CHAPTER 8

QuickDraw GX Mathematics

This chapter describes QuickDraw GX number formats, number-format conversions,
mathematical functions, and functions that operate on mappings (transformation
matrices). Read this chapter if your application requires the explicit use of any of the
mathematical capabilities of QuickDraw GX.

Related information on how QuickDraw GX uses mappings can be found in the chapter
“Transform Objects” and the chapter “View-Related Objects” in Inside Macintosh:
QuickDraw GX Objects.

This chapter first describes the number formats used in QuickDraw GX. It then describes
the number-format conversion macros and mathematical functions that are provided by
QuickDraw GX. It then shows how to use QuickDraw GX macros and functions to
provide

» fixed-point number conversions

» fixed-point operations

= operations on 64-bit numbers

= Vector operations

= Cartesian and polar coordinate conversions
= random number generation

= roots of linear and quadratic equations

= bit analysis

= Mmapping operations

About QuickDraw GX Mathematics

QuickDraw GX supports 16-bit, 32-bit, and 64-bit fixed-point number formats. You can
use QuickDraw GX macros for efficient number-format conversions. QuickDraw GX
mathematical functions provide a full spectrum of operations. QuickDraw GX mapping
functions allow you to manipulate the matrices that transform shapes.

Number Formats

QuickDraw GX accepts standard integer and floating-point number formats, and defines
several fixed-point number formats.

About QuickDraw GX Mathematics 8-5

SOIeWaYIRN X9 MeIayInd n

8-6

CHAPTER 8

QuickDraw GX Mathematics

Integer Formats

Some Quickdraw GX functions and data structures may make use of the standard C
language integer formats short , unsi gned short,| ong, and unsi gned | ong. The
short number format is a 16-bit signed or unsigned integer; the long number format is a
32-bit signed or unsigned integer. Numbers in these formats have the following ranges
of values:

Format Range

short -32, 768 to 32,767

unsi gned short 0 to 65,535

| ong —-2,147,483,648 to 2,147,483,647

unsi gned | ong 0to 4,294,967,295

Floating-Point Formats

QuickDraw GX supports conversion to and from the C language single precision
floating-point format f | oat ; double precision floating-point format doubl e; and extra
precision floating-point format ext ended. QuickDraw GX macros that convert between
floating-point numbers and Fi xed or f r act numbers can handle all three floating-point
formats.

Fixed-Point Formats

QuickDraw GX defines 16-bit, 32-bit, and 64-bit fixed-point number formats.
Fixed-point number formats are integers that are interpreted as real numbers. The
conversion between integer number format and a fixed-point number format is
described by bias. A bias is a number (commonly expressed as a power of 2) by
which an integer is divided in order to obtain the real number it represents. For
example, the bias for the Fi xed number format is 16 bits, or 216 In this case, the
integer must be divided by 216 to obtain the real number represented. Therefore,
Fi xed 0x10000 = 65,536/216, or 1.0.

There are one 16-bit, two 32-bit, and one 64-bit number formats:

= The gxCol or Val ue format for fixed-point numbers is a 16-bit unsigned integer. The
values range from 0 to 65,535 to represent numbers from 0 to 1. This fixed-point
number is described by a bias of 65,535. The integer must be divided by 65,535 to
obtain the real number represented. (Its name derives from the fact that it is used to
describe color-component values in a Quickdraw GX color structure; see the chapter
“Colors and Color-Related Objects” in Inside Macintosh: QuickDraw GX Objects for
more information.)

= The Fi xed format for fixed-point numbers has 16 bits to the left and 16 bits to the
right of the binary point. This corresponds to a fixed-point bias of 16 bits. Fi xed
format numbers range from -32,768 to [32,767 + (65,535/65,536)], or approximately
32,768.

About QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

» Thefract format for fixed-point numbers has 2 bits to the left and 30 bits to the right
of the binary point. This corresponds to a fixed-point bias of 30 bits. Numbers in
fract format range from -2 to [2 - (239)] or -2 to [1 + (1,073,741,823/1,073,741,824)],
or approximately 2.0.

= The wi de format is a signed integer data type that has 64 bits. It can be given a bias,
just as any other integer type can. With a bias of 0 bits, awi de format number
represents an integer and can range from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. With a bias of 16 bits, aw de format number represents an
extended version of the Fi xed format (that is, it has the same precision but a larger
range) and can range from -140,737,488,355,328 to [140,737,488,355,327 + (65,535/
65,536)].

All of the fixed-point number formats except for gxCol or Val ue are two’s complement
signed integers.

The wi de data type is defined as a structure that contains an unsigned long integer as its
low-order half and a signed long integer as its high-order half. You can convertal ong
into awi de in either of two ways:

= First, assign the | ong to the low half of the wi de. Then, if the | ong is not negative,
assign 0 to the high half of the wi de; if the | ong is negative, assign -1 to the high half
of the wi de.

= Assign the | ong to the high half of the wi de. Use the W deShi ft function to shift the
bits of the wi de rightward by 32 bits.

The WideShift function is described on page 8-51. The wi de structure is described on
page 8-35.

Working With Bias in Fixed-Point Operations

Fi xed numbers have a bias of 16; f r act numbers have a bias of 30; and | ong and wi de
numbers have a bias of 0. Unless stated otherwise, all biases will be powers of 2. For
brevity, we use the convention of describing a bias by the exponent of 2; for example, we
say “a bias of 16” instead of “a bias of 16 bits.”Operations that are designed to work on a
specific number format (such as Fi xedMul ti ply or Fract Di vi de or WdeMil ti ply)
apply a bias to the result of their operations that reflects the number format they expect.
If you understand how the bias is applied, you can use (and even mix) any of several
different fixed-point number formats in these functions, and know what bias to use
when interpreting the result:

= Operations on Fi xed numbers (such as Fi xedMul ti pl y and Fi xedDi vi de) use a
bias of 16; operations on f r act numbers (such as Fract Mul ti pl y and
Fract Di vi de) use a bias of 30; operations on | ong and wi de numbers (such as
Mul ti pl yDi vi de and W deDi vi de) use a bias of 0.

= When multiplying two fixed-point numbers, the bias of the result is the sum of the
biases of the input numbers, minus the bias of the operation. Thus, the result of using
Fi xedMWul ti pl y to multiply two Fi xed numbersisa Fi xed (= (16 + 16) — 16), as
expected. On the other hand, the result of using Fi xedMul ti pl y to multiply a
fract andaFi xedisafract (=(30+ 16) — 16), and the result of Fract Mul t i pl y
onafract andaFi xedisaFi xed (= (30 + 16) — 30).

About QuickDraw GX Mathematics 8-7

SOIeWaYIRN X9 MeIayInd n

8-8

CHAPTER 8

QuickDraw GX Mathematics

= When dividing two fixed-point numbers, the bias of the result is the operation bias
plus the difference between the biases of the input numbers. Thus, as expected, the
result of using Fi xedDi vi de to divide one Fi xed number by another is a Fi xed
(=16 + (16 — 16)). The result of Fi xedDi vi de onafract divided by aFi xed isa
Fract (=16 + (30 - 16)), and the result of Fr act Di vi de on a Fi xed divided by
aFract isaFi xed (=30 + (16 — 30)).

= For operations that have no bias, the result is simply the sum or difference of the input
biases. For example, if you use Mul ti pl yDi vi de to multiply a Fi xed by afract
and divide the result by a Fi xed, the result will be afract (=16 + 30— 16). If you
use W deMul ti pl y to multiply two Fi xed numbers, the result will have a bias of 32
bits (=16 + 16).

Remember also that using the standard C operators + and — to add or subtract

fixed-point numbers is meaningful only if the numbers have the same bias. Thus, if you

wish to add together a long integer and a Fi xed, for example, you must first convert one

format to the other, or convert both to a common format.

The functions referred to in this section are described in the section “Fixed-Point
Operations” beginning on page 8-42, and “Operations on wide Numbers” beginning on
page 8-49.

Number-Conversion Macros

QuickDraw GX provides a set of predefined macros for the conversion between different
fixed-point number formats. This allows you the convenience of accessing the
number-conversion formulas as if they were function calls.

Table 8-1 summarizes the number-format conversions that are supported.

Table 8-1 Macro number-format conversions
From number format To number format
Fi xed fract

Fi xed floating-point

Fi xed integer

fract floating-point
fract Fi xed

fract gxCol or Val ue
floating-point fract
floating-point Fi xed

integer Fi xed

gxCol or Val ue fract

About QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

QuickDraw GX also provides macros that

= round a Fi xed number to its nearest integer

= determine the greatest integer that is not greater than a given Fi xed number
= use a function to determine the square root of a Fi xed number

The use of QuickDraw GX macros is described in the section “Converting Number
Formats” beginning on page 8-26. Each macro is described in the section
“Number-Conversion Macros” beginning on page 8-36.

Mathematical Functions

QuickDraw GX provides mathematical functions for

= fixed-point operations on Fi xed, | ong, and f r act number formats
» fixed-point operations on awi de number format

= Vector operations

= Cartesian and polar coordinate point conversions

= random number generation

= linear and quadratic roots

= bit analysis

A description of each QuickDraw GX mathematics function is provided in the section
“Mathematical Functions” beginning on page 8-42.

Operations on Fixed, long, and fract Numbers

QuickDraw GX provides functions that perform operations on Fi xed, | ong, and f r act
number formats. Functions are provided that

= determine the product of two numbers (a x b)
= determine the quotient of two numbers (a / b)
= determine the product of two numbers and the quotient of a third number (axb) /¢

= determine both the sine and cosine of an angle measured in degrees [sine(angle) and
cosine(angle)]

= determine the square root of a number (a)/2
= determine the cube root of a number (a)1/3
= determine the magnitude of a two-dimensional vector

The functions that perform operations on Fi xed, | ong, and f r act number formats are
described in the section “Fixed-Point Operations” beginning on page 8-42.

About QuickDraw GX Mathematics 8-9

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Operations on wide Numbers

QuickDraw GX provides functions for operations on wi de numbers. Functions are
provided that

= determine the sum of two wi de numbers (a + b)
= determine the difference between two wi de numbers (a - b)
= determine the product, as aw de number, of two | ong numbers (a x b)

= determine the quotient, as al ong number (without remainder), of awi de number
divided by al ong number (a / b)

= determine the result, as al ong quotient and a | ong remainder, of dividing awi de
number by al ong number (a / b + remainder)

= determine the square root of awi de number (a)}/2

= nNegate awi de number (-a)

= shift bits in aw de number to the right or left

= determine the highest order bit in the absolute value of awi de number
= compare twow de numbers

The functions that perform operations on wi de number formats are described in the
section “Operations on wide Numbers” beginning on page 8-49.

Vector Operations

QuickDraw GX provides vector operation functions that
= determine the dot product of two vectors (v, ® V,)

= determine the dot product of two vectors and divide by a number (v; = v,)/a

The use of QuickDraw GX vector operation functions is described in the section
“Performing Vector Operations” beginning on page 8-29. These functions are described
in the section “Vector Operations” beginning on page 8-54.

Cartesian and Polar Coordinate Conversion

You use Cartesian coordinates to specify points with QuickDraw GX. Some shapes, such
as rectangles, are more easily drawn using Cartesian coordinates; however, some shapes
that have symmetry about a point are more easily drawn with polar coordinates. For that
reason, QuickDraw GX provides conversion routines so that you can work in either
coordinate system.

For QuickDraw GX, Cartesian coordinates have a positive x direction to the right and a
positive y direction downward (not upward, as in many other Cartesian coordinate
systems). Cartesian coordinates are written in the order (x, y). The origin is at (0, 0). The
gxPoi nt structure describes points using Cartesian coordinates.

8-10 About QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Polar coordinates have the same origin point as Cartesian coordinates, but locations are
specified differently. The polar coordinate of a point is specified by the length of the
radius vector r from the origin to the point and the direction of the vector is specified by
polar angle a. Angles in QuickDraw GX are measured clockwise in degrees from the
Cartesian coordinate positive x-axis. The polar coordinate of a point specified by a vector
of length r and direction a degrees from the x-axis is written as point (r, a). The polar
origin point has the coordinates (0, a), where a is any angle. Points having polar
coordinates are defined by the gxPol ar structure. The gxPol ar structure is described
in the section “Constants and Data Types” beginning on page 8-35. The relationship of
the Cartesian and polar coordinates is shown in Figure 8-1.

Figure 8-1 Cartesian and polar coordinates
0.0,0.0 .
- " 0.0, any angle
e /
Y 1 *y) Angle a
ﬁ Point (x, y) r
Point (r, a)
. . J
Cartesian coordinates Polar coordinates

The gxPol ar location (r, a) corresponds to the gxPoi nt location (r x cos(a), r x sin(a)).
The mathematical relationship between the two coordinate systems is given by the
expressions r? = x? +y? and tan(a /7 2) =y / (r + x). The angle can also be defined by the
more familiar termtan(@) =y / x.

The use of the polar-to-Cartesian and Cartesian-to-polar coordinates functions are
described in the section “Converting Between Cartesian and Polar Coordinates”
beginning on page 8-29. These functions are described in the section “Cartesian and
Polar Coordinate Point Conversions” beginning on page 8-56.

Random Number Generation

The QuickDraw GX random-number algorithm generates random integers in the range
of 0 to 2°U" _ 1 where count is the number of bits to be generated by the random
number generator.

About QuickDraw GX Mathematics 8-11

SOIeWaYIRN X9 MeIayInd n

8-12

CHAPTER 8

QuickDraw GX Mathematics

The sequence of values that the random number generator produces is dependent upon
the initialization value called the seed. The algorithm uses the seed to calculate the next
random number and a new seed. If no seed is provided, QuickDraw GX uses a default
seed value of 0. To repeat a sequence of random numbers, you can use the same seed
value.

QuickDraw GX provides random number generation functions that
= generate a sequence of random bits

= change the seed used by the random number algorithm

= determine the current seed for the random number algorithm

The use of the random number generation functions is described in the section
“Generating Random Numbers” beginning on page 8-33. These functions are described
in the section “Random Number Generation” beginning on page 8-58.

Roots of Linear and Quadratic Equations

QuickDraw GX provides mathematical functions that
= determine the root of a linear equation

= determine the roots of a quadratic equation

The linear and quadratic equation solving functions are described in the section “Linear
and Quadratic Roots” beginning on page 8-60.

Bit Analysis

QuickDraw GX provides a mathematical function that allows you to determine the
highest bit number that is set in a number.

The Fi r st Bi t function is described in the section “Bit Analysis” beginning on
page 8-62.

Transformation Operations With Mappings

A mapping is a 3 x 3 perspective matrix that performs transformations of spatial
locations in two dimensions. You can apply a mapping operation to a set of points either
directly (as when directly modifying the geometry of a shape), or indirectly, by
multiplying a mapping with another mapping (as when altering the mapping in the
transform object associated with a shape).

About QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

QuickDraw GX uses mappings to perform the following transformations on shapes or
other two-dimensional data:

= Translation shifts the position of a shape by the amount specified in the mapping.
Translation functions allow you to specify either a relative shift along either
coordinate axis, or an absolute shift to a new specified location.

= Scaling changes the size of a shape by the factor specified in the mapping. Scaling
functions allow you to change size along either axis, and can also result in reflection
about the coordinate axes.

= Rotation changes the angle of rotation of a shape by the amount specified in the
mapping, rotating all points around a given point.

= Skewing changes the slant applied to a shape by the amount specified in the
mapping. Skewing functions allow you to apply slant along either coordinate axis,
relative to a given point. The term shearing is synonymous with skewing.

» Perspective modifies the positions of points to give a three-dimensional effect.

When you multiply two or more matrices to obtain a cumulative result, you concatenate,
or accumulate the transformations of, both mappings. Matrix multiplication is not
commutative. This means that [A] x [B] # [B] x [A]. As a result, the order that you
concatenate is important. [A] is postmultiplied by [B] if [A] is replaced by [A] x [B].
Conversely, [A] is premultiplied by [B] if [A] is replaced by [B] X [A]. A mapping is
applied to a point via postmultiplication (which is to say that points are row vectors);
therefore, the default for applying one mapping to another is also postmultiplication.

Multiple concatenations can occur in QuickDraw GX, such as when drawing picture
shapes or when drawing any shape through a hierarchy of view ports. If you are
going to apply several mappings to a relatively large bitmap or other shape, it is
advantageous to concatenate the mappings first (with the MapMappi ng function) and
then apply the resultant mapping to the shape (with the GXMapShape function).

The motivation is speed. It is much faster to concatenate mappings than to apply a
mapping to a large number of points. For bitmaps, an additional motivation is accuracy.
Each time a shape is transformed, a certain amount of roundoff error is introduced.
Because the pixels of a bitmap are at integral coordinates, the roundoff error is on the
average of a quarter pixel, compared with thousandths of a pixel for fixed-point
coordinates.

About QuickDraw GX Mathematics 8-13

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

QuickDraw GX provides two groups of mapping functions. The first group allows you
to copy and perform standard matrix operations on mappings. With these functions, you
can

= Mmake a copy of a mapping

= normalize a mapping

= reset a mapping to identity

= invert a mapping

= concatenate (postmultiply) a mapping to another mapping
= apply a mapping to each of a given set of points

The second group allows you to modify how a mapping transforms the objects or
coordinate space it is applied to. With these functions, you can

= add translation to mapping

= modify a mapping to specify translation to an absolute location
= add horizontal and vertical scaling to a mapping

= add rotation to a mapping

= add horizontal and vertical skew to a mapping

Figure 8-2 shows an example of how modifying a mapping can modify the scaling,
rotation, skewing, and perspective of a shape.

Figure 8-2 Transformation operations with a mapping matrix
Original Scale Rotate Skew Perspective

8-14 About QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Characteristics of a Mapping

QuickDraw GX achieves these two-dimensional transformations of shapes and points on
a plane by matrix multiplication of each Cartesian point P by the mapping matrix [T] to
generate a transformed point P".

P, y) [TI=P (X, Y)

To multiply a two-dimensional point by a three-dimensional matrix, we first expand it to
a three-dimensional point (X, y, 1). After multiplication, the resulting pointis (X", y’, '),
which normalizes to (X' /z",y'/z, 1) or, in two dimensions, (X' /2",y /2).

The QuickDraw GX mapping is defined as
struct gxMapping { Fixed map[3][3];};

The mapping consists of linear elements a, b, ¢, and d; perspective elements u and v;
translation elements h and k; and the scale factor w, which is commonly setto f r act 1.
Although defined as containing only Fi xed numbers, the rightmost column of the
matrix—containing elements u, v, and w—consists of f r act numbers. Figure 8-3 shows
the elements of the matrix in place.

Figure 8-3 Mapping matrix elements
a
Linear +—— Perspective
elements c elements
Translation — fractl
elements — —

Point P(x, y) is transformed to point P’ (X", y*) by matrix multiplication of the row vector
[xy 1] by the mapping matrix to yield the expanded general expression shown in
Figure 8-4.

Figure 8-4 Applying a mapping matrix to a point

a b u
E(y 1] c d v| = Eax+cy+h,bx+dy+k,ux+vy+v£|
h k w

About QuickDraw GX Mathematics 8-15

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

The x and y elements of the transformed vector can be mapped back to the x and
y-coordinates by dividing each element by the term ux + vy + w. The resulting general
expression for the transformation of point P(x, y) to P"(x", y') is shown in Figure 8-5.

Figure 8-5 The point (x, y) as transformed by the mapping matrix

8-16

ax+cy+h bx + dy + k
xoyv] - ’
UX+Vy+WwW UX+Vy+w

A mapping is normalized whenever the transformation matrix element w has the
value 1. Most QuickDraw GX mapping operations will be automatically normalized.
However, mappings that an application generates itself might not be normalized.
Subsequent operations with that mapping may be slow.

If a mapping does not specify perspective (that is, if its perspective elements u and v are
zero), normalization of the transformation involves dividing the map by the absolute
value of w, if possible. If this division is not possible (due to overflow) or if the mapping
specifies perspective, normalization involves bit-shifting each element of the mapping to
the left. The amount of shift provided by the minimum of the following two operations
is selected:

= shift the minimum number of bits so that the absolute value of some element of the
mapping is >=f ract 1 (compared as | ong values).

= shift the maximum number of bits so that the sum of the absolute values of u and v is
<=fractl-fixedl (compared as| ong values).

The identity mapping, or identity matrix, has the unique characteristic that it maps
points to the same point. The identity matrix has all diagonal elements equal to 1 and all
other matrix elements have the value 0. The identity matrix is shown in Figure 8-6.

About QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Figure 8-6 The identity matrix

0

1 0
By1101o:E<,y,1]
0 0

1

(Xy) —= (XVY)

The inverse of a mapping is the mathematical inverse of the matrix. This means that if
you concatenate a mapping with its inverse, you will get the identity matrix.

The rest of this section discusses the use of the mapping functions in modifying the
translation, scaling, rotation, and skewing factors in a mapping. It ends with a discussion
of how to modify the perspective factors in a mapping. For additional information about
the use of mappings in the transform object and in view port and view device objects,
see the chapters “Transform Objects” and “View-Related Objects,” respectively, in Inside
Macintosh: QuickDraw GX Objects.

Translation by a Relative Amount

You can use the MoveMappi ng function to make a relative change (in both x and y)

to the translation specified by a mapping. Matrix elements h and k control the amount of
the translation. Figure 8-7 shows what happens to a mapping M when you call
MoveMappi ng and specify horizontal and vertical offsets of hOf f set and vOf f set . A
purely translational matrix is applied to the target mapping, so that the resultant
mapping’s translation is increased by the specified offsets.

Figure 8-7 Changing the translation specified by a mapping

1 0 0 [

M~>le =+ of=M
hOffset vOffset 1

Original Translation Transformed

mapping matrix mapping

About QuickDraw GX Mathematics 8-17

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Figure 8-8 shows the use of the MoveMappi ng function to provide translation of a
mapping by the increments given by the hOf f set and vOF f set parameters. The
MoveMappi ng function is described on page 8-67.

Figure 8-8 Translation by a relative amount with MoveMappi ng

| (h.k)

hOff set ——

-«——VvOfifset — |

Original
shape

|
| Shape after
| MoveMappi ng

Translation to a Specified Point

You can specify translation of the origin to a given point by using the MoveMappi ngTo
function. Moving the origin means that the point (0, 0) will become the point (h, k) after
the mapping is applied to it. Matrix elements h and k again control the amount of
translation. Figure 8-9 shows what happens to a mapping M when you call

MoveMappi ngTo and specify the desired location (hPosi ti on, vPosi ti on). A relative
translation of (-h/w, —k/w) is applied to the target mapping to bring its origin to (0, 0),
and then a relative translation of (hPosi ti on, vPosi t i on) is applied. The resultant
mapping ends up with translational values of hPosi t i on and vPosi ti on.

8-18 About QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Figure 8-9 Setting the origin specified by a mapping

1 0 0 I
M X1o 1 0| = M
(hPosition - %) (vPosition — %) 1
Origir_lal Translation Transformed
mapping matrix mapping

Figure 8-10 shows the use of the MoveMappi ngTo function to move the origin to a
specific location. Note that this figure assumes that the origin of the shape—point (0.0,
0.0) in its geometry—is at its upper left corner. The MoveMappi ngTo function is
described on page 8-68.

Figure 8-10 Translation to a specific origin location

0.0,0.0
hPositi on ———m»

shape x

| «— VvPosi tion

|
|
|
|
L

: Shape after
| MoveMappi ngTo

About QuickDraw GX Mathematics 8-19

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Scaling

You can use the Scal eMappi ng function to modify the scaling factors in a mapping.
Matrix elements a and d in the mapping matrix control the degree of the scaling in the
horizontal and vertical directions, respectively. Figure 8-11 shows what happens to a
mapping M when you call Scal eMappi ng with horizontal and vertical scaling factors
of hFact or and vFact or and a center of scaling at (xCent er, yCent er). First, a
relative translation of -xCent er and —yCent er moves the center of scaling to (0, 0);
then a purely scaling matrix multiplies the scaling by hFact or and vFact or ; finally,
another relative translation moves the center of scaling by +xCent er and +yCent er. In
effect, the center of scaling is moved to (0, 0), the scaling is applied, and the scaling
center is then moved back to where it was.

Figure 8-11 Changing the amount of scaling specified by a mapping

1 0 0 hFactor 0 0 1 0 0 I
M Xlo 1 o[%o vFactor o[*|o 1 0| = M
—xCenter —yCenter 1 0 0 1 xCenter yCenter 1
Original Translation Scaling Translation Transformed
mapping matrix matrix matrix mapping
8-20 About QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Figure 8-12 shows the use of the Scal eMappi ng function scale for various horizontal
and vertical factors, in which the center of scaling corresponds to the center of the shape.
The Scal eMappi ng function is described on page 8-69.

Figure 8-12 Scaling horizontally and vertically

(xCenter, yCenter)

|

-a—VFact or

Original shape

=2

-a—VFact or

=2

vFact or

hFactor = 0.5
— -

(xCenter, yCenter)

— (xCenter, yCenter)

——hFactor = 2—m

= 0.5
R

— (xCenter, yCenter)
Z(%;

Shape after
Scal eMappi ng

About QuickDraw GX Mathematics

8-21

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Note that if vFact or equals hFact or, scaling is uniform in both directions. If vFact or
is not equal to hFact or, distortion of the image occurs, as shown in Figure 8-12.

The mapping matrix also accommodates reflection transformations. If hFact or is
negative, a reflection about the vertical axis occurs. If vFact or is negative, a reflection
about the horizontal axis occurs. If both vFact or and hFact or are negative, a 180°
rotation occurs.

Rotation

You can use the Rot at eMappi ng function to modify the rotation specified by a
mapping. Matrix elements a, b, ¢, and d together specify the angle of rotation. Figure
8-13 shows what happens to a mapping M when you call Rot at eMappi ng to rotate by
an angle (3 about a rotational origin of xCent er and yCent er. First, a relative
translation of -xCent er and -y Cent er moves the center of rotation to (0, 0); then a
purely rotational matrix adds (3 to the amount of rotation already specified in the
mapping; finally, another relative translation moves the center of rotation by +xCent er
and +yCent er, back to where it was.

Figure 8-13 Changing the degree of rotation specified by a mapping

1 0 0 cos(B) sin(B) 0 1 0 0 I
M Xlo 1 o | X | =sin(B) cos(p) ol X|o 1 o| = M
—xCenter -yCenter 1 0 0 1 xCenter yCenter 1
Original Translation Rotation Translation Transformed
mapping matrix matrix matrix mapping
Figure 8-14 shows the use of the Rot at eMappi ng function to change the rotation of a
mapping. Note that positive values of the angle parameter cause clockwise rotation
(consistent with y values increasing downward), and note also that changing the center
of rotation can significantly change the final position of the rotated objects. The
Rot at eMappi ng function is described on page 8-70.
8-22 About QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Figure 8-14 Rotating about different center points

Center point within mapping
(xCenter, yCenter)

(xCenter, yCenter)

Original shape Shape after Rot at eMappi ng

Center point outside of mapping

(xCenter, yCenter)

(xCenter, yCenter)

“oft? =

0

Original shape Shape after Rot at eMappi ng

Angle

About QuickDraw GX Mathematics

8-23

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Skewing

You can use the Skewvappi ng function to modify the skewing imposed by a mapping.
Matrix elements b and ¢ control the amount of the skew. Element b controls skew in the
y direction and element c controls skew in the x direction. Figure 8-15 shows what
happens to a mapping M when you call Skewivappi ng with x and y skew factors of
xSkewand ySkew and a skew origin (the point at which no shearing takes place) of
xCent er and yCent er. First, a relative translation of -xCent er and -yCent er moves
the center of skewing to (0, 0); then a purely skewing matrix modifies the amount of
skew already specified in the mapping; finally, another relative translation moves the
center of skewing by +xCent er and +yCent er, back to where it was.

Figure 8-15 Changing the amount of skew specified by a mapping

1 0 0 1 ySkew 0 1 0 0 [}
Mxo 1 0| X | xSkew 1 ol %o 1 on
—xCenter —yCenter 1 0 0 1 xCenter yCenter 1
Original Translation Skew Translation Transformed
mapping matrix matrix matrix mapping
Figure 8-16 shows the use of the Skewivappi ng function to change the skew specified by
a mapping. (Note that the skew in the x direction in Figure 8-16 is negative; as y
decreases—upward—the amount of shear in the x direction increases.) The
SkewMappi ng function is described on page 8-71.
8-24 About QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Figure 8-16 Skewing a shape both horizontally and vertically

SkewX
(xCenter, yCenter) | -
| :
I |
|
I
Skew x only X
° — e—/— (xCenter,yCenter)
I
I
I
I
Original shape Shape after SkewVappi ng
SkewY
Skewyonly | W& ¥W N_____1%Y
e———(xCenter,yCenter)
SkewY
Skew x and y
—~— (xCenter, yCenter)

About QuickDraw GX Mathematics

8-25

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Perspective

You can manipulate the elements of a mapping to modify its specification of perspective.
The matrix elements u, v, and w determine how the perspective will appear when the
mapping is applied. The action performed on a point by a mapping whose perspective
elements are nonzero is shown in Figure 8-18.

Figure 8-17 Changing the perspective specified by a mapping

1 0 wu
B y l:| 0O 1 v| = B,y,XU+yV+l:|
0O 0 1
X
(X,y) —» y)
Xu+yv+1l , xu+yv+1l

There is currently no QuickDraw GX function that modifies the perspective-controlling
elements of a mapping for you. If you wish to create perspective, you need to modify the
individual matrix elements directly.

Using QuickDraw GX Mathematics

8-26

This section describes how you can use QuickDraw GX number formats, macros, and
functions in your application.

Converting Number Formats

You can use QuickDraw GX macros to convert between Fi xed, f r act , integer,
floating-point, and gxCol or Val ue number formats. Macros are also provided to round,
truncate, and compute the square root of a fixed-point number.

For example, you can use the | nt ToFi xed macro to convert an integer to a

Fi xed format and you can use the Fl oat ToFi xed macro to convert from

a floating-point format to a Fi xed format. The functionality of the

Fl oat ToFi xed macro is also provided as the shortened f | macro. The functionality
of the I nt ToFi xed macro is also provided as the shortened f f macro.

Using QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

The f f macro is especially useful when you are coding specific points in your
application. For example, it’s easier to define a line in your application using the f f
macro:

gxLine lineData = {ff(25), ff(25) , ff(125), ff(125)};
than to use the equivalent, but much longer | nt ToFi xed macro:

gxLine linebData = {IntToFi xed(25), IntToFixed(25),
I nt ToFi xed(125), IntToFi xed(125)};

For constants, using f f is faster and more efficient than using f | , because f f is
evaluated at compile time, whereas f | is evaluated at run time.

The I nt ToFi xed macro is described on page 8-37. The Fl oat ToFi xed macro is
described on page 8-39. The f | macro is described on page 8-39. The f f macro
is described on page 8-38.

Performing Fixed-Point Operations

You can use QuickDraw GX functions to provide operations on Fi xed, | ong, f r act
and wi de numbers. The equivalent QuickDraw GX fixed-point functions for functions in
the Macintosh Mathematical Utilities is shown in Table 8-2.

Table 8-2 QuickDraw GX and Macintosh Toolbox fixed-point functions
QuickDraw GX Macintosh Mathematical Utilities

Fract Di vi de FracDi v

FractMul tiply FracMul

Fr act Squar eRoot FracSqrt

Fi xedDi vi de Fi xDi v

Fi xedwul tiply Fi xmwul

WdeMil tiply LongMul

The Macintosh Mathematical Utilities are described in Inside Macintosh: Operating System
Utilities.

Some functions combine multiple functions into a single function to increase calculation
speed over that obtained using sequential function calls. For example, the
Fract Si neCosi ne function returns both the sine and cosine of an angle.

Using QuickDraw GX Mathematics 8-27

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Some functions support the use of 64-bit numbers to increase the accuracy of
calculations. For example, the W deAdd function returns the 64-bit sum of two 64-bit
numbers, and the W deDi vi de function returns the quotient of a 64-bit number and a
32-bit number. The Mul t i pl yDi vi de function uses a 64-bit intermediate result to
increase accuracy of the calculation and to prevent premature overflow.

The Mul ti pl yDi vi de, Magni t ude, and Vect or Mul ti pl yDi vi de functions are
derivatives of other functions. For example, Mul ti pl yDi vi de (X, Yy, z) isthesame
as:

wi de tenp;
W deDi vide (WdeMiltiply(x, y, &enp), z, 0)

The final argument of 0 specifies that the returned number will be rounded with no
remainder.

You can use the Magni t ude function to determine the magnitude (length) of a
two-dimensional vector, or the distance between two points on a plane. Figure 8-18
shows the use of function parameters del t aXand del t aY.

Figure 8-18 Determining the length of a line with the Magni t ude function

8-28

N P2 (X, ¥2)

oY1

del taY

|
1 deltaX= Xo—X1

Functions that provide arithmetic operations on fixed-point numbers are described in the
section “Fixed-Point Operations” beginning on page 8-42. Functions that provide
operations on wi de numbers are described in the section “Operations on wide
Numbers” beginning on page 8-49. The Magni t ude function is described on page 8-45.

Using QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Converting Between Cartesian and Polar Coordinates

You can use QuickDraw GX functions to convert between Cartesian and polar
coordinates. The Pol ar ToPoi nt function converts a point in polar coordinates to
Cartesian coordinates, (r, a) to (X, y). The Poi nt ToPol ar function converts a point

in Cartesian coordinates to polar coordinates, (X, y) to (r, a). The gxPol ar point (r, a)
corresponds to the gxPoi nt point (r x cos(a), r x sin(a)). Since r2 = x2 + y? and

tan(a) =y 7/ x, the gxPoi nt structure (100, 100) corresponds to the gxPol ar structure
(141.42136, 45). Figure 8-19 shows the Cartesian coordinate of point (100, 100) and the
polar coordinate of identical point (141.42136, 45).

Figure 8-19 Converting between Cartesian and polar coordinates

Poi nt ToPolar >
{1 Pol ar ToPoi nt

0.0,0.0 0.0, any angle
/X 74X Yy ang
s ™
*y +y Angle a
r
}ﬁ Point (100.0, 100.0) ﬁ— Point (141.42136, 45.0)
G - J

Cartesian coordinates

Polar coordinates

SOIeWaYIRN X9 MeIayInd n

The Cartesian and polar coordinate systems are described in the section “Cartesian and
Polar Coordinate Conversion” beginning on page 8-10. The Pol ar ToPoi nt function is
described on page 8-56. The Poi nt ToPol ar function is described on page 8-57.

Performing Vector Operations

You can use the Vect or Mul ti pl y function to obtain the dot product of two vectors
with 64-bit accuracy. The function takes six parameters: the first parameter specifies the
number of long numbers to multiply, and the third and fifth parameters specify the step
size to use when walking the arrays to which the second and fourth parameters point.

For example:

VectorMul tiply(4,a,1,b,2, &c) setsthew de number pointed to by the parameter
c to the following value:

a[0] * b[O] +a [1] * b[2] +a[2] * b[4] + a[3] * b[€]

Using QuickDraw GX Mathematics 8-29

CHAPTER 8

QuickDraw GX Mathematics

If the count is negative, the sign of the terms in the dot product are alternated.

VectorMul tiply(—4, a, 1, b, 2, &) sets the wi de parameter ¢ to the following value
and the result is returned in c:

a[0] * b[O] — a[1] * b[2] + a[2] * b[4] - a[3] * Db[6]

You can also use Vect or Mul ti pl y to determine the cross-product of a pair of vectors,
as in Listing 8-1.

Listing 8-1 Calculating a cross-product with Vect or Mul ti pl y

gxPoi nt *CrossProduct (const gxPoint *a, gxPoint *b,)

{

wi de tenp;

W deShi ft(VectorMiltiply(-2, &->x, 1, &b->y, -1, &enp), 16);
}

You can also use Vect or Mul ti pl y to work with mappings. Listing 8-2 is a sample
function that applies a mapping to a single point.

Listing 8-2 Applying a mapping to one point

8-30

gxPoi nt *MapPoi nt (const gxMappi ng *map, gxPoint *pt)
{
fixed temp[3] ={ 0, 0, fixedl };
*(gxPoint *)tenp = *pt;
wi de dot ;
fixed p = WdeShi ft(VectorMultiply(3, tenp, 1, &map[O0]][2],
3, &dot), 30);
pt->x = WdeDi vide(VectorMultiply(3, tenp, 1, &map[0][0],
3, &dot), p, nil);
W deDi vi de(VectorMul tiply(3, temp, 1, &map[O0][1],
3, &dot), p, nil);

pt->y

return pt;

}

The Vect or Mul ti pl y function is described on page 8-54. Functions that perform vector
operations are described in the section “Vector Operations” beginning on page 8-54.

Using QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Shifting the Bits of a wide Number

You can use the W deShi f t function to shift bits in aw de format number. Listing 8-3
shows how to use the W de Shi f t function to provide a fixed-point version of the
Vect or Mul ti ply function.

Listing 8-3 Using the W deShi f t function to create a fixed-point Vect or Mul ti pl y function

Fi xed VectorFi xMul (1 ong count, Fixed *vectorl, |ong stepl,
Fi xed *vector2, |ong step?2)

wi de tenp;
return WdeShift(VectorMiltiply(count, vectorl, stepl,
vector2, step2, &enp), 16)->lo;
}

Listing 8-4 shows how to use the W deShi f t function in a multiplication function for a
fixed-point number with a fixed-point bias of 6 bits.

Listing 8-4 Using the W deShi f t function in a fixed-point multiplication function

long MultiplyDot6(long a, |ong b)
{

wi de tenp;

return (long) WdeShift(WdeMiltiply(a, b, &enp), 6)->lo;
}

Listing 8-5 shows how to use the W deShi f t function in a division function for a
fixed-point number with a fixed-point bias of 6 bits. Listing 8-6 gives an alternative, but
equivalent, approach.

Listing 8-5 Using the W deShi f t function to create a fixed-point division function

| ong DivideDot6(long a, |long b)

{
wi de tenp;
tenp.hi = (tenp.lo =a) <0?-1: 0; /* sign extend a */
return WdeDi vide(W deShift (& enp, -6), b, 0);

}

Using QuickDraw GX Mathematics 8-31

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Listing 8-6 shows how to use the W deShi f t function for a second fixed-point division
function with a fixed-point bias of 6 bits. Listing 8-5 gives an alternative, but equivalent,
approach.

Listing 8-6 Using the W deShi f t function to create a second fixed-point division function

| ong DivideDot6(1 ong a, |ong b)

{

wi de tenp;

tenmp. hi = a;

tenmp.lo = 0;

return WdeDi vi de(W deShi ft (& enp, 26), b, 0);
}

Determining the Highest Order Bit of a wide Number

You can use the W deScal e function to obtain the bit number of the highest order bit in
the absolute value of awi de number. Listing 8-3 shows how to use the W deScal e
function in a function that multiplies two numbers in | ong format. If the product is too
big to fit in a| ong, the function shifts the product so that it fits into a | ong and returns
the bit shift. This operation can be termed pseudo-floating-point.

Listing 8-7 Using the W deScal e function to create a pseudo-floating-point function

8-32

I ong FloatMil (long a, long b, long *product)
{
wi de tenp;
long shift = WdeScal e(WdeMiltiply(a, b, &enmp)) - 30;
if (shift > 0)
W deShi ft (& enp, shift);
el se
shift = 0;
if (product) *product = tenp.lo;
return shift;
}

The W deScal e function is described on page 8-53.

Using QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Generating Random Numbers

You can use the QuickDraw GX random number functions to return a sequence of
random numbers. The RandonBi t s function generates random integers in the range of
0 to 2°°U"t_ 1 where count is the number of bits in the integer to be generated by the
random number generator.

The Set RandonSeed function allows you to use a seed other than the default seed. If
the Set Randonfseed function is not used, the initial seed will always be 0. You can use
the Get Randonteed function to return the value of the current seed.

Listing 8-8 is a sample function that generates an unsigned random number between
zero and the value passed inthe | i mi t parameter. It uses the RandonBi t s function,
and it also uses the W deMul t i pl y function, correcting for the fact that W deMul ti ply
works with signed long integers whereas this random generator uses unsigned longs.

Listing 8-8 A random number generator

unsi gned | ong RandomnmLong(unsigned long limt)

{
wi de tenp;
unsi gned | ong random = RandonBits(32, 0);
/* This treats randomand limt as signed */
WdeMil tiply(random limt, & enmp);
if ((long)limt < 0)
tenp. hi += random /* correct for the “sign” of limt */
if ((long)random < 0)
tenp.hi +=1limt; /* correct for the “sign” of random */
return tenp. hi;
}

The general topic of random numbers and the functions you use to generate them
generation are discussed in the section “Random Number Generation” beginning on
page 8-58.

Analyzing the Bits in a Number

You can use the Fi r st Bi t function to determine the highest bit number that is set in a
32-bit number. The following examples demonstrate the use of this function with the
parameter X:

If x is 1, the highest order bit that is set is bit number 0,
soFirstBit(1l) =0,asshown below.

Fi rst Bi t (0000000000000000000000000000001) = 0x0000

Using QuickDraw GX Mathematics 8-33

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

If x is 2, the highest order bit that is set is bit number 1, so Fi r st Bi t (2) =1, as shown
below.

Fi rst Bi t (0000000000000000000000000000010) 0x0001
If x is 3, the highest order bit that is set is bit 1, so Fi r st Bi t (3) =1, as shown below.
Fi rstBi t (0000000000000000000000000000011) 0x0001

If no bits in the number are set, Fi r st Bi t returns a value of -1.

You can also use Fi r st Bi t to find the last (= lowest-order) bit that is set in a number.
Listing 8-9 is an example of such a function.

Listing 8-9 Determining the lowest bit of a number

short LastBit(unsigned | ong x)

{
if (x == 0)
return 32;
return FirstBit(x & -x);
}

The Fi r st Bi t function is described on page 8-62.

Resetting a Mapping

You can use the Reset Mappi ng function to reset a mapping. The following code
example first uses the Reset Mappi ng function to initialize the destination to the
identity matrix, and then uses Rot at eMappi ng to calculate a resultant mapping that
rotates by a given angle about a specified center.

gxMappi ng *Rot ati onMap(gxMappi ng *dest, Fixed angl e,
gxPoi nt *center)

return Rot at eMappi ng(Reset Mappi ng(dest), angle,
center->x, center->y);

}

The Reset Mappi ng function is described on page 8-64.

8-34 Using QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

QuickDraw GX Mathematics Reference

This section describes the constants, data types, structures, macros, and functions that
relate to QuickDraw GX mathematics.

Constants and Data Types

This section describes the constants and data types that are used to define QuickDraw
GX mathematical number formats and the transformation matrix.

Number Formats and Constants

QuickDraw GX provides Fi xed, f ract , and gxCol or Val ue number formats. Polar
coordinates are defined by the gxPol ar structure. A structure consisting of two | ong
values defines the wi de number format.

typedef |ong fract;
t ypedef unsi gned short gxCol or Val ue;

struct gxPol ar {
Fi xed radi us;
Fi xed angl e;

b

struct w de {
I ong hi;
unsi gned | ong | o;

b

For convenience, QuickDraw GX provides constants for the value 1.0 for Fi xed, f ract,
and gxCol or Val ue types:

#define fixedl ((Fi xed) 0x00010000)
#define fractl ((fract) 0x40000000)
#defi ne gxCol orVval uel ((gxCol orVal ue) OxFFFF)

QuickDraw GX also provides constants for the largest and smallest possible values for
Fi xed and f r act numbers:

#define gxPositivelnfinity ((Fixed) Ox7FFFFFFF)
#def i ne gxNegativelnfinity ((Fixed) 0x80000000)

QuickDraw GX Mathematics Reference 8-35

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

The Mapping Structure

QuickDraw GX defines a transformation matrix with the gxMappi ng structure:

struct gxMapping {
Fi xed map[3][3];
1

Field descriptions

map A 3 x 3 array of Fi xed numbers whose values determine the
translation, scaling, rotation, skewing, and perspective operations
that can be applied to two-dimensional data. Although defined as
containing only Fi xed numbers, the rightmost column of the
matrix consists of f ract numbers. Furthermore, element[3] [3] is
commonly settof ract 1.

The use of the mapping matrix is described further in the section “Transformation
Operations With Mappings” beginning on page 8-12.

Number-Conversion Macros

QuickDraw GX defines macros for conversion between fixed-point number formats. It
also provides macros to round and truncate numbers, as well as a macro that uses the
Fract Squar eRoot function to compute the square root of a Fi xed number.

Format Conversions

The macros in this section convert between Fi xed, f r act , integer, floating-point, and
gxCol or Val ue numbers.

FixedToFract

8-36

You can use the Fi xedToFr act macro to convert a fixed number to af r act number.

#defi ne Fi xedToFract(a) ((fract) (a) << 14)

a A Fi xed number to be converted to af r act number, -2 <a <2.

macro result ~ Afract number having the same value as the fixed number.

QuickDraw GX Mathematics Reference

CHAPTER 8

QuickDraw GX Mathematics

FractToFixed

FixedTolnt

You can use the Fr act ToFi xed macro to convertaf ract number to a Fi xed number.

#def i ne Fract ToFi xed (a) ((Fixed) (a) + 8192L >> 14)

a Afract number to be converted to a Fi xed number.

macro result A Fi xed number having the closest value to the f r act number.

IntToFixed

You can use the Fi xedTol nt macro to convert a Fi xed number to an integer.
#define FixedTolnt(a) ((short) ((Fixed) (a) + fixedl/2 >> 16))

a A Fi xed number to be converted to an integer.

macro result An integer having the closest value to the Fi xed number.

You can use the | nt ToFi xed macro to convert an integer to a Fi xed number.
#define I ntToFi xed(a) ((Fixed)(a) << 16)

a An integer to be converted to a Fi xed number.

macro result A Fi xed number having the same value as the integer.

SPECIAL CONSIDERATIONS

SEE ALSO

QuickDraw GX also defines a shorthand version of this macro. | nt ToFi xed(a) can
alsobe codedasff(a).

The f f macro is described next.

QuickDraw GX Mathematics Reference

8-37

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

ff
You can use the f f macro to convert an integer to a Fi xed number.
#define ff(a) ((Fixed)(a) << 16)
a An integer to be converted to a Fi xed number.
macro result A Fi xed number having the same value as the integer.
DESCRIPTION
The f f macro converts an integer a to a Fi xed number. This macro name is shorthand
notation for the | nt ToFi xed macro, and provides identical functionality.
SEE ALSO

For an example of how to use the f f macro, see the section “Converting Number
Formats” beginning on page 8-26.

The | nt ToFi xed macro is described in the previous section.

FixedToFloat

You can use the Fi xedToFl oat macro to convert a Fi xed number to a floating-point
number.

#defi ne Fi xedToFl oat(a) ((float)(a) / fixedl)

a A Fi xed number to be converted to a floating-point number.

macro result A floating-point number having the same value as the Fi xed number.

8-38 QuickDraw GX Mathematics Reference

CHAPTER 8

QuickDraw GX Mathematics

FloatToFixed

You can use the Fl oat ToFi xed macro to convert a floating-point number to a Fi xed
number.

#def i ne Fl oat ToFi xed(a) ((Fixed)((float) (a) * fixedl))

a A floating-point number to be converted to a Fi xed number.

macro result The closest Fi xed number to the floating-point number.

SPECIAL CONSIDERATIONS

QuickDraw GX also defines a shorthand version of this macro. The Fl oat ToFi xed
macro can also be coded asfl (a) .

SEE ALSO
The f | macro is described next.

fl

You can use the f | macro to convert a floating-point number to a Fi xed number.
#define fl(a) ((Fixed)((float) (a) * fixedl))

a A floating-point number to be converted to a Fi xed number.

macro result ~ The closest Fi xed number to the floating-point number.

DESCRIPTION

The f I macro converts a floating-point number a to a Fi xed number. This macro name
is shorthand notation for the FI oat ToFi xed macro, and provides identical functionality.

SEE ALSO
The Fl oat ToFi xed macro is described in the previous section.

QuickDraw GX Mathematics Reference 8-39

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

FractToFloat

You can use the Fr act ToFl oat macro to convertafract number to a floating-point
number.

define Fract ToFloat(a) ((float)(a)/fractl)

a Afract number to be converted to a floating-point number.

macro result A floating-point number having the closest value to the f r act number.

FloatToFract

You can use the FI oat ToFr act macro to convert a floating-point number to af r act
number.

define FloatToFract(a) ((fract)((float)(a)*fractl))

a A floating-point number to be converted to af r act number.

macro result ~ Afract number having the closest value to the floating-point number.

ColorToFract

8-40

You can use the Col or ToFr act macro to convert a gxCol or Val ue number toafract
number.

#defi ne Col orToFract(a) (((fract)(a)<<14) + ((fract)(a) +2 >>2))

a A gxCol or Val ue number to be converted to af ract number.

macro result Afract number having the same value as the gxCol or Val ue number.

QuickDraw GX Mathematics Reference

CHAPTER 8

QuickDraw GX Mathematics

FractToColor

You can use the Fr act ToCol or macro to convertafract number to a gxCol or Val ue
number.

#define Fract ToCol or(a) ((gxCol orValue)((a)-((a)>>16)+8191>>14))

a Afract number to be converted to a gxCol or Val ue number.

macro result The closest gxCol or Val ue number to the f r act number.

Rounding, Truncating, and Square Root Operations

The macros in this section round, truncate, and determine the square root of fixed
numbers.

FixedRound

You can use the Fi xedRound macro to round a Fi xed number to its nearest integer.
#def i ne Fi xedRound(a) ((short) ((Fixed)(a) + fixedl/2 >> 16))

a The number to be rounded.

macro result ~ The closest integer to the Fi xed number.

FixedTruncate

You can use the Fi xedTr uncat e macro to obtain an integer that is the greatest integer
that is not greater than the given Fi xed number.

#def i ne Fi xedTruncate(a) ((short)((Fixed)(a) >> 16))

a The number that is to be truncated.

macro result ~ The largest integer that is not greater than the Fi xed number.

QuickDraw GX Mathematics Reference 8-41

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

FixedSquareRoot

You can use the Fi xedSquar eRoot macro to determine the square root of a fixed
number.

#def i ne Fi xedSquar eRoot (a) ((Fi xed) Fract Squar eRoot (a) + 64 >>7)

a The number for which the square root is to be determined.

macro result ~ The square root of the number.

Mathematical Functions

This section describes the QuickDraw GX functions you can use to perform
» fixed-point operations

= W de number operations

= vector operations

= Mmapping operations

= random number generation

= bit analysis

Fixed-Point Operations

QuickDraw GX provides an assortment of fixed-point mathematical functions that you
can use in your application.

FixedMultiply

8-42

You can use the Fi xedMul ti pl y function to return the product of two numbers.
Fi xed FixedMultiply (Fixed multiplicand, Fixed multiplier);

mul tiplicand
The number to be multiplied by the multiplier.

mul tiplier
The number by which the multiplicand is to be multiplied.

function result The product of two numbers.

QuickDraw GX Mathematics Reference

DESCRIPTION

CHAPTER 8

QuickDraw GX Mathematics

The Fi xedMul ti pl y function multiplies two fixed numbers. The format of the Fi xed
number returned depends on the respective number formats of the multiplicand and
multiplier. The operation has a bias of 16 bits; in general, the bias of the resulting number
is the sum of the biases of the input numbers, shifted right by 16 bits. If either the
multiplicand or the multiplier is Fi xed, the result of the Fi xedMul ti pl y function will
be the same fixed-point format as the other parameter (I ong, Fi xed, or fr act).

Table 8-3 shows the bias of the product for different combinations of formats. The
dashed line indicates that the resulting bias is not equivalent to long, fixed, or fract. Use
the rules of the operation to determine it.

Table 8-3 Fi xedMul ti pl y product bias

long fixed fract
long --- long ---
fixed long fixed fract
fract --- fract ---

SPECIAL CONSIDERATIONS

The Fi xedMul ti pl y function does not pin its result in the case of an overflow; the
result returned is modulo 65,536.

FixedDivide

DESCRIPTION

You can use the Fi xedDi vi de function to return the quotient of a dividend and divisor.
Fi xed Fi xedDi vi de (Fi xed divi dend, Fixed divisor);

di vi dend The number to be divided.
di vi sor The number by which the dividend is to be divided.

function result The quotient of the dividend and the divisor.

The Fi xedDi vi de function divides the di vi dend parameter by the di vi sor
parameter and returns the quotient. The format of the fixed number returned depends
on the respective number formats of the di vi dend and di vi sor parameters. The
operation has a bias of 16 bits; in general, the bias of the resulting number is the
difference between the biases of the input numbers, shifted left by 16 bits. If the

di vi sor parameter is fixed, then the result will be the same fixed-point format as the

QuickDraw GX Mathematics Reference 8-43

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

dividend. If both the dividend and divisor are the same fixed-point format, the result
will be in Fi xed format.

Table 8-4 shows the bias for the quotient of two numbers that are of dissimilar formats.
The dashed line indicates that the resulting bias is not equivalent to long, fixed, or fract.
Use the rules of the operation to determine it.

Table 8-4 Fi xedDi vi de quotient bias

Denominator Numerator

long fixed fract
long fixed --- ---
fixed long fixed fract
fract --- --- fixed

SPECIAL CONSIDERATIONS

In the case of overflow, Fi xedDi vi de pins its result to either the
gxPosi tivel nfinityorgxNegativel nfinity constant.

MultiplyDivide

8-44

You can use the Mul ti pl yDi vi de function to multiply two numbers and divide by a
third number.

long MultiplyDivide (long nultiplicand, long nultiplier,
| ong divisor);

mul tiplicand
The number to be multiplied by the multiplier.

nmul tiplier
The number by which the multiplicand is multiplied.

di vi sor The number by which the product is divided.

function result The quotient of the product of two numbers and the divisor.

QuickDraw GX Mathematics Reference

DESCRIPTION

CHAPTER 8

QuickDraw GX Mathematics

The Mul ti pl yDi vi de function calculates the quotient of the product of two numbers
(parametersmul ti pl i cand and mul ti pli er)and a divisor.

The function uses a 64-bit intermediate result to maintain accuracy and to prevent
premature overflow. The parameters do not need to all be the same fixed-point format.
The operation has a bias of 0 bits; if the divisor is the same format as the multiplier, the
result is the same format as the multiplicand. If the divisor is the same format as the
multiplicand, the result is in the same format as the multiplier.

SPECIAL CONSIDERATIONS

Magnitude

In the case of overflow, Mul ti pl yDi vi de pins its result to either the
gxPosi tivel nfinityorgxNegativel nfinity constant.

DESCRIPTION

You can use the Magni t ude function to obtain the magnitude of a vector, the length of a
line, or the distance between two points.

unsi gned | ong Magnitude (long deltaX, |ong deltay);
del taX The difference in the x-coordinates of the vector’s end points.

del taY The difference in the y-coordinates of the vector’s end points.

function result The magnitude of the vector.

The Magni t ude function returns (del t ax? + del t aY2)/2, the Euclidean distance
between two points whose x-coordinates are separated by del t aX and whose
y-coordinates are separated by del t aY.

The fixed-point format of the result is the same as the fixed-point format for both of the
parameters. Make sure that the two parameters use the same format.

QuickDraw GX Mathematics Reference 8-45

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

FractSineCosine

You can use the Fr act Si neCosi ne function to obtain both the sine and cosine of an
angle measured in degrees.

fract FractSi neCosi ne (Fi xed degrees, fract *cosine);

degr ees The angle in degrees for which the cosine and sine are required.
cosi ne A pointer to the location where the cosine of the angle is required.

function result The sine of the angle specified.

DESCRIPTION
Given the degr ees parameter in degrees, the Fr act Si neCosi ne function returns the
sine as the function result and the cosine in the cosi ne parameter. Values for the
degr ees parameter are specified in degrees, not radians. The range of the angle is
—-32,768 to +32,769.999 degrees.

FractSquareRoot
You can use the Fr act Squar eRoot function to calculate the square root of a f r act
number.
fract FractSquareRoot (fract source);
source The number for which the square root is required.
function result The square root of the f r act number.

DESCRIPTION

The Fr act Squar eRoot function returns the square root of the f r act number specified
by the sour ce parameter. The number is interpreted as unsigned and in the range 0
through 4 — (2739). This means that bit 31 has a weight of 2, instead of —2. The result is an
unsigned number in the range of 0 through 2.

8-46 QuickDraw GX Mathematics Reference

CHAPTER 8

QuickDraw GX Mathematics

FractCubeRoot

DESCRIPTION

You can use the Fr act CubeRoot function to calculate the cube root of af r act number.

fract FractCubeRoot (fract source);

source The f ract number for which the cube root is required.

function result The cube root of the f r act number. This number is a signed value.

The Fr act CubeRoot function returns the cube root of a f r act number.

FractMultiply

DESCRIPTION

You can use the Fract Mul ti pl y function to calculate the product of two numbers.

fract FractMultiply (fract nultiplicand, fract multiplier);

mul tiplicand
The number to be multiplied by the multiplier.

nul tiplier
The number by which the multiplicand is to multiplied.

function result The product of two numbers.

The Fract Mul ti pl y function calculates the product of two numbers, specified in the

nmul ti plicandandnul tiplier parameters. If the parameters are a and b, the
product a x b is returned.

The format of the number returned depends on the respective number formats of the
mul tiplicandandnultiplier parameters. The operation has a bias of 30 bits; in

general, the bias of the resulting number is the sum of the biases of the input numbers,
shifted right by 30 bits. Thus if either the nul ti pl i cand ornul ti pl i er parameter is

fract, then the result is the same fixed-point format as the other argument.

QuickDraw GX Mathematics Reference

8-47

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Table 8-5 shows the bias of the FractMultiply result. The dashed line indicates that the
resulting bias is not equivalent to long, fixed, or fract. Use the rules of the operation to
determine it

Table 8-5 Fract Mul ti pl y result bias

long fixed fract
long -—- - long
fixed --- --- fixed
fract long fixed fract

SPECIAL CONSIDERATIONS

FractDivide

Fract Mul ti ply does not pin its result in the case of an overflow; the result returned is
modulo 4.

DESCRIPTION

8-48

You can use the Fr act Di vi de function to return the quotient of a dividend and divisor.
fract FractDivide (fract dividend, fract divisor);

di vi dend The number to be divided.
di vi sor The number by which the dividend is to be divided.

function result The quotient of two numbers.

The Fract Di vi de function divides the di vi dend parameter by the di vi sor
parameter and returns the quotient. If the di vi dend parameter is a and the
di vi sor parameter is b, the quotient a / b is returned.

The format of the number returned depends on the respective number formats of the
dividend and divisor. The operation has a bias of 30 bits; in general, the bias of the
resulting number is the difference between the biases of the input numbers, shifted left
by 30 bits. Thus if the divisor isaf r act, the result is the same format as the dividend. If
the di vi sor and the di vi dend parameters are the same format, the resultisin f r act
format, as shown inTable 8-6. The dashed line indicates that the resulting bias is not
equivalent to long, fixed, or fract. Use the rules of the operation to determine it.

QuickDraw GX Mathematics Reference

CHAPTER 8

QuickDraw GX Mathematics

Table 8-6 Fract Di vi de result bias

Denominator Numerator

long fixed fract
long fract ---
fixed - fract -
fract long fixed fixed

SPECIAL CONSIDERATIONS

In the case of division of a large number by a very small number,the Fr act Di vi de
function pins its result to either the gxPosi ti vel nfi ni ty or the
gxNegat i vel nfi ni ty constant.

Operations on wide Numbers

WideAdd

QuickDraw GX provides an assortment of 64-bit mathematical functions for your use.
You can use wi de functions to increase the accuracy of calculations.

DESCRIPTION

You can use the W deAdd function to add two wi de numbers.
wi de *W deAdd(w de *target, const w de *source);

t ar get A pointer to the number to be added to. On return, contains the sum of
the two numbers.

source A pointer to the number that is to be added to the target number.

function result A pointer to the result (also a pointer to the target number).

The W deAdd function adds the wi de number in the sour ce parameter to the wi de
number in the t ar get parameter and returns the target pointer.

QuickDraw GX Mathematics Reference 8-49

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

WideSubtract

DESCRIPTION

You can use the W deSubt r act function to subtract one wi de number from another.
wi de *W deSubtract(w de *target, const w de *source);

t ar get A pointer to the number to be subtracted from. On return, contains the
difference between the two numbers.

source A pointer to the number that is to be subtracted from the number at target.

function result A pointer to the target number.

The W deSubt r act function subtracts the source number from the target number and
returns a pointer to the target number.

WideNegate

8-50

You can use the W deNegat e function to change aw de number to its negative.
wi de *W deNegat e(wi de *target);

t ar get A pointer to the number to be negated. On return, contains the negated
number.

function result A pointer to the target number.

QuickDraw GX Mathematics Reference

WideShift

CHAPTER 8

QuickDraw GX Mathematics

DESCRIPTION

You can use the W deShi f t function to shift bits in aw de number.
wi de *WdeShift(wi de *target, |ong shift);

t ar get A pointer to the number for which the bits are to be shifted. On return,
contains the shifted number.

shift The number of bits by which the target is to be shifted to the right.

function result A pointer to the target number.

The shift direction is to the right (a decrease in magnitude) if the shi ft parameter is

greater than 0, and to the left if the shi ft parameter is less than 0. The result of a right
shift is rounded.

WideMultiply

DESCRIPTION

You can use the W deMul t i pl y function to calculate the wi de product of two | ong
numbers.

wi de *WdeMultiply(long nultiplicand, long rmultiplier,
wi de *target);

mul tiplicand
The number to be multiplied by the multiplier.

mul tiplier
The number by which the multiplicand is to be multiplied.

t ar get A pointer to the location where the product of the two numbers is to be
stored.

function result A pointer to the target value, which holds the result.

The operation has a bias of 0 bits. The bias of the result is the sum of the biases of the
inputs.

QuickDraw GX Mathematics Reference 8-51

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

WideDivide

DESCRIPTION

You can use the W deDi vi de function to calculate the | ong quotient and | ong
remainder for awi de dividend and | ong divisor.

| ong W deDi vi de(const w de *dividend, |ong divisor,
 ong *renai nder);

di vidend Apointer to the wi de number to be divided.
di vi sor The number by which the dividend is to be divided.
remai nder A pointer to a location to store the remainder of the division.

function result The quotient of the division.

The W deDi vi de function divides the dividend by the divisor and returns the quotient
in the function result and the remainder in the | ong number pointed to by the

r emai nder parameter. If the dividend is a and the divisor is b, the quotienta / b is
returned with a remainder. The operation has a bias of 0 bits; the bias of the result is the
difference between the biases of the dividend and the divisor. The bias of the remainder
is the same as the bias of the dividend.

If an overflow occurs, the result is pinned to the closest infinity and the remainder is set
to gxNegat i vel nfi ni ty (an impossible remainder).

If the r emai nder parameter is ni | , no remainder is returned and the W deDi vi de
function returns a rounded quotient. Passing (1 ong *) -1 inther enai nder parameter
is the same as passing ni | except in the case of an overflow, in which case

gxNegati vel nfi ni ty is returned.

WideWideDivide

8-52

You can use the W deW deDi vi de function to calculate aw de quotient and | ong
remainder for awi de dividend and a | ong divisor.

wi de *W deW deDi vi de(wi de *di vi dend, |ong divi sor,
| ong *remui nder);

di vi dend A pointer to the wi de number to be divided.
di vi sor The number by which the dividend is to be divided.
remai nder A pointer to a location to store the remainder of the division.

function result A pointer to the quotient (also to the dividend).

QuickDraw GX Mathematics Reference

DESCRIPTION

CHAPTER 8

QuickDraw GX Mathematics

The W deW deDi vi de function returns the quotient of the dividend and divisor as its
function result and places the remainder in the r emai nder parameter. If the

remai nder parameterisni |, W deW deDi vi de returns the rounded quotient. The
qguotient replaces the dividend. The operation has a bias of 0 bits; the bias of the result is
the difference between the biases of the dividend and the divisor. The bias of the
remainder is the same as the bias of the dividend.

If the r emai nder parameter is ni | , no remainder is returned and the W deDi vi de
function returns a rounded quotient. Passing (| ong *) - 1 in the r emai nder parameter
is the same as passing ni | .

Note that this function cannot result in overflow.

WideSquareRoot

DESCRIPTION

WideScale

You can use the W deSquar eRoot function to calculate the square root of awi de
number.

unsi gned | ong W deSquar eRoot (const w de *source);

source A pointer to the number for which the square root is to be calculated.

function result A number that is the square root of the number in the argument.

The W deSquar eRoot function returns the square root of the wi de nhumber pointed to
by the sour ce parameter. The source value for this function must be an unsigned wi de
value ranging from 0 to 284 — 1, not —282 to 283 — 1. If you supply a non-integer value for
this function, its bias must be an even number of bits.

You can use the W deScal e function to obtain the bit number of the highest-order
nonzero bit in the absolute value of aw de number.

short W deScal e(const wi de *w);

w A pointer to the number whose scale is desired.

function result The bit number of the highest order nonzero bit in the absolute value of w
The returned value is 63 if the highest-order bit is set, and 0 if the lowest
order bit is set. If no bit is set, the return value is -1.

QuickDraw GX Mathematics Reference 8-53

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

WideCompare

You can use the W deConpar e function to compare the magnitudes of two 64-bit
numbers.

short W deConpare(const wi de *target, const w de *source);

t ar get A pointer to one of the two wi de numbers to be compared.
source A pointer to the second of the two wi de numbers to be compared.

function result 1 if the target number is greater, -1 if the source number is greater, and 0
if the two numbers are equal.

Vector Operations

QuickDraw GX provides an assortment of vector mathematics functions for your use.

VectorMultiply

You can use the Vect or Mul t i pl y function to obtain the dot product of two vectors
with 64-bit accuracy.

wi de *VectorMiltiply(long count, const |long *vectorl, |ong stepl,
const long *vector2, long step2, w de *dot);

count The size of each vector.

vectorl A pointer to one of the two vectors.

stepl The index increment for the vect or 1 vector.
vect or 2 A pointer to the second of two vectors.

st ep2 The index increment for the vect or 2 vector.
dot A pointer to the destination of the result.

function result A pointer to the dot product of the two vectors.

8-54 QuickDraw GX Mathematics Reference

DESCRIPTION

SEE ALSO

CHAPTER 8

QuickDraw GX Mathematics

The Vect or Mul ti pl y function calculates the wi de dot product of the parameters
vect or 1 and vect or 2. The size of each vector is given by the count parameter. The
index increment is given by the parameters st epl and st ep2, respectively. The dot
parameter points to the destination wi de number and is returned as the function result.

Examples of how to use the Vect or Mul ti pl y function are provided in the section
“Performing Vector Operations” beginning on page 8-29.

VectorMultiplyDivide

DESCRIPTION

You can use the Vect or Mul ti pl yDi vi de function to calculate the quotient of the dot
product of two vectors and a divisor.

I ong *VectorMiltiplyDivide(long count, const |ong *vectorl,
| ong stepl, const long *vector?2,
| ong step2, long divisor);

count The size of each vector.

vectorl A pointer to one of the two vectors.

stepl The index increment for the vect or 1 vector.

vect or 2 A pointer to the second of two vectors.

st ep2 The index increment for the vect or 2 vector.

di vi sor The number by which the dot product is to be divided.

function result The quotient of the dot product of two vectors and a divisor.

The Vect or Mul ti pl yDi vi de function calculates the quotient of a dot product of
parameters vect or 1 and vect or 2 and a di vi sor parameter. The size of each vector is
given by the count parameter. The index increment is given by the parameters st epl
and st ep2, respectively. If the count parameter is negative, the terms are alternated.
This is equivalent to

W deDi vi de(Vect or Mul ti pl y(), di vi sor)

QuickDraw GX Mathematics Reference 8-55

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Cartesian and Polar Coordinate Point Conversions

QuickDraw GX provides two functions for converting Cartesian to polar coordinates.

PolarToPoint

DESCRIPTION

SEE ALSO

8-56

You can use the Pol ar ToPoi nt function to convert a point in polar coordinates to the
identical point in Cartesian coordinates.

gxPoi nt *Pol ar ToPoi nt (const gxPol ar *ra, gxPoint *xy);

ra A pointer to the point in polar coordinates.
Xy A pointer to the destination of the resulting point in Cartesian coordinates.

function result A pointer to the converted point (also a pointer to the xy parameter).

The Pol ar ToPoi nt function converts the polar coordinate point (r, a) to the identical
Cartesian coordinate point (x, y). The parameters of the Pol ar ToPoi nt function are the
gxPol ar structure pointer r a and a gxPoi nt structure pointer xy.

If both pointers point to the same location, the source gxPol ar structure will be
converted to a gxPoi nt structure and will replace the gxPol ar structure.

The gxPol ar structure is described in the section “Constants and Data Types”
beginning on page 8-35. Polar coordinate to Cartesian coordinate conversions are
discussed in the section “Cartesian and Polar Coordinate Conversion” beginning on
page 8-10. The Poi nt ToPol ar function converts a point in Cartesian coordinates to the
identical point in polar coordinates. The Poi nt ToPol ar function is described next.

QuickDraw GX Mathematics Reference

CHAPTER 8

QuickDraw GX Mathematics

PointToPolar

DESCRIPTION

SEE ALSO

The Poi nt ToPol ar function converts a point in Cartesian coordinates to the identical
point in polar coordinates.

gxPol ar *Poi nt ToPol ar (const gxPoi nt *xy, gxPolar *ra);

Xy A pointer to the Cartesian coordinate.
ra A pointer to the destination of the resulting polar coordinate.

function result The pointer passed inr a.

The Poi nt ToPol ar function converts the Cartesian coordinate point (x, y) to the
identical polar coordinate point (r, a). The parameters of the Poi nt ToPol ar function are
a gxPoi nt structure pointer xy and a gxPol ar structure pointer r a.

If both pointers point to the same location, the source gxPoi nt structure will be
converted to a gxPol ar structure and will replace the gxPoi nt structure.

The gxPol ar structure is described in the section “Constants and Data Types”
beginning on page 8-35. The Pol ar ToPoi nt function converts a point in polar
coordinates to the identical point in Cartesian coordinates. The Pol ar ToPoi nt function
is described in the previous section.

QuickDraw GX Mathematics Reference 8-57

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Random Number Generation

QuickDraw GX provides random number generation functions that can be used in your
application.

RandomBits

You can use the RandonBi t s function to return a sequence of pseudorandom numbers.

unsi gned | ong RandonBits(long count, |ong focus);

count The number of bits in the number to be generated by the random number
generator.
focus The degree of clustering about the mean value.

function result A sequence of pseudorandom numbers.

DESCRIPTION
The RandonBi t s function returns random numbers in the range of 0 to 2€°U"t — 1. A
focus of 0 generates numbers that are uniformly distributed.

A positive value for the f ocus parameter generates numbers that are clustered about
the mean, analogous to averaging 2 °©YS uniform random numbers. A negative focus
generates numbers that tend to avoid the mean.

If you define a value limit to be 1 << count , the result of the Randon®Bi t s function
ranges from 0 to limit — 1. Its mean is (limit — 1) / 2. The mean is independent of the
focus. If the focus is positive, the standard deviation of the numbers generated by the
RandonBi t s function is approximately (0.28868 x limit) / e1:41421 xfocus ag the f ocus
parameter gets bigger, two things happen:

= The values cluster about the mean.

= The values approximate a normal distribution (central limit theorem).

If the focus is negative, the RandonBi t s function result is computed as if it were
positive; for results less than limit / 2, limit / 2 is added; for others, limit / 2 is
subtracted. This causes the distribution to avoid the mean.

To generate a clustering of points around a given value, generate x and y offsets with
Fract Mul tiply(radius, RandonBits(31, focus) - fractl);
The average distance will be 0.57735 x radius/el-41421 x focus

A good way to select a value for the focus is to experiment until the desired result is
achieved.

8-58 QuickDraw GX Mathematics Reference

SEE ALSO

CHAPTER 8

QuickDraw GX Mathematics

The Set RandontSeed function sets the starting number seed for the random number
generator algorithm. The Set Randonteed function is described in the next section. The
Get RandonBeed function returns the current starting number seed for the random
number generator algorithm. The Get Randonfeed function is described on page 8-60.

SetRandomSeed

DESCRIPTION

SEE ALSO

You can use the Set Randonfeed function to set the starting number for the random
number generator algorithm.

voi d Set RandonfSeed(const w de *seed);

seed The pointer to the number to be used by the random number algorithm to
generate random numbers.

Random number generators are seeded with a value that is used by the algorithm to
generate a random number. The seed is then used to generate the next random number.

The Set RandonBeed function allows you to select the seed used by the QuickDraw GX
random number algorithm. If Set Randoneed is not used, QuickDraw GX will select a
default seed of 0. This results in the same sequence of random numbers each time
RandonBi t s is called.

In order to obtain a different set of random numbers than those obtained using the
default seed value or a previously set seed, use the Set RandonfSeed function.

The RandonBi t s function uses the current seed to generate the next random
number. The RandonBi t s function is described on page 8-58. The Get Randonfseed
function returns the current seed. The Get Randoneed function is described next.

QuickDraw GX Mathematics Reference 8-59

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

GetRandomSeed

You can use the Get RandonSeed function to return the current seed for the random
number generating algorithm.

wi de *CGet RandonBeed(w de *seed);

seed A pointer to the current random number generator seed.

function result The pointer passed in the seed parameter.

DESCRIPTION

The Get RandonBeed function returns the current seed for the random number
generator and returns the pointer passed in seed.

SEE ALSO
The RandonBi t s function uses the current seed to generate the next random
number. The RandonBi t s function is described in the previous section. The
Set Randoneed function changes the current seed. The Set RandonfSeed function is
described in the previous section.

Linear and Quadratic Roots

QuickDraw GX provides two functions that solve for the roots of linear and quadratic
equations.

LinearRoot

You can use the Li near Root function to obtain the root of a linear equation.

| ong Li near Root (Fi xed first, Fixed last, fract t[]);

first The first coefficient.
| ast The last coefficient.
t An array of fract numbers. On return, it contains the roots of the equation.

function result The number of roots of the linear equation. This value may be 0 or 1
(or -1 if all values of t are roots).

8-60 QuickDraw GX Mathematics Reference

DESCRIPTION

CHAPTER 8

QuickDraw GX Mathematics

The Li near Root function computes any t between 0 and 1 in which a(1 -t) + bt = 0.
The coefficient a is the parameter f i r st . The coefficient b is the parameter | ast . The
function returns the number of roots between 0 and 1.

Any root is returned in the t array, which only needs to hold one value. If both aand b
are zero, the function returns the number -1, indicating that a(1 — t) + bt = 0 for all t.

QuadraticRoot

DESCRIPTION

You can use the Quadr at i cRoot function to calculate the roots of a quadratic equation.

| ong QuadraticRoot (Fi xed first, Fixed control, Fixed last, fract

t[]);

first The first coefficient.

control The second coefficient.

| ast The third coefficient.

t An array of fract numbers. On return, it contains the roots of the equation.

function result The number of roots of the quadratic equation. This value may be 0, 1, or
2 (or -1 if all values of t are roots).

The Quadr at i cRoot function returns roots between 0 and 1 for quadratic equations
having the form a(1 - t)2 +2bt(1-t) + ct? = 0. The coefficient a is the parameter first.
The coefficient b is the parameter cont r ol . The coefficient c is the parameter | ast .

All roots are returned in increasing order in the t array. The array can have at most two
values. If a, b, and ¢ are all zero, then the function returns the number -1, indicating that
a(l-t)2+2bt(1-t)+ct?=0forallt.

QuickDraw GX Mathematics Reference 8-61

SOIeWaYIRN X9 MeIayInd n

Bit Analysis

CHAPTER 8

QuickDraw GX Mathematics

QuickDraw GX provides a function that allows you to analyze the bits in a number.

FirstBit

You can use the Fi r st Bi t function to determine the highest order bit that is set in a

number.

short FirstBit (unsigned |ong Xx);

X The number for which the first bit is to be determined.

function result The bit number of the highest order bit of the number in the argument.
DESCRIPTION

The Fi r st Bi t function returns the bit number of the highest order bit in a number that

is set, or -1 if the number is 0. The highest-order bit is bit 31; the lowest-order bit is bit 0.
DESCRIPTION

The use of the Fi r st Bi t function is described in the section “Analyzing the Bits in a
Number” on page 8-33.

Mapping Functions

8-62

QuickDraw GX provides two groups of mapping functions. The first group allows you
to manipulate mapping matrices and apply them to other mappings or to points. The
second group allows you to modify the transformational properties of a mapping matrix.

Mappings are described in the section “Transformation Operations With Mappings”
beginning on page 8-12.

For specific information on mapping matrices as applied to transform objects, view port
objects, and view device objects, see the chapters “Transform Objects” and
“View-Related Objects” in Inside Macintosh: QuickDraw GX Objects.

QuickDraw GX Mathematics Reference

CHAPTER 8

QuickDraw GX Mathematics

Manipulating and Applying Mappings

This section describes functions with which you can copy, normalize, reset, and invert
a mapping. It also describes functions with which you can apply a mapping to another
mapping, and apply a mapping to an array of points.

CopyToMapping

You can use the Copy ToMappi ng function to copy a mapping from one location to
another location.

gxMappi ng *CopyToMappi ng(gxMappi ng *tar get,
const gxMappi ng *source);

t ar get A pointer to the destination mapping. On return, it is a copy of the source
mapping.
source A pointer to the mapping to be copied.

function result A pointer to the copied mapping, which is also the target mapping.

DESCRIPTION

The Copy ToMappi ng function copies the mapping pointed to by the sour ce parameter
into the location pointed to by the t ar get parameter. Note that it may be faster in C to
simply copy the gxMappi ng structure into another gxMappi ng structure than to call
this function.

ERRORS, WARNINGS, AND NOTICES

Errors
mappi ng_is_nil

QuickDraw GX Mathematics Reference 8-63

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

NormalizeMapping

DESCRIPTION

You can use the Nor mal i zeMappi ng function to normalize a mapping.
gxMappi ng *Nor mal i zeMappi ng(gxMappi ng *target);

*t ar get A pointer to the mapping to be normalized. On return, it is the
normalized mapping.

function result A pointer to the normalized mapping, which is also the target mapping.

The Nor mal i zeMappi ng function normalizes the target mapping. If the mapping’s
perspective elements (u and v) are 0, each element of the mapping is divided by element
w (t ar get —>[2] [2]). If the mapping has a nonzero perspective, each element is
shifted to ensure thatfract 1/2 < Ju] + |v] +(Jw] >>15) <fract 1.

ERRORS, WARNINGS, AND NOTICES

Errors
mappi ng_is_nil

ResetMapping

DESCRIPTION

You can use the Reset Mappi ng function to reset a mapping.
gxMappi ng *Reset Mappi ng(gxMappi ng *target);

t ar get A pointer to the mapping that is to be reset. On return, contains the
identity mapping.

function result A pointer to the reset mapping, which is also the target mapping.

The Reset Mappi ng function resets the target mapping to the identity matrix.

ERRORS, WARNINGS, AND NOTICES

8-64

Errors
mappi ng_i s_ni |

QuickDraw GX Mathematics Reference

SEE ALSO

CHAPTER 8

QuickDraw GX Mathematics

An example of the use of the Reset Mappi ng function is provided on page 8-34.

InvertMapping

DESCRIPTION

You can use the | nver t Mappi ng function to create an inverted copy of a mapping.

gxMappi ng *1 nvert Mappi ng(gxMappi ng *target,
const gxMappi ng *source);

t ar get A pointer to a mapping structure. On return, contains the inverse of the
mapping specified in the sour ce parameter.

source A pointer to the mapping to be inverted.

function result A pointer to the inverted mapping, which is also the target mapping.

The I nver t Mappi ng function creates a copy of the source mapping, inverts it, and
returns the inverted mapping in the t ar get parameter. If both the sour ce and t ar get
parameters point to the same gxMappi ng structure, that mapping will be replaced by its
inverse. If the mapping is not invertible, the function returns nil and the target is not
changed.

ERRORS, WARNINGS, AND NOTICES

Errors
mappi ng_i s_ni |

MapMapping

You can use the MapMappi ng function to concatenate two mappings.
gxMappi ng *MapMappi ng(gxMappi ng *target, const gxMapping *source);

t ar get A pointer to the mapping to be modified. On return, contains the result of
the concatenation.

sour ce A pointer to the mapping to be concatenated with the target mapping.

function result A pointer to the resultant mapping, which is also the target mapping.

QuickDraw GX Mathematics Reference 8-65

SOIeWaYIRN X9 MeIayInd n

DESCRIPTION

CHAPTER 8

QuickDraw GX Mathematics

The MapMappi ng function postmultiplies the target mapping by the source mapping,
and returns the result in the t ar get parameter.

The result of passing the function result of MapMappi ng tothe GXMapShape function is
equivalent to passing the result of one call to GXMapShape to another call to
GXMapShape, as shown below (for the shape s):

GXMapShape(s, target);
GXMapShape(s, source);

The same results would be obtained more efficiently and perhaps more accurately by
making these calls:

MapMappi ng(target, source);
GXMapShape(s, target);

ERRORS, WARNINGS, AND NOTICES

Errors
mappi ng_is_nil

SEE ALSO
The GXMapShape function is described in the chapter Transform Objects in Inside
Macintosh: QuickDraw GX Objects.
MapPoints
You can use the MapPoi nt s function to apply a mapping to each of the points in an
array.
voi d MapPoi nts(const gxMappi ng *source, |ong count,
gxPoi nt vector[]);
source A pointer to the mapping that is to be applied to the array of points.
count The number of points in the array.
vect or The array of points to which the mapping is to be applied. On return, the
array contains the transformed points.
8-66 QuickDraw GX Mathematics Reference

CHAPTER 8

QuickDraw GX Mathematics

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors

mappi ng_is_nil

paranmeter _is_nil

nunber _of poi nts_exceeds_i nplementation_limt

Warnings
map_poi nts_out _of _range

For an example of a function that applies a mapping to a single point, see Listing 8-2 on
page 8-30.

Modifying Mappings

This section describes functions with which you can modify the translational, scaling,
rotational, and skewing properties of a mapping.

Similar functions are available that allow you to directly modify the transformational
properties of the mapping in the transform object associated with a QuickDraw GX
shape. See the chapter “Transform Objects” in Inside Macintosh: QuickDraw GX Objects for
more information.

MoveMapping

You can use the MoveMappi ng function to change the horizontal and vertical translation
factors of a mapping by given amounts.

gxMappi ng *MoveMappi ng(gxMappi ng *target, Fixed hOffset,
Fi xed vOFfset);

t ar get A pointer to the mapping to be modified. On return, points to the
modified mapping.

hOf f set The horizontal translation to add to the mapping.

vO f set The vertical translation to add to the mapping.

function result A pointer to the modified mapping, which is also the target mapping.

QuickDraw GX Mathematics Reference 8-67

SOIeWaYIRN X9 MeIayInd n

DESCRIPTION

CHAPTER 8

QuickDraw GX Mathematics

The MoveMappi ng function postmultiplies the target mapping by a mapping that adds
hOf f set to the x translation and vOf f set to the y translation of the target mapping.

Passing the result of this function to the GXMapShape function is equivalent to calling
the GXMapShape function and then calling the GXMove Shape function.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
mappi ng_is_nil

The use of the MoveMappi ng function is described in the section “Translation by a
Relative Amount” beginning on page 8-17.

The GXMapShape and GXMove Shape functions are described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

MoveMappingTo

DESCRIPTION

8-68

You can use the MoveMappi ngTo function to assign specific values to the horizontal and
vertical translation factors of a mapping.

gxMappi ng *MoveMappi ngTo(gxMappi ng *target, Fixed hPosition,
Fi xed vPosition);

t ar get A pointer to the mapping that is to be modified. On return, points to the
modified mapping.

hPosi ti on The horizontal translation to be assigned to the target mapping.
vPosi ti on The vertical translation to be assigned to the target mapping.

function result A pointer to the modified mapping, which is also the target mapping.

The MoveMappi ngTo function postmultiplies the target mapping by a mapping that
assigns hPosi t i on to the x translation and vPosi t i on to the y translation of the target
mapping. This function sets the translational origin of the mapping; the point (0, 0),
when postmultiplied by the mapping that results from this function, will be at location
(hPosi tion,vPosition).

QuickDraw GX Mathematics Reference

CHAPTER 8

QuickDraw GX Mathematics

ERRORS, WARNINGS, AND NOTICES
Errors

mappi ng_is_nil

SEE ALSO

The use of the MoveMappi ngTo function is described in the section “Translation to a
Specified Point” beginning on page 8-18.

ScaleMapping

You can use t he Scal eMappi ng function to change the horizontal and vertical scale
factors of a mapping.

gxMappi ng *Scal eMappi ng(gxMappi ng *target,
Fi xed hFactor, Fixed vFactor,
Fi xed xCenter, Fixed yCenter);

t ar get A pointer to the mapping that is to be modified. On return, points to the
modified mapping.

hFact or The horizontal scaling factor to apply. A value of 1.0 means no scale
change in the x direction.

vFact or The vertical scaling factor to apply. A value of 1.0 means no scale change
in the y direction.

xCent er The x-coordinate of the center of scaling.

yCent er The y-coordinate of the center of scaling.

function result A pointer to the modified mapping, which is also the target mapping.

DESCRIPTION

The Scal eMappi ng function postmultiplies the target mapping by a mapping that
specifies a horizontal scaling factor of hFact or and a vertical scaling factor of vFact or,
about the point (xCent er, yCent er). Note that if hFact or is 1, xCent er irrelevant;
likewise, if vFact or is 1, yCent er is irrelevant.

These scaling factors are in addition to any preexisting scaling factors in the target
mapping. The center of scaling is the point that does not move when the scaling is
applied.

QuickDraw GX Mathematics Reference 8-69

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Passing the result of the Scal eMappi ng function to the GXMapShape function is
equivalent to calling the GXMapShape function and then calling the GXScal eShape
function. For example, you could make these calls (for the shape s):

Scal eMappi ng(target, hFactor, vFactor, xCenter, yCenter);
GXMapShape(s, target);

or, you could make these equivalent calls:

GXMapShape(s, target);
GXScal eShape(s, hFactor, vFactor, xCenter, yCenter);

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
mappi ng_is_nil

The use of the Scal eMappi ng function is described in the section “Scaling” beginning
on page 8-20.

The GXMapShape and GXScal eShape functions are described in the chapter
“Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

RotateMapping

8-70

You can use the Rot at eMappi ng function to change the rotation specified by a mapping.

gxMappi ng *Rot at eMappi ng(gxMappi ng *target, Fi xed angl e,
Fi xed xCenter, Fixed yCenter);

t ar get A pointer to the mapping to be modified. On return, points to the
modified mapping.

angl e The amount of rotation (in degrees clockwise) to be added to the
mapping.

xCent er The x-coordinate of the center of rotation.

yCent er The y-coordinate of the center of rotation.

function result A pointer to the modified mapping, which is also the target mapping.

QuickDraw GX Mathematics Reference

DESCRIPTION

CHAPTER 8

QuickDraw GX Mathematics

The Rot at eMappi ng function postmultiplies the target mapping by a mapping that
specifies a rotation (clockwise if positive) by a specified humber of degrees about the
point (xCent er,yCent er).

The rotation is in addition to any preexisting rotation specified by the target mapping.

Passing the result of this function to the GXMapShape function is equivalent to calling
the GXMapShape function and then calling the GXRot at eShape function. For example,
you could make these calls (for the shape s):

Rot at eMappi ng(target, angle, xCenter, yCenter);
GXMapShape(s, target);

or, you could make these equivalent calls:

GXMapShape(s, target);
GXRot at eShape(s, angle, xCenter, yCenter);

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

Errors
mappi ng_is_nil

The use of the Rot at eMappi ng function is described in the section “Rotation”
beginning on page 8-22.

The GXMapShape and GXRot at eShape functions are described in the chapter
“Transform Objects” in Inside Macintosh: QuickDraw GX Objects.

SkewMapping

You can use the SkewiVappi ng function to change the horizontal and vertical skew
specified by a mapping.

gxMappi ng * Skewappi ng(gxMappi ng t ar get,
Fi xed skewX, Fixed skewy,
Fi xed xCenter, Fixed yCenter);

t ar get A pointer to the mapping that is to be modified. On return, points to the
modified mapping.

skewX The scaling factor that determines the amount of skew in the x direction.
A value of 0 means no horizontal skew.

QuickDraw GX Mathematics Reference 8-71

SOIeWaYIRN X9 MeIayInd n

DESCRIPTION

CHAPTER 8

QuickDraw GX Mathematics

skewY The scaling factor that determines the amount of skew in the y direction.
A value of 0 means no vertical skew.

xCent er The x-coordinate of the center of skewing.

yCent er The y-coordinate of the center of skewing.

function result A pointer to the modified mapping, which is also the target mapping.

The Skewivappi ng function postmultiplies the target mapping by a mapping that
specifies a horizontal skew factor of skewX and a vertical skew factor of skewy, about
the point (xCent er, yCent er). Note that if skewX is 0, yCent er irrelevant; likewise, if
skewYis 0, xCent er isirrelevant.

These skew factors are in addition to any preexisting skew specified in the target
mapping. The center of skewing specifies the point at which no translation takes place
because of the skewing.

Passing the result of the Skewiappi ng function to the GXMapShape function is
equivalent to calling the GXMapShape function and then calling the GXSkewShape
function. For example, you could make these calls (for the shape s):

SkewMappi ng(target, hFactor, vFactor, xCenter, yCenter);
GXMapShape(s, target);

or, you could make these equivalent calls:

GXMapShape(s, target);
GXSkewsShape(s, skewX, skewy, xCenter, yCenter);

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

8-72

Errors
mappi ng_is_nil

The use of the Skewvappi ng function is described in the section “Skewing” beginning
on page 8-24.

The GXMapShape and GXSkewShape functions are described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

QuickDraw GX Mathematics Reference

CHAPTER 8

QuickDraw GX Mathematics

Summary of QuickDraw GX Mathematics

Constants and Data Types

Number Formats and Constants

typedef |ong fract;
t ypedef unsi gned short gxCol or Val ue;

struct gxPol ar {
Fi xed radi us;
Fi xed angl e;

s

struct w de {
[ong hi;
unsi gned long |o;

i

#define fixedl ((Fi xed) 0x00010000)
#define fractl ((fract) 0x40000000)
#def i ne gxCol or Val uel ((gxCol or Val ue) OxFFFF)

#define gxPositivelnfinity ((Fixed) Ox7FFFFFFF)

#define gxNegativelnfinity ((Fi xed) 0x80000000)

The Mapping Structure

struct gxMappi ng {
Fi xed map[3][3];
1

Summary of QuickDraw GX Mathematics

/*

/*

1.0 for Fixed */

1.0 for fract */

/* 1.0 for gxCol orVal ue*/

/* for

/* for

Fi xed and fract */

Fi xed and fract */

8-73

SOIeWaYIRN X9 MeIayInd n

Number-Conversion Macros

CHAPTER 8

QuickDraw GX Mathematics

Format Conversions

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

Fi xedToFr act (a)
Fract ToFi xed(a)
Fi xedTol nt (a)

I nt ToFi xed(a)
ff(a)

Fi xedToFl oat (a)
Fl oat ToFi xed(a)
fl(a)
Fract ToFl oat (a)
Fl oat ToFr act (a)
Col or ToFr act (a)
Fract ToCol or (a)

((fract) (a) << 14)

((Fixed) (a) + 8192L >> 14)

((short) ((Fixed) (a) + fixedl/2 >> 16))
((Fixed)(a) << 16)

((Fixed)(a) << 16)

((float)(a) / fixedl)

((Fixed)((float) (a) * fixedl))
((Fixed)((float) (a) * fixedl))
((float)(a)/fractl)
((fract)((float)(a)*fractl))
(((fract)(a)<<14) + ((fract)(a) +2 >>2))
((gxCol orVal ue) ((a)-((a)>>16) +8191>>14))

Rounding, Truncating, and Square Root Operations
#def i ne Fi xedRound(a)

#def i ne Fi xedTruncat e(a)
#def i ne Fi xedSquar eRoot (a)

Mathematical Functions

((short) ((Fixed)(a) + fixedl/2 >> 16))
((short) ((Fixed)(a) >> 16))
((Fi xed) Fract Squar eRoot (a) + 64 >>7)

Fixed-Point Operations

Fi xed Fi xedMul tiply
Fi xed Fi xedDi vi de
long MultiplyDivide

unsi gned | ong Magnitude

fract
fract
fract
fract
fract

8-74

Fr act Si neCosi ne

Fr act Squar eRoot
Fract CubeRoot
Fractul tiply
Fract Di vi de

(Fixed nmultiplicand, Fixed multiplier);
(Fi xed dividend, Fixed divisor);

(long multiplicand, long nmultiplier,

| ong divisor);

(long deltaX, |ong deltay)

(Fi xed degrees, fract *cosine);

(fract source);

(fract source);

(fract multiplicand, fract multiplier);
(fract dividend, fract divisor);

Summary of QuickDraw GX Mathematics

CHAPTER 8

QuickDraw GX Mathematics

Operations on wide Numbers

wi de *W deAdd (wi de *target, const w de *source);
wi de *W deSubtract (wi de *target, const w de *source);
wi de *W deNegat e (wi de *target);

wi de *W deShi ft (wide *target, long shift);

wi de *WdeMil tiply (long multiplicand, long nultiplier,

wi de *target);
| ong W deDi vi de (const wi de *dividend, |ong divisor,
| ong *remai nder);

wi de *W deW deDi vi de (wi de *dividend, long divisor, long *remainder);

unsi gned | ong W deSquar eRoot
(const wi de *source);

short W deScal e (const wide *w);
short W deConpare (const wide *target, const w de *source);

Vector Operations

wi de *VectorMiltiply (long count, const long *vectorl, |ong stepl,
const long *vector2, long step2, w de *dot);

long *VectorMiltiplyDivide (long count, const long *vectorl, |long stepl

const long *vector2, long step2, |ong divisor);

Cartesian and Polar Coordinate Point Conversions

gxPoi nt *Pol ar ToPoi nt (const gxPol ar *ra, gxPoint *xy);
gxPol ar *Poi nt ToPol ar (const gxPoint *xy, gxPolar *ra);

Random Number Generation

unsi gned | ong RandonBits (long count, |ong focus);
voi d Set Randonfeed (const wi de *seed);
wi de *Get RandonBeed (wi de *seed);

Linear and Quadratic Roots

| ong Li near Root (Fixed first, Fixed last, fract t[]);

| ong Quadr ati cRoot (Fixed first, Fixed control, Fixed |ast,
fract t[]);

Bit Analysis

short FirstBit (unsigned | ong x);

Summary of QuickDraw GX Mathematics

8-75

SOIeWaYIRN X9 MeIayInd n

CHAPTER 8

QuickDraw GX Mathematics

Mapping Functions

Manipulating and Applying Mappings
gxMappi ng *CopyToMappi ng (gxMapping *target, const gxMappi ng *source);
gxMappi ng *Nor mal i zeMappi ng (gxMappi ng *target);

gxMappi ng *Reset Mappi ng (gxMappi ng *target);

gxMappi ng *I nvert Mappi ng (gxMapping *target, const gxMappi ng *source);
gxMappi ng *MapMappi ng (gxMappi ng *target, const gxMapping *source);
voi d MapPoi nts (const gxMappi ng source, |ong count,

gxPoi nt vector[]);

Modifying Mappings
gxMappi ng *MoveMappi ng (gxMappi ng *target,

Fi xed hOffset, Fixed vOfset);
gxMappi ng *MoveMappi ngTo (gxMappi ng *target,

Fi xed hPosition, Fixed vPosition);
gxMappi ng * Scal eMappi ng (gxMappi ng *target,

Fi xed hFactor, Fixed vFactor,

Fi xed xCenter, Fixed yCenter);

gxMappi ng *Rot at eMappi ng (gxMapping *target, Fixed angle,
Fi xed xCenter, Fixed yCenter);

gxMappi ng * Skewivappi ng (gxMapping target, Fixed skewX, Fixed skewy,
Fi xed xCenter, Fixed yCenter);

8-76 Summary of QuickDraw GX Mathematics

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 QuickDraw GX and the Macintosh Environment TOC
	 QuickDraw GX and the Macintosh
	 QuickDraw GX Memory Management TOC
	 QuickDraw GX Memory Management
	 Errors, Warnings, and NoticesTOC
	 Errors, Warnings, and Notices
	 QuickDraw GX Debugging TOC
	 QuickDraw GX Debugging
	 Collection Manager TOC
	 Collection Manager
	 Message Manager TOC
	 Message Manager
	 QuickDraw GX Stream Format TOC
	 QuickDraw GX Stream Format
	 QuickDraw GX Mathematics TOC
	QuickDraw GX Mathematics
	About QuickDraw GX Mathematics
	Number Formats
	Integer Formats
	Floating-Point Formats
	Fixed-Point Formats
	Working With Bias in Fixed-Point Operations

	Number-Conversion Macros
	Mathematical Functions
	Operations on Fixed, long, and fract Numbers
	Operations on wide Numbers
	Vector Operations
	Cartesian and Polar Coordinate Conversion
	Random Number Generation
	Roots of Linear and Quadratic Equations
	Bit Analysis

	Transformation Operations With Mappings
	Characteristics of a Mapping
	Translation by a Relative Amount
	Translation to a Specified Point
	Scaling
	Rotation
	Skewing
	Perspective

	Using QuickDraw GX Mathematics
	Converting Number Formats
	Performing Fixed-Point Operations
	Converting Between Cartesian and Polar Coordinates...
	Performing Vector Operations
	Shifting the Bits of a wide Number
	Determining the Highest Order Bit of a wide Number...
	Generating Random Numbers
	Analyzing the Bits in a Number
	Resetting a Mapping

	QuickDraw GX Mathematics Reference
	Constants and Data Types
	Number Formats and Constants
	The Mapping Structure

	Number-Conversion Macros
	Format Conversions
	Rounding, Truncating, and Square Root Operations

	Mathematical Functions
	Fixed-Point Operations
	Operations on wide Numbers
	Vector Operations
	Cartesian and Polar Coordinate Point Conversions
	Random Number Generation
	Linear and Quadratic Roots
	Bit Analysis

	Mapping Functions
	Manipulating and Applying Mappings
	Modifying Mappings

	Summary of QuickDraw GX Mathematics
	Constants and Data Types
	Number-Conversion Macros
	Mathematical Functions
	Mapping Functions

	 Glossary
	 Index
	 Colophon

