

P R E F A C E

About This Book

This book, Inside Macintosh: PowerPC System Software, describes the new
process execution environment and system software services provided with
the first version of the system software for Macintosh on PowerPC computers.
It contains information you need to know to write applications and other
software that can run on PowerPC processor-based Macintosh computers.

The first release of the system software for Macintosh on PowerPC computers
provides a mixed or hybrid environment: the system software provides the
ability to execute both applications that use the native instruction set of the
PowerPC microprocessor and applications that use the 680x0 instruction set.
It accomplishes this by providing a very efficient 68LC040 Emulator that
emulates 680x0 instructions with PowerPC instructions. As a result, virtually
all existing 680x0-based Macintosh applications and other software modules
that conform to the programming interfaces and techniques documented in
the Inside Macintosh suite of books will execute without modification on
PowerPC processor-based Macintosh computers.

To take maximum advantage of the much greater processing speed of the
PowerPC microprocessor, however, you’ll need to recompile your application’s
source code into a PowerPC application. Apple Computer, Inc., provides
MPW-based C and C++ compilers and other tools that you can use to create
native PowerPC applications. In general, if your source code is already
compliant with ANSI C standards or the de facto ANSI C++ standards, you
should be able, with moderately little effort, to rework your source code so that
it can be compiled and built using the Apple-supplied tools into a PowerPC
application. This book is intended to provide much of the information you
need to port your existing 680x0 application (or other software) to the
PowerPC platform.

Note

There will also be third-party compilers and development
environments capable of generating PowerPC code. ◆

Although the native run-time execution environment of the first version of the
system software for PowerPC processor-based Macintosh computers is
significantly different from the execution environment of current 680x0-based
Macintosh computers, you won’t need to worry about those differences
unless your existing code relies on specific information about the 680x0
execution environment. For example, if for some reason you directly access
information in your application’s A5 world, you’ll need to rewrite those
parts of code when porting your application to the PowerPC environment.
Similarly, you’ll need to rewrite any parts of your code that depend on
data being passed in certain 680x0 registers. VBL tasks, for instance, very
ix

P R E F A C E

often depend on the fact that a pointer to the VBL task record is passed in
register A0.

The first chapter in this book, “Introduction to PowerPC System Software,”
provides a general overview of the system software that runs on PowerPC
processor-based Macintosh computers. It also describes in detail the mixed
environment provided by the 68LC040 Emulator and the Mixed Mode
Manager, as well as the new run-time environment used for native PowerPC
applications. You should read this chapter for general information about
porting your existing software to the PowerPC environment. Even if you do
not intend to port your existing 680x0 software, you might still want to read
this chapter for information about running under the 68LC040 Emulator.

The remaining chapters in this book provide reference material for the three
new system software managers introduced in the first version of the system
software for PowerPC processor-based Macintosh computers. You should
read these chapters for specific information on using the services provided by
those managers. The new system software managers are

■ the Mixed Mode Manager, which manages the mixed environment of
PowerPC processor-based Macintosh computers running 680x0-based code

■ the Code Fragment Manager, which loads fragments (blocks of executable
PowerPC code and their associated data) into memory and prepares them
for execution

■ the Exception Manager, which handles exceptions that occur during the
execution of PowerPC applications or other software

IMPORTANT

Some of the system software services introduced in the first version of
the system software for PowerPC processor-based Macintosh computers
might in the future be available on Macintosh computers that are not
based on the PowerPC microprocessor. For example, it’s possible that
the Code Fragment Manager (and the entire run-time environment
based on fragments) will be included in future versions of the system
software for 680x0-based Macintosh computers. As a result, some of the
information in this book might eventually be more generally applicable
than the title of this book might suggest. ▲

If you are new to programming for Macintosh computers, you should read the
book Inside Macintosh: Overview for an introduction to general concepts
of Macintosh programming. You should also read other books in the Inside
Macintosh series for specific information about other aspects of the Macintosh
Toolbox and the Macintosh Operating System. In particular, to benefit most
from this book, you should already be familiar with the run-time environment
of 680x0 applications, as described in the two books Inside Macintosh: Processes
and Inside Macintosh: Memory.
x

P R E F A C E

Related Documentation 0

This book is part of a larger suite of books that contain information essential
for developing PowerPC applications and other software.

■ For information about the PPCC compiler that you can use to compile your
source code into a PowerPC application, see the book C/C++ Compiler for
Macintosh With PowerPC.

■ For information about the PPCAsm assembler, see the book Assembler for
Macintosh With PowerPC.

■ For information about debugging and measuring the performance of
PowerPC applications, see the book Macintosh Debugger Reference.

■ For information about performing floating-point calculations in PowerPC
applications, see the book Inside Macintosh: PowerPC Numerics.

■ For information about building PowerPC applications and other kinds of
PowerPC software for Macintosh computers, see Building Programs for
Macintosh With PowerPC.

Format of a Typical Chapter 0

Almost all chapters in this book follow a standard structure. For example, the
chapter “Mixed Mode Manager” contains these sections:

■ “About the Mixed Mode Manager.” This section describes the Mixed Mode
Manager. You should read this section for a general understanding of
what the Mixed Mode Manager does and when you might need to call
it explicitly.

■ “Using the Mixed Mode Manager.” This section provides detailed instruc-
tions on using the Mixed Mode Manager. You should read this section if
you need to use the services provided by the Mixed Mode Manager.

■ “Mixed Mode Manager Reference.” This section provides a complete
reference to the constants, data structures, and routines provided by the
Mixed Mode Manager. Each routine description also follows a standard
format, which presents the routine declaration followed by a description
of every parameter of the routine. Some routine descriptions also give
additional descriptive information, such as circumstances under which you
cannot call the routine or result codes.

■ “Summary of the Mixed Mode Manager.” This section provides the C
interfaces for the constants, data structures, routines, and result codes
associated with the Mixed Mode Manager.
xi

P R E F A C E

Conventions Used in This Book 0

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as parameter blocks, appears in special formats so that you
can scan it quickly.

Special Fonts 0
All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Courier (this is
Courier).

Words that appear in boldface are key terms or concepts and are defined in
the glossary at the end of this book. Note that numerical entries (for example,
32-bit clean) are sorted before all alphabetical entries in the glossary and in
the index.

Types of Notes 0
There are several types of notes used in Inside Macintosh.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-6.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-19.) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings
could result in system crashes or loss of data. (An example appears on
page 1-8.) ▲

Bit Numbering and Word Size 0
This book departs from the conventions followed in previous Inside Macintosh
books in regard to the numbering of bits within a range of data. Previously,
for example, the bits in a 32-bit data type were numbered 0 to 31, from right to
left, as shown in Figure P-1 on the following page. The least significant bit of a
32-bit data type was addressed as bit 0, and the most significant bit was
addressed as bit 31. This convention was in accordance with that used by
xii

P R E F A C E

Motorola in the books documenting their 680x0 family of microprocessors (for
example, the MC68040 32-Bit Microprocessor User’s Manual).

Figure P-1 680x0 bit numbering

In this book, the bits in a 32-bit data type are numbered 0 to 31, from left to
right. The most significant bit of a 32-bit data type is addressed as bit 0, and
the least significant bit is addressed as bit 31. This convention, illustrated in
Figure P-2, is in accordance with the bit-numbering conventions used by
Motorola in the books documenting the PowerPC family of microprocessors
(for example, the PowerPC 601 RISC Microprocessor User’s Manual).

Figure P-2 PowerPC bit numbering

In addition, there are differences between 680x0 and the PowerPC terminology
to describe the sizes of certain memory operands, as shown in Table P-1.

To avoid confusion, however, this book generally uses bytes to give the sizes
of objects in memory.

Table P-1 Sizes of memory operands

Size 680x0 terminology PowerPC terminology

8 bits Byte Byte

2 bytes Word Half word

4 bytes Long word Word

8 bytes N/A Double word

16 bytes N/A Quad word

31 0

0 31
xiii

P R E F A C E

Assembly-Language Information 0
Inside Macintosh presents information about the fields of a parameter block in
this format:

Parameter block

The arrow in the far-left column indicates whether the field is an input
parameter, output parameter, or both. You must supply values for all input
parameters and input/output parameters. The routine returns values in
output parameters and input/output parameters.

The second column shows the field name as defined in the MPW C interface
files; the third column indicates the C data type of that field. The fourth
column provides a brief description of the use of the field. For a complete
description of each field, see the discussion that follows the parameter
block or the description of the parameter block in the reference section of
the chapter.

Development Environment 0

The system software routines described in this book are available using C
or assembly-language interfaces. How you access these routines depends
on the development environment you are using. This book shows system
software routines in their C interface using the Macintosh Programmer’s
Workshop (MPW).

All code listings in this book are shown in C (except for listings that describe
resources, which are shown in Rez-input format). They show methods of using
various routines and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and, in most cases, tested. However,
Apple Computer does not intend that you use these code samples in your
application. You can find the location of this book’s code listings in the list of
figures, tables, and listings.

To make the code listings in this book more readable, only limited error
handling is shown. You need to develop your own techniques for detecting
and handling errors.

This book occasionally illustrates concepts by reference to a sample applica-
tion called SurfWriter and a sample import library called SurfTools; these are
not actual products of Apple Computer, Inc.

↔ inAndOut Handle Input/output parameter.

← output1 Ptr Output parameter.

→ input1 Ptr Input parameter.
xiv

P R E F A C E

For More Information 0

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other
technical information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.
20525 Mariani Avenue, M/S 303-2T
Cupertino, CA 95014-6299

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com
xv

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	About This Book
	Related Documentation
	Format of a Typical Chapter
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	Bit Numbering and Word Size
	Assembly-Language Information

	Development Environment
	For More Information

	 Introduction to PowerPC TOC
	 Introduction to PowerPC
	 Mixed Mode Manager TOC
	 Mixed Mode Manager
	 Code Fragment Manager TOC
	 Code Fragment Manager
	 Exception Manager TOC
	 Exception Manager
	 Glossary
	 Index
	 Colophon

