegisterResultLocationWidth)

#define kRegisterParameterWidth 5

#define kRegisterParameterWhichPhase 2

#define kRegisterParameterSizePhase 0

#define kDispatchedSelectorSizeWidth 2

#define kDispatchedSelectorSizePhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kDispatchedParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kDispatchedSelectorSizeWidth)

#define REGISTER_RESULT_LOCATION(whichReg) \

((ProcInfoType)(whichReg) << kRegisterResultLocationPhase)

#define REGISTER_ROUTINE_PARAMETER(whichParam, whichReg, sizeCode) \

((((ProcInfoType)(sizeCode) << kRegisterParameterSizePhase) | \

((ProcInfoType)(whichReg) << kRegisterParameterWhichPhase)) << \

(kRegisterParameterPhase + (((whichParam)- 1) * kRegisterParameterWidth)))

For example, Figure 2-7 shows the arrangement of the procedure information for a
register-based routine.
2-18 Using the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
Figure 2-7 Procedure information for a register-based routine

The register fields use the following constants to encode 680x0 register information:

enum {

/*680x0 registers*/

kRegisterD0 = 0,

kRegisterD1 = 1,

kRegisterD2 = 2,

kRegisterD3 = 3,

kRegisterD4 = 8,

kRegisterD5 = 9,

kRegisterD6 = 10,

kRegisterD7 = 11,

kRegisterA0 = 4,

kRegisterA1 = 5,

kRegisterA2 = 6,

kRegisterA3 = 7,

kRegisterA4 = 12,

kRegisterA5 = 13,

kRegisterA6 = 14,

kCCRegisterCBit = 16,

kCCRegisterVBit = 17,

kCCRegisterZBit = 18,

0 3 4 3111

Calling conventions

5 6 10

Sizes of parameters

Result size

00 = 0 bytes
01 = 1 byte
10 = 2 bytes
11 = 4 bytes

13 2118 19 20 2825 26 27

124

RegisterSizeRegister Size Register Size

Result register
(for example, D0 = 0)

161514981

3

Register Size
Using the Mixed Mode Manager 2-19

C H A P T E R 2

Mixed Mode Manager
kCCRegisterNBit = 19,

kCCRegisterXBit = 20

};

Note
The result size should be specified as 0 for results returned
in any of the CCR registers. ◆

The Mixed Mode Manager also provides constants and macros to specify the procedure
information for stack-based routines that take a register-based selector and for stack-
based routines that take a stack-based selector.

Note
See “Procedure Information” beginning on page 2-27 for a complete
description of the constants you can use to specify a routine’s procedure
information. See “C Language Macros for Defining Procedure
Information” on page 2-50 for a complete list of the Mixed Mode
Manager macros you can use to create procedure information. ◆

As noted earlier, there are limits on the number of parameters that a procedure
information can describe. Table 3-1 lists the available calling conventions and the
maximum number of specifiable parameters and selectors for each convention.

IMPORTANT

The input parameters can be passed in any of the registers D0–D3 and
A0–A3; the output parameter can be returned in any register. ▲

In general, these limitations should not affect you. There are, however, a very few cases
in which the documented behavior of a routine prevents it from being implemented in
native PowerPC code. For example, the low-level .ENET driver routines ReadRest
and ReadPacket return information in several registers. As a result, they cannot be
implemented natively. (Because these routines are typically called only in code where

Table 3-1 Limits on the number of specifiable parameters in a procedure information

Calling convention
Maximum number
of parameters

Number of
selectors

kPascalStackBased 13 0

kCStackBased 13 0

kRegisterBased 4 input, 1 output 0

kThinkCStackBased 13 0

kD0DispatchedPascalStackBased 12 1

kD0DispatchedCStackBased 12 1

kD1DispatchedPascalStackBased 12 1

kStackDispatchedPascalStackBased 12 1
2-20 Using the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
speed of execution is critical, it’s not likely that you would want to incur the overhead of
a mode switch by writing native callbacks to the .ENET driver.)

Using Universal Procedure Pointers 2
When you call the NewRoutineDescriptor or NewFatRoutineDescriptor function
to create a routine descriptor, the Mixed Mode Manager calls the Memory Manager to
allocate a nonrelocatable block in the current heap in which to store the new routine
descriptor. Eventually, you might want to dispose of the space occupied by the routine
descriptor; you can do this by calling the DisposeRoutineDescriptor function.

In general, there are two ways you’ll probably handle this allocation and deallocation.
By far the easiest method is to allocate in your application’s heap, at application
initialization time, a routine descriptor for each routine whose address you’ll need to
pass elsewhere. For example, if your application calls TrackControl with a custom
action procedure, you can create a routine descriptor in the application heap when your
application starts up, as shown in Listing 2-2.

Listing 2-2 Creating global routine descriptors

UniversalProcPtr myActionProc;

myActionProc = NewRoutineDescriptor((ProcPtr)MyAction,

uppControlActionProcInfo,

GetCurrentISA());

Later you would call TrackControl like this:

TrackControl(myControl, myPoint, myActionProc);

The routine descriptor pointed to by the global variable myActionProc remains
allocated until your application quits, at which time the Process Manager reclaims
all the memory in your application heap.

Note
If you don’t want TrackControl to call an application-defined action
procedure, you must pass NULL in place of myActionProc. In that case,
you don’t need to call NewRoutineDescriptor. ◆

The other way to handle routine descriptors is to create them as you need them and then
dispose of them as soon as you’re finished with them. This practice would be useful for
routines you don’t call very often. Listing 2-3 shows a way to call the ModalDialog
function to display a rarely used modal dialog box.
Using the Mixed Mode Manager 2-21

C H A P T E R 2

Mixed Mode Manager
Listing 2-3 Creating local routine descriptors

void DoAboutBox (void)

{

short myItem = 0;

DialogPtr myDialog;

UniversalProcPtr myModalProc;

myDialog = GetNewDialog(kAboutBoxID, NULL, (WindowPtr) -1L);

myModalProc = NewRoutineDescriptor((ProcPtr)MyEventFilter,

uppModalFilterProcInfo,

GetCurrentISA());

while (myItem != iOK)

ModalDialog(myModalProc, &myItem);

DisposeDialog(myDialog);

DisposeRoutineDescriptor(myModalProc);

}

If you decide to allocate and dispose of routine descriptors locally, make sure that you
don’t dispose of a routine descriptor before it’s actually used by the Operating System.
(This could happen, for instance, if you pass a universal procedure pointer for a comple-
tion routine and then exit the local procedure before the completion routine is called.)

Note
You should call DisposeRoutineDescriptor only to dispose routine
descriptors that you created using either NewRoutineDescriptor or
NewFatRoutineDescriptor. ◆

Using Static Routine Descriptors 2
Instead of allocating space for routine descriptors in your application heap (as described
in the previous section), you can also create routine descriptors on the stack or in your
global variable space by using macros supplied by the Mixed Mode Manager. Most
likely, you’ll create a descriptor on the stack when you need to use a routine descriptor
for a very short time. For example, you could use the function defined in Listing 2-4
instead of the one defined in Listing 2-3.
2-22 Using the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
Listing 2-4 Creating static routine descriptors

void DoAboutBox (void)

{

short myItem = 0;

DialogPtr myDialog;

RoutineDescriptor myRD =

BUILD_ROUTINE_DESCRIPTOR(uppModalFilterProcInfo,

(ProcPtr)MyEventFilter);

UniversalProcPtr myModalProc;

myDialog = GetNewDialog(kAboutBoxID, NULL, (WindowPtr) -1L);

myModalProc = @myRD;

while (myItem != iOK)

ModalDialog(myModalProc, &myItem);

DisposeDialog(myDialog);

}

As you can see, the DoAboutBox function defined in Listing 2-4 uses the macro
BUILD_ROUTINE_DESCRIPTOR to create a routine descriptor on the stack and then
passes the address of that routine descriptor to the ModalDialog procedure. Because
the routine descriptor is created on the stack, there is no need to dispose of it before
exiting the DoAboutBox function.

You can create a routine descriptor in your application’s global data area by using the
BUILD_ROUTINE_DESCRIPTOR macro as follows:

static RoutineDescriptor myRD =

BUILD_ROUTINE_DESCRIPTOR(uppModalFilterProcInfo,

(ProcPtr)MyEventFilter);

This line of code creates a routine descriptor as part of the application global variables.
The advantage of this method is that you don’t have to call NewRoutineDescriptor
to allocate a routine descriptor in your heap.

The C language macro BUILD_ROUTINE_DESCRIPTOR is defined in Listing 2-5.

Listing 2-5 Building a static routine descriptor

#define BUILD_ROUTINE_DESCRIPTOR(procInfo, procedure) \

{ \

_MixedModeMagic, /*mixed-mode A-trap*/ \

kRoutineDescriptorVersion, /*version*/ \

kSelectorsAreNotIndexable, /*RD flags: not dispatched*/ \

0, /*reserved1*/ \

0, /*reserved2*/ \
Using the Mixed Mode Manager 2-23

C H A P T E R 2

Mixed Mode Manager
0, /*selector info*/ \

0, /*number of routines*/ \

{ /*it's an array*/ \

{ /*it's a structure*/ \

(procInfo), /*the procedure info*/ \

0, /*reserved*/ \

kPowerPCISA, /*ISA*/ \

kProcDescriptorIsAbsolute | /*flags: absolute address*/ \

kFragmentIsPrepared | /*it's prepared*/ \

kUseNativeISA, /*always use native ISA*/ \

(ProcPtr)(procedure), /*the procedure*/ \

0, /*reserved*/ \

0, /*not dispatched*/ \

}, \

}, \

}

IMPORTANT

You should use the BUILD_ROUTINE_DESCRIPTOR macro only to
create a routine descriptor that describes a nondispatched routine
that exists as PowerPC code. ▲

The Mixed Mode Manager also defines a C language macro that you can use to
create static fat routine descriptors. See the Mixed Mode Manager interface file for
the definition of the BUILD_FAT_ROUTINE_DESCRIPTOR macro.

Executing Resource-Based Code 2
As you’ve seen earlier in this book (in the section “Executable Resources” on page 1-34),
you can create executable resources that contain PowerPC code to serve as accelerated
versions of 680x0 code resources. The accelerated resource is simply a PowerPC version
of the 680x0 code resource, prefixed with a routine descriptor for the code contained in
the resource. The routine descriptor is necessary for the Mixed Mode Manager to know
whether it needs to change modes in order to execute the code. The routine descriptor
also lets the Mixed Mode Manager know whether it needs to call the Code Fragment
Manager to prepare the fragment. Figure 2-8 shows the structure your code-containing
resources should have.
2-24 Using the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
Figure 2-8 General structure of an executable code resource

The procDescriptor field of the routine record—contained in the routineRecords
field of the routine descriptor—should contain the offset from the beginning of the
resource (that is, the beginning of the routine descriptor) to the beginning of the execut-
able code fragment. In addition, the routine flags for the specified code should have the
kProcDescriptorIsRelative bit set, indicating that the address is relative, not
absolute. If the code contained in the resource is PowerPC code, you should also set the
kFragmentNeedsPreparing bit.

It’s also possible to create “fat” code-bearing resources, that is, resources containing both
680x0 and PowerPC versions of some routine. Figure 2-9 shows the general structure of
such a resource.

Routine
descriptor

PowerPC
code fragment
Using the Mixed Mode Manager 2-25

C H A P T E R 2

Mixed Mode Manager
Figure 2-9 General structure of a fat resource

In this case, the routine descriptor contains two routine records in its routineRecords
field, one describing the 680x0 code and one describing the PowerPC code. As with any
code-bearing resource, the procDescriptor field of each routine record should contain
the offset from the beginning of the resource to the beginning of the appropriate code.
The flags for both routine records should have the kProcDescriptorIsRelative flag
set, and the routine flags for the PowerPC routine record should have the
kFragmentNeedsPreparing flag set.

The MPW interface file MixedMode.r provides Rez templates that you can use to create
the accelerated resource shown in Figure 2-8 or the fat resource shown in Figure 2-9.

▲ W A R N I N G

Do not call accelerated resources at interrupt time unless you are certain
that the resource has already been loaded into memory, locked, and
prepared for execution. If the resource containing the code hasn’t
been prepared, the Code Fragment Manager will attempt to do so,
and thereby allocate memory. (Memory allocation is not allowed at
interrupt time.) ▲

Mixed Mode Manager Reference 2

This section describes the constants, data structures, and routines provided by the Mixed
Mode Manager. See “Using the Mixed Mode Manager” beginning on page 2-14 for
detailed instructions on using these routines.

Routine
descriptor

PowerPC
code fragment

680x0
code
2-26 Mixed Mode Manager Reference

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
Constants 2
This section describes the constants provided by the Mixed Mode Manager. You use
these constants to specify routine descriptor flags and a routine’s procedure information.
Because the universal interface files define procedure information for the most common
callback routines, it’s likely that you won’t need to use the procedure information
constants listed here.

Routine Descriptor Flags 2

The routineDescriptorFlags field of a routine descriptor contains a set of routine
descriptor flags that specify attributes of the described routine. You can use constants
to specify the routine descriptor flags. In general, you should use the constant
kSelectorsAreNotIndexable when constructing your own routine descriptors; the
value kSelectorsAreIndexable is reserved for use by Apple.

enum {

kSelectorsAreNotIndexable = (RDFlagsType)0x00,

kSelectorsAreIndexable = (RDFlagsType)0x01

};

Constant descriptions

kSelectorsAreNotIndexable
For dispatched routines, the recognized routine selectors are
not contiguous.

kSelectorsAreIndexable
For dispatched routines, the recognized routine selectors are
contiguous and therefore indexable.

Procedure Information 2

The Mixed Mode Manager uses a long word of type ProcInfoType to encode a
routine’s procedure information, which contains essential information about the calling
conventions and other features of a routine. These values specify

■ the routine’s calling conventions

■ the sizes and locations of the routine’s parameters, if any

■ the size and location of the routine’s result, if any

See “Specifying Procedure Information” beginning on page 2-14 for a description of the
general structure of a routine’s procedure information. The Mixed Mode Manager
provides a number of constants that you can use to specify the procedure information.

The following constants are used to specify the size (in bytes) of a value encoded in a
routine’s procedure information.
Mixed Mode Manager Reference 2-27

C H A P T E R 2

Mixed Mode Manager
enum {

/*size codes*/

kNoByteCode = 0,

kOneByteCode = 1,

kTwoByteCode = 2,

kFourByteCode = 3

};

Constant descriptions

kNoByteCode The value occupies no bytes.
kOneByteCode The value occupies 1 byte.
kTwoByteCode The value occupies 2 bytes.
kFourByteCode The value occupies 4 bytes.

The offsets to fields and the widths of the fields within a value of type ProcInfoType
are defined by constants:

/*offsets to and widths of procedure information fields*/

#define kCallingConventionPhase 0

#define kCallingConventionWidth 4

#define kResultSizePhase kCallingConventionWidth

#define kResultSizeWidth 2

#define kResultSizeMask 0x30

#define kStackParameterPhase 6

#define kStackParameterWidth 2

#define kRegisterResultLocationPhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kRegisterResultLocationWidth 5

#define kRegisterParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kRegisterResultLocationWidth)

#define kRegisterParameterWidth 5

#define kRegisterParameterWhichPhase 2

#define kRegisterParameterSizePhase 0

#define kDispatchedSelectorSizeWidth 2

#define kDispatchedSelectorSizePhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kDispatchedParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kDispatchedSelectorSizeWidth)

Constant descriptions

kCallingConventionPhase
The offset from the least significant bit in the procedure information
to the calling convention information.
2-28 Mixed Mode Manager Reference

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
kCallingConventionWidth
The number of bits in the procedure information that encode the
calling convention information.

kResultSizePhase
The offset from the least significant bit in the procedure information
to the function result size information.

kResultSizeWidth
The number of bits in the procedure information that encode the
function result size information.

kResultSizeMask
A mask for the bits in the procedure information that encode the
function result size information.

kStackParameterPhase
The offset from the least significant bit in the procedure information
to the stack parameter information.

kStackParameterWidth
The number of bits in the procedure information that encode the
size of a stack-based parameter.

kRegisterResultLocationPhase
The offset from the least significant bit in the procedure information
to the result register information.

kRegisterResultLocationWidth
The number of bits in the procedure information that encode which
register the result will be stored in.

kRegisterParameterPhase
The offset from the least significant bit in the procedure information
to the register parameter information.

kRegisterParameterWidth
The number of bits in the procedure information that encode the
information about a register-based parameter.

kRegisterParameterWhichPhase
The offset from the beginning of a register parameter information
field to the encoded register.

kRegisterParameterSizePhase
The offset from the beginning of a register parameter information
field to the encoded size of the parameter.

kDispatchedSelectorSizeWidth
The number of bits in the procedure information that encode the
size of a routine-dispatching selector.

kDispatchedSelectorSizePhase
The offset from the least significant bit in the procedure information
to the selector size information of a routine that is dispatched
though a selector.

kDispatchedParameterPhase
The offset from the least significant bit in the procedure information
to the parameter information of a routine that is dispatched though
a selector.
Mixed Mode Manager Reference 2-29

C H A P T E R 2

Mixed Mode Manager
The following constants are used to specify a routine’s calling conventions:

enum {

/*calling conventions*/

kPascalStackBased = (CallingConventionType)0,

kCStackBased = (CallingConventionType)1,

kRegisterBased = (CallingConventionType)2,

kThinkCStackBased = (CallingConventionType)5,

kD0DispatchedPascalStackBased = (CallingConventionType)8,

kD0DispatchedCStackBased = (CallingConventionType)9,

kD1DispatchedPascalStackBased = (CallingConventionType)12,

kStackDispatchedPascalStackBased = (CallingConventionType)14,

kSpecialCase = (CallingConventionType)15

};

Constant descriptions

kPascalStackBased
The routine follows normal Pascal calling conventions.

kCStackBased The routine follows the C calling conventions employed by the
MPW development environment.

kRegisterBased
The parameters are passed in registers.

kThinkCStackBased
The routine follows the C calling conventions employed by the
THINK C software development environment. Arguments are
passed on the stack from right to left, and a result is returned in
register D0. All arguments occupy an even number of bytes on
the stack. An argument having the size of a char is passed in the
high-order byte. You should always provide function prototypes;
failure to do so may cause THINK C to generate code that is
incompatible with this parameter-passing convention.

kD0DispatchedPascalStackBased
The parameters are passed on the stack according to Pascal
conventions, and the routine selector is passed in register D0.

kD0DispatchedCStackBased
The parameters are passed on the stack according to C conventions,
and the routine selector is passed in register D0.

kD1DispatchedPascalStackBased
The parameters are passed on the stack according to Pascal
conventions, and the routine selector is passed in register D1.

kStackDispatchedPascalStackBased
The routine selector and the parameters are passed on the stack.

kSpecialCase The routine is a special case. You can use the following constants to
specify a special case.
2-30 Mixed Mode Manager Reference

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
enum {

/*special cases*/

kSpecialCaseHighHook = 0,

kSpecialCaseCaretHook = kSpecialCaseHighHook,

kSpecialCaseEOLHook = 1,

kSpecialCaseWidthHook = 2,

kSpecialCaseNWidthHook = 3,

kSpecialCaseTextWidthHook = kSpecialCaseWidthHook,

kSpecialCaseDrawHook = 4,

kSpecialCaseHitTestHook = 5,

kSpecialCaseTEFindWord = 6,

kSpecialCaseProtocolHandler = 7,

kSpecialCaseSocketListener = 8,

kSpecialCaseTERecalc = 9,

kSpecialCaseTEDoText = 10,

kSpecialCaseGNEFilterProc = 11,

kSpecialCaseMBarHook = 12

};

Constant descriptions

kSpecialCaseHighHook
The routine follows the calling conventions documented in Inside
Macintosh: Text; a rectangle is on the stack and a pointer is in register
A3; no result is returned.

kSpecialCaseCaretHook
The routine follows the calling conventions documented in Inside
Macintosh: Text; a rectangle is on the stack and a pointer is in register
A3; no result is returned.

kSpecialCaseEOLHook
Parameters are passed to the routine in registers A3, A4, and D0,
and output is returned in the Z flag of the Status Register. An
EOLHook routine has these calling conventions.

kSpecialCaseWidthHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and
D1, and output is returned in register D1. A WIDTHHook routine has
these calling conventions.

kSpecialCaseNWidthHook
Parameters are passed to the routine in registers A0, A2, A3, A4, D0,
and D1, and output is returned in register D1. An nWIDTHHook
routine has these calling conventions.

kSpecialCaseTextWidthHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and
D1, and output is returned in register D1. A TextWidthHook
routine has these calling conventions.

kSpecialCaseDrawHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and
Mixed Mode Manager Reference 2-31

C H A P T E R 2

Mixed Mode Manager
D1, and no result is returned. A DRAWHook routine has these calling
conventions.

kSpecialCaseHitTestHook
Parameters are passed to the routine in registers A0, A3, A4, D0, D1,
and D2, and output is returned in registers D0, D1, and D2. A
HITTESTHook routine has these calling conventions.

kSpecialCaseTEFindWord
Parameters are passed to the routine in registers A3, A4, D0, and
D2, and output is returned in registers D0 and D1. A TEFindWord
hook has these calling conventions.

kSpecialCaseProtocolHandler
Parameters are passed to the routine in registers A0, A1, A2, A3, A4,
and in the low-order word of register D1; output is returned in the
Z flag of the Status Register. A protocol handler has these calling
conventions.

kSpecialCaseSocketListener
Parameters are passed to the routine in registers A0, A1, A2, A3, A4,
in the low-order byte of register D0, and in the low-order word of
register D1; output is returned in the Z flag of the Status Register. A
socket listener has these calling conventions.

kSpecialCaseTERecalc
Parameters are passed to the routine in registers A3 and D7, and
output is returned in registers D2, D3, and D4. A TextEdit line-start
recalculation routine has these calling conventions.

kSpecialCaseTEDoText
Parameters are passed to the routine in registers A3, D3, D4, and
D7, and output is returned in registers A0 and D0. A TextEdit
text-display, hit-test, and caret-positioning routine has these calling
conventions.

kSpecialCaseGNEFilterProc
Parameters are passed to the routine in registers A1 and D0 and on
the stack, and output is returned on the stack. A GetNextEvent
filter procedure has these calling conventions.

kSpecialCaseMBarHook
Parameters are passed to the routine on the stack, and output is
returned in register D0. A menu bar hook routine has these calling
conventions.

For register-based routines, the registers are encoded in the routine’s procedure
information using these constants:

enum {

/*680x0 registers*/

kRegisterD0 = 0,

kRegisterD1 = 1,

kRegisterD2 = 2,

kRegisterD3 = 3,

kRegisterD4 = 8,
2-32 Mixed Mode Manager Reference

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
kRegisterD5 = 9,

kRegisterD6 = 10,

kRegisterD7 = 11,

kRegisterA0 = 4,

kRegisterA1 = 5,

kRegisterA2 = 6,

kRegisterA3 = 7,

kRegisterA4 = 12,

kRegisterA5 = 13,

kRegisterA6 = 14,

kCCRegisterCBit = 16,

kCCRegisterVBit = 17,

kCCRegisterZBit = 18,

kCCRegisterNBit = 19,

kCCRegisterXBit = 20

};

Constant descriptions

kRegisterD0 Register D0.
kRegisterD1 Register D1.
kRegisterD2 Register D2.
kRegisterD3 Register D3.
kRegisterD4 Register D4.
kRegisterD5 Register D5.
kRegisterD6 Register D6.
kRegisterD7 Register D7.
kRegisterA0 Register A0.
kRegisterA1 Register A1.
kRegisterA2 Register A2.
kRegisterA3 Register A3.
kRegisterA4 Register A4.
kRegisterA5 Register A5.
kRegisterA6 Register A6.
kCCRegisterCBit

The C (carry) flag of the Status Register.
kCCRegisterVBit

The V (overflow) flag of the Status Register.
kCCRegisterZBit

The Z (zero) flag of the Status Register.
kCCRegisterNBit

The N (negative) flag of the Status Register.
kCCRegisterXBit

The X (extend) flag of the Status Register.
Mixed Mode Manager Reference 2-33

C H A P T E R 2

Mixed Mode Manager
Routine Flags 2

The routineFlags field of a routine record contains a set of flags that specify informa-
tion about a routine. You can use constants to specify the desired routine flags. Currently,
only 5 of the 16 bits in a routine flags word are defined. You should set all the other
bits to 0.

enum {

kProcDescriptorIsAbsolute = (RoutineFlagsType)0x00,

kProcDescriptorIsRelative = (RoutineFlagsType)0x01

};

Constant descriptions

kProcDescriptorIsAbsolute
The address of the routine’s entry point specified in the
procDescriptor field of a routine record is an absolute address.

kProcDescriptorIsRelative
The address of the routine’s entry point specified in the
procDescriptor field of a routine record is relative to the
beginning of the routine descriptor. If the code is contained in a
resource and its absolute location is not known until run time, you
should set this flag.

enum {

kFragmentIsPrepared = (RoutineFlagsType)0x00,

kFragmentNeedsPreparing = (RoutineFlagsType)0x02

};

Constant descriptions

kFragmentIsPrepared
The fragment containing the code to be executed is already loaded
into memory and prepared by the Code Fragment Manager.

kFragmentNeedsPreparing
The fragment containing the code to be executed needs to be loaded
into memory and prepared by the Code Fragment Manager. If this
flag is set, the kPowerPCISA and kProcDescriptorIsRelative
flags should also be set.

enum {

kUseCurrentISA = (RoutineFlagsType)0x00,

kUseNativeISA = (RoutineFlagsType)0x04

};

Constant descriptions

kUseCurrentISA If possible, use the current instruction set architecture when
executing a routine.

kUseNativeISA Use the native instruction set architecture when executing a routine.
2-34 Mixed Mode Manager Reference

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
enum {

kPassSelector = (RoutineFlagsType)0x00,

kDontPassSelector = (RoutineFlagsType)0x08

};

Constant descriptions

kPassSelector Pass the routine selector to the target routine as a parameter.
kDontPassSelector

Do not pass the routine selector to the target routine as a parameter.
You should not use this flag for 680x0 routines.

enum {

kRoutineIsNotDispatchedDefaultRoutine

= (RoutineFlagsType)0x00,

kRoutineIsDispatchedDefaultRoutine

= (RoutineFlagsType)0x10

};

Constant descriptions

kRoutineIsNotDispatchedDefaultRoutine
This routine is not the default routine for a set of routines that is
dispatched using a routine selector.

kRoutineIsDispatchedDefaultRoutine
This routine is the default routine for a set of routines that is
dispatched using a routine selector. If a set of routines is dispatched
using a routine selector and the routine corresponding to a specified
selector cannot be found, this default routine is called. This routine
must be able to accept the same procedure information for all
routines. If possible, it is passed the procedure information passed
in a call to CallUniversalProc.

IMPORTANT

In general, you should use the constants kPassSelector and
kRoutineIsNotDispatchedDefaultRoutine. The constants
kDontPassSelector and kRoutineIsDispatchedDefaultRoutine
are reserved for use with selector-based system software routines. ▲

Instruction Set Architectures 2

The ISA field of a routine record contains a flag that specifies the instruction set
architecture of a routine. You can use constants to specify the instruction set architecture.
Mixed Mode Manager Reference 2-35

C H A P T E R 2

Mixed Mode Manager
enum {

kM68kISA = (ISAType)0, /*MC680x0 architecture*/

kPowerPCISA = (ISAType)1 /*PowerPC architecture*/

};

Constant descriptions

kM68kISA The routine consists of 680x0 code.
kPowerPCISA The routine consists of PowerPC code.

Data Structures 2
This section describes the two data structures provided by the Mixed Mode Manager:

■ the routine record, which contains information about a routine’s calling conventions,
the sizes and locations of its parameters, and its location in memory

■ the routine descriptor, which provides a generalization of procedure pointers
(variables of type ProcPtr) common in the 680x0 environment

Routine Records 2

A routine record is a data structure that contains information about a particular routine.
The routine descriptor specifies, among other things, the instruction set architecture
of the routine, the number and size of the routine’s parameters, the routine’s calling
conventions, and the routine’s location in memory. At least one routine record is
contained in the routineRecords field of a routine descriptor. A routine record is
defined by the RoutineRecord data type.

struct RoutineRecord {

ProcInfoType procInfo; /*calling conventions*/

unsigned char reserved1; /*reserved*/

ISAType ISA; /*instruction set architecture*/

RoutineFlagsType routineFlags; /*flags for each routine*/

ProcPtr procDescriptor; /*the thing we're calling*/

unsigned long reserved2; /*reserved*/

unsigned long selector; /*selector for dispatched calls*/

};

typedef struct RoutineRecord RoutineRecord;

typedef RoutineRecord *RoutineRecordPtr, **RoutineRecordHandle;

Field descriptions

procInfo A value of type ProcInfoType that encodes essential information
about the routine’s calling conventions and parameters. See
“Procedure Information” beginning on page 2-27 for a complete list
of the constants you can use to set this field.

reserved1 Reserved. This field must be 0.
2-36 Mixed Mode Manager Reference

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
ISA The instruction set architecture of the routine. See “Instruction Set
Architectures” beginning on page 2-35 for a complete listing of the
constants you can use to set this field.

routineFlags A value of type RoutineFlagsType that contains a set of flags
describing the routine. See “Routine Flags” beginning on page 2-34
for a complete listing of the constants you can use to set this field.

procDescriptor
A pointer to the routine’s code. If the routine consists of 680x0
code and the kProcDescriptorIsAbsolute flag is set in the
routineFlags field, then this field contains the address of the
routine’s entry point. If the routine consists of 680x0 code and the
kProcDescriptorIsRelative flag is set, then this field contains
the offset from the beginning of the routine descriptor to the
routine’s entry point. If the routine consists of PowerPC code,
the kFragmentIsPrepared flag is set, and the
kProcDescriptorIsAbsolute flag is set, then this field contains
the address of the routine’s transition vector. If the routine consists
of PowerPC code, the kFragmentNeedsPreparing flag is set,
and the kProcDescriptorIsRelative flag is set, then this field
contains the offset from the beginning of the routine descriptor to
the routine’s entry point.

reserved2 Reserved. This field must be 0.
selector Reserved. This field must be 0. For routines that are dispatched, this

field contains the routine selector.

Routine Descriptors 2

A routine descriptor is a data structure used by the Mixed Mode Manager to execute a
routine. The external interface to a routine descriptor is through a universal procedure
pointer, of type UniversalProcPtr, which is defined as a procedure pointer (if the
code is 680x0 code) or as a pointer to a routine descriptor (if the code is PowerPC code).
A routine descriptor is defined by the RoutineDescriptor data type.

struct RoutineDescriptor {

unsigned short goMixedModeTrap; /*mixed-mode A-trap*/

char version; /*routine descriptor version*/

RDFlagsType routineDescriptorFlags;

/*routine descriptor flags*/

unsigned long reserved1; /*reserved*/

unsigned char reserved2; /*reserved*/

unsigned char selectorInfo; /*selector information*/

short routineCount; /*index of last RR in this RD*/

RoutineRecord routineRecords[1];/*the individual routines*/

};

typedef struct RoutineDescriptor RoutineDescriptor;
Mixed Mode Manager Reference 2-37

C H A P T E R 2

Mixed Mode Manager
Field descriptions

goMixedModeTrap
An A-line instruction that is used privately by the Mixed Mode
Manager. When the emulator encounters this instruction, it
transfers control to the Mixed Mode Manager. This field contains
the value $AAFE.

version The version number of the RoutineDescriptor data type. The
current version number is defined by the constant
kRoutineDescriptorVersion:

enum {kRoutineDescriptorVersion = 7};

routineDescriptorFlags
A set of routine descriptor flags. Currently, all the bits in this field
should be set to 0, unless you are specifying a routine descriptor for
a dispatched routine. See “Routine Descriptor Flags” on page 2-27
for a complete description of these flags.

reserved1 Reserved. This field must initially be 0.
reserved2 Reserved. This field must be 0.
selectorInfo Reserved. This field must be 0.
routineCount The index of the final routine record in the following array,

routineRecords. Because the routineRecords array is zero-
based, this field does not contain an actual count of the routine
records contained in that array. Often, you’ll use a routine
descriptor to describe a single procedure, in which case this field
should contain the value 0. You can, however, construct a routine
descriptor that contains pointers to both 680x0 and PowerPC code
(known as a “fat” routine descriptor). In that case, this field should
contain the value 1.

routineRecords
An array of routine records for the routines described by this
routine descriptor. See “Routine Records” on page 2-36 for the
structure of a routine record. This array is zero-based.

IMPORTANT

Your application (or other software) should never attempt to guide its
execution by inspecting the value in the ISA field of a routine record
and jumping to the address in the procDescriptor field. ▲

Mixed Mode Manager Routines 2
This section describes the routines provided by the Mixed Mode Manager. You can use
these routines to

■ create and dispose of routine descriptors

■ execute routines described by routine descriptors
2-38 Mixed Mode Manager Reference

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
In general, you need to call these routines only from PowerPC code. To maintain a single
source code base for your software, however, you can call Mixed Mode Manager
routines from 680x0 code, as long as you set the USESROUTINEDESCRIPTORS compiler
flag to false (its default setting). To compile code for the PowerPC environment, you
should set the USESROUTINEDESCRIPTORS flag to true.

See “Using the Mixed Mode Manager” beginning on page 2-14 for detailed instructions
on using these routines.

Creating and Disposing of Routine Descriptors 2

The Mixed Mode Manager provides routines that you can use to create and dispose of
routine descriptors. In general, you need to create routine descriptors only for routines
whose addresses are exported to the system software (for example, a completion
procedure). You don’t need to create a routine descriptor for a routine that is called by
code of the same type.

NewRoutineDescriptor 2

You can call the NewRoutineDescriptor function to create a new routine descriptor.

pascal UniversalProcPtr NewRoutineDescriptor

(ProcPtr theProc, ProcInfoType theProcInfo,

ISAType theISA);

theProc The address of the routine.

theProcInfo
The procedure information to be associated with the routine.

theISA The instruction set architecture of the routine being described.

DESCRIPTION

The NewRoutineDescriptor function creates a new routine descriptor and returns a
pointer (of type UniversalProcPtr) to it. If the value of the theProc parameter is
NULL, NewRoutineDescriptor returns the value NULL.

The memory occupied by the new routine descriptor is allocated in the current heap. If
you want the memory to be allocated in some other heap, you’ll need to set the current
heap to that heap and then restore the current heap before exiting.

SPECIAL CONSIDERATIONS

The NewRoutineDescriptor function allocates memory; you should not call it at
interrupt time or from any code that might be executed when memory is low. In
addition, the block of memory allocated by NewRoutineDescriptor is nonrelocatable.
Mixed Mode Manager Reference 2-39

C H A P T E R 2

Mixed Mode Manager
To help minimize heap fragmentation, you should try to allocate any routine descriptors
you will need early in your application’s execution.

When the USESROUTINEDESCRIPTORS compile flag is false, the
NewRoutineDescriptor function simply returns the address passed in
the theProc parameter and does not allocate memory for a routine descriptor.

SEE ALSO

See “Using Universal Procedure Pointers” beginning on page 2-21 for a more complete
description of when and how to create routine descriptors. See “Specifying Procedure
Information” beginning on page 2-14 for information on creating procedure information.

NewFatRoutineDescriptor 2

You can call the NewFatRoutineDescriptor function to create a new fat routine
descriptor.

pascal UniversalProcPtr NewFatRoutineDescriptor

(ProcPtr theM68kProc, ProcPtr thePowerPCProc,

ProcInfoType theProcInfo);

theM68kProc
The address of a 680x0 routine.

thePowerPCProc
The address of a PowerPC routine.

theProcInfo
The procedure information to be associated with the routine.

DESCRIPTION

The NewFatRoutineDescriptor function creates a new fat routine descriptor and
returns a pointer (of type UniversalProcPtr) to it. The routine descriptor contains
routine records for both 680x0 and PowerPC versions of a routine. If the value of either
the theM68kProc parameter or the thePowerPCProc parameter is NULL,
NewFatRoutineDescriptor returns the value NULL.

The memory occupied by the new routine descriptor is allocated in the current heap. If
you want the memory to be allocated in some other heap, you’ll need to set the current
heap to that heap and then restore the original heap before exiting.

SPECIAL CONSIDERATIONS

The NewFatRoutineDescriptor function allocates memory; you should not call it at
interrupt time or from any code that might be executed when memory is low. In addition,
the block of memory allocated by NewFatRoutineDescriptor is nonrelocatable. To
2-40 Mixed Mode Manager Reference

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
help minimize heap fragmentation, you should try to allocate any routine descriptors you
will need early in your application’s execution.

When the USESROUTINEDESCRIPTORS compile flag is false, the
NewFatRoutineDescriptor function is undefined.

SEE ALSO

See “Using Universal Procedure Pointers” beginning on page 2-21 for a more complete
description of when and how to create routine descriptors. See “Specifying Procedure
Information” beginning on page 2-14 for information on creating procedure information.

DisposeRoutineDescriptor 2

You can call the DisposeRoutineDescriptor function to dispose of a routine
descriptor.

pascal void DisposeRoutineDescriptor

(UniversalProcPtr theProcPtr);

theProcPtr
A universal procedure pointer.

DESCRIPTION

The DisposeRoutineDescriptor function disposes of the routine descriptor pointed
to by the theProcPtr parameter. You should call this function to release any memory
allocated by a previous call to NewRoutineDescriptor.

The Operating System automatically disposes of any remaining routine descriptors held
by your application when ExitToShell is executed on its behalf. As a result, you don’t
need to explicitly dispose of any routine descriptors that you have allocated in your
application heap.

SPECIAL CONSIDERATIONS

Be careful not to dispose of a routine descriptor that is still in use by the Operating
System. Code that installs completion routines or other routines called asynchronously
may complete before the completion routine is actually called.

When the USESROUTINEDESCRIPTORS compile flag is false, the
DisposeRoutineDescriptor function does nothing.
Mixed Mode Manager Reference 2-41

C H A P T E R 2

Mixed Mode Manager
Calling Routines via Universal Procedure Pointers 2

The Mixed Mode Manager provides a function that allows you to execute the routine
associated with a universal procedure pointer. It also provides a function that allows you
to call the routine associated with a universal procedure pointer, following Operating
System register saving and restoring conventions.

CallUniversalProc 2

You can use the CallUniversalProc function to call the routine associated with a
universal procedure pointer.

long CallUniversalProc (UniversalProcPtr theProcPtr,

ProcInfoType theProcInfo, ...);

theProcPtr
A universal procedure pointer.

theProcInfo
The procedure information associated with the routine specified by the
theProcPtr parameter.

DESCRIPTION

The CallUniversalProc function executes the routine associated with the specified
universal procedure pointer. You pass CallUniversalProc a universal procedure
pointer (which may be either a 680x0 procedure pointer or the address of the routine
descriptor), a set of procedure information, and a variable number of parameters that are
passed to the routine. CallUniversalProc returns a result of type long that contains
the result (if any) returned by the called routine.

SPECIAL CONSIDERATIONS

If the universal procedure pointer passed to CallUniversalProc is the address
of the routine descriptor, that routine descriptor must already exist before you call
CallUniversalProc. If you pass the address of an invalid routine descriptor to
CallUniversalProc, a system error will occur.

CallOSTrapUniversalProc 2

You can call the CallOSTrapUniversalProc function to call the routine associated
with a universal procedure pointer, following Operating System register saving and
2-42 Mixed Mode Manager Reference

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
restoring conventions. You’re likely to need to use this function only if you need to patch
an Operating System trap.

long CallOSTrapUniversalProc (UniversalProcPtr theProcPtr,

ProcInfoType theProcInfo, ...);

theProcPtr
A universal procedure pointer.

theProcInfo
The procedure information associated with the routine specified by the
theProcPtr parameter.

DESCRIPTION

The CallOSTrapUniversalProc function executes the routine associated with the
specified universal procedure pointer, following standard conventions for executing
Operating System traps. Registers A1, A2, D1, and D2 are saved before the routine is
executed and restored after its completion; in addition, register A0 is saved and restored,
depending on the setting of the appropriate flag bit in the trap word. The trap number
is put into register D1; you should make certain to record that fact in any procedure
information you build yourself.

You pass CallOSTrapUniversalProc a universal procedure pointer (which may be
either a 680x0 procedure pointer or the address of a routine descriptor), a set of
procedure information, and a variable number of parameters that are passed to the
routine. CallOSTrapUniversalProc returns a result of type long that contains the
result (if any) returned by the called routine.

SPECIAL CONSIDERATIONS

If the universal procedure pointer passed to CallOSTrapUniversalProc is the address
of the routine descriptor, that routine descriptor must already exist before you call
CallOSTrapUniversalProc. If you pass the address of an invalid routine descriptor
to CallOSTrapUniversalProc, a system error will occur.

The CallOSTrapUniversalProc function is defined only for register-based Operating
System traps. Make sure that the procedure information specified in the theProcInfo
parameter correctly specifies the calling conventions of the trap. In particular, do not
specify either C or Pascal calling conventions.
Mixed Mode Manager Reference 2-43

C H A P T E R 2

Mixed Mode Manager
Determining Instruction Set Architectures 2

The Mixed Mode Manager contains a function that you can use to determine the current
instruction set architecture.

GetCurrentISA 2

You can use the GetCurrentISA function to get the current instruction set architecture.

ISAType GetCurrentISA (void);

DESCRIPTION

The GetCurrentISA function returns the current instruction set architecture. See
“Instruction Set Architectures” on page 2-35 for a list of the values GetCurrentISA
can return.

SPECIAL CONSIDERATIONS

Currently, the GetCurrentISA function is defined as a compiler macro.

#if defined(powerc) || defined(__powerc)

#define GetCurrentISA() ((ISAType) kPowerPCISA)

#else

#define GetCurrentISA() ((ISAType) kM68kISA)

#endif

The implementation details are subject to change.
2-44 Mixed Mode Manager Reference

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
Summary of the Mixed Mode Manager 2

C Summary 2

Constants 2

/*Gestalt selector and response bits*/

#define gestaltMixedModeAttr 'mixd' /*Mixed Mode Mgr attributes*/

enum {

gestaltPowerPCAware = 0 /*true if MMMgr supports PowerPC*/

};

enum {

/*current version of RoutineDescriptor data type*/

kRoutineDescriptorVersion = 7

};

Routine Flags

enum {

kProcDescriptorIsAbsolute = (RoutineFlagsType)0x00,

kProcDescriptorIsRelative = (RoutineFlagsType)0x01

};

enum {

kFragmentIsPrepared = (RoutineFlagsType)0x00,

kFragmentNeedsPreparing = (RoutineFlagsType)0x02

};

enum {

kUseCurrentISA = (RoutineFlagsType)0x00,

kUseNativeISA = (RoutineFlagsType)0x04

};

enum {

kPassSelector = (RoutineFlagsType)0x00,

kDontPassSelector = (RoutineFlagsType)0x08

};
Summary of the Mixed Mode Manager 2-45

C H A P T E R 2

Mixed Mode Manager
enum {

kRoutineIsNotDispatchedDefaultRoutine

= (RoutineFlagsType)0x00,

kRoutineIsDispatchedDefaultRoutine

= (RoutineFlagsType)0x10

};

Instruction Set Architectures

enum {

kM68kISA = (ISAType)0, /*MC680x0 architecture*/

kPowerPCISA = (ISAType)1 /*PowerPC architecture*/

};

Routine Descriptor Flags

enum {

kSelectorsAreNotIndexable = (RDFlagsType)0x00,

kSelectorsAreIndexable = (RDFlagsType)0x01

};

Procedure Information

enum {

/*size codes*/

kNoByteCode = 0,

kOneByteCode = 1,

kTwoByteCode = 2,

kFourByteCode = 3

};

/*offsets to and widths of procedure information fields*/

#define kCallingConventionPhase 0

#define kCallingConventionWidth 4

#define kResultSizePhase kCallingConventionWidth

#define kResultSizeWidth 2

#define kResultSizeMask 0x30

#define kStackParameterPhase 6

#define kStackParameterWidth 2

#define kRegisterResultLocationPhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kRegisterResultLocationWidth 5
2-46 Summary of the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
#define kRegisterParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kRegisterResultLocationWidth)

#define kRegisterParameterWidth 5

#define kRegisterParameterWhichPhase 2

#define kRegisterParameterSizePhase 0

#define kDispatchedSelectorSizeWidth 2

#define kDispatchedSelectorSizePhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kDispatchedParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kDispatchedSelectorSizeWidth)

enum {

/*calling conventions*/

kPascalStackBased = (CallingConventionType)0,

kCStackBased = (CallingConventionType)1,

kRegisterBased = (CallingConventionType)2,

kThinkCStackBased = (CallingConventionType)5,

kD0DispatchedPascalStackBased = (CallingConventionType)8,

kD0DispatchedCStackBased = (CallingConventionType)9,

kD1DispatchedPascalStackBased = (CallingConventionType)12,

kStackDispatchedPascalStackBased = (CallingConventionType)14,

kSpecialCase = (CallingConventionType)15

};

enum {

/*special cases*/

kSpecialCaseHighHook = 0,

kSpecialCaseCaretHook = kSpecialCaseHighHook,

kSpecialCaseEOLHook = 1,

kSpecialCaseWidthHook = 2,

kSpecialCaseNWidthHook = 3,

kSpecialCaseTextWidthHook = kSpecialCaseWidthHook,

kSpecialCaseDrawHook = 4,

kSpecialCaseHitTestHook = 5,

kSpecialCaseTEFindWord = 6,

kSpecialCaseProtocolHandler = 7,

kSpecialCaseSocketListener = 8,

kSpecialCaseTERecalc = 9,

kSpecialCaseTEDoText = 10,

kSpecialCaseGNEFilterProc = 11,

kSpecialCaseMBarHook = 12

};
Summary of the Mixed Mode Manager 2-47

C H A P T E R 2

Mixed Mode Manager
enum {

/*680x0 registers*/

kRegisterD0 = 0,

kRegisterD1 = 1,

kRegisterD2 = 2,

kRegisterD3 = 3,

kRegisterD4 = 8,

kRegisterD5 = 9,

kRegisterD6 = 10,

kRegisterD7 = 11,

kRegisterA0 = 4,

kRegisterA1 = 5,

kRegisterA2 = 6,

kRegisterA3 = 7,

kRegisterA4 = 12,

kRegisterA5 = 13,

kRegisterA6 = 14,

kCCRegisterCBit = 16,

kCCRegisterVBit = 17,

kCCRegisterZBit = 18,

kCCRegisterNBit = 19,

kCCRegisterXBit = 20

};

Data Types 2

typedef unsigned char ISAType; /*instruction set architecture*/

typedef unsigned short CallingConventionType; /*calling convention*/

typedef unsigned long ProcInfoType; /*procedure information*/

typedef unsigned short RegisterSelectorType;

typedef unsigned short RoutineFlagsType;

struct RoutineRecord {

ProcInfoType procInfo; /*calling conventions*/

unsigned char reserved1; /*reserved*/

ISAType ISA; /*instruction set architecture*/

RoutineFlagsType routineFlags; /*flags for each routine*/

ProcPtr procDescriptor; /*the thing we're calling*/

unsigned long reserved2; /*reserved*/

unsigned long selector; /*selector for dispatched calls*/
2-48 Summary of the Mixed Mode Manager

C H A P T E R 2

Mixed Mode Manager

2
M

ixed M
ode M

anager
};

typedef struct RoutineRecord RoutineRecord;

typedef RoutineRecord *RoutineRecordPtr, **RoutineRecordHandle;

typedef unsigned char RDFlagsType; /*routine descriptor flags*/

struct RoutineDescriptor {

unsigned short goMixedModeTrap; /*mixed-mode A-trap*/

char version; /*routine descriptor version*/

RDFlagsType routineDescriptorFlags;

/*routine descriptor flags*/

unsigned long reserved1; /*reserved*/

unsigned char reserved2; /*reserved*/

unsigned char selectorInfo; /*selector information*/

short routineCount; /*index of last RR in this RD*/

RoutineRecord routineRecords[1];/*the individual routines*/

};

typedef struct RoutineDescriptor RoutineDescriptor;

typedef RoutineDescriptor *UniversalProcPtr, **UniversalProcHandle;

typedef RoutineDescriptor *RoutineDescriptorPtr, **RoutineDescriptorHandle;

Mixed Mode Manager Routines 2

Creating and Disposing of Routine Descriptors

pascal UniversalProcPtr NewRoutineDescriptor
(ProcPtr theProc, ProcInfoType theProcInfo,
ISAType theISA);

pascal UniversalProcPtr NewFatRoutineDescriptor
(ProcPtr theM68kProc, ProcPtr thePowerPCProc,
ProcInfoType theProcInfo);

pascal void DisposeRoutineDescriptor
(UniversalProcPtr theProcPtr);

Calling Routines via Universal Procedure Pointers

long CallUniversalProc (UniversalProcPtr theProcPtr,
ProcInfoType theProcInfo, ...);

long CallOSTrapUniversalProc
(UniversalProcPtr theProcPtr,
ProcInfoType theProcInfo, ...);

Determining Instruction Set Architectures
ISAType GetCurrentISA (void);
Summary of the Mixed Mode Manager 2-49

C H A P T E R 2

Mixed Mode Manager
C Language Macros for Defining Procedure Information

#define SIZE_CODE(size) (((size) == 4) ? kFourByteCode : \

(((size) == 2) ? kTwoByteCode : (((size) == 1) ? kOneByteCode : 0)))

#define RESULT_SIZE(sizeCode) ((ProcInfoType)(sizeCode) << kResultSizePhase)

#define STACK_ROUTINE_PARAMETER(whichParam, sizeCode) \

((ProcInfoType)(sizeCode) << (kStackParameterPhase + \

(((whichParam) - 1) * kStackParameterWidth)))

#define DISPATCHED_STACK_ROUTINE_PARAMETER(whichParam, sizeCode) \

((ProcInfoType)(sizeCode) << (kDispatchedParameterPhase + \

(((whichParam) - 1) * kStackParameterWidth)))

#define DISPATCHED_STACK_ROUTINE_SELECTOR_SIZE(sizeCode) \

((ProcInfoType)(sizeCode) << kDispatchedSelectorSizePhase)

#define REGISTER_RESULT_LOCATION(whichReg) \

((ProcInfoType)(whichReg) << kRegisterResultLocationPhase)

#define REGISTER_ROUTINE_PARAMETER(whichParam, whichReg, sizeCode) \

((((ProcInfoType)(sizeCode) << kRegisterParameterSizePhase) | \

((ProcInfoType)(whichReg) << kRegisterParameterWhichPhase)) << \

(kRegisterParameterPhase + (((whichParam)- 1) * kRegisterParameterWidth)))

#define SPECIAL_CASE_PROCINFO(specialCaseCode) \

(kSpecialCase | ((ProcInfoType)(specialCaseCode) << 4))
2-50 Summary of the Mixed Mode Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to PowerPC TOC
	 Introduction to PowerPC
	 Mixed Mode Manager TOC
	Mixed Mode Manager
	About the Mixed Mode Manager
	External Code
	Procedure Pointers
	Mode Switches
	Calling PowerPC Code From 680x0 Code
	Calling 680x0 Code From PowerPC Code

	Using the Mixed Mode Manager
	Specifying Procedure Information
	Using Universal Procedure Pointers
	Using Static Routine Descriptors
	Executing Resource-Based Code

	Mixed Mode Manager Reference
	Constants
	Routine Descriptor Flags
	Procedure Information
	Routine Flags
	Instruction Set Architectures

	Data Structures
	Routine Records
	Routine Descriptors

	Mixed Mode Manager Routines
	Creating and Disposing of Routine Descriptors
	Calling Routines via Universal Procedure Pointers
	Determining Instruction Set Architectures

	Summary of the Mixed Mode Manager
	C Summary
	Constants
	Data Types
	Mixed Mode Manager Routines

	 Code Fragment Manager TOC
	 Code Fragment Manager
	 Exception Manager TOC
	 Exception Manager
	 Glossary
	 Index
	 Colophon

