This chapter describes QuickDraw GX number formats, number-format conversions, mathematical functions, and functions that operate on mappings (transformation matrices). Read this chapter if your application requires the explicit use of any of the mathematical capabilities of QuickDraw GX.

Related information on how QuickDraw GX uses mappings can be found in the chapter "Transform Objects" and the chapter "View-Related Objects" in Inside Macintosh: QuickDraw GX Objects.

This chapter first describes the number formats used in QuickDraw GX. It then describes the number-format conversion macros and mathematical functions that are provided by QuickDraw GX. It then shows how to use QuickDraw GX macros and functions to provide

■ fixed-point number conversions

- fixed-point operations
- operations on 64-bit numbers
- vector operations
- Cartesian and polar coordinate conversions
- random number generation
- roots of linear and quadratic equations
- bit analysis
- mapping operations

About QuickDraw GX Mathematics

QuickDraw GX supports 16-bit, 32-bit, and 64-bit fixed-point number formats. You can use QuickDraw GX macros for efficient number-format conversions. QuickDraw GX mathematical functions provide a full spectrum of operations. QuickDraw GX mapping functions allow you to manipulate the matrices that transform shapes.

Number Formats

QuickDraw GX accepts standard integer and floating-point number formats, and defines several fixed-point number formats.

Integer Formats

Some Quickdraw GX functions and data structures may make use of the standard C language integer formats short, unsigned short, long, and unsigned long. The short number format is a 16 -bit signed or unsigned integer; the long number format is a 32-bit signed or unsigned integer. Numbers in these formats have the following ranges of values:

```
Format
short
unsigned short
long -2,147,483,648 to 2,147,483,647
unsigned long 0 to 4,294,967,295
```


Floating-Point Formats

QuickDraw GX supports conversion to and from the C language single precision floating-point format float; double precision floating-point format double; and extra precision floating-point format extended. QuickDraw GX macros that convert between floating-point numbers and Fixed or fract numbers can handle all three floating-point formats.

Fixed-Point Formats

QuickDraw GX defines 16-bit, 32-bit, and 64-bit fixed-point number formats.
Fixed-point number formats are integers that are interpreted as real numbers. The conversion between integer number format and a fixed-point number format is described by bias. A bias is a number (commonly expressed as a power of 2) by which an integer is divided in order to obtain the real number it represents. For example, the bias for the Fixed number format is 16 bits, or 2^{16}. In this case, the integer must be divided by 2^{16} to obtain the real number represented. Therefore, Fixed $0 \times 10000=65,536 / 2^{16}$, or 1.0.

There are one 16-bit, two 32-bit, and one 64-bit number formats:

- The $\mathbf{g x C o l o r V a l u e}$ format for fixed-point numbers is a 16 -bit unsigned integer. The values range from 0 to 65,535 to represent numbers from 0 to 1 . This fixed-point number is described by a bias of 65,535 . The integer must be divided by 65,535 to obtain the real number represented. (Its name derives from the fact that it is used to describe color-component values in a Quickdraw GX color structure; see the chapter "Colors and Color-Related Objects" in Inside Macintosh: QuickDraw GX Objects for more information.)
- The Fixed format for fixed-point numbers has 16 bits to the left and 16 bits to the right of the binary point. This corresponds to a fixed-point bias of 16 bits. Fixed format numbers range from $-32,768$ to $[32,767+(65,535 / 65,536)]$, or approximately 32,768.
- The fract format for fixed-point numbers has 2 bits to the left and 30 bits to the right of the binary point. This corresponds to a fixed-point bias of 30 bits. Numbers in fract format range from -2 to [$2-\left(2^{-30}\right)$] or -2 to $[1+(1,073,741,823 / 1,073,741,824)]$, or approximately 2.0.
- The wide format is a signed integer data type that has 64 bits. It can be given a bias, just as any other integer type can. With a bias of 0 bits, a wide format number represents an integer and can range from $-9,223,372,036,854,775,808$ to $9,223,372,036,854,775,807$. With a bias of 16 bits, a wide format number represents an extended version of the Fixed format (that is, it has the same precision but a larger range) and can range from $-140,737,488,355,328$ to $[140,737,488,355,327+(65,535$ / 65,536)].

All of the fixed-point number formats except for gxColorValue are two's complement signed integers.

The wide data type is defined as a structure that contains an unsigned long integer as its low-order half and a signed long integer as its high-order half. You can convert a long into a wide in either of two ways:

■ First, assign the long to the low half of the wide. Then, if the long is not negative, assign 0 to the high half of the wide; if the long is negative, assign -1 to the high half of the wide.

■ Assign the long to the high half of the wide. Use the WideShift function to shift the bits of the wide rightward by 32 bits.

The WideShift function is described on page $8-51$. The wide structure is described on page 8-35.

Working With Bias in Fixed-Point Operations

Fixed numbers have a bias of 16; fract numbers have a bias of 30; and long and wide numbers have a bias of 0 . Unless stated otherwise, all biases will be powers of 2 . For brevity, we use the convention of describing a bias by the exponent of 2 ; for example, we say "a bias of 16 " instead of "a bias of 16 bits." Operations that are designed to work on a specific number format (such as FixedMultiply or FractDivide or WideMultiply) apply a bias to the result of their operations that reflects the number format they expect. If you understand how the bias is applied, you can use (and even mix) any of several different fixed-point number formats in these functions, and know what bias to use when interpreting the result:

■ Operations on Fixed numbers (such as FixedMultiply and FixedDivide) use a bias of 16; operations on fract numbers (such as FractMultiply and FractDivide) use a bias of 30; operations on long and wide numbers (such as MultiplyDivide and WideDivide) use a bias of 0 .

■ When multiplying two fixed-point numbers, the bias of the result is the sum of the biases of the input numbers, minus the bias of the operation. Thus, the result of using FixedMultiply to multiply two Fixed numbers is a Fixed $(=(16+16)-16)$, as expected. On the other hand, the result of using FixedMultiply to multiply a fract and a Fixed is a fract $(=(30+16)-16)$, and the result of FractMultiply on a fract and a Fixed is a Fixed $(=(30+16)-30)$.

- When dividing two fixed-point numbers, the bias of the result is the operation bias plus the difference between the biases of the input numbers. Thus, as expected, the result of using FixedDivide to divide one Fixed number by another is a Fixed $(=16+(16-16))$. The result of FixedDivide on a fract divided by a Fixed is a Fract $(=16+(30-16))$, and the result of FractDivide on a Fixed divided by a Fract is a Fixed $(=30+(16-30))$.
- For operations that have no bias, the result is simply the sum or difference of the input biases. For example, if you use MultiplyDivide to multiply a Fixed by a fract and divide the result by a Fixed, the result will be a fract ($=16+30-16$). If you use WideMultiply to multiply two Fixed numbers, the result will have a bias of 32 bits ($=16+16$).

Remember also that using the standard C operators + and - to add or subtract fixed-point numbers is meaningful only if the numbers have the same bias. Thus, if you wish to add together a long integer and a Fixed, for example, you must first convert one format to the other, or convert both to a common format.

The functions referred to in this section are described in the section "Fixed-Point Operations" beginning on page 8-42, and "Operations on wide Numbers" beginning on page 8-49.

Number-Conversion Macros

QuickDraw GX provides a set of predefined macros for the conversion between different fixed-point number formats. This allows you the convenience of accessing the number-conversion formulas as if they were function calls.

Table 8-1 summarizes the number-format conversions that are supported.

Table 8-1 Macro number-format conversions

From number format	To number format
Fixed	fract
Fixed	floating-point
Fixed	integer
fract	floating-point
fract	Fixed
fract	gxColorValue
floating-point	fract
floating-point	Fixed
integer	Fixed
gxColorValue	fract

QuickDraw GX also provides macros that

- round a Fixed number to its nearest integer
- determine the greatest integer that is not greater than a given Fixed number
- use a function to determine the square root of a Fixed number

The use of QuickDraw GX macros is described in the section "Converting Number Formats" beginning on page 8-26. Each macro is described in the section "Number-Conversion Macros" beginning on page 8-36.

Mathematical Functions

QuickDraw GX provides mathematical functions for
■ fixed-point operations on Fixed, long, and fract number formats

- fixed-point operations on a wide number format
- vector operations
- Cartesian and polar coordinate point conversions
- random number generation
- linear and quadratic roots
- bit analysis

A description of each QuickDraw GX mathematics function is provided in the section "Mathematical Functions" beginning on page 8-42.

Operations on Fixed, long, and fract Numbers

QuickDraw GX provides functions that perform operations on Fixed, long, and fract number formats. Functions are provided that

- determine the product of two numbers $(a \times b)$
- determine the quotient of two numbers (a / b)

■ determine the product of two numbers and the quotient of a third number $(a \times b) / c$
■ determine both the sine and cosine of an angle measured in degrees [sine(angle) and cosine(angle)]

- determine the square root of a number (a) $)^{1 / 2}$
- determine the cube root of a number (a) ${ }^{1 / 3}$
- determine the magnitude of a two-dimensional vector

The functions that perform operations on Fixed, long, and fract number formats are described in the section "Fixed-Point Operations" beginning on page 8-42.

Operations on wide Numbers

QuickDraw GX provides functions for operations on wide numbers. Functions are provided that

- determine the sum of two wide numbers $(a+b)$
- determine the difference between two wide numbers ($a-b$)
- determine the product, as a wide number, of two long numbers ($\mathrm{a} \times \mathrm{b}$)
- determine the quotient, as a long number (without remainder), of a wide number divided by a long number (a / b)
- determine the result, as a long quotient and a long remainder, of dividing a wide number by a long number ($\mathrm{a} / \mathrm{b}+$ remainder)
- determine the square root of a wide number (a) $)^{1 / 2}$
- negate a wide number (-a)
- shift bits in a wide number to the right or left
- determine the highest order bit in the absolute value of a wide number
- compare two wide numbers

The functions that perform operations on wide number formats are described in the section "Operations on wide Numbers" beginning on page 8-49.

Vector Operations

QuickDraw GX provides vector operation functions that

- determine the dot product of two vectors $\left(\mathrm{v}_{1} \cdot \mathrm{v}_{2}\right)$
- determine the dot product of two vectors and divide by a number $\left(\mathrm{v}_{1} \cdot \mathrm{v}_{2}\right) /$ a

The use of QuickDraw GX vector operation functions is described in the section "Performing Vector Operations" beginning on page 8-29. These functions are described in the section "Vector Operations" beginning on page 8-54.

Cartesian and Polar Coordinate Conversion

You use Cartesian coordinates to specify points with QuickDraw GX. Some shapes, such as rectangles, are more easily drawn using Cartesian coordinates; however, some shapes that have symmetry about a point are more easily drawn with polar coordinates. For that reason, QuickDraw GX provides conversion routines so that you can work in either coordinate system.
For QuickDraw GX, Cartesian coordinates have a positive x direction to the right and a positive y direction downward (not upward, as in many other Cartesian coordinate systems). Cartesian coordinates are written in the order (x, y). The origin is at $(0,0)$. The gxPoint structure describes points using Cartesian coordinates.

Polar coordinates have the same origin point as Cartesian coordinates, but locations are specified differently. The polar coordinate of a point is specified by the length of the radius vector r from the origin to the point and the direction of the vector is specified by polar angle a. Angles in QuickDraw GX are measured clockwise in degrees from the Cartesian coordinate positive x-axis. The polar coordinate of a point specified by a vector of length r and direction a degrees from the x-axis is written as point (r, a). The polar origin point has the coordinates $(0, a)$, where a is any angle. Points having polar coordinates are defined by the gxPolar structure. The gxPolar structure is described in the section "Constants and Data Types" beginning on page 8-35. The relationship of the Cartesian and polar coordinates is shown in Figure 8-1.

Figure 8-1 Cartesian and polar coordinates

The gxPolar location (r, a) corresponds to the $g \times P o i n t$ location $(r \times \cos (a), r \times \sin (a))$. The mathematical relationship between the two coordinate systems is given by the expressions $r^{2}=x^{2}+y^{2}$ and $\tan (a / 2)=y /(r+x)$. The angle can also be defined by the more familiar term $\tan (a)=y / x$.

The use of the polar-to-Cartesian and Cartesian-to-polar coordinates functions are described in the section "Converting Between Cartesian and Polar Coordinates" beginning on page 8-29. These functions are described in the section "Cartesian and Polar Coordinate Point Conversions" beginning on page 8-56.

Random Number Generation

The QuickDraw GX random-number algorithm generates random integers in the range of 0 to $2^{\text {count }}-1$, where count is the number of bits to be generated by the random number generator.

The sequence of values that the random number generator produces is dependent upon the initialization value called the seed. The algorithm uses the seed to calculate the next random number and a new seed. If no seed is provided, QuickDraw GX uses a default seed value of 0 . To repeat a sequence of random numbers, you can use the same seed value.

QuickDraw GX provides random number generation functions that

- generate a sequence of random bits
- change the seed used by the random number algorithm
- determine the current seed for the random number algorithm

The use of the random number generation functions is described in the section "Generating Random Numbers" beginning on page 8-33. These functions are described in the section "Random Number Generation" beginning on page 8-58.

Roots of Linear and Quadratic Equations

QuickDraw GX provides mathematical functions that

- determine the root of a linear equation

■ determine the roots of a quadratic equation
The linear and quadratic equation solving functions are described in the section "Linear and Quadratic Roots" beginning on page 8-60.

Bit Analysis

QuickDraw GX provides a mathematical function that allows you to determine the highest bit number that is set in a number.

The FirstBit function is described in the section "Bit Analysis" beginning on page 8-62.

Transformation Operations With Mappings

A mapping is a 3×3 perspective matrix that performs transformations of spatial locations in two dimensions. You can apply a mapping operation to a set of points either directly (as when directly modifying the geometry of a shape), or indirectly, by multiplying a mapping with another mapping (as when altering the mapping in the transform object associated with a shape).

QuickDraw GX uses mappings to perform the following transformations on shapes or other two-dimensional data:

- Translation shifts the position of a shape by the amount specified in the mapping. Translation functions allow you to specify either a relative shift along either coordinate axis, or an absolute shift to a new specified location.
- Scaling changes the size of a shape by the factor specified in the mapping. Scaling functions allow you to change size along either axis, and can also result in reflection about the coordinate axes.
- Rotation changes the angle of rotation of a shape by the amount specified in the mapping, rotating all points around a given point.
- Skewing changes the slant applied to a shape by the amount specified in the mapping. Skewing functions allow you to apply slant along either coordinate axis, relative to a given point. The term shearing is synonymous with skewing.
- Perspective modifies the positions of points to give a three-dimensional effect.

When you multiply two or more matrices to obtain a cumulative result, you concatenate, or accumulate the transformations of, both mappings. Matrix multiplication is not commutative. This means that $[\mathrm{A}] \times[\mathrm{B}] \neq[\mathrm{B}] \times[\mathrm{A}]$. As a result, the order that you concatenate is important. [A] is postmultiplied by $[\mathrm{B}]$ if $[\mathrm{A}]$ is replaced by $[\mathrm{A}] \times[\mathrm{B}]$. Conversely, $[\mathrm{A}]$ is premultiplied by $[\mathrm{B}]$ if $[\mathrm{A}]$ is replaced by $[\mathrm{B}] \times[\mathrm{A}]$. A mapping is applied to a point via postmultiplication (which is to say that points are row vectors); therefore, the default for applying one mapping to another is also postmultiplication.

Multiple concatenations can occur in QuickDraw GX, such as when drawing picture shapes or when drawing any shape through a hierarchy of view ports. If you are going to apply several mappings to a relatively large bitmap or other shape, it is advantageous to concatenate the mappings first (with the MapMapping function) and then apply the resultant mapping to the shape (with the GXMapShape function).
The motivation is speed. It is much faster to concatenate mappings than to apply a mapping to a large number of points. For bitmaps, an additional motivation is accuracy. Each time a shape is transformed, a certain amount of roundoff error is introduced. Because the pixels of a bitmap are at integral coordinates, the roundoff error is on the average of a quarter pixel, compared with thousandths of a pixel for fixed-point coordinates.

QuickDraw GX provides two groups of mapping functions. The first group allows you to copy and perform standard matrix operations on mappings. With these functions, you can

- make a copy of a mapping
- normalize a mapping
- reset a mapping to identity
- invert a mapping
- concatenate (postmultiply) a mapping to another mapping
- apply a mapping to each of a given set of points

The second group allows you to modify how a mapping transforms the objects or coordinate space it is applied to. With these functions, you can

- add translation to mapping
- modify a mapping to specify translation to an absolute location
- add horizontal and vertical scaling to a mapping
- add rotation to a mapping
- add horizontal and vertical skew to a mapping

Figure 8-2 shows an example of how modifying a mapping can modify the scaling, rotation, skewing, and perspective of a shape.

Figure 8-2 Transformation operations with a mapping matrix

Characteristics of a Mapping

QuickDraw GX achieves these two-dimensional transformations of shapes and points on a plane by matrix multiplication of each Cartesian point P by the mapping matrix [T] to generate a transformed point P^{\prime}.
$P(x, y)[T]=P^{\prime}\left(x^{\prime}, y^{\prime}\right)$
To multiply a two-dimensional point by a three-dimensional matrix, we first expand it to a three-dimensional point $(x, y, 1)$. After multiplication, the resulting point is ($x^{\prime}, y^{\prime}, z^{\prime}$), which normalizes to ($x^{\prime} / z^{\prime}, y^{\prime} / z, 1$) or, in two dimensions, ($x^{\prime} / z^{\prime}, y^{\prime} / z$).

The QuickDraw GX mapping is defined as

```
struct gxMapping { Fixed map[3][3];};
```

The mapping consists of linear elements $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d ; perspective elements u and v ; translation elements h and k; and the scale factor w, which is commonly set to fract 1 . Although defined as containing only Fixed numbers, the rightmost column of the matrix-containing elements u, v, and w-consists of fract numbers. Figure 8-3 shows the elements of the matrix in place.

Figure 8-3 Mapping matrix elements

Point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is transformed to point $\mathrm{P}^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ by matrix multiplication of the row vector [x y 1] by the mapping matrix to yield the expanded general expression shown in Figure 8-4.

Figure 8-4 Applying a mapping matrix to a point

$$
\left[\begin{array}{lll}
x & y & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & u \\
c & d & v \\
h & k & w
\end{array}\right]=[a x+c y+h, b x+d y+k, u x+v y+w]
$$

The x and y elements of the transformed vector can be mapped back to the x and y-coordinates by dividing each element by the term $u x+v y+w$. The resulting general expression for the transformation of point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ to $\mathrm{P}^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ is shown in Figure 8-5.

Figure 8-5 The point (x, y) as transformed by the mapping matrix

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\frac{a x+c y+h}{u x+v y+w}, \frac{b x+d y+k}{u x+v y+w}\right]
$$

A mapping is normalized whenever the transformation matrix element w has the value 1. Most QuickDraw GX mapping operations will be automatically normalized. However, mappings that an application generates itself might not be normalized. Subsequent operations with that mapping may be slow.

If a mapping does not specify perspective (that is, if its perspective elements u and v are zero), normalization of the transformation involves dividing the map by the absolute value of w, if possible. If this division is not possible (due to overflow) or if the mapping specifies perspective, normalization involves bit-shifting each element of the mapping to the left. The amount of shift provided by the minimum of the following two operations is selected:

- shift the minimum number of bits so that the absolute value of some element of the mapping is $>=$ fract 1 (compared as long values).
- shift the maximum number of bits so that the sum of the absolute values of u and v is <= fract1 - fixed1 (compared as long values).

The identity mapping, or identity matrix, has the unique characteristic that it maps points to the same point. The identity matrix has all diagonal elements equal to 1 and all other matrix elements have the value 0. The identity matrix is shown in Figure 8-6.

Figure 8-6 The identity matrix

The inverse of a mapping is the mathematical inverse of the matrix. This means that if you concatenate a mapping with its inverse, you will get the identity matrix.

The rest of this section discusses the use of the mapping functions in modifying the translation, scaling, rotation, and skewing factors in a mapping. It ends with a discussion of how to modify the perspective factors in a mapping. For additional information about the use of mappings in the transform object and in view port and view device objects, see the chapters "Transform Objects" and "View-Related Objects," respectively, in Inside Macintosh: QuickDraw GX Objects.

Translation by a Relative Amount

You can use the MoveMapping function to make a relative change (in both x and y) to the translation specified by a mapping. Matrix elements h and k control the amount of the translation. Figure 8-7 shows what happens to a mapping M when you call MoveMapping and specify horizontal and vertical offsets of hOffset and voffset. A purely translational matrix is applied to the target mapping, so that the resultant mapping's translation is increased by the specified offsets.

Figure 8-7 Changing the translation specified by a mapping

$\mathbf{M} \times$	1 0 hOffset	0 1 vOffset	0 0 1	$=\mathbf{M}^{\prime}$
Original mapping		Translation matrix		Transformed mapping

QuickDraw GX Mathematics

Figure $8-8$ shows the use of the MoveMapping function to provide translation of a mapping by the increments given by the hOffset and vOffset parameters. The MoveMapping function is described on page 8-67.

Figure 8-8 Translation by a relative amount with MoveMapping

Translation to a Specified Point

You can specify translation of the origin to a given point by using the MoveMappingTo function. Moving the origin means that the point $(0,0)$ will become the point (h, k) after the mapping is applied to it. Matrix elements h and k again control the amount of translation. Figure 8-9 shows what happens to a mapping M when you call MoveMappingTo and specify the desired location (hPosition, vPosition). A relative translation of $(-h / w,-k / w)$ is applied to the target mapping to bring its origin to $(0,0)$, and then a relative translation of (hPosition, vPosition) is applied. The resultant mapping ends up with translational values of hPosition and vPosition.

QuickDraw GX Mathematics

Figure 8-9 \quad Setting the origin specified by a mapping

Figure 8-10 shows the use of the MoveMappingTo function to move the origin to a specific location. Note that this figure assumes that the origin of the shape-point (0.0, 0.0) in its geometry-is at its upper left corner. The MoveMappingTo function is described on page 8-68.

Figure 8-10 Translation to a specific origin location

QuickDraw GX Mathematics

Scaling

You can use the ScaleMapping function to modify the scaling factors in a mapping. Matrix elements a and d in the mapping matrix control the degree of the scaling in the horizontal and vertical directions, respectively. Figure 8-11 shows what happens to a mapping M when you call ScaleMapping with horizontal and vertical scaling factors of hFactor and vFactor and a center of scaling at (xCenter, yCenter). First, a relative translation of $-x$ Center and $-y$ Center moves the center of scaling to $(0,0)$; then a purely scaling matrix multiplies the scaling by hFactor and vFactor; finally, another relative translation moves the center of scaling by $+x$ Center and $+y$ Center. In effect, the center of scaling is moved to $(0,0)$, the scaling is applied, and the scaling center is then moved back to where it was.

Figure 8-11 Changing the amount of scaling specified by a mapping

QuickDraw GX Mathematics

Figure 8-12 shows the use of the ScaleMapping function scale for various horizontal and vertical factors, in which the center of scaling corresponds to the center of the shape. The ScaleMapping function is described on page 8-69.

Figure 8-12 Scaling horizontally and vertically

Note that if vFactor equals hFactor, scaling is uniform in both directions. If vFactor is not equal to hFactor, distortion of the image occurs, as shown in Figure 8-12.

The mapping matrix also accommodates reflection transformations. If hFactor is negative, a reflection about the vertical axis occurs. If vFactor is negative, a reflection about the horizontal axis occurs. If both vFactor and hFactor are negative, a 180° rotation occurs.

Rotation

You can use the RotateMapping function to modify the rotation specified by a mapping. Matrix elements a, b, c, and d together specify the angle of rotation. Figure 8-13 shows what happens to a mapping M when you call RotateMapping to rotate by an angle β about a rotational origin of x Center and y Center. First, a relative translation of $-x$ Center and $-y$ Center moves the center of rotation to $(0,0)$; then a purely rotational matrix adds β to the amount of rotation already specified in the mapping; finally, another relative translation moves the center of rotation by +xCenter and $+y$ Center, back to where it was.

Figure 8-13 Changing the degree of rotation specified by a mapping

Figure $8-14$ shows the use of the RotateMapping function to change the rotation of a mapping. Note that positive values of the angle parameter cause clockwise rotation (consistent with y values increasing downward), and note also that changing the center of rotation can significantly change the final position of the rotated objects. The RotateMapping function is described on page 8-70.

QuickDraw GX Mathematics

Figure 8-14 Rotating about different center points

Skewing

You can use the SkewMapping function to modify the skewing imposed by a mapping. Matrix elements b and c control the amount of the skew. Element b controls skew in the y direction and element c controls skew in the x direction. Figure $8-15$ shows what happens to a mapping M when you call SkewMapping with x and y skew factors of xSkew and ySkew, and a skew origin (the point at which no shearing takes place) of x Center and y Center. First, a relative translation of $-x$ Center and $-y$ Center moves the center of skewing to $(0,0)$; then a purely skewing matrix modifies the amount of skew already specified in the mapping; finally, another relative translation moves the center of skewing by $+x$ Center and $+y$ Center, back to where it was.

Figure 8-15 Changing the amount of skew specified by a mapping

Figure 8-16 shows the use of the SkewMapping function to change the skew specified by a mapping. (Note that the skew in the x direction in Figure 8-16 is negative; as y decreases-upward-the amount of shear in the x direction increases.) The SkewMapping function is described on page 8-71.

QuickDraw GX Mathematics

Figure 8-16 Skewing a shape both horizontally and vertically

Perspective

You can manipulate the elements of a mapping to modify its specification of perspective. The matrix elements u, v, and w determine how the perspective will appear when the mapping is applied. The action performed on a point by a mapping whose perspective elements are nonzero is shown in Figure 8-18.

Figure 8-17 Changing the perspective specified by a mapping

There is currently no QuickDraw GX function that modifies the perspective-controlling elements of a mapping for you. If you wish to create perspective, you need to modify the individual matrix elements directly.

Using QuickDraw GX Mathematics

This section describes how you can use QuickDraw GX number formats, macros, and functions in your application.

Converting Number Formats

You can use QuickDraw GX macros to convert between Fixed, fract, integer, floating-point, and gxColorValue number formats. Macros are also provided to round, truncate, and compute the square root of a fixed-point number.

For example, you can use the IntToFixed macro to convert an integer to a Fixed format and you can use the Float ToFixed macro to convert from a floating-point format to a Fixed format. The functionality of the FloatToFixed macro is also provided as the shortened $f 1$ macro. The functionality of the Int ToFixed macro is also provided as the shortened $f f$ macro.

QuickDraw GX Mathematics

The $f f$ macro is especially useful when you are coding specific points in your application. For example, it's easier to define a line in your application using the $f f$ macro:

```
gxLine lineData = {ff(25), ff(25) , ff(125), ff(125)};
```

than to use the equivalent, but much longer Int ToFixed macro:

```
gxLine lineData = {IntToFixed(25), IntToFixed(25),
    IntToFixed(125), IntToFixed(125)};
```

For constants, using $f f$ is faster and more efficient than using $f l$, because $f f$ is evaluated at compile time, whereas $f l$ is evaluated at run time.

The IntToFixed macro is described on page 8-37. The Float ToFixed macro is described on page $8-39$. The $f 1$ macro is described on page $8-39$. The $f f$ macro is described on page 8-38.

Performing Fixed-Point Operations

You can use QuickDraw GX functions to provide operations on Fixed, long, fract and wide numbers. The equivalent QuickDraw GX fixed-point functions for functions in the Macintosh Mathematical Utilities is shown in Table 8-2.

Table 8-2 QuickDraw GX and Macintosh Toolbox fixed-point functions

QuickDraw GX	Macintosh Mathematical Utilities
FractDivide	FracDiv
FractMultiply	FracMul
FractSquareRoot	FracSqrt
FixedDivide	FixDiv
FixedMultiply	FixMul
WideMultiply	LongMul

The Macintosh Mathematical Utilities are described in Inside Macintosh: Operating System Utilities.

Some functions combine multiple functions into a single function to increase calculation speed over that obtained using sequential function calls. For example, the FractSineCosine function returns both the sine and cosine of an angle.

QuickDraw GX Mathematics

Some functions support the use of 64-bit numbers to increase the accuracy of calculations. For example, the WideAdd function returns the 64-bit sum of two 64-bit numbers, and the WideDivide function returns the quotient of a 64-bit number and a 32-bit number. The MultiplyDivide function uses a 64-bit intermediate result to increase accuracy of the calculation and to prevent premature overflow.

The MultiplyDivide, Magnitude, and VectorMultiplyDivide functions are derivatives of other functions. For example, MultiplyDivide (x, y, z) is the same as:

```
wide temp;
WideDivide (WideMultiply(x, y, &temp), z, O)
```

The final argument of 0 specifies that the returned number will be rounded with no remainder.

You can use the Magnitude function to determine the magnitude (length) of a two-dimensional vector, or the distance between two points on a plane. Figure 8-18 shows the use of function parameters deltaX and deltay.

Figure 8-18 Determining the length of a line with the Magnitude function

Functions that provide arithmetic operations on fixed-point numbers are described in the section "Fixed-Point Operations" beginning on page 8-42. Functions that provide operations on wide numbers are described in the section "Operations on wide Numbers" beginning on page 8-49. The Magnitude function is described on page 8-45.

Converting Between Cartesian and Polar Coordinates

You can use QuickDraw GX functions to convert between Cartesian and polar coordinates. The PolarToPoint function converts a point in polar coordinates to Cartesian coordinates, (r, a) to (x, y). The PointToPolar function converts a point in Cartesian coordinates to polar coordinates, (x, y) to (r, a). The gxPolar point (r, a) corresponds to the gxPoint point $(r \times \cos (a), r \times \sin (a))$. Since $r^{2}=x^{2}+y^{2}$ and $\tan (a)=y / x$, the $g x P \circ$ int structure $(100,100)$ corresponds to the $g x P o l a r$ structure $(141.42136,45)$. Figure $8-19$ shows the Cartesian coordinate of point $(100,100)$ and the polar coordinate of identical point $(141.42136,45)$.

Figure 8-19 Converting between Cartesian and polar coordinates

The Cartesian and polar coordinate systems are described in the section "Cartesian and Polar Coordinate Conversion" beginning on page 8-10. The PolarToPoint function is described on page 8-56. The Point ToPolar function is described on page 8-57.

Performing Vector Operations

You can use the VectorMultiply function to obtain the dot product of two vectors with 64-bit accuracy. The function takes six parameters: the first parameter specifies the number of long numbers to multiply, and the third and fifth parameters specify the step size to use when walking the arrays to which the second and fourth parameters point.

For example:
VectorMultiply ($4, a, 1, b, 2, \& c$) sets the wide number pointed to by the parameter c to the following value:
$a[0]$ * $b[0]+a[1] * b[2]+a[2] * b[4]+a[3] * b[6]$

QuickDraw GX Mathematics

If the count is negative, the sign of the terms in the dot product are alternated.
VectorMultiply $(-4, a, 1, b, 2, \& c)$ sets the wide parameter c to the following value and the result is returned in c :

```
a[0] * b[0] - a[1] * b[2] + a[2] * b[4] - a[3] * b[6]
```

You can also use VectorMultiply to determine the cross-product of a pair of vectors, as in Listing 8-1.

Listing 8-1 Calculating a cross-product with VectorMultiply

```
gxPoint *CrossProduct(const gxPoint *a, gxPoint *b, )
{
    wide temp;
    WideShift(VectorMultiply(-2, &a->x, 1, &b->y, -1, &temp), 16);
}
```

You can also use VectorMultiply to work with mappings. Listing 8-2 is a sample function that applies a mapping to a single point.

Listing 8-2 Applying a mapping to one point

```
gxPoint *MapPoint(const gxMapping *map, gxPoint *pt)
{
    fixed temp[3] = { 0, 0, fixed1 };
    *(gxPoint *)temp = *pt;
    wide dot;
    fixed p = WideShift(VectorMultiply(3, temp, 1, &map[0][2],
                                    3, &dot), 30);
    pt->x = WideDivide(VectorMultiply(3, temp, 1, &map[0][0],
                            3, &dot), p, nil);
    pt->y = WideDivide(VectorMultiply(3, temp, 1, &map[0][1],
                    3, &dot), p, nil);
    return pt;
}
```

The VectorMultiply function is described on page 8-54. Functions that perform vector operations are described in the section "Vector Operations" beginning on page 8-54.

Shifting the Bits of a wide Number

You can use the WideShift function to shift bits in a wide format number. Listing 8-3 shows how to use the WideShift function to provide a fixed-point version of the vectorMultiply function.

Listing 8-3 Using the WideShift function to create a fixed-point VectorMultiply function

```
Fixed VectorFixMul(long count, Fixed *vector1, long step1,
    Fixed *vector2, long step2)
{
    wide temp;
    return WideShift(VectorMultiply(count, vector1, step1,
    vector2, step2, &temp), 16)->lo;
}
```

Listing 8-4 shows how to use the WideShift function in a multiplication function for a fixed-point number with a fixed-point bias of 6 bits.

Listing 8-4 Using the WideShift function in a fixed-point multiplication function

```
long MultiplyDot6(long a, long b)
{
    wide temp;
    return (long)WideShift(WideMultiply(a, b, &temp), 6) ->lo;
}
```

Listing 8-5 shows how to use the WideShift function in a division function for a fixed-point number with a fixed-point bias of 6 bits. Listing 8-6 gives an alternative, but equivalent, approach.

Listing 8-5 Using the WideShift function to create a fixed-point division function

```
long DivideDot6(long a, long b)
{
    wide temp;
    temp.hi = (temp.lo = a) < 0 ? -1 : 0; /* sign extend a */
    return WideDivide(WideShift(&temp, -6), b, 0);
}
```

Listing 8-6 shows how to use the WideShift function for a second fixed-point division function with a fixed-point bias of 6 bits. Listing 8-5 gives an alternative, but equivalent, approach.

Listing 8-6 Using the WideShift function to create a second fixed-point division function

```
long DivideDot6(long a, long b)
{
    wide temp;
    temp.hi = a;
    temp.lo = 0;
    return WideDivide(WideShift(&temp, 26), b, 0);
}
```


Determining the Highest Order Bit of a wide Number

You can use the WideScale function to obtain the bit number of the highest order bit in the absolute value of a wide number. Listing 8-3 shows how to use the WideScale function in a function that multiplies two numbers in long format. If the product is too big to fit in a long, the function shifts the product so that it fits into a long and returns the bit shift. This operation can be termed pseudo-floating-point.

Listing 8-7 Using the WideScale function to create a pseudo-floating-point function

```
long FloatMul(long a, long b, long *product)
{
    wide temp;
    long shift = WideScale(WideMultiply(a, b, &temp)) - 30;
    if (shift > 0)
                WideShift(&temp, shift);
    else
        shift = 0;
    if (product) *product = temp.lo;
    return shift;
}
```

The WideScale function is described on page 8-53.

Generating Random Numbers

You can use the QuickDraw GX random number functions to return a sequence of random numbers. The RandomBits function generates random integers in the range of 0 to $2^{\text {count }}-1$, where count is the number of bits in the integer to be generated by the random number generator.
The SetRandomSeed function allows you to use a seed other than the default seed. If the SetRandomSeed function is not used, the initial seed will always be 0 . You can use the GetRandomSeed function to return the value of the current seed.
Listing 8-8 is a sample function that generates an unsigned random number between zero and the value passed in the limit parameter. It uses the RandomBits function, and it also uses the WideMultiply function, correcting for the fact that WideMultiply works with signed long integers whereas this random generator uses unsigned longs.

Listing 8-8 A random number generator

```
unsigned long RandomLong(unsigned long limit)
{
    wide temp;
    unsigned long random = RandomBits(32, 0);
    /* This treats random and limit as signed */
    WideMultiply(random, limit, &temp);
    if ((long)limit < 0)
        temp.hi += random; /* correct for the "sign" of limit */
    if ((long) random < 0)
        temp.hi += limit; /* correct for the "sign" of random */
    return temp.hi;
}
```

The general topic of random numbers and the functions you use to generate them generation are discussed in the section "Random Number Generation" beginning on page 8-58.

Analyzing the Bits in a Number

You can use the FirstBit function to determine the highest bit number that is set in a 32-bit number. The following examples demonstrate the use of this function with the parameter x:
If x is 1 , the highest order bit that is set is bit number 0 , so FirstBit (1) $=0$, as shown below.

FirstBit(0000000000000000000000000000001) = 0x0000

If x is 2 , the highest order bit that is set is bit number 1 , so FirstBit (2) = 1, as shown below.

```
FirstBit(0000000000000000000000000000010) = 0x0001
```

If x is 3 , the highest order bit that is set is bit 1 , so FirstBit (3) = 1, as shown below.

```
FirstBit(0000000000000000000000000000011) = 0x0001
```

If no bits in the number are set, FirstBit returns a value of -1 .
You can also use FirstBit to find the last (= lowest-order) bit that is set in a number. Listing 8-9 is an example of such a function.

Listing 8-9 Determining the lowest bit of a number

```
short LastBit(unsigned long x)
{
    if (x == 0)
        return 32;
    return FirstBit(x & -x);
}
```

The FirstBit function is described on page 8-62.

Resetting a Mapping

You can use the ResetMapping function to reset a mapping. The following code example first uses the ResetMapping function to initialize the destination to the identity matrix, and then uses RotateMapping to calculate a resultant mapping that rotates by a given angle about a specified center.

```
gxMapping *RotationMap(gxMapping *dest, Fixed angle,
    gxPoint *center)
{
    return RotateMapping(ResetMapping(dest), angle,
    center->x,center->y);
}
```

The ResetMapping function is described on page 8-64.

QuickDraw GX Mathematics Reference

This section describes the constants, data types, structures, macros, and functions that relate to QuickDraw GX mathematics.

Constants and Data Types

This section describes the constants and data types that are used to define QuickDraw GX mathematical number formats and the transformation matrix.

Number Formats and Constants
QuickDraw GX provides Fixed, fract, and gxColorValue number formats. Polar coordinates are defined by the gxPolar structure. A structure consisting of two long values defines the wide number format.

```
typedef long fract;
typedef unsigned short gxColorValue;
struct gxPolar {
    Fixed radius;
    Fixed angle;
};
struct wide {
    long hi;
    unsigned long lo;
};
```

For convenience, QuickDraw GX provides constants for the value 1.0 for Fixed, fract, and gxColorValue types:

```
#define fixed1 ((Fixed) 0x00010000)
#define fract1 ((fract) 0x40000000)
#define gxColorValue1 ((gxColorValue) 0xFFFF)
```

QuickDraw GX also provides constants for the largest and smallest possible values for Fixed and fract numbers:

```
#define gxPositiveInfinity ((Fixed) 0x7FFFFFFF)
#define gxNegativeInfinity ((Fixed) 0x80000000)
```

QuickDraw GX defines a transformation matrix with the gxMapping structure:

```
struct gxMapping {
    Fixed map[3][3];
};
```


Field descriptions

map A 3×3 array of Fixed numbers whose values determine the translation, scaling, rotation, skewing, and perspective operations that can be applied to two-dimensional data. Although defined as containing only Fixed numbers, the rightmost column of the matrix consists of fract numbers. Furthermore, element [3] [3] is commonly set to fract 1 .

The use of the mapping matrix is described further in the section "Transformation Operations With Mappings" beginning on page 8-12.

Number-Conversion Macros

QuickDraw GX defines macros for conversion between fixed-point number formats. It also provides macros to round and truncate numbers, as well as a macro that uses the FractSquareRoot function to compute the square root of a Fixed number.

Format Conversions

The macros in this section convert between Fixed, fract, integer, floating-point, and gxColorValue numbers.

FixedToFract

You can use the FixedToFract macro to convert a fixed number to a fract number.

```
#define FixedToFract(a) ((fract) (a) << 14)
```

a A Fixed number to be converted to a fract number, $-2 \leq \mathrm{a}<2$.
macro result A fract number having the same value as the fixed number.

FractToFixed

You can use the Fract ToFixed macro to convert a fract number to a Fixed number.
\#define FractToFixed (a) ((Fixed) (a) + 8192L >> 14)
a A fract number to be converted to a Fixed number.
macro result A Fixed number having the closest value to the fract number.

FixedToInt

You can use the FixedToInt macro to convert a Fixed number to an integer.
\#define FixedToInt (a) ((short) ((Fixed) (a) + fixed1/2 >> 16))
a AFixed number to be converted to an integer.
macro result An integer having the closest value to the Fixed number.

IntToFixed

You can use the Int ToFixed macro to convert an integer to a Fixed number.
\#define IntToFixed(a) ((Fixed) (a) << 16)
a An integer to be converted to a Fixed number.
macro result A Fixed number having the same value as the integer.

SPECIAL CONSIDERATIONS

QuickDraw GX also defines a shorthand version of this macro. Int ToFixed (a) can also be coded as $f f(a)$.

SEE ALSO
The $f f$ macro is described next.

You can use the $\mathrm{f} f$ macro to convert an integer to a Fixed number.

```
#define ff(a) ((Fixed)(a) << 16)
```

a
An integer to be converted to a Fixed number.
macro result A Fixed number having the same value as the integer.

DESCRIPTION

The $\mathrm{f} f$ macro converts an integer a to a Fixed number. This macro name is shorthand notation for the Int ToFixed macro, and provides identical functionality.

SEE ALSO
For an example of how to use the $f f$ macro, see the section "Converting Number Formats" beginning on page 8-26.

The Int ToFixed macro is described in the previous section.

FixedToFloat

You can use the FixedToFloat macro to convert a Fixed number to a floating-point number.
\#define FixedToFloat(a) ((float)(a) / fixed1)
a
A Fixed number to be converted to a floating-point number.
macro result A floating-point number having the same value as the Fixed number.

You can use the Float ToFixed macro to convert a floating-point number to a Fixed number.
\#define FloatToFixed(a) ((Fixed) ((float) (a) * fixed1))
a A floating-point number to be converted to a Fixed number.
macro result The closest Fixed number to the floating-point number.

SPECIAL CONSIDERATIONS
QuickDraw GX also defines a shorthand version of this macro. The Float ToFixed macro can also be coded as $f l(a)$.

SEE ALSO
The fl macro is described next.

fl

You can use the fl macro to convert a floating-point number to a Fixed number.

```
#define fl(a) ((Fixed)((float) (a) * fixed1))
```

a
A floating-point number to be converted to a Fixed number.
macro result The closest Fixed number to the floating-point number.

DESCRIPTION

The fl macro converts a floating-point number a to a Fixed number. This macro name is shorthand notation for the Float ToFixed macro, and provides identical functionality.

SEE ALSO
The Float ToFixed macro is described in the previous section.

FractToFloat

You can use the Fract ToFloat macro to convert a fract number to a floating-point number.

```
define FractToFloat(a) ((float)(a)/fract1)
```

a A fract number to be converted to a floating-point number.
macro result A floating-point number having the closest value to the fract number.

FloatToFract

You can use the Float ToFract macro to convert a floating-point number to a fract number.

```
define FloatToFract(a) ((fract)((float)(a)*fract1))
```

a A floating-point number to be converted to a fract number.
macro result A fract number having the closest value to the floating-point number.

ColorToFract

You can use the ColorToFract macro to convert a gxColorValue number to a fract number.

```
#define ColorToFract(a) (((fract)(a)<<14) + ((fract)(a) +2 >>2))
```

a A gxColorValue number to be converted to a fract number.
macro result A fract number having the same value as the gxColorValue number.

FractToColor

You can use the FractToColor macro to convert a fract number to a gxColorValue number.
\#define FractToColor(a) ((gxColorValue) ((a)-((a) >>16)+8191>>14))
a A fract number to be converted to a gxColorValue number.
macro result The closest gxCol orValue number to the fract number.

Rounding, Truncating, and Square Root Operations
The macros in this section round, truncate, and determine the square root of fixed numbers.

FixedRound

You can use the FixedRound macro to round a Fixed number to its nearest integer.
\#define FixedRound(a) ((short) ((Fixed)(a) + fixed1/2 >> 16))
a The number to be rounded.
macro result The closest integer to the Fixed number.

FixedTruncate

You can use the FixedTruncate macro to obtain an integer that is the greatest integer that is not greater than the given Fixed number.

```
#define FixedTruncate(a) ((short)((Fixed)(a) >> 16))
```

a The number that is to be truncated.
macro result The largest integer that is not greater than the Fixed number.

FixedSquareRoot

You can use the FixedSquareRoot macro to determine the square root of a fixed number.
\#define FixedSquareRoot(a) ((Fixed)FractSquareRoot(a) + 64 >>7)
a The number for which the square root is to be determined.
macro result The square root of the number.

Mathematical Functions

This section describes the QuickDraw GX functions you can use to perform

- fixed-point operations

■ wide number operations

- vector operations
- mapping operations
- random number generation
- bit analysis

Fixed-Point Operations

QuickDraw GX provides an assortment of fixed-point mathematical functions that you can use in your application.

FixedMultiply

You can use the FixedMultiply function to return the product of two numbers.

```
Fixed FixedMultiply (Fixed multiplicand, Fixed multiplier);
multiplicand
The number to be multiplied by the multiplier.
```

```
multiplier
```

multiplier
The number by which the multiplicand is to be multiplied.

```
function result The product of two numbers.

The FixedMultiply function multiplies two fixed numbers. The format of the Fixed number returned depends on the respective number formats of the multiplicand and multiplier. The operation has a bias of 16 bits; in general, the bias of the resulting number is the sum of the biases of the input numbers, shifted right by 16 bits. If either the multiplicand or the multiplier is Fixed, the result of the FixedMultiply function will be the same fixed-point format as the other parameter (long, Fixed, or fract).

Table 8-3 shows the bias of the product for different combinations of formats. The dashed line indicates that the resulting bias is not equivalent to long, fixed, or fract. Use the rules of the operation to determine it.

Table 8-3 FixedMultiply product bias
\begin{tabular}{llll}
\hline & long & fixed & fract \\
long & --- & long & --- \\
fixed & long & fixed & fract \\
fract & --- & fract & ---
\end{tabular}

\section*{SPECIAL CONSIDERATIONS}

The FixedMultiply function does not pin its result in the case of an overflow; the result returned is modulo 65,536 .

\section*{FixedDivide}

You can use the FixedDivide function to return the quotient of a dividend and divisor.
Fixed FixedDivide (Fixed dividend, Fixed divisor);
dividend The number to be divided.
divisor The number by which the dividend is to be divided.
function result The quotient of the dividend and the divisor.

\section*{DESCRIPTION}

The FixedDivide function divides the dividend parameter by the divisor parameter and returns the quotient. The format of the fixed number returned depends on the respective number formats of the dividend and divisor parameters. The operation has a bias of 16 bits; in general, the bias of the resulting number is the difference between the biases of the input numbers, shifted left by 16 bits. If the divisor parameter is fixed, then the result will be the same fixed-point format as the
dividend. If both the dividend and divisor are the same fixed-point format, the result will be in Fixed format.

Table 8-4 shows the bias for the quotient of two numbers that are of dissimilar formats. The dashed line indicates that the resulting bias is not equivalent to long, fixed, or fract. Use the rules of the operation to determine it.

Table 8-4 FixedDivide quotient bias
\begin{tabular}{llll} 
Denominator & \multicolumn{3}{c}{ Numerator } \\
\cline { 3 - 4 } & long & fixed & fract \\
long & fixed & --- & --- \\
fixed & long & fixed & fract \\
fract & --- & -- & fixed
\end{tabular}

\section*{SPECIAL CONSIDERATIONS}

In the case of overflow, FixedDivide pins its result to either the gxPositiveInfinity or gxNegativeInfinity constant.

\section*{MultiplyDivide}

You can use the MultiplyDivide function to multiply two numbers and divide by a third number.
```

long MultiplyDivide (long multiplicand, long multiplier,
long divisor);
multiplicand
The number to be multiplied by the multiplier.
multiplier
The number by which the multiplicand is multiplied.
divisor The number by which the product is divided.

```
function result The quotient of the product of two numbers and the divisor.

The MultiplyDivide function calculates the quotient of the product of two numbers (parameters multiplicand and multiplier) and a divisor.

The function uses a 64-bit intermediate result to maintain accuracy and to prevent premature overflow. The parameters do not need to all be the same fixed-point format. The operation has a bias of 0 bits; if the divisor is the same format as the multiplier, the result is the same format as the multiplicand. If the divisor is the same format as the multiplicand, the result is in the same format as the multiplier.

\section*{SPECIAL CONSIDERATIONS}

In the case of overflow, MultiplyDivide pins its result to either the gxPositiveInfinity or gxNegativeInfinity constant.

\section*{Magnitude}

You can use the Magnitude function to obtain the magnitude of a vector, the length of a line, or the distance between two points.
```

unsigned long Magnitude (long deltaX, long deltaY);

```
deltax The difference in the x-coordinates of the vector's end points.
deltay The difference in the y-coordinates of the vector's end points.
function result The magnitude of the vector.

\section*{DESCRIPTION}

The Magnitude function returns (deltaX \(\left.{ }^{2}+\operatorname{delta} Y^{2}\right)^{1 / 2}\), the Euclidean distance between two points whose x-coordinates are separated by deltaX and whose \(y\)-coordinates are separated by deltay.

The fixed-point format of the result is the same as the fixed-point format for both of the parameters. Make sure that the two parameters use the same format.

\section*{FractSineCosine}

You can use the FractSineCosine function to obtain both the sine and cosine of an angle measured in degrees.
```

fract FractSineCosine (Fixed degrees, fract *cosine);

```
degrees The angle in degrees for which the cosine and sine are required.
cosine A pointer to the location where the cosine of the angle is required.
function result The sine of the angle specified.

\section*{DESCRIPTION}

Given the degrees parameter in degrees, the FractSineCosine function returns the sine as the function result and the cosine in the cosine parameter. Values for the degrees parameter are specified in degrees, not radians. The range of the angle is \(-32,768\) to \(+32,769.999\) degrees.

\section*{FractSquareRoot}

You can use the Fract SquareRoot function to calculate the square root of a fract number.
fract FractSquareRoot (fract source);
source The number for which the square root is required.
function result The square root of the fract number.

\section*{DESCRIPTION}

The FractSquareRoot function returns the square root of the fract number specified by the source parameter. The number is interpreted as unsigned and in the range 0 through \(4-\left(2^{-30}\right)\). This means that bit 31 has a weight of 2 , instead of -2 . The result is an unsigned number in the range of 0 through 2 .

\section*{FractCubeRoot}

You can use the FractCubeRoot function to calculate the cube root of a fract number.
fract FractCubeRoot (fract source);
source \(\quad\) The fract number for which the cube root is required.
function result The cube root of the fract number. This number is a signed value.

\section*{DESCRIPTION}

The FractCubeRoot function returns the cube root of a fract number.

\section*{FractMultiply}

You can use the FractMultiply function to calculate the product of two numbers.
```

fract FractMultiply (fract multiplicand, fract multiplier);

```
multiplicand

The number to be multiplied by the multiplier.
multiplier
The number by which the multiplicand is to multiplied.
function result The product of two numbers.

The FractMultiply function calculates the product of two numbers, specified in the multiplicand and multiplier parameters. If the parameters are \(a\) and \(b\), the product \(\mathrm{a} \times \mathrm{b}\) is returned.

The format of the number returned depends on the respective number formats of the multiplicand and multiplier parameters. The operation has a bias of 30 bits; in general, the bias of the resulting number is the sum of the biases of the input numbers, shifted right by 30 bits. Thus if either the multiplicand or multiplier parameter is fract, then the result is the same fixed-point format as the other argument.

Table \(8-5\) shows the bias of the FractMultiply result. The dashed line indicates that the resulting bias is not equivalent to long, fixed, or fract. Use the rules of the operation to determine it

Table 8-5 FractMultiply result bias
\begin{tabular}{llll} 
& long & fixed & fract \\
long & --- & -- & long \\
fixed & --- & -- & fixed \\
fract & long & fixed & fract
\end{tabular}

\section*{SPECIAL CONSIDERATIONS}

FractMultiply does not pin its result in the case of an overflow; the result returned is modulo 4.

\section*{FractDivide}

You can use the FractDivide function to return the quotient of a dividend and divisor.
```

fract FractDivide (fract dividend, fract divisor);

```
dividend The number to be divided.
divisor The number by which the dividend is to be divided.
function result The quotient of two numbers.

\section*{DESCRIPTION}

The FractDivide function divides the dividend parameter by the divisor parameter and returns the quotient. If the dividend parameter is a and the divisor parameter is \(b\), the quotient \(a / b\) is returned.

The format of the number returned depends on the respective number formats of the dividend and divisor. The operation has a bias of 30 bits; in general, the bias of the resulting number is the difference between the biases of the input numbers, shifted left by 30 bits. Thus if the divisor is a fract, the result is the same format as the dividend. If the divisor and the dividend parameters are the same format, the result is in fract format, as shown inTable 8-6. The dashed line indicates that the resulting bias is not equivalent to long, fixed, or fract. Use the rules of the operation to determine it.

QuickDraw GX Mathematics

Table 8-6
FractDivide result bias
\begin{tabular}{llll} 
Denominator & & \multicolumn{2}{c}{ Numerator } \\
\cline { 3 - 4 } & long & fixed & fract \\
long & fract & --- & --- \\
fixed & --- & fract & --- \\
fract & long & fixed & fixed
\end{tabular}

\section*{SPECIAL CONSIDERATIONS}

In the case of division of a large number by a very small number, the FractDivide function pins its result to either the gxPositiveInfinity or the gxNegativeInfinity constant.

\section*{Operations on wide Numbers}

QuickDraw GX provides an assortment of 64-bit mathematical functions for your use. You can use wide functions to increase the accuracy of calculations.

\section*{WideAdd}

You can use the WideAdd function to add two wide numbers.
```

wide *WideAdd(wide *target, const wide *source);

```
target A pointer to the number to be added to. On return, contains the sum of the two numbers.
source A pointer to the number that is to be added to the target number.
function result A pointer to the result (also a pointer to the target number).

\section*{DESCRIPTION}

The WideAdd function adds the wide number in the source parameter to the wide number in the target parameter and returns the target pointer.

\section*{WideSubtract}

You can use the WideSubtract function to subtract one wide number from another.
```

wide *WideSubtract(wide *target, const wide *source);

```
target A pointer to the number to be subtracted from. On return, contains the difference between the two numbers.
source A pointer to the number that is to be subtracted from the number at target.
function result A pointer to the target number.

\section*{DESCRIPTION}

The WideSubtract function subtracts the source number from the target number and returns a pointer to the target number.

\section*{WideNegate}

You can use the WideNegate function to change a wide number to its negative.
```

wide *WideNegate(wide *target);

```
target A pointer to the number to be negated. On return, contains the negated number.
function result A pointer to the target number.

You can use the WideShift function to shift bits in a wide number.
wide *WideShift(wide *target, long shift);
target A pointer to the number for which the bits are to be shifted. On return, contains the shifted number.
shift The number of bits by which the target is to be shifted to the right.
function result A pointer to the target number.

\section*{DESCRIPTION}

The shift direction is to the right (a decrease in magnitude) if the shift parameter is greater than 0 , and to the left if the shift parameter is less than 0 . The result of a right shift is rounded.

\section*{WideMultiply}

You can use the WideMultiply function to calculate the wide product of two long numbers.
```

wide *WideMultiply(long multiplicand, long multiplier,
wide *target);
multiplicand
The number to be multiplied by the multiplier.
multiplier
The number by which the multiplicand is to be multiplied.
target A pointer to the location where the product of the two numbers is to be
stored.

```
function result A pointer to the target value, which holds the result.

\section*{DESCRIPTION}

The operation has a bias of 0 bits. The bias of the result is the sum of the biases of the inputs.

You can use the WideDivide function to calculate the long quotient and long remainder for a wide dividend and long divisor.
```

long WideDivide(const wide *dividend, long divisor,
long *remainder);

```
dividend A pointer to the wide number to be divided.
divisor The number by which the dividend is to be divided.
remainder A pointer to a location to store the remainder of the division.
function result The quotient of the division.

\section*{DESCRIPTION}

The WideDivide function divides the dividend by the divisor and returns the quotient in the function result and the remainder in the long number pointed to by the remainder parameter. If the dividend is a and the divisor is \(b\), the quotient \(a / b\) is returned with a remainder. The operation has a bias of 0 bits; the bias of the result is the difference between the biases of the dividend and the divisor. The bias of the remainder is the same as the bias of the dividend.

If an overflow occurs, the result is pinned to the closest infinity and the remainder is set to gxNegativeInfinity (an impossible remainder).
If the remainder parameter is nil, no remainder is returned and the WideDivide function returns a rounded quotient. Passing (long *) -1 in the remainder parameter is the same as passing nil except in the case of an overflow, in which case gxNegativeInfinity is returned.

\section*{WideWideDivide}

You can use the WideWideDivide function to calculate a wide quotient and long remainder for a wide dividend and a long divisor.
```

wide *WideWideDivide(wide *dividend, long divisor,
long *remainder);

```
dividend A pointer to the wide number to be divided.
divisor The number by which the dividend is to be divided.
remainder A pointer to a location to store the remainder of the division.
function result A pointer to the quotient (also to the dividend).

The WideWideDivide function returns the quotient of the dividend and divisor as its function result and places the remainder in the remainder parameter. If the remainder parameter is nil, WideWideDivide returns the rounded quotient. The quotient replaces the dividend. The operation has a bias of 0 bits; the bias of the result is the difference between the biases of the dividend and the divisor. The bias of the remainder is the same as the bias of the dividend.

If the remainder parameter is nil, no remainder is returned and the WideDivide function returns a rounded quotient. Passing (long *) -1 in the remainder parameter is the same as passing nil.
Note that this function cannot result in overflow.

\section*{WideSquareRoot}

You can use the WideSquareRoot function to calculate the square root of a wide number.
```

unsigned long WideSquareRoot(const wide *source);

```
source A pointer to the number for which the square root is to be calculated.
function result A number that is the square root of the number in the argument.

\section*{DESCRIPTION}

The WideSquareRoot function returns the square root of the wide number pointed to by the source parameter. The source value for this function must be an unsigned wide value ranging from 0 to \(2^{64}-1\), not \(-2^{63}\) to \(2^{63}-1\). If you supply a non-integer value for this function, its bias must be an even number of bits.

\section*{WideScale}

You can use the WideScale function to obtain the bit number of the highest-order nonzero bit in the absolute value of a wide number.
```

short WideScale(const wide *W);

```
w A pointer to the number whose scale is desired.
function result The bit number of the highest order nonzero bit in the absolute value of w . The returned value is 63 if the highest-order bit is set, and 0 if the lowest order bit is set. If no bit is set, the return value is -1 .

\section*{WideCompare}

You can use the WideCompare function to compare the magnitudes of two 64-bit numbers.
```

short WideCompare(const wide *target, const wide *source);

```
target A pointer to one of the two wide numbers to be compared.
source A pointer to the second of the two wide numbers to be compared.
function result 1 if the target number is greater, -1 if the source number is greater, and 0 if the two numbers are equal.

\section*{Vector Operations}

QuickDraw GX provides an assortment of vector mathematics functions for your use.

\section*{VectorMultiply}

You can use the VectorMultiply function to obtain the dot product of two vectors with 64-bit accuracy.
```

wide *VectorMultiply(long count, const long *vector1, long step1,
const long *vector2, long step2, wide *dot);
count The size of each vector.
vector1 A pointer to one of the two vectors.
step1 The index increment for the vector1 vector.
vector2 A pointer to the second of two vectors.
step2 The index increment for the vector2 vector.
dot A pointer to the destination of the result.

```
function result A pointer to the dot product of the two vectors.

QuickDraw GX Mathematics

\section*{DESCRIPTION}

The VectorMultiply function calculates the wide dot product of the parameters vector1 and vector 2 . The size of each vector is given by the count parameter. The index increment is given by the parameters step1 and step2, respectively. The dot parameter points to the destination wide number and is returned as the function result.

SEE ALSO
Examples of how to use the VectorMultiply function are provided in the section "Performing Vector Operations" beginning on page 8-29.

\section*{VectorMultiplyDivide}

You can use the VectorMultiplyDivide function to calculate the quotient of the dot product of two vectors and a divisor.
```

long *VectorMultiplyDivide(long count, const long *vector1,
long step1, const long *vector2,
long step2, long divisor);

```
count The size of each vector.
vector1 A pointer to one of the two vectors.
step1 The index increment for the vector1 vector.
vector2 A pointer to the second of two vectors.
step2 The index increment for the vector2 vector.
divisor The number by which the dot product is to be divided.
function result The quotient of the dot product of two vectors and a divisor.

\section*{DESCRIPTION}

The VectorMultiplyDivide function calculates the quotient of a dot product of parameters vector1 and vector2 and a divisor parameter. The size of each vector is given by the count parameter. The index increment is given by the parameters step1 and step2, respectively. If the count parameter is negative, the terms are alternated. This is equivalent to
```

WideDivide(VectorMultiply(),divisor)

```

\section*{Cartesian and Polar Coordinate Point Conversions}

QuickDraw GX provides two functions for converting Cartesian to polar coordinates.

\section*{PolarToPoint}

You can use the PolarToPoint function to convert a point in polar coordinates to the identical point in Cartesian coordinates.
```

gxPoint *PolarToPoint(const gxPolar *ra, gxPoint *xy);
ra A pointer to the point in polar coordinates.
$x y \quad$ A pointer to the destination of the resulting point in Cartesian coordinates.

```
function result A pointer to the converted point (also a pointer to the xy parameter).

\section*{DESCRIPTION}

The PolarToPoint function converts the polar coordinate point \((r, a)\) to the identical Cartesian coordinate point \((x, y)\). The parameters of the PolarToPoint function are the gxPolar structure pointer ra and a gxPoint structure pointer xy.
 converted to a gxPoint structure and will replace the gxPolar structure.

SEE ALSO
The gxPolar structure is described in the section "Constants and Data Types" beginning on page 8-35. Polar coordinate to Cartesian coordinate conversions are discussed in the section "Cartesian and Polar Coordinate Conversion" beginning on page 8-10. The Point ToPolar function converts a point in Cartesian coordinates to the identical point in polar coordinates. The Point ToPolar function is described next.

\section*{PointToPolar}

The Point ToPolar function converts a point in Cartesian coordinates to the identical point in polar coordinates.
```

gxPolar *PointToPolar(const gxPoint *xy, gxPolar *ra);

```
\(x y \quad\) A pointer to the Cartesian coordinate.
ra A pointer to the destination of the resulting polar coordinate.
function result The pointer passed in ra.

\section*{DESCRIPTION}

The Point ToPolar function converts the Cartesian coordinate point \((x, y)\) to the identical polar coordinate point \((r, a)\). The parameters of the Point ToPolar function are a gxPoint structure pointer xy and a gxPolar structure pointer ra.
If both pointers point to the same location, the source gxPoint structure will be converted to a gxPolar structure and will replace the gxPoint structure.

SEE ALSO
The gxPolar structure is described in the section "Constants and Data Types" beginning on page 8-35. The PolarToPoint function converts a point in polar coordinates to the identical point in Cartesian coordinates. The PolarToPoint function is described in the previous section.

QuickDraw GX provides random number generation functions that can be used in your application.

\section*{RandomBits}

You can use the RandomBits function to return a sequence of pseudorandom numbers.
```

unsigned long RandomBits(long count, long focus);

```
count The number of bits in the number to be generated by the random number generator.
focus \(\quad\) The degree of clustering about the mean value.
function result A sequence of pseudorandom numbers.

\section*{DESCRIPTION}

The RandomBits function returns random numbers in the range of 0 to \(2^{\text {count }}-1\). A focus of 0 generates numbers that are uniformly distributed.

A positive value for the focus parameter generates numbers that are clustered about the mean, analogous to averaging \(2^{\text {focus }}\) uniform random numbers. A negative focus generates numbers that tend to avoid the mean.
If you define a value limit to be \(1 \ll\) count, the result of the RandomBits function ranges from 0 to limit -1 . Its mean is (limit -1) / 2. The mean is independent of the focus. If the focus is positive, the standard deviation of the numbers generated by the RandomBits function is approximately \((0.28868 \times\) limit \() / \mathrm{e}^{1.41421 \times \text { focus }}\). As the focus parameter gets bigger, two things happen:
- The values cluster about the mean.
- The values approximate a normal distribution (central limit theorem).

If the focus is negative, the RandomBits function result is computed as if it were positive; for results less than limit / 2, limit / 2 is added; for others, limit / 2 is subtracted. This causes the distribution to avoid the mean.

To generate a clustering of points around a given value, generate \(x\) and \(y\) offsets with
```

FractMultiply(radius, RandomBits(31, focus) - fract1);

```

The average distance will be \(0.57735 \times\) radius \(/ \mathrm{e}^{1.41421 \times \text { focus }}\).
A good way to select a value for the focus is to experiment until the desired result is achieved.

QuickDraw GX Mathematics

The Set RandomSeed function sets the starting number seed for the random number generator algorithm. The SetRandomSeed function is described in the next section. The GetRandomSeed function returns the current starting number seed for the random number generator algorithm. The GetRandomseed function is described on page 8-60.

\section*{SetRandomSeed}

You can use the SetRandomSeed function to set the starting number for the random number generator algorithm.
```

void SetRandomSeed(const wide *seed);

```
seed The pointer to the number to be used by the random number algorithm to generate random numbers.

\section*{DESCRIPTION}

Random number generators are seeded with a value that is used by the algorithm to generate a random number. The seed is then used to generate the next random number.

The SetRandomSeed function allows you to select the seed used by the QuickDraw GX random number algorithm. If SetRandomSeed is not used, QuickDraw GX will select a default seed of 0 . This results in the same sequence of random numbers each time RandomBits is called.

In order to obtain a different set of random numbers than those obtained using the default seed value or a previously set seed, use the SetRandomSeed function.

SEE ALSO
The RandomBits function uses the current seed to generate the next random number. The RandomBits function is described on page 8-58. The GetRandomSeed function returns the current seed. The GetRandomSeed function is described next.

\section*{GetRandomSeed}

You can use the GetRandomSeed function to return the current seed for the random number generating algorithm.
```

wide *GetRandomSeed(wide *seed);

```
seed A pointer to the current random number generator seed.
function result The pointer passed in the seed parameter.

\section*{DESCRIPTION}

The GetRandomSeed function returns the current seed for the random number generator and returns the pointer passed in seed.

\section*{SEE ALSO}

The Randombits function uses the current seed to generate the next random number. The RandomBits function is described in the previous section. The SetRandomSeed function changes the current seed. The SetRandomSeed function is described in the previous section.

\section*{Linear and Quadratic Roots}

QuickDraw GX provides two functions that solve for the roots of linear and quadratic equations.

\section*{LinearRoot}

You can use the LinearRoot function to obtain the root of a linear equation.
```

long LinearRoot(Fixed first, Fixed last, fract t[]);

```
first The first coefficient.
last The last coefficient.
\(t \quad\) An array of fract numbers. On return, it contains the roots of the equation.
function result The number of roots of the linear equation. This value may be 0 or 1 (or -1 if all values of \(t\) are roots).

The LinearRoot function computes any \(t\) between 0 and 1 in which \(a(1-t)+b t=0\). The coefficient \(a\) is the parameter first. The coefficient \(b\) is the parameter last. The function returns the number of roots between 0 and 1 .

Any root is returned in the \(t\) array, which only needs to hold one value. If both \(a\) and \(b\) are zero, the function returns the number -1 , indicating that \(a(1-t)+b t=0\) for all \(t\).

\section*{QuadraticRoot}

You can use the QuadraticRoot function to calculate the roots of a quadratic equation.
```

long QuadraticRoot(Fixed first, Fixed control, Fixed last, fract

```
t[]);
first The first coefficient.
control The second coefficient.
last The third coefficient.
\(t \quad\) An array of fract numbers. On return, it contains the roots of the equation.
function result The number of roots of the quadratic equation. This value may be 0,1 , or 2 (or -1 if all values of \(t\) are roots).

\section*{DESCRIPTION}

The QuadraticRoot function returns roots between 0 and 1 for quadratic equations having the form \(a(1-t)^{2}+2 b t(1-t)+c t^{2}=0\). The coefficient a is the parameter first. The coefficient \(b\) is the parameter control. The coefficient \(c\) is the parameter last.

All roots are returned in increasing order in the \(t\) array. The array can have at most two values. If \(a, b\), and \(c\) are all zero, then the function returns the number -1 , indicating that \(a(1-t)^{2}+2 b t(1-t)+c t^{2}=0\) for all \(t\).

QuickDraw GX provides a function that allows you to analyze the bits in a number.

\section*{FirstBit}

You can use the FirstBit function to determine the highest order bit that is set in a number.
short FirstBit (unsigned long x);
\(x \quad\) The number for which the first bit is to be determined.
function result The bit number of the highest order bit of the number in the argument.

\section*{DESCRIPTION}

The FirstBit function returns the bit number of the highest order bit in a number that is set, or -1 if the number is 0 . The highest-order bit is bit 31 ; the lowest-order bit is bit 0 .

\section*{DESCRIPTION}

The use of the FirstBit function is described in the section "Analyzing the Bits in a Number" on page 8-33.

\section*{Mapping Functions}

QuickDraw GX provides two groups of mapping functions. The first group allows you to manipulate mapping matrices and apply them to other mappings or to points. The second group allows you to modify the transformational properties of a mapping matrix.

Mappings are described in the section "Transformation Operations With Mappings" beginning on page 8-12.

For specific information on mapping matrices as applied to transform objects, view port objects, and view device objects, see the chapters "Transform Objects" and "View-Related Objects" in Inside Macintosh: QuickDraw GX Objects.

\section*{Manipulating and Applying Mappings}

This section describes functions with which you can copy, normalize, reset, and invert a mapping. It also describes functions with which you can apply a mapping to another mapping, and apply a mapping to an array of points.

\section*{CopyToMapping}

You can use the CopyToMapping function to copy a mapping from one location to another location.
```

gxMapping *CopyToMapping(gxMapping *target,
const gxMapping *source);

```
target A pointer to the destination mapping. On return, it is a copy of the source mapping.
source A pointer to the mapping to be copied.
function result A pointer to the copied mapping, which is also the target mapping.

\section*{DESCRIPTION}

The CopyToMapping function copies the mapping pointed to by the source parameter into the location pointed to by the target parameter. Note that it may be faster in C to simply copy the gxMapping structure into another gxMapping structure than to call this function.

ERRORS, WARNINGS, AND NOTICES

\section*{Errors}
mapping_is_nil

\section*{NormalizeMapping}

You can use the NormalizeMapping function to normalize a mapping.
```

gxMapping *NormalizeMapping(gxMapping *target);

```
*target A pointer to the mapping to be normalized. On return, it is the normalized mapping.
function result A pointer to the normalized mapping, which is also the target mapping.

\section*{DESCRIPTION}

The NormalizeMapping function normalizes the target mapping. If the mapping's perspective elements ( \(u\) and \(v\) ) are 0 , each element of the mapping is divided by element w (target-> [2] [2]). If the mapping has a nonzero perspective, each element is shifted to ensure that fract \(1 / 2<|u|+|v|+(|w| \gg 15) \leq\) fract 1 .

\section*{ERRORS, WARNINGS, AND NOTICES}

\section*{Errors}
mapping_is_nil

\section*{ResetMapping}

You can use the ResetMapping function to reset a mapping.
```

gxMapping *ResetMapping(gxMapping *target);

```
target A pointer to the mapping that is to be reset. On return, contains the identity mapping.
function result A pointer to the reset mapping, which is also the target mapping.

\section*{DESCRIPTION}

The ResetMapping function resets the target mapping to the identity matrix.

\section*{ERRORS, WARNINGS, AND NOTICES}

\section*{Errors}
mapping_is_nil

QuickDraw GX Mathematics

An example of the use of the ResetMapping function is provided on page 8-34.

\section*{InvertMapping}

You can use the InvertMapping function to create an inverted copy of a mapping.
```

gxMapping *InvertMapping(gxMapping *target,
const gxMapping *source);
target A pointer to a mapping structure. On return, contains the inverse of the mapping specified in the source parameter.
source A pointer to the mapping to be inverted.

```
function result A pointer to the inverted mapping, which is also the target mapping.

\section*{DESCRIPTION}

The InvertMapping function creates a copy of the source mapping, inverts it, and returns the inverted mapping in the target parameter. If both the source and target parameters point to the same gxMapping structure, that mapping will be replaced by its inverse. If the mapping is not invertible, the function returns nil and the target is not changed.

\section*{ERRORS, WARNINGS, AND NOTICES}

\section*{Errors}
mapping_is_nil

\section*{MapMapping}

You can use the MapMapping function to concatenate two mappings.
```

gxMapping *MapMapping(gxMapping *target, const gxMapping *source);

```
target A pointer to the mapping to be modified. On return, contains the result of the concatenation.
source A pointer to the mapping to be concatenated with the target mapping.
function result A pointer to the resultant mapping, which is also the target mapping.

QuickDraw GX Mathematics

\section*{DESCRIPTION}

The MapMapping function postmultiplies the target mapping by the source mapping, and returns the result in the target parameter.

The result of passing the function result of MapMapping tothe GXMapShape function is equivalent to passing the result of one call to GXMapShape to another call to GXMapShape, as shown below (for the shape s):

GXMapShape(s, target);
GXMapShape(s, source);
The same results would be obtained more efficiently and perhaps more accurately by making these calls:

MapMapping(target, source);
GXMapShape(s, target);

\section*{ERRORS, WARNINGS, AND NOTICES}

\section*{Errors}
mapping_is_nil

SEE ALSO
The GXMapShape function is described in the chapter Transform Objects in Inside Macintosh: QuickDraw GX Objects.

\section*{MapPoints}

You can use the MapPoints function to apply a mapping to each of the points in an array.
void MapPoints(const gxMapping *source, long count, gxPoint vector[]);
source A pointer to the mapping that is to be applied to the array of points.
count The number of points in the array.
vector The array of points to which the mapping is to be applied. On return, the array contains the transformed points.

\section*{ERRORS, WARNINGS, AND NOTICES}
```

Errors
mapping_is_nil
parameter_is_nil
number_of_points_exceeds_implementation_limit

```

\section*{Warnings}
map_points_out_of_range

For an example of a function that applies a mapping to a single point, see Listing 8-2 on page 8-30.

Modifying Mappings
This section describes functions with which you can modify the translational, scaling, rotational, and skewing properties of a mapping.

Similar functions are available that allow you to directly modify the transformational properties of the mapping in the transform object associated with a QuickDraw GX shape. See the chapter "Transform Objects" in Inside Macintosh: QuickDraw GX Objects for more information.

\section*{MoveMapping}

You can use the MoveMapping function to change the horizontal and vertical translation factors of a mapping by given amounts.
```

gxMapping *MoveMapping(gxMapping *target, Fixed hOffset,
Fixed vOffset);
target A pointer to the mapping to be modified. On return, points to the
modified mapping.
hOffset The horizontal translation to add to the mapping.
vOffset The vertical translation to add to the mapping.

```
function result A pointer to the modified mapping, which is also the target mapping.

The MoveMapping function postmultiplies the target mapping by a mapping that adds hOffset to the \(x\) translation and vOffset to the \(y\) translation of the target mapping.

Passing the result of this function to the GXMapShape function is equivalent to calling the GXMapShape function and then calling the GXMoveShape function.

\section*{ERRORS, WARNINGS, AND NOTICES}

\section*{Errors}
mapping_is_nil

\section*{SEE ALSO}

The use of the MoveMapping function is described in the section "Translation by a Relative Amount" beginning on page 8-17.

The GXMapShape and GXMoveShape functions are described in the chapter "Transform Objects" in Inside Macintosh: QuickDraw GX Objects.

\section*{MoveMappingTo}

You can use the MoveMappingTo function to assign specific values to the horizontal and vertical translation factors of a mapping.
```

gxMapping *MoveMappingTo(gxMapping *target, Fixed hPosition,
Fixed vPosition);

```
target A pointer to the mapping that is to be modified. On return, points to the modified mapping.
hPosition The horizontal translation to be assigned to the target mapping.
vPosition The vertical translation to be assigned to the target mapping.
function result A pointer to the modified mapping, which is also the target mapping.

\section*{DESCRIPTION}

The MoveMappingTo function postmultiplies the target mapping by a mapping that assigns hPosition to the \(x\) translation and vPosition to the \(y\) translation of the target mapping. This function sets the translational origin of the mapping; the point \((0,0)\), when postmultiplied by the mapping that results from this function, will be at location (hPosition, vPosition).

\section*{ERRORS, WARNINGS, AND NOTICES}

\section*{Errors}
mapping_is_nil

The use of the MoveMappingTo function is described in the section "Translation to a Specified Point" beginning on page 8-18.

\section*{ScaleMapping}

You can use the ScaleMapping function to change the horizontal and vertical scale factors of a mapping.
```

gxMapping *ScaleMapping(gxMapping *target,
Fixed hFactor, Fixed vFactor,
Fixed xCenter, Fixed yCenter);

```
target A pointer to the mapping that is to be modified. On return, points to the modified mapping.
hFactor The horizontal scaling factor to apply. A value of 1.0 means no scale change in the \(x\) direction.
vFactor The vertical scaling factor to apply. A value of 1.0 means no scale change in the \(y\) direction.
\(x\) Center The x-coordinate of the center of scaling.
\(y\) Center The \(y\)-coordinate of the center of scaling.
function result A pointer to the modified mapping, which is also the target mapping.

\section*{DESCRIPTION}

The ScaleMapping function postmultiplies the target mapping by a mapping that specifies a horizontal scaling factor of hFactor and a vertical scaling factor of vFactor, about the point (xCenter, yCenter). Note that if hFactor is \(1, x\) Center irrelevant; likewise, if vFactor is 1 , yCenter is irrelevant.

These scaling factors are in addition to any preexisting scaling factors in the target mapping. The center of scaling is the point that does not move when the scaling is applied.

QuickDraw GX Mathematics

Passing the result of the ScaleMapping function to the GXMapShape function is equivalent to calling the GXMapShape function and then calling the GXScaleShape function. For example, you could make these calls (for the shape s):
```

ScaleMapping(target, hFactor, vFactor, xCenter, yCenter);
GXMapShape(s, target);

```
or, you could make these equivalent calls:
```

GXMapShape(s, target);
GXScaleShape(s, hFactor, vFactor, xCenter, yCenter);

```

\section*{ERRORS, WARNINGS, AND NOTICES}

\section*{Errors}
mapping_is_nil

SEE ALSO
The use of the ScaleMapping function is described in the section "Scaling" beginning on page 8-20.

The GXMapShape and GXScaleShape functions are described in the chapter
"Transform Objects" in Inside Macintosh: QuickDraw GX Objects.

\section*{RotateMapping}

You can use the RotateMapping function to change the rotation specified by a mapping.
```

gxMapping *RotateMapping(gxMapping *target, Fixed angle,
Fixed xCenter, Fixed yCenter);
target A pointer to the mapping to be modified. On return, points to the modified mapping.
angle The amount of rotation (in degrees clockwise) to be added to the mapping.
xCenter The x-coordinate of the center of rotation.
y Center The y-coordinate of the center of rotation.

```
function result A pointer to the modified mapping, which is also the target mapping.

The RotateMapping function postmultiplies the target mapping by a mapping that specifies a rotation (clockwise if positive) by a specified number of degrees about the point (xCenter, yCenter).

The rotation is in addition to any preexisting rotation specified by the target mapping.
Passing the result of this function to the GXMapShape function is equivalent to calling the GXMapShape function and then calling the GXRot ateShape function. For example, you could make these calls (for the shape s):
```

RotateMapping(target, angle, xCenter, yCenter);
GXMapShape(s, target);

```
or, you could make these equivalent calls:
```

GXMapShape(s, target);
GXRotateShape(s, angle, xCenter, yCenter);

```

\section*{ERRORS, WARNINGS, AND NOTICES}

\section*{Errors}
mapping_is_nil

\section*{SEE ALSO}

The use of the RotateMapping function is described in the section "Rotation" beginning on page 8-22.

The GXMapShape and GXRotateShape functions are described in the chapter "Transform Objects" in Inside Macintosh: QuickDraw GX Objects.

\section*{SkewMapping}

You can use the SkewMapping function to change the horizontal and vertical skew specified by a mapping.
```

gxMapping *SkewMapping(gxMapping target,
Fixed skewX, Fixed skewY,
Fixed xCenter, Fixed yCenter);

```
target A pointer to the mapping that is to be modified. On return, points to the modified mapping.
skewX The scaling factor that determines the amount of skew in the \(x\) direction. A value of 0 means no horizontal skew.

QuickDraw GX Mathematics
skew \(Y \quad\) The scaling factor that determines the amount of skew in the \(y\) direction. A value of 0 means no vertical skew.
xCenter The x-coordinate of the center of skewing.
\(y\) Center \(\quad\) The \(y\)-coordinate of the center of skewing.
function result A pointer to the modified mapping, which is also the target mapping.

\section*{DESCRIPTION}

The SkewMapping function postmultiplies the target mapping by a mapping that specifies a horizontal skew factor of skewX and a vertical skew factor of skewY, about the point (xCenter, \(y\) Center). Note that if skewX is \(0, y\) Center irrelevant; likewise, if skewY is \(0, x\) Center is irrelevant.

These skew factors are in addition to any preexisting skew specified in the target mapping. The center of skewing specifies the point at which no translation takes place because of the skewing.

Passing the result of the SkewMapping function to the GXMapShape function is equivalent to calling the GXMapShape function and then calling the GXSkewShape function. For example, you could make these calls (for the shape s):

SkewMapping(target, hFactor, vFactor, xCenter, yCenter);
GXMapShape(s, target);
or, you could make these equivalent calls:
```

GXMapShape(s, target);
GXSkewShape(s, skewX, skewY, xCenter, yCenter);

```

\section*{ERRORS, WARNINGS, AND NOTICES}

\section*{Errors}
mapping_is_nil

\section*{SEE ALSO}

The use of the SkewMapping function is described in the section "Skewing" beginning on page 8-24.
The GXMapShape and GXSkewShape functions are described in the chapter "Transform Objects" in Inside Macintosh: QuickDraw GX Objects.

\section*{Summary of QuickDraw GX Mathematics}

Constants and Data Types

\section*{Number Formats and Constants}
```

typedef long fract;
typedef unsigned short gxColorValue;
struct gxPolar {
Fixed radius;
Fixed angle;
};
struct wide {
long hi;
unsigned long lo;
};
\#define fixed1 ((Fixed) 0x00010000) /* = 1.0 for Fixed */
\#define fract1 ((fract) 0x40000000) /* = 1.0 for fract */
\#define gxColorValue1 ((gxColorValue) 0xFFFF) /* 1.0 for gxColorValue*/
\#define gxPositiveInfinity ((Fixed) 0x7FFFFFFF) /* for Fixed and fract */
\#define gxNegativeInfinity ((Fixed) 0x80000000) /* for Fixed and fract */

```

The Mapping Structure
```

struct gxMapping {
Fixed map[3][3];
};

```

\section*{Number-Conversion Macros}

\section*{Format Conversions}
```

\#define FixedToFract(a)
\#define FractToFixed(a)
\#define FixedToInt(a)
\#define IntToFixed(a)
\#define ff(a)
\#define FixedToFloat(a)
\#define FloatToFixed(a)
\#define fl(a)
\#define FractToFloat(a)
\#define FloatToFract(a)
\#define ColorToFract(a)
\#define FractToColor(a)

```
((fract) (a) << 14)
((Fixed) (a) + 8192L >> 14)
((short) ((Fixed) (a) + fixed1/2 >> 16))
((Fixed) (a) << 16)
((Fixed) (a) << 16)
((float) (a) / fixed1)
((Fixed) ((float) (a) * fixed1))
((Fixed) ((float) (a) * fixed1))
((float) (a)/fract1)
((fract) ((float) (a)*fract1))
(((fract) (a) <<14) + ((fract) (a) +2 >>2))
( (gxColorValue) ((a)-((a) >>16)+8191>>14))

\section*{Rounding, Truncating, and Square Root Operations}
```

\#define FixedRound(a)
\#define FixedTruncate(a)
\#define FixedSquareRoot(a) ((Fixed)FractSquareRoot(a) + 64 >>7)
((short) ((Fixed)(a) + fixed1/2 >> 16))
((short)((Fixed) (a) >> 16))

```

\section*{Mathematical Functions}

\section*{Fixed-Point Operations}
```

Fixed FixedMultiply
Fixed FixedDivide
long MultiplyDivide
unsigned long Magnitude
fract FractSineCosine
fract FractSquareRoot
fract FractCubeRoot
fract FractMultiply
fract FractDivide
(Fixed multiplicand, Fixed multiplier);
(Fixed dividend, Fixed divisor);
(long multiplicand, long multiplier,
long divisor);
(long deltaX, long deltaY);
(Fixed degrees, fract *cosine);
(fract source);
(fract source);
(fract multiplicand, fract multiplier);
(fract dividend,fract divisor);

```

\section*{Operations on wide Numbers}
```

wide *WideAdd (wide *target, const wide *source);
wide *WideSubtract (wide *target, const wide *source);
wide *WideNegate (wide *target);
wide *WideShift (wide *target, long shift);
wide *WideMultiply (long multiplicand, long multiplier,
wide *target);
long WideDivide
wide *WideWideDivide
(const wide *dividend, long divisor,
long *remainder);
(wide *dividend, long divisor, long *remainder);
unsigned long WideSquareRoot
(const wide *source);
short WideScale (const wide *w);
short WideCompare (const wide *target, const wide *source);

```

\section*{Vector Operations}
```

wide *VectorMultiply (long count, const long *vector1, long step1,
const long *vector2, long step2, wide *dot);
long *VectorMultiplyDivide (long count, const long *vector1, long step1,
const long *vector2, long step2, long divisor);

```

\section*{Cartesian and Polar Coordinate Point Conversions}
```

gxPoint *PolarToPoint
gxPolar *PointToPolar

```
```

(const gxPolar *ra, gxPoint *xy);
(const gxPoint *xy, gxPolar *ra);

```

\section*{Random Number Generation}
```

unsigned long RandomBits
void SetRandomSeed
wide *GetRandomSeed

```
```

(long count, long focus);

```
(long count, long focus);
(const wide *seed);
(const wide *seed);
(wide *seed);
```

(wide *seed);

```

\section*{Linear and Quadratic Roots}
\begin{tabular}{ll} 
long LinearRoot & (Fixed first, Fixed last, fract t[]); \\
long QuadraticRoot & (Fixed first, Fixed control, Fixed last,
\end{tabular}
long QuadraticRoot
(Fixed first, Fixed control, Fixed last, fract t[]);

Bit Analysis
short FirstBit (unsigned long x);

\section*{Manipulating and Applying Mappings}
```

gxMapping *CopyToMapping
gxMapping *NormalizeMapping
gxMapping *ResetMapping (gxMapping *target);
gxMapping *InvertMapping (gxMapping *target, const gxMapping *source);
gxMapping *MapMapping
void MapPoints
(gxMapping *target, const gxMapping *source);
(gxMapping *target);
(gxMapping *target, const gxMapping *source);
**)
(const gxMapping source, long count,
gxPoint vector[]);

```

\section*{Modifying Mappings}
```

gxMapping *MoveMapping
gxMapping *MoveMappingTo (gxMapping *target,
gxMapping *ScaleMapping
gxMapping *RotateMapping (gxMapping *target, Fixed angle,
gxMapping *SkewMapping (gxMapping target, Fixed skewX, Fixed skewY,
(gxMapping *target,
Fixed hOffset, Fixed vOffset);
Fixed hPosition, Fixed vPosition);
(gxMapping *target,
Fixed hFactor, Fixed vFactor,
Fixed xCenter, Fixed yCenter);
Fixed xCenter, Fixed yCenter);
Fixed xCenter, Fixed yCenter);

```
```

