

C H A P T E R 7

7

Q
uickD

raw
 G

X
 S

tream
 F

orm
at

QuickDraw GX Stream Format 7

This chapter describes the format of the compressed data stream that results when the
QuickDraw GX GXFlattenShape function is used. It also describes the use of such data
streams by print files and portable digital documents (PDDs). Read this chapter if you
need to uncompress QuickDraw GX stream format data and cannot use the QuickDraw
GX GXUnflattenShape function.

Before reading this chapter, you should be familiar with the information in the chapters
“Introduction to QuickDraw GX Objects” and “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

The GXFlattenShape and GXUnflattenShape functions and additional information
about the objects contained in the data stream are described in Inside Macintosh:
QuickDraw GX Objects. For more information on graphic shapes, see the shape-specific
chapters in Inside Macintosh: QuickDraw GX Graphics. For more information on
typographic shapes, see the shape-specific chapters in Inside Macintosh: QuickDraw GX
Typography. For more information on print files and portable digital documents, see the
chapter “Advanced Printing Features” of Inside Macintosh: QuickDraw GX Printing.

This chapter first describes the QuickDraw GX stream format, print file organization,
and portable digital documents. It then shows how you can

■ use the GraphicsBug utility to flatten QuickDraw GX shapes

■ analyze flattened shape data streams

■ obtain information from a print file

About QuickDraw GX Stream Format 7

A QuickDraw GX data stream is a highly structured sequence of bytes that contains all
of the information required to store, print, or display QuickDraw GX objects.

QuickDraw GX provides a simple method for creating and interpreting a QuickDraw GX
data stream for shape objects. The GXFlattenShape function creates the data stream
and the GXUnflattenShape function reconstructs objects from the data stream that the
GXFlattenShape function previously created.

When the GXFlattenShape function converts shape objects created by your
application from their original format to a QuickDraw GX stream format, the shape is
said to be flattened. When the GXUnFlattenShape function interprets the data stream
of a flattened shape, the shape is said to be unflattened.

If QuickDraw GX is available and you need to flatten and unflatten QuickDraw GX
shapes, you just use the GXFlattenShape and GXUnflattenShape functions. If
QuickDraw GX is not available and you need to unflatten a flattened shape, then you
need to create an interpreter for the QuickDraw GX data stream that was created when
the shape was flattened. The interpreter must be compatible with your current working
environment.
About QuickDraw GX Stream Format 7-5

C H A P T E R 7

QuickDraw GX Stream Format

Your interpreter needs to parse the data of the QuickDraw GX data stream to extract the
original meaning. The format of the data stream is public. This section describes the data
stream format and its use in print files and portable digital documents.

In addition to the GXFlattenShape and GXUnflattenShape functions that create and
interpret the QuickDraw GX stream format for shapes, there are other flatten and
unflatten functions that perform flattening and unflattening operations on job objects,
job objects in a handle, collection objects, and fonts. These functions are not directly
related to the stream format.

The GXFlattenJob and GXUnFlattenJob functions provide your application with a
mechanism for flattening and unflattening all information associated with a job object by
specifying a pointer to a flattening function. For more information on these functions, see
the chapters “QuickDraw GX Printing” and “Core Printing Features” in Inside Macintosh:
QuickDraw GX Printing.

The GXFlattenJobToHdl and GXUnflattenCollectionFromHdl functions
provides your application with a means of flattening and unflattening all information
associated with a job object in a handle. For more information on these functions, see the
chapters “Introduction to Printing with QuickDraw GX” and “Core Printing Features” of
Inside Macintosh: QuickDraw GX Printing.

The GXFlattenCollection and GXUnflattenCollection functions flatten and
unflatten information in a collection object. For more information on this function, see
the chapter “Collection Manager” in this book.

The GXFlattenFont function flattens a font so that it can be included in a flattened
shape. The GXFlattenFont function is described in the chapter “Font Objects” in Inside
Macintosh: QuickDraw GX Typography.

Characteristics 7
The QuickDraw GX data stream format is used whenever a QuickDraw GX shape is
stored to disk or printed. Likewise, the data stream must be interpreted whenever the
flattened shape is to be used. The QuickDraw GX stream format is

■ Extensible. The data stream includes type constants called opcodes that specify the
meaning of the data that follows in the data stream and record size values that
indicate the number of bytes in the record that follow. The opcode and size are always
in the same format. If a reader of a QuickDraw GX data stream doesn’t understand
the information contained in the stream, the reader can choose to skip to the next
opcode. Some opcode constants are reserved for future expansion.

■ Byte oriented. QuickDraw GX uses a byte-oriented stream format so that it is simple
for different processors to interpret the flattened shape information. Multiple
byte-oriented data streams, using words (2 bytes) or long words (4 bytes), are larger
and therefore are not as efficient for storing, retrieving, and printing shapes.
7-6 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7

Q
uickD

raw
 G

X
 S

tream
 F

orm
at

■ Efficient. The QuickDraw GX data stream format contains a highly structured
optimized set of data that minimize the amount of irrelevant information. For
example, if your application creates a shape and then moves the shape to another
position, the flattened shape stream format describes only the final position of the
shape and does not include a description of the intermediate move.

■ Compressed. The GXFlattenShape function always applies a compression
algorithm to the flattened shape. The degree of compression that is achieved depends
upon the shape and the objects that make up the shape. If applying the compression
algorithm results in a data stream that is larger than the original, the original data is
adopted as the default. When you call the GXFlattenShape function, you are
thereby always assured of a data stream format that is equal to or smaller than the
original data format. Data in a QuickDraw GX stream format consists of single bits,
multiple bits, a byte, multiple bytes, a word, multiple words, a long word, or multiple
long words. The QuickDraw GX compression algorithm attempts to minimize the
number of bits that are required to represent the data required to describe each object
and its properties. For example, the long fixed-point number 125.0, 0x007D0000,
requiring 4 bytes may be compressed to the byte 125, 0x7D, requiring only 1 byte. This
substitution makes the data stream 3 bytes smaller, while maintaining the integrity of
the data value. When the shape is unflattened, the byte must be converted back to its
original long value. The QuickDraw GX stream format also compresses the data
stream bytes that contain opcodes. These opcode bytes consist of a 2-bit field and a
6-bit field that are packed into1 byte.

■ Shape oriented. Each QuickDraw GX shape is described by a style object, ink object,
transform object, and shape object. When a QuickDraw GX shape is flattened, a new
data format is created that contains all of the essential information required to define
the original shape. All of the objects and properties that are required to describe all
of the QuickDraw GX shapes are included in the data stream.

Stream Design 7
The data stream includes type constants called opcodes that specify the meaning of the
data that follows in the data stream and record size values that indicate the number of
bytes in the record that follow.

Each QuickDraw GX data stream starts with a header. The header contains the version of
QuickDraw GX that produced the stream and flags that describe whether or not a list of
fonts and a list of glyphs used by the objects are provided for at the end of the stream.
This header is typically followed by the style object, ink object, transform object, and
shape object for the shape. This sequence is repeated for all subsequent shapes in the
data stream. The data stream is terminated after the last shape by the presence of a
termination object, as shown in Figure 7-1.
About QuickDraw GX Stream Format 7-7

C H A P T E R 7

QuickDraw GX Stream Format

Figure 7-1 A typical flattened shape data stream sequence

Each header and object type in the data stream is counted. This results in the assignment
of reference numbers for headers and all object types, such as style, ink, and transform
objects. The reference number is the nth occurrence of a header or object type.

For example, each data stream always has a header (1), a typically a style object (1), ink
object (1), transform object (1), and shape object (1), where the references are given in
parentheses. Additional headers and object types in the data stream are assigned the
next incremental reference number. Figure 7-1 shows that shape 1 is defined by style
object (1), ink object (1), transform object (1), and shape object (1) and that shape 2 is
defined by style object (2), ink object (2), transform object (2), and shape object (2). shape
100 in this data stream (not shown) may use the ink object defined in shape 1 by
referencing ink object (1).

Besides the style, ink, transform, and shape objects, the data stream may also contain
additional objects. The following objects are flattened when referenced by shapes, inks,
and transforms:

■ tag

■ color set

■ color profile

■ other referenced objects

Header

Style object

Ink object

Transform object

Shape object

Termination object

Shape 1

Shape 2

Data
streamStyle object

Ink object

Transform object

Shape object
7-8 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7

Q
uickD

raw
 G

X
 S

tream
 F

orm
at

Examples of other referenced objects are the shapes that represent clips, dashes, and the
styles and transforms in text faces.

The following objects are never flattened:

■ view ports

■ view devices

■ view groups

Another rule regarding data stream design requires that all objects and their attributes in
the data stream must be defined before they are referenced. QuickDraw GX data streams
never forward-reference objects.

For example, the style, ink, and transform objects for a shape must always precede the
shape object that they describe in the data stream. In addition, if a style object has a text
face property and the text face property has a dash property, then the shape object for the
dash property must precede the style object in the data stream.

The data stream design does not require that the order of objects to be style, ink, and
transform. Because these objects do not reference each other, they can appear in any
order in the data stream, as long as they are defined prior to being referenced.

Each header and object in the data stream consists of an operation opcode byte, a data
type opcode byte, and optional data bytes. Figure 7-2 shows these basic data stream
format building blocks. This sequence is repeated from the beginning of the stream to
the end of the stream. The next sections describe each of these building blocks.

Figure 7-2 Basic components of a stream header or object

Operation opcode byte

Data opcode byte

Data (optional)

Header or
object

Operation opcode byte

Data opcode byte

Data (optional)

Header or
object
About QuickDraw GX Stream Format 7-9

C H A P T E R 7

QuickDraw GX Stream Format

Operation Opcode Byte 7
The first byte of a header or object is always an operation opcode byte. The operation
opcode byte contains both an operation opcode and the size in bytes of the record that
follows for the current object. The operation opcode either defines a new object, adds
data to the current default object, or references a previous object. The record length in
bytes includes the data type opcode byte and any data that may follow for the current
object. Figure 7-3 shows the format of the operation opcode byte.

Figure 7-3 The format of the operation opcode byte

The operation opcode and record size are always in the same stream format. This enables
a reader of the data stream to skip over parts of the data stream that are not understood.

Operation Opcode 7

Bits 6 and 7 of the operation opcode byte are the operation opcode. Table 7-1 summarizes
the 2-bit operation opcodes from the gxGraphicsOperationOpcode enumeration.

Table 7-1 Operation opcodes

Type Value Description

gxNewObjectOpcode 0x00 This opcode type defines a new object.

gxSetDataOpcode 0x40 This opcode type adds data to the current object.

gxSetDefaultOpcode 0x80 This opcode type replaces the current default
with a previously defined object by specifying
its reference number.

gxReservedOpcode 0xC0 This opcode type is not currently defined and is
reserved for future use.

Operation
opcode

Record size
in bytes

7 6 5 4 3 2 1 0
7-10 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7

Q
uickD

raw
 G

X
 S

tream
 F

orm
at

Record Size 7

The record size defines the number of bytes required to define the header or object
record, not including the operation opcode byte. It is always 1 or larger. The record size
is given in either bits 0 through 5 of the operation opcode byte or within the bytes that
follow the operations opcode byte.

If the record size is larger than the value that can be represented in bits 0 through 5,
larger than 63, then a 0 appears in these 6 bits and the next byte in the data stream may
contain the record size.

If the record size is larger than the value that can be represented in the next byte, larger
than 255, then a 0 appears in this byte and the next word in the stream may contain the
record size.

If the record size is larger than the value that can be represented in the next word, larger
than 65,535, then a 0 appears in this word and the next long in the stream contains the
record size. A long can accommodate a record size up to 4,294,967,295 bytes.

Figure 7-4 shows the operation opcode byte on the left and the subsequent bytes in
which the record size is stored in 6-bits, a byte, a word, or a long. The data stream
continues proceeds from left to right.
About QuickDraw GX Stream Format 7-11

C H A P T E R 7

QuickDraw GX Stream Format

Figure 7-4 Data format of the record size

An example of a bit stream in which a long was required to accommodate a record size
of 404 bytes is described in the section “Analyzing a Flattened Bitmap Shape” beginning
on page 7-81.

7 6 5 4 3 2 1 0
Record size is 1 to 63 bytes

6 bits

7 6 5 4 3 2 1 0
Record size is 64 to 255 bytes

7 6 5 4 3 2 1 0

Byte

000000

7 6 5 4 3 2 1 0
Record size is 256 to 65,535 bytes

7 6 5 4 3 2 1 0

000000

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

000000

Word (2 bytes)

7 6 5 4 3 2 1 0
Record size is 65,536 to 4,294,967,295 bytes

7 6 5 4 3 2 1 0

000000 000000

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

000000 000000

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Long (4 bytes)

00

00 00

Most
significant bit

Least
significant bit

Most
significant bit

Least
significant bit

00
7-12 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Data Type Opcode Byte 7
A data type opcode byte always follows the record size. This byte contains both a
compression type opcode and a data type opcode. Figure 7-5 shows the format of the
data type opcode byte.

Figure 7-5 The format of the data type opcode byte

Compression Type Opcode 7

Bits 6 and 7 of the data type opcode byte contain the compression type opcode. This
opcode specifies the type of compression used for the data that follows. The 2-bit
compression opcode constants from the gxTwoBitCompressionValues enumeration
specifies whether the next data are longs, words, bytes, or that no data follows. Table 7-2
lists the compression type opcode values.

The gxTwoBitCompressionValues enumeration is also used to interpret the
compression in the omit byte. For additional information about the interpretation of omit
bytes, see the section “Omit Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Table 7-2 Compression values

Value Description

0x00 No compression has been applied. The data that follows are long words.

0x40 Word compression has been applied. The data that follows are words.

0x80 Byte compression has been applied. The data that follows are bytes.

0xC0 Omit compression. No data follows.

Compression
type opcode

Data type
opcode

7 6 5 4 3 2 1 0
About QuickDraw GX Stream Format 7-13

C H A P T E R 7

QuickDraw GX Stream Format
The relationship of the operation opcode, record size, compression type opcode, data
type opcode, and optional data for a header or object is shown in Figure 7-6.

Figure 7-6 Relationship of stream format components

The appearance or absence of data after the data type opcode byte depends upon the
values that appear in the operation opcode byte and the data type opcode byte.

If the gxNewObjectOpcode constant appears in the operation opcode byte, a new
object follows. The new object copies the default values into the newly created object.
The default values may have been changed by the last object created of this type. If the
last object and the current object are equal, then the new object requires no additional
data for its definition. In this case, the stream following the new opcode byte contains
only the compression and data type opcode byte with compression set to no
compression.

If the gxSetDataOpcode constant appears in the operation opcode byte, the record
length is greater than 1 byte and object-specific data follows.

The gxSetDefaultOpcode constant appears only after the current object type has been
defined. If the gxSetDefaultOpcode constant appears in the operation opcode byte,
the data type opcode contains the gxStyleTypeOpcode, gxInkTypeOpcode, or
gxTransformTypeOpcode constant. The compression type opcode defines the
compression of the data of the object reference number that follows. This previously

Operation opcode

Record size

Compression type
Header or

object

Data type opcode

Data (optional)

Header or
object

Operation opcode

Record size

Compression type

Data type opcode

Data (optional)

Operation
opcode
byte

Data
opcode
byte Record

Operation
opcode
byte

Data
opcode
byte Record
7-14 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
defined object becomes the default styles, ink, or transform for the shapes created
subsequently.

The sequence of the object-specific data that follows the data type opcode byte is
described in the next section. Subsections are provided for the header, shape data, style,
ink, transform, color profile, color set, tag, bit image, font name, and trailer objects.

Data Type Opcode 7

Bits 0 through 5 of the data type opcode byte contain the data type opcode. This
opcode specifies the type of data that follows. The type of data that follows depends
upon the current value of the operation opcode. If the operation opcode is
gxNewObjectOpcode, the data type opcode describes a new object. These data
type opcodes are described in the next section. If the operation opcode is
gxSetDataOpcode, the data type opcode, specifies how the current object will
be modified. These data type opcodes are described in the sections “Data Type Opcodes
to Modify a Shape Object” beginning on page 7-17, “Data Type Opcodes to Modify a
Color Set Object” beginning on page 7-20, “Data Type Opcodes to Modify a Color Profile
Object” beginning on page 7-21, and “Data Type Opcodes to Modify a Transform Object”
beginning on page 7-21.

Data Type Opcodes for a New Object 7

When the current operation opcode is the gxNewObjectOpcode constant, bits 0
through 5 of the data type opcode byte specify the data type opcode for the new object.
Data type opcode constants for header, style, ink, transform, color profile, color set, tag
type, bit image, font name, and trailer are defined in the gxGraphicsNewOpcode
enumeration. Data type opcode constants for empty, point, line, curve, rectangle,
polygon, path, bitmap, text, glyph, layout, full, and picture are defined in the
gxShapeTypes enumeration. Table 7-3 summarizes all of the data type opcodes for a
new object.

Table 7-3 Data type opcodes for a new object

Constant Value Description

gxHeaderTypeOpcode 0x00 The data that follows is the header.

gxEmptyType 0x01 The data that follows describes an empty
shape object. See the
GXNewShape(gxEmptyType) function.

gxPointType 0x02 The data that follows describes a point
object. See the GXNewPoint function.

gxLineType 0x03 The data that follows describes a line object.
See the GXNewLine function.

gxCurveType 0x04 The data that follows describes a curve
object. See the GXNewCurve function.

continued
About QuickDraw GX Stream Format 7-15

C H A P T E R 7

QuickDraw GX Stream Format
gxRectangleType 0x05 The data that follows describes a rectangle
object. See the GXNewRectangle function.

gxPolygonType 0x06 The data that follows describes a polygon
object. See the GXNewPolygons function.

gxPathType 0x07 The data that follows describes a path
object. See the GXNewPaths function.

gxBitmapType 0x08 The data that follows describes a bitmap
object. See the GXNewBitmap function.

gxTextType 0x09 The data that follows describes a text object.
See the GXNewText function.

gxGlyphType 0x10 The data that follows describes a glyph
object. See the GXNewGlyph function.

gxLayoutType 0x11 The data that follows describes a layout
object. See the GXNewLayout function.

gxFullType 0x12 The data that follows describes a full shape
object. See the GXNewShape(gxFullType)
function.

gxPictureType 0x13 The data that follows describes a picture
object. See the GXNewPicture function.

gxStyleTypeOpcode 0x28 The data that follows describes a style
object. See the GXNewStyle function.

gxInkTypeOpcode 0x29 The data that follows describes an ink
object. See the GXNewInk function.

gxTransformTypeOpcode 0x2A The data that follows describes a transform
object. See the GXNewTransform function.

gxColorProfileOpcode 0x2B The data that follows describes a color
profile object. See the
GXNewColorProfile function.

gxColorSetOpcode 0x2C The data that follows describes a color set
object. See the GXNewColorSet function.

gxTagTypeOpcode 0x2D The data that follows describes a tag object.
See the GXNewTag function.

gxBitImageOpcode 0x2E The data that follows describes a bit image,
the bits pointed to by a bitmap.

gxFontNameTypeOpcode 0x2F The data that follows describes a font name.
See the GXNewFont function.

gxTrailerTypeOpcode 0x3F This opcode indicates the end of a data
stream.

Table 7-3 Data type opcodes for a new object (continued)

Constant Value Description
7-16 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
The omitted numbers are reserved by Apple Computer, Inc. for future use. You should
extend the stream format by using tag objects to encapsulate custom data. Tags are
described in the “Tag Objects” in Inside Macintosh:QuickDraw GX Objects.

Data Type Opcodes to Modify a Shape Object 7

When the current object is a shape object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the shape object to be modified. Data type opcode constants for
attributes, tag, ink, and fill are defined in the gxShapeDataOpcode enumeration.
Table 7-4 summarizes all of the data type opcodes used to modify a shape object.

Data Type Opcodes to Modify a Style Object 7

When the current object is a style object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the style object to be modified. Data type opcode constants for
attributes, tag, curve error, pen, join, dash, caps, pattern, text attributes, text size, font,
text face, platform, font variations, run controls, run priority justification override, run
glyph justification overrides, run glyph substitutions, run features, run kerning
adjustments, and justification are defined in the gxStyleDataOpcode enumeration.
Table 7-5 summarizes all of the data type opcodes used to modify a style object.

Table 7-4 Data type opcodes to modify a shape object

Constant Value Description

gxShapeAttributesOpcode 0x00 The attributes data that follows is added
to the current shape object. See the
GXSetShapeAttributes function.

gxTagOpcode 0x01 The tag data that follows is added to the
current shape object. See the
GXSetShapeTags function.

gxFillOpcode 0x02 The fill data that follows is added to the
current shape object. See the
GXSetShapeFill function.
About QuickDraw GX Stream Format 7-17

C H A P T E R 7

QuickDraw GX Stream Format
Table 7-5 Data type opcodes to modify a style object

Constant Value Description

gxStyleAttributesOpcode 0x00 The attributes data that follows is
added to the current shape object. See
the GXSetStyleAttributes
function.

gxStyleTagOpcode 0x01 The tag data that follows is added to
the current shape object. See the
GXSetStyleTags function.

gxStyleCurveErrorOpcode 0x02 The curve error data that follows is
added to the current style object. See
the GXSetStyleCurveError
function.

gxStylePenOpcode 0x03 The pen data that follows is added to
the current style object. See the
GXSetStylePen function.

gxStyleJoinOpcode 0x04 The join data that follows is added to
the current style object. See the
GXSetStyleJoin function.

gxStyleDashOpcode 0x05 The dash data that follows is added to
the current style object. See the
GXSetStyleDash function.

gxStyleCapsOpcode 0x06 The caps data that follows is added to
the current style object. See the
GXSetStyleCaps function.

gxStylePatternOpcode 0x07 The pattern data that follows is added
to the current style object. See the
GXSetStylePattern function.

gxStyleTextAttributesOpcode 0x08 The text attributes data that follows is
added to the current style object. See
the GXSetStyleTextAttributes
function.

gxStyleTextSizeOpcode 0x09 The text size data that follows is added
to the current style object. See the
GXSetStyleTextSize function.

gxStyleFontOpcode 0x0A The font data that follows is added to
the current style object. See the
GXSetStyleFont function.
7-18 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
gxStyleTextFaceOpcode 0x0B The text face data that follows is
added to the current style object. See
the GXSetStyleFace function.

gxStylePlatformOpcode 0x0C The platform data that follows is
added to the current style object. See
the GXSetStyleEncoding function.

gxStyleFontVariationsOpcode 0x0D The font variations data that follows is
added to the current style object. See
the GXSetStyleFontVariations
function.

gxStyleRunControlsOpcode 0x0E The run controls data that follows is
added to the current style object. See
the GXSetStyleRunControls
function.

gxStyleRunPriorityJustOverrideOpcode 0x1F The run priority justification override
data that follows is added to the
current style object. See the
GXSetStyleRunPriorityJust
Override function.

gxStyleRunGlyphJustOverridesOpcode 0x10 The run glyph justification overrides
data that follows is added to the
current style object. See the
GXStyleRunGlyphJust
Overrides function.

gxStyleRunGlyphSubstitutionsOpcode 0x11 The run glyph substitutions data that
follows is added to the current style
object. See the
GXStyleRunGlyphSubstitutions
function.

gxStyleRunFeaturesOpcode 0x12 The run features data that follows is
added to the current style object. See
the GXStyleRunFeatures function.

gxStyleRunKerningAdjustmentsOpcode 0x13 The run kerning adjustments data that
follows is added to the current style
object. See the GXStyleRunKerning
Adjustments function.

gxStyleJustificationOpcode 0x14 The justification data that follows is
added to the current style object. See
the GXStyleJustification
function.

Table 7-5 Data type opcodes to modify a style object (continued)

Constant Value Description
About QuickDraw GX Stream Format 7-19

C H A P T E R 7

QuickDraw GX Stream Format
Data Type Opcodes to Modify an Ink Object 7

When the current object is an ink object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the ink object to be modified. Data type opcode constants for
attributes, tag, color, and transfer mode are defined in the gxInkDataOpcode
enumeration. Table 7-6 summarizes all of the data type opcodes used to modify an ink
object.

Data Type Opcodes to Modify a Color Set Object 7

When the current object is a color set object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the color set object to be modified. A data type opcode constant for
tag is defined in the gxColorSetDataOpcode enumeration. The constant 0 is reserved
for future use. Table 7-7 summarizes all of the data type opcodes used to modify a color
set object.

Table 7-6 Data type opcodes to modify an ink object

Constant Value Description

gxInkAttributesOpcode 0x00 The attributes data that follows is added
to the current ink object. See the
GXSetInkAttributes function.

gxInkTagOpcode 0x01 The tag data that follows is added to the
current ink object. See the
GXSetInkTags function.

gxInkColorOpcode 0x02 The ink color data that follows is added
to the current ink object. See the
GXSetInkColor function.

gxInkTransferModeOpcode 0x03 The ink transfer mode data that follows is
added to the current ink object. See the
GXSetInkTransfer function.

Table 7-7 Data type opcodes to modify a color set object

Constant Value Description

gxColorSetReservedOpcode 0x00 This constant is reserved for future
assignment.

gxColorSetTagOpcode 0x01 The tag data that follows is added to the
current color set object. See the
GXSetColorSetTags function.
7-20 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Data Type Opcodes to Modify a Color Profile Object 7

When the current object is a color profile object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the color profile object to be modified. A data type opcode constant
for tag is defined in the gxProfileDataOpcode enumeration. The constant 0 is
reserved for future use. Table 7-8 summarizes the data type opcodes used to modify a
color profile object.

Data Type Opcodes to Modify a Transform Object 7

When the current object is a transform object and the current operation opcode is the
gxSetDataOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the transform object to be modified. A data type opcode constant
for tag is defined in the gxTransformDataOpcode enumeration. The constant 0 is
reserved for future use. Table 7-9 summarizes the data type opcodes used to modify a
transform object.

Table 7-8 Data type opcodes to modify a color profile object

Constant Value Description

gxColorProfileReservedOpcode 0x00 This constant is reserved for future
assignment.

gxColorProfileTagOpcode 0x01 The tag data that follows is added
to the current color profile object.
See the
GXSetColorProfileTags
function.

Table 7-9 Data type opcodes to modify a transform object

Constant Value Description

gxTransformReservedOpcode 0x00 This constant is reserved for future
assignment.

gxTransformTagOpcode 0x01 The tag data that follows is added to
the current transform object. See the
GXSetTransformTags function.

gxTransformClipOpcode 0x02 The tag data that follows is added to
the current transform object. See the
GXSetTransformClip function.

gxTransformMappingOpcode 0x03 The tag data that follows is added to
the current transform object. See the
GXSetTransformMapping function.

continued
About QuickDraw GX Stream Format 7-21

C H A P T E R 7

QuickDraw GX Stream Format
Data 7
The sequence of the optional object-specific data that follows a data type opcode byte is
predetermined and consists of type constants and data. Some data sequences are
preceded by an omit byte. An omit byte is included in the data stream format to describe
the presence or absence, meaning, order, and compression of data that corresponds to
the fields of a type or the properties of an object. If an omit byte is not present for an
object, then, with the exception of bitmaps and transforms, the compression type opcode
in the data type opcode byte defines the data compression.

Omit Byte Masks and Omit Byte Shifts 7

The omit byte provides an efficient method of assigning different data compressions to
type constants and object properties that immediately follow the omit byte. Figure 7-7
shows the relationship of the bits in an omit byte and the four constants or properties
that follow.

gxTransformPartMaskOpcode 0x04 The tag data that follows is added to
the current transform object. See the
description of the gxShapePart
mask parameter to the
GXSetTransformHitTest function.

gxTransformToleranceOpcode 0x05 The tag data that follows is added to
the current transform object. See the
description of the Fixed tolerance
parameter to the
GXSetTransformHitTest function.

Table 7-9 Data type opcodes to modify a transform object (continued)

Constant Value Description
7-22 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Figure 7-7 Omit byte relationship with the data that follows

The compression type constants used in the omit byte are defined in the
gxTwoBitCompressionValues enumeration listed in Table 7-2. Long, word, or byte
data compression is applied if the enumeration constants are 0x00, 0x40, 0x80,
respectively. If the constant is 0xC0, the compression is “omit compression,” then the
stream format does not include the field or property. For example, if the omit byte in
Figure 7-7 contained 0x0C for bits 3 and 2, Data 3 constant or property would not appear
in the stream and Data 4 would follow Data 2.

Some omit byte enumerations provide multiple bytes of mask constants and shift
constants to accommodate the description of all of the properties of an object or all of the
fields of a structure. For example, the description of a layout shape requires three omit
bytes to specify the compression of all of the properties. The data corresponding to each
omit byte mask follows the mask. For multiple masks, the sequence is omit mask1,
data, omit mask2, data, omit mask3, data, and so on.

You can use an omit byte mask and its corresponding omit byte shift to interpret the
meaning of each of the bits in the omit byte. Each entry in an omit mask enumeration has
a name and a value. The name describes the property. The hexadecimal value of the
mask is given in the enumeration. The binary equivalent is the mask.

Omit byte

7 6 5 4 3 2 1 0

Data 1 Data 2 Data 3 Data 4

Data stream

Bits 7 and 6 define the compression type for Data 1
Bits 5 and 4 define the compression type for Data 2
Bits 3 and 2 define the compression type for Data 3
Bits 1 and 0 define the compression type for Data 4
About QuickDraw GX Stream Format 7-23

C H A P T E R 7

QuickDraw GX Stream Format
Table 7-10 shows a typical omit byte mask enumeration and its corresponding omit byte
shift enumeration values. The example shows the gxOmitTextMask enumeration
binary mask values and the bit shift from the corresponding gxOmitTextShift
enumeration.

Figure 7-8 shows how you can use an omit mask and corresponding omit shift to analyze
an omit byte in the data stream.

Figure 7-8 Select the bits from the omit byte

Table 7-10 Constants from the gxOmitTextMask and the gxOmitTextShift enumerations

gxOmitTextMask enumeration
Enumeration
value

Binary mask
value

Bit shift
constant

gxOmitTextCharacterMask 0xC0 11000000 6

gxOmitTextPositionXMask 0x30 00110000 4

gxOmitTextPositionYMask 0x0C 00001100 2

gxOmitTextDataMask 0x02 00000010 1

Omit byte in data stream

gxOmit_Mask = 0xC0:
gxOmit_Shift = 6

Omit byte bits selected

Omit byte
masked by
gxOmit_Mask

Omit byte bits
selected
are shifted by
gxOmit_Shift

Omit byte bits selected
are shifted to the right 6 bits

00000011
7-24 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
First, the bits in the omit byte are masked with the gxOmit_Mask enumeration with a
value of 0xC0 and a binary value 11000000. This mask selects the first two high-order bits
of the omit byte. In order to interpret the two bits selected, shift the bits to the right by
the number of bits indicated by the gxOmit_Shift enumeration value. Once the bits
are selected and shifted, determine the compression of the data that follows by
comparing these bits with the gxTwoBitCompressionValues enumeration, as shown
in Figure 7-9. The values of the gxTwoBitCompressionValues enumeration are given
in Table 7-2.

Figure 7-9 Compare the bits selected and shifted with the compression enumeration

Here is an example of how this works with an omit byte describing the shape object for a
text shape. First you need to correlate the names of the constants in the omit mask
enumeration with the structures, enumerations, or properties of the object that they
describe. For more information on correlating omit bytes, see the appropriate
object-specific heading in the section“Data” beginning on page 7-22.

0 0 gxNoCompression = 0

gxTwoBitCompressionValues
enumeration

Compression type
determined

by comparison

Omit byte bits
selected and shifted

0 1 gxWordCompression = 1

1 0 gxByteCompression = 2

1 1 gxOmitCompression = 3

7 6 5 4 3 2 1 0
About QuickDraw GX Stream Format 7-25

C H A P T E R 7

QuickDraw GX Stream Format
Table 7-11 shows the correlation between the gxOmitTextMask names and the
parameters of the GXNewTextFunction.

A summary of these constants is provided in Table 7-10. The gxOmitTextMask
enumeration constants correlate with the properties of the text shape. The text shape is
described in the text shape chapter of Inside Macintosh: QuickDraw GX Typography.

The order of the gxOmitTextMask enumeration tells us that the data to follow will be
in the sequence charCount, position .x, position .y, and text.

For instance, suppose the omit byte is 0xA4 or binary 10100100.

The binary mask value for the gxOmitTextCharacterMask, 11000000, selects the high
order 2 bits, 10. The gxTwoBitCompressionValues enumeration with value 2 is
gxByteCompression. The data for charCount is therefore byte compressed.

The binary mask value for the gxOmitPositionXMask, 00110000, selects the next 2 bits,
10. The gxTwoBitCompressionValues enumeration with value 2 is again
gxByteCompression. The data for position.x is therefore byte compressed.

The binary mask value for the gxOmitPositionYMask, 00001100, selects the next 2 bits,
01. The gxTwoBitCompressionValues enumeration with value 1 is
gxWordCompression. The data for position.y is therefore word compressed.

The binary mask value for the gxOmitTextDataMask, 10, selects the next bit, 0. The
gxTwoBitCompressionValues enumeration with value 0 is gxNoCompression. The
text data is therefore not compressed.

The above example is from the analysis of a data stream of a flattened text shape. For
additional information about this example see the section “Analyzing a Flattened Text
Shape” beginning on page 7-72.

One or more omit mask bytes are included in the data stream whenever specific
enumeration or structure data is required to describe a specific object.

Omit mask and omit shift enumerations can be used to analyze QuickDraw GX omit
bytes and compare the masked bits to other values.

An omit byte is first masked to obtain the bits desired. The bits are then shifted using the
omit shift enumeration that corresponds to the omit byte. The resulting bits can then be
compared to other data in your application to obtain information about the data stream.

Table 7-11 Correlation between gxOmitTextMask and the GXNewText function

Constants in the gxOmitTextMask enumeration Text shape property

gxOmitTextCharacterMask charCount

gxOmitTextPositionXMask position .x

gxOmitTextPositionYMask position .y

gxOmitTextDataMask text
7-26 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Listing 7-1 shows how to determine if the x-coordinate of the position field in a flattened
shape data stream is compressed.

Listing 7-1 Determining if position(x) is byte compressed

unsigned char a = ReadByte();

if ((a & (gxOmitTextPositionXMask >> gxOmitTextPositionXShift)) ==

 gxByteCompression

{

/* perform an action */

}

The function reads the byte, masks it with gxOmitTextPositionXMask to obtain the
desired two bits, and then shifts it by the amount given by the
gxOmitTextPositionShift. The resulting 2 bits can now be compared to the 2 bits of
gxByteCompression.

Header Data 7

The header marks the beginning of a new flattened shape in the data stream. The
gxHeaderTypeOpcode constant indicates that the version of QuickDraw GX that
generated the data stream follows. As new versions become available, older software
may not be able to interpret the newer portions of a data stream. The interpreter can then
look at the version number and skip over versions that it doesn’t understand. For
example, if an interpreter that understands only QuickDraw GX version 1.0 encounters
version 2.0 or if the interpreter finds a version 1.0 opcode, but doesn’t recognize the data,
an error is posted.

The byte after the version byte contains the gxFontListFlatten and
gxFontGlyphsFlatten flags. These flags are functional only if the shape contains text.

The gxFontListFlatten flag instructs the GXFlattenShape function to attach a tag
object to the flattened shape containing a list of the fonts referenced in the shape. A list of
all of the fonts used in the data stream are included at the end of the data stream.

The gxFontGlyphsFlatten flag instructs the GXFlattenShape function to attach a
tag to the flattened shape containing a list of the specific glyphs used from each font
referenced by the shape. A list of all of the glyph codes used by all of the fonts referenced
in a data stream is then included at the end of that data stream.

For more information about the font and glyph list flags, see the chapter “Shape Objects”
in Inside Macintosh: QuickDraw GX Objects.

The font list and glyph list are combined to form a tag that is of type
gxFlatFontListItem and designated 'flst'. During printing, only the fonts and
glyphs used in the stream are loaded to the printing device.
About QuickDraw GX Stream Format 7-27

C H A P T E R 7

QuickDraw GX Stream Format
The gxFlatFontList structure includes the gxFlatFontListItem structure. The
gxFlatFontListItem contains two arrays. The first is the array of font names. The
second is the array of glyphs that are used. The array of glyphs is obtained by setting a
bit in an array for each glyph that is used. If you ask only for the font names, the glyph
array will be omitted. The glyphs array cannot be selected without the font array
selected. In other words, you may specify either a list of fonts or specify a list of fonts
and glyphs to be listed at the end of the data stream.

The fonts and glyphs included in the flattened list, 'flst', are used in the print file for
the QuickDraw GX portable digital document. For more information on the QuickDraw
GX portable digital document see the section “Portable Digital Documents” beginning
on page 7-53.

For more information on the QuickDraw GX print file, see the section “About Print Files
and Portable Digital Documents” beginning on page 7-51. For more information about
how to use the print file data, see the section “Obtaining Data From a Print File”
beginning on page 7-89.

For more information on the gxFlatFontName, gxFlatFontListItemTag, and
gxFlatFontList structures see the chapter “Fonts” in Inside Macintosh: QuickDraw GX
Typography.

New Shape Object Data 7

A new shape object always follows the style, ink, transform, and any other objects that
have been built for the shape object in the data stream. New shape data follows an
operation opcode gxNewObjectOpcode constant and a data type opcode containing
one of the constants in the gxGraphicsNewOpcode enumeration. Values 1
(gxEmptyType) through 13 (gxPictureType) are the constants from the
gxShapeTypes enumeration.

This opcode creates a new shape object with all of the properties of the previous shape
object in the data stream. If the current shape object is the first shape object in the stream,
then it is created with default properties.

The values of the constants for all of the shape objects are summarized in Table 7-3.
Shape types are described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw
GX Objects.

Empty Shape Data 7

The data type opcode with a value 1 is the gxEmptyType constant. Empty shapes store
no information in their geometries. For the current shape object, the gxEmptyType
means that the current shape is an empty shape. No data follows.

The gxEmptyTypes constant is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.
7-28 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Point Shape Data 7

The data type opcode with a value 2 is the gxPointType constant. The data for the
fields of a gxPoint structure follows. The data sequence is x (Fixed), y (Fixed).

Compression data: gxNoCompression - read 2 longs per point;
gxWordCompression - read 2 shorts per point or treat each short as a signed integer
(120 = 120.0 and –171 = –171.0); gxByteCompression - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and –13 = –13.0).

The gxPoint structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Line Shape Data 7

The data type opcode with a value 3 is the gxLineType constant. The data for the fields
of the gxLine structure follows. The data sequence is first.x,first.y
last.x,last.y.

 Compression data: gxNoCompression - read 2 longs per point;
gxWordCompression - read 2 shorts per point or treat each short as a signed integer
(120 = 120.0 and –171 = –171.0); gxByteCompression - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and –13 = –13.0).

The gxLine structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Curve Shape Data 7

The data type opcode with a value 4 is the gxCurveType constant. The data for the
fields of the gxCurve structure follows. The fields in the structure correspond to the
parameters in the GXNewCurve function. The data sequence is x (first point), y (first
point), x (control point), y (control point), x (last point), and y (last point).

Compression data: gxNoCompression - read 2 longs per point;
gxWordCompression - read 2 shorts per point or treat each short as a signed integer
(120 = 120.0 and –171 = –171.0); gxByteCompression - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and –13 = –13.0).

The gxCurve structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Rectangle Shape Data 7

The data type opcode with a value 5 is the gxRectangleType constant. The data
for the fields of the gxRectangle structure follows. The data sequence is left, top, right,
bottom. Typically, the first corner is left-top and the second corner is right-bottom; but
this order is not required. They need only be opposite corners of a rectangle.
About QuickDraw GX Stream Format 7-29

C H A P T E R 7

QuickDraw GX Stream Format
Compression data: gxNoCompression - read 2 longs per point;
gxWordCompression - read 2 shorts per point or treat each short as a signed integer
(120 = 120.0 and –171 = –171.0); gxByteCompression - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and –13 = –13.0).

The gxRectangle structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Polygon Shape Data 7

The data type opcode with a value 6 is the gxPolygonType constant. The data for the
fields of the gxPolygons structure follows. The gxPolygons structure includes the
gxPolygon structure.

The data sequence is contours, vectors, omit byte, x (first point), y (first point), x
(second point), y (second point), x (third point), y (third point), and so on. The numbers
are compressed as fixed-point numbers.

The point array for polygons and paths stream is stored as relative positions, not
absolute positions (as is the case for the point arrays in polygon and path shapes.)

The omit byte is interpreted by the gxOmitPathMask and gxOmitPathShift
enumerations.

The first two entries of the omit byte describe the compression for the first two points of
the polygon shape, which are absolute. The numbers are compressed as fixed-point
numbers: gxNoCompression means 1 long for each fixed number;
gxWordCompression means 1 short for each fixed number treated as an integer
(17 = 17.0); gxByteCompression means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from –128.0 to 127.0; a
word compression value can represent any integer fixed-point number.

The second two entries in the omit byte describe the compression for the second through
the last points in the contour. The coordinates of these points are relative to the first
absolute points and appear in the stream as differences. The relative values are stored as
differences. Thus each x value in the stream is subtracted from the prior value to
reconstruct the original value. Conversely, each value in the shape is subtracted from the
prior value to compute the delta to be written to the stream. The x and y coordinate
values are considered separately. Each may be independently byte, word, or long
compressed, using the same fixed-point compression as the absolute values. Each
subsequent contour has its own omit byte to describe the absolute initial point values
and the subsequent relative point values.

The compression bits in the data type opcode byte control the compression of the
contour counts and all vector counts. Compression data: gxNoCompression - read 1
long for contour and each vector count; gxWordCompression - read 1 word for contour
count and each vector count; gxByteCompression - read 1 byte for contour count and
each vector count.

The gxPolygons structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.
7-30 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Path Shape Data 7

The data type opcode with a value 7 is the gxPathType constant. The data for the fields
of the gxPaths structure follows. The gxPaths structure includes the gxPath structure.

The data sequence is contours (number of contours), vectors (number of points in
the contour), control bytes, omit byte, x (absolute coordinate of first point), y (absolute
coordinate of first point), x (relative coordinate of second point), y (relative coordinate of
second point), x (relative coordinate of third point), y (relative coordinate of third point),
and so on.

A control byte contains control bits for each point off or on the path. Each point is
assigned a bit. Bits with value 1 are off the path; bits with value 0 are on the path. If the
number of points exceeds 8, multiple control bytes are used. If the number of points is
not an even multiple of 8, the final unused bits are ignored.

The omit byte is interpreted by the gxOmitPathMask and gxOmitPathShift
enumerations.

The first two entries of the omit byte describe the compression for the first two points of
the path shape, which are absolute coordinates. The numbers are compressed as
fixed-point numbers: gxNoCompression means 1 long for each fixed number;
gxWordCompression means 1 short for each fixed number treated as an integer
(17 = 17.0); gxByteCompression means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from –128.0 to 127.0; a
word compression value can represent any integer fixed-point number.

The second two entries in the omit byte describe the compression for the second through
the last relative points in the contour. The coordinates of these points are relative to the
first absolute points and appear in the stream as differences. Thus each x value in the
stream is subtracted from the prior value to reconstruct the original value. Conversely,
each value in the shape is subtracted from the prior value to compute the delta to be
written to the stream. The x and y coordinate values are considered separately. Each may
be independently byte, word, or long compressed, using the same fixed-point
compression as the absolute values. Each subsequent contour has its own omit byte to
describe the absolute initial point values and the subsequent relative point values.

The compression bits in the data type opcode byte control the compression of the
contour counts and all vector counts. Compression data: gxNoCompression - read 1
long for contour and each vector count; gxWordCompression - read 1 word for contour
count and each vector count; gxByteCompression - read 1 byte for contour count and
each vector count.

The gxPaths structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.
About QuickDraw GX Stream Format 7-31

C H A P T E R 7

QuickDraw GX Stream Format
Bitmap Shape Data 7

The data type opcode with a value 8 is the gxBitmapType constant. The data for the
fields of the gxBitmap and gxPoint structures follow. The gxBitmap structure
includes the gxColorSpace enumeration and the references to the gxColorSet and
gxColorProfile structures.

The data sequence is omit byte 1, image reference, width, height, rowBytes, omit
byte 2, pixelSize, space (color space), set (color set), profile (color profile),
omit byte 3, x (position), y (position).

Omit byte 1 is interpreted by the gxOmitBitmapMask1 and gxOmitBitmapShift1
enumerations. Omit byte 2 is interpreted by the gxOmitBitmapMask2
and gxOmitBitmapShift2 enumerations. Omit byte 3 is interpreted by the
gxOmitBitmapMask3 and gxOmitBitmapShift3 enumerations.

Data compression: The value may be a byte, word, or long. The value references a
previous bit image: a value of 1 references the first bit image, a value of 2 references the
second bit image, etc. A value of 0 indicates that the bitmap references a bit image
through a file alias. The bitmap shape must reference a tag containing the file alias and
offset as described in the chapter “Tag Objects” in Inside Macintosh: QuickDraw GX
Objects. All bitmap values are compressed as integers (see polygon coutour compression
above) except for the x and y coordinate positions. These are compressed as Fixed (see
polygon first absolute position). Unlike prior shape types in this section, bitmaps and
shape types described below can also have fields with the gxOmitCompression bits
set. In this case, the value 0 or nil is used wherever the omit compression bits are set.

The gxBitmap structure is described in the chapter “Bitmap Shapes” in Inside Macintosh:
QuickDraw GX Graphics.

Text Shape Data 7

The data type opcode with a value 9 is the gxTextType constant. The data that follows
corresponds to the parameters of the GXNewText function.

The data sequence is omit byte, byte length (of text), x (position), y (position),
charCount (number of characters), data (character text).

The data is the character stream or glyph indexes for the text. For nonRoman scripts, the
actual byte length may be more than the number of characters.

The omit byte is interpreted by the gxOmitTextDataMask and
gxOmitTextDataShift enumerations.

Data compression: The byte length is compressed as a long. The x and y coordinates are
compressed as a fixed number. The data stream may contain bytes or shorts. If the
stream contains shorts and all values are less than 255, then the stream may be
compressed. It is an error to specify a character count of zero (omit compression) and to
set the text data omit bit.

The GXNewText function is described in the chapter “Text Shapes” in Inside Macintosh:
QuickDraw GX Typography.
7-32 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Glyph Shape Data 7

The data type opcode with a value 10 is the gxGlyphType constant. The data
correspond to the parameters in the GXNewGlyphs function and include the gxPoint
and gxStyle structures.

The data sequence is omit byte 1, charCount (number of characters), byte length (of
text), runNumber (number of runs), data (glyph character), omit byte 2, positions,
advance, tangents, styleRuns, glyphStyles.

Omit byte 1 is interpreted by the gxOmitGlyphDataMask1 and
gxOmitGlyphDataShift1 enumerations. Omit byte 2 is interpreted by
the gxOmitGlyphDataMask2 and gxOmitGlyphDataShift2 enumerations.

Data compression: charCount, byte length, and runNumber are compressed as longs. If
charCount is 0, the data, positions, advance, and tangents are not read. If the
gxOmitGlyphOnePosition bit is set in the first byte, then the glyph shape contains 1
absolute position or as many positions as there are in the stream. In either case, all are
compressed as fixed point values, as bytes, words, or longs. Unlike polygon positions,
the x and y values do not have separate compression bits, nor are the positions stored in
the relative manner of polygons or paths.

The advances in the glyph shape are read after the positions, if the
gxOmitGlyphAdvance bits are not gxOmitCompression constant. The character
count determines the number of bytes read, as is the case with the control bits in a path
shape.

If the gxOmitGlyphTangent bits in the second omit byte are not equal to the
gxOmitCompression constant, the tangents parameter follows. The tangent values
are stored and compressed identically to the positions. If the number of runs
(runNumber) is greater than zero, then 1 bit in the second omit byte interprets the runs
as shorts or shorts compressed to bytes (like the text character compression). If
runNumber is greater than 0, then the style array is compressed into an array of bytes,
words, or longs. The values are references to previous styles in the stream: a value of 1
references the 1st style in the stream, and so on.

The GXNewGlyphs function is described in the chapter “Glyph Shapes” in Inside
Macintosh: QuickDraw GX Typography.

Layout Shape Data 7

The data type opcode with a value 11 is the gxGlyphType constant. The data
correspond to the parameters in the GXNewLayout function.

Layouts are compressed in a way that is similar to glyphs. Like all types that are greater
than or equal to bitmap type, all fields default to zero and omit compression is allowed.
If the length is greater than 0, the data is read as shorts compressed as bytes or as an
uncompressed stream (like text and glyphs). If the style run number is greater than 0, the
style run array and style array are present identically to the glyph format. If the
omitLayoutHasBaseline bit is set in omit byte 3, uncompressed data is read the size
About QuickDraw GX Stream Format 7-33

C H A P T E R 7

QuickDraw GX Stream Format
of the gxLineBaselineRecord. If the level run number is greater than zero, the 4th
omit byte (read regardless) specifies the compression of the levelRunLength and level
arrays as an optionally compressed array of shorts.

The data sequence is omit byte 1, length, x (position), y (position), data, omit byte 2,
width, flush, set, just, options, omit byte 3, style, run number, level run
number, hasBaseline, style runs, styles, omit byte 4, level runs, levels.

Omit byte 1 is interpreted by the gxOmitLayoutMask1 and gxOmitLayoutShift1
enumerations. Omit byte 2 is interpreted by the gxOmitLayoutMask2
and gxOmitLayoutShift2 enumerations. Omit byte 3 is interpreted by the
gxOmitLayoutMask3 and gxOmitLayoutShift3 enumerations. Omit byte 4 is
interpreted by the gxOmitLayoutMask4 and gxOmitLayoutShift4 enumerations.

The GXNewLayout function is described in the chapter “Layout Shapes” in Inside
Macintosh: QuickDraw GX Typography.

Full Shape Data 7

The data type opcode with a value 12 is the gxFullType constant. Full shapes store no
information in their geometries. For the current shape object, the gxFullType constant
is a parameter in the GXNewShape function. No data follows.

The gxFullType constant is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Picture Shape Data 7

The data type opcode with a value 13 is the gxPictureType constant. The data
corresponds to the parameters in the GXNewPicture function. The data sequence is
omit byte 1, the number of items (compressed as long as specified by the data type
opcode), followed by an array of shapes and optional arrays of styles, inks, and
transforms. The shape array must exist and may not contain nil (zero) references. The
styles, inks and transform array references may be omitted entirely.

The gxPicture structure is described in the chapter “Picture Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Modified Shape Object Data 7

Once a shape object is defined, it can be modified. Modified shape data follow a
gxSetDataOpcode operation opcode and a data type opcode containing one of the
constants from the gxShapeDataOpcode enumeration. Table 7-4 summarizes the values
of the constants for all of the modified shape objects.
7-34 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Attributes Data 7

An attribute is added to the current shape object if the data type opcode has value 0. This
is the gxShapeAttributesOpcode constant.

The data for the fields of the gxShapeAttributes structure follow and are compressed
as long. That data may be 1, 2, or 4 bytes depending on the compression bits.

The gxShapeAttributes enumeration is described in the chapter “Shape Objects” in
Inside Macintosh: QuickDraw GX Objects.

Tag Data 7

A tag is added to the current shape if the data type opcode has value 1. This is the
gxShapeTagOpcode constant. The data for the parameters of the GXSetShapeTags
function follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShortCompression (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSetShapeTags (shape, nil, 1, 0, 2, tag array).

The GXSetShapeTags function is described in the chapter “Shape Objects” of Inside
Macintosh: QuickDraw GX Objects.

Fill Data 7

A shape fill, compressed as long, is added to the current shape if the data type opcode
has value 2. This is the gxShapeFillOpcode. A constant from the gxShapeFill
enumeration follows.

The gxShapeFills enumeration is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

New Style Object Data 7

Data for a new style object follows a gxNewObjectOpcode operation opcode and a data
type opcode with a value 28. This is the gxStyleTypeOpcode constant from the
gxGraphicsNewOpcode enumeration.

This opcode creates a new style object with all of the properties of the previous style
object in the data stream. If the current style object is the first style object in the stream,
then it is created with default properties. No data follows for the new style object.

The style object is described in the chapter “Style Objects” in Inside Macintosh: QuickDraw
GX Objects.
About QuickDraw GX Stream Format 7-35

C H A P T E R 7

QuickDraw GX Stream Format
Modified Style Object Data 7

Once a style object is defined, it can be modified by the addition of style data. Modified
style data follows a gxSetDataOpcode operation opcode and a data type opcode
containing one of the constants from the gxStyleDataOpcode enumeration. Table 7-5
summarizes the values of the constants for all of the modified style objects. For all style
data, the opcodes described in the following subsections change the default style.

Attributes Data 7

An attribute is added to the current style object if the data type opcode has value 0. This
is the gxStyleAttributesOpcode constant.

The data, compressed as long, for the fields of the gxStyleAttribute structure follow
and may be byte, short, or long.

The gxStyleAttributes enumeration is described in the chapter “Geometric Styles”
in Inside Macintosh: QuickDraw GX Graphics.

Tag Data 7

A tag is added to the current style if the data type opcode has value 1. This is the
gxStyleTagOpcode constant. The data for the parameters of the GXSetStyleTags
function follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShortCompression (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSetShapeTags (shape, nil, 1, 0, 2, tag array);

The GXSetStyleTags function is described in the chapter “Style Objects” in Inside
Macintosh: QuickDraw GX Objects.

Curve Error Data 7

A curve error, compressed as fixed-point, is added to the current style if the data type
opcode has value 2. This is the gxStyleCurveErrorOpcode constant. The data for the
error (Fixed) parameter of the GXSetStyleCurveError function follows.

For fixed point compression gxNoCompression means 1 long for each fixed number;
gxWordCompression means 1 short for each fixed number treated as an integer
(17 = 17.0); gxByteCompression means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from –128.0 to 127.0;
a word compression value can represent any integer fixed-point number.

The GXSetStyleCurveError function is described in the chapter “Geometric Styles”
in Inside Macintosh: QuickDraw GX Graphics.
7-36 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Pen Data 7

A pen, compressed as fixed point, is added to the current style object if the data type
opcode has value 3. This is the gxStylePenOpcode constant. The data for the pen
(Fixed) parameter of the GXSetStylePen function follows.

For fixed-point compression gxNoCompression means 1 long for each fixed number;
gxWordCompression means 1 short for each fixed number treated as an integer
(17 = 17.0); gxByteCompression means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from –128.0 to 127.0;
a word compression value can represent any integer fixed-point number.

The GXSetStylePen function is described in the chapter “Geometric Styles” in Inside
Macintosh: QuickDraw GX Objects.

Join Data 7

A join is added to the current style object if the data type opcode has value 4. This is the
gxStyleJoinOpcode. The data for the fields of the gxJoinRecord structure follows.
The gxJoinRecord structure includes the gxShape and gxJoinAttribute structures.

The data sequence is omit byte, attributes (modifier flags) compressed as long, join
(corner shape) compressed as long (reference), miter (size limit) compressed as fixed
point.

The omit byte is interpreted by the gxOmitJoinMask and gxOmitJoinShift
enumerations.

The gxJoinAttribute structure is described in the chapter “Geometric Styles” in
Inside Macintosh: QuickDraw GX Graphics.

Dash Data 7

A dash is added to the current style object if the data type opcode has value 5. This is the
gxStyleDashOpcode constant. The data for the fields of the gxDashRecord structure
follows. The gxShape and gxDashAttribute enumerations are included in the
gxDashRecord structure.

The data sequence is omit byte 1, attributes (modifier flags) compressed as long,
dash (shape used for dash) compressed as long (reference), advance (distance between
dashes) compressed as long, phase (start offset) compressed as fract, omit byte 2, and
scale (height of dash) compressed as fixed.

In fract compression a long means a full fract; a word means that 16 bits are read
followed by 16 bits of zeros; a byte means that 8 bits are read followed by 24 bits of
zeros. Thus numbers like 1.0, -1.0, or fract 0.5 fit into a compressed byte.

Omit byte 1 is interpreted by the gxOmitDashMask1 and gxOmitDashShift1
enumerations. Omit byte 2 is interpreted by the gxOmitDashMask2 and
gxOmitDashShift2 enumerations.

The gxDashRecord structure is described in the chapter “Geometric Styles” of Inside
Macintosh: QuickDraw GX Graphics.
About QuickDraw GX Stream Format 7-37

C H A P T E R 7

QuickDraw GX Stream Format
Caps Data 7

A cap is added to the current style object if the data type opcode has value 6. This is the
gxStyleCapsOpcode. The data for the fields of the gxCapRecord structure follows.
The gxShape and gxCapAttribute enumerations are included in the gxCapRecord
structure.

The data sequence is omit byte, attributes (modifier flags) compressed as long,
startCap (shape used at start of contours) compressed as long (reference), endCap
(shape used at end of contours) compressed as long (reference).

The omit byte is interpreted by the gxOmitCapMask and gxOmitCapShift
enumerations.

The gxCapRecord structure is described in the chapter “Geometric Styles” in Inside
Macintosh: QuickDraw GX Graphics.

Pattern Data 7

A pattern is added to the current style object if the data type opcode has value 7. This is
the gxStylePatternOpcode constant. The data for the fields of the
gxPatternRecord structure follows. The gxShape, gxPatternAttribute, and
gxPoint enumerations are included in the gxPatternRecord structure.

The data sequence is omit byte 1, attributes (modifier flags) compressed as long,
pattern (shape to use as pattern) compressed as long (reference), x (x-coordinate of
vector u for pattern grid) compressed as fixed, y (y-coordinate of vector u for pattern
grid) compressed as fixed, omit byte 2, x (x coordinate of vector v for pattern grid)
compressed as fixed, and y (y-coordinate of vector v for pattern grid) compressed as
fixed. Note that for all of these, omit (zero) values are permitted.

Omit byte 1 is interpreted by the gxOmitPatternMask1 and gxOmitPatternShift1
enumerations. Omit byte 2 is interpreted by the gxOmitPatternMask2 and
gxOmitPatternShift2 enumerations.

The gxPatternRecord structure is described in the chapter “Geometric Styles” in
Inside Macintosh: QuickDraw GX Graphics.

Text Attributes Data 7

A text attribute compressed as long is added to the current style object if the data type
opcode has value 8. This is the gxStyleTextAttributesOpcode constant. The data
may be byte, word, or long.

The gxTextAttribute enumeration is described in the chapter “Typographic Styles”
in Inside Macintosh: QuickDraw GX Typography.
7-38 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Text Size Data 7

The text size, compressed as long, for the current style object is specified if the data type
opcode has value 9. This is the gxStyleTextSizeOpcode constant. The data for the
size (fixed point size of text) parameter of the GXSetStyleTextSize function follows.

The GXSetStyleTextSize function is described in the chapter “Typographic Styles” in
Inside Macintosh: QuickDraw GX Typography.

Font Data 7

A font is added to the current style object if the data type opcode has value 10. This is the
gxStyleFontOpcode constant. The attribute data for the GXSetStyleFont function
follows. It is compressed as long (reference); the reference is to a font name defined
earlier in the stream

The GXSetStyleFont function is described in the chapter “Typographic Styles” in
Inside Macintosh: QuickDraw GX Typography.

Text Face Data 7

A text face is added to the current style object if the data type opcode has value 11. This
is the gxStyleTextFaceOpcode constant. The data for the fields of the gxTextFace
structure follows.

The data sequence is omit byte, faceLayers compressed as long, mapping size and
advanceMapping.

The advanceMapping in text face and transform mapping is reordered so that common
mappings can be stored in fewer bytes. The omit byte and number of layers is followed
by an optional byte (whose compression is described by omitFaceMapping).

The value of the byte may be one of the following:

Byte Value

2 Mapping contains identity plus elements h and k.

4 Same as byte 2, plus elements a and d.

6 Same as byte 4, plus elements b and c.

9 Same as byte 6 plus elements u, v, and w.
About QuickDraw GX Stream Format 7-39

C H A P T E R 7

QuickDraw GX Stream Format
The meaning of the elements mentioned in the previous table are shown in Figure 7-10.

Figure 7-10 Mapping matrix elements

The byte value is multiplied by the compression level to specify the length of the
mapping data that follows. Byte compression multiplies by 1; word compression
multiplies by 2; long compression multiplies by 4. The values in the left and middle
columns are compressed as fixed values. The values in the right column are compressed
as fract values. All elements whether the stream contains 2, 4, 6, or 9 numbers, have the
same level of compression.

If the faceLayers value is greater than 0, then following the mapping data is an omit
byte as described by gxOmitFaceLayer Mask 1. The omit byte is followed by
the outlineFill compressed as a long, the flags comrpessed as a long, the
outlineStyle and reference compressed as a long, and the outlineTransform, also
comrpessed as a long. The second omit byte describes the bold x and bold y, compressed
as fixed values. This sequence is repeated for the second and all remaining layers.

The omit byte is interpreted by the gxOmitFaceMask and gxOmitFaceShift
enumerations.

The gxTextFace structure is described in the chapter “Typographic Styles” in Inside
Macintosh: QuickDraw GX Typography.

Platform Data 7

The platform, script, and language is defined for the current object if the data type
opcode has value 12. This is the gxStylePlatformOpcode constant. Data from the
gxFontPlatform, gxFontScript, and gxFontLanguage enumerations follow.

The platform, script, and language are combined into a long and then that value is
compressed as a long that is equal to

(platform << 16) | (script << 8) | language

The gxFontPlatform, gxFontScript, and gxFontLanguage enumerations are
described in the chapter “Font Objects” in Inside Macintosh: QuickDraw GX Typography.

a b u

c d v

wh k

Perspective
elements

fract1

Linear
elements

Translation
elements
7-40 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Font Variations Data 7

Font variations are added to the current style object if the data type opcode has value 13.
The data is uncompressed. This is the gxStyleFontVariationsOpcode constant. The
data for the fields of the gxFontVariation structure follows. The
gxFontVariationTag structure is included in the gxFontVariations structure.

The data sequence is an array [name (variation tag), value (Fixed)].The opcode size
specifies the number of variations in the stream.

The gxFontVariation structure is described in the chapter “Fonts” in Inside Macintosh:
QuickDraw GX Typography.

Run Controls Data 7

Run controls are added to the current style object if the data type opcode has value 14.
The data is uncompressed. This is the gxStyleRunControlsOpcode constant. The
data for the fields of the gxRunControls structure follows. The opcode size specifies
the size in bytes of the run control stream.

The gxRunControls structure is described in the chapter “Layout Line Controls” in
Inside Macintosh: QuickDraw GX Typography.

Run Priority Justification Override Data 7

A run priority justification override is added to the current style object if
the data type opcode has value 15. The data is uncompressed. This is the
gxStyleRunPriorityJustOverrideOpcode constant. The data for the fields
of the gxPriorityJustificationOverride structure follows. The opcode size
specifies the size in bytes of the run control stream.

The data sequence is an array of delta. The opcode specifies the byte size.

The gxPriorityJustificationOverride structure is described in the chapter
“Layout Line Controls” in Inside Macintosh: QuickDraw GX Typography.

Run Glyph Justification Overrides Data 7

A run glyph justification override is added to the current style object if the
data type opcode has value 16. The data is uncompressed. This is the
gxStyleRunGlyphJustOverrideOpcode constant. The data for the fields
of the gxGlyphJustificationOverride structure follows. The
gxGlyphJustificationOverride structure includes the gxGlyphcode
and gxWidthDeltaRecord enumerations. The opcode specifies the byte size.

The data sequence is count, glyphJustificationOverrides.

The gxGlyphJustificationOverride structure is described in the chapter “Layout
Line Controls” in Inside Macintosh: QuickDraw GX Typography.
About QuickDraw GX Stream Format 7-41

C H A P T E R 7

QuickDraw GX Stream Format
Run Glyph Substitutions Data 7

A run glyph substitution is added to the current style object if the data type
opcode has value 17. The data is uncompressed. This is the
gxStyleRunGlyphSubstitutionsOpcode constant. The data for the fields
of the gxGlyphSubstitution structure follows.

The data sequence is count, glyphsubstitutions[].

The GXSetStyleRunGlyphSubstitutions structure is described in the chapter
“Layout Line Controls” in Inside Macintosh: QuickDraw GX Typography.

Run Features Data 7

A run feature is added to the current style object if the data type opcode has value 18.
The data is uncompressed. This is the gxStyleRunFeaturesOpcode constant. The
data for the fields of the gxRunFeature structure follows.

The data sequence is count, runFeatures[].

The gxRunFeature structure is described in the chapter “Layout Line Controls” in
Inside Macintosh: QuickDraw GX Typography.

Run Kerning Adjustments Data 7

Run kerning adjustment is added to the current style object if the data type opcode has
value 19. The data is uncompressed. This is the
gxStyleRunKerningAdjustmentsOpcode constant. The data for the fields of the
gxKerningAdjustment structure follows.

The data sequence is count, kerningAdjustments[].

The gxKerningAdjustment structure is described in the chapter “Layout Line
Controls” in Inside Macintosh: QuickDraw GX Typography.

Style Justification Data 7

Style justification is added to the current style object if the data type opcode has
value 20. The data is compressed as fract. This is the gxStyleJustificationOpcode
constant. The data for the justify parameter of the GXSetStyleJustification
function follows.

In fract compression a long means a full fract; a word means that 16 bits are read
followed by 16 bits of zeros; a byte means that 8 bits are read followed by 24 bits of
zeros. Thus numbers like 1.0, -1.0, or fract 0.5 fit into a compressed byte.

The GXSetStyleJustification function is described in the chapter “Typographic
Styles” in Inside Macintosh: QuickDraw GX Typography.
7-42 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
New Ink Object Data 7

Data for a new ink object follows a gxNewObjectOpcode operation opcode and a data
type opcode with a value 29. This is the gxInkTypeOpcode constant from the
gxGraphicsNewOpcode enumeration.

This opcode creates a new ink object with all of the properties of the previous ink object
in the data stream. If the current ink object is the first ink object in the stream, then it is
created with default properties. No data follows for the new ink object.

The ink object is described in the chapter “Ink Objects” in Inside Macintosh: QuickDraw
GX Objects.

Modified Ink Object Data 7

Once an ink object is defined, it can be modified by the addition of ink data. Modified
style data follows a gxSetDataOpcode operation opcode and a data type opcode
containing one of the constants from the gxInkDataOpcode enumeration. Table 7-6
summarizes the values of the constants for all of the modified ink objects.

Attributes Data 7

An attribute, compressed as long, is added to the current ink object if the data type
opcode has value 0. This is the gxInkAttributesOpcode constant.

The data for the fields of the gxInkAttributes structure follow. The next two bytes
contain the ink attribute flags.

The gxInkAttributes enumeration is described in the chapter “Ink Objects” in Inside
Macintosh: QuickDraw GX Objects.

Tag Data 7

A tag is added to the current ink object if the data type opcode has value 1. This is the
gxInkTagOpcode constant. The data for the parameters of the GXSetInkTags function
follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShortCompression (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSetShapeTags (shape, nil, 1, 0, 2, tag array).

The sequence is tagType, index, oldCount, newCount, items.

The GXSetInkTags function is described in the chapter “Ink Objects” in Inside
Macintosh: QuickDraw GX Objects.
About QuickDraw GX Stream Format 7-43

C H A P T E R 7

QuickDraw GX Stream Format
Color Data 7

A color is added to the current ink object if the data type opcode has value 2. This is the
gxInkColorOpcode constant. The data for the fields of the gxInkAttributes
structure follow. The data for the fields of the gxColor structure follows.

The data sequence is omit byte, space (long), profile (long). The value of the omit
byte may be omit compression.

The omit byte is interpreted by the gxOmitColorsMask and gxOmitColorsShift
enumerations.

If space is indexed space, gxOmitColoursIndex is used to determine index
compression (compressed as long), which is read first, followed by color set (compressed
as long), with the compression determined by gxOmitColorsIndexSet.

If space is not indexed space, the color space determines the number of elements read
from the stream as shown in Table 7-12.

The bits in the omit byte determine whether a word is read from the stream for each
word in the component or whether the byte is repeated twice for each word. For
example, if the byte contains 0x3A, the word contains 0X3A3A. The
gxOmitColorsComponentsMask sets 1 bit for up to 4 components.

The gxColor enumeration is described in the chapter “Ink Objects” in Inside Macintosh:
QuickDraw GX Objects.

Transfer Mode Data 7

A transfer mode is added to the current ink object if the data type opcode has value 3.
This is the gxInkTransferModeOpcode constant. The data for the fields of the
gxTransferMode structure follow.

The data sequence is omit byte 1, space, compressed as long, set, compresssed as
long,profile, compressed as long; omits are allowed. Omit byte 2 follows and then
sourceMatrix, deviceMatrix, resultMatrix, flags, and component; omits are
allowed.

Table 7-12 Color space and words read

16-bit 1

32-bit 2

gray, index 1

gray alpha 2

RGB, HSV, HLS, YXY, XYZ, LUV, LAB, YIQ 3

RGBA, CYMK 4
7-44 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
The sourceMatrix, deviceMatrix, and resultMatrix are compressed as arrays of
Fixed values. The color space determines the number of transfer components that follow,
as shown in Table 7-12.

Each transfer component is preceded by an omit byte
(gxomitTransferComponentMask1) that describes the first 4 fields of the structure.
Omit byte one is followed by gxOmitTransferComponentModeMask, compressed as
byte, gxOmitTransferComponentFlagsMask, compressed as byte,
gxOmitTransferComponentSourceMinimumShift, compressed as color,
gxOmitTransferComponentSourceMaximumMask, compressed as color, and
gxOmitTransferComponentDeviceMinimumMask, compressed as color. Omit byte 2
follows which describes gxOmitTransferComponentDeviceMaximumMask,
gxOmitTransferComponentClampMinimumMask,gxOmitTransferComponentCla
mpMaximumMask,and gxOmitTransferComponentOperandMask;all these are
compressed as color. The color compression specifies that the field may be omitted
(inherits value from default), or is represented by a repeated byte (for example, 0X7A
==0X7A7A), or is represented as a word.

Note that the mode and flags in the first omit byte have a single bit

The gxTransferMode structure is described in the chapter “Ink Objects” in Inside
Macintosh: QuickDraw GX Objects.

New Object Transform Data 7

Data for a new transform object follows a gxNewObjectOpcode operation opcode and
a data type opcode with a value 0x2A. This is the gxTransformTypeOpcode constant
from the gxGraphicsNewOpcode enumeration.

This opcode creates a new transform object with all of the properties of the previous
transform object in the data stream. If the current transform object is the first transform
object in the stream, then it is created with default properties. No data follows for the
new transform object.

The transform object is described in the chapter “Transform Objects” in Inside Macintosh:
QuickDraw GX Objects. For additional information about transform mapping, see
“Mapping Data” on page 7-46.

Modified Transform Object Data 7

Once a transform object is defined in the data stream, it can then be modified. Modified
transform object data follows a gxSetDataOpcode operation opcode and a data type
opcode containing one of the constants from the gxTransformDataOpcode
enumeration. Table 7-9 summarizes the values of the constants for all of the modified
transform objects.
About QuickDraw GX Stream Format 7-45

C H A P T E R 7

QuickDraw GX Stream Format
Reserved Opcode for Modified Transform Data 7

The data type opcode with value 0 is reserved for future expansion.

Tag Data 7

A tag is added to the current transform object if the data type opcode has value 1. This is
the gxTransformTagOpcode constant. The data for the parameters of the
GXSetTransformTags function follows.

The data stream sequence is tagType, index, oldCount, newCount, items[].

The GXSetTransformTags function is described in the chapter “Transform Objects” of
Inside Macintosh: QuickDraw GX Objects.

Clip Data 7

A clip, compressed as long (reference) is added to the current transform object if the data
type opcode has value 2. This is the gxTransformClipOpcode constant. The data for
the clip parameter of the GXSetTransformClip function follows.

The GXSetTransformClip function is described in the chapter “Transform Objects” in
Inside Macintosh: QuickDraw GX Objects.

Mapping Data 7

A mapping is added to the current transform object if the data type opcode has value 3.
This is the gxTransformMappingOpcode constant. The data for the map parameter of
the GXSetTransformMapping function follows.

A transform mapping is initiated by the sequential appearance of the
gxSetDataOpcode, and gxTransformDataOpcode constants in the data stream.

The bytes following the appearance in the data stream of the gxTransformMapping
constant from the gxTransformDataOpcode enumeration have a special format. The
interpretation of the bytes that follow require the determination of a size constant. The
size to be used for a specific transform depends upon the compression and the size of the
transform data specified by the byte containing the previous
gxGraphicsOperationOpcode constant. The size is the number of bytes, words, or
longs, depending upon the type of compression.

If the size obtained from the gxGraphicsOperationOpcode byte indicated that there
are 24 bytes of transform data and the byte containing the
gxTransformMappingOpcode constant indicated that there was no compression, then
the size of each transform attribute would be 4 bytes (longs) and the size constant for our
transformation bytes format would be size 24/4 = 6. The interpretation of the mapping
that occurs for each mapping size is summarized in the section “Text Face Data” on
page 7-39.

The GXSetTransformMapping function is described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.
7-46 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Part Mask Data 7

A part mask, compressed as a long, is added to the current transform object if the data
type opcode has value 4. This is the gxTransformPartMaskOpcode constant. The data
for the mask parameter of the GXSetTransformHitTest function follows.

The GXSetTransformHitTest function is described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

Tolerance Data 7

Tolerance, compressed as long, is added to the current transform object if the data type
opcode has value 5. This is the gxTransformToleranceOpcode constant. The data for
the tolerance parameter of the GXSetTransformHitTest function follows.

The GXSetTransformHitTest function is described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

New Color Profile Object Data 7

Data for a new color profile object follows a gxNewObjectOpcode operation opcode
and a data type opcode with a value 0x2B. This is the gxColorProfileTypeOpcode
constant from the gxGraphicsNewOpcode enumeration.

This opcode creates a new color profile object with all of the properties of the previous
color profile object in the data stream. If the current color profile object is the first color
profile object in the stream, then it is created with default properties. The data that
follows is uncompressed; the opcode size specifies the size of the stream.

The color profile object is described in the chapter “Color Objects” in Inside Macintosh:
QuickDraw GX Objects.

Modified Color Profile Object Data 7

Once a color profile object is defined in the data stream, it can be modified. Modified
color set object data follows a gxSetDataOpcode operation opcode and a data type
opcode containing one of the constants from the gxColorProfileDataOpcode
enumeration. Table 7-8 summarizes the values of the constants for all of the modified
color profile objects.

Reserved Opcode for Modified Color Profile Data 7

The data type opcode with value 0 is reserved for future expansion.

Color Profile Tag Data 7

A tag for the current color profile object is added if the data type opcode has value 1.
This is the gxColorProfileTagOpcode constant. The data for the parameters of the
GXSetColorProfileTags function follows.
About QuickDraw GX Stream Format 7-47

C H A P T E R 7

QuickDraw GX Stream Format
The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShortCompression (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSetShapeTags (shape, nil, 1, 0, 2, tag array).

The GXSetColorProfileTags function is described in the chapter “Color Objects” in
Inside Macintosh: QuickDraw GX Objects.

New Color Set Object Data 7

Data for a new color set object follows a gxNewObjectOpcode operation opcode and a
data type opcode with a value 0x2C. This is the gxColorSetTypeOpcode constant
from the gxGraphicsNewOpcode enumeration.

This opcode creates a new color set object with all of the properties of the previous color
set object in the data stream. If the current color set object is the first color set object in
the stream, then it is created with default properties.

The color set object is described in the chapter “Color Objects” in Inside Macintosh:
QuickDraw GX Objects.

Modified Color Set Object Data 7

Once a color set object is defined in the data stream, it can be modified. Modified color
set object data follows an operation opcode gxSetDataOpcode constant from the
gxGraphicsOperationOpcode enumeration and a data type opcode containing one
of the constants from the gxColorSetDataOpcode enumeration. Table 7-7 summarizes
the values of the constants for modified color set objects.

The first byte or two is space, space and specifies the number of components. The
remaining stream is colors. The compression for the color set can be byte or word. To
determine the number of colors in the stream use the following formula:

(size - colorSpaceByte * compression) / componentsInColorSpace *

compression

For instance, if the space is gxRGBSpace, the compression is gxByteCompression,
and the size is 7, the number of colors would be (7 - 1 * 1)/3*1, which evaluates to 2. If
the stream continued with 0, 0, 0, 0XFF, 0XFF, 0XFF, then the color set would contain
black (0X0000, 0X0000,0X0000) and white 0XFFFF, 0XFFFF, 0XFFFF). As the example
shows, the color set entries are compressed as colors. See section “Transfer Mode Data”
on page 7-44 for information on color compression.

Reserved Opcode for Modified Color Set Data 7

The data type opcode with value 0 is reserved for future expansion.
7-48 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Color Set Tag Data 7

A tag is added to the current color set object if the data type opcode has value 1. This is
the gxColorSetTagOpcode constant. The data for the parameters of the
GXSetColorSetTags function follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShortCompression (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSetShapeTags (shape, nil, 1, 0, 2, tag array).

The GXSetColorSetTags function is described in the chapter “Color Objects” of Inside
Macintosh: QuickDraw GX Objects.

New Tag Object Data 7

Data for a new tag object follows a gxNewObjectOpcode operation opcode and a data
type opcode with a value 0x2D. This is the gxTagTypeOpcode constant from the
gxGraphicsNewOpcode enumeration.

This opcode creates a new tag object with all of the properties of the previous tag object
in the data stream. If the current tag object is the first tag object in the stream, then it is
created with default properties. For tag data is uncompressed. The first parameter is tag
type (long), followed by data computed from opcode length - sizeof (long).

The GXNewtag function is described in the chapter “Tag Objects” in Inside Macintosh:
QuickDraw GX Objects.

New Bit Image Object Data 7

Data for a bit image object follows a gxNewObjectOpcode operation opcode and a data
type opcode with a value 0x2E. This is the gxBitImageTypeOpcode constant from the
gxGraphicsNewOpcode enumeration.

The data sequence is omit byte (gxOmitBitImage), followed by the fields described by
omit byte: rowBytes, compressed as long, height, compressed as long, and data
compressed in the custom format described ahead. The bit image is compressed only if it
makes the data stream smaller.

The GXNewBitmap function is described in the chapter “Bitmap Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

The bit image compression byte appears only in data streams containing a bitmap shape.
This byte describes how each section of a bit image is compressed. The bit image
compression byte follows the bytes containing the bit image attributes described by the
gxOmitBitImageMask constant.

Bit images are described in the “Bitmap Shapes” chapter of Inside Macintosh: QuickDraw
GX Graphics.

The bit image compression byte has the format xx yyyyyy.
About QuickDraw GX Stream Format 7-49

C H A P T E R 7

QuickDraw GX Stream Format
The xx bits describe which of the bit image compression type opcodes is used for the
next part of the bit image. The bit image compression opcode values are either 0, 1, 2,
or 3.

The yyyyyy bits describe the number of times, z, that the action defined by the bit image
compression opcode is replicated. The number of replications, z, can vary range from 0
to 63. Table 7-13 summarizes the four compression opcodes.

The analysis of a bit image compression byte in a stream format is described in the
section “Analyzing a Flattened Bitmap Shape” beginning on page 7-81.

New Font Name Data 7

Data for a font name follows a gxNewObjectOpcode operation opcode and a data type
opcode with a value 0x2F. This is the gxFontNameTypeOpcode constant from the
gxGraphicsNewOpcode enumeration.

The fields in the gxFlatFontName structure follow. This structure includes
the gxFontName, gxFontPlatform, gxFontScript, gxFontLanguage, and
gxFontName structures, the byte length of the name and the name itself.

The stream exactly mirrors the sequence and size of the fields in the gxFlatFontName
structure.

Table 7-13 Bit image compression opcodes

Bit image
compression

opcode Bit image compression description

0 Add the z bytes of bit image that follow to the current row. Z Bytes of
data follow.

1 Repeat 1 byte z times and add the bits to the current row. One byte of
data follows.

2 Copy z bytes of the previous row and add the bits to the current row.
No data follows.

3 Copy the previous row of bits z times and add the bits to the next z
rows. No data follows.
7-50 About QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
New Trailer Object Data 7

Data for a trailer object follows a gxNewObjectOpcode operation opcode and a data
type opcode with a value 0x3F. This is the gxTrailerTypeOpcode constant from the
gxGraphicsNewOpcode enumeration. This is the termination (last) object in the stream.
No data follows.

The last two bytes of a stream are always 0x01 and 0x3F. The next to the last byte in a
data stream contains a gxNewObjectOpcode constant with a record size of 1 byte. The
last byte in a data stream contains a gxTrailerTypeOpcode constant with a
gxTwoBitCompression value of 0, indicating the gxNoCompression constant.

About Print Files and Portable Digital Documents 7

QuickDraw GX printing performs background printing to all devices, allowing users
continued access to the application. The printing process includes the creation of a
specialized print file called a portable digital document.

Print Files 7
When an application prints, QuickDraw GX collects the printing information sent by the
application and writes it to a file. This process is called spooling and the file that is created
is called a print file. QuickDraw GX then reads the print file and prints it to the
appropriate device. The read and interpretation process is called despooling and the
printing process is called imaging.

A print file can be duplicated, dragged onto desktop printers, manipulated by print
queues, and redirected to other printer devices without re-spooling. Print files also
provide a device-independent information interchange format.

The QuickDraw GX spooling process consists of creating a print file and writing a stream
of flattened shape data to that file. This data is unflattened during the unspooling
process. Additional information must be provided in the print files. This includes job,
formatting, and optimization information.

The job-related information includes the name of the job, the destination device, quality,
and the number of copies. The formatting information includes the page sizes and
orientations. The optimization information includes the font database.
About Print Files and Portable Digital Documents 7-51

C H A P T E R 7

QuickDraw GX Stream Format
The print file consists of two forks, a data fork and a resource fork. The data fork
contains all the core data necessary to print a document. This consists of the flattened job
data, the flattened shape data for each page, and the flattened format data for each page.

The print file begins with a 32-bit QuickDraw GX version followed by a 32-bit offset that
describes the number of bytes from the beginning of the file to the start of the page
directory located at the end of the file.

The page directory contains a 32-bit number indicating the number of pages in the
document, an array of page sizes, and offsets to the start of the flattened shape data for
each page. The format of a print file for a four-page document is shown in Figure 7-11.

Figure 7-11 Print file format

Offset to page directory

Private data

Private date

Flattened shape data
for page 1

Private data

Flattened shape data
for page 2

Flattened shape data
for page 3

Private data

Version Stamp

Flattened shape data
for page 4

Page directory

Number of page = 4
Size of page 1

Offset to page 1
Size of page 2

Offset to page 2
Size of page 3

Offset to page 3
Size of page 4

Offset to page 4
7-52 About Print Files and Portable Digital Documents

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
QuickDraw Picture Data in Print Files

When creating a print file from a document that contains QuickDraw
drawing commands, QuickDraw GX by default saves the QuickDraw
data for each page in a tag object of tag type 'pict' attached to a
rectangle shape. Therefore, if you are examining the data stream of a
print file, you should note that a rectangle shape with an attached tag
object of type 'pict' indicates the presence of QuickDraw data. For
more information about this tag object and QuickDraw data, see the
discussion of the 'pict' tag object in the advanced printing features
chapter of Inside Macintosh: QuickDraw GX Printing. ◆

Portable Digital Documents 7
QuickDraw GX provides document portability that is independent of fonts, applications,
and output devices. The users of your application can create and save their results in the
form of a portable digital document or PDD.

A portable digital document consists of the print file containing flattened shapes
described in the previous section. These files provide all of the information necessary to
view and print the document, including the fonts that are used and other information
necessary to render the text and graphics. A portable digital document can be sent to
other Macintosh users and viewed or printed simply by opening the documents with a
viewer that can interpret them.

For more information on print files and portable digital documents, see the chapters
“Introduction to QuickDraw GX Printing” and “Core Printing Features” of Inside
Macintosh: QuickDraw GX Printing.

Using QuickDraw GX Stream Format 7

This section describes the use of the GraphicsBug utility to analyze flattened data
streams. Sample code is provided that draws a QuickDraw GX picture containing seven
shapes. GraphicsBug is used to flatten each shape. The resulting data stream for each
flattened shape is then analyzed.

This section describes how you can

■ flatten shapes using GraphicsBug

■ interpret the GraphicsBug flattened shape output format

■ analyze flattened shape data streams
Using QuickDraw GX Stream Format 7-53

C H A P T E R 7

QuickDraw GX Stream Format
Flattening Shapes With GraphicsBug 7
GraphicsBug is not just a QuickDraw GX debugging tool. It also allows you to evaluate
the data at specific memory locations. You can use GraphicsBug to look at the data
describing a QuickDraw GX shape both before and after you invoke the
GXFlattenShape function. This allows you to compare the original data and the
stream format after the GXFlattenShape function has been called.

For more information concerning GraphicsBug, see the chapter “QuickDraw GX
Debugging ” in this book.

You can use GraphicsBug to analyze a data stream by using the following procedure:

1. Create a QuickDraw GX shape.

2. Use the GraphicsBug heap dump HD command to determine the memory location of
the QuickDraw GX shape to be flattened.

3. Copy the memory location of the shape to the clipboard.

4. Type FL and paste the memory address. The command line should look like this:

fl <memory address>

For example: fl 41d788

5. The command FL applies the GXFlattenShape function to the shape located at the
specified memory address. This results in a flattened shape. An annotated version of
the QuickDraw GX data stream appears in the GraphicsBug window. GraphicsBug
does not alter the graphics memory in any way.

To create a flattened file, you can use the command

fl <memory address> "filename"

To view the contents of a file, such as a print file generated by printing a document, you
can use the command

uf "filename"

To view the stream associated with a particular page of a document, you can use the
command

uf <page number> "filename"
7-54 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Here are some guidelines for using GraphicsBug to analyze data streams:

■ The data in parentheses in the GraphicsBug window are the compressed byte codes
that were generated when the original shape was flattened. The data not in
parenthesis is GraphicsBug’s brief annotation of the data stream. The annotation
usually describes the shape data in its original format. The data in parentheses always
relates to the immediately previous data that is not in parentheses.

■ Sometimes GraphicsBug will not give the name of the font. This is because
GraphicsBug reads only the information contained in memory. GraphicsBug cannot
make a call to get the information. If GraphicsBug is used to flatten shapes that were
generated by a client call, the required data will always already be in memory and
will therefore be available. In this case, the GraphicsBug annotation will always
provide the name of the font.

■ If part of an object is compressed and another part of the object is not compressed,
GraphicsBug reports that there is “no compression.”

■ Bracketed numbers are references. When gxSetData or gxSetReference opcodes
are encountered, they can’t generate pointers to other objects. They have to generate
references. The first object is given reference 1. Subsequent objects are given references
2, 3, and so on.

Listing 7-2 shows an example of the information provided by GraphicsBug for a
flattened line.

Listing 7-2 A GraphicsBug annotation of the data stream of a flattened shape

fl 0c79090

owners 1)

newObject; size: #2 (03)

headerType; byte compression (80)

version == 1.0; flags == fontListFlatten | fontGlyphsFlatten

(01 03)

newObject; size: #6 (07) [1]

fontNameType; no compression (2f)

(04 02 01 01 00 00)

Listing 7-2 shows only the beginning of a data stream. For more examples of
GraphicsBug annotation of flattened shape data streams, see the next section.
Using QuickDraw GX Stream Format 7-55

C H A P T E R 7

QuickDraw GX Stream Format
Analyzing the Data Streams of Flattened Shapes 7
This section first uses sample code to generate a picture with seven shapes. Each of the
seven shapes is then flattened using the procedure described in the section “Flattening
Shapes With GraphicsBug” beginning on page 7-54. The section “Analyzing the Data
Streams of Flattened Shapes” beginning on page 7-56 describes how to use GraphicsBug
to interpret the data for each of the seven shapes. The GraphicsBug data stream output is
provided for each flattened shape in Listing 7-4 through Listing 7-10. The byte-by-byte
analysis of the data stream for each flattened shape is provided in Table 7-14 through
Table 7-20.

Creating a Picture With Seven Shapes 7

Listing 7-3 creates seven primitive shapes and adds them to a window’s page shape to
form the picture shown in Figure 7-12. This picture contains (from left to right and top to
bottom) a line, rectangle, curve, path, text, polygon and bitmap shape.

Listing 7-3 A picture with seven shapes

void CreateSampleImage(WindowPtr wind)

{

gxShape thePage;

gxShape theLine;

line lineData = {ff(25), ff(25), ff(125), ff(125)};

gxShape theRect;

gxRectangle rectData = {ff(25), ff(25), ff(75), ff(75)};

gxShape theCurve;

gxCurve curveData = {ff(25), ff(25), ff(275), ff(75), ff(125),

ff(125)};

gxShape thePath;

long tripleEightData[] = {1/* # of contours */, 6 /* # of points

*/, 0xff000000,

 0, 0,

 ff(75), 0,

 ff(5), ff(50),

 ff(75), ff(100),

 0, ff(100),

 ff(75), ff(50)};

gxShape theText;

gxRectangle theTextBounds;

gxColor textColor;

fixed x,y;

short loop;

gxShape thePolygon;
7-56 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
long starData[] = {1, /* number of contours */ 5, /* number of

points */

ff(60), 0, ff(90), ff(90), ff(0), ff(30), ff(120), ff(30),

ff(0), ff(90)}; /* the points */

gxShape theBitmap;

/* retrieve the page shape so we can add to it */

thePage = GetDocShape(wind);

/* Create a line shape*/

theLine = GXNewLine (&lineData);

GXSetShapePen(theLine, ff(9));

GXAddToShape(thePage, theLine);

GXDisposeShape(theLine);

/* create a rectangle; the color of the rectangle is red */

theRect = GXNewRectangle(&rectData);

{gxColor redColor =

{gxRGBSpace, nil,{

0xFFFF,0,0}};

GXSetShapeColor(theRect, &redColor);

}

GXSetShapeFill (theRect, closedFrameFill);

GXMoveShapeTo (theRect, ff(150), ff(25));

GXAddToShape(thePage, theRect);

GXDisposeShape(theRect);

/* create a curve shape; the shape has a pen thickness of 3.25 */

theCurve = GXNewCurve(&curveData);

GXSetShapePen(theCurve, fl(3.25));

GXMoveShapeTo (theCurve, ff(210), ff(25));

GXAddToShape(thePage, theCurve);

GXDisposeShape(theCurve);

/* create a path shape; the shape’s color is green and the pen

thickness is 2 */

thePath = GXNewPaths((paths *) tripleEightData);

GXSetShapeFill (thePath, closedFrameFill);

GXSetShapePen(thePath, ff(2));

GXSetShapeCommonColor (thePath, green);
Using QuickDraw GX Stream Format 7-57

C H A P T E R 7

QuickDraw GX Stream Format
GXMoveShapeTo (thePath, ff(390), ff(25));

GXAddToShape(thePage, thePath);

GXDisposeShape(thePath);

/* create a text shape; the shape is the characters GX colored in

hsv space and rotated 90 degrees */

/* create the text, set the font size, and set the font name */

theText = NewText(2,(unsigned char*)"GX", nil);

GXSetShapeCommonFont(theText, timesFont);

GXSetShapeTextSize(theText, ff(135));

GXMoveShapeTo (theText, ff(25), ff(230));

GXSetShapeAttributes (theText, gxMapTransformShape);

/* create an hsv color space and set up the initial colors */

textColor.space = hsvSpace;

textColor.profile = nil;

textColor.element.hsv.hue = 0x7400;

textColor.element.hsv.saturation = 0xFFFF;

textColor.element.hsv.value = 0xFFFF;

/* get the bounds of "theText" and determine the coordinates of

the bottom left corner */

GXGetShapeBounds(theText, 0L, &theTextBounds);

x = theTextBounds.left;

y = theTextBounds.bottom;

/* rotate "theText"; add each letter to the picture */

for (loop = 0; loop < 6; loop++) {

GXSetShapeColor(theText, &textColor);

GXRotateShape(theText, ff(90), x, y);

GXAddToShape(thePage, theText);

textColor.element.hsv.hue += 0x0940;

}

GXDisposeShape(theText);

/* create a polygon shape; the shape’s color is yellow, the pen

size is 3, and it is skewed in the vertical direction by a factor

of 0.5 */

thePolygon = GXNewPolygons((gxPolygons *) starData);

GXSetShapeFill(thePolygon, gxEvenOddFill);
7-58 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
GXSetShapePen (thePolygon, ff(3));

GXSetShapeCommonColor (thePolygon, yellow);

GXMoveShapeTo (thePolygon, ff(240), ff(110));

GXSkewShape(thePolygon, 0, fl(0.5), 0, 0);

GXAddToShape(thePage, thePolygon);

GXDisposeShape(thePolygon);

/* create a bitmap by retrieving a bitmap from the resource fork

and skewing it in the horizontal direction by a factor of .*/

theBitmap = GXGetPixMapShape(128);

GXValidateShape (theBitmap);

GXSkewShape(theBitmap, ff(2), 0, 0, 0);

GXMoveShapeTo (theBitmap, ff(290), ff(190));

GXAddToShape(thePage, theBitmap);

GXDisposeShape(theBitmap);

Figure 7-12 A picture with seven shapes
Using QuickDraw GX Stream Format 7-59

C H A P T E R 7

QuickDraw GX Stream Format
Analyzing a Flattened Line Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the line
shape shown in Figure 7-13.

The line shape is created with a pen size of 9 and a default color of black. The pen is
moved from the point (25.0, 25.0) to point (125.0, 125.0).

Figure 7-13 The line shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-4.
The first line of the output shows the use of the fl command on the memory address
that contained the line shape. The flattened line shape data stream is the sequential byte
data that appears in parentheses. For example, the first four bytes of the data stream in
Listing 7-4 are (06) (80) (01 03). All other annotation is provided by GraphicsBug.

Since the flattened line shape is the first shape in the data stream, this first part of the
GraphicsBug output shows the data stream header. The GraphicsBug output for the
other flattened shapes described in this section correspond to the data stream that
describes that specific shape. These shape-specific sections are presented in QuickDraw
GX drawing order.

Listing 7-4 GraphicsBug analysis of a flattened line

fl 0c79090

owners 1)

newObject; size: #2 (03)

headerType; byte compression (80)

version == 1.0; flags == fontListFlatten | fontGlyphsFlatten

(01 03)

newObject; size: #6 (07) [1]

fontNameType; no compression (2f)
7-60 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
(04 02 01 01 00 00)

newObject; size: #0 (01) [1]

styleType; no compression (28)

setData; size: #1 (42)

stylePen; byte compression (83)

(09)

newObject; size: #0 (01) [1]

inkType; no compression (29)

newObject; size: #0 (01) [1]

transformType; no compression (2a)

newObject; size: #4 (05)

lineType; byte compression (83)

(19 19 7d 7d)

newObject; size: #0 (01)

trailerType; no compression (3f)

Table 7-14 shows the data stream analysis of the flattened line shape. The stream data is
obtained from the GraphicsBug output in Listing 7-4. This table provides a description of
each byte of the data stream for this shape.

Table 7-14 Analysis of the data stream of a flattened line shape

Values in
data stream
(binary) Type of information Value Description

New header

0x03
(00
000011)

Operation opcode

Record size

0

3

New object

Record size is 3 bytes

0x80
(10
000000)

Compression type opcode

Data type opcode

2

0

Byte compression

Header

0x01
(00000001)

Data 1.0 QuickDraw GX Version 1.0

0x03
(00000011)

Data 3 gxFontListFlatten constant from the
gxFlattenFlags enumeration is 0x01

gxFontGlyphsFlatten constant from
the gxFlattenFlags enumeration is 0x02

continued
Using QuickDraw GX Stream Format 7-61

C H A P T E R 7

QuickDraw GX Stream Format
New font name for the style object

0x07
(00
000111)

Operation opcode

Record size

0

7

New object

Record size is 7 bytes

0x2F
(00
101111)

Compression type opcode

Data type opcode

2

0x2F

No compression

Font name

0x04 Data 4 The gxUniqueFontName constant of the
gxFontName enumeration

0x02 Data 2 The gxMacintoshPlatform constant of
the gxFontPlatform enumeration

0x01 Data 1 The gxMacintoshRomanScript constant
of the gxMacintoshScripts enumeration

0x01 Data 1 The gxEnglishLanguage constant of the
gxFontLanguage enumeration

0x0001A

0x41 70 70
6C 65 20 43
6F 6D 70 75
74 65 72 20
54 69 6D 65
73 20 52 6F
6D 61 6E

Data 26 The length field (short) of the
gxFontName is 26 bytes.

Data Each of the 26 bytes is one glyph code. The
font name is “Apple Computer Times
ROman.”

New style object

0x01
(00
000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte

0x28
(00
101000)

Compression type opcode

Data type opcode

2

0x28

No compression

New style

0x42
(01
000010)

Operation opcode

Record size

1

1

Set data

Record size is 1 byte

Table 7-14 Analysis of the data stream of a flattened line shape (continued)

Values in
data stream
(binary) Type of information Value Description
7-62 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
0x83
(10
000011)

Compression type opcode

Data type opcode

2

3

No compression

gxStylePenOpcode constant of the
gxStyleDataOpcode enumeration

0x09 Data 9.0 The pen width parameter for the
GXSetShapePen function is 9.0

New ink object

0x01
(00
000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte

0x29
(00
101001)

Compression type opcode

Data type opcode

0

0x29

No compression

New ink

New transform

0x01
(00
000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte

0x2A
(00
101001)

Compression type opcode

Data type opcode

0

0x2A

No compression

New transform

New shape object

0x05
(00
000101)

Operation opcode

Record size

0

5

New object

Record size is 5 bytes

0x83
(10
000011)

Compression type opcode

Data type opcode

2

3

Byte compression

gxLineType constant of the
gxShapeTypes enumeration

0x19 Data 25.0 x coordinate of the first point is 25.0

0x19 Data 25.0 y coordinate of the first point is 25.0

0x7D Data 125.0 x coordinate of the last point is 125.0

0x7D Data 125.0 y coordinate of the last point is 125.0

Table 7-14 Analysis of the data stream of a flattened line shape (continued)

Values in
data stream
(binary) Type of information Value Description
Using QuickDraw GX Stream Format 7-63

C H A P T E R 7

QuickDraw GX Stream Format
Analyzing a Flattened Rectangle Shape 7

The function described in section “Creating a Picture With Seven Shapes” beginning on
page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
rectangle shape shown in Figure 7-14.

The red rectangle shape is created with its frame. The size and shape of the rectangle is
defined by its upper-left boundary point (25.0, 25.0) and its lower-right boundary point
(75.0, 75.0). The fill type is closed-frame. Once the rectangle is drawn, it is moved to the
point (150.0, 25.0) to position it in the picture.

Figure 7-14 The rectangle shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-5.
The flattened rectangle shape data stream is the sequential data that appears in
parentheses.

Listing 7-5 GraphicsBug analysis of a flattened rectangle shape

inkType; no compression (29)

 space gxRGBSpace

 profile nil

 value(s) 1.0000 (ffff) 0.0000 0x0000 0.0000 0x0000

setData; size: #4 (45)

inkColor; no compression (02)

(fe ff 00 00)

newObject; size: #8 (09)

rectangleType; word compression (45)

(00 96 00 19 00 c8 00 4b)

setData; size: #1 (42)

shapeFill; byte compression (82)

(02)
7-64 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Table 7-15 shows the data stream analysis of the flattened rectangle shape. The stream
data is obtained from the GraphicsBug output in Listing 7-5. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown..

Table 7-15 Analysis of the data stream of a flattened rectangle shape

Values in
data stream
(binary) Type of information Value Description

New ink object

0x01
(00 000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte.

0x29
(00 101001)

Compression type opcode

Data type opcode

0

0x29

No compression

New ink

Set data for ink color

0x45
(01 000101)

Operation opcode

Record size

1

5

Set data

Record size is 5 bytes.

0x02
(00 000010)

Compression type opcode

Data type opcode

0

2

No compression

gxInkColorOpcode constant of
the gxInkDataOpcode enumeration

0xFE
(11 11 1110)

Omit byte – The gxOmitColorsMask and
gxOmitColorsShift enumerations
are used to interpret this byte. Data1,
color space, is omitted so the default
RGB color space properties are applied
to the current object. Data2, color
profile, is omitted so the default color
profile is applied to the current object.
Data3, color components, uses only
bits 3, 2, and 1 for RGB. The
compression for each of the red, green,
and blue color components is byte
compression.

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF or 65,535. The RGB
value for the red field of the
gxRgbColor structure is 65,535.

continued
Using QuickDraw GX Stream Format 7-65

C H A P T E R 7

QuickDraw GX Stream Format
0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the green field of the
gxRgbColor structure is 0.

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the blue field of the gxRgbColor
structure is 0.

New rectangle object

0x09
(00 001001)

Operation opcode

Record size

0

5

New object

Record size is 9 bytes.

0x45
(01 000101)

Compression type opcode

Data type opcode

1

5

Word compression

gxRectangleType constant of
the gxShapeTypes enumeration

0x00 96 Data 150.0 x-coordinate of the left top corner
point is 150.0

0x00 19 Data 25.0 y-coordinate of the left top corner
point is 25.0

0x00 C8 Data 200.0 x-coordinate of the right bottom corner
point is 200.0

0x00 4B Data 125.0 y-coordinate of the right bottom
corner point is 75.0

Set data for shape fill

0x42
(01 000010)

Operation opcode

Record size

1

2

Set data

Record size is 2 bytes.

0x82
(10 000010)

Compression type opcode

Data type opcode

2

2

Byte compression

gxShapeFillOpcode constant of
the gxShapeDataOpcode
enumeration

0x02 Data 2 gxClosedFrameFill constant of the
gxShapeFills enumeration. The
shape fill constant is a long number so
the byte is expanded to a long.

Table 7-15 Analysis of the data stream of a flattened rectangle shape (continued)

Values in
data stream
(binary) Type of information Value Description
7-66 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Analyzing a Flattened Curve Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
curve shape shown in Figure 7-15.

The curve has a pen thickness of 3.25. The size and shape of the curve are defined by its
first point (210.0), control point (460.0, 75.0), and last point (310.0, 125.0). Once the curve
is drawn, it is moved to the point (210.0, 25.0) to position it in the picture.

Figure 7-15 The curve shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-6.
The flattened curve shape data stream is the sequential data that appears in parentheses.

Listing 7-6 GraphicsBug analysis of a flattened curve shape

.

.

.

newObject; size: #6 (07) [1]

fontNameType; no compression (2f)

(04 02 01 01 00 00)

newObject; size: #0 (01) [1]

styleType; no compression (28)

setData; size: #4 (45)

stylePen; no compression (03)

(00 03 40 00)

.

.

.

Using QuickDraw GX Stream Format 7-67

C H A P T E R 7

QuickDraw GX Stream Format
newObject; size: #12 (0d)

curveType; word compression (44)

(00 d2 00 19 01 cc 00 4b 01 36 00 7d)

newObject; size: #0 (01)

trailerType; no compression (3f)

Table 7-16 shows the data stream analysis of the flattened rectangle shape. The stream
data is obtained from the GraphicsBug output in Listing 7-6. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.

Table 7-16 Analysis of the data stream of a flattened curve shape

Values in
data stream
(binary) Type of information Value Description

0x45
(01
000101)

Operation opcode

Record size

1

5

Set data.

Record size is 5 bytes.

0x03
(00
000011)

Compression type opcode

Data type opcode

0

3

No compression

gxStylePenOpcode constant of
the gxStyleDataOpcode enumeration

0x00034000

.

.

.

Data 3.25 The pen width parameter for the
GXSetPen function is 3.25.

0x0D
(00 01101)

Operation opcode

Record size

0

13

New object

Record size is 13 bytes.

0x44
(01
000100)

Compression type opcode

Data type opcode

1

4

Word compression

gxCurveType constant of
the gxShapeTypes enumeration

0x00 D2 Data 210.0 x-coordinate of the first point is 210.0.

0x00 19 Data 25.0 y-coordinate of the first point is 25.0.

0x00 CC Data 460.0 x-coordinate of the control point is 460.0.

0x00 4B Data 75.0 y-coordinate of the control point is 75.0.

0x00 36 Data 310.0 x-coordinate of the last point is 310.0.

0x00 7D Data 125.0 x-coordinate of the last point is 125.0.
7-68 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Analyzing a Flattened Path Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the path
shape shown in Figure 7-16.

A path is created with a pen thickness of 2.0 and a color of green. The size and shape of
the curve are defined by the points (0.0, 0.0), (75.0, 0.0), (5.0, 50.0), (75.0, 100.0), (0.0,
100.0), and (75.0, 50.0). Once the path is drawn, it is moved to the point (290.0, 25.0) to
position it in the picture. The line is not on any of the points.

Figure 7-16 The path shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-7.
The flattened path shape data stream is the sequential data that appears in parentheses.

Listing 7-7 GraphicsBug analysis of a flattened path shape

newObject; size: #0 (01) [1]

transformType; no compression (2a)

newObject; size: #19 (14)

pathType; byte compression (87)

(01 06 ff 2a 01 73 40 00 19 b5 00 46 ce ba ce 4b 00 b5 32)

setData; size: #1 (42)

shapeFill; byte compression (82)

(02)

Using QuickDraw GX Stream Format 7-69

C H A P T E R 7

QuickDraw GX Stream Format
Table 7-17 shows the data stream analysis of the flattened path shape. The stream data is
obtained from the GraphicsBug output in Listing 7-7. This table provides a description of
each byte of the data stream for this shape. Data format sequences that are identical to
previously described data sequences in the stream are not shown and are not analyzed
here.

Table 7-17 Analysis of the data stream of a flattened path shape

Values in
data stream
(binary) Type of information Value Description

New path object

0x14
(00
010100)

Operation opcode

Record size

0

14

New object

Record size is 14 bytes.

0x87
(10
000111)

Compression type opcode

Data type opcode

2

7

Byte compression

gxPathType constant of the
gxShapeTypes enumeration

0x01 Data 1 The number of contours is 1.

0x06 Data 6 The number of points in the contour is 6.

0xFF
(111111
11)

Control byte – Each of the 6 points is assigned a control bit
from the control byte. Points having a 0 bit
are on the line. Points having a 1 bit are off
the line. All 6 points are off the line. The
final 2 bits are unused.

0x2A
(00 10 10
10)

Omit byte – The gxOmitPathMask and
gxOmitPathShift enumerations are used
to interpret this byte. No compression is
used for data1, x coordinate of first point.
Byte compression is used for data2, y
coordinate of first point. Byte compression
is used for data3, all x relative coordinate
deltas. Byte compression is used for data4,
all y relative coordinate deltas.

0x01734000 Data1 371.25 Absolute x-coordinate of the first point is
371.25.
7-70 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
0x0x19 Data2 25.0 Absolute y-coordinate of the first point is
25.0.

0xB5 Data3 -75.0 Relative x-coordinate of the second point is
-75.0. Absolute x coordinate is 371.25 –
(–75.0) = 446.25.

0x00 Data4 0.0 Relative y-coordinate of the second point is
0. Absolute y coordinate is 25.0 – (0.0) =
25.0.

0x46 Data3 70.0 Relative x-coordinate of the third point is
70.0. Absolute x coordinate is 371.25 – (70.0)
= 301.25.

0xCE Data4 –50.0 Relative y-coordinate of the third point is
–50.0. Absolute y coordinate is 25.0 – (–50.0)
= 75.0.

0xBA Data3 –70.0 Relative x coordinate of the fourth point is
-70.0. Absolute x-coordinate is 371.25 –
(–70.0) = 441.25.

0xCE Data4 –50.0 Relative y coordinate of the fourth point
–50.0. Absolute y-coordinate is 25.0 –
(–50.0) = 75.0.

0x4B Data3 75.0 Relative x coordinate of the fifth point is
75.0. Absolute x-coordinate is 371.25 –
(75.0) = 296.25.

0x00 Data4 0.0 Relative y coordinate of the fifth point is
0.0. Absolute y-coordinate is 25.0 – (0.0) =
25.0.

0xB5 Data3 –75.0 Relative x coordinate of the sixth point is
–75.0. Absolute x-coordinate is 371.25 –
(–75.0) = 446.25.

0x32 Data4 50.0 Relative y coordinate of the sixth point is
50.0. Absolute y-coordinate is 25.0 – (50.0) =
–25.0.

Table 7-17 Analysis of the data stream of a flattened path shape (continued)

Values in
data stream
(binary) Type of information Value Description
Using QuickDraw GX Stream Format 7-71

C H A P T E R 7

QuickDraw GX Stream Format
Analyzing a Flattened Text Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the path
shape shown in Figure 7-17.

A text shape with glyphs G and X is colored in hsv space. The glyphs are rotated six
times by 90 degrees about the left bottom corner. Once the text is drawn, it is moved to
the point (25.0, 230.0) to position it in the picture.

Figure 7-17 The text shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-8.
The flattened text shape data stream is the sequential data that appears in parentheses.

GXXXXXX
GGGGG
7-72 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Listing 7-8 GraphicsBug analysis of a flattened text shape

newObject; size: #32 (21) [1]

fontNameType; no compression (2f)

(04 02 01 01 00 1a)

Apple Computer Times Roman

(41 70 70 6c 65 20 43 6f 6d 70 75 74 65 72 20 54 69 6d 65 73 20

52 6f 6d 61 6e)

newObject; size: #0 (01) [1]

styleType; no compression (28)

setData; size: #1 (42)

styleFont; byte compression (8a)

(01)

setData; size: #2 (43)

styleTextSize; word compression (49)

(00 87)

newObject; size: #0 (01) [1]

inkType; no compression (29)

 space hsvSpace

 profile nil

 value(s) 0.4531 0x7400 1.0000 (ffff) 1.0000 (ffff)

setData; size: #6 (47)

inkColor; no compression (02)

(b6 03 74 00 ff ff)

newObject; size: #0 (01) [1]

transformType; no compression (2a)

setData; size: #24 (59)

transformMapping; no compression (03)

(00 3d 02 12 00 00 98 fe 00 00 f7 47 00 00 f7 47 00 00 42 42 ff

ff bd be)

newObject; size: #8 (09)

textType; no compression (09)

 byteLength 2

 position { 25.0000, 230.0000}

Displaying memory from 00c7a116

 00c7a116 4758 GX

(a4)

bytes (02)

position.x (19)

position.y (00 e6 02 47 58)

setData; size: #1 (42)

shapeAttributes; byte compression (80)

(20)

Using QuickDraw GX Stream Format 7-73

C H A P T E R 7

QuickDraw GX Stream Format
Table 7-18 shows the data stream analysis of the flattened rectangle shape. The stream
data is obtained from the GraphicsBug output in Listing 7-8. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.

Table 7-18 Analysis of the data stream of a flattened text shape

Values in
data stream
(binary) Type of information Value Description

New font name for the style object

0x21
(00
100001)

Operation opcode

Record size

0

21

New object

Record size is 21 bytes

0x2F
(0010111)

Compression type opcode

Data type opcode

0

7

No compression

gxFontNameOpcode constant of
the gxGraphicsNewOpcode
enumeration

0x04 Data 4 The gxUniqueFontName constant
of the gxFontName enumeration

0x02 Data 2 The gxMacintoshPlatform constant
of the gxFontPlatform enumeration

0x01 Data 1 The gxMacintoshRomanScript
constant of the gxMacintoshScripts
enumeration

0x01 Data 1 The gxEnglishLanguage constant
of the gxFontLanguage enumeration

0x0001A Data 26 The length field (short) of the
gxFontName structure is 26 bytes.

0x41 70
70 6C 65
20 43 6F
6D 70 75
74 65 72
20 54 69
6D 65 73
20 52 6F
6D 61 6E

Data Each of the 26 bytes is one glyph code.
The font name is “Apple Computer
Times Roman.”
7-74 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
New style object

0x01
(00
000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte

0x28
(00
101000)

Compression type opcode

Data type opcode

0

0x28

No compression

gxStyleTypeOpcode constant of the
gxGraphicsNewOpcode enumeration

Set data for style object

0x42
(01
000010)

Operation opcode

Record size

1

2

Set data.

Record size is 2 bytes.

0x8A
(10
001010)

Compression type opcode

Data type opcode

2

10

Byte compression

gxStyleFontOpcode constant of
the gxStyleDataOpcode enumeration

0x01 Data 1 A reference to font name object 1.

Set data for the text size of the style object

0x43
(01
000011)

Operation opcode

Record size

1

3

Set data.

Record size is 3 bytes.

0x49
(01
001001)

Compression type opcode

Data type opcode

1

9

Word compression

gxStyleTextSizeOpcode constant of
the gxStyleDataOpcode enumeration

0x00 87 Data 135.0 The size parameter for the
GXSetShapeTextSize function is
135.0 points.

New ink object

0x01
(00
000001)

Operation opcode

Record size

0

1

New object

Record size is 1 byte.

0x29
(00
101001)

Compression type opcode

Data type opcode

0

0x29

No compression

gxInkTypeOpcode constant of the
gxGraphicsNewOpcode enumeration

continued

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in
data stream
(binary) Type of information Value Description
Using QuickDraw GX Stream Format 7-75

C H A P T E R 7

QuickDraw GX Stream Format
Set data for ink color of the ink object

0x47
(01
000111)

Operation opcode

Record size

1

7

Set data.

Record size is 7 bytes.

0x02
(00
000010)

Compression type opcode

Data type opcode

0

2

No compression

gxInkColorOpcode constant of
the gxInkDataOpcode enumeration

0xB6
(10 11
0110)

Omit byte – The gxOmitColorsMask and
gxOmitColorsShift enumerations
are used to interpret this omit byte.
Data1, color space, is byte compressed.
Data2, color profile, is omitted so the
default color profile is applied to the
current object. Data3, color components,
uses bits 3, 2, 1, and 0 for color space.
The compression for each of the red,
green and blue color components is byte
compression.

0x03 Data1 3 gxHSVSpace constant of the
gxColorSpaces enumeration

0x74 00 Data2 0.453 The hue of the gxHSVColor structure is
0.453.

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF. The saturation of the
gxHSVColor structure is 1.0000.

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF. The value of the
gxHSVColor structure is 1.0000.

New transform object

Bytes 0x01 and 0x2A define the new transform object. This data sequence is identical to the previous
line shape example.

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in
data stream
(binary) Type of information Value Description
7-76 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Set data for mapping of the transform object

0x59
(01
011001)

Operation opcode

Record size

1

7

Set data.

Record size is 25 bytes. The transform
data size is 25 – 1 (data type opcode
byte) = 24 bytes. Since each mapping
requires 8 bytes, there are 24/8 = 3
mappings. This indicates that there is a
translate, scale, and skew mapping.

0x03
(00
000011)

Compression type opcode

Data type opcode

0

3

No compression

gxTransformMapping constant of
the gxTransformDataOpcode
enumeration

0x003D0212 Data 61.12 The deltaY parameter for the
GXSetTransformMapping function

0x000098FE Data 0.60 The deltaX parameter for the
GXSetTransformMapping function

0x0000F747 Data 0.97 The hScale parameter for the
GXSetTransformMapping function

0x0000F747 Data 0.97 The scale parameter for the
GXSetTransformMapping function

0x00004242 Data 0.26 The hSkew parameter for the
GXSetTransformMapping function

0xFFFFBDBE Data –0.4242 The vSkew parameter for the
GXSetTransformMapping function

New shape object

0x09
(00
001001)

Operation opcode

Record size

0

9

New object

Record size is 9 bytes.

0x09
(00
001001)

Compression type opcode

Data type opcode

0

9

No compression

gxTextType constant of the
gxShapeTypes enumeration

continued

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in
data stream
(binary) Type of information Value Description
Using QuickDraw GX Stream Format 7-77

C H A P T E R 7

QuickDraw GX Stream Format
0x2A
(00 10 10
10)

Omit byte – The gxOmitTextMask and
gxOmitTextShift enumerations are
used to interpret this omit byte. Byte
compression is used for data1, and byte
length. Byte compression is used for
data2, and the x coordinate of the
position. Word ?? compression is used
for data3, y coordinate of position point.
Byte compression is used for data4,
number of characters and text.

0x02 Data1 2 The byte length is 2.

0x19 Data2 25.0000 The x-coordinate of the text position is
25.0000.

0x00 E6 Data3 230.0000 The y-coordinate of the text position is
230.0000.

0x02 Data4 2 The number of characters is 2.

0x47 Data4 0x47 Roman capital G

0x58 Data4 0x58 Roman capital X

Set data for attributes of the text object

0x42
(01
000010)

Operation opcode

Record size

2

2

Set data

Record size is 2 bytes.

0x80
(10
000010)

Compression type opcode

Data type opcode

2

3

Byte compression

gxShapeAttributes constant of
the gxShapeDataOpcode enumeration

0x20 Data 32 gxMapTransformShape constant of
the gxShapeAttributes enumeration

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in
data stream
(binary) Type of information Value Description
7-78 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Analyzing a Flattened Polygon Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
polygon shape shown in Figure 7-18.

The yellow polygon shape is drawn with a pen thickness of 3.0 and skewed in the
vertical direction by 0.5. Its size and shape is controlled by the vectors defined by the
points (60.0, 0.0), (90.0, 90.0), (0.0, 30.0), (120.0, 30.0), (0.0, 90.0). The fill is even-odd. Once
the polygon is drawn, it is moved to the point (240.0, 110.0) to position it in the picture.

Figure 7-18 The polygon shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-9.
The flattened polygon shape data stream is the sequential data that appears in
parentheses.

Listing 7-9 GraphicsBug analysis of a flattened polygon shape

polygonType; byte compression (86)

(01 05 5a 01 2c 01 04 e2 97 5a 69 88 c4 78 00)
Using QuickDraw GX Stream Format 7-79

C H A P T E R 7

QuickDraw GX Stream Format
Table 7-19 shows the data stream analysis of the flattened polygon shape. The stream
data is obtained from the GraphicsBug output in Listing 7-9. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.

Table 7-19 Analysis of the data stream of a flattened polygon shape

Values in
data stream
(binary) Type of information Value Description

New shape object

0x10
(00
010000)

Operation opcode

Record size

0

10

New object

Record size is 10 bytes.

0x86
(10
000110)

Compression type opcode

Data type opcode

2

6

Byte compression

gxPolygonType constant of the
gxShapeTypes enumeration

0x01 Data 1 The number of contours is 1.

0x05 Data 5 The number of vectors in the contour is 5.

0x5A
(01 01 10
10)

Omit byte – The gxOmitPathMask and
gxOmitPathShift enumerations are used
to interpret this byte. Word compression is
used for data1, and x coordinate of first
point. Word compression is used for data2,
and y coordinate of first point. Byte
compression is used for data3, and all x
relative coordinate deltas. Byte compression
is used for data4, and all y relative
coordinate deltas.

0x01 2C Data1 290.0 Absolute x-coordinate of the first point is
290.0

0x01 04 Data2 260.0 Absolute y-coordinate of the first point is
260.0

0xE2 Data3 –30.0 The x-coordinate distance of the second
point from the first point is –75.0. Absolute
x coordinate of the second point is 290.0 –
(–30.0) = 320.0

0x97 Data4 –105.0 The y-coordinate distance of the second
point from the first point is –105.0. Absolute
y-coordinate of the second point is 260.0 –
(–105.0) = 365.0.

0x5A Data3 90.0 The x-coordinate distance of the third point
from the first point is 90.0. Absolute
x-coordinate of the third point is 290.0 –
(90.0) = 200.0.
7-80 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Analyzing a Flattened Bitmap Shape 7

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
polygon shape shown in Figure 7-19.

The bitmap was retrieved from the resource fork and skewed in the horizontal direction
by a factor of 2.0. Once the bitmap is drawn, it is moved to the point (200.0, 190.0) to
position it in the picture.

Figure 7-19 The bitmap shape drawn

0x69 Data4 151.0 The y-coordinate distance of the third point
from the first point is 151.0. Absolute
y-coordinate of the third point is 260.0 –
(151.0) = 109.0.

0x88 Data3 136.0 The x-coordinate distance of the fourth
point from the first point is 70.0. Absolute
x-coordinate of the fourth point is 290.0 –
(70.0) = 220.0

0xC4 Data4 –60.0 The y-coordinate distance of the fourth
point from the first point is –60.0. Absolute
y-coordinate of the fourth point is 260.0 –
(–60.0) = 320.0.

0x78 Data3 120.0 The x-coordinate distance of the fifth point
from the first point is 70.0. Absolute
x-coordinate of the fifth point is 290.0 –
(120.0) = 170.0.

0x00 Data4 0.0 The y-coordinate distance of the fifth point
from the first point is –50.0. Absolute
y-coordinate of the fifth is 260.0 – (0.0) =
260.0.

Table 7-19 Analysis of the data stream of a flattened polygon shape (continued)

Values in
data stream
(binary) Type of information Value Description
Using QuickDraw GX Stream Format 7-81

C H A P T E R 7

QuickDraw GX Stream Format
The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-10.
The flattened bitmap shape data stream is the sequential data that appears in
parentheses.

Listing 7-10 GraphicsBug analysis of a flattened bitmap shape

newObject; size: #0 (01) [1]

transformType; no compression (2a)

setData; size: #12 (4d)

transformMapping; word compression (43)

(01 22 00 be 00 01 00 01 00 00 00 02)

newObject; size: #403 (00 00 01 94) [1]

bitImage; no compression (2e)

(a8 34 58 73 11 01 01 c2 81 70 22 01 21 82 ca ...)

newObject; size: #49 (32) [1]

colorSetType; byte compression (ac)

(01 ff ff ff ff 00 00 33 ff 00 33 cc 00 00 ...)

newObject; size: #10 (0b)

bitmapType; no compression (08)

(aa)

image (01)

width (66)

height (58)

rowBytes (34 ab)

pixelSize (04)

space (0b)

set (01 f0)

Table 7-20 shows the data stream analysis of the flattened bitmap shape. The stream data
is obtained from the GraphicsBug output in Listing 7-10. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.
7-82 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Table 7-20 Analysis of the data stream of a bitmap shape

Values in
data stream
(binary) Type of information Value Description

New transform object

Bytes 0x01 and 0x2A define the new transform object. This data sequence is identical to the previous
line shape example.

Set data for mapping of the transform object

0x4D
(01
001101)

Operation opcode

Record size

1

13

Set data

Record size is 13 bytes. The transform
data size is13 – 1 (data type opcode
byte) = 12 bytes. Since each mapping
requires 8 bytes, there are 12/2 =6
mappings. This indicates that there is
a translate, scale, and skew mapping.

0x43
(01
000011)

Compression type opcode

Data type opcode

1

3

Word compression

gxTransformMapping constant of
the gxTransformDataOpcode
enumeration

0x0122 Data 290.0 The deltaX parameter for the
GXSetTransformMapping function
is 290.0.

0x00BE Data 190.0 The deltaY parameter for the
GXSetTransformMapping function
is 190.0.

0x0001 Data 1.0 The hScale parameter for the
GXSetTransformMapping function
is 1.0.

0x0001 Data 1.0 The vScale parameter for the
GXSetTransformMapping function
is 1.0.

0x0000 Data 0.0 The hSkew parameter for the
GXSetTransformMapping function
is 0.0.

0x0002 Data 2.0 The vSkew parameter for the
GXSetTransformMapping function
is 2.0.

continued
Using QuickDraw GX Stream Format 7-83

C H A P T E R 7

QuickDraw GX Stream Format
New bitmap image

0x00
(00
000000)

Operation opcode

Record size

0

0

New object

Record size is > 64 bytes.

0x00 Record size (continued) 0 Record size is > 256 bytes.

0x01 94 Record size (continued) 404 Record size is 404 bytes. For
additional information about the
stream format for the record size, see
the section “Record Size” beginning
on page 7-11.

0x2E
(00
101110)

Compression type opcode

Data type opcode

0

0x2E

No compression

gxBitImageOpcode constant of the
gxGraphicsNewOpcode enumeration

0xA8
(10 10 1
000)

Omit byte – The gxOmitBitImageMask and
gxOmitBitImageShift
enumerations are used to interpret
this omit byte. Data1, width, is byte
compressed. Data2, height, is
byte compressed. Data3, indicates that
the bit image data is compressed. The
last3 bits are not used and are
reserved.

0x34 Data1 52 The bit image row width is 52 bytes.

0x58 Data2 88 The bit image column height is 88
bytes.

Row 1 of the bit image follows

0x73
(01
110011)

Bit image compression byte 1

51

Bits 6 and 7 are 1. This is the
gxRepeatBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration.

The bits that follow are to be repeated
51 times.

0x11 Data 11 The bits “11” are to be repeated 51
times

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binary) Type of information Value Description
7-84 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
0x01
(00
000001)

Data 0

1

This is the
gxCopyBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration. The bits in the next byte
are added to the first row x number of
times.

The value of x is 1.

0x01 Data “01” The bits “01” are added to row 1

Rows 2 through 11 of the bit image follow

0xC2
(11
000010)

Bit image compression byte

Previous row repeat number

3

2

This is the
gxRepeatBitImageScanOpcode
constant of the
gxBitImageCompression
enumeration. The previous scan line is
repeated x times.

The value of x is 2. The first row of bits
is repeated 2 times.

Row 12

0x81
(10
000001)

Bit image compression byte 2

1

This is the
gxLookupBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration. Repeat x bytes from the
previous row and add them to the
current row.

The value of x is 1. One byte of data is
to be repeated from the previous scan
line.

0x70
01 110000

Bit image compression byte 1

48

Bits 6 and 7 are 1. This is the
gxRepeatBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration.

The bits in the byte that follow are to
be repeated 48 times.

0x22 Data “100010” The bits “100010” are to be repeated 48
times

continued

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binary) Type of information Value Description
Using QuickDraw GX Stream Format 7-85

C H A P T E R 7

QuickDraw GX Stream Format
0x01
(00
000001)

Bit image compression byte 0

1

This is the
gxCopyBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration. Repeat x bytes from the
previous row and add them to the
current row.

The value of x is 1. One byte of data is
to be repeated from the previous scan
line.

0x21 Data “100001” The bits “100001” are to be repeated 1
time on the second row.

0x82
(10
000010)

Bit image compression byte 2

2

This is the
gxLookupBitImageBytesOpcode
constant of the
gxBitImageCompression
enumeration. Repeat x bytes from the
previous row and add them to the
current row.

The value of x is 2. Two bytes of data
is to be repeated from the previous
scan line.

0xCA
(11
001010)

Bit image compression byte 3

10

This is the
gxRepeatBitImageScanOpcode
constant of the
gxBitImageCompression
enumeration. The previous scan line is
repeated x times.

The value of x is 10. The first row of
bits is repeated 10 times.

The remaining bytes of the bit image are not shown here.

New color set object

0x32
(00
110010)

Operation opcode

Record size

0

50

New object

Record size is 50 bytes.

0xAC
(10
101100)

Compression type opcode

Data type opcode

2

3

Byte compression

gxColorSetTypeOpcode constant of
the gxGraphicsNewOpcode
enumeration

0x01 Data 1 gxRGBSpace constant of the
gxColorSpaces enumeration

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binary) Type of information Value Description
7-86 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
White color for the bitmap object

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF or 65,535. The RGB
value for the red field of the
gxRgbColor structure is 65,535.

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF or 65,535. The RGB
value for the green field of the
gxRgbColor structure is 65,535.

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF or 65,535. The RGB
value for the blue field of the
gxRgbColor structure is 65,535.

Dark blue color for the bitmap object

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the red field of the gxRgbColor
structure is 0.

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the green field of the
gxRgbColor structure is 0.

0x33 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x3333 or 0. The RGB value
for the blue field of the gxRgbColor
structure is 0x3333.

Cherry red color for the bitmap object

0xFF Data 0xFFFF Since color components are 2-byte
values, the byte is replicated to
the value 0xFFFF or 65,535. The RGB
value for the red field of the
gxRgbColor structure is 65,535.

continued

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binary) Type of information Value Description
Using QuickDraw GX Stream Format 7-87

C H A P T E R 7

QuickDraw GX Stream Format
0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the green field of the
gxRgbColor structure is 0.

0x33 Data 0x3333 Since color components are 2-byte
values, the byte is replicated to
the value 0x3333. The RGB value for
the blue field of the gxRgbColor
structure is 0x3333.

Dull red color for the bitmap object

0xCC Data 0xCCCC Since color components are 2-byte
values, the byte is replicated to
the value 0xCCCC or 52,428. The RGB
value for the red field of the
gxRgbColor structure is 52,428.

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the green field of the
gxRgbColor structure is 0.

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the blue field of the gxRgbColor
structure is 0x0000.

The remaining 35 bytes of the color set are not shown here.

New shape object

0x10
(00
010000)

Operation opcode

Record size

0

11

New object

Record size is 11 bytes.

0x08
(00
001000)

Compression type opcode

Data type opcode

0

8

Byte compression

gxBitmapType constant of the
gxShapeTypes enumeration

0xAA
(10 10
10 10)

Omit byte – The gxOmitBitmapMask1 and
gxOmitBitmapShift1
enumerations are used to interpret
this byte. Byte compression is used for
data1, data2, data3, and data4.

0x01 Data1 1 A pointer to the pixels located at 1.

0x66 Data2 102 The row width is 102 pixels.

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binary) Type of information Value Description
7-88 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Obtaining Data From a Print File 7
Any suitably equipped Macintosh computer with QuickDraw GX installed can read and
print portable digital document print files created by your application. You may want to
use the public data in a QuickDraw GX print file for other purposes. Listing 7-11 reads a
portable digital document print file and returns the page count. For more information on
print files and portable digital documents, see the chapters “Introduction to QuickDraw
GX Printing” and “Core Printing Features” of Inside Macintosh: QuickDraw GX Printing.

Listing 7-11 Obtaining the page count from a portable digital document print file

#define nrequire(x, LABEL) if((x)) goto LABEL

/* Returns the page count from an open print file */

Parameters:-> short dataRefNum:reference to the spool file

 <- long *pageCount:returns page count

Returns: OSErr

Preconditions:dataRefNum != NULL

Postconditions:none */

0x58 Data3 88 The column height is 88 pixels.

0x34 Data4 52 The row width is 52 bytes.

0xAB
(10 10
10 11)

Omit byte – The gxOmitBitmapMask2 and
gxOmitBitmapShift2 enumerations
are used to interpret this byte. Byte
compression is used for data1, data2,
and data3. Data4 is omitted.

0x04 Data1 4 The number of bits per pixel is 1.

0x0B Data2 11 gxIndexedSpace constant of the
gxColorSpaces enumeration

0x01 Data3 1 The first set of bitmaps is used.

0xF0
(11 11 00
00)

Omit byte – The gxOmitBitmapMask3 and
gxOmitBitmapShift3 enumerations
are used to interpret this byte. Data1
and data2 are omitted. These are the
x and y positions of the bitmap. The
position is therefore at point (0, 0). The
other bits are reserved.

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binary) Type of information Value Description
Using QuickDraw GX Stream Format 7-89

C H A P T E R 7

QuickDraw GX Stream Format
OSErr DespoolPageCount (short dataRefNum, long *pageCount);

OSErr DespoolPageCount (short dataRefNum, long *pageCount) {

register OSErr anErr;

long pageDirOffset, numPages;

long dataLen;

/* position to read offset to page directory */

anErr = SetFPos(dataRefNum, fsFromStart, (long) (kHeaderSize +

sizeof(long)));

nrequire (anErr, SetPageDirOffsetPos);

/* read offset to page directory */

dataLen = sizeof(pageDirOffset);

anErr = FSRead(dataRefNum, &dataLen, &pageDirOffset);

nrequire (anErr, ReadPageDirOffsetPos);

/* move to page directory */

anErr = SetFPos(dataRefNum, fsFromStart, (long) (pageDirOffset));

nrequire (anErr, SetPageDirPos);

/* read number of pages */

dataLen = sizeof(numPages);

anErr = FSRead(dataRefNum, &dataLen, &numPages);

nrequire (anErr, ReadNumPages);

pageCount = numPages;/ Return the result */

ncheck (anErr);

return anErr;

/* exception handling*/

ReadNumPages:

SetPageDirPos:

ReadPageDirOffsetPos:

SetPageDirOffsetPos:

return anErr;

}

7-90 Using QuickDraw GX Stream Format

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
QuickDraw GX Stream Format Reference 7

This section provides reference information to the data structures and enumerations that
are used in the stream format of a flattened shape.

Opcode Constants and Data Types 7
This section describes the constants and data types that describe the opcodes used in the
data streams of flattened shapes.

Operation Opcode Byte 7

Bits 6 and 7 of the operation opcode byte are the operation opcode. This opcode provides
a description of the data record that follows. Each operation opcode is defined in the
gxGraphicsOperationOpcode enumeration.

enum gxGraphicsOperationOpcode {

gxNewObjectOpcode = 0x00,

gxSetDataOpcode = 0x40,

gxSetDefaultOpcode= 0x80,

gxReservedOpcode = 0xC0,

gxNextOpcode = 0xFF,

};

Constant descriptions

gxNewObjectOpcode
Data for a new object follows.

gxSetDataOpcode
Attributes for the current object follow.

gxSetDefaultOpcode
Replace current default with the object that follows.

gxReservedOpcode
This opcode is reserved for future expansion.

gxNextOpcode This constant is used by the current operand field to indicate that an
opcode is coming.

Bits 0 through 5 of the operation opcode byte are the record size in bytes (1 to 63 bytes).
The gxObjectSizeMask constant, binary 111111, masks bits 0 through 5 to select the
record size. For additional information about the stream format for the record size, see
the section “Record Size” beginning on page 7-11.
QuickDraw GX Stream Format Reference 7-91

C H A P T E R 7

QuickDraw GX Stream Format
#define gxObjectSizeMask 0x3F

The gxOpcodeShift constant allows you to compare gxGraphicsOperationOpcode
constants with other values.

#define gxOpcodeShift 6

Data Type Opcode Byte 7

Bits 6 and 7 of the data type opcode byte are the compression type opcode. The
compression of the data to follow is given by the gxTwoBitCompressionValues
enumeration in Table 7-3. The gxCompressionMask constant, binary 11, masks the
constant defined by the gxTwoBitCompressionValue enumeration.

#define gxCompressionMask 0x03

The gxCompressionShift constant defines the number of bits to be shifted to the right
so that the masked value of the compression type opcode can be compared to other
values.

#define gxCompressionShift 6

Bits 0 through 5 of the data type opcode byte are the data type opcode. These opcodes
describe the data that follows in the stream. The gxObjectTypeMask constant, binary
111111, masks bits 0 through 5 of the data type opcode byte to select the data type
opcode. No shift is required to compare the data type opcode with other values.

#define gxObjectTypeMask 0x3F

Generic Data Opcode 7

The current operand uses a constant from the gxGenericDataOpcode enumeration
when the current operand is the gxNextOpcode constant.

enum gxGenericDataOpcode {

gxTypeOpcode,

gxSizeOpcode

};

Constant descriptions

gxTypeOpcode The next opcode is a type opcode.
gxSizeOpcode The next opcode is a size opcode.
7-92 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Bit Image Compression Opcode Byte 7

Bits 6 and 7 of the bit image compression opcode byte contain the compression type
opcode that describes the data compression used for a region of a a bit image.The
gxBitimageOpcodeMask constant, binary 11000000, masks bits 6 and 7 of the bit image
compression opcode byte to select the bit image opcode.

#define gxBitimageOpcodeMask 0xC0

Once the gxBitimageOpcodeMask constant has been used to select the compression
type opcode, a bit shift given by the gxBitimageOpcodeShift constant can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the compression type opcode so that it can be compared to other values.

#define gxBitimageOpcodeShift 6

Bits 0 through 5 of the bit image compression opcode byte contain the bit image count.
This is the number of times that a binary sequence is repeated. The
gxBitimageCountMask constant, binary 111111, masks bits 0 through 5 of the bit image
compression opcode byte to select the bit image count. No shift is required to compare
the bit image count with other values.

#define gxBitimageCountMask0x3F

Table 7-13 gives the bit image compression opcode constants. For additional information
about the use of the bit image compression opcode byte, see the section “New Bit Image
Object Data” beginning on page 7-49.

Modified Shape Data Opcodes 7

A constant from the gxShapeDataOpcode enumeration follows a gxSetDataOpcode
operation opcode if shape data follows. The data stream bytes describe one of the fields
specified in this enumeration.

enum gxShapeDataOpcode {

gxShapeAttributesOpcode,

gxShapeTagOpcode,

gxShapeFillOpcode

};

Constant descriptions

gxShapeAttributesOpcode
An attribute from the gxShapeAttributes enumeration is added
to the current shape object.

gxShapeTagOpcode
A tag is added to the current shape object.

gxShapeFillOpcode
A fill is added to the current shape object.
QuickDraw GX Stream Format Reference 7-93

C H A P T E R 7

QuickDraw GX Stream Format
Modified Style Data Opcodes 7

A constant from the gxStyleDataOpcode enumeration follows a gxSetDataOpcode
if style data follows. The data stream bytes that follow describe one of the attributes
specified in this enumeration.

enum gxStyleDataOpcode {

gxStyleAttributesOpcode,

gxStyleTagOpcode,

gxStyleCurveErrorOpcode,

gxStylePenOpcode,

gxStyleJoinOpcode,

gxStyleDashOpcode,

gxStyleCapsOpcode,

gxStylePatternOpcode,

gxStyleTextAttributesOpcode,

gxStyleTextSizeOpcode,

gxStyleFontOpcode,

gxStyleTextFaceOpcode,

gxStylePlatformOpcode,

gxStyleFontVariationsOpcode,

gxStyleRunControlsOpcode,

gxStyleRunPriorityJustOverrideOpcode,

gxStyleRunGlyphJustOverridesOpcode,

gxStyleRunGlyphSubstitutionsOpcode,

gxStyleRunFeaturesOpcode,

gxStyleRunKerningAdjustmentsOpcode,

gxStyleJustificationOpcode

};

Constant descriptions

gxStyleAttributesOpcode
The style attributes flags from the gxStyleAttributes
enumeration follow.

gxStyleTagOpcode
The parameters of the GXSetStyleTags function follow.

gxStyleCurveErrorOpcode
Data for the error parameter of the GXSetStyleCurveError
function follows.

gxStylePenOpcode
The data for the pen parameter of the GXSetStylePen function
follows.

gxStyleJoinOpcode
The data for the fields of the gxJoinRecord structure follows.
7-94 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
gxStyleDashOpcode
The data for the fields of the gxDashRecord structure follows.

gxStyleCapsOpcode
The data for the fields of the gxCapRecord structure follows.

gxStylePatternOpcode
The data for the fields of the gxPatternRecord structure follows.

gxStyleTextAttributesOpcode
The data from the gxTextAttributes enumeration follows.

gxStyleTextSizeOpcode
The data for the size parameter of the GXSetStyleTextSize
function follows.

gxStyleFontOpcode
The data for the font parameter of the GXSetStyleFont function
follows.

gxStyleTextFaceOpcode
The data for the fields of the gxTextFace structure follows.

gxStylePlatformOpcode
The data for the parameters of the GXStyleEncoding function
follows.

gxStyleFontVariationsOpcode
The data for the fields of the gxFontVariations structure follows.

gxStyleRunControlsOpcode
The data for the fields of the gxRunControls structure follows.

gxStyleRunPriorityJustOverrideOpcode
The data for the fields of the
gxPriorityJustificationOverride structure follows.

gxStyleRunGlyphJustOverridesOpcode
The data for the fields of the gxGlyphJustificationOverride
structure follows.

gxStyleRunGlyphSubstitutionsOpcode
The data for the fields of the gxGlyphSubstitutionOverride
structure follows.

gxStyleRunFeaturesOpcode
The data for the fields of the gxRunFeature structure follows.

gxStyleRunKerningAdjustmentsOpcode
The data for the fields of the gxKerningAdjustment structure
follows.

gxStyleJustificationOpcode
The data for the justify parameter of the
GXSetStyleJustification function follows.
QuickDraw GX Stream Format Reference 7-95

C H A P T E R 7

QuickDraw GX Stream Format
Modified Ink Data Opcodes 7

A constant from the gxInkDataOpcode enumeration follows a gxSetDataOpcode
operation opcode if ink data follows. The data stream bytes that follow describe one of
the attributes specified in this enumeration.

enum gxInkDataOpcode {

gxInkAttributesOpcode,

gxInkTagOpcode,

gxInkColorOpcode,

gxInkTransferModeOpcode

};

Constant descriptions

gxInkAttributesOpcode
The parameters of the GXSetInkAttributes function follow.

gxInkTagOpcode
The parameters of the GXSetInkTags function follow.

gxInkColorOpcode
The parameters of the GXSetInkColor function follow.

gxInkTransferModeOpcode
The parameters of the GXSetInkTransfer function follow.

Modified Color Set Data Opcodes 7

A constant from the gxColorSetDataOpcode enumeration follows a
gxSetDataOpcode operation opcode if color set data follows. The bytes that follow
describe one of the attributes specified in this enumeration.

enum gxColorSetDataOpcode {

gxColorSetReservedOpcode,

gxColorSetTagOpcode

};

Constant descriptions

gxColorSetReservedOpcode
This opcode is reserved for future expansion.

gxColorSetTagOpcode
The data parameters for the GXSetColorSetTags function
follows.
7-96 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Modified Color Profile Data Opcodes 7

A constant from the gxProfileDataOpcode enumeration follows a
gxSetDataOpcode operation opcode if profile data follows. The data stream bytes that
follow describe one of the attributes specified in this enumeration.

enum gxProfileDataOpcode {

gxColorProfileAttributesOpcode,

gxColorProfileTagOpcode

};

Constant descriptions

gxColorProfileAttributesOpcode
This opcode is reserved for future expansion.

gxColorProfileTagOpcode
The data parameters for the GXSetColorProfileTags function
follow.

Modified Transform Data Opcodes 7

A constant from the gxTransformDataOpcode enumeration follows a
gxSetDataOpcode operation opcode if transform data follows. The data stream bytes
that follow describe one of the attributes specified in this enumeration.

enum gxTransformDataOpcode{

gxTransformReservedOpcode,

gxTransformTagOpcode,

gxTransformClipOpcode,

gxTransformMappingOpcode,

gxTransformPartMaskOpcode,

gxTransformToleranceOpcode

};

Constant descriptions

gxTransformReservedOpcode
This opcode is reserved for future expansion.

gxTransformTagOpcode
The data parameters for the GXSetTransformTags function
follow.

gxTransformClipOpcode
The data for the clip parameter of the GXSetTransformClip
function follows.

gxTransformMappingOpcode
The data for the map parameter of the GXSetTransformMapping
function follows.
QuickDraw GX Stream Format Reference 7-97

C H A P T E R 7

QuickDraw GX Stream Format
gxTransformPartMaskOpcode
The data for the mask parameter of the GXSetTransformHitTest
function follows.

gxTransformToleranceOpcode
The data for the gxProfileRecord structure and
gxProfileResponse enumeration follows.

Bit Image Compression Opcodes 7

Bits 6 and 7 of the bit image compression opcode byte contain the bit image compression
opcode. A constant from the gxBitImageCompression enumeration defines the
compression of the bit image data sequence to immediately follow.

enum gxBitImageCompression {

gxCopyBitImageBytesOpcode = 0x00,

gxRepeatBitImageBytesOpcode= 0x40,

gxLookupBitImageBytesOpcode= 0x80,

gxRepeatBitImageScanOpcode = 0xC0

};

Constant descriptions

gxCopyBitImageBytesOpcode
Bit image compression opcode 0.

gxRepeatBitImageBytesOpcode
Bit image compression opcode 1.

gxLookupBitImageBytesOpcode
Bit image compression opcode 2.

gxRepeatBitImageScanOpcode
Bit image compression opcode 3.

The bit image compression opcode is described in the section “New Bit Image Object
Data” beginning on page 7-49.

Flatten Header Bytes 7

The two bytes following the byte containing the gxHeaderTypeOpcode contain the
version of QuickDraw GX that generated the stream of data that follows and two flags
that are defined by the gxFlattenFlags enumeration.

struct gxFlattenHeader {

fixed version;

unsigned char flatFlags;

};
7-98 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Field descriptions

version The version of QuickDraw GX that was used to create the stream.
flatFlags The gxFontListFlatten and gxFontGlyphsFlatten flags.

The QuickDraw GX version and the flatten flags are described in the section “Header
Data” beginning on page 7-27.

Style Object Omit Byte Constants and Data Types 7
This section describes the constants and data types that are used to interpret omit bytes
that are used with style object data. The use of omit bytes is described in the section
“Omit Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Dash Style Omit Byte Masks and Shifts 7

The gxOmitDashMask1 enumeration defines which bits in an omit byte correspond to
the a data compression opcode for the field descriptors in the gxDashRecord structure.
The sequence of data is also defined. The omit byte and its related data sequence are
given in the section “Dash Data” beginning on page 7-37.

enum gxOmitDashMask1 {

gxOmitDashAttributesMask = 0xC0,

gxOmitDashShapeMask = 0x30,

gxOmitDashAdvanceMask = 0x0C,

gxOmitDashPhaseMask = 0x03

};

Constant descriptions

gxOmitDashAttributesMask
The mask to select the data compression bits for the attributes
field descriptor.

gxOmitDashShapeMask
The mask to select the data compression bits for the dash field
descriptor.

gxOmitDashAdvanceMask
The mask to select the data compression bits for the advance field
descriptor.

gxOmitDashPhaseMask
The mask to select the data compression bits for the phase field
descriptor.

Once one of the gxOmitDashMask1 enumeration masks has been used to select data
compression bits for a field descriptor in the gxDashRecord structure, the
corresponding bit shift from the gxOmitDashShift1 enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression bits so that they can be compared to other values.
QuickDraw GX Stream Format Reference 7-99

C H A P T E R 7

QuickDraw GX Stream Format
enum gxOmitDashShift1 {

gxOmitDashAttributesShift = 6,

gxOmitDashShapeShift = 4,

gxOmitDashAdvanceShift = 2,

gxOmitDashPhaseShift = 0

};

Constant descriptions

gxOmitDashAttributesShift
The bit shift required to isolate the compression bits for the
attributes field descriptor.

gxOmitDashShapehift
The bit shift required to isolate the compression bits for the dash
field descriptor.

gxOmitDashAdvanceShift
The bit shift required to isolate the compression bits for the
advance field descriptor.

gxOmitDashPhaseShift
The bit shift required to isolate the compression bits for the phase
field descriptor.

The gxOmitDashMask2 enumeration defines which bits in a second omit byte
correspond to the data compression bits for additional field descriptors in the
gxDashRecord structure. The sequence of data is also continued. The use of this mask
and shift are described in the section “Dash Data” beginning on page 7-37.

enum gxOmitDashMask2 {

gxOmitDashScaleMask = 0xC0

};

Constant descriptions

gxOmitDashScaleMask
The mask for the data compression bits for the scale field
descriptor.

Once one of the gxOmitDashMask2 enumeration masks has been used to select data
compression bits for a field descriptor in the gxDashRecord structure, the
corresponding bit shift from the gxOmitDashShift2 enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression bits so that they can be compared to other values.
7-100 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
enum gxOmitDashShift2{

gxOmitDashScaleShift = 6

};

Constant descriptions

gxOmitDashScaleShift
The bit shift required to isolate the compression bits for the scale
field descriptor.

Pattern Style Omit Byte Masks and Shifts 7

The gxOmitPatternMask1 enumeration defines which bits in an omit byte correspond
to the data compression opcodes for the field descriptors in the gxPatternRecord
structure. The sequence of data is also defined. The omit byte and its related data
sequence is given in the section “Pattern Data” beginning on page 7-38.

enum gxOmitPatternMask1{

gxOmitPatternAttributesMask = 0xC0,

gxOmitPatternShapeMask = 0x30,

gxOmitPatternUXMask = 0x0C,

gxOmitPatternUYMask = 0x03

};

Constant descriptions

gxOmitPatternAttributesMask
The mask used to select the data compression bits for the
attributes field descriptor.

gxOmitPatternShapeMask
The mask used to select the data compression bits for the pattern
field descriptor.

gxOmitPatternUXMask
The mask used to select the data compression bits for the ux field
descriptor.

gxOmitPatternUYMask
The mask used to select the data compression bits for the uy field
descriptor.

Once one of the gxOmitPatternMask1 enumeration masks has been used to select
data compression bits for one of the field descriptors in the gxPatternRecord
structure, the corresponding bit shift from the gxOmitPatternShift1 enumeration
can be applied to the selected bits. The selected bits must be moved to the right by the
indicated number of bits to isolate the data compression bits so that they can be
compared to other values.
QuickDraw GX Stream Format Reference 7-101

C H A P T E R 7

QuickDraw GX Stream Format
enum gxOmitPatternShift1 {

gxOmitPatternAttributesShift = 6,

gxOmitPatternShapeShift = 4,

gxOmitPatternUXShift = 2,

gxOmitPatternUYShift = 0

};

Constant descriptions

gxOmitPatternAttributesShift
The bit shift required to isolate the compression bits for the
attributes field descriptor.

gxOmitPatternShapeShift
The bit shift required to isolate the compression bits for the
pattern field descriptor.

gxOmitPatternUXShift
The bit shift required to isolate the compression bits for the ux field
descriptor.

gxOmitPatternUYShift
The bit shift required to isolate the compression bits for the uy field
descriptor.

The gxOmitPatternMask2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional field descriptors in the
gxPatternRecord structure. The sequence of data is also continued. The omit byte and
its related data sequence is given in the section “Pattern Data” beginning on page 7-38.

enum gxOmitPatternMask2 {

gxOmitPatternVXMask = 0xC0,

gxOmitPatternVYMask = 0x30

};

Constant descriptions

gxOmitPatternVXMask
The mask used to select the data compression bits for the u.x field
descriptor.

gxOmitPatternVYMask
The mask to select the data compression bits for the u.y field
descriptor.

Once one of the gxOmitPatternMask2 enumeration masks has been used to select a
data compression opcode for one of the field descriptors in the gxPatternRecord
structure, the corresponding bit shift from the gxOmitPatternShift2 enumeration
can be applied to the selected bits. The selected bits must be moved to the right by the
indicated number of bits to isolate the data compression opcode so that it can be
compared to other values.
7-102 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
enum gxOmitPatternShift2 {

gxOmitPatternVXShift= 6,

gxOmitPatternVYShift= 4

};

Constant descriptions

gxOmitPatternVXShift
The bit shift required to isolate the compression bits for the u.x field
descriptor.

gxOmitPatternVYShift
The bit shift required to isolate the compression bits for the u.y field
descriptor.

Join Style Omit Byte Masks and Shifts 7

The gxOmitJoinMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxJoinRecord structure.
The sequence of data is also defined. The omit byte and its related data sequence is given
in the section “Join Data” beginning on page 7-37.

enum gxOmitJoinMask {

gxOmitJoinAttributesMask= 0xC0,

gxOmitJoinShapeMask = 0x30,

gxOmitJoinMiterMask = 0x0C

};

Constant descriptions

gxOmitJoinAttributesMask
The mask used to select the data compression bits for the
attributes field descriptor.

gxOmitJoinShapeMask
The mask used to select the data compression bits for the join field
descriptor.

gxOmitJoinMiterMask
The mask used to select the data compression bits for the miter
field descriptor.

Once one of the gxOmitJoinMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxJoinRecord structure, the
corresponding bit shift from the gxOmitJoinShift enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.
QuickDraw GX Stream Format Reference 7-103

C H A P T E R 7

QuickDraw GX Stream Format
enum gxOmitJoinShift {

gxOmitJoinAttributesShift = 6,

gxOmitJoinShapeShift = 4,

gxOmitJoinMiterShift = 2

};

Constant descriptions

gxOmitJoinAttributesShift
The bit shift required to isolate the compression bits for the
attributes field descriptor.

gxOmitJoinShapeShift
The bit shift required to isolate the compression bits for the join
field descriptor.

gxOmitJoinMiterShift
The bit shift required to isolate the compression bits for the miter
field descriptor.

Cap Style Omit Byte Masks and Shifts 7

The gxOmitCapMask enumeration defines which bits in an omit byte correspond to the
data compression opcode for the field descriptors in the gxCapRecord structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Caps Data” beginning on page 7-38.

enum gxOmitCapMask {

gxOmitCapAttributesMask = 0xC0,

gxOmitCapStartShapeMask = 0x30,

gxOmitCapEndShapeMask = 0x0C

};

Constant descriptions

gxOmitCapAttributesMask
The mask used to select the data compression bits for the
attributes field descriptor.

gxOmitCapStartShapeMask
The mask used to select the data compression bits for the
startCap field descriptor.

gxOmitCapEndShapeMask
The mask used to select the data compression bits for the endCap
field descriptor.

Once one of the gxOmitCapMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxCapRecord structure, the
corresponding bit shift from the gxOmitCapShift enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.
7-104 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
enum gxOmitCapShift {

gxOmitCapAttributesShift= 6,

gxOmitCapStartShapeShift= 4,

gxOmitCapEndShapeShift = 2

};

Constant descriptions

gxOmitCapAttributesShift
The bit shift required to isolate the compression bits for the
attributes field descriptor.

gxOmitCapStartShapeShift
The bit shift required to isolate the compression bits for the
startCap field descriptor.

gxOmitCapEndShapeShift
The bit shift required to isolate the compression bits for the endCap
field descriptor.

Text Face Style Omit Byte Masks and Shifts 7

The gxOmitFaceMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxTextFace structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Text Face Data” beginning on page 7-39.

enum gxOmitFaceMask {

gxOmitFaceLayersMask = 0xC0,

gxOmitFaceMappingMask= 0x30

};

Constant descriptions

gxOmitFaceLayersMask
The mask used to select the data compression bits for the
faceLayers field descriptor.

gxOmitFaceMappingMask
The mask used to select the data compression bits for the
advanceMapping field descriptor.

Once one of the gxOmitFaceMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxTextFace structure, the
corresponding bit shift from the gxOmitFaceShift enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.
QuickDraw GX Stream Format Reference 7-105

C H A P T E R 7

QuickDraw GX Stream Format
enum gxOmitFaceShift {

gxOmitFaceLayersShift = 6,

gxOmitFaceMappingShift= 4

};

Constant descriptions

gxOmitFaceLayersShift
The bit shift required to isolate the compression bits for the
faceLayers field descriptor.

gxOmitFaceMappingShift
The bit shift required to isolate the compression bits for the
advanceMapping field descriptor.

SEE ALSO

The section “Text Face Data” beginning on page 7-39 provides a full descrtiption of the
gxTextFace structure.

Face Layer Omit Byte Masks and Shifts 7

The gxOmitFaceLayerMask1 enumeration defines which bits in an omit byte
correspond to the data compression opcode for the field descriptors in the
gxFaceLayer structure. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Text Face Data” on page 7-39.

enum gxOmitFaceLayerMask1 {

gxOmitFaceLayerFillMask = 0xC0,

gxOmitFaceLayerFlagsMask = 0x30,

gxOmitFaceLayerStyleMask = 0x0C,

gxOmitFaceLayerTransformMask = 0x03

};

Constant descriptions

gxOmitFaceLayerFillMask
The mask used to select the data compression bits for the
outlineFill field descriptor.

gxOmitFaceLayerFlagsMask
The mask used to select the data compression bits for the flags
field descriptor.

gxOmitFaceLayerStyleMask
The mask used to select the data compression bits for the
outlineStyle field descriptor.

gxOmitFaceLayerTransformMask
The mask used to select the data compression bits for the
outlineTransform field descriptor.
7-106 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Once one of the gxOmitFaceLayerMask1 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxFaceLayer structure, the
corresponding bit shift from the gxOmitFaceLayerShift1 enumeration can be
applied to the selected bits. The selected bits must be moved to the right by the indicated
number of bits to isolate the data compression opcode so that it can be compared to
other values.

enum gxOmitFaceLayerShift1 {

gxOmitFaceLayerFillShift = 6,

gxOmitFaceLayerFlagsShift = 4,

gxOmitFaceLayerStyleShift = 2,

gxOmitFaceLayerTransformShift = 0

};

Constant descriptions

gxOmitFaceLayerFillShift
The bit shift required to isolate the compression bits for the
outlineFill field descriptor.

gxOmitFaceLayerFlagsShift
The bit shift required to isolate the compression bits for the flags
field descriptor.

gxOmitFaceLayerStyleShift
The bit shift required to isolate the compression bits for the
outlineStyle field descriptor.

gxOmitFaceLayerTransformShift
The bit shift required to isolate the compression bits for the
outlineTransform field descriptor.

The gxOmitFaceLayerMask2 enumeration defines which bits in a second omit byte
correspond to the data compression bits for additional field descriptors in the
gxFaceLayer structure. The sequence of data is also defined. The use of this mask and
shift are described in the section “Text Face Data” on page 7-39.

enum gxOmitFaceLayerMask2 {

gxOmitFaceLayerBoldXMask = 0xC0,

gxOmitFaceLayerBoldYMask = 0x30

};

Constant descriptions

gxOmitFaceLayerBoldXMask
The mask used to select the data compression bits for the
boldOutset .X field descriptor.

gxOmitFaceLayerBoldYMask
The mask used to select the data compression bits for the
boldOutset .Y field descriptor.
QuickDraw GX Stream Format Reference 7-107

C H A P T E R 7

QuickDraw GX Stream Format
Once one of the gxOmitFaceLayerMask2 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxFaceLayer structure, the
corresponding bit shift from the gxOmitFaceLayerShift2 enumeration can be
applied to the selected bits. The selected bits must be moved to the right by the indicated
number of bits to isolate the data compression opcode so that it can be compared to
other values.

enum gxOmitFaceLayerShift2 {

gxOmitFaceLayerBoldXShift = 6,

gxOmitFaceLayerBoldYShift = 4

};

Constant descriptions

gxOmitFaceLayerBoldXShift
The bit shift required to isolate the compression bits for the
boldOutset .X field descriptor.

gxOmitFaceLayerBoldYShift
The bit shift required to isolate the compression bits for the
boldOutset .Y field descriptor.

Ink Object Omit Byte Constants and Data Types 7
This section describes the constants and data types that are used to interpret omit bytes
that are used with ink object data. The use of omit bytes is described in the section “Omit
Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Colors Omit Byte Masks and Shifts 7

The gxOmitColorsMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxColor structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Color Data” beginning on page 7-44.

enum gxOmitColorsMask {

gxOmitColorsSpaceMask = 0xC0,

gxOmitColorsProfileMask = 0x30,

gxOmitColorsComponentsMask = 0x0F,

gxOmitColorsIndexMask = 0x0C,

gxOmitColorsIndexSetMask = 0x03

};
7-108 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Constant descriptions

gxOmitColorsSpaceMask
The mask used to select the data compression bits for the space
field descriptor.

gxOmitColorsProfileMask
The mask used to select the data compression bits for the profile
field descriptor.

gxOmitColorsComponentsMask
The mask used to select the data compression bits for the
element.component[4] field descriptor.

gxOmitColorsIndexMask
The mask used to select the data compression bits for the
element.indexed.index field descriptor.

gxOmitColorsIndexSetMask
The mask used to select the data compression bits for the
element.index.Set field descriptor.

Once one of the gxOmitColorsMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxColor structure, the corresponding
bit shift from the gxOmitColorsShift enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitColorsShift {

gxOmitColorsSpaceShift = 6,

gxOmitColorsProfileShift = 4,

gxOmitColorsComponentsShift = 0,

gxOmitColorsIndexShift = 2,

gxOmitColorsIndexSetShift = 0

};

Constant descriptions

gxOmitColorsSpaceShift
The bit shift required to isolate the compression bits for the space
field descriptor.

gxOmitColorsProfileShift
The bit shift required to isolate the compression bits for the
profile field descriptor.

gxOmitColorsComponentsShift
The bit shift required to isolate the compression bits for the
element.component[4] field descriptor.

gxOmitColorsIndexShift
The bit shift required to isolate the compression bits for the
element.indexed.index field descriptor.

gxOmitColorsIndexSetShift
The bit shift required to isolate the compression bits for the
element.indexed.set field descriptor.
QuickDraw GX Stream Format Reference 7-109

C H A P T E R 7

QuickDraw GX Stream Format
Transfer Omit Byte Masks and Shifts 7

The gxOmitTransferMask1 enumeration defines which bits in an omit byte
correspond to the data compression opcode for the field descriptors in the
gxTransferMode structure. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Transfer Mode Data” beginning on
page 7-44.

enum gxOmitTransferMask1 {

gxOmitTransferSpaceMask = 0xC0,

gxOmitTransferSetMask = 0x30,

gxOmitTransferProfileMask = 0x0C

};

Constant descriptions

gxOmitTransferSpaceMask
The mask used to select the data compression bits for the space
field descriptor.

gxOmitTransferSetMask
The mask used to select the data compression bits for the set field
descriptor.

gxOmitTransferProfileMask
The mask used to select the data compression bits for the profile
field descriptor.

Once one of the gxOmitTransferMask1 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxTransferMode structure, the
corresponding bit shift from the gxOmitTransferShift1 enumeration can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitTransferShift1 {

gxOmitTransferSpaceShift = 6,

gxOmitTransferSetShift = 4,

gxOmitTransferProfileShift = 2

};

Constant descriptions

gxOmitTransferSpaceShift
The bit shift required to isolate the compression bits for the space
field descriptor.

gxOmitTransferSetShift
The bit shift required to isolate the compression bits for the set
field descriptor.

gxOmitTransferProfileShift
The bit shift required to isolate the compression bits for the
profile field descriptor.
7-110 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
The gxOmitTransferMask2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional field descriptors in the
gxTransferMode structure. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Transfer Mode Data” beginning on
page 7-44.

enum gxOmitTransferMask2 {

gxOmitTransferSourceMatrixMask= 0xC0,

gxOmitTransferDeviceMatrixMask= 0x30,

gxOmitTransferResultMatrixMask= 0x0C,

gxOmitTransferFlagsMask = 0x03

};

Constant descriptions

gxOmitTransferSourceMatrixMask
The mask used to select the data compression bits for the
sourceMatrix field descriptor.

gxOmitTransferDeviceMatrixMask
The mask used to select the data compression bits for the
deviceMatrix field descriptor.

gxOmitTransferResultMatrixMask
The mask used to select the data compression bits for the
resultMatrix field descriptor.

gxOmitTransferFlagsMask
The mask used to select the data compression bits for the flags
field descriptor.

Once one of the gxOmitTransferMask2 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxTransferMode structure, the
corresponding bit shift from the gxOmitTransferShift2 enumeration can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitTransferShift2 {

gxOmitTransferSourceMatrixShift = 6,

gxOmitTransferDeviceMatrixShift = 4,

gxOmitTransferResultMatrixShift = 2,

gxOmitTransferFlagsShift = 0

};
QuickDraw GX Stream Format Reference 7-111

C H A P T E R 7

QuickDraw GX Stream Format
Constant descriptions

gxOmitTransferSourceMatrixShift
The bit shift required to isolate the compression bits for the
sourceMatrix field descriptor.

gxOmitTransferDeviceMatrixShift
The bit shift required to isolate the compression bits for the
deviceMatrix field descriptor.

gxOmitTransferResultMatrixShift
The bit shift required to isolate the compression bits for the
resultMatrix field descriptor.

gxOmitTransferFlagsShift
The bit shift required to isolate the compression bits for the flags
field descriptor.

Transfer Component Omit Byte Masks and Shifts 7

The gxOmitTransferComponentMask1 enumeration defines which bits in an omit
byte correspond to the data compression opcode for the field descriptors in the
gxTransferComponent structure. The sequence of data is also defined. The omit byte
and its related data sequence is given in the section “Transfer Mode Data” beginning on
page 7-44.

enum gxOmitTransferComponentMask1 {

gxOmitTransferComponentModeMask = 0x80,

gxOmitTransferComponentFlagsMask = 0x40,

gxOmitTransferComponentSourceMinimumMask = 0x30,

gxOmitTransferComponentSourceMaximumMask = 0x0C,

gxOmitTransferComponentDeviceMinimumMask = 0x03

};

Constant descriptions

gxOmitTransferComponentModeMask
The mask used to select the data compression bits for the mode field
descriptor.

gxOmitTransferComponentFlagsMask
The mask used to select the data compression bits for the flags
field descriptor.

gxOmitTransferComponentSourceMinimumMask
The mask used to select the data compression bits for the
sourceMinimum field descriptor.

gxOmitTransferComponentSourceMaximumMask
The mask used to select the data compression bits for the
sourceMaximum field descriptor.

gxOmitTransferComponentDeviceMinimumMask
The mask used to select the data compression bits for the
deviceMinimum field descriptor.
7-112 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Once one of the gxOmitTransferComponentMask1 enumeration masks has been
used to select a data compression opcode for a field descriptor in the
gxTransferComponent structure, the corresponding bit shift from the
gxOmitTransferComponentShift1 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitTransferComponentShift1 {

gxOmitTransferComponentModeShift = 7,

gxOmitTransferComponentFlagsShift = 6,

gxOmitTransferComponentSourceMinimumShift = 4,

gxOmitTransferComponentSourceMaximumShift = 2,

gxOmitTransferComponentDeviceMinimumShift = 0

};

Constant descriptions

gxOmitTransferComponentModeShift
The bit shift required to isolate the compression bits for the mode
field descriptor.

gxOmitTransferComponentFlagsShift
The bit shift required to isolate the compression bits for the flags
field descriptor.

gxOmitTransferComponentSourceMinimumShift
The bit shift required to isolate the compression bits for the
sourceMinimum field descriptor.

gxOmitTransferComponentSourceMaximumShift
The bit shift required to isolate the compression bits for the
sourceMaximum field descriptor.

gxOmitTransferComponentDeviceMinimumShift
The bit shift required to isolate the compression bits for the
deviceMinimum field descriptor.

The gxOmitTransferComponentMask2 enumeration defines which bits in a second
omit byte correspond to the data compression opcode for additional field descriptors in
the gxTransferComponent structure. The sequence of data is also continued. The omit
byte and its related data sequence is given in the section “Transfer Mode Data”
beginning on page 7-44.

enum gxOmitTransferComponentMask2 {

gxOmitTransferComponentDeviceMaximumMask = 0xC0,

gxOmitTransferComponentClampMinimumMask = 0x30,

gxOmitTransferComponentClampMaximumMask = 0x0C,

gxOmitTransferComponentOperandMask = 0x03

};
QuickDraw GX Stream Format Reference 7-113

C H A P T E R 7

QuickDraw GX Stream Format
Constant descriptions

gxOmitTransferComponentDeviceMaximumMask
The mask used to select the data compression bits for the
deviceMaximum field descriptor.

gxOmitTransferComponentClampMinimumMask
The mask used to select the data compression bits for the
clampMinimum field descriptor.

gxOmitTransferComponentClampMaximumMask
The mask used to select the data compression bits for the
clampMaximum field descriptor.

gxOmitTransferComponentOperandMask
The mask used to select the data compression bits for the operand
field descriptor.

Once one of the gxOmitTransferComponentMask2 enumeration masks has been
used to select a data compression opcode for a field descriptor in the
gxTransferComponent structure, the corresponding bit shift from the
gxOmitTransferComponentShift2 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitTransferComponentShift2 {

gxOmitTransferComponentDeviceMaximumShift = 6,

gxOmitTransferComponentClampMinimumShift = 4,

gxOmitTransferComponentClampMaximumShift = 2,

gxOmitTransferComponentOperandShift = 0

};

Constant descriptions

gxOmitTransferComponentDeviceMaximumShift
The bit shift required to isolate the compression bits for the
deviceMaximum field descriptor.

gxOmitTransferComponentClampMinimumShift
The bit shift required to isolate the compression bits for the
clampMinimum field descriptor.

gxOmitTransferComponentClampMaximumShift
The bit shift required to isolate the compression bits for the
clampMaximum field descriptor.

gxOmitTransferComponentOperandShift
The bit shift required to isolate the compression bits for the
operand field descriptor.
7-114 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Shape Object Omit Byte Constants and Data Types 7
This section describes the constants and data types that are used to interpret omit bytes
that are used with shape object data. The use of omit bytes is described in the section
“Omit Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Path Shape Omit Byte Masks and Shifts 7

The gxOmitPathMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxPaths structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Path Shape Data” beginning on page 7-31.

enum gxOmitPathMask {

gxOmitPathPositionXMask = 0xC0,

gxOmitPathPositionYMask = 0x30,

gxOmitPathDeltaXMask = 0x0C,

gxOmitPathDeltaYMask = 0x03

};

Constant descriptions

gxOmitPathPositionXMask
The mask used to select the data compression bits for the
vector[0].x field descriptor.

gxOmitPathPositionYMask
The mask used to select the data compression bits for the
vector[0].y field descriptor.

gxOmitPathDeltaXMask
The mask used to select the data compression bits for the
vector[n].x field descriptor where n is greater than zero,
represented as a delta from the previous value.

gxOmitPathDeltaYMask
The mask used to select the data compression bits for the
vector[n].y field descriptor where n is greater than zero,
represented as a delta from the previous value.

Once one of the gxOmitPathMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxPaths?? structure, the
corresponding bit shift from the gxOmitPathShift enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.
QuickDraw GX Stream Format Reference 7-115

C H A P T E R 7

QuickDraw GX Stream Format
enum gxOmitPathShift {

gxOmitPathPositionXShift = 6,

gxOmitPathPositionYShift = 4,

gxOmitPathDeltaXShift = 2,

gxOmitPathDeltaYShift = 0

};

Constant descriptions

gxOmitPathPositionXShift
The bit shift required to isolate the compression bits for
thevector[0].x field descriptor.

gxOmitPathPositionYShift
The bit shift required to isolate the compression bits for
thevector[0].y field descriptor.

gxOmitPathDeltaXShift
The bit shift required to isolate the compression bits for the
vector[n].x field descriptor where n is greater than zero,
represented as a delta from the previous value.

gxOmitPathDeltaYShift
The bit shift required to isolate the compression bits for the
vector[n].y field descriptor where n is greater than zero,
represented as a delta from the previous value.

Bitmap Shape Omit Byte Masks and Shifts 7

The gxOmitBitmapMask1 enumeration defines which bits in an omit byte correspond
to the data compression opcode for the field descriptors in the gxBitmap structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Bitmap Shape Data” beginning on page 7-32.

enum gxOmitBitmapMask1 {

gxOmitBitmapImageMask = 0xC0,

gxOmitBitmapWidthMask = 0x30,

gxOmitBitmapHeightMask = 0x0C,

gxOmitBitmapRowBytesMask = 0x03

};
7-116 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Constant descriptions

gxOmitBitmapImageMask
The mask used to select the data compression bits for the image
field descriptor.

gxOmitBitmapWidthMask
The mask used to select the data compression bits for the width
field descriptor.

gxOmitBitmapHeightMask
The mask used to select the data compression bits for the height
field descriptor.

gxOmitBitmapRowBytesMask
The mask used to select the data compression bits for the
rowBytes field descriptor.

Once one of the gxOmitBitmapMask1 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBitmap structure, the
corresponding bit shift from the gxOmitBitmapShift1 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitBitmapShift1 {

gxOmitBitmapImageShift = 6,

gxOmitBitmapWidthShift = 4,

gxOmitBitmapHeightShift = 2,

gxOmitBitmapRowBytesShift = 0

};

Constant descriptions

gxOmitBitmapImageShift
The bit shift required to isolate the compression bits for the image
field descriptor.

gxOmitBitmapWidthShift
The bit shift required to isolate the compression bits for the width
field descriptor.

gxOmitBitmapHeightShift
The bit shift required to isolate the compression bits for the height
field descriptor.

gxOmitBitmapRowBytesShift
The bit shift required to isolate the compression bits for the
rowBytes field descriptor.

The gxOmitBitmapMask2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional field descriptors in the
gxBitmap structure. The sequence of data is also defined. The omit byte and its related
data sequence is given in the section “Bitmap Shape Data” beginning on page 7-32.
QuickDraw GX Stream Format Reference 7-117

C H A P T E R 7

QuickDraw GX Stream Format
enum gxOmitBitmapMask2 {

gxOmitBitmapPixelSizeMask = 0xC0,

gxOmitBitmapSpaceMask = 0x30,

gxOmitBitmapSetMask = 0x0C,

gxOmitBitmapProfileMask = 0x03

};

Constant descriptions

gxOmitBitmapPixelSizeMask
The mask used to select the data compression bits for the
pixelSize field descriptor.

gxOmitBitmapSpaceMask
The mask used to select the data compression bits for the space
field descriptor.

gxOmitBitmapSetMask
The mask used to select the data compression bits for the set field
descriptor.

gxOmitBitmapProfileMask
The mask used to select the data compression bits for the profile
field descriptor.

Once one of the gxOmitBitmapMask2 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBitmap structure, the
corresponding bit shift from the gxOmitBitmapShift2 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitBitmapShift2 {

gxOmitBitmapPixelSizeShift = 6,

gxOmitBitmapSpaceShift = 4,

gxOmitBitmapSetShift = 2,

gxOmitBitmapProfileShift = 0

};

Constant descriptions

gxOmitBitmapPixelSizeShift
The bit shift required to isolate the compression bits for the
pixelSize field descriptor.

gxOmitBitmapSpaceShift
The bit shift required to isolate the compression bits for the space
field descriptor.
7-118 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
gxOmitBitmapSetShift
The bit shift required to isolate the compression bits for the set
field descriptor.

gxOmitBitmapProfileShift
The bit shift required to isolate the compression bits for the
profile field descriptor.

The gxOmitBitmapMask3 enumeration defines which bits in a third omit byte
correspond to the data compression opcode for additional field descriptors in the
gxBitmap structure. The sequence of data is also defined. The omit byte and its related
data sequence is given in the section “Bitmap Shape Data” beginning on page 7-32.

enum gxOmitBitmapMask3 {

gxOmitBitmapPositionXMask = 0xC0,

gxOmitBitmapPositionYMask = 0x30

};

Constant descriptions

gxOmitBitmapPositionXMask
The mask used to select the data compression bits for the
positionX field descriptor.

gxOmitBitmapPositionYMask
The mask used to select the data compression bits for the
positionY field descriptor.

Once one of the gxOmitBitmapMask3 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBitmap structure, the
corresponding bit shift from the gxOmitBitmapShift3 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitBitmapShift3 {

gxOmitBitmapPositionXShift = 6,

gxOmitBitmapPositionYShift = 4

};

Constant descriptions

gxOmitBitmapPositionXShift
The bit shift required to isolate the compression bits for the
positionX field descriptor.

gxOmitBitmapPositionYShift
The bit shift required to isolate the compression bits for the
positionY field descriptor.
QuickDraw GX Stream Format Reference 7-119

C H A P T E R 7

QuickDraw GX Stream Format
Bit Image Omit Byte Masks and Shifts 7

The gxOmitBitImageMask enumeration defines which bits in an omit byte correspond
to the data compression opcode for additional field descriptors. The sequence of data is
also defined. The omit byte and its related data sequence is given in the section “New Bit
Image Object Data” on page 7-49.

enum gxOmitBitImageMask {

gxOmitBitImageRowBytesMask = 0xC0,

gxOmitBitImageHeightMask = 0x30,

gxOmitBitImageDataMask = 0x08

};

Constant descriptions

gxOmitBitImageRowBytesMask
The mask used to select the data compression bits for the
rowBytes field descriptor.

gxOmitBitImageHeightMask
The mask used to select the data compression bits for the height.

gxOmitBitImageDataMask
The mask used to select the data compression bits for the image.

Once one of the gxOmitBitImageMask enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBitmap structure, the
corresponding bit shift from the gxOmitBitImageShift enumeration can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitBitImageShift {

gxOmitBitImageRowBytesShift = 6,

gxOmitBitImageHeightShift = 4,

gxOmitBitImageDataShift = 3

};

Constant descriptions

gxOmitBitImageRowBytesShift
The bit shift required to isolate the compression bits for the
rowBytes field descriptor.

gxOmitBitImageHeightShift
The bit shift required to isolate the compression bits for the height.

gxOmitBitImageDataShift
The bit shift required to isolate the compression bits for the image.
7-120 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Text Shape Omit Byte Masks and Shifts 7

The gxOmitTextMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for parameters of the GXNewText function. The sequence
of data is also defined. The omit byte and its related data sequence is given in the section
“Text Shape Data” beginning on page 7-32.

enum gxOmitTextMask {

gxOmitTextCharactersMask = 0xC0,

gxOmitTextPositionXMask = 0x30,

gxOmitTextPositionYMask = 0x0C,

gxOmitTextDataMask = 0x02

};

Constant descriptions

gxOmitTextCharactersMask
The mask used to select the data compression bits for the
charCount parameter.

gxOmitTextPositionXMask
The mask used to select the data compression bits for the
position.X parameter.

gxOmitTextPositionYMask
The mask used to select the data compression bits for the
position .Y parameter.

gxOmitTextDataMask
The mask used to select the data compression bits for the text
parameter.

Once one of the gxOmitTextMask enumeration masks has been used to select a data
compression opcode for the parameters of the GXNewText function, the corresponding
bit shift from the gxOmitTextShift enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitTextShift {

gxOmitTextCharactersShift = 6,

gxOmitTextPositionXShift = 4,

gxOmitTextPositionYShift = 2,

gxOmitTextDataShift = 1

};
QuickDraw GX Stream Format Reference 7-121

C H A P T E R 7

QuickDraw GX Stream Format
Constant descriptions

gxOmitTextCharactersShift
The bit shift required to isolate the compression bits for the
charCount field descriptor.

gxOmitTextPositionXShift
The bit shift required to isolate the compression bits for the
position.X field descriptor.

gxOmitTextPositionYShift
The bit shift required to isolate the compression bits for the
position.Y field descriptor.

gxOmitTextDataShift
The bit shift required to isolate the compression bits for the text
field descriptor.

Glyph Shape Omit Byte Masks and Shifts 7

The gxOmitGlyphMask1 enumeration defines which bits in an omit byte correspond to
the data compression opcode for additional field descriptors in the gx NewGlyphs
structure. The sequence of data is also defined. The omit byte and its related data
sequence is given in the section “Glyph Shape Data” beginning on page 7-33.

enum gxOmitGlyphMask1 {

gxOmitGlyphCharactersMask = 0xC0,

gxOmitGlyphLengthMask = 0x30,

gxOmitGlyphRunNumberMask = 0x0C,

gxOmitGlyphOnePositionMask = 0x02,

gxOmitGlyphDataMask = 0x01

};

Constant descriptions

gxOmitGlyphCharactersMask
The mask used to select the data compression bits for the
charCount function parameter.

gxOmitGlyphLengthMask
The mask used to select the data compression bits for the length in
bytes of the data.

gxOmitGlyphRunNumberMask
The mask used to select the data compression bits for the number of
styleRuns.

gxOmitGlyphOnePositionMask
The mask used to specify that the position can be represented with
one point.

gxOmitGlyphDataMask
The mask used to select the data compression bits for the text
function parameter.
7-122 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Once one of the gxOmitGlyphMask1 enumeration masks has been used to select a data
compression opcode for the parameters to GXNewGlyphs function, the corresponding
bit shift from the gxOmitGlyphShift1 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitGlyphShift1 {

gxOmitGlyphCharactersShift = 6,

gxOmitGlyphLengthShift = 4,

gxOmitGlyphRunNumberShift = 2,

gxOmitGlyphOnePositionShift = 1,

gxOmitGlyphDataShift = 0

};

Constant descriptions

gxOmitGlyphCharactersShift
The bit shift required to isolate the compression bits for the
charCount function parameter.

gxOmitGlyphLengthShift
The bit shift required to isolate the compression bits for the length
in bytes of the data.

gxOmitGlyphRunNumberShift
The bit shift required to isolate the compression bits for the number
of styleRuns.

gxOmitGlyphOnePositionShift
The bit shift required to specify that the position can be represented
with 1 point.

gxOmitGlyphDataShift
The bit shift required to isolate the compression bits for the text
function parameter.

The gxOmitGlyphMask2 enumeration defines which bits in an omit byte correspond to
the data compression opcode for the parameters of the GXNewGlyphs function. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Glyph Shape Data” beginning on page 7-33.

enum gxOmitGlyphMask2 {

gxOmitGlyphPositionsMask = 0xC0,

gxOmitGlyphAdvancesMask = 0x20,

gxOmitGlyphTangentsMask = 0x18,

gxOmitGlyphRunsMask = 0x04,

gxOmitGlyphStylesMask = 0x03

};
QuickDraw GX Stream Format Reference 7-123

C H A P T E R 7

QuickDraw GX Stream Format
Constant descriptions

gxOmitGlyphPositionsMask
The mask used to select the data compression bits for the
positions function parameter.

gxOmitGlyphAdvancesMask
The mask used to select the data compression bits for the advance
function parameter.

gxOmitGlyphTangentsMask
The mask used to select the data compression bits for the
tangents function parameter.

gxOmitGlyphRunsMask
The mask used to select the data compression bits for the
styleRuns function parameter.

gxOmitGlyphStylesMask
The mask used to select the data compression bits for the
glyphStyles function parameter.

Once one of the gxOmitGlyphMask2 enumeration masks has been used to select a data
compression opcode for the parameters to the GXNewGlyph function, the corresponding
bit shift from the gxOmitGlyphShift2 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxOmitGlyphShift2 {

gxOmitGlyphPositionsShift = 6,

gxOmitGlyphAdvancesShift = 5,

gxOmitGlyphTangentsShift = 3,

gxOmitGlyphRunsShift = 2,

gxOmitGlyphStylesShift = 0

};

Constant descriptions

gxOmitGlyphPositionsShift
The bit shift required to isolate the compression bits for the
positions function parameter.

gxOmitGlyphAdvancesShift
The bit shift required to isolate the compression bits for the
advance function parameter.

gxOmitGlyphTangentsShift
The bit shift required to isolate the compression bits for the
tangents function parameter.

gxOmitGlyphRunsShift
The bit shift required to isolate the compression bits for the
styleRuns function parameter.

gxOmitGlyphStylesShift
The bit shift required to isolate the compression bits for the
glyphStyles function parameter.
7-124 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Layout Shape Omit Byte Masks and Shifts 7

The gxOmitLayoutMask1 enumeration defines which bits in an omit byte correspond
to the data compression opcode for parameters for the GXNewLayout function. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Layout Shape Data” beginning on page 7-33.

enum gxOmitLayoutMask1 {

gxOmitLayoutLengthMask = 0xC0,

gxOmitLayoutPositionXMask = 0x30,

gxOmitLayoutPositionYMask = 0x0C,

gxOmitLayoutDataMask = 0x02

};

Constant descriptions

gxOmitLayoutLengthMask
The mask used to select the data compression bits for the
textRunLength parameter.

gxOmitLayoutPositionXMask
The mask used to select the data compression bits for the
position.X parameter.

gxOmitLayoutPositionYMask
The mask used to select the data compression bits for the
position.Y parameters.

gxOmitLayoutDataMask
The mask used to select the data compression bits for the text
parameter.

Once one of the gxOmitLayoutMask1 enumeration masks has been used to select a
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOmitLayoutShift1 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitLayoutShift1 {

gxOmitLayoutLengthShift = 6,

gxOmitLayoutPositionXShift = 4,

gxOmitLayoutPositionYShift = 2,

gxOmitLayoutDataShift = 1

};
QuickDraw GX Stream Format Reference 7-125

C H A P T E R 7

QuickDraw GX Stream Format
Constant descriptions

gxOmitLayoutLengthShift
The bit shift required to isolate the compression bits for the
textRunLength parameter.

gxOmitLayoutPositionXShift
The bit shift required to isolate the compression bits for the
position.X parameter.

gxOmitLayoutPositionYShift
The bit shift required to isolate the compression bits for the
position.Y parameter.

gxOmitLayoutDataShift
The bit shift required to isolate the compression bits for the text
parameter descriptor.

The gxOmitLayoutMask2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional parameters for the
GXNewLayout function. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Layout Shape Data” beginning on
page 7-33.

enum gxOmitLayoutMask2 {

gxOmitLayoutWidthMask = 0xC0,

gxOmitLayoutFlushMask = 0x30,

gxOmitLayoutJustMask = 0x0C,

gxOmitLayoutOptionsMask = 0x03

};

Constant descriptions

gxOmitLayoutWidthMask
The mask used to select the data compression bits for the width
field descriptor.

gxOmitLayoutFlushMask
The mask used to select the data compression bits for the flush
field descriptor.

gxOmitLayoutJustMask
The mask used to select the data compression bits for the just field
descriptor.

gxOmitLayoutOptionsMask
The mask used to select the data compression bits for the flags
field descriptor.
7-126 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Once one of the gxOmitLayoutMask2 enumeration masks has been used to select a
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOmitLayoutShift2 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitLayoutShift2 {

gxOmitLayoutWidthShift = 6,

gxOmitLayoutFlushShift = 4,

gxOmitLayoutJustShift = 2,

gxOmitLayoutOptionsShift = 0

};

Constant descriptions

gxOmitLayoutWidthShift
The bit shift required to isolate the compression bits for the width
field descriptor.

gxOmitLayoutFlushShift
The bit shift required to isolate the compression bits for the flush
field descriptor.

gxOmitLayoutJustShift
The bit shift required to isolate the compression bits for the just
field descriptor.

gxOmitLayoutOptionsShift
The bit shift required to isolate the compression bits for the flags
field descriptor.

The gxOmitLayoutMask3 enumeration defines which bits in a third omit byte
correspond to the data compression opcode for additional parameters for the
GXNewLayout function. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Layout Shape Data” beginning on
page 7-33.

enum gxOmitLayoutMask3 {

gxOmitLayoutStyleRunNumberMask= 0xC0,

gxOmitLayoutLevelRunNumberMask= 0x30,

gxOmitLayoutHasBaselineMask = 0x08,

gxOmitLayoutStyleRunsMask = 0x04,

gxOmitLayoutStylesMask = 0x03

};
QuickDraw GX Stream Format Reference 7-127

C H A P T E R 7

QuickDraw GX Stream Format
Constant descriptions

gxOmitLayoutStyleRunNumberMask
The mask used to select the data compression bits for the
styleRunCount field descriptor.

gxOmitLayoutLevelRunNumberMask
The mask used to select the data compression bits for the
levelRunCount field descriptor.

gxOmitLayoutHasBaselineMask
The mask used to select the data compression bits for the
hasBaseline field descriptor.

gxOmitLayoutStyleRunsMask
The mask used to select the data compression bits for the
styleRunLengths field descriptor.

gxOmitLayoutStylesMask
The mask used to select the data compression bits for the ??? field
descriptor.

Once one of the gxOmitLayoutMask3 enumeration masks has been used to select a
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOmitLayoutShift3 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitLayoutShift3 {

gxOmitLayoutStyleRunNumberShift = 6,

gxOmitLayoutLevelRunNumberShift = 4,

gxOmitLayoutHasBaselineShift = 3,

gxOmitLayoutStyleRunsShift = 2,

gxOmitLayoutStylesShift = 0

};

Constant descriptions

gxOmitLayoutStyleRunNumberShift
The bit shift required to isolate the compression bits for the
styleRunCount field descriptor.

gxOmitLayoutLevelRunNumberShift
The bit shift required to isolate the compression bits for the
levelRunCount field descriptor.

gxOmitLayoutHasBaselineShift
The bit shift required to isolate the compression bits for the
hasBaseline field descriptor.

gxOmitLayoutStyleRunsShift
The bit shift required to isolate the compression bits for the
styleRunLengths field descriptor.

gxOmitLayoutStylesShift
The bit shift required to isolate the compression bits for the ???
field descriptor.
7-128 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
The gxOmitLayoutMask4 enumeration defines which bits in a fourth omit byte
correspond to the data compression opcode for additional parameters for the
GXNewLayout function. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Layout Shape Data” beginning on
page 7-33.

enum gxOmitLayoutMask4 {

gxOmitLayoutLevelRunsMask = 0x80,

gxOmitLayoutLevelsMask = 0x40

};

Constant descriptions

gxOmitLayoutLevelRunsMask
The mask used to select the data compression bits for the
levelRunLengths parameter.

gxOmitLayoutLevelsMask
The mask used to select the data compression bits for the levels
parameter.

Once one of the gxOmitLayoutMask4 enumeration masks has been used to a select
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOmitLayoutShift4 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmitLayoutShift4 {

gxOmitLayoutLevelRunsShift = 7,

gxOmitLayoutLevelsShift = 6

};

Constant descriptions

gxOmitLayoutLevelRunsShift
The bit shift required to isolate the compression bits for the
levelRunLengths parameter.

gxOmitLayoutLevelsShift
The bit shift required to isolate the compression bits for the levels
parameter.

Picture Shape Omit Byte Masks and Shifts 7

The gxOmitPictureParametersMask enumeration defines which bits in an omit byte
correspond to the data compression opcode for parameters of the GXDrawPicture
function. The sequence of data is also defined. The omit byte and its related data
sequence is given in the section “Picture Shape Data” beginning on page 7-34.
QuickDraw GX Stream Format Reference 7-129

C H A P T E R 7

QuickDraw GX Stream Format
enum gxOmitPictureParametersMask {

gxOmitPictureShapeMask = 0xC0,

gxOmitOverrideStyleMask = 0x30,

gxOmitOverrideInkMask = 0x0C,

gxOmitOverrideTransformMask = 0x03

};

Constant descriptions

gxOmitPictureShapeMask
The mask used to select the data compression bits for the shapes
parameter.

gxOmitOverrideStyleMask
The mask used to select the data compression bits for the styles
parameter.

gxOmitOverrideInkMask
The mask used to select the data compression bits for the inks
parameter.

gxOmitOverrideTransformMask
The mask used to select the data compression bits for the
transforms parameter.

enum gxOmitPictureParametersShift {

gxOmitPictureShapeShift = 0x6,

gxOmitOverrideStyleShift = 0x4,

gxOmitOverrideInkShift = 0x2,

gxOmitOverrideTransformShift = 0x0

};

Constant descriptions

gxOmitPictureShapeShift
The bit shift required to isolate the compression bits for the shapes
parameter.

gxOmitOverrideStyleShift
The bit shift required to isolate the compression bits for the styles
parameter.

gxOmitOverrideInkShift
The bit shift required to isolate the compression bits for the inks
parameter.

gxOmitOverrideTransformShift
The bit shift required to isolate the compression bits for the
transforms parameter.
7-130 QuickDraw GX Stream Format Reference

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
QuickDraw GX Stream Format Summary 7

Opcode Constants and Data Types 7

Operation Opcode Byte

enum gxGraphicsOperationOpcode {

gxNewObjectOpcode = 0x00,

gxSetDataOpcode = 0x40,

gxSetDefaultOpcode= 0x80,

gxReservedOpcode = 0xC0,

gxNextOpcode = 0xFF,

};

Data Type Opcode Byte

enum gxGraphicsNewOpcode {

gxHeaderTypeOpcode = 0x00,

gxStyleTypeOpcode = 0x28,

gxInkTypeOpcode,

gxTransformTypeOpcode,

gxColorProfileTypeOpcode,

gxColorSetTypeOpcode,

gxTagTypeOpcode,

gxBitImageOpcode,

gxFontNameTypeOpcode,

gxTrailerTypeOpcode,

};

Generic Data Opcode

enum gxGenericDataOpcode {

gxTypeOpcode,

gxSizeOpcode

}; /* constants used by current operand when

 current operation is gxNextOpcode */

#define gxCompressionShift 6

#define gxObjectTypeMask 0x3F
QuickDraw GX Stream Format Summary 7-131

C H A P T E R 7

QuickDraw GX Stream Format
#define gxBitImageOpcodeMask 0xC0

#define gxBitImageCountMask 0x3F

#define gxBitImageOpcodeShift 6

Modified Shape Data Opcodes

enum gxShapeDataOpcode {

gxShapeAttributesOpcode,

gxShapeTagOpcode,

gxShapeFillOpcode

};

Modified Style Data Opcodes

enum gxStyleDataOpcode {

gxStyleAttributesOpcode,

gxStyleTagOpcode,

gxStyleCurveErrorOpcode,

gxStylePenOpcode,

gxStyleJoinOpcode,

gxStyleDashOpcode,

gxStyleCapsOpcode,

gxStylePatternOpcode,

gxStyleTextAttributesOpcode,

gxStyleTextSizeOpcode,

gxStyleFontOpcode,

gxStyleTextFaceOpcode,

gxStylePlatformOpcode,

gxStyleFontVariationsOpcode,

#ifdef gxLayoutStyleRuns

gxStyleRunControlsOpcode,

gxStyleRunPriorityJustOverrideOpcode,

gxStyleRunGlyphJustOverridesOpcode,

gxStyleRunGlyphSubstitutionsOpcode,

gxStyleRunFeaturesOpcode,

gxStyleRunKerningAdjustmentsOpcode,

gxStyleLayoutInfoOpcode,

gxStyleJustificationOpcode

};
7-132 QuickDraw GX Stream Format Summary

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Modified Ink Data Opcodes

enum gxInkDataOpcode {

gxInkAttributesOpcode,

gxInkTagOpcode,

gxInkColorOpcode,

gxInkTransferModeOpcode

};

Modified Color Set Data Opcodes

enum gxColorSetDataOpcode {

gxColorSetReservedOpcode,

gxColorSetTagOpcode

};

Modified Color Profile Data Opcodes

enum gxProfileDataOpcode {

gxColorProfileAttributesOpcode,

gxColorProfileTagOpcode

};

Modified Transform Data Opcodes

enum gxTransformDataOpcode {

gxTransformReservedOpcode,

gxTransformTagOpcode,

gxTransformClipOpcode,

gxTransformMappingOpcode,

gxTransformPartMaskOpcode,

gxTransformToleranceOpcode

};

Bit Image Compression Opcodes

enum gxBitImageCompression {

gxCopyBitImageBytesOpcode = 0x00,

gxRepeatBitImageBytesOpcode= 0x40,

gxLookupBitImageBytesOpcode= 0x80,

gxRepeatBitImageScanOpcode = 0xC0

};
QuickDraw GX Stream Format Summary 7-133

C H A P T E R 7

QuickDraw GX Stream Format
Two Bit Compression Values

enum gxTwoBitCompressionValues {

gxNoCompression, = 0x00

gxWordCompression, = 0x40

gxByteCompression, = 0x80

gxOmitCompression = = 0x??

};

Flatten Header Bytes

struct gxFlattenHeader {

fixed version;

unsigned char flatFlags;

};

Style Object Omit Byte Constants and Data Types 7

Dash Style Omit Byte Masks and Shifts

enum gxOmitDashMask1 {

gxOmitDashAttributesMask = 0xC0,

gxOmitDashShapeMask = 0x30,

gxOmitDashAdvanceMask = 0x0C,

gxOmitDashPhaseMask = 0x03

};

enum gxOmitDashShift1 {

gxOmitDashAttributesShift = 6,

gxOmitDashShapeShift = 4,

gxOmitDashAdvanceShift = 2,

gxOmitDashPhaseShift = 0

};

enum gxOmitDashMask2 {

gxOmitDashScaleMask = 0xC0

};

enum gxOmitDashShift2 {

gxOmitDashScaleShift = 6

};
7-134 QuickDraw GX Stream Format Summary

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Pattern Style Omit Byte Masks and Shifts

enum gxOmitPatternMask1 {

gxOmitPatternAttributesMask = 0xC0,

gxOmitPatternShapeMask = 0x30,

gxOmitPatternUXMask = 0x0C,

gxOmitPatternUYMask = 0x03

};

enum gxOmitPatternShift1 {

gxOmitPatternAttributesShift = 6,

gxOmitPatternShapeShift = 4,

gxOmitPatternUXShift = 2,

gxOmitPatternUYShift = 0

};

enum gxOmitPatternMask2 {

gxOmitPatternVXMask = 0xC0,

gxOmitPatternVYMask = 0x30

};

enum gxOmitPatternShift2 {

gxOmitPatternVXShift= 6,

gxOmitPatternVYShift= 4

};

Join Style Omit Byte Masks and Shifts

enum gxOmitJoinMask {

gxOmitJoinAttributesMask= 0xC0,

gxOmitJoinShapeMask = 0x30,

gxOmitJoinMiterMask = 0x0C

};

enum gxOmitJoinShift {

gxOmitJoinAttributesShift = 6,

gxOmitJoinShapeShift = 4,

gxOmitJoinMiterShift = 2

};
QuickDraw GX Stream Format Summary 7-135

C H A P T E R 7

QuickDraw GX Stream Format
Cap Style Omit Byte Masks and Shifts

enum gxOmitCapMask {

gxOmitCapAttributesMask = 0xC0,

gxOmitCapStartShapeMask = 0x30,

gxOmitCapEndShapeMask = 0x0C

};

enum gxOmitCapShift {

gxOmitCapAttributesShift= 6,

gxOmitCapStartShapeShift= 4,

gxOmitCapEndShapeShift = 2

};

Text Face Style Omit Byte Masks and Shifts

enum gxOmitFaceMask {

gxOmitFaceLayersMask = 0xC0,

gxOmitFaceMappingMask= 0x30

};

enum gxOmitFaceShift {

gxOmitFaceLayersShift = 6,

gxOmitFaceMappingShift= 4

};

Face Layer Omit Byte Masks and Shifts

enum gxOmitFaceLayerMask1 {

gxOmitFaceLayerFillMask = 0xC0,

gxOmitFaceLayerFlagsMask = 0x30,

gxOmitFaceLayerStyleMask = 0x0C,

gxOmitFaceLayerTransformMask = 0x03

};

enum gxOmitFaceLayerShift1 {

gxOmitFaceLayerFillShift = 6,

gxOmitFaceLayerFlagsShift = 4,

gxOmitFaceLayerStyleShift = 2,

gxOmitFaceLayerTransformShift = 0

};
7-136 QuickDraw GX Stream Format Summary

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
enum gxOmitFaceLayerMask2 {

gxOmitFaceLayerBoldXMask = 0xC0,

gxOmitFaceLayerBoldYMask = 0x30

};

enum gxOmitFaceLayerShift2 {

gxOmitFaceLayerBoldXShift = 6,

gxOmitFaceLayerBoldYShift = 4

};

Ink Object Omit Byte Constants and Data Types 7

Colors Omit Byte Masks and Shifts

enum gxOmitColorsMask {

gxOmitColorsSpaceMask = 0xC0,

gxOmitColorsProfileMask = 0x30,

gxOmitColorsComponentsMask = 0x0F,

gxOmitColorsIndexMask = 0x0C,

gxOmitColorsIndexSetMask = 0x03

};

enum gxOmitColorsShift {

gxOmitColorsSpaceShift = 6,

gxOmitColorsProfileShift = 4,

gxOmitColorsComponentsShift = 0,

gxOmitColorsIndexShift = 2,

gxOmitColorsIndexSetShift = 0

};

Transfer Omit Byte Masks and Shifts

enum gxOmitTransferMask1 {

gxOmitTransferSpaceMask = 0xC0,

gxOmitTransferSetMask = 0x30,

gxOmitTransferProfileMask = 0x0C

};

enum gxOmitTransferShift1 {

gxOmitTransferSpaceShift = 6,

gxOmitTransferSetShift = 4,

gxOmitTransferProfileShift = 2

};
QuickDraw GX Stream Format Summary 7-137

C H A P T E R 7

QuickDraw GX Stream Format
enum gxOmitTransferMask2 {

gxOmitTransferSourceMatrixMask= 0xC0,

gxOmitTransferDeviceMatrixMask= 0x30,

gxOmitTransferResultMatrixMask= 0x0C,

gxOmitTransferFlagsMask = 0x03

};

enum gxOmitTransferShift2 {

gxOmitTransferSourceMatrixShift = 6,

gxOmitTransferDeviceMatrixShift = 4,

gxOmitTransferResultMatrixShift = 2,

gxOmitTransferFlagsShift = 0

};

Transfer Component Omit Byte Masks and Shifts

enum gxOmitTransferComponentMask1{

gxOmitTransferComponentModeMask = 0x80,

gxOmitTransferComponentFlagsMask = 0x40,

gxOmitTransferComponentSourceMinimumMask = 0x30,

gxOmitTransferComponentSourceMaximumMask = 0x0C,

gxOmitTransferComponentDeviceMinimumMask = 0x03

} ;

enum gxOmitTransferComponentShift1 {

gxOmitTransferComponentModeShift = 7,

gxOmitTransferComponentFlagsShift = 6,

gxOmitTransferComponentSourceMinimumShift = 4,

gxOmitTransferComponentSourceMaximumShift = 2,

gxOmitTransferComponentDeviceMinimumShift = 0

};

enum gxOmitTransferComponentMask2 {

gxOmitTransferComponentDeviceMaximumMask = 0xC0,

gxOmitTransferComponentClampMinimumMask = 0x30,

gxOmitTransferComponentClampMaximumMask = 0x0C,

gxOmitTransferComponentOperandMask = 0x03

};
7-138 QuickDraw GX Stream Format Summary

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
enum gxOmitTransferComponentShift2 {

gxOmitTransferComponentDeviceMaximumShift = 6,

gxOmitTransferComponentClampMinimumShift = 4,

gxOmitTransferComponentClampMaximumShift = 2,

gxOmitTransferComponentOperandShift = 0

};

Shape Object Omit Byte Constants and Data Types 7

Path Shape Omit Byte Masks and Shifts

enum gxOmitPathMask {

gxOmitPathPositionXMask = 0xC0,

gxOmitPathPositionYMask = 0x30,

gxOmitPathDeltaXMask = 0x0C,

gxOmitPathDeltaYMask = 0x03

};

enum gxOmitPathShift {

gxOmitPathPositionXShift = 6,

gxOmitPathPositionYShift = 4,

gxOmitPathDeltaXShift = 2,

gxOmitPathDeltaYShift = 0

};

Bitmap Shape Omit Byte Masks and Shifts

enum gxOmitBitmapMask1 {

gxOmitBitmapImageMask = 0xC0,

gxOmitBitmapWidthMask = 0x30,

gxOmitBitmapHeightMask = 0x0C,

gxOmitBitmapRowBytesMask = 0x03

};

enum gxOmitBitmapShift1 {

gxOmitBitmapImageShift = 6,

gxOmitBitmapWidthShift = 4,

gxOmitBitmapHeightShift = 2,

gxOmitBitmapRowBytesShift = 0

};
QuickDraw GX Stream Format Summary 7-139

C H A P T E R 7

QuickDraw GX Stream Format
enum gxOmitBitmapMask2 {

gxOmitBitmapPixelSizeMask = 0xC0,

gxOmitBitmapSpaceMask = 0x30,

gxOmitBitmapSetMask = 0x0C,

gxOmitBitmapProfileMask = 0x03

};

enum gxOmitBitmapShift2 {

gxOmitBitmapPixelSizeShift = 6,

gxOmitBitmapSpaceShift = 4,

gxOmitBitmapSetShift = 2,

gxOmitBitmapProfileShift = 0

};

enum gxOmitBitmapMask3 {

gxOmitBitmapPositionXMask = 0xC0,

gxOmitBitmapPositionYMask = 0x30

};

enum gxOmitBitmapShift3 {

gxOmitBitmapPositionXShift = 6,

gxOmitBitmapPositionYShift = 4

};

Bit Image Omit Byte Masks and Shifts

enum gxOmitBitImageMask {

gxOmitBitImageRowBytesMask = 0xC0,

gxOmitBitImageHeightMask = 0x30,

gxOmitBitImageDataMask = 0x08

};

enum gxOmitBitImageShift {

gxOmitBitImageRowBytesShift = 6,

gxOmitBitImageHeightShift = 4,

gxOmitBitImageDataShift = 3

};
7-140 QuickDraw GX Stream Format Summary

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
Text Shape Omit Byte Masks and Shifts

enum gxOmitTextMask {

gxOmitTextCharactersMask = 0xC0,

gxOmitTextPositionXMask = 0x30,

gxOmitTextPositionYMask = 0x0C,

gxOmitTextDataMask = 0x02

};

enum gxOmitTextShift {

gxOmitTextCharactersShift = 6,

gxOmitTextPositionXShift = 4,

gxOmitTextPositionYShift = 2,

gxOmitTextDataShift = 1

};

Glyph Shape Omit Byte Masks and Shifts

enum gxOmitGlyphMask1 {

gxOmitGlyphCharactersMask = 0xC0,

gxOmitGlyphLengthMask = 0x30,

gxOmitGlyphRunNumberMask = 0x0C,

gxOmitGlyphOnePositionMask = 0x02,

gxOmitGlyphDataMask = 0x01

};

enum gxOmitGlyphShift1 {

gxOmitGlyphCharactersShift = 6,

gxOmitGlyphLengthShift = 4,

gxOmitGlyphRunNumberShift = 2,

gxOmitGlyphOnePositionShift = 1,

gxOmitGlyphDataShift = 0

};

enum gxOmitGlyphMask2 {

gxOmitGlyphPositionsMask = 0xC0,

gxOmitGlyphAdvancesMask = 0x20,

gxOmitGlyphTangentsMask = 0x18,

gxOmitGlyphRunsMask = 0x04,

gxOmitGlyphStylesMask = 0x03

};
QuickDraw GX Stream Format Summary 7-141

C H A P T E R 7

QuickDraw GX Stream Format
enum gxOmitGlyphShift2 {

gxOmitGlyphPositionsShift = 6,

gxOmitGlyphAdvancesShift = 5,

gxOmitGlyphTangentsShift = 3,

gxOmitGlyphRunsShift = 2,

gxOmitGlyphStylesShift = 0

};

Layout Shape Omit Byte Masks and Shifts

enum gxOmitLayoutMask1 {

gxOmitLayoutLengthMask = 0xC0,

gxOmitLayoutPositionXMask = 0x30,

gxOmitLayoutPositionYMask = 0x0C,

gxOmitLayoutDataMask = 0x02

};

enum gxOmitLayoutShift1 {

gxOmitLayoutLengthShift = 6,

gxOmitLayoutPositionXShift = 4,

gxOmitLayoutPositionYShift = 2,

gxOmitLayoutDataShift = 1

};

enum gxOmitLayoutMask2 {

gxOmitLayoutWidthMask = 0xC0,

gxOmitLayoutFlushMask = 0x30,

gxOmitLayoutJustMask = 0x0C,

gxOmitLayoutOptionsMask = 0x03

};

enum gxOmitLayoutShift2 {

gxOmitLayoutWidthShift = 6,

gxOmitLayoutFlushShift = 4,

gxOmitLayoutJustShift = 2,

gxOmitLayoutOptionsShift = 0

};
7-142 QuickDraw GX Stream Format Summary

C H A P T E R 7

QuickDraw GX Stream Format

7
Q

uickD
raw

 G
X

 S
tream

 F
orm

at
enum gxOmitLayoutMask3 {

gxOmitLayoutStyleRunNumberMask= 0xC0,

gxOmitLayoutLevelRunNumberMask= 0x30,

gxOmitLayoutHasBaselineMask = 0x08,

gxOmitLayoutStyleRunsMask = 0x04,

gxOmitLayoutStylesMask = 0x03

};

enum gxOmitLayoutShift3 {

gxOmitLayoutStyleRunNumberShift = 6,

gxOmitLayoutLevelRunNumberShift = 4,

gxOmitLayoutHasBaselineShift = 3,

gxOmitLayoutStyleRunsShift = 2,

gxOmitLayoutStylesShift = 0

};

enum gxOmitLayoutMask4 {

gxOmitLayoutLevelRunsMask = 0x80,

gxOmitLayoutLevelsMask = 0x40

};

enum gxOmitLayoutShift4 {

gxOmitLayoutLevelRunsShift = 7,

gxOmitLayoutLevelsShift = 6

};

Picture Shape Omit Byte Masks and Shifts

enum gxOmitPictureParametersMask {

gxOmitPictureShapeMask = 0xC0,

gxOmitOverrideStyleMask = 0x30,

gxOmitOverrideInkMask = 0x0C,

gxOmitOverrideTransformMask = 0x03

};

enum gxOmitPictureParametersShift {

gxOmitPictureShapeShift = 0x6,

gxOmitOverrideStyleShift = 0x4,

gxOmitOverrideInkShift = 0x2,

gxOmitOverrideTransformShift = 0x0

};
QuickDraw GX Stream Format Summary 7-143

	QuickDraw GX Stream Format
	About QuickDraw GX Stream Format
	Characteristics
	Stream Design
	Operation Opcode Byte
	Operation Opcode
	Record Size

	Data Type Opcode Byte
	Compression Type Opcode
	Data Type Opcode

	Data
	Omit Byte Masks and Omit Byte Shifts
	Header Data
	New Shape Object Data
	Modified Shape Object Data
	New Style Object Data
	Modified Style Object Data
	New Ink Object Data
	Modified Ink Object Data
	New Object Transform Data
	Modified Transform Object Data
	New Color Profile Object Data
	Modified Color Profile Object Data
	New Color Set Object Data
	Modified Color Set Object Data
	New Tag Object Data
	New Bit Image Object Data
	New Font Name Data
	New Trailer Object Data

	About Print Files and Portable Digital Documents
	Print Files
	Portable Digital Documents

	Using QuickDraw GX Stream Format
	Flattening Shapes With GraphicsBug
	Analyzing the Data Streams of Flattened Shapes
	Creating a Picture With Seven Shapes
	Analyzing a Flattened Line Shape
	Analyzing a Flattened Rectangle Shape
	Analyzing a Flattened Curve Shape
	Analyzing a Flattened Path Shape
	Analyzing a Flattened Text Shape
	Analyzing a Flattened Polygon Shape
	Analyzing a Flattened Bitmap Shape

	Obtaining Data From a Print File

	QuickDraw GX Stream Format Reference
	Opcode Constants and Data Types
	Operation Opcode Byte
	Data Type Opcode Byte
	Generic Data Opcode
	Bit Image Compression Opcode Byte
	Modified Shape Data Opcodes
	Modified Style Data Opcodes
	Modified Ink Data Opcodes
	Modified Color Set Data Opcodes
	Modified Color Profile Data Opcodes
	Modified Transform Data Opcodes
	Bit Image Compression Opcodes
	Flatten Header Bytes

	Style Object Omit Byte Constants and Data Types
	Dash Style Omit Byte Masks and Shifts
	Pattern Style Omit Byte Masks and Shifts
	Join Style Omit Byte Masks and Shifts
	Cap Style Omit Byte Masks and Shifts
	Text Face Style Omit Byte Masks and Shifts
	Face Layer Omit Byte Masks and Shifts

	Ink Object Omit Byte Constants and Data Types
	Colors Omit Byte Masks and Shifts
	Transfer Omit Byte Masks and Shifts
	Transfer Component Omit Byte Masks and Shifts

	Shape Object Omit Byte Constants and Data Types
	Path Shape Omit Byte Masks and Shifts
	Bitmap Shape Omit Byte Masks and Shifts
	Bit Image Omit Byte Masks and Shifts
	Text Shape Omit Byte Masks and Shifts
	Glyph Shape Omit Byte Masks and Shifts
	Layout Shape Omit Byte Masks and Shifts
	Picture Shape Omit Byte Masks and Shifts

	QuickDraw GX Stream Format Summary
	Opcode Constants and Data Types
	Style Object Omit Byte Constants and Data Types
	Ink Object Omit Byte Constants and Data Types
	Shape Object Omit Byte Constants and Data Types

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 QuickDraw GX and the Macintosh Environment TOC
	 QuickDraw GX and the Macintosh
	 QuickDraw GX Memory Management TOC
	 QuickDraw GX Memory Management
	 Errors, Warnings, and NoticesTOC
	 Errors, Warnings, and Notices
	 QuickDraw GX Debugging TOC
	 QuickDraw GX Debugging
	 Collection Manager TOC
	 Collection Manager
	 Message Manager TOC
	 Message Manager
	 QuickDraw GX Stream Format TOC
	 QuickDraw GX Mathematics TOC
	 QuickDraw GX Mathematics
	 Glossary
	 Index
	 Colophon

