CHAPTER 7

QuickDraw GX Stream Format

This chapter describes the format of the compressed data stream that results when the
QuickDraw GX GXFIl at t enShape function is used. It also describes the use of such data
streams by print files and portable digital documents (PDDs). Read this chapter if you
need to uncompress QuickDraw GX stream format data and cannot use the QuickDraw
GX GXUnf | at t enShape function.

Before reading this chapter, you should be familiar with the information in the chapters
“Introduction to QuickDraw GX Objects” and “Shape Objects” in Inside Macintosh:
QuickDraw GX Objects.

The GXFI at t enShape and GXUnf | at t enShape functions and additional information
about the objects contained in the data stream are described in Inside Macintosh:
QuickDraw GX Obijects. For more information on graphic shapes, see the shape-specific
chapters in Inside Macintosh: QuickDraw GX Graphics. For more information on
typographic shapes, see the shape-specific chapters in Inside Macintosh: QuickDraw GX
Typography. For more information on print files and portable digital documents, see the
chapter “Advanced Printing Features” of Inside Macintosh: QuickDraw GX Printing.

This chapter first describes the QuickDraw GX stream format, print file organization,
and portable digital documents. It then shows how you can

= use the GraphicsBug utility to flatten QuickDraw GX shapes
» analyze flattened shape data streams

= obtain information from a print file

About QuickDraw GX Stream Format

A QuickDraw GX data stream is a highly structured sequence of bytes that contains all
of the information required to store, print, or display QuickDraw GX objects.

QuickDraw GX provides a simple method for creating and interpreting a QuickDraw GX
data stream for shape objects. The GXFI at t enShape function creates the data stream
and the GXUnf | at t enShape function reconstructs objects from the data stream that the
GXFI at t enShape function previously created.

When the GXFI at t enShape function converts shape objects created by your
application from their original format to a QuickDraw GX stream format, the shape is
said to be flattened. When the GXUnFI at t enShape function interprets the data stream
of a flattened shape, the shape is said to be unflattened.

If QuickDraw GX is available and you need to flatten and unflatten QuickDraw GX
shapes, you just use the GXFI at t enShape and GXUnf | at t enShape functions. If
QuickDraw GX is not available and you need to unflatten a flattened shape, then you
need to create an interpreter for the QuickDraw GX data stream that was created when
the shape was flattened. The interpreter must be compatible with your current working
environment.

About QuickDraw GX Stream Format 7-5

Tew.o4 weans Xo meiayaind .

7-6

CHAPTER 7

QuickDraw GX Stream Format

Your interpreter needs to parse the data of the QuickDraw GX data stream to extract the
original meaning. The format of the data stream is public. This section describes the data
stream format and its use in print files and portable digital documents.

In addition to the GXFI at t enShape and GXUnf | at t enShape functions that create and
interpret the QuickDraw GX stream format for shapes, there are other flatten and
unflatten functions that perform flattening and unflattening operations on job objects,
job objects in a handle, collection objects, and fonts. These functions are not directly
related to the stream format.

The GXFI at t enJob and GXUnFl at t enJob functions provide your application with a
mechanism for flattening and unflattening all information associated with a job object by
specifying a pointer to a flattening function. For more information on these functions, see
the chapters “QuickDraw GX Printing” and “Core Printing Features” in Inside Macintosh:
QuickDraw GX Printing.

The GXFl at t enJobToHdl and GXUnf | att enCol | ecti onFr onHdl functions
provides your application with a means of flattening and unflattening all information
associated with a job object in a handle. For more information on these functions, see the
chapters “Introduction to Printing with QuickDraw GX” and “Core Printing Features” of
Inside Macintosh: QuickDraw GX Printing.

The GXFl att enCol | ecti on and GXUnf | att enCol | ect i on functions flatten and
unflatten information in a collection object. For more information on this function, see
the chapter “Collection Manager” in this book.

The GXFI at t enFont function flattens a font so that it can be included in a flattened
shape. The GXFI at t enFont function is described in the chapter “Font Objects” in Inside
Macintosh: QuickDraw GX Typography.

Characteristics

The QuickDraw GX data stream format is used whenever a QuickDraw GX shape is
stored to disk or printed. Likewise, the data stream must be interpreted whenever the
flattened shape is to be used. The QuickDraw GX stream format is

» Extensible. The data stream includes type constants called opcodes that specify the
meaning of the data that follows in the data stream and record size values that
indicate the number of bytes in the record that follow. The opcode and size are always
in the same format. If a reader of a QuickDraw GX data stream doesn’t understand
the information contained in the stream, the reader can choose to skip to the next
opcode. Some opcode constants are reserved for future expansion.

= Byte oriented. QuickDraw GX uses a byte-oriented stream format so that it is simple
for different processors to interpret the flattened shape information. Multiple
byte-oriented data streams, using words (2 bytes) or long words (4 bytes), are larger
and therefore are not as efficient for storing, retrieving, and printing shapes.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Efficient. The QuickDraw GX data stream format contains a highly structured
optimized set of data that minimize the amount of irrelevant information. For
example, if your application creates a shape and then moves the shape to another
position, the flattened shape stream format describes only the final position of the
shape and does not include a description of the intermediate move.

Compressed. The GXFI at t enShape function always applies a compression
algorithm to the flattened shape. The degree of compression that is achieved depends
upon the shape and the objects that make up the shape. If applying the compression
algorithm results in a data stream that is larger than the original, the original data is
adopted as the default. When you call the GXFI at t enShape function, you are
thereby always assured of a data stream format that is equal to or smaller than the
original data format. Data in a QuickDraw GX stream format consists of single bits,
multiple bits, a byte, multiple bytes, a word, multiple words, a long word, or multiple
long words. The QuickDraw GX compression algorithm attempts to minimize the
number of bits that are required to represent the data required to describe each object
and its properties. For example, the long fixed-point number 125.0, 0x007D0000,
requiring 4 bytes may be compressed to the byte 125, 0x7D, requiring only 1 byte. This
substitution makes the data stream 3 bytes smaller, while maintaining the integrity of
the data value. When the shape is unflattened, the byte must be converted back to its
original long value. The QuickDraw GX stream format also compresses the data
stream bytes that contain opcodes. These opcode bytes consist of a 2-bit field and a
6-bit field that are packed intol byte.

Shape oriented. Each QuickDraw GX shape is described by a style object, ink object,
transform object, and shape object. When a QuickDraw GX shape is flattened, a new
data format is created that contains all of the essential information required to define

the original shape. All of the objects and properties that are required to describe all
of the QuickDraw GX shapes are included in the data stream.

Stream Design

The data stream includes type constants called opcodes that specify the meaning of the
data that follows in the data stream and record size values that indicate the number of
bytes in the record that follow.

Each QuickDraw GX data stream starts with a header. The header contains the version of
QuickDraw GX that produced the stream and flags that describe whether or not a list of

fonts and a list of glyphs used by the objects are provided for at the end of the stream.
This header is typically followed by the style object, ink object, transform object, and
shape object for the shape. This sequence is repeated for all subsequent shapes in the
data stream. The data stream is terminated after the last shape by the presence of a
termination object, as shown in Figure 7-1.

About QuickDraw GX Stream Format

7-7

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

7-8

Figure 7-1 A typical flattened shape data stream sequence
'
Header
Style object
Shape 1 — Ink object

Transform object

Shape object

= Data
Style object stream
Shape 2 — Ink object
Transform object
Shape object
A

Termination object

Each header and object type in the data stream is counted. This results in the assignment
of reference numbers for headers and all object types, such as style, ink, and transform
objects. The reference number is the nth occurrence of a header or object type.

For example, each data stream always has a header (1), a typically a style object (1), ink
object (1), transform object (1), and shape object (1), where the references are given in
parentheses. Additional headers and object types in the data stream are assigned the
next incremental reference number. Figure 7-1 shows that shape 1 is defined by style
object (1), ink object (1), transform object (1), and shape object (1) and that shape 2 is
defined by style object (2), ink object (2), transform object (2), and shape object (2). shape
100 in this data stream (not shown) may use the ink object defined in shape 1 by
referencing ink object (1).

Besides the style, ink, transform, and shape objects, the data stream may also contain
additional objects. The following objects are flattened when referenced by shapes, inks,
and transforms:

] tag
= color set
= color profile

= other referenced objects

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Examples of other referenced objects are the shapes that represent clips, dashes, and the
styles and transforms in text faces.

The following objects are never flattened:
= View ports

= Vview devices

= View groups

Another rule regarding data stream design requires that all objects and their attributes in
the data stream must be defined before they are referenced. QuickDraw GX data streams
never forward-reference objects.

For example, the style, ink, and transform objects for a shape must always precede the
shape object that they describe in the data stream. In addition, if a style object has a text
face property and the text face property has a dash property, then the shape object for the
dash property must precede the style object in the data stream.

The data stream design does not require that the order of objects to be style, ink, and
transform. Because these objects do not reference each other, they can appear in any
order in the data stream, as long as they are defined prior to being referenced.

Each header and object in the data stream consists of an operation opcode byte, a data
type opcode byte, and optional data bytes. Figure 7-2 shows these basic data stream
format building blocks. This sequence is repeated from the beginning of the stream to
the end of the stream. The next sections describe each of these building blocks.

Figure 7-2 Basic components of a stream header or object

{ /

—
Operation opcode byte
Header or
I Data opcode byte
object P y
Data (optional)
-
—
Operation opcode byte
Header or
object ——1 Data opcode byte
Data (optional)
—

About QuickDraw GX Stream Format 7-9

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Operation Opcode Byte

The first byte of a header or object is always an operation opcode byte. The operation
opcode byte contains both an operation opcode and the size in bytes of the record that
follows for the current object. The operation opcode either defines a new object, adds
data to the current default object, or references a previous object. The record length in
bytes includes the data type opcode byte and any data that may follow for the current
object. Figure 7-3 shows the format of the operation opcode byte.

Figure 7-3 The format of the operation opcode byte

76 5 43 210

Operation Record size
opcode in bytes

The operation opcode and record size are always in the same stream format. This enables
a reader of the data stream to skip over parts of the data stream that are not understood.

Operation Opcode

Bits 6 and 7 of the operation opcode byte are the operation opcode. Table 7-1 summarizes
the 2-bit operation opcodes from the gxGr aphi csOper at i onQpcode enumeration.

Table 7-1 Operation opcodes

Type Value Description
gxNewbj ect Opcode 0x00 This opcode type defines a new object.

gxSet Dat aOpcode 0x40 This opcode type adds data to the current object.

gxSet Def aul t Opcode 0x80 This opcode type replaces the current default
with a previously defined object by specifying
its reference number.

gxReser vedOpcode 0xCO0 This opcode type is not currently defined and is
reserved for future use.

7-10 About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Record Size

The record size defines the number of bytes required to define the header or object
record, not including the operation opcode byte. It is always 1 or larger. The record size
is given in either bits 0 through 5 of the operation opcode byte or within the bytes that
follow the operations opcode byte.

If the record size is larger than the value that can be represented in bits 0 through 5,
larger than 63, then a 0 appears in these 6 bits and the next byte in the data stream may
contain the record size.

If the record size is larger than the value that can be represented in the next byte, larger
than 255, then a 0 appears in this byte and the next word in the stream may contain the
record size.

If the record size is larger than the value that can be represented in the next word, larger
than 65,535, then a 0 appears in this word and the next long in the stream contains the
record size. A long can accommodate a record size up to 4,294,967,295 bytes.

Figure 7-4 shows the operation opcode byte on the left and the subsequent bytes in
which the record size is stored in 6-bits, a byte, awor d, or al ong. The data stream
continues proceeds from left to right.

About QuickDraw GX Stream Format 7-11

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Figure 7-4 Data format of the record size

Record size is 1 to 63 bytes
76 543210

6 bits

Record size is 64 to 255 bytes
76543210 76543210

L [ofofofolofo] [T [[[T][]
L ‘ J

Byte

Record size is 256 to 65,535 bytes
76 543210 76543210 76543210 76543210

| [ofoJofofofo][ofofoJofofofofo) L [[T T[T [JLTTTITT]]

L | J
Most Word (2 bytes) Least
significant bit significant bit

Record size is 65,536 to 4,294,967,295 bytes
76543210 76543210 76543210 76543210

| loJoJofofofo][o]ojofofofofo]o][o]o]o]ofofo]o]o][o]ofofofo]o]o]0]
76543210 76543210 76543210 76543210

N ‘)
_ Most Long (4 bytes) Least
significant bit significant bit

An example of a bit stream in which a long was required to accommodate a record size
of 404 bytes is described in the section “Analyzing a Flattened Bitmap Shape” beginning
on page 7-81.

7-12 About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Data Type Opcode Byte

A data type opcode byte always follows the record size. This byte contains both a
compression type opcode and a data type opcode. Figure 7-5 shows the format of the
data type opcode byte.

Figure 7-5 The format of the data type opcode byte

7 6 54 3 210

H_)gy_)

Compression Data type
type opcode opcode

Compression Type Opcode

Bits 6 and 7 of the data type opcode byte contain the compression type opcode. This
opcode specifies the type of compression used for the data that follows. The 2-bit
compression opcode constants from the gx TwoBi t Conpr essi onVal ues enumeration
specifies whether the next data are longs, words, bytes, or that no data follows. Table 7-2
lists the compression type opcode values.

Table 7-2 Compression values

Value Description

0x00 No compression has been applied. The data that follows are long words.
0x40 Word compression has been applied. The data that follows are words.
0x80 Byte compression has been applied. The data that follows are bytes.

0xCo Omit compression. No data follows.

The gxTwoBi t Conpr essi onVal ues enumeration is also used to interpret the
compression in the omit byte. For additional information about the interpretation of omit
bytes, see the section “Omit Byte Masks and Omit Byte Shifts” beginning on page 7-22.

About QuickDraw GX Stream Format 7-13

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

The relationship of the operation opcode, record size, compression type opcode, data
type opcode, and optional data for a header or object is shown in Figure 7-6.

7-14

Figure 7-6 Relationship of stream format components
—)
Operation opcode Operation
I opcode
Record size byte
-/
Header or] =
object | Compression type Data
—opcode
Data type opcode) byte Record
L Data (optional)
' R
Operation opcode Operation
—opcode
Record size byte
—
B
Headeror | Compression type Data
object | opcode
byte
Data type opcode vt Record
g
Data (optional)
N

The appearance or absence of data after the data type opcode byte depends upon the
values that appear in the operation opcode byte and the data type opcode byte.

If the gxNewCbj ect Opcode constant appears in the operation opcode byte, a new
object follows. The new object copies the default values into the newly created object.
The default values may have been changed by the last object created of this type. If the
last object and the current object are equal, then the new object requires no additional
data for its definition. In this case, the stream following the new opcode byte contains
only the compression and data type opcode byte with compression set to no
compression.

If the gxSet Dat aOpcode constant appears in the operation opcode byte, the record
length is greater than 1 byte and object-specific data follows.

The gxSet Def aul t Opcode constant appears only after the current object type has been
defined. If the gxSet Def aul t OQpcode constant appears in the operation opcode byte,
the data type opcode contains the gxSt yl eTypeQpcode, gxI nkTypeQpcode, or

gxTr ansf or nifypeQpcode constant. The compression type opcode defines the
compression of the data of the object reference number that follows. This previously

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

defined object becomes the default styles, ink, or transform for the shapes created
subsequently.

The sequence of the object-specific data that follows the data type opcode byte is
described in the next section. Subsections are provided for the header, shape data, style,
ink, transform, color profile, color set, tag, bit image, font name, and trailer objects.

Data Type Opcode

Bits 0 through 5 of the data type opcode byte contain the data type opcode. This

opcode specifies the type of data that follows. The type of data that follows depends
upon the current value of the operation opcode. If the operation opcode is

gxNewhj ect Opcode, the data type opcode describes a new object. These data

type opcodes are described in the next section. If the operation opcode is

gxSet Dat aOpcode, the data type opcode, specifies how the current object will

be modified. These data type opcodes are described in the sections “Data Type Opcodes
to Modify a Shape Object” beginning on page 7-17, “Data Type Opcodes to Modify a
Color Set Object” beginning on page 7-20, “Data Type Opcodes to Modify a Color Profile
Object” beginning on page 7-21, and “Data Type Opcodes to Modify a Transform Object”
beginning on page 7-21.

Data Type Opcodes for a New Object

When the current operation opcode is the gxNew(hj ect Opcode constant, bits 0
through 5 of the data type opcode byte specify the data type opcode for the new object.
Data type opcode constants for header, style, ink, transform, color profile, color set, tag
type, bit image, font name, and trailer are defined in the gxG aphi csNewQpcode
enumeration. Data type opcode constants for empty, point, line, curve, rectangle,
polygon, path, bitmap, text, glyph, layout, full, and picture are defined in the
gxShapeTypes enumeration. Table 7-3 summarizes all of the data type opcodes for a
new object.

Table 7-3 Data type opcodes for a new object

Constant Value Description

gxHeader TypeOpcode 0x00 The data that follows is the header.
gxEnpt yType 0x01 The data that follows describes an empty

shape object. See the
GXNewShape(gxEnpt yType) function.

gxPoi nt Type 0x02 The data that follows describes a point
object. See the GXNewPoi nt function.

gxLi neType 0x03 The data that follows describes a line object.
See the GXNewLi ne function.

gxCurveType 0x04 The data that follows describes a curve
object. See the GXNewCur ve function.

continued

About QuickDraw GX Stream Format 7-15

Tew.o4 weans Xo meiayaind .

7-16

CHAPTER 7

QuickDraw GX Stream Format

Table 7-3 Data type opcodes for a new object (continued)

Constant Value Description

gxRect angl eType 0x05 The data that follows describes a rectangle
object. See the GXNewRect angl e function.

gxPol ygonType 0x06 The data that follows describes a polygon
object. See the GXNewPol ygons function.

gxPat hType 0x07 The data that follows describes a path
object. See the GXNewPat hs function.

gxBi t mapType 0x08 The data that follows describes a bitmap
object. See the GXNewBi t map function.

gxText Type 0x09 The data that follows describes a text object.
See the GXNewText function.

gxd yphType 0x10 The data that follows describes a glyph
object. See the GXNewd yph function.

gxLayout Type 0x11 The data that follows describes a layout
object. See the GXNewL.ayout function.

gxFul | Type 0x12 The data that follows describes a full shape
object. See the GXNewShape(gxFul | Type)
function.

gxPi ctureType 0x13 The data that follows describes a picture
object. See the GXNewPi ct ur e function.

gxStyl eTypeOpcode 0x28 The data that follows describes a style
object. See the GXNewSt yI e function.

gxl nkTypeOpcode 0x29 The data that follows describes an ink
object. See the GXNewl nk function.

gxTransf or nifypeCpcode 0x2A The data that follows describes a transform
object. See the GXNewTr ansf or mfunction.

gxCol or Profi | eOpcode 0x2B The data that follows describes a color
profile object. See the
GXNewCol or Pr of i | e function.

gxCol or Set Opcode 0x2C The data that follows describes a color set
object. See the GXNewCol or Set function.

gxTagTypeOpcode 0x2D The data that follows describes a tag object.
See the GXNewTag function.

gxBi t | mageOpcode 0x2E The data that follows describes a bit image,
the bits pointed to by a bitmap.

gxFont NanmeTypeQOpcode 0x2F The data that follows describes a font name.
See the GXNewfont function.

gxTrail er TypeOQpcode O0x3F This opcode indicates the end of a data

About QuickDraw GX Stream Format

stream.

CHAPTER 7

QuickDraw GX Stream Format

The omitted numbers are reserved by Apple Computer, Inc. for future use. You should
extend the stream format by using tag objects to encapsulate custom data. Tags are
described in the “Tag Objects” in Inside Macintosh:QuickDraw GX Objects.

Data Type Opcodes to Modify a Shape Object

When the current object is a shape object and the current operation opcode is the
gxSet Dat aOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the shape object to be modified. Data type opcode constants for
attributes, tag, ink, and fill are defined in the gxShapeDat aOpcode enumeration.
Table 7-4 summarizes all of the data type opcodes used to modify a shape object.

Table 7-4 Data type opcodes to modify a shape object

Constant Value Description

gxShapeAttri but esOpcode 0x00 The attributes data that follows is added
to the current shape object. See the
GXSet ShapeAt tri but es function.

gxTagOpcode 0x01 The tag data that follows is added to the
current shape object. See the
GXSet ShapeTags function.

gxFi | | Opcode 0x02 The fill data that follows is added to the
current shape object. See the
GXSet ShapeFi | | function.

Data Type Opcodes to Modify a Style Object

When the current object is a style object and the current operation opcode is the

gxSet Dat aOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the style object to be modified. Data type opcode constants for
attributes, tag, curve error, pen, join, dash, caps, pattern, text attributes, text size, font,
text face, platform, font variations, run controls, run priority justification override, run
glyph justification overrides, run glyph substitutions, run features, run kerning
adjustments, and justification are defined in the gx St yl eDat aOpcode enumeration.
Table 7-5 summarizes all of the data type opcodes used to modify a style object.

About QuickDraw GX Stream Format 7-17

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-5

Data type opcodes to modify a style object

Constant
gxStyl eAttri but esOpcode

gxStyl eTagOpcode

gxSt yl eCur veError Opcode

gxStyl ePenOpcode

gxSt yl eJoi nOpcode

gxSt yl eDashOpcode

gxStyl eCapsOpcode

gxStyl ePat t er nOpcode

gxStyl eText Attri but esOpcode

gxStyl eText Si zeOpcode

gxSt yl eFont Opcode

7-18 About QuickDraw GX Stream Format

Value
0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

Ox0A

Description

The attributes data that follows is
added to the current shape object. See
the GXSet Styl eAttri butes
function.

The tag data that follows is added to
the current shape object. See the
GXSet St yl eTags function.

The curve error data that follows is
added to the current style object. See
the GXSet St yl eCur veEr r or
function.

The pen data that follows is added to
the current style object. See the
GXSet St yl ePen function.

The join data that follows is added to
the current style object. See the
GXSet St yl eJoi n function.

The dash data that follows is added to
the current style object. See the
GXSet St yl eDash function.

The caps data that follows is added to
the current style object. See the
GXSet St yl eCaps function.

The pattern data that follows is added
to the current style object. See the
GXSet St yl ePat t er n function.

The text attributes data that follows is
added to the current style object. See
the GXSet St yl eText Attri but es
function.

The text size data that follows is added
to the current style object. See the
GXSet St yl eText Si ze function.

The font data that follows is added to
the current style object. See the
GXSet St yl eFont function.

CHAPTER 7

QuickDraw GX Stream Format

Table 7-5

Data type opcodes to modify a style object (continued)

Constant
gxSt yl eText FaceOpcode

gxStyl ePl at f or nOpcode

gxSt yl eFont Vari ati onsOpcode

gxStyl eRunCont r ol sOpcode

gxStyl eRunPriorityJust Overri deCpcode

gxStyl eRun@ yphJust Overri desQpcode

gxStyl eRunG yphSubsti t uti onsOQpcode

gxSt yl eRunFeat ur esCpcode

gxSt yl eRunKer ni ngAdj ust ment sQpcode

gxStyl eJustificati onOpcode

About QuickDraw GX Stream Format

Value
0x0B

0x0C

0x0D

Ox0E

Ox1F

0x10

0x11

0x12

0x13

0x14

Description

The text face data that follows is
added to the current style object. See
the GXSet St yl eFace function.

The platform data that follows is
added to the current style object. See
the GXSet St yl eEncodi ng function.

The font variations data that follows is
added to the current style object. See
the GXSet St yl eFont Vari ati ons
function.

Tew.o4 weans Xo meiayaind .

The run controls data that follows is
added to the current style object. See
the GXSet St yl eRunControl s
function.

The run priority justification override
data that follows is added to the
current style object. See the

GXSet Styl eRunPri orityJust
Overri de function.

The run glyph justification overrides
data that follows is added to the
current style object. See the

GXSt yl eRund@ yphJdust

Overri des function.

The run glyph substitutions data that
follows is added to the current style
object. See the

GXStyl eRund@ yphSubstitutions
function.

The run features data that follows is
added to the current style object. See
the GXSt yl eRunFeat ur es function.

The run kerning adjustments data that
follows is added to the current style
object. See the GXSt yl eRunKer ni ng
Adj ust ment s function.

The justification data that follows is
added to the current style object. See
the GXSt yl eJustification
function.

7-19

7-20

CHAPTER 7

QuickDraw GX Stream Format

Data Type Opcodes to Modify an Ink Object

When the current object is an ink object and the current operation opcode is the

gxSet Dat aOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the ink object to be modified. Data type opcode constants for
attributes, tag, color, and transfer mode are defined in the gxI nkDat aOpcode
enumeration. Table 7-6 summarizes all of the data type opcodes used to modify an ink
object.

Table 7-6 Data type opcodes to modify an ink object

Constant Value Description

gxl nkAttri but esOpcode 0x00 The attributes data that follows is added
to the current ink object. See the
GXSet | nkAt tri but es function.

gxl nkTagOpcode 0x01 The tag data that follows is added to the
current ink object. See the
GXSet | nkTags function.

gxI nkCol or Opcode 0x02 The ink color data that follows is added
to the current ink object. See the
GXSet | nkCol or function.

gxl nkTransf er ModeOpcode 0x03 The ink transfer mode data that follows is
added to the current ink object. See the
GXSet | nkTr ansf er function.

Data Type Opcodes to Modify a Color Set Object

When the current object is a color set object and the current operation opcode is the
gxSet Dat aOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the color set object to be modified. A data type opcode constant for
tag is defined in the gxCol or Set Dat aOpcode enumeration. The constant 0 is reserved
for future use. Table 7-7 summarizes all of the data type opcodes used to modify a color
set object.

Table 7-7 Data type opcodes to modify a color set object

Constant Value Description

gxCol or Set Reser vedOpcode 0x00 This constant is reserved for future
assignment.

gxCol or Set TagOpcode 0x01 The tag data that follows is added to the

current color set object. See the
GXSet Col or Set Tags function.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Data Type Opcodes to Modify a Color Profile Object

When the current object is a color profile object and the current operation opcode is the
gxSet Dat aOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the color profile object to be modified. A data type opcode constant
for tag is defined in the gxPr of i | eDat aOpcode enumeration. The constant 0 is
reserved for future use. Table 7-8 summarizes the data type opcodes used to modify a
color profile object.

Table 7-8 Data type opcodes to modify a color profile object

Constant Value Description

gxCol or Profi | eReser vedOpcode 0x00 This constant is reserved for future
assignment.

gxCol or Profi | eTagOpcode 0x01 The tag data that follows is added
to the current color profile object.
See the
GXSet Col or Profi | eTags
function.

Data Type Opcodes to Modify a Transform Object

When the current object is a transform object and the current operation opcode is the
gxSet Dat aOpcode constant, bits 0 through 5 of the data type opcode byte specify the
data type opcode for the transform object to be modified. A data type opcode constant
for tag is defined in the gxTr ansf or nDat aOpcode enumeration. The constant 0 is
reserved for future use. Table 7-9 summarizes the data type opcodes used to modify a
transform object.

Table 7-9 Data type opcodes to modify a transform object

Constant Value Description

gxTransf or MReser vedOpcode 0x00 This constant is reserved for future
assignment.

gxTr ansf or nTagOpcode 0x01 The tag data that follows is added to

the current transform object. See the
GXSet Tr ansf or nirags function.

gxTransfornC i pOpcode 0x02 The tag data that follows is added to
the current transform object. See the
GXSet Tr ansf or nCl i p function.

gxTr ansf or mvappi ngOpcode 0x03 The tag data that follows is added to
the current transform object. See the
GXSet Tr ansf or mvlappi ng function.

continued

About QuickDraw GX Stream Format 7-21

Tew.o4 weans Xo meiayaind .

7-22

CHAPTER 7

QuickDraw GX Stream Format

Table 7-9 Data type opcodes to modify a transform object (continued)
Constant Value Description
gxTransf or nPar t MaskOpcode 0x04 The tag data that follows is added to

the current transform object. See the
description of the gxShapePar t
mask parameter to the

GXSet Transf or mHi t Test function.

gxTr ansf or nirol er anceOpcode 0x05 The tag data that follows is added to
the current transform object. See the
description of the Fixed tolerance
parameter to the
GXSet Tr ansf or nHi t Test function.

Data

The sequence of the optional object-specific data that follows a data type opcode byte is
predetermined and consists of type constants and data. Some data sequences are
preceded by an omit byte. An omit byte is included in the data stream format to describe
the presence or absence, meaning, order, and compression of data that corresponds to
the fields of a type or the properties of an object. If an omit byte is not present for an
object, then, with the exception of bitmaps and transforms, the compression type opcode
in the data type opcode byte defines the data compression.

Omit Byte Masks and Omit Byte Shifts

The omit byte provides an efficient method of assigning different data compressions to
type constants and object properties that immediately follow the omit byte. Figure 7-7
shows the relationship of the bits in an omit byte and the four constants or properties
that follow.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Figure 7-7 Omit byte relationship with the data that follows

LA%% I

7 6 5 4 3 2 Y
| | | I

Omit byte Datal Data2 Data3 Data4

_—

Data stream

Bits 7 and 6 define the compression type for Data 1
Bits 5 and 4 define the compression type for Data 2
Bits 3 and 2 define the compression type for Data 3
Bits 1 and 0 define the compression type for Data 4

The compression type constants used in the omit byte are defined in the

gxTwoBi t Conpr essi onVal ues enumeration listed in Table 7-2. Long, word, or byte
data compression is applied if the enumeration constants are 0x00, 0x40, 0x80,
respectively. If the constant is 0xCO, the compression is “omit compression,” then the
stream format does not include the field or property. For example, if the omit byte in
Figure 7-7 contained 0x0C for bits 3 and 2, Data 3 constant or property would not appear
in the stream and Data 4 would follow Data 2.

Some omit byte enumerations provide multiple bytes of mask constants and shift
constants to accommodate the description of all of the properties of an object or all of the
fields of a structure. For example, the description of a layout shape requires three omit
bytes to specify the compression of all of the properties. The data corresponding to each
omit byte mask follows the mask. For multiple masks, the sequence is omit maskl,

data, omit mask2, data, omit mask3, data, and so on.

You can use an omit byte mask and its corresponding omit byte shift to interpret the
meaning of each of the bits in the omit byte. Each entry in an omit mask enumeration has
a name and a value. The name describes the property. The hexadecimal value of the
mask is given in the enumeration. The binary equivalent is the mask.

About QuickDraw GX Stream Format 7-23

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-10 shows a typical omit byte mask enumeration and its corresponding omit byte
shift enumeration values. The example shows the gxOm t Text Mask enumeration
binary mask values and the bit shift from the corresponding gxQmi t Text Shi f t
enumeration.

Table 7-10 Constants from the gxOmi t Text Mask and the gxOni t Text Shi ft enumerations

Enumeration Binary mask Bit shift
gxOmitTextMask enumeration value value constant
gxOni t Text Char act er Mask 0xC0 11000000 6
gxOnmi t Text Posi ti onXMask 0x30 00110000 4
gxQrmi t Text Posi ti onYMask 0x0C 00001100 2
gxQri t Text Dat aMask 0x02 00000010 1

Figure 7-8 shows how you can use an omit mask and corresponding omit shift to analyze
an omit byte in the data stream.

Figure 7-8 Select the bits from the omit byte

Omit byte in data stream | | | | | | | | |

Om t _Mask = OxCo:
gxam t=shift =6 [L]1][o[oo[o[o]o]

Omit byte
masked by
gxOm t _Mask

Omit byte bits selected | | | | l | | | |

Omit byte bits

selected

are shifted by
gxOnit_Shift

N

Omit byte bits selected
are shifted to the right 6 bits | | | | | | | | |

7-24 About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

First, the bits in the omit byte are masked with the gxOmi t _Mask enumeration with a
value of 0xC0 and a binary value 11000000. This mask selects the first two high-order bits
of the omit byte. In order to interpret the two bits selected, shift the bits to the right by
the number of bits indicated by the gxOni t _Shi ft enumeration value. Once the bits
are selected and shifted, determine the compression of the data that follows by
comparing these bits with the gx TwoBi t Conpr essi onVal ues enumeration, as shown
in Figure 7-9. The values of the gx TwoBi t Conpr essi onVal ues enumeration are given
in Table 7-2.

Figure 7-9 Compare the bits selected and shifted with the compression enumeration

Omit byte bits
selected and shifted

7 6 54 3 210

Compression type
determined
by comparison

o gxNoConpr essi on =0
gxWor dConpression=1
gxTwoBi t Conpr essi onVal ues —
enumeration 4Byt eCompr essi on = 2
L gxOni t Conpression=3

Here is an example of how this works with an omit byte describing the shape object for a
text shape. First you need to correlate the names of the constants in the omit mask
enumeration with the structures, enumerations, or properties of the object that they
describe. For more information on correlating omit bytes, see the appropriate
object-specific heading in the section*“Data” beginning on page 7-22.

About QuickDraw GX Stream Format 7-25

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-11 shows the correlation between the gxOni t Text Mask names and the
parameters of the GXNewText Funct i on.

Table 7-11 Correlation between gxQmi t Text Mask and the GXNewText function

Constants in the gxOni t Text Mask enumeration Text shape property
gxOni t Text Char act er Mask char Count

gxOnmi t Text Posi ti onXMask position .X
gxOnmi t Text Posi ti onYMask position .y
gxQri t Text Dat aMask t ext

A summary of these constants is provided in Table 7-10. The gxOni t Text Mask
enumeration constants correlate with the properties of the text shape. The text shape is
described in the text shape chapter of Inside Macintosh: QuickDraw GX Typography.

The order of the gxOni t Text Mask enumeration tells us that the data to follow will be
in the sequence char Count , posi ti on. x,position.y, andtext.

For instance, suppose the omit byte is 0xA4 or binary 10100100.

The binary mask value for the gxOni t Text Char act er Mask, 11000000, selects the high
order 2 bits, 10. The gxTwoBi t Conpr essi onVal ues enumeration with value 2 is
gxByt eConpr essi on. The data for char Count is therefore byte compressed.

The binary mask value for the gxQmi t Posi t i onXMask, 00110000, selects the next 2 bits,
10. The gxTwoBi t Conpr essi onVal ues enumeration with value 2 is again
gxByt eConpr essi on. The data for posi ti on. x is therefore byte compressed.

The binary mask value for the gxQOnmi t Posi t i onYMask, 00001100, selects the next 2 bits,
01. The gxTwoBi t Conpr essi onVal ues enumeration with value 1 is
gxWor dConpr essi on. The data for posi t i on. y is therefore word compressed.

The binary mask value for the gxOni t Text Dat aMask, 10, selects the next bit, 0. The
gxTwoBi t Conpr essi onVal ues enumeration with value 0 is gxNoConpr essi on. The
t ext data is therefore not compressed.

The above example is from the analysis of a data stream of a flattened text shape. For
additional information about this example see the section “Analyzing a Flattened Text
Shape” beginning on page 7-72.

One or more omit mask bytes are included in the data stream whenever specific
enumeration or structure data is required to describe a specific object.

Omit mask and omit shift enumerations can be used to analyze QuickDraw GX omit
bytes and compare the masked bits to other values.

An omit byte is first masked to obtain the bits desired. The bits are then shifted using the
omit shift enumeration that corresponds to the omit byte. The resulting bits can then be
compared to other data in your application to obtain information about the data stream.

7-26 About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Listing 7-1 shows how to determine if the x-coordinate of the position field in a flattened
shape data stream is compressed.

Listing 7-1 Determining if posi t i on(x) is byte compressed

unsi gned char a = ReadByte();
if ((a & (gxOntTextPositionXMask >> gxOnit Text PositionXShift)) ==
gxByt eConpr essi on

{

/* performan action */

}

The function reads the byte, masks it with gxQri t Text Posi t i onXMask to obtain the
desired two bits, and then shifts it by the amount given by the

gxQmi t Text Posi ti onShi ft. The resulting 2 bits can now be compared to the 2 bits of
gxByt eConpr essi on.

Header Data

The header marks the beginning of a new flattened shape in the data stream. The
gxHeader TypeOpcode constant indicates that the version of QuickDraw GX that
generated the data stream follows. As new versions become available, older software
may not be able to interpret the newer portions of a data stream. The interpreter can then
look at the version number and skip over versions that it doesn’t understand. For
example, if an interpreter that understands only QuickDraw GX version 1.0 encounters
version 2.0 or if the interpreter finds a version 1.0 opcode, but doesn’t recognize the data,
an error is posted.

The byte after the version byte contains the gxFont Li st Fl att en and
gxFont d yphsFl at t en flags. These flags are functional only if the shape contains text.

The gxFont Li st Fl at t en flag instructs the GXFI at t enShape function to attach a tag
object to the flattened shape containing a list of the fonts referenced in the shape. A list of
all of the fonts used in the data stream are included at the end of the data stream.

The gxFont A yphsFl at t en flag instructs the GXFI at t enShape function to attach a
tag to the flattened shape containing a list of the specific glyphs used from each font
referenced by the shape. A list of all of the glyph codes used by all of the fonts referenced
in a data stream is then included at the end of that data stream.

For more information about the font and glyph list flags, see the chapter “Shape Objects”
in Inside Macintosh: QuickDraw GX Objects.

The font list and glyph list are combined to form a tag that is of type
gxFl at Font Li st | t emand designated ' f | st'. During printing, only the fonts and
glyphs used in the stream are loaded to the printing device.

About QuickDraw GX Stream Format 7-27

Tew.o4 weans Xo meiayaind .

7-28

CHAPTER 7

QuickDraw GX Stream Format

The gxFl at Font Li st structure includes the gxFl at Font Li st | t emstructure. The
gxFl at Font Li st | t emcontains two arrays. The first is the array of font names. The
second is the array of glyphs that are used. The array of glyphs is obtained by setting a
bit in an array for each glyph that is used. If you ask only for the font names, the glyph
array will be omitted. The glyphs array cannot be selected without the font array
selected. In other words, you may specify either a list of fonts or specify a list of fonts
and glyphs to be listed at the end of the data stream.

The fonts and glyphs included in the flattened list,' f | st ', are used in the print file for
the QuickDraw GX portable digital document. For more information on the QuickDraw
GX portable digital document see the section “Portable Digital Documents” beginning
on page 7-53.

For more information on the QuickDraw GX print file, see the section “About Print Files
and Portable Digital Documents” beginning on page 7-51. For more information about
how to use the print file data, see the section “Obtaining Data From a Print File”
beginning on page 7-89.

For more information on t he gxFl at Font Nane, gxFl at Font Li st |t enirag, and
gxFl at Font Li st structures see the chapter “Fonts” in Inside Macintosh: QuickDraw GX

Typography.

New Shape Object Data

A new shape object always follows the style, ink, transform, and any other objects that
have been built for the shape object in the data stream. New shape data follows an
operation opcode gxNewOhj ect Opcode constant and a data type opcode containing
one of the constants int he gxG aphi csNewOpcode enumeration. Values 1

(gxEnpt yType) through 13 (gxPi ct ur eType) are the constants from the
gxShapeTypes enumeration.

This opcode creates a new shape object with all of the properties of the previous shape
object in the data stream. If the current shape object is the first shape object in the stream,
then it is created with default properties.

The values of the constants for all of the shape objects are summarized in Table 7-3.
Shape types are described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw
GX Objects.

Empty Shape Data

The data type opcode with a value 1 is the gxEnpt y Ty pe constant. Empty shapes store
no information in their geometries. For the current shape object, the gxEnpt y Type
means that the current shape is an empty shape. No data follows.

The gxEnpt yTypes constant is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Point Shape Data

The data type opcode with a value 2 is the gxPoi nt Type constant. The data for the
fields of a gxPoi nt structure follows. The data sequence is x (Fi xed), y (Fi xed).

Compression data: gxNoConpr essi on - read 2 | ongs per point;

gxWor dConpr essi on - read 2 shorts per point or treat each short as a signed integer
(120 =120.0 and -171 = -171.0); gxByt eConpr essi on - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and -13 = -13.0).

The gxPoi nt structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Line Shape Data

The data type opcode with a value 3 is the gxLi neType constant. The data for the fields
of the gxLi ne structure follows. The data sequenceisfirst.x,first.y
[ast.x, last.y.

Compression data: gxNoConpr essi on - read 2 | ongs per point;

gxWor dConpr essi on - read 2 shorts per point or treat each short as a signed integer
(120 = 120.0 and -171 = -171.0); gxByt eConpr essi on - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and -13 = -13.0).

The gxLi ne structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Curve Shape Data

The data type opcode with a value 4 is the gxCur veType constant. The data for the
fields of the gxCurve structure follows. The fields in the structure correspond to the
parameters in the GXNewCurve function. The data sequence is x (first point), y (first
point), x (control point), y (control point), x (last point), and y (last point).

Compression data: gxNoConpr essi on - read 2| ongs per point;

gxWor dConpr essi on - read 2 shorts per point or treat each short as a signed integer
(120 =120.0 and -171 =-171.0); gxByt eConpr essi on - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and -13 = -13.0).

The gxCur ve structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Rectangle Shape Data

The data type opcode with a value 5 is the gxRect angl eType constant. The data

for the fields of the gxRect angl e structure follows. The data sequence is left, top, right,
bottom. Typically, the first corner is left-top and the second corner is right-bottom; but
this order is not required. They need only be opposite corners of a rectangle.

About QuickDraw GX Stream Format 7-29

Tew.o4 weans Xo meiayaind .

7-30

CHAPTER 7

QuickDraw GX Stream Format

Compression data: gxNoConpr essi on - read 2 | ongs per point;

gxWor dConpr essi on - read 2 shorts per point or treat each short as a signed integer
(120 = 120.0 and -171 = -171.0); gxByt eConpr essi on - read 2 bytes per point and treat
each byte as a signed integer (7 = 7.0 and -13 = -13.0).

The gxRect angl e structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Polygon Shape Data

The data type opcode with a value 6 is the gxPol ygonType constant. The data for the
fields of the gxPol ygons structure follows. The gxPol ygons structure includes the
gxPol ygon structure.

The data sequence is cont our s, vect or s, omit byte, x (first point), y (first point), x
(second point), y (second point), x (third point), y (third point), and so on. The numbers
are compressed as fixed-point numbers.

The point array for polygons and paths stream is stored as relative positions, not
absolute positions (as is the case for the point arrays in polygon and path shapes.)

The omit byte is interpreted by the gxOni t Pat hMask and gxQmi t Pat hShi ft
enumerations.

The first two entries of the omit byte describe the compression for the first two points of
the polygon shape, which are absolute. The numbers are compressed as fixed-point
numbers: gxNoConpr essi on means 1 | ong for each fixed number;

gxWor dConpr essi on means 1 shor t for each fixed number treated as an integer

(17 = 17.0); gxByt eConpr essi on means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from -128.0 to 127.0; a
word compression value can represent any integer fixed-point number.

The second two entries in the omit byte describe the compression for the second through
the last points in the contour. The coordinates of these points are relative to the first
absolute points and appear in the stream as differences. The relative values are stored as
differences. Thus each x value in the stream is subtracted from the prior value to
reconstruct the original value. Conversely, each value in the shape is subtracted from the
prior value to compute the delta to be written to the stream. The x and y coordinate
values are considered separately. Each may be independently byte, word, or long
compressed, using the same fixed-point compression as the absolute values. Each
subsequent contour has its own omit byte to describe the absolute initial point values
and the subsequent relative point values.

The compression bits in the data type opcode byte control the compression of the
contour counts and all vector counts. Compression data: gxNoConpr essi on - read 1
long for contour and each vector count; gx\Wor dConpr essi on - read 1 word for contour
count and each vector count; gxByt eConpr essi on - read 1 byte for contour count and
each vector count.

The gxPol ygons structure is described in the chapter “Geometric Shapes™ in Inside
Macintosh: QuickDraw GX Graphics.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Path Shape Data

The data type opcode with a value 7 is the gxPat hType constant. The data for the fields
of the gxPaths structure follows. The gxPat hs structure includes the gxPat h structure.

The data sequence is cont our s (number of contours), vect or s (number of points in
the contour), control bytes, omit byte, x (absolute coordinate of first point), y (absolute
coordinate of first point), x (relative coordinate of second point), y (relative coordinate of
second point), x (relative coordinate of third point), y (relative coordinate of third point),
and so on.

A control byte contains control bits for each point off or on the path. Each point is
assigned a bit. Bits with value 1 are off the path; bits with value 0 are on the path. If the
number of points exceeds 8, multiple control bytes are used. If the number of points is
not an even multiple of 8, the final unused bits are ignored.

The omit byte is interpreted by the gxOni t Pat hMask and gxOni t Pat hShi ft
enumerations.

The first two entries of the omit byte describe the compression for the first two points of
the path shape, which are absolute coordinates. The numbers are compressed as
fixed-point numbers: gxNoConpr essi on means 11 ong for each fixed number;

gxWor dConpr essi on means 1 short for each fixed number treated as an integer

(17 = 17.0); gxByt eConpr essi on means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from -128.0 to 127.0; a
word compression value can represent any integer fixed-point number.

The second two entries in the omit byte describe the compression for the second through
the last relative points in the contour. The coordinates of these points are relative to the
first absolute points and appear in the stream as differences. Thus each x value in the
stream is subtracted from the prior value to reconstruct the original value. Conversely,
each value in the shape is subtracted from the prior value to compute the delta to be
written to the stream. The x and y coordinate values are considered separately. Each may
be independently byte, word, or long compressed, using the same fixed-point
compression as the absolute values. Each subsequent contour has its own omit byte to
describe the absolute initial point values and the subsequent relative point values.

The compression bits in the data type opcode byte control the compression of the
contour counts and all vector counts. Compression data: gxNoConpr essi on - read 1
long for contour and each vector count; gxWor dConpr essi on - read 1 word for contour
count and each vector count; gxByt eConpr essi on - read 1 byte for contour count and
each vector count.

The gxPat hs structure is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

About QuickDraw GX Stream Format 7-31

Tew.o4 weans Xo meiayaind .

7-32

CHAPTER 7

QuickDraw GX Stream Format

Bitmap Shape Data

The data type opcode with a value 8 is the gxBi t mapType constant. The data for the
fields of the gxBi t map and gxPoi nt structures follow. The gxBi t map structure
includes the gxCol or Space enumeration and the references to the gxCol or Set and
gxCol or Prof i | e structures.

The data sequence is omit byte 1, i mage reference, wi dt h, hei ght , r owByt es, omit
byte 2, pi xel Si ze, space (color space), set (color set), pr of i | e (color profile),
omit byte 3, x (position), y (position).

Omit byte 1 is interpreted by the gxOmi t Bi t mapMask1 and gxQmi t Bi t napShi ft 1
enumerations. Omit byte 2 is interpreted by the gxOni t Bi t mapMask?2

and gxOm t Bi t mapShi f t 2 enumerations. Omit byte 3 is interpreted by the

gxOni t Bi t mapMask3 and gxQmi t Bi t mapShi f t 3 enumerations.

Data compression: The value may be a byte, word, or long. The value references a
previous bit image: a value of 1 references the first bit image, a value of 2 references the
second bit image, etc. A value of 0 indicates that the bitmap references a bit image
through a file alias. The bitmap shape must reference a tag containing the file alias and
offset as described in the chapter “Tag Objects” in Inside Macintosh: QuickDraw GX
Objects. All bitmap values are compressed as integers (see polygon coutour compression
above) except for the x and y coordinate positions. These are compressed as Fi xed (see
polygon first absolute position). Unlike prior shape types in this section, bitmaps and
shape types described below can also have fields with the gxOni t Conpr essi on bits
set. In this case, the value 0 or ni | is used wherever the omit compression bits are set.

The gxBi t map structure is described in the chapter “Bitmap Shapes” in Inside Macintosh:
QuickDraw GX Graphics.

Text Shape Data

The data type opcode with a value 9 is the gxText Type constant. The data that follows
corresponds to the parameters of the GXNewText function.

The data sequence is omit byte, byte length (of text), x (position), y (position),
char Count (number of characters), data (character text).

The data is the character stream or glyph indexes for the text. For nonRoman scripts, the
actual byte length may be more than the number of characters.

The omit byte is interpreted by the gxOni t Text Dat aMask and
gxQm t Text Dat asShi ft enumerations.

Data compression: The byte length is compressed as a long. The x and y coordinates are
compressed as a fixed number. The data stream may contain bytes or shorts. If the
stream contains shorts and all values are less than 255, then the stream may be
compressed. It is an error to specify a character count of zero (omit compression) and to
set the text data omit bit.

The GXNewText function is described in the chapter “Text Shapes” in Inside Macintosh:
QuickDraw GX Typography.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Glyph Shape Data

The data type opcode with a value 10 is the gxd yphType constant. The data
correspond to the parameters in the GXNewd yphs function and include the gxPoi nt
and gxSt yl e structures.

The data sequence is omit byte 1, char Count (number of characters), byte length (of
text), r unNunber (number of runs), data (glyph character), omit byte 2, posi t i ons,
advance, t angent s, styl eRuns, gl yphSt yl es.

Omit byte 1 is interpreted by the gxOni t d yphDat aMask1 and
gxOnmi t d yphDat aShi f t 1 enumerations. Omit byte 2 is interpreted by
the gxOmi t A yphDat aMask?2 and gxOni t G yphDat aShi f t 2 enumerations.

Data compression: char Count , byte length, and r unNunber are compressed as longs. If
char Count is 0, the data, positions, advance, and tangents are not read. If the

gxOni t d yphOnePosi ti on bitis set in the first byte, then the glyph shape contains 1
absolute position or as many positions as there are in the stream. In either case, all are
compressed as fixed point values, as bytes, words, or longs. Unlike polygon positions,
the x and y values do not have separate compression bits, nor are the positions stored in
the relative manner of polygons or paths.

The advances in the glyph shape are read after the positions, if the

gxQm t d yphAdvance bits are not gxQOmi t Conpr essi on constant. The character
count determines the number of bytes read, as is the case with the control bits in a path
shape.

If the gxOm t A yphTangent bits in the second omit byte are not equal to the

gxOni t Conpr essi on constant, the t angent s parameter follows. The tangent values
are stored and compressed identically to the positions. If the number of runs

(r unNurrber) is greater than zero, then 1 bit in the second omit byte interprets the runs
as shorts or shorts compressed to bytes (like the text character compression). If
runNunber is greater than 0, then the style array is compressed into an array of bytes,
words, or longs. The values are references to previous styles in the stream: a value of 1
references the 1st style in the stream, and so on.

The GXNewd yphs function is described in the chapter “Glyph Shapes” in Inside
Macintosh: QuickDraw GX Typography.

Layout Shape Data

The data type opcode with a value 11 is the gxd yphType constant. The data
correspond to the parameters in the GXNewLayout function.

Layouts are compressed in a way that is similar to glyphs. Like all types that are greater
than or equal to bi t map type, all fields default to zero and omit compression is allowed.
If the length is greater than 0, the data is read as shorts compressed as bytes or as an
uncompressed stream (like text and glyphs). If the style run number is greater than 0, the
style run array and style array are present identically to the glyph format. If the

oni t Layout HasBasel i ne bit is set in omit byte 3, uncompressed data is read the size

About QuickDraw GX Stream Format 7-33

Tew.o4 weans Xo meiayaind .

7-34

CHAPTER 7

QuickDraw GX Stream Format

of the gxLi neBasel i neRecor d. If the level run number is greater than zero, the 4th
omit byte (read regardless) specifies the compression of the | evel RunLengt h and level
arrays as an optionally compressed array of shorts.

The data sequence is omit byte 1, | engt h, x (position), y (position), data, omit byte 2,
wi dt h, flush,set,just,options, omitbyte 3, styl e, run number, level run
number, hasBasel i ne, style runs, styles, omit byte 4, level runs, levels.

Omit byte 1 is interpreted by the gxOm t Layout Mask1 and gxQmi t Layout Shi ft 1
enumerations. Omit byte 2 is interpreted by the gxOni t Layout Mask?2

and gxOnmi t Layout Shi ft 2 enumerations. Omit byte 3 is interpreted by the

gxQm t Layout Mask3 and gxQOni t Layout Shi f t 3 enumerations. Omit byte 4 is
interpreted by the gxQmi t Layout Mask4 and gxOni t Layout Shi f t 4 enumerations.

The GXNewLayout function is described in the chapter “Layout Shapes” in Inside
Macintosh: QuickDraw GX Typography.

Full Shape Data

The data type opcode with a value 12 is the gxFul | Type constant. Full shapes store no
information in their geometries. For the current shape object, the gxFul | Type constant
is a parameter in the GXNewShape function. No data follows.

The gxFul | Type constant is described in the chapter “Geometric Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Picture Shape Data

The data type opcode with a value 13 is the gxPi ct ur eType constant. The data
corresponds to the parameters in the GXNewPi ct ur e function. The data sequence is
omit byte 1, the number of items (compressed as long as specified by the data type
opcode), followed by an array of shapes and optional arrays of styles, inks, and
transforms. The shape array must exist and may not contain nil (zero) references. The
styles, inks and transform array references may be omitted entirely.

The gxPi ct ur e structure is described in the chapter “Picture Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

Modified Shape Object Data

Once a shape object is defined, it can be modified. Modified shape data follow a

gxSet Dat aOpcode operation opcode and a data type opcode containing one of the
constants from the gxShapeDat aOpcode enumeration. Table 7-4 summarizes the values
of the constants for all of the modified shape objects.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Attributes Data

An attribute is added to the current shape object if the data type opcode has value 0. This
is the gxShapeAt t ri but esOpcode constant.

The data for the fields of the gxShapeAt t ri but es structure follow and are compressed
as long. That data may be 1, 2, or 4 bytes depending on the compression bits.

The gxShapeAt t ri but es enumeration is described in the chapter “Shape Objects” in
Inside Macintosh: QuickDraw GX Objects.

Tag Data

Atag is added to the current shape if the data type opcode has value 1. This is the
gxShapeTagOpcode constant. The data for the parameters of the GXSet ShapeTags
function follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShor t Conpr essi on (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSet ShapeTags (shape, nil, 1, 0, 2, tag array).

The GXSet ShapeTags function is described in the chapter “Shape Objects” of Inside
Macintosh: QuickDraw GX Objects.

Fill Data

A shape fill, compressed as long, is added to the current shape if the data type opcode
has value 2. This is the gxShapeFi | | Opcode. A constant from the gxShapeFi I |
enumeration follows.

The gxShapeFi | | s enumeration is described in the chapter “Shape Objects” in Inside
Macintosh: QuickDraw GX Objects.

New Style Object Data

Data for a new style object follows a gx NewObj ect OQpcode operation opcode and a data
type opcode with a value 28. This is the gxSt yl eTypeQOpcode constant from the
gxG aphi csNewOQpcode enumeration.

This opcode creates a new style object with all of the properties of the previous style
object in the data stream. If the current style object is the first style object in the stream,
then it is created with default properties. No data follows for the new style object.

The style object is described in the chapter “Style Objects” in Inside Macintosh: QuickDraw
GX Objects.

About QuickDraw GX Stream Format 7-35

Tew.o4 weans Xo meiayaind .

7-36

CHAPTER 7

QuickDraw GX Stream Format

Modified Style Object Data

Once a style object is defined, it can be modified by the addition of style data. Modified
style data follows a gxSet Dat aOpcode operation opcode and a data type opcode
containing one of the constants from the gx St yl eDat aCpcode enumeration. Table 7-5
summarizes the values of the constants for all of the modified style objects. For all style
data, the opcodes described in the following subsections change the default style.

Attributes Data

An attribute is added to the current style object if the data type opcode has value 0. This
isthe gxSt yl eAtt ri but esOpcode constant.

The data, compressed as long, for the fields of the gxSt yl eAt t ri but e structure follow
and may be byte, short, or long.

The gxSt yl eAt t ri but es enumeration is described in the chapter “Geometric Styles”
in Inside Macintosh: QuickDraw GX Graphics.

Tag Data

Atag is added to the current style if the data type opcode has value 1. This is the
gxSt yl eTagOpcode constant. The data for the parameters of the GXSet St yl eTags
function follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShor t Conpr essi on (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSet ShapeTags (shape, nil, 1, 0, 2, tag array);

The GXSet St yl eTags function is described in the chapter “Style Objects” in Inside
Macintosh: QuickDraw GX Objects.

Curve Error Data

A curve error, compressed as fixed-point, is added to the current style if the data type
opcode has value 2. This is the gxSt yl eCur veEr r or OQpcode constant. The data for the
error (Fi xed) parameter of the GXSet St yl eCur veEr r or function follows.

For fixed point compression gxNoConpr essi on means 1| ong for each fixed number;
gxWor dConpr essi on means 1 short for each fixed number treated as an integer

(17 = 17.0); gxByt eConpr essi on means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from —-128.0 to 127.0;

a word compression value can represent any integer fixed-point number.

The GXSet St yl eCur veEr r or function is described in the chapter “Geometric Styles”
in Inside Macintosh: QuickDraw GX Graphics.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Pen Data

A pen, compressed as fixed point, is added to the current style object if the data type
opcode has value 3. This is the gxSt yl ePenOpcode constant. The data for the pen
(Fi xed) parameter of the GXSet St yl ePen function follows.

For fixed-point compression gxNoConpr essi on means 1 | ong for each fixed number;
gxWor dConpr essi on means 1 short for each fixed number treated as an integer

(17 = 17.0); gxByt eConpr essi on means 1 byte per fixed number. Thus a byte
compressed value can represent an integer fixed point number from —-128.0 to 127.0;

a word compression value can represent any integer fixed-point number.

The GXSet St yl ePen function is described in the chapter “Geometric Styles” in Inside
Macintosh: QuickDraw GX Objects.

Join Data

A join is added to the current style object if the data type opcode has value 4. This is the
gxSt yl eJoi nOpcode. The data for the fields of the gxJoi nRecor d structure follows.
The gxJoi nRecor d structure includes the gxShape and gxJoi nAt t ri but e structures.

The data sequence is omit byte, at t ri but es (modifier flags) compressed as long, j 0i n
(corner shape) compressed as long (reference), i t er (size limit) compressed as fixed
point.

The omit byte is interpreted by the gxOni t Joi nMask and gxOni t Joi nShi ft
enumerations.

The gxJoi nAtt ri but e structure is described in the chapter “Geometric Styles” in
Inside Macintosh: QuickDraw GX Graphics.

Dash Data

A dash is added to the current style object if the data type opcode has value 5. This is the
gx St yl eDashOpcode constant. The data for the fields of the gxDashRecor d structure
follows. The gxShape and gxDashAt t ri but e enumerations are included in the
gxDashRecor d structure.

The data sequence is omit byte 1, at t r i but es (modifier flags) compressed as long,
dash (shape used for dash) compressed as long (reference), advance (distance between
dashes) compressed as long, phase (start offset) compressed as fract, omit byte 2, and
scal e (height of dash) compressed as fixed.

In fract compression a long means a full fract; a word means that 16 bits are read
followed by 16 bits of zeros; a byte means that 8 bits are read followed by 24 bits of
zeros. Thus numbers like 1.0, -1.0, or fract 0.5 fit into a compressed byte.

Omit byte 1 is interpreted by the gxOnmi t DashMask1 and gxOm t DashShi ft 1
enumerations. Omit byte 2 is interpreted by the gxOm t DashMask?2 and
gxQmi t DashShi ft 2 enumerations.

The gxDashRecor d structure is described in the chapter “Geometric Styles” of Inside
Macintosh: QuickDraw GX Graphics.

About QuickDraw GX Stream Format 7-37

Tew.o4 weans Xo meiayaind .

7-38

CHAPTER 7

QuickDraw GX Stream Format

Caps Data

A cap is added to the current style object if the data type opcode has value 6. This is the
gxSt yl eCapsOpcode. The data for the fields of the gxCapRecor d structure follows.
The gxShape and gxCapAt t ri but e enumerations are included in the gxCapRecor d
structure.

The data sequence is omit byte, at t ri but es (modifier flags) compressed as long,
st art Cap (shape used at start of contours) compressed as long (reference), endCap
(shape used at end of contours) compressed as long (reference).

The omit byte is interpreted by the gxOni t CapMask and gxQOmi t CapShi f t
enumerations.

The gxCapRecor d structure is described in the chapter “Geometric Styles” in Inside
Macintosh: QuickDraw GX Graphics.

Pattern Data

A pattern is added to the current style object if the data type opcode has value 7. This is
the gxSt yl ePat t er nQpcode constant. The data for the fields of the

gxPat t er nRecor d structure follows. The gxShape, gxPatternAttri but e, and
gxPoi nt enumerations are included in the gxPat t er nRecor d structure.

The data sequence is omit byte 1, at t r i but es (modifier flags) compressed as long,
pat t er n (shape to use as pattern) compressed as long (reference), x (x-coordinate of
vector u for pattern grid) compressed as fixed, y (y-coordinate of vector u for pattern
grid) compressed as fixed, omit byte 2, x (x coordinate of vector v for pattern grid)
compressed as fixed, and y (y-coordinate of vector v for pattern grid) compressed as
fixed. Note that for all of these, omit (zero) values are permitted.

Omit byte 1 is interpreted by the gxOmi t Pat t er nMask1 and gxOni t Patt ernShift1l
enumerations. Omit byte 2 is interpreted by the gxOm t Pat t er nMask2 and
gxOni t Patt er nShi f t 2 enumerations.

The gxPat t er nRecor d structure is described in the chapter “Geometric Styles” in
Inside Macintosh: QuickDraw GX Graphics.

Text Attributes Data

A text attribute compressed as long is added to the current style object if the data type
opcode has value 8. This is the gxSt yl eText At t ri but esOpcode constant. The data
may be byte, word, or long.

The gxText At t ri but e enumeration is described in the chapter “Typographic Styles”
in Inside Macintosh: QuickDraw GX Typography.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Text Size Data

The text size, compressed as long, for the current style object is specified if the data type
opcode has value 9. This is the gxSt yl eText Si zeOpcode constant. The data for the
si ze (fixed point size of text) parameter of the GXSet St yl eText Si ze function follows.

The GXSet St yl eText Si ze function is described in the chapter “Typographic Styles” in
Inside Macintosh: QuickDraw GX Typography.

Font Data

A font is added to the current style object if the data type opcode has value 10. This is the
gxSt yl eFont Opcode constant. The attribute data for the GXSet St yl eFont function
follows. It is compressed as long (reference); the reference is to a font name defined
earlier in the stream

The GXSet St yl eFont function is described in the chapter “Typographic Styles” in
Inside Macintosh: QuickDraw GX Typography.

Text Face Data

A text face is added to the current style object if the data type opcode has value 11. This
is the gxSt yl eText FaceOpcode constant. The data for the fields of the gxText Face
structure follows.

The data sequence is omit byte, f aceLayer s compressed as long, mapping size and
advanceMappi ng.

The advanceMappi ng in text face and transform mapping is reordered so that common
mappings can be stored in fewer bytes. The omit byte and number of layers is followed
by an optional byte (whose compression is described by om t FaceMappi ng) .

The value of the byte may be one of the following:

Byte Value
2 Mapping contains identity plus elements h and k.
4 Same as byte 2, plus elements a and d.
6 Same as byte 4, plus elements b and c.
9 Same as byte 6 plus elements u, v, and w.

About QuickDraw GX Stream Format 7-39

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

The meaning of the elements mentioned in the previous table are shown in Figure 7-10.

Figure 7-10 Mapping matrix elements

7-40

a b |u
Linear H—— Perspective
elements c d Vv elements
Translation ——fractl
elements — —

The byte value is multiplied by the compression level to specify the length of the
mapping data that follows. Byte compression multiplies by 1; word compression
multiplies by 2; long compression multiplies by 4. The values in the left and middle
columns are compressed as fixed values. The values in the right column are compressed
as fract values. All elements whether the stream contains 2, 4, 6, or 9 numbers, have the
same level of compression.

If the f aceLayer s value is greater than 0, then following the mapping data is an omit
byte as described by gxOmi t FaceLayer Mask 1. The omit byte is followed by

theout | i neFi I' | compressed as a long, the flags comrpessed as a long, the

out | i neSt yl e and reference compressed as a long, and the out | i neTr ansf or m also
comrpessed as a long. The second omit byte describes the bold x and bold y, compressed
as fixed values. This sequence is repeated for the second and all remaining layers.

The omit byte is interpreted by the gxOni t FaceMask and gxQOmi t FaceShi ft
enumerations.

The gxText Face structure is described in the chapter “Typographic Styles” in Inside
Macintosh: QuickDraw GX Typography.

Platform Data

The platform, script, and language is defined for the current object if the data type
opcode has value 12. This is the gxSt yl ePl at f or mOpcode constant. Data from the
gxFont Pl at f or m gxFont Scri pt, and gxFont Language enumerations follow.

The platform, script, and language are combined into a long and then that value is
compressed as a long that is equal to

(platform<< 16) | (script << 8) | |anguage

The gxFont Pl at f or m gxFont Scri pt, and gxFont Language enumerations are
described in the chapter “Font Objects” in Inside Macintosh: QuickDraw GX Typography.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Font Variations Data

Font variations are added to the current style object if the data type opcode has value 13.
The data is uncompressed. This is the gxSt yl eFont Vari ati onsQpcode constant. The
data for the fields of the gxFont Vari at i on structure follows. The

gxFont Vari at i onTag structure is included in the gxFont Var i at i ons structure.

The data sequence is an array [namne (variation tag), val ue (Fi xed)] . The opcode size
specifies the number of variations in the stream.

The gxFont Vari at i on structure is described in the chapter “Fonts” in Inside Macintosh:
QuickDraw GX Typography.

Run Controls Data

Run controls are added to the current style object if the data type opcode has value 14.
The data is uncompressed. This is the gxSt yl eRunCont r ol sOpcode constant. The
data for the fields of the gxRunCont r ol s structure follows. The opcode size specifies
the size in bytes of the run control stream.

The gxRunCont r ol s structure is described in the chapter “Layout Line Controls” in
Inside Macintosh: QuickDraw GX Typography.

Run Priority Justification Override Data

A run priority justification override is added to the current style object if

the data type opcode has value 15. The data is uncompressed. This is the

gxStyl eRunPri orityJust Overri deOpcode constant. The data for the fields
of the gxPri orityJustificati onOverri de structure follows. The opcode size
specifies the size in bytes of the run control stream.

The data sequence is an array of delta. The opcode specifies the byte size.

ThegxPriorityJustificationOverri de structure is described in the chapter
“Layout Line Controls” in Inside Macintosh: QuickDraw GX Typography.

Run Glyph Justification Overrides Data

A run glyph justification override is added to the current style object if the
data type opcode has value 16. The data is uncompressed. This is the

gxStyl eRund@ yphJdust Overri deOpcode constant. The data for the fields
of the gxd yphJdusti fi cati onOverri de structure follows. The

gxd yphJdustifi cati onOverri de structure includes the gxd yphcode
and gxW dt hDel t aRecor d enumerations. The opcode specifies the byte size.

The data sequence is count , gl yphJusti fi cati onOverri des.

The gxd yphJust i fi cati onOverri de structure is described in the chapter “Layout
Line Controls” in Inside Macintosh: QuickDraw GX Typography.

About QuickDraw GX Stream Format 7-41

Tew.o4 weans Xo meiayaind .

7-42

CHAPTER 7

QuickDraw GX Stream Format

Run Glyph Substitutions Data

A run glyph substitution is added to the current style object if the data type
opcode has value 17. The data is uncompressed. This is the

gxStyl eRund yphSubsti t uti onsQpcode constant. The data for the fields
of the gxd yphSubst i t ut i on structure follows.

The data sequence is count , gl yphsubstitutions[].

The GXSet St yl eRund yphSubsti t ut i ons structure is described in the chapter
“Layout Line Controls” in Inside Macintosh: QuickDraw GX Typography.

Run Features Data

A run feature is added to the current style object if the data type opcode has value 18.
The data is uncompressed. This is the gxSt yl eRunFeat ur esOpcode constant. The
data for the fields of the gxRunFeat ur e structure follows.

The data sequence is count , runFeat ures[] .

The gxRunFeat ur e structure is described in the chapter “Layout Line Controls” in
Inside Macintosh: QuickDraw GX Typography.

Run Kerning Adjustments Data

Run kerning adjustment is added to the current style object if the data type opcode has
value 19. The data is uncompressed. This is the

gxSt yl eRunKer ni ngAdj ust ment sOpcode constant. The data for the fields of the
gxKer ni ngAdj ust nment structure follows.

The data sequence is count , ker ni ngAdj ust nent s[] .

The gxKer ni ngAdj ust ment structure is described in the chapter “Layout Line
Controls” in Inside Macintosh: QuickDraw GX Typography.

Style Justification Data

Style justification is added to the current style object if the data type opcode has

value 20. The data is compressed as fract. This is the gxSt yl eJusti fi cati onOpcode
constant. The data for the justify parameter of the GXSet St yl eJusti fi cati on
function follows.

In fract compression a long means a full fract; a word means that 16 bits are read
followed by 16 bits of zeros; a byte means that 8 bits are read followed by 24 bits of
zeros. Thus numbers like 1.0, -1.0, or fract 0.5 fit into a compressed byte.

The GXSet St yl eJusti fi cati on function is described in the chapter “Typographic
Styles” in Inside Macintosh: QuickDraw GX Typography.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

New Ink Object Data

Data for a new ink object follows a gx NewCbj ect Opcode operation opcode and a data
type opcode with a value 29. This is the gxl nkTypeQpcode constant from the
gxG aphi csNewOQpcode enumeration.

This opcode creates a new ink object with all of the properties of the previous ink object
in the data stream. If the current ink object is the first ink object in the stream, then it is
created with default properties. No data follows for the new ink object.

The ink object is described in the chapter “Ink Objects” in Inside Macintosh: QuickDraw
GX Objects.

Modified Ink Object Data

Once an ink object is defined, it can be modified by the addition of ink data. Modified
style data follows a gxSet Dat aOpcode operation opcode and a data type opcode
containing one of the constants from the gxI nkDat aOpcode enumeration. Table 7-6
summarizes the values of the constants for all of the modified ink objects.

Attributes Data

An attribute, compressed as long, is added to the current ink object if the data type
opcode has value 0. This is the gxI nkAt t r i but esOpcode constant.

The data for the fields of the gxI nkAt t ri but es structure follow. The next two bytes
contain the ink attribute flags.

The gxI nkAt t ri but es enumeration is described in the chapter “Ink Objects” in Inside
Macintosh: QuickDraw GX Objects.

Tag Data

Atag is added to the current ink object if the data type opcode has value 1. This is the
gxl nkTagOpcode constant. The data for the parameters of the GXSet | nkTags function
follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShor t Conpr essi on (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSet ShapeTags (shape, nil, 1, 0, 2, tag array).

The sequence ist agType, i ndex, ol dCount , newCount , it ens.

The GXSet | nkTags function is described in the chapter “Ink Objects” in Inside
Macintosh: QuickDraw GX Objects.

About QuickDraw GX Stream Format 7-43

Tew.o4 weans Xo meiayaind .

7-44

CHAPTER 7

QuickDraw GX Stream Format

Color Data

A color is added to the current ink object if the data type opcode has value 2. This is the
gxl nkCol or Opcode constant. The data for the fields of the gxI nkAt t ri but es
structure follow. The data for the fields of the gxCol or structure follows.

The data sequence is omit byte, space (long), profi |l e (long). The value of the omit
byte may be omit compression.

The omit byte is interpreted by the gxOni t Col or sMask and gxQOmi t Col or sShi ft
enumerations.

If space is indexed space, gxQOri t Col our sl ndex is used to determine index
compression (compressed as long), which is read first, followed by color set (compressed
as long), with the compression determined by gxOnmi t Col or sl ndexSet .

If space is not indexed space, the color space determines the number of elements read
from the stream as shown in Table 7-12.

Table 7-12 Color space and words read

16-bit

32-bit

gray, index

gray alpha

RGB, HSV, HLS, YXY, XYZ, LUV, LAB, YIQ
RGBA, CYMK

A W N P N P

The bits in the omit byte determine whether a word is read from the stream for each
word in the component or whether the byte is repeated twice for each word. For
example, if the byte contains 0x3A, the word contains 0X3A3A. The

gxQmi t Col or sConponent sMask sets 1 bit for up to 4 components.

The gxCol or enumeration is described in the chapter “Ink Objects” in Inside Macintosh:
QuickDraw GX Objects.

Transfer Mode Data

A transfer mode is added to the current ink object if the data type opcode has value 3.
This is the gxI nkTr ansf er ModeOQpcode constant. The data for the fields of the
gxTr ansf er Mode structure follow.

The data sequence is omit byte 1, space, compressed as long, set , compresssed as
long, profil e, compressed as long; omits are allowed. Omit byte 2 follows and then
sourceiMatri x,devi ceMatri x, result Matri x, fl ags, and conponent ; omits are
allowed.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

The sourceMat ri x, devi ceMat ri x, andresul t Mat ri x are compressed as arrays of
Fixed values. The color space determines the number of transfer components that follow,
as shown in Table 7-12.

Each transfer component is preceded by an omit byte

(gxom t Tr ansf er Conponent Mask1) that describes the first 4 fields of the structure.
Omit byte one is followed by gxOni t Tr ansf er Conponent ModeMask, compressed as
byte, gxOnmi t Tr ansf er Conponent FI agsMask, compressed as byte,

gxQmi t Tr ansf er Conponent Sour ceM ni nunsthi ft, compressed as color,

gxQm t Tr ansf er Conponent Sour ceMaxi numvask, compressed as color, and

gxOni t Tr ansf er Conponent Devi ceM ni nmumvask, compressed as color. Omit byte 2
follows which describes gxOni t Tr ansf er Conponent Devi ceMaxi mumvask,

gxOnmi t Tr ansf er Conponent Cl anpM ni muniVask, gxOni t Tr ansf er Conponent Cl a
npMaxi nunivask, and gxOnmi t Tr ansf er Conponent Oper andMask; all these are
compressed as color. The color compression specifies that the field may be omitted
(inherits value from default), or is represented by a repeated byte (for example, 0X7A
==0X7A7A), or is represented as a word.

Note that the mode and flags in the first omit byte have a single bit

The gxTr ansf er Mode structure is described in the chapter “Ink Objects” in Inside
Macintosh: QuickDraw GX Objects.

New Object Transform Data

Data for a new transform object follows a gxNewCbhj ect Opcode operation opcode and
a data type opcode with a value 0x2A. This is the gxTr ansf or nilfypeCpcode constant
from the gxGr aphi csNewQpcode enumeration.

This opcode creates a new transform object with all of the properties of the previous
transform object in the data stream. If the current transform object is the first transform
object in the stream, then it is created with default properties. No data follows for the
new transform object.

The transform object is described in the chapter “Transform Objects” in Inside Macintosh:
QuickDraw GX Objects. For additional information about transform mapping, see
“Mapping Data” on page 7-46.

Modified Transform Object Data

Once a transform object is defined in the data stream, it can then be modified. Modified
transform object data follows a gxSet Dat aOpcode operation opcode and a data type
opcode containing one of the constants from the gx Tr ansf or nDat aOpcode
enumeration. Table 7-9 summarizes the values of the constants for all of the modified
transform objects.

About QuickDraw GX Stream Format 7-45

Tew.o4 weans Xo meiayaind .

7-46

CHAPTER 7

QuickDraw GX Stream Format

Reserved Opcode for Modified Transform Data

The data type opcode with value 0 is reserved for future expansion.

Tag Data

Atag is added to the current transform object if the data type opcode has value 1. This is
the gxTr ansf or nfagOpcode constant. The data for the parameters of the
GXSet Tr ansf or mrags function follows.

The data stream sequence ist agType, i ndex, ol dCount , newCount ,itens[].

The GXSet Tr ansf or nifags function is described in the chapter “Transform Objects” of
Inside Macintosh: QuickDraw GX Objects.

Clip Data

A clip, compressed as long (reference) is added to the current transform object if the data
type opcode has value 2. This is the gxTr ansf or nCl i pOpcode constant. The data for
the cl i p parameter of the GXSet Tr ansf or nCl i p function follows.

The GXSet Tr ansf or nCl i p function is described in the chapter “Transform Objects” in
Inside Macintosh: QuickDraw GX Objects.

Mapping Data

A mapping is added to the current transform object if the data type opcode has value 3.
This is the gxTr ansf or mvlappi ngOpcode constant. The data for the map parameter of
the GXSet Tr ansf or mvVappi ng function follows.

A transform mapping is initiated by the sequential appearance of the
gxSet Dat aOpcode, and gxTr ansf or nDat aOpcode constants in the data stream.

The bytes following the appearance in the data stream of the gxTr ansf or nivappi ng
constant from the gxTr ansf or nDat aQpcode enumeration have a special format. The
interpretation of the bytes that follow require the determination of a size constant. The
size to be used for a specific transform depends upon the compression and the size of the
transform data specified by the byte containing the previous

gxG aphi csOper at i onOpcode constant. The size is the number of bytes, words, or
longs, depending upon the type of compression.

If the size obtained from the gxGr aphi csOper at i onOpcode byte indicated that there
are 24 bytes of transform data and the byte containing the

gxTransf or mvappi ngOpcode constant indicated that there was no compression, then
the size of each transform attribute would be 4 bytes (longs) and the size constant for our
transformation bytes format would be size 24/4 = 6. The interpretation of the mapping
that occurs for each mapping size is summarized in the section “Text Face Data” on

page 7-39.

The GXSet Tr ansf or nivappi ng function is described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Part Mask Data

A part mask, compressed as a long, is added to the current transform object if the data
type opcode has value 4. This is the gxTr ansf or mPar t MaskOpcode constant. The data
for the mask parameter of the GXSet Tr ansf or nHi t Test function follows.

The GXSet Tr ansf or mHi t Test function is described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

Tolerance Data

Tolerance, compressed as long, is added to the current transform object if the data type
opcode has value 5. This is the gxTr ansf or mTol er anceQpcode constant. The data for
the tolerance parameter of the GXSet Tr ansf or mHi t Test function follows.

The GXSet Tr ansf or mHi t Test function is described in the chapter “Transform
Objects” in Inside Macintosh: QuickDraw GX Objects.

New Color Profile Object Data

Data for a new color profile object follows a gx NewObj ect Qpcode operation opcode
and a data type opcode with a value 0x2B. This is the gxCol or Pr of i | eTypeOpcode
constant from the gxGr aphi csNewQpcode enumeration.

This opcode creates a new color profile object with all of the properties of the previous
color profile object in the data stream. If the current color profile object is the first color
profile object in the stream, then it is created with default properties. The data that
follows is uncompressed; the opcode size specifies the size of the stream.

The color profile object is described in the chapter “Color Objects” in Inside Macintosh:
QuickDraw GX Objects.

Modified Color Profile Object Data

Once a color profile object is defined in the data stream, it can be modified. Modified
color set object data follows a gxSet Dat aOpcode operation opcode and a data type
opcode containing one of the constants from the gxCol or Pr of i | eDat aOpcode
enumeration. Table 7-8 summarizes the values of the constants for all of the modified
color profile objects.

Reserved Opcode for Modified Color Profile Data

The data type opcode with value 0 is reserved for future expansion.

Color Profile Tag Data

A tag for the current color profile object is added if the data type opcode has value 1.
This is the gxCol or Pr of i | eTagOpcode constant. The data for the parameters of the
GXSet Col or Prof i | eTags function follows.

About QuickDraw GX Stream Format 7-47

Tew.o4 weans Xo meiayaind .

7-48

CHAPTER 7

QuickDraw GX Stream Format

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShort Conpr essi on (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSet ShapeTags (shape, nil, 1, 0, 2, tag array).

The GXSet Col or Pr of i | eTags function is described in the chapter “Color Objects” in
Inside Macintosh: QuickDraw GX Objects.

New Color Set Object Data

Data for a new color set object follows a gxNewOhj ect Opcode operation opcode and a
data type opcode with a value 0x2C. This is the gxCol or Set TypeOpcode constant
from the gxGr aphi csNewQpcode enumeration.

This opcode creates a new color set object with all of the properties of the previous color
set object in the data stream. If the current color set object is the first color set object in
the stream, then it is created with default properties.

The color set object is described in the chapter “Color Objects” in Inside Macintosh:
QuickDraw GX Objects.

Modified Color Set Object Data

Once a color set object is defined in the data stream, it can be modified. Modified color
set object data follows an operation opcode gx Set Dat aOpcode constant from the

gxGr aphi csQper at i onOpcode enumeration and a data type opcode containing one
of the constants from the gxCol or Set Dat aOpcode enumeration. Table 7-7 summarizes
the values of the constants for modified color set objects.

The first byte or two is space, space and specifies the number of components. The
remaining stream is colors. The compression for the color set can be byte or word. To
determine the number of colors in the stream use the following formula:

(size - col orSpaceByte * conpression) / conponentslnCol or Space *
conpressi on

For instance, if the space is gxRGBSpace, the compression is gxByt eConpr essi on,
and the size is 7, the number of colors would be (7 - 1 * 1)/3*1, which evaluates to 2. If
the stream continued with 0, 0, 0, 0XFF, 0XFF, OXFF, then the color set would contain
black (0X0000, 0X0000,0X0000) and white OXFFFF, OXFFFF, OXFFFF). As the example
shows, the color set entries are compressed as colors. See section “Transfer Mode Data”
on page 7-44 for information on color compression.

Reserved Opcode for Modified Color Set Data

The data type opcode with value 0 is reserved for future expansion.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Color Set Tag Data

Atag is added to the current color set object if the data type opcode has value 1. This is
the gxCol or Set TagOpcode constant. The data for the parameters of the
GXSet Col or Set Tags function follows.

The size of the opcode specifies the number of tags; the compression specifies whether
the data is in bytes, words, or longs. For instance, if the size is 4 and the compression is
gxShor t Conpr essi on (2 bytes), then the stream contains 4/2 == 2 tags. The equivalent
operation would be GXSet ShapeTags (shape, nil, 1, 0, 2, tag array).

The GXSet Col or Set Tags function is described in the chapter “Color Objects” of Inside
Macintosh: QuickDraw GX Objects.

New Tag Object Data

Data for a new tag object follows a gxNewCbj ect Opcode operation opcode and a data
type opcode with a value 0x2D. This is the gxTagTypeQOpcode constant from the
gxG aphi csNewOpcode enumeration.

This opcode creates a new tag object with all of the properties of the previous tag object
in the data stream. If the current tag object is the first tag object in the stream, then it is
created with default properties. For tag data is uncompressed. The first parameter is tag
type (long), followed by data computed from opcode length - sizeof (long).

The GXNewt ag function is described in the chapter “Tag Objects” in Inside Macintosh:
QuickDraw GX Objects.

New Bit Image Object Data

Data for a bit image object follows a gx NewCbj ect Opcode operation opcode and a data
type opcode with a value 0x2E. This is the gxBi t | mageTypeOpcode constant from the
gxG aphi csNewQpcode enumeration.

The data sequence is omit byte (gxOmitBitlmage), followed by the fields described by
omit byte: r owByt es, compressed as long, hei ght , compressed as long, and dat a
compressed in the custom format described ahead. The bit image is compressed only if it
makes the data stream smaller.

The GXNewBi t map function is described in the chapter “Bitmap Shapes” in Inside
Macintosh: QuickDraw GX Graphics.

The bit image compression byte appears only in data streams containing a bitmap shape.
This byte describes how each section of a bit image is compressed. The bit image
compression byte follows the bytes containing the bit image attributes described by the
gxOnmi t Bi t | nageMask constant.

Bit images are described in the “Bitmap Shapes” chapter of Inside Macintosh: QuickDraw
GX Graphics.

The bit image compression byte has the format xx yyyyyy.

About QuickDraw GX Stream Format 7-49

Tew.o4 weans Xo meiayaind .

7-50

CHAPTER 7

QuickDraw GX Stream Format

The xx bits describe which of the bit image compression type opcodes is used for the
next part of the bit image. The bit image compression opcode values are either 0, 1, 2,
or 3.

The yyyyyy bits describe the number of times, z, that the action defined by the bit image
compression opcode is replicated. The number of replications, z, can vary range from 0
to 63. Table 7-13 summarizes the four compression opcodes.

Table 7-13 Bit image compression opcodes

Bit image
compression
opcode Bit image compression description
0 Add the z bytes of bit image that follow to the current row. Z Bytes of

data follow.

1 Repeat 1 byte z times and add the bits to the current row. One byte of
data follows.

2 Copy z bytes of the previous row and add the bits to the current row.
No data follows.

3 Copy the previous row of bits z times and add the bits to the next z
rows. No data follows.

The analysis of a bit image compression byte in a stream format is described in the
section “Analyzing a Flattened Bitmap Shape” beginning on page 7-81.

New Font Name Data

Data for a font name follows a gx NewCbj ect Opcode operation opcode and a data type
opcode with a value Ox2F. This is the gxFont NameTypeQOpcode constant from the
gxG aphi csNewOQpcode enumeration.

The fields in the gxFl at Font Nane structure follow. This structure includes
the gxFont Nane, gxFont Pl at f or m gxFont Scr ipt, gxFont Language, and
gxFont Nane structures, the byte length of the name and the name itself.

The stream exactly mirrors the sequence and size of the fields in the gxFl at Font Nane
structure.

About QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

New Trailer Object Data

Data for a trailer object follows a gxNewCbj ect Opcode operation opcode and a data
type opcode with a value 0x3F. This is the gxTr ai | er TypeQpcode constant from the
gxG aphi csNewOpcode enumeration. This is the termination (last) object in the stream.
No data follows.

The last two bytes of a stream are always 0x01 and 0x3F. The next to the last byte in a
data stream contains a gx NewObj ect Qpcode constant with a record size of 1 byte. The
last byte in a data stream contains a gxTr ai | er TypeQpcode constant with a

gxTwoBi t Conpr essi on value of 0, indicating the gxNoConpr essi on constant.

About Print Files and Portable Digital Documents

QuickDraw GX printing performs background printing to all devices, allowing users
continued access to the application. The printing process includes the creation of a
specialized print file called a portable digital document.

Print Files

When an application prints, QuickDraw GX collects the printing information sent by the
application and writes it to a file. This process is called spooling and the file that is created
is called a print file. QuickDraw GX then reads the print file and prints it to the
appropriate device. The read and interpretation process is called despooling and the
printing process is called imaging.

A print file can be duplicated, dragged onto desktop printers, manipulated by print
gueues, and redirected to other printer devices without re-spooling. Print files also
provide a device-independent information interchange format.

The QuickDraw GX spooling process consists of creating a print file and writing a stream
of flattened shape data to that file. This data is unflattened during the unspooling
process. Additional information must be provided in the print files. This includes job,
formatting, and optimization information.

The job-related information includes the name of the job, the destination device, quality,
and the number of copies. The formatting information includes the page sizes and
orientations. The optimization information includes the font database.

About Print Files and Portable Digital Documents 7-51

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

The print file consists of two forks, a data fork and a resource fork. The data fork
contains all the core data necessary to print a document. This consists of the flattened job
data, the flattened shape data for each page, and the flattened format data for each page.

The print file begins with a 32-bit QuickDraw GX version followed by a 32-bit offset that
describes the number of bytes from the beginning of the file to the start of the page
directory located at the end of the file.

The page directory contains a 32-bit number indicating the number of pages in the
document, an array of page sizes, and offsets to the start of the flattened shape data for
each page. The format of a print file for a four-page document is shown in Figure 7-11.

Figure 7-11 Print file format

Version Stamp

— Offset to page directory

Private data

Private date

Flattened shape data -
for page 1

Private data

Flattened shape data
for page 2

Flattened shape data ——
for page 3

Private data

Flattened shape data

for page 4 Il

— Page directory

Number of page = 4
Size of page 1
Offset to page 1
Size of page 2
Offset to page 2
Size of page 3
Offset to page 3
Size of page 4

Offset to page 4 —F—

7-52 About Print Files and Portable Digital Documents

CHAPTER 7

QuickDraw GX Stream Format

QuickDraw Picture Data in Print Files

When creating a print file from a document that contains QuickDraw
drawing commands, QuickDraw GX by default saves the QuickDraw
data for each page in a tag object of tag type ' pi ct' attached to a
rectangle shape. Therefore, if you are examining the data stream of a
print file, you should note that a rectangle shape with an attached tag
object of type ' pi ct' indicates the presence of QuickDraw data. For
more information about this tag object and QuickDraw data, see the
discussion of the ' pi ct' tag object in the advanced printing features
chapter of Inside Macintosh: QuickDraw GX Printing. O

Portable Digital Documents

QuickDraw GX provides document portability that is independent of fonts, applications,
and output devices. The users of your application can create and save their results in the
form of a portable digital document or PDD.

A portable digital document consists of the print file containing flattened shapes
described in the previous section. These files provide all of the information necessary to
view and print the document, including the fonts that are used and other information
necessary to render the text and graphics. A portable digital document can be sent to
other Macintosh users and viewed or printed simply by opening the documents with a
viewer that can interpret them.

For more information on print files and portable digital documents, see the chapters
“Introduction to QuickDraw GX Printing” and “Core Printing Features” of Inside
Macintosh: QuickDraw GX Printing.

Using QuickDraw GX Stream Format

This section describes the use of the GraphicsBug utility to analyze flattened data
streams. Sample code is provided that draws a QuickDraw GX picture containing seven
shapes. GraphicsBug is used to flatten each shape. The resulting data stream for each
flattened shape is then analyzed.

This section describes how you can
» flatten shapes using GraphicsBug
= interpret the GraphicsBug flattened shape output format

= analyze flattened shape data streams

Using QuickDraw GX Stream Format 7-53

Tew.o4 weans Xo meiayaind .

7-54

CHAPTER 7

QuickDraw GX Stream Format

Flattening Shapes With GraphicsBug

GraphicsBug is not just a QuickDraw GX debugging tool. It also allows you to evaluate
the data at specific memory locations. You can use GraphicsBug to look at the data
describing a QuickDraw GX shape both before and after you invoke the

GXFI at t enShape function. This allows you to compare the original data and the
stream format after the GXFI at t enShape function has been called.

For more information concerning GraphicsBug, see the chapter “QuickDraw GX
Debugging ” in this book.

You can use GraphicsBug to analyze a data stream by using the following procedure:
1. Create a QuickDraw GX shape.

2. Use the GraphicsBug heap dump HD command to determine the memory location of
the QuickDraw GX shape to be flattened.

3. Copy the memory location of the shape to the clipboard.

4. Type FL and paste the memory address. The command line should look like this:

fl <menory address>

For example: f1 41d788

5. The command FL applies t he GXFl at t enShape function to the shape located at the
specified memory address. This results in a flattened shape. An annotated version of

the QuickDraw GX data stream appears in the GraphicsBug window. GraphicsBug
does not alter the graphics memory in any way.

To create a flattened file, you can use the command
fl <menory address> "fil enanme"

To view the contents of a file, such as a print file generated by printing a document, you
can use the command

uf "“fil enanme"

To view the stream associated with a particular page of a document, you can use the
command

uf <page nunber> "fil enane”

Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Here are some guidelines for using GraphicsBug to analyze data streams:

= The data in parentheses in the GraphicsBug window are the compressed byte codes
that were generated when the original shape was flattened. The data not in
parenthesis is GraphicsBug’s brief annotation of the data stream. The annotation
usually describes the shape data in its original format. The data in parentheses always
relates to the immediately previous data that is not in parentheses.

= Sometimes GraphicsBug will not give the name of the font. This is because
GraphicsBug reads only the information contained in memory. GraphicsBug cannot
make a call to get the information. If GraphicsBug is used to flatten shapes that were
generated by a client call, the required data will always already be in memory and
will therefore be available. In this case, the GraphicsBug annotation will always
provide the name of the font.

= |f part of an object is compressed and another part of the object is not compressed,
GraphicsBug reports that there is “no compression.”

» Bracketed numbers are references. When gxSet Dat a or gxSet Ref er ence opcodes
are encountered, they can’t generate pointers to other objects. They have to generate
references. The first object is given reference 1. Subsequent objects are given references
2, 3, and so on.

Listing 7-2 shows an example of the information provided by GraphicsBug for a
flattened line.

Listing 7-2 A GraphicsBug annotation of the data stream of a flattened shape
fl 0c79090
owner s 1)

new(bj ect; size: #2 (03)

header Type; byte conpressi on (80)

version == 1.0; flags == fontListFlatten | fontd yphsFlatten
(01 03)

newQbj ect; size: #6 (07) [1]

font NaneType; no conpression (2f)

(04 02 01 01 00 00)

Listing 7-2 shows only the beginning of a data stream. For more examples of
GraphicsBug annotation of flattened shape data streams, see the next section.

Using QuickDraw GX Stream Format 7-55

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Analyzing the Data Streams of Flattened Shapes

This section first uses sample code to generate a picture with seven shapes. Each of the
seven shapes is then flattened using the procedure described in the section “Flattening
Shapes With GraphicsBug” beginning on page 7-54. The section “Analyzing the Data
Streams of Flattened Shapes” beginning on page 7-56 describes how to use GraphicsBug
to interpret the data for each of the seven shapes. The GraphicsBug data stream output is
provided for each flattened shape in Listing 7-4 through Listing 7-10. The byte-by-byte
analysis of the data stream for each flattened shape is provided in Table 7-14 through
Table 7-20.

Creating a Picture With Seven Shapes

Listing 7-3 creates seven primitive shapes and adds them to a window’s page shape to
form the picture shown in Figure 7-12. This picture contains (from left to right and top to
bottom) a line, rectangle, curve, path, text, polygon and bitmap shape.

Listing 7-3 A picture with seven shapes

7-56

voi d Creat eSanpl el mage(W ndowPtr wi nd)
{
gxShape t hePage;
gxShape thelLi ne;
line lineData = {ff(25), ff(25), ff(125), ff(125)};
gxShape t heRect;
gxRectangl e rectbData = {ff(25), ff(25), ff(75), ff(75)};
gxShape t heCurve;
gxCurve curvebData = {ff(25), ff(25), ff(275), ff(75), ff(125),
ff(125)};
gxShape t hePat h;
long tripleEightData[] = {1/* # of contours */, 6 /* # of points
*/, Oxff000000,
0, O,
ff(75), O,
ff(5), ff(50),
ff(75), ff(100),
0, ff(100),
ff(75), ff(50)};
gxShape t heText;
gxRect angl e t heText Bounds;
gxCol or textCol or;
fixed Xx,vy;
short | oop;
gxShape t hePol ygon;

Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

long starbData[] = {1, [/
poi nts */
ff(60), 0, ff(90), ff

* nunmber of contours */ 5, /* nunber of

(90), ff(0), ff(30), ff(120), ff(30),

ff(0), ff(90)}; /* the points */

gxShape t heBi t nap;

/* retrieve the page shape so we can add to it */

t hePage = Get DocShape(w
/* Create a |line shape*/

t heLi ne = GXNewLi ne (

nd) ;

&l i neDat a) ;

GXSet ShapePen(t heLi ne, ff(9));

GXAddToShape(t hePage,

t heLi ne) ;

GXDi sposeShape(t helLi ne);

/* create a rectangle; t

he color of the rectangle is red */

t heRect = GXNewRect angl e(& ect Dat a) ;

{gxCol or redCol or =
{gxR@ESpace, nil, {
OxFFFF, 0, 0} };
GXSet ShapeCol or (t heRect,
}
GXSet ShapeFi | | (theRect,
GXMoveShapeTo (theRect,

&redCol or) ;

cl osedFraneFill);
ff(150), ff(25));

GXAddToShape(t hePage, theRect);

GXDi sposeShape(t heRect);

/* create a curve shape;

t he shape has a pen thickness of 3.25 */

t heCurve = GXNewCurve(&curveDat a) ;

GXSet ShapePen(t heCurve,
GXMoveShapeTo (theCurve,

f1(3.25));
ff(210), ff(25));

GXAddToShape(t hePage, theCurve);

GXDi sposeShape(t heCurve)

/* create a path shape;
t hi ckness is 2 */

the shape’s color is green and the pen

thePath = GXNewPat hs((paths *) tripl eEi ght Data);

GXSet ShapeFi | | (thePat h,

cl osedFraneFill);

GXSet ShapePen(thePath, ff(2));

GXSet ShapeCommonCol or ('t

hePat h, green);

Using QuickDraw GX Stream Format 7-57

.

Tew.o4 weans Xo meiayaind

7-58

CHAPTER 7

QuickDraw GX Stream Format

GXMoveShapeTo (thePath, ff(390), ff(25));
GXAddToShape(t hePage, thePath);
GXDi sposeShape(t hePat h) ;

/* create a text shape; the shape is the characters GX colored in
hsv space and rotated 90 degrees */

/* create the text, set the font size, and set the font nane */

t heText = NewText (2, (unsigned char*)"GX", nil);
GXSet ShapeCommonFont (t heText, tinmesFont);

GXSet ShapeText Si ze(t heText, ff(135));

GXMoveShapeTo (theText, ff(25), ff(230));

GXSet ShapeAttri butes (theText, gxMapTransforntShape);

/* create an hsv col or space and set up the initial colors */

t ext Col or. space = hsvSpace,;
textColor.profile = nil

t ext Col or. el emrent . hsv. hue = 0x7400;

t ext Col or. el ement . hsv. saturation = OxFFFF
t ext Col or. el ement . hsv. val ue = OxFFFF;

/* get the bounds of "theText" and determ ne the coordi nates of
the bottomleft corner */

GXCGet ShapeBounds(t heText, OL, &theTextBounds);

X = theText Bounds. | eft;

y = theText Bounds. bottom

/* rotate "theText"; add each letter to the picture */
for (loop = 0; loop < 6; loop++) {
GXSet ShapeCol or (t heText, &textColor);
GXRot at eShape(t heText, ff(90), X, y);
GXAddToShape(t hePage, theText);
t ext Col or. el ement . hsv. hue += 0x0940;

}
GXDi sposeShape(t heText);

/* create a polygon shape; the shape’s color is yellow, the pen
size is 3, and it is skewed in the vertical direction by a factor
of 0.5 */

t hePol ygon = GXNewPol ygons((gxPol ygons *) starData);
GXSet ShapeFi I | (t hePol ygon, gxEvenCQddFill);

Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

GXSet ShapePen (thePol ygon, ff(3));

GXSet ShapeCommonCol or (t hePol ygon, vyell ow);
GXMoveShapeTo (thePol ygon, ff(240), ff(110));
GxSkewshape(t hePol ygon, 0, fI(0.5), 0, 0);

GXAddToShape(t hePage, thePol ygon);
GXDi sposeShape(t hePol ygon) ;

/* create a bitmap by retrieving a bitmap fromthe resource fork
and skewing it in the horizontal direction by a factor of .*/

t heBi t map = GXGet Pi xMapShape(128);
GXVal i dat eShape (theBitmap);

GxXSkewshape(t heBitmap, ff(2), 0, 0, 0);
GXMoveShapeTo (theBitmap, ff(290), ff(190));

GXAddToShape(t hePage, theBitnap);
GXDi sposeShape(t heBi t map) ;

Figure 7-12 A picture with seven shapes

ERe—————————— Shapes =—————1'=

L
o]

< ||

Using QuickDraw GX Stream Format 7-59

JewlOH weans X9 meiagyaind .

CHAPTER 7

QuickDraw GX Stream Format

Analyzing a Flattened Line Shape

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the line
shape shown in Figure 7-13.

The line shape is created with a pen size of 9 and a default color of black. The pen is
moved from the point (25.0, 25.0) to point (125.0, 125.0).

Figure 7-13 The line shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-4.
The first line of the output shows the use of the f | command on the memory address
that contained the line shape. The flattened line shape data stream is the sequential byte
data that appears in parentheses. For example, the first four bytes of the data stream in
Listing 7-4 are (06) (80) (01 03). All other annotation is provided by GraphicsBug.

Since the flattened line shape is the first shape in the data stream, this first part of the
GraphicsBug output shows the data stream header. The GraphicsBug output for the
other flattened shapes described in this section correspond to the data stream that
describes that specific shape. These shape-specific sections are presented in QuickDraw
GX drawing order.

7-60

Listing 7-4 GraphicsBug analysis of a flattened line
fl 0c79090
owner s 1)

newObj ect; size: #2 (03)

header Type; byte conpression (80)

version == 1.0; flags == fontListFlatten | fontd yphsFlatten
(01 03)

newQbj ect; size: #6 (07) [1]

font NaneType; no conpression (2f)

Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

(04 02 01 01 00 00)

newCbj ect; size: #0 (01) [1]
styl eType; no conpression (28)
setData; size: #1 (42)

styl ePen; byte conpression (83)
(09)

newQbj ect; size: #0 (01) [1]

i nkType; no conpression (29)
newCbj ect; size: #0 (01) [1]
transformlype; no conpression (2a)
newQbj ect; size: #4 (05)

i neType; byte conpression (83)
(19 19 7d 7d)

newQbj ect; size: #0 (01)

trail erType; no conpression (3f)

Table 7-14 shows the data stream analysis of the flattened line shape. The stream data is
obtained from the GraphicsBug output in Listing 7-4. This table provides a description of
each byte of the data stream for this shape.

Table 7-14 Analysis of the data stream of a flattened line shape

Values in
data stream
(binary)

New header
0x03

(00
000011)

0x80
(10
000000)

0x01
(00000001)

0x03
(00000011)

Type of information Value Description

Operation opcode 0 New object

Record size 3 Record size is 3 bytes

Compression type opcode 2 Byte compression

Data type opcode 0 Header

Data 1.0 QuickDraw GX Version 1.0

Data 3 gxFont Li st Fl at t en constant from the

gxFl at t enFl ags enumeration is 0x01

gxFont d yphsFl at t en constant from
the gxFl at t enFl ags enumeration is 0x02

continued

Using QuickDraw GX Stream Format 7-61

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Analysis of the data stream of a flattened line shape (continued)

Table 7-14
Values in
data stream
(binary) Type of information

New font name for the style object

0x07 Operation opcode
00 .
800111) Record size
Ox2F Compression type opcode
(00
101111) Data type opcode
0x04 Data
0x02 Data
0x01 Data
0x01 Data
0x0001A Data
0x41 7070
6C 652043
6F 6D 70 75
746572 20
54 69 6D 65
7320 52 6F
6D 61 6E
Data

New style object

0x01 Operation opcode
(()88001) Record size

0x28 Compression type opcode
(182000) Data type opcode

0x42 Operation opcode
88(1)010) Record size

7-62 Using QuickDraw GX Stream Format

Value

26

Description

New object

Record size is 7 bytes

No compression

Font name

The gxUni queFont Name constant of the
gxFont Name enumeration

The gxMaci nt oshPl at f or mconstant of
the gxFont Pl at f or menumeration

The gxMaci nt oshRonanScri pt constant
of the gxMaci nt oshScri pt s enumeration

The gxEngl i shLanguage constant of the
gxFont Language enumeration

The | engt h field (short) of the
gxFont Name is 26 bytes.

Each of the 26 bytes is one glyph code. The
font name is “Apple Computer Times
ROman.”

New object

Record size is 1 byte

No compression

New style

Set data

Record size is 1 byte

CHAPTER 7

QuickDraw GX Stream Format

Table 7-14

Analysis of the data stream of a flattened line shape (continued)

Values in
data stream
(binary) Type of information Value
0x83 Compression type opcode 2

10
((300011) Data type opcode 3
0x09 Data 9.0
New ink object
0x01 Operation opcode 0

00 .
(()00001) Record size 1
0x29 Compression type opcode 0

00
(101001) Data type opcode 0x29
New transform
0x01 Operation opcode 0

00
((300001) Record size 1
0x2A Compression type opcode 0

00
(10 1001) Data type opcode 0x2A
New shape object
0x05 Operation opcode 0

00
800101) Record size 5
0x83 Compression type opcode 2

10
800011) Data type opcode 3
0x19 Data 25.0
0x19 Data 25.0
0x7D Data 125.0
0x7D Data 125.0

Using QuickDraw GX Stream Format

Description
No compression

gxSt yl ePenOpcode constant of the
gxSt yl eDat aOpcode enumeration

The pen width parameter for the
GXSet ShapePen function is 9.0

New object

Record size is 1 byte

No compression

New ink

New object

Record size is 1 byte

No compression

New transform

New object

Record size is 5 bytes

Byte compression

gxLi neType constant of the
gxShapeTypes enumeration

x coordinate of the first point is 25.0
y coordinate of the first point is 25.0
x coordinate of the last point is 125.0

y coordinate of the last point is 125.0

7-63

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Analyzing a Flattened Rectangle Shape

The function described in section “Creating a Picture With Seven Shapes” beginning on
page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
rectangle shape shown in Figure 7-14.

The red rectangle shape is created with its frame. The size and shape of the rectangle is
defined by its upper-left boundary point (25.0, 25.0) and its lower-right boundary point
(75.0, 75.0). The fill type is closed-frame. Once the rectangle is drawn, it is moved to the
point (150.0, 25.0) to position it in the picture.

Figure 7-14 The rectangle shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-5.
The flattened rectangle shape data stream is the sequential data that appears in
parentheses.

Listing 7-5 GraphicsBug analysis of a flattened rectangle shape

i nkType; no conpression (29)

space gxRGBSpace
profile nil
val ue(s) 1.0000 (ffff) 0.0000 OxO000 0.0000 0x0000

setData; size: #4 (45)

i nkCol or; no conpression (02)

(fe ff 00 00)

newObj ect; size: #8 (09)

rectangl eType; word conpression (45)
(00 96 00 19 00 c8 00 4b)

setData; size: #1 (42)

shapeFill; byte conpression (82)
(02)

7-64 Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Table 7-15 shows the data stream analysis of the flattened rectangle shape. The stream
data is obtained from the GraphicsBug output in Listing 7-5. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown..

Table 7-15 Analysis of the data stream of a flattened rectangle shape

Values in
data stream
(binary) Type of information

New ink object

0x01 Operation opcode

00 000001 .
() Record size

0x29 Compression type opcode

101001
(00 101001) Data type opcode

Set data for ink color

0x45 Operation opcode
01 000101 .

() Record size

0x02 Compression type opcode

00 000010
() Data type opcode

OxFE Omit byte
(11 11 1110)

OxFF Data

Using QuickDraw GX Stream Format

Value

0x29

N © o1 -

OXFFFF

Description

New object
Record size is 1 byte.
No compression

New ink

Set data
Record size is 5 bytes.
No compression

gx| nkCol or Opcode constant of
the gxI nkDat aOpcode enumeration

The gxOm t Col or sMask and

gxQmi t Col or sShi ft enumerations
are used to interpret this byte. Datal,
color space, is omitted so the default
RGB color space properties are applied
to the current object. Data2, color
profile, is omitted so the default color
profile is applied to the current object.
Data3, color components, uses only
bits 3, 2, and 1 for RGB. The
compression for each of the red, green,
and blue color components is byte
compression.

Since color components are 2-byte
values, the byte is replicated to

the value OXFFFF or 65,535. The RGB
value for the r ed field of the
gxRgbCol or structure is 65,535.

continued

7-65

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-15

Analysis of the data stream of a flattened rectangle shape (continued)

Values in
data stream
(binary)

0x00

0x00

New rectangle object

0x09
(00 001001)

0x45
(01 000101)

0x00 96

0x00 19

0x00 C8

0x00 4B

Set data for shape fill
0x42
(01 000010)

0x82
(10 000010)

0x02

7-66

Type of information
Data

Data

Operation opcode
Record size
Compression type opcode

Data type opcode

Data

Data

Data

Data

Operation opcode
Record size
Compression type opcode

Data type opcode

Data

Using QuickDraw GX Stream Format

Value
0x0000

0x0000

ol - 01 O

150.0

25.0

200.0

125.0

N N N

Description

Since color components are 2-byte
values, the byte is replicated to

the value 0x0000 or 0. The RGB value
for the gr een field of the

gxRgbCol or structure is 0.

Since color components are 2-byte
values, the byte is replicated to

the value 0x0000 or 0. The RGB value
for the bl ue field of the gxRgbCol or
structure is 0.

New object
Record size is 9 bytes.
Word compression

gxRect angl eType constant of
the gxShapeTypes enumeration

x-coordinate of the left top corner
point is 150.0

y-coordinate of the left top corner
point is 25.0

x-coordinate of the right bottom corner
point is 200.0

y-coordinate of the right bottom
corner pointis 75.0

Set data
Record size is 2 bytes.
Byte compression

gxShapeFi | | Opcode constant of
the gxShapeDat aOpcode
enumeration

gxCl osedFr aneFi | | constant of the
gxShapeFi | | s enumeration. The
shape fill constant is a long number so
the byte is expanded to a long.

CHAPTER 7

QuickDraw GX Stream Format

Analyzing a Flattened Curve Shape

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
curve shape shown in Figure 7-15.

The curve has a pen thickness of 3.25. The size and shape of the curve are defined by its
first point (210.0), control point (460.0, 75.0), and last point (310.0, 125.0). Once the curve
is drawn, it is moved to the point (210.0, 25.0) to position it in the picture.

Figure 7-15 The curve shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-6.
The flattened curve shape data stream is the sequential data that appears in parentheses.

Listing 7-6 GraphicsBug analysis of a flattened curve shape

newQbj ect; size: #6 (07) [1]

font NaneType; no conpression (2f)
(04 02 01 01 00 00)

new(bj ect; size: #0 (01) [1]

styl eType; no conpression (28)
setData; size: #4 (45)

styl ePen; no conpression (03)

(00 03 40 00)

Using QuickDraw GX Stream Format 7-67

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

newQbj ect; size: #12 (0d)

curveType; word conpression (44)

(00 d2 00 19 01 cc 00 4b 01 36 00 7d)
new(bj ect; size: #0 (01)

trail erType; no conpression (3f)

Table 7-16 shows the data stream analysis of the flattened rectangle shape. The stream
data is obtained from the GraphicsBug output in Listing 7-6. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.

Table 7-16 Analysis of the data stream of a flattened curve shape

Values in
data stream
(binary)

0x45
(01
000101)

0x03
(00
000011)

0x00034000

0x0D
(00 01101)

0x44
(01

000100)
0x00
0x00
0x00
0x00
0x00
0x00

D2
19
CcC
4B
36
7D

7-68

Type of information Value Description
Operation opcode 1 Set data.
Record size 5 Record size is 5 bytes.
Compression type opcode 0 No compression
Data type opcode 3 gxSt yl ePenOpcode constant of

the gxSt yl eDat aOpcode enumeration
Data 3.25 The pen width parameter for the

GXSet Pen function is 3.25.
Operation opcode 0 New object
Record size 13 Record size is 13 bytes.
Compression type opcode 1 Word compression
Data type opcode 4 gxCur veType constant of

the gxShapeTypes enumeration
Data 210.0 x-coordinate of the first point is 210.0.
Data 25.0 y-coordinate of the first point is 25.0.
Data 460.0 x-coordinate of the control point is 460.0.
Data 75.0 y-coordinate of the control point is 75.0.
Data 310.0 x-coordinate of the last point is 310.0.
Data 125.0 x-coordinate of the last point is 125.0.

Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Analyzing a Flattened Path Shape

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the path
shape shown in Figure 7-16.

A path is created with a pen thickness of 2.0 and a color of green. The size and shape of
the curve are defined by the points (0.0, 0.0), (75.0, 0.0), (5.0, 50.0), (75.0, 100.0), (0.0,
100.0), and (75.0, 50.0). Once the path is drawn, it is moved to the point (290.0, 25.0) to
position it in the picture. The line is not on any of the points.

Figure 7-16 The path shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-7.
The flattened path shape data stream is the sequential data that appears in parentheses.

Listing 7-7 GraphicsBug analysis of a flattened path shape

newQbj ect; size: #0 (01) [1]

transformiype; no conpression (2a)

newQbj ect; size: #19 (14)

pat hType; byte conpression (87)

(01 06 ff 2a 01 73 40 00 19 b5 00 46 ce ba ce 4b 00 b5 32)
set Data; size: #1 (42)

shapeFill; byte conpression (82)

(02)

Using QuickDraw GX Stream Format 7-69

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-17 shows the data stream analysis of the flattened path shape. The stream data is
obtained from the GraphicsBug output in Listing 7-7. This table provides a description of
each byte of the data stream for this shape. Data format sequences that are identical to
previously described data sequences in the stream are not shown and are not analyzed

here.

Table 7-17

Analysis of the data stream of a flattened path shape

Values in
data stream
(binary)

New path object

0x14
(00
010100)

0x87
(10
000111)
0x01
0x06

OXFF
(111111
11)

Ox2A
(00 10 10
10)

0x01734000

7-70

Type of information

Operation opcode

Record size

Compression type opcode

Data type opcode

Data
Data
Control byte

Omit byte

Datal

Using QuickDraw GX Stream Format

Value

14

371.25

Description

New object

Record size is 14 bytes.

Byte compression

gxPat hType constant of the
gxShapeTypes enumeration

The number of contours is 1.
The number of points in the contour is 6.

Each of the 6 points is assigned a control bit
from the control byte. Points having a 0 bit
are on the line. Points having a 1 bit are off
the line. All 6 points are off the line. The
final 2 bits are unused.

The gxOni t Pat hivask and

gxOm t Pat hShi ft enumerations are used
to interpret this byte. No compression is
used for datal, x coordinate of first point.
Byte compression is used for data2, y
coordinate of first point. Byte compression
is used for data3, all x relative coordinate
deltas. Byte compression is used for data4,
all y relative coordinate deltas.

Absolute x-coordinate of the first point is
371.25.

CHAPTER 7

QuickDraw GX Stream Format

Table 7-17 Analysis of the data stream of a flattened path shape (continued)

Values in
data stream
(binary)

0x0x19

0xB5

0x00

0x46

OxCE

OxBA

OxCE

0x4B

0x00

0xB5

0x32

Type of information
Data2

Data3

Data4

Data3

Data4

Data3

Data4

Data3

Data4

Data3

Data4

Using QuickDraw GX Stream Format

Value

25.0

-75.0

0.0

70.0

-50.0

—-70.0

-50.0

75.0

0.0

—-75.0

50.0

Description

Absolute y-coordinate of the first point is
25.0.

Relative x-coordinate of the second point is
-75.0. Absolute x coordinate is 371.25 -
(-75.0) = 446.25.

Relative y-coordinate of the second point is
0. Absolute y coordinate is 25.0 — (0.0) =
25.0.

Relative x-coordinate of the third point is
70.0. Absolute x coordinate is 371.25 — (70.0)
=301.25.

Relative y-coordinate of the third point is
—50.0. Absolute y coordinate is 25.0 — (-50.0)
=75.0.

Relative x coordinate of the fourth point is
-70.0. Absolute x-coordinate is 371.25 —
(-70.0) = 441.25.

Relative y coordinate of the fourth point
—-50.0. Absolute y-coordinate is 25.0 —
(-50.0) = 75.0.

Relative x coordinate of the fifth point is
75.0. Absolute x-coordinate is 371.25 -
(75.0) = 296.25.

Relative y coordinate of the fifth point is
0.0. Absolute y-coordinate is 25.0 — (0.0) =
25.0.

Relative x coordinate of the sixth point is
—75.0. Absolute x-coordinate is 371.25 —
(-75.0) = 446.25.

Relative y coordinate of the sixth point is
50.0. Absolute y-coordinate is 25.0 — (50.0) =
-25.0.

7-71

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Analyzing a Flattened Text Shape

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the path
shape shown in Figure 7-17.

A text shape with glyphs G and X is colored in hsv space. The glyphs are rotated six
times by 90 degrees about the left bottom corner. Once the text is drawn, it is moved to
the point (25.0, 230.0) to position it in the picture.

Figure 7-17 The text shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-8.
The flattened text shape data stream is the sequential data that appears in parentheses.

7-72 Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Listing 7-8 GraphicsBug analysis of a flattened text shape

newQbj ect; size: #32 (21) [1]

font NaneType; no conpression (2f)
(04 02 01 01 00 1a)

Appl e Conputer Tines Ronan

(41 70 70 6¢c 65 20 43 6f 6d 70 75 74 65 72 20 54 69 6d 65 73 20
52 6f 6d 61 6e)

newCbj ect; size: #0 (01) [1]

styl eType; no conpression (28)
setData; size: #1 (42)

styl eFont; byte conpression (8a)
(01)

setData; size: #2 (43)

styl eText Si ze; word conpression (49)
(00 87)

newQbj ect; size: #0 (01) [1]

i nkType; no conpression (29)

space hsvSpace
profile nil
val ue(s) 0. 4531 0x7400 1.0000 (ffff) 1.0000 (ffff)

set Data; size: #6 (47)
i nkCol or; no conpression (02)
(b6 03 74 00 ff ff)
newlbj ect; size: #0 (01) [1]
transformlype; no conpression (2a)
setData; size: #24 (59)
t ransf or mvappi ng; no conpression (03)
(00 3d 02 12 00 00 98 fe 00 00 f7 47 00 00 f7 47 00 00 42 42 ff
ff bd be)
newObj ect; size: #8 (09)
t ext Type; no conpression (09)

byt eLengt h 2

position { 25. 0000, 230. 0000}
Di spl ayi ng menory from 00c7all6
00c7all6 4758 X
(ad)
bytes (02)
position.x (19)
position.y (00 e6 02 47 58)
setData; size: #1 (42)
shapeAttri butes; byte conpression (80)
(20)

Using QuickDraw GX Stream Format

7-73

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-18 shows the data stream analysis of the flattened rectangle shape. The stream
data is obtained from the GraphicsBug output in Listing 7-8. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.

Table 7-18 Analysis of the data stream of a flattened text shape

Values in
data stream
(binary) Type of information Value Description

New font name for the style object

0x21 Operation opcode 0 New object
00 . o
(100001) Record size 21 Record size is 21 bytes
Ox2F Compression type opcode 0 No compression
(0010111)
Data type opcode 7 gxFont NameQpcode constant of

the gxGr aphi csNewOpcode
enumeration

0x04 Data 4 The gxUni queFont Name constant
of the gxFont Nane enumeration
0x02 Data 2 The gxMaci nt oshPl at f or mconstant
of the gxFont Pl at f or menumeration
0x01 Data 1 The gxMaci nt oshRonanScr i pt

constant of the gxMaci nt oshScri pts
enumeration

0x01 Data 1 The gxEngl i shLanguage constant
of the gxFont Language enumeration

0x0001A Data 26 The | engt h field (short) of the
gxFont Name structure is 26 bytes.

0x41 70 Data Each of the 26 bytes is one glyph code.

70 6C 65 The font name is “Apple Computer

20 43 6F Times Roman.”

6D 70 75

74 65 72

20 54 69

6D 65 73

20 52 6F

6D 61 6E

7-74 Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Table 7-18

Analysis of the data stream of a flattened text shape (continued)

Values in
data stream
(binary)

New style object
0x01

(00
000001)

0x28
(00
101000)

Type of information Value
Operation opcode 0
Record size 1

Compression type opcode 0

Data type opcode 0x28

Set data for style object

0x42 Operation opcode 1
01 .

800010) Record size 2

O0x8A Compression type opcode 2
10

(()01010) Data type opcode 10

0x01 Data 1

Set data for the text size of the style object

0x43 Operation opcode 1
01 .

800011) Record size 3

0x49 Compression type opcode 1
01

(()01001) Data type opcode 9

0x00 87 Data 135.0

New ink object

0x01 Operation opcode 0
00 .

(()00001) Record size 1

0x29 Compression type opcode 0

(00

101001) Data type opcode 0x29

Using QuickDraw GX Stream Format

Description

New object

Record size is 1 byte

No compression

gxStyl eTypeOpcode constant of the
gxG aphi csNewOpcode enumeration

Set data.

Record size is 2 bytes.

Byte compression

gx St yl eFont Opcode constant of
the gxSt yl eDat aOpcode enumeration

A reference to font name object 1.

Set data.

Record size is 3 bytes.

Word compression

gxStyl eText Si zeOpcode constant of
the gxSt yl eDat aOpcode enumeration

The size parameter for the
GXSet ShapeText Si ze function is
135.0 points.

New object

Record size is 1 byte.

No compression

gx!l nkTypeCOpcode constant of the
gxG aphi csNewOpcode enumeration

continued

7-75

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in

data stream

(binary)

Type of information

Set data for ink color of the ink object

0x47
(01
000111)

0x02
(00
000010)

0OxB6
(10 11
0110)

0x03

0x74 00

OxFF

OxFF

Operation opcode

Record size

Compression type opcode

Data type opcode

Omit byte

Datal

Data2

Data

Data

New transform object

Bytes 0x01 and 0x2A define the new transform object. This data sequence is identical to the previous
line shape example.

7-76

Using QuickDraw GX Stream Format

Value

0.453

OXFFFF

OXFFFF

Description

Set data.

Record size is 7 bytes.

No compression

gxI nkCol or Opcode constant of
the gx1 nkDat aOpcode enumeration

The gxOni t Col or sMask and

gxQOmi t Col or sShi ft enumerations
are used to interpret this omit byte.
Datal, color space, is byte compressed.
Data2, color profile, is omitted so the
default color profile is applied to the
current object. Data3, color components,
uses bits 3, 2, 1, and 0 for color space.
The compression for each of the red,
green and blue color components is byte
compression.

gxHSVSpace constant of the
gxCol or Spaces enumeration

The hue of the gxHSVCol or structure is
0.453.

Since color components are 2-byte
values, the byte is replicated to

the value OXFFFF. The saturation of the
gxHSVCol or structure is 1.0000.

Since color components are 2-byte
values, the byte is replicated to
the value OXFFFF. The value of the
gxHSVCol or structure is 1.0000.

CHAPTER 7

QuickDraw GX Stream Format

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in
data stream
(binary) Type of information Value Description

Set data for mapping of the transform object

0x59 Operation opcode 1 Set data.
01 . .
811001) Record size 7 Record size is 25 bytes. The transform

data size is 25 — 1 (data type opcode
byte) = 24 bytes. Since each mapping
requires 8 bytes, there are 24/8 =3
mappings. This indicates that there is a
translate, scale, and skew mapping.

0x03 Compression type opcode 0 No compression
00
((300011) Data type opcode 3 gxTr ansf or mivappi ng constant of
the gxTr ansf or nDat aOpcode
enumeration
0x003D0212 Data 61.12 The del t aY parameter for the
GXSet Tr ansf or mveappi ng function
0x000098FE Data 0.60 The del t aX parameter for the
GXSet Tr ansf or mvappi ng function
0x0000F747 Data 0.97 The hScal e parameter for the
GXSet Tr ansf or mvappi ng function
0x0000F747 Data 0.97 The scal e parameter for the
GXSet Tr ansf or mvappi ng function
0x00004242 Data 0.26 The hSkew parameter for the
GXSet Tr ansf or mveappi ng function
OxFFFFBDBE Data -0.4242 The vSkew parameter for the

GXSet Tr ansf or mvappi ng function

New shape object

0x09 Operation opcode 0 New object

88(1)001) Record size 9 Record size is 9 bytes.

0x09 Compression type opcode 0 No compression

882001) Data type opcode 9 gxText Type constant of the

gxShapeTypes enumeration

continued

Using QuickDraw GX Stream Format T7-77

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-18 Analysis of the data stream of a flattened text shape (continued)

Values in

data stream

(binary) Type of information Value Description

0x2A Omit byte - The gxOni t Text Mask and

(00 10 10 gxQOmi t Text Shi ft enumerations are

10) used to interpret this omit byte. Byte
compression is used for datal, and byte
length. Byte compression is used for
data2, and the x coordinate of the
position. Word ?? compression is used
for data3, y coordinate of position point.
Byte compression is used for data4,
number of characters and text.

0x02 Datal 2 The byte length is 2.

0x19 Data2 25.0000 The x-coordinate of the text position is
25.0000.

0x00 E6 Data3 230.0000 The y-coordinate of the text position is
230.0000.

0x02 Data4 2 The number of characters is 2.

0x47 Data4 0x47 Roman capital G

0x58 Data4 0x58 Roman capital X

Set data for attributes of the text object

0x42 Operation opcode 2 Set data

01 . .
((300010) Record size 2 Record size is 2 bytes.
0x80 Compression type opcode 2 Byte compression
10 .

((300010) Data type opcode 3 gxShapeAt t ri but es constant of
the gxShapeDat aOpcode enumeration

0x20 Data 32 gxMapTr ansf or nShape constant of
the gxShapeAt t ri but es enumeration

7-78 Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Analyzing a Flattened Polygon Shape

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
polygon shape shown in Figure 7-18.

The yellow polygon shape is drawn with a pen thickness of 3.0 and skewed in the
vertical direction by 0.5. Its size and shape is controlled by the vectors defined by the
points (60.0, 0.0), (90.0, 90.0), (0.0, 30.0), (120.0, 30.0), (0.0, 90.0). The fill is even-odd. Once
the polygon is drawn, it is moved to the point (240.0, 110.0) to position it in the picture.

Figure 7-18 The polygon shape drawn

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-9.
The flattened polygon shape data stream is the sequential data that appears in
parentheses.

Listing 7-9 GraphicsBug analysis of a flattened polygon shape

pol ygonType; byte conpression (86)
(01 05 5a 01 2c 01 04 e2 97 5a 69 88 c4 78 00)

Using QuickDraw GX Stream Format 7-79

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-19 shows the data stream analysis of the flattened polygon shape. The stream
data is obtained from the GraphicsBug output in Listing 7-9. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not

analyzed here.

Analysis of the data stream of a flattened polygon shape

Table 7-19
Values in
data stream
(binary) Type of information

New shape object

0x10 Operation opcode
00 .

(()10000) Record size

0x86 Compression type opcode

(10

000110) Data type opcode

0x01 Data

0x05 Data

Ox5A Omit byte

(01 01 10

10)

0x01 2C Datal

0x01 04 Data2

OxE2 Data3

0x97 Data4

Ox5A Data3

Value

10

290.0

260.0

-30.0

-105.0

90.0

7-80 Using QuickDraw GX Stream Format

Description

New object

Record size is 10 bytes.

Byte compression

gxPol ygonType constant of the
gxShapeTypes enumeration

The number of contours is 1.
The number of vectors in the contour is 5.

The gxQOni t Pat hMask and

gxQmi t Pat hShi ft enumerations are used
to interpret this byte. Word compression is
used for datal, and x coordinate of first
point. Word compression is used for data2,
and y coordinate of first point. Byte
compression is used for data3, and all x
relative coordinate deltas. Byte compression
is used for data4, and all y relative
coordinate deltas.

Absolute x-coordinate of the first point is
290.0

Absolute y-coordinate of the first point is
260.0

The x-coordinate distance of the second
point from the first point is —75.0. Absolute
x coordinate of the second point is 290.0 —
(-30.0) = 320.0

The y-coordinate distance of the second
point from the first point is =105.0. Absolute
y-coordinate of the second point is 260.0 —
(-105.0) = 365.0.

The x-coordinate distance of the third point
from the first point is 90.0. Absolute
x-coordinate of the third point is 290.0 —
(90.0) = 200.0.

CHAPTER 7

QuickDraw GX Stream Format

Table 7-19 Analysis of the data stream of a flattened polygon shape (continued)

Values in
data stream
(binary)

0x69

0x88

oxc4

0x78

0x00

Type of information Value Description

Data4 151.0 The y-coordinate distance of the third point
from the first point is 151.0. Absolute
y-coordinate of the third point is 260.0 —
(151.0) = 109.0.

Data3 136.0 The x-coordinate distance of the fourth
point from the first point is 70.0. Absolute
x-coordinate of the fourth point is 290.0 —
(70.0) = 220.0

Data4 -60.0 The y-coordinate distance of the fourth
point from the first point is —60.0. Absolute
y-coordinate of the fourth point is 260.0 —
(-60.0) = 320.0.

Data3 120.0 The x-coordinate distance of the fifth point
from the first point is 70.0. Absolute
x-coordinate of the fifth point is 290.0 —
(120.0) = 170.0.

Data4 0.0 The y-coordinate distance of the fifth point
from the first point is -50.0. Absolute
y-coordinate of the fifth is 260.0 — (0.0) =
260.0.

Analyzing a Flattened Bitmap Shape

The function described in the section “Creating a Picture With Seven Shapes” beginning
on page 7-56 was first used to draw the picture shown in Figure 7-12 containing the
polygon shape shown in Figure 7-19.

The bitmap was retrieved from the resource fork and skewed in the horizontal direction
by a factor of 2.0. Once the bitmap is drawn, it is moved to the point (200.0, 190.0) to
position it in the picture.

Figure 7-19 The bitmap shape drawn

Using QuickDraw GX Stream Format 7-81

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

The procedure described in the section “Flattening Shapes With GraphicsBug” beginning
on page 7-54 was then used to generate the GraphicsBug output shown in Listing 7-10.
The flattened bitmap shape data stream is the sequential data that appears in
parentheses.

Listing 7-10 GraphicsBug analysis of a flattened bitmap shape

7-82

newQbj ect; size: #0 (01) [1]
transfornlype; no conpression (2a)

set Data; size: #12 (4d)

t ransf or mvappi ng; word conpression (43)
(01 22 00 be 00 01 00 01 00 00 00 02)
newQbj ect; size: #403 (00 00 01 94) [1]
bi t 1 mage; no conpression (2e)

(a8 34 58 73 11 01 01 c2 81 70 22 01 21 82 ca ...)
newCbj ect; size: #49 (32) [1]

col or Set Type; byte conpression (ac)

(01 ff ff ff ff 00 00 33 ff 00 33 cc 00 00 ...)
newObj ect; size: #10 (0b)

bi t mapType; no conpression (08)

(aa)

i mge (01)

wi dth (66)

hei ght (58)

rowBytes (34 ab)

pi xel Si ze (04)

space (0b)

set (01 f0)

Table 7-20 shows the data stream analysis of the flattened bitmap shape. The stream data
is obtained from the GraphicsBug output in Listing 7-10. This table provides a
description of each byte of the data stream for this shape. Data format sequences that are
identical to previously described data sequences in the stream are not shown and are not
analyzed here.

Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

Table 7-20 Analysis of the data stream of a bitmap shape

Values in
data stream
(binary) Type of information Value Description

New transform object

Bytes 0x01 and 0x2A define the new transform object. This data sequence is identical to the previous
line shape example.

Set data for mapping of the transform object

0x4D Operation opcode 1 Set data
01 . .
801101) Record size 13 Record size is 13 bytes. The transform

data size is13 — 1 (data type opcode
byte) = 12 bytes. Since each mapping
requires 8 bytes, there are 12/2 =6
mappings. This indicates that there is
a translate, scale, and skew mapping.

0x43 Compression type opcode 1 Word compression

01
((300011) Data type opcode 3 gxTransf or mvappi ng constant of

the gxTr ansf or nDat aOpcode
enumeration

0x0122 Data 290.0 The del t aX parameter for the
GXSet Tr ansf or mvappi ng function
is 290.0.

0x00BE Data 190.0 The del t aY parameter for the
GXSet Tr ansf or mvlappi ng function
is 190.0.

0x0001 Data 1.0 The hScal e parameter for the
GXSet Tr ansf or mvappi ng function
is 1.0.

0x0001 Data 1.0 The vScal e parameter for the
GXSet Tr ansf or mvappi ng function
is 1.0.

0x0000 Data 0.0 The hSkew parameter for the
GXSet Tr ansf or mvlappi ng function
is 0.0.

0x0002 Data 2.0 The vSkew parameter for the
GXSet Tr ansf or mvappi ng function
is 2.0.

continued

Using QuickDraw GX Stream Format 7-83

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Analysis of the data stream of a bitmap shape (continued)

Table 7-20

Values in
data stream
(binary) Type of information
New bitmap image
0x00 Operation opcode

00 .
g)OOOOO) Record size
0x00 Record size (continued)
0x01 94 Record size (continued)

Ox2E Compression type opcode
00

(101110) Data type opcode

0xA8 Omit byte

(10 10 1

000)

0x34 Datal

0x58 Data2

Row 1 of the bit image follows

0x73 Bit image compression byte
(01

110011)

0x11 Data

7-84 Using QuickDraw GX Stream Format

Value

404

0x2E

52
88

51

11

Description

New object

Record size is > 64 bytes.

Record size is > 256 bytes.

Record size is 404 bytes. For
additional information about the
stream format for the record size, see
the section “Record Size” beginning
on page 7-11.

No compression

gxBi t | mageQpcode constant of the
gxG aphi csNewQpcode enumeration

The gxQOni t Bi t | nageMask and
gxOni t Bi t | nageShi ft
enumerations are used to interpret
this omit byte. Datal, wi dt h, is byte
compressed. Data2, hei ght , is

byte compressed. Data3, indicates that
the bit image data is compressed. The
last3 bits are not used and are
reserved.

The bit image row width is 52 bytes.

The bit image column height is 88
bytes.

Bits 6 and 7 are 1. This is the
gxRepeat Bi t | nageByt esQpcode
constant of the

gxBi t | mageConpr essi on
enumeration.

The bits that follow are to be repeated
51 times.

The bits “11” are to be repeated 51
times

CHAPTER 7

QuickDraw GX Stream Format

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in

data stream

(binary) Type of information Value Description

0x01 Data 0 This is the

(00 gxCopyBi t | mageByt esOpcode

000001) constant of the
gxBi t | mageConpr essi on
enumeration. The bits in the next byte
are added to the first row x number of
times.

1 The value of x is 1.

0x01 Data “01” The bits “01” are added to row 1

Rows 2 through 11 of the bit image follow

0xC2 Bit image compression byte 3 This is the

(11 gxRepeat Bi t | nageScanQOpcode

000010) constant of the
gxBi t | mageConpr essi on
enumeration. The previous scan line is

. repeated x times.
Previous row repeat number

2 The value of x is 2. The first row of bits

is repeated 2 times.

Row 12

0x81 Bit image compression byte 2 This is the

(10 gxLookupBi t | mrageByt esOpcode

000001) constant of the
gxBi t | mageConpr essi on
enumeration. Repeat x bytes from the
previous row and add them to the
current row.

1 The value of x is 1. One byte of data is
to be repeated from the previous scan
line.

0x70 Bit image compression byte 1 Bits 6 and 7 are 1. This is the

01 110000 gxRepeat Bi t | nageByt esQpcode
constant of the
gxBi t | mageConpr essi on
enumeration.

48 The bits in the byte that follow are to
be repeated 48 times.

0x22 Data “100010” The bits ““100010” are to be repeated 48
times
continued

Using QuickDraw GX Stream Format 7-85

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-20

Analysis of the data stream of a bitmap shape (continued)

Values in
data stream
(binary)

0x01
(00
000001)

0x21

0x82
(10
000010)

OxCA
(11
001010)

Type of information Value
Bit image compression byte 0
1
Data “100001”
Bit image compression byte 2
2
Bit image compression byte 3
10

The remaining bytes of the bit image are not shown here.

New color set object

0x32
(00
110010)

OxAC
(10
101100)

0x01

7-86

Operation opcode 0
Record size 50
Compression type opcode 2
Data type opcode 3
Data 1

Using QuickDraw GX Stream Format

Description

This is the

gxCopyBi t | mageByt esOpcode
constant of the

gxBi t | mageConpr essi on
enumeration. Repeat x bytes from the
previous row and add them to the
current row.

The value of x is 1. One byte of data is
to be repeated from the previous scan
line.

The bits ““100001” are to be repeated 1
time on the second row.

This is the

gxLookupBi t | nageByt esQpcode
constant of the

gxBi t | mageConpr essi on
enumeration. Repeat x bytes from the
previous row and add them to the
current row.

The value of x is 2. Two bytes of data
is to be repeated from the previous
scan line.

This is the

gxRepeat Bi t | mageScanOpcode
constant of the

gxBi t | mageConpr essi on
enumeration. The previous scan line is
repeated x times.

The value of x is 10. The first row of
bits is repeated 10 times.

New object

Record size is 50 bytes.

Byte compression

gxCol or Set TypeOpcode constant of
the gxGr aphi csNewOpcode
enumeration

gxRGBSpace constant of the
gxCol or Spaces enumeration

CHAPTER 7

QuickDraw GX Stream Format

Analysis of the data stream of a bitmap shape (continued)

Table 7-20
Values in
data stream
(binary) Type of information
White color for the bitmap object
OxFF Data
OxFF Data
OxFF Data

Dark blue color for the bitmap object

0x00 Data
0x00 Data
0x33 Data

Cherry red color for the bitmap object
OxFF Data

Using QuickDraw GX Stream Format

Value

OXFFFF

OXFFFF

OXFFFF

0x0000

0x0000

0x0000

OXFFFF

Description

Since color components are 2-byte
values, the byte is replicated to

the value OXFFFF or 65,535. The RGB
value for the r ed field of the
gxRgbCol or structure is 65,535.

Since color components are 2-byte
values, the byte is replicated to

the value OXFFFF or 65,535. The RGB
value for the gr een field of the
gxRgbCol or structure is 65,535.

Since color components are 2-byte
values, the byte is replicated to

the value 0xFFFF or 65,535. The RGB
value for the bl ue field of the
gxRgbCol or structure is 65,535.

Since color components are 2-byte
values, the byte is replicated to

the value 0x0000 or 0. The RGB value
for the r ed field of the gxRgbCol or
structure is 0.

Since color components are 2-byte
values, the byte is replicated to

the value 0x0000 or 0. The RGB value
for the gr een field of the

gxRgbCol or structure is 0.

Since color components are 2-byte
values, the byte is replicated to

the value 0x3333 or 0. The RGB value
for the bl ue field of the gxRgbCol or
structure is 0x3333.

Since color components are 2-byte
values, the byte is replicated to

the value OXFFFF or 65,535. The RGB
value for the r ed field of the
gxRgbCol or structure is 65,535.

continued

7-87

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in

data stream

(binary) Type of information Value Description

0x00 Data 0x0000 Since color components are 2-byte
values, the byte is replicated to
the value 0x0000 or 0. The RGB value
for the gr een field of the
gxRgbCol or structure is 0.

0x33 Data 0x3333 Since color components are 2-byte

Dull red color for the bitmap object

0OxCC

0x00

0x00

The remaining 35 bytes of the color set are not shown here.

Data 0xCCcCcC
Data 0x0000
Data 0x0000

New shape object

0x10
(00
010000)

0x08
(00
001000)

OxAA
(10 10
10 10)

0x01
0x66

7-88

Operation opcode 0
Record size 1
Compression type opcode 0
Data type opcode 8
Omit byte -
Datal 1
Data2 102

Using QuickDraw GX Stream Format

values, the byte is replicated to

the value 0x3333. The RGB value for
the bl ue field of the gxRgbCol or
structure is 0x3333.

Since color components are 2-byte
values, the byte is replicated to

the value 0XCCCC or 52,428. The RGB
value for the r ed field of the
gxRgbCol or structure is 52,428.

Since color components are 2-byte
values, the byte is replicated to

the value 0x0000 or 0. The RGB value
for the gr een field of the

gxRgbCol or structure is 0.

Since color components are 2-byte
values, the byte is replicated to

the value 0x0000 or 0. The RGB value
for the bl ue field of the gxRgbCol or
structure is 0x0000.

New object

Record size is 11 bytes.

Byte compression

gxBi t mapType constant of the
gxShapeTypes enumeration

The gxOni t Bi t apMask1 and
gxOni tBi t mapShiftl
enumerations are used to interpret
this byte. Byte compression is used for
datal, data?, data3, and data4.

A pointer to the pixels located at 1.

The row width is 102 pixels.

CHAPTER 7

QuickDraw GX Stream Format

Table 7-20 Analysis of the data stream of a bitmap shape (continued)

Values in

data stream

(binary) Type of information Value Description

0x58 Data3 88 The column height is 88 pixels.

0x34 Data4 52 The row width is 52 bytes.

OxAB Omit byte - The gxQOni t Bi t mapMask?2 and

(10 10 gxQri t Bi t mapShi ft 2 enumerations

10 11) are used to interpret this byte. Byte
compression is used for datal, data2,
and data3. Data4 is omitted.

0x04 Datal 4 The number of bits per pixel is 1.

0x0B Data2 11 gxl ndexedSpace constant of the
gxCol or Spaces enumeration

0x01 Data3 1 The first set of bitmaps is used.

OxFO0 Omit byte - The gxQOni t Bi t mapMask3 and

(11 11 o0 gxQmi t Bi t mapShi ft 3 enumerations

00) are used to interpret this byte. Datal

and data2 are omitted. These are the

x and y positions of the bitmap. The
position is therefore at point (0, 0). The
other bits are reserved.

Obtaining Data From a Print File

Any suitably equipped Macintosh computer with QuickDraw GX installed can read and
print portable digital document print files created by your application. You may want to
use the public data in a QuickDraw GX print file for other purposes. Listing 7-11 reads a
portable digital document print file and returns the page count. For more information on
print files and portable digital documents, see the chapters “Introduction to QuickDraw
GX Printing” and “Core Printing Features” of Inside Macintosh: QuickDraw GX Printing.

Listing 7-11 Obtaining the page count from a portable digital document print file

#define nrequire(x, LABEL) if((x)) goto LABEL
/* Returns the page count froman open print file */

Paraneters: -> short dataRef Numreference to the spool file
<- long *pageCount:returns page count

Ret ur ns: OSEr r

Precondi ti ons: dat aRef Num ! = NULL

Post condi ti ons: none */

Using QuickDraw GX Stream Format 7-89

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

OSErr Despool PageCount (short dataRef Num | ong *pageCount);
OSErr Despool PageCount (short dataRefNum |ong *pageCount) {

regi ster OSErr ankErr;
| ong pageDi rOf fset, nunPages;
| ong datalLen;
/* position to read offset to page directory */

ankErr = Set FPos(dataRef Num fsFrontStart, (long) (kHeaderSize +
si zeof (1 ong)));
nrequire (ankrr, SetPageD rO fsetPos);

/* read offset to page directory */

dat aLen = sizeof (pageDirOf fset);

anErr = FSRead(dat aRef Num &datalen, &pageDirCffset);
nrequire (ankErr, ReadPageDi r O f set Pos);

/* nove to page directory */
ankErr = Set FPos(dataRef Num fsFrontStart, (long) (pageDrOffset));
nrequire (ankrr, SetPageDi rPos);

/* read nunber of pages */
dat aLen = si zeof (nunPages);
anErr = FSRead(dat aRef Num &datalLen, &nunPages);
nrequi re (ankrr, ReadNunPages);

pageCount = nunPages;/ Return the result */

ncheck (ankErr);
return ankrr;

/* exception handling*/

ReadNunPages:

Set PageDi r Pos:

ReadPageDi r O f set Pos:

Set PageDi r O f set Pos:
return ankrr;

7-90 Using QuickDraw GX Stream Format

CHAPTER 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Reference

This section provides reference information to the data structures and enumerations that
are used in the stream format of a flattened shape.

Opcode Constants and Data Types

This section describes the constants and data types that describe the opcodes used in the
data streams of flattened shapes.

Operation Opcode Byte

Bits 6 and 7 of the operation opcode byte are the operation opcode. This opcode provides
a description of the data record that follows. Each operation opcode is defined in the
gxG aphi csOper at i onOpcode enumeration.

enum gxG aphi csOper at i onOpcode {
gxNewhj ect Opcode 0x00,
gxSet Dat aOpcode = 0x40,
gxSet Def aul t Opcode= 0x80,
gxReser vedQOpcode 0xQo,
gxNext Opcode OxFF,

b

Constant descriptions
gxNewObj ect Opcode
Data for a new object follows.
gxSet Dat aOpcode
Attributes for the current object follow.
gxSet Def aul t Opcode
Replace current default with the object that follows.
gxReser vedQOpcode
This opcode is reserved for future expansion.
gxNext Opcode This constant is used by the current operand field to indicate that an
opcode is coming.
Bits 0 through 5 of the operation opcode byte are the record size in bytes (1 to 63 bytes).
The gxObj ect Si zeMask constant, binary 111111, masks bits 0 through 5 to select the
record size. For additional information about the stream format for the record size, see
the section “Record Size” beginning on page 7-11.

QuickDraw GX Stream Format Reference 7-91

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

#def i ne gxQbj ect Si zeMask Ox3F

The gxOpcodesShi ft constant allows you to compare gxGr aphi csQper ati onOpcode
constants with other values.

#def i ne gxOpcodeShi ft 6

Data Type Opcode Byte

Bits 6 and 7 of the data type opcode byte are the compression type opcode. The
compression of the data to follow is given by the gx TwoBi t Conpr essi onVal ues
enumeration in Table 7-3. The gxConpr essi onMask constant, binary 11, masks the
constant defined by the gx TwoBi t Conpr essi onVal ue enumeration.

#defi ne gxConpressi onvask 0x03

The gxConpr essi onShi ft constant defines the number of bits to be shifted to the right
so that the masked value of the compression type opcode can be compared to other
values.

#def i ne gxConpressi onShift 6

Bits 0 through 5 of the data type opcode byte are the data type opcode. These opcodes
describe the data that follows in the stream. The gxCObj ect TypeMask constant, binary
111111, masks bits 0 through 5 of the data type opcode byte to select the data type
opcode. No shift is required to compare the data type opcode with other values.

#defi ne gxoj ect TypeMask Ox3F

Generic Data Opcode

7-92

The current operand uses a constant from the gxGener i cDat aOpcode enumeration
when the current operand is the gxNext Qpcode constant.

enum gxGeneri cDat aOpcode {
gxTypeOpcode,
gxSi zeOpcode

b

Constant descriptions

gxTypeQOpcode The next opcode is a type opcode.
gxSi zeOpcode The next opcode is a size opcode.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Bit Image Compression Opcode Byte

Bits 6 and 7 of the bit image compression opcode byte contain the compression type
opcode that describes the data compression used for a region of a a bit image.The

gxBi t i mageOpcodeMask constant, binary 11000000, masks bits 6 and 7 of the bit image
compression opcode byte to select the bit image opcode.

#def i ne gxBiti mageOpcodeMask 0xCO

Once the gxBi t i mageOpcodeMask constant has been used to select the compression
type opcode, a bit shift given by the gxBi t i mageCpcodeShi ft constant can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the compression type opcode so that it can be compared to other values.

#def i ne gxBiti mageOpcodeShift 6

Bits 0 through 5 of the bit image compression opcode byte contain the bit image count.
This is the number of times that a binary sequence is repeated. The

gxBi t i mageCount Mask constant, binary 111111, masks bits 0 through 5 of the bit image
compression opcode byte to select the bit image count. No shift is required to compare
the bit image count with other values.

#defi ne gxBiti mageCount MaskOx3F

Table 7-13 gives the bit image compression opcode constants. For additional information
about the use of the bit image compression opcode byte, see the section “New Bit Image
Object Data” beginning on page 7-49.

Modified Shape Data Opcodes

A constant from the gxShapeDat aOpcode enumeration follows a gxSet Dat aOpcode
operation opcode if shape data follows. The data stream bytes describe one of the fields
specified in this enumeration.

enum gxShapeDat aCpcode {
gxShapeAttri but esOpcode,
gxShapeTagQOpcode,
gxShapeFi | | Opcode

b

Constant descriptions

gxShapeAt tri but esOpcode
An attribute from the gxShapeAt t r i but es enumeration is added
to the current shape object.

gxShapeTagOpcode
Atag is added to the current shape object.

gxShapeFi | | Opcode
Afill is added to the current shape object.

QuickDraw GX Stream Format Reference 7-93

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Modified Style Data Opcodes

A constant from the gx St yl eDat aOpcode enumeration follows a gxSet Dat aOpcode
if style data follows. The data stream bytes that follow describe one of the attributes
specified in this enumeration.

enum gxSt yl eDat aOpcode {
gxStyl eAttri but esOpcode,
gxStyl eTagOpcode,
gxSt yl eCurveError Opcode,
gxStyl ePenOpcode,
gxSt yl eJoi nOpcode,
gxSt yl eDashOpcode,
gxStyl eCapsOpcode,
gxStyl ePat t er nOpcode,
gxStyl eText Attri but esOpcode,
gxStyl eText Si zeOpcode,
gxSt yl eFont Opcode,
gxStyl eText FaceOpcode,
gxStyl ePl at f or mOpcode,
gxStyl eFont Vari ati onsQpcode,
gxSt yl eRunCont r ol sOpcode,
gxStyl eRunPriorityJust Overri deOpcode,
gxStyl eRund yphJust Over ri desOpcode,
gxStyl eRund yphSubst i t uti onsOpcode,
gxStyl eRunFeat ur esQpcode,
gx St yl eRunKer ni ngAdj ust ment sQpcode,
gxStyl eJustificati onOpcode

b

Constant descriptions

gxStyl eAttri but esOpcode
The style attributes flags from the gxSt yl eAt tri but es
enumeration follow.

gxSt yl eTagOpcode
The parameters of the GXSet St yl eTags function follow.

gxSt yl eCurveError Opcode
Data for the er r or parameter of the GXSet St yl eCur veErr or
function follows.

gxSt yl ePenOpcode
The data for the pen parameter of the GXSet St yl ePen function
follows.

gxStyl eJoi nOpcode
The data for the fields of the gxJoi nRecor d structure follows.

7-94 QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

gxStyl eDashOpcode
The data for the fields of the gxDashRecor d structure follows.
gxSt yl eCapsOpcode
The data for the fields of the gxCapRecor d structure follows.
gxStyl ePat t er nOpcode
The data for the fields of the gxPat t er nRecor d structure follows.
gxStyl eText Attri but esOpcode
The data from the gxText At t ri but es enumeration follows.
gxStyl eText Si zeOpcode
The data for the si ze parameter of the GXSet St yl eText Si ze
function follows.
gxStyl eFont Qpcode
The data for the f ont parameter of the GXSet St yl eFont function
follows.
gxStyl eText FaceOpcode
The data for the fields of the gx Text Face structure follows.
gxStyl ePl at f or nOpcode
The data for the parameters of the GXSt yl eEncodi ng function
follows.
gxStyl eFont Vari ati onsOpcode
The data for the fields of the gxFont Var i at i ons structure follows.
gxSt yl eRunCont r ol sOpcode
The data for the fields of the gxRunCont r ol s structure follows.
gxStyl eRunPriorityJust Overri deOpcode
The data for the fields of the
gxPriorityJdustificationOverri de structure follows.
gxStyl eRunG@ yphJust Overri desOpcode
The data for the fields of the gx@ yphJusti fi cati onOverri de
structure follows.
gxStyl eRun@ yphSubsti t uti onsOQpcode
The data for the fields of the gx@ yphSubstit uti onCverri de
structure follows.
gxSt yl eRunFeat ur esOpcode
The data for the fields of the gxRunFeat ur e structure follows.
gxSt yl eRunKer ni ngAdj ust mnent sQpcode
The data for the fields of the gxKer ni ngAdj ust ment structure
follows.
gxStyl eJustificati onOpcode
The data for the j ust i f y parameter of the
GXSet Styl eJusti fi cati on function follows.

QuickDraw GX Stream Format Reference 7-95

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Modified Ink Data Opcodes

A constant from the gx1 nkDat aOpcode enumeration follows a gxSet Dat aOpcode
operation opcode if ink data follows. The data stream bytes that follow describe one of
the attributes specified in this enumeration.

enum gxl nkDat aOpcode {
gxl nkAttri but esOpcode,
gxl nkTagOpcode,
gxI nkCol or Opcode,
gxl nkTransf er ModeOpcode
b

Constant descriptions
gxl nkAttri but esOpcode
The parameters of the GXSet | nkAt t ri but es function follow.
gxl nkTagOpcode
The parameters of the GXSet | nkTags function follow.
gxl nkCol or Opcode
The parameters of the GXSet | nkCol or function follow.

gxI nkTr ansf er ModeOpcode
The parameters of the GXSet | nkTr ansf er function follow.

Modified Color Set Data Opcodes

A constant from the gxCol or Set Dat aOpcode enumeration follows a
gxSet Dat aOpcode operation opcode if color set data follows. The bytes that follow
describe one of the attributes specified in this enumeration.

enum gxCol or Set Dat aCpcode {
gxCol or Set Reser vedOpcode,
gxCol or Set TagOpcode

b

Constant descriptions
gxCol or Set Reser vedOpcode

This opcode is reserved for future expansion.
gxCol or Set TagQpcode

The data parameters for the GXSet Col or Set Tags function
follows.

7-96 QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Modified Color Profile Data Opcodes

A constant from the gxPr of i | eDat aOpcode enuner at i on follows a
gxSet Dat aOpcode operation opcode if profile data follows. The data stream bytes that
follow describe one of the attributes specified in this enumeration.

enum gxProf i | eDat aOpcode {
gxCol orProfil eAttri butesOpcode,
gxCol or Profi | eTagOpcode

s

Constant descriptions
gxCol orProfil eAttri butesQpcode

This opcode is reserved for future expansion.
gxCol or Profi | eTagOpcode

The data parameters for the GXSet Col or Pr of i | eTags function
follow.

Modified Transform Data Opcodes

A constant from the gx Tr ansf or nDat aOpcode enumeration follows a
gxSet Dat aOpcode operation opcode if transform data follows. The data stream bytes
that follow describe one of the attributes specified in this enumeration.

enum gxTransf or mDat aOpcode{
gxTr ansf or nMReser vedOpcode,
gxTransf or nifagOpcode,
gxTransfornCl i pOpcode,
gxTr ansf or mivappi ngOpcode,
gxTr ansf or mPar t MaskOpcode,
gxTransf or nifol er anceOpcode

b

Constant descriptions

gxTransf or mMReser vedOpcode
This opcode is reserved for future expansion.

gxTransf or nifagOpcode
The data parameters for the GXSet Tr ansf or nifags function
follow.

gxTransformCl i pQpcode
The data for the cl i p parameter of the GXSet TransfornCl i p
function follows.

gxTr ansf or mvappi ngOpcode
The data for the map parameter of the GXSet Tr ansf or mvVappi ng
function follows.

QuickDraw GX Stream Format Reference 7-97

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

gxTransf or nPart MaskOpcode
The data for the nask parameter of the GXSet Tr ansf or nHi t Test
function follows.

gxTr ansf or nifol er anceOpcode
The data for the gxPr of i | eRecor d structure and
gxPr of i | eResponse enumeration follows.

Bit Image Compression Opcodes

Bits 6 and 7 of the bit image compression opcode byte contain the bit image compression
opcode. A constant from the gxBi t | mageConpr essi on enumeration defines the
compression of the bit image data sequence to immediately follow.

enum gxBi t | nageConpr essi on {
gxCopyBi t | mageByt esOpcode = 0x00,
gxRepeat Bi t | nageByt esOpcode= 0x40,
gxLookupBi t | nageByt esOpcode= 0x80,
gxRepeat Bi t | nageScanCpcode = 0xCO0

b

Constant descriptions
gxCopyBi t | mageByt esOpcode
Bit image compression opcode 0.

gxRepeat Bi t | nageByt esOpcode
Bit image compression opcode 1.

gxLookupBi t | mageByt esOpcode
Bit image compression opcode 2.

gxRepeat Bi t | mageScanOpcode
Bit image compression opcode 3.

The bit image compression opcode is described in the section “New Bit Image Object
Data” beginning on page 7-49.

Flatten Header Bytes

The two bytes following the byte containing the gxHeader TypeQOpcode contain the
version of QuickDraw GX that generated the stream of data that follows and two flags
that are defined by the gxFl at t enFl ags enumeration.

struct gxFl attenHeader {
fixed versi on;
unsi gned char fl atFl ags;

b

7-98 QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Field descriptions
version The version of QuickDraw GX that was used to create the stream.

fl at Fl ags The gxFont Li st Fl att en and gxFont G yphsFl at t en flags.

The QuickDraw GX version and the flatten flags are described in the section “Header
Data” beginning on page 7-27.

Style Object Omit Byte Constants and Data Types

This section describes the constants and data types that are used to interpret omit bytes
that are used with style object data. The use of omit bytes is described in the section
“Omit Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Dash Style Omit Byte Masks and Shifts

The gxOm t DashMask1 enumeration defines which bits in an omit byte correspond to
the a data compression opcode for the field descriptors in the gxDashRecor d structure.
The sequence of data is also defined. The omit byte and its related data sequence are
given in the section “Dash Data” beginning on page 7-37.

enum gxQmi t DashMaskl {

gxQri t DashAt t ri but esMask = 0xQO,
gxQm t DashShapeMask = 0x30,
gxQOmi t DashAdvanceMask = 0x0C,

gxOni t DashPhaseMask

0x03
b

Constant descriptions

gxQrmi t DashAttri but esMask
The mask to select the data compression bits for the at t ri but es
field descriptor.

gxQmi t DashShapeMask
The mask to select the data compression bits for the dash field
descriptor.

gxQmi t DashAdvanceMask
The mask to select the data compression bits for the advance field
descriptor.

gxQmi t DashPhaseMask
The mask to select the data compression bits for the phase field
descriptor.

Once one of the gxOm t DashMask1 enumeration masks has been used to select data
compression bits for a field descriptor in the gxDashRecor d structure, the
corresponding bit shift from the gxOni t DashShi f t 1 enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression bits so that they can be compared to other values.

QuickDraw GX Stream Format Reference 7-99

Tew.o4 weans Xo meiayaind .

7-100

CHAPTER 7

QuickDraw GX Stream Format

enum gxQmi t Dashshi ft1 {
gxOnit DashAttri butesShift =
gxOni t DashShapeShi f t =
gxQrmi t DashAdvanceShi f t =
gxOni t DashPhaseShi f t =

oONA~O

b

Constant descriptions

gxQmi t DashAttri but esShi ft
The bit shift required to isolate the compression bits for the
attri but es field descriptor.

gxQmi t DashShapehi f t
The bit shift required to isolate the compression bits for the dash
field descriptor.

gxQmi t DashAdvanceShi f t
The bit shift required to isolate the compression bits for the
advance field descriptor.

gxQmi t DashPhasesShi ft
The bit shift required to isolate the compression bits for the phase
field descriptor.

The gxOni t DashMask2 enumeration defines which bits in a second omit byte
correspond to the data compression bits for additional field descriptors in the
gxDashRecor d structure. The sequence of data is also continued. The use of this mask
and shift are described in the section “Dash Data” beginning on page 7-37.

enum gxQm t DashMask2 {
gxQOrmi t DashScal eMask = 0xCO

b

Constant descriptions

gxOni t DashScal eMask
The mask for the data compression bits for the scal e field
descriptor.

Once one of the gxQOm t DashMask2 enumeration masks has been used to select data
compression bits for a field descriptor in the gxDashRecor d structure, the
corresponding bit shift from the gxOni t DashShi f t 2 enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression bits so that they can be compared to other values.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

enum gxQmi t Dashshi ft 2{
gxOni t DashScal eShift = 6

b

Constant descriptions

gxQmi t DashScal eShi ft
The bit shift required to isolate the compression bits for the scal e
field descriptor.

Pattern Style Omit Byte Masks and Shifts

The gxQOni t Pat t er nMask1 enumeration defines which bits in an omit byte correspond
to the data compression opcodes for the field descriptors in the gxPat t er nRecor d
structure. The sequence of data is also defined. The omit byte and its related data
sequence is given in the section “Pattern Data” beginning on page 7-38.

enum gxQmi t Pat t er nMask1{

gxQmitPatternAttri but esMask = 0xQO,
gxOni t Patt er nShapeMask = 0x30,
gxOmi t Pat t er nUXMask = 0x0C,
gxQmi t Pat t er nUYMask = 0x03

s

Constant descriptions

gxQmi tPatternAttri but esMask
The mask used to select the data compression bits for the
attri but es field descriptor.

gxOni t Pat t er nShapeMask
The mask used to select the data compression bits for the pat t er n
field descriptor.

gxQm t Pat t er nUXMask
The mask used to select the data compression bits for the ux field
descriptor.

gxOni t Pat t er nUYMask
The mask used to select the data compression bits for the uy field
descriptor.

Once one of the gxQmi t Pat t er nMask1 enumeration masks has been used to select
data compression bits for one of the field descriptors in the gxPat t er nRecor d
structure, the corresponding bit shift from the gxOni t Pat t er nShi ft 1 enumeration
can be applied to the selected bits. The selected bits must be moved to the right by the
indicated number of bits to isolate the data compression bits so that they can be
compared to other values.

QuickDraw GX Stream Format Reference 7-101

Tew.o4 weans Xo meiayaind .

7-102

CHAPTER 7

QuickDraw GX Stream Format

enum gxQOmitPatternsShiftl {
gxOnitPatternAttri butesShift =
gxOni t Pat t er nShapeShi ft =
gxQmi t Pat t er nUXShi ft =
gxOni t Patt er nUYShi f t =

b

oONA~O

Constant descriptions
gxQritPatternAttributesShift
The bit shift required to isolate the compression bits for the
attri but es field descriptor.
gxQmi t Pat t er nShapesShi ft
The bit shift required to isolate the compression bits for the
pat t er n field descriptor.
gxQmi t Pat t er nUXShi f t
The bit shift required to isolate the compression bits for the ux field
descriptor.
gxQmi t Pat t er nUYShi ft
The bit shift required to isolate the compression bits for the uy field
descriptor.

The gxOni t Pat t er nMask2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional field descriptors in the

gxPat t er nRecor d structure. The sequence of data is also continued. The omit byte and
its related data sequence is given in the section “Pattern Data” beginning on page 7-38.

enum gxQmi t Patt er nMask2 {
gxQOmi t Pat t er nVXMask = 0xC0,
gxOni t Pat t er nVYMask = 0x30

}s

Constant descriptions

gxQmi t Pat t er nVXMask
The mask used to select the data compression bits for the u.x field
descriptor.

gxQmi t Pat t er nVYMask
The mask to select the data compression bits for the u.y field
descriptor.

Once one of the gxOmi t Pat t er nMask2 enumeration masks has been used to select a
data compression opcode for one of the field descriptors in the gxPat t er nRecor d
structure, the corresponding bit shift from the gxOni t Pat t er nShi f t 2 enumeration
can be applied to the selected bits. The selected bits must be moved to the right by the
indicated number of bits to isolate the data compression opcode so that it can be
compared to other values.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

enum gxQOmitPatternsShift2 {
gxOnit Patt er nVXShi ft= 6,
gxOnit PatternVYShift= 4

}s

Constant descriptions

gxQrmi t Pat t er nVXShi ft
The bit shift required to isolate the compression bits for the u.x field
descriptor.

gxOni t Patt er nVYShi f t
The bit shift required to isolate the compression bits for the u.y field
descriptor.

Join Style Omit Byte Masks and Shifts

The gxOmi t Joi nMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxJoi nRecor d structure.
The sequence of data is also defined. The omit byte and its related data sequence is given
in the section “Join Data” beginning on page 7-37.

enum gxOnmi t Joi nMask {
gxQmi t Joi nAttri but esMask= 0xQO0,
gxOni t Joi nShapeMask = 0x30,
gxOnmi t Joi nM t er Mask = 0x0C

}s

Constant descriptions

gxOni t Joi nAttri but esMask
The mask used to select the data compression bits for the
attri but es field descriptor.

gxOnmi t Joi nShapeMask
The mask used to select the data compression bits for the j oi n field
descriptor.

gxOmi t Joi nM t er Mask
The mask used to select the data compression bits for the mi t er
field descriptor.

Once one of the gxQri t Joi nMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxJoi nRecor d structure, the
corresponding bit shift from the gxOni t Joi nShi ft enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

QuickDraw GX Stream Format Reference 7-103

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

enum gxQmi t Joi nShi ft {
gxOnit Joi nAttri but esShift
gxOnmi t Joi nShapeShi ft = 4,
gxQmitJoi nM t er Shi ft

I
o

|
N

s

Constant descriptions

gxQmi tJoi nAttri but esShi ft
The bit shift required to isolate the compression bits for the
attri but es field descriptor.

gxOnmi t Joi nShapeShi ft
The bit shift required to isolate the compression bits for the j oi n
field descriptor.

gxQmi tJoi nM t er Shi ft
The bit shift required to isolate the compression bits for them t er
field descriptor.

Cap Style Omit Byte Masks and Shifts

7-104

The gxOm t CapMask enumeration defines which bits in an omit byte correspond to the
data compression opcode for the field descriptors in the gxCapRecor d structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Caps Data” beginning on page 7-38.

enum gxQOmi t CapMask {

gxOmi t CapAttri but esMask = 0xCO,
gxQm t CapSt art ShapeMask = 0x30,
gxQmi t CapEndShapeMask = 0x0C

}s

Constant descriptions
gxOnmi t CapAttri but esiMask
The mask used to select the data compression bits for the
attri but es field descriptor.
gxQm t CapSt art ShapeMask
The mask used to select the data compression bits for the
st art Cap field descriptor.
gxOni t CapEndShapeMask
The mask used to select the data compression bits for the endCap
field descriptor.

Once one of the gxQOmi t CapMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxCapRecor d structure, the
corresponding bit shift from the gxOni t CapShi ft enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

enum gxQmi t CapShi ft {
gxOnit CapAttri butesShift= 6,
gxOni t CapSt art ShapeShi ft= 4,
gxQrmi t CapEndShapeShi ft = 2
b

Constant descriptions

gxQmit CapAttri but esShift
The bit shift required to isolate the compression bits for the
attri but es field descriptor.

gxQri t CapSt art ShapesShi ft
The bit shift required to isolate the compression bits for the
st art Cap field descriptor.

gxQm t CapEndShapeShi f t

The bit shift required to isolate the compression bits for the endCap
field descriptor.

Text Face Style Omit Byte Masks and Shifts

The gxOm t FaceMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxText Face structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Text Face Data” beginning on page 7-39.

enum gxQm t FaceMask {
gxOni t FaceLayer sMask = 0xCO,
gxQm t FaceMappi ngMask= 0x30
1

Constant descriptions

gxOni t FacelLayer siMask
The mask used to select the data compression bits for the
facelLayer s field descriptor.

gxQmi t FaceMappi ngvask
The mask used to select the data compression bits for the
advanceMappi ng field descriptor.

Once one of the gxQri t FaceMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxText Face structure, the
corresponding bit shift from the gxOni t FaceShi ft enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

QuickDraw GX Stream Format Reference 7-105

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

enum gxQmi t FaceShi ft {
gxOni t FaceLayersShift = 6,
gxOni t FaceMappi ngShift= 4
1

Constant descriptions

gxOni t FaceLayer sShi ft
The bit shift required to isolate the compression bits for the
facelLayer s field descriptor.

gxOni t FaceMappi ngShi f t
The bit shift required to isolate the compression bits for the
advanceMappi ng field descriptor.

SEE ALSO

The section “Text Face Data” beginning on page 7-39 provides a full descrtiption of the
gxText Face structure.

Face Layer Omit Byte Masks and Shifts

The gxOm t FaceLayer Mask1 enumeration defines which bits in an omit byte
correspond to the data compression opcode for the field descriptors in the
gxFacelLayer structure. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Text Face Data” on page 7-39.

enum gxQmi t FaceLayer Mask1 {
gxOni t FaceLayer Fi | | Mask = 0xCo,

gxQm t FacelLayer Fl agsMask = 0x30,
gxQrmi t FacelLayer St yl eMask = 0x0C,
gxOni t FaceLayer Tr ansf or mivask = 0x03

}s

Constant descriptions

gxQrmi t FacelLayer Fi | | Mask
The mask used to select the data compression bits for the
outlineFill field descriptor.

gxQmi t FacelLayer Fl agsMask
The mask used to select the data compression bits for the f | ags
field descriptor.

gxQmi t FacelLayer Styl eMask
The mask used to select the data compression bits for the
out | i neStyl e field descriptor.

gxQmi t FacelLayer Tr ansf or mvask
The mask used to select the data compression bits for the
out | i neTr ansf or mfield descriptor.

7-106 QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Once one of the gxOmi t FaceLayer Mask1 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxFacelLayer structure, the
corresponding bit shift from the gxOm t FaceLayer Shi ft 1 enumeration can be
applied to the selected bits. The selected bits must be moved to the right by the indicated
number of bits to isolate the data compression opcode so that it can be compared to
other values.

enum gxQOnmi t FaceLayer Shift1l {
gxQrmi t FaceLayer Fi | | Shift
gxOni t FacelLayer Fl agsShi ft
gxQri t FacelLayer St yl eShi ft
gxQmi t FacelLayer Tr ansf or nShi f t

n
oN MO

s

Constant descriptions

gxQm t FaceLayer Fi | | Shift
The bit shift required to isolate the compression bits for the
outli neFil | field descriptor.

gxOni t FaceLayer Fl agsShi ft
The bit shift required to isolate the compression bits for the f | ags
field descriptor.

gxQm t FacelLayer St yl eShi ft
The bit shift required to isolate the compression bits for the
out | i neStyl e field descriptor.

gxQrmi t FacelLayer Tr ansf or nShi f t
The bit shift required to isolate the compression bits for the
out I i neTr ansf or mfield descriptor.

The gxOnm t FaceLayer Mask2 enumeration defines which bits in a second omit byte
correspond to the data compression bits for additional field descriptors in the
gxFaceLayer structure. The sequence of data is also defined. The use of this mask and
shift are described in the section “Text Face Data” on page 7-39.

enum gxQOni t FaceLayer Mask2 {
gxQm t FaceLayer Bol dXMask
gxQmi t FacelLayer Bol dYMask

0xCo,
0x30

b

Constant descriptions

gxQrmi t FacelLayer Bol dXMask
The mask used to select the data compression bits for the
bol dQut set . Xfield descriptor.

gxQm t FacelLayer Bol dYMask
The mask used to select the data compression bits for the
bol dQut set . Y field descriptor.

QuickDraw GX Stream Format Reference 7-107

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Once one of the gxQOmi t FaceLayer Mask2 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxFacelLayer structure, the
corresponding bit shift from the gxOm t FaceLayer Shi ft 2 enumeration can be
applied to the selected bits. The selected bits must be moved to the right by the indicated
number of bits to isolate the data compression opcode so that it can be compared to
other values.

enum gxQOnmi t FaceLayer Shift2 {
gxQrmi t FacelLayer Bol dXShi ft
gxOni t FacelLayer Bol dYShi ft

non
o

b

Constant descriptions

gxQmi t FacelLayer Bol dXShi ft
The bit shift required to isolate the compression bits for the
bol dQut set . X field descriptor.

gxQrmi t FacelLayer Bol dYShi ft
The bit shift required to isolate the compression bits for the
bol dQut set . Y field descriptor.

Ink Object Omit Byte Constants and Data Types

This section describes the constants and data types that are used to interpret omit bytes
that are used with ink object data. The use of omit bytes is described in the section “Omit
Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Colors Omit Byte Masks and Shifts

7-108

The gxOnmi t Col or sMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxCol or structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Color Data” beginning on page 7-44.

enum gxQm t Col or sMask {

gxOni t Col or sSpaceMask = 0xCo,
gxQmi t Col or sProfi | eMask = 0x30,
gxOni t Col or sConponent sMask = OxOF,
gxOni t Col or sl ndexMask = 0x0C,
gxQmi t Col or sl ndexSet Mask = 0x03

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Constant descriptions
gxQmi t Col or sSpaceMask
The mask used to select the data compression bits for the space
field descriptor.
gxOnmi t Col or sProfil eMask
The mask used to select the data compression bits for the profi |l e
field descriptor.
gxQmi t Col or sConponent sMask
The mask used to select the data compression bits for the
el ement . conponent [4] field descriptor.
gxOni t Col or sl ndexMask
The mask used to select the data compression bits for the
el enent . i ndexed. i ndex field descriptor.
gxQmi t Col or sl ndexSet Mask
The mask used to select the data compression bits for the
el ement . i ndex. Set field descriptor.

Once one of the gxQmi t Col or sMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxCol or structure, the corresponding
bit shift from the gxOmi t Col or sShi ft enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxQmi t Col orsShift {
gxOni t Col or sSpaceShi ft =
gxQmi t Col orsProfil eShift
gxQmi t Col or sConponent sShi ft
gxQmi t Col or sl ndexShi ft
gxQmi t Col or sl ndexSet Shi ft

n
oNO MO

b

Constant descriptions

gxOni t Col or sSpaceShi ft
The bit shift required to isolate the compression bits for the space
field descriptor.

gxQmi t Col orsProfil eShift
The bit shift required to isolate the compression bits for the
profi | e field descriptor.

gxOni t Col or sConponent sShi ft
The bit shift required to isolate the compression bits for the
el enent . conponent [4] field descriptor.

gxQrmi t Col or sl ndexShi ft
The bit shift required to isolate the compression bits for the
el enent . i ndexed.i ndex field descriptor.

gxOni t Col or sl ndexSet Shi ft
The bit shift required to isolate the compression bits for the
el enent . i ndexed. set field descriptor.

QuickDraw GX Stream Format Reference 7-109

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Transfer Omit Byte Masks and Shifts

7-110

The gxOnmi t Tr ansf er Mask1 enumeration defines which bits in an omit byte
correspond to the data compression opcode for the field descriptors in the

gxTr ansf er Mode structure. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Transfer Mode Data” beginning on

page 7-44.

enum gxOnmi t Tr ansf er Maskl {
gxQm t Tr ansf er SpaceMask = 0xQo,
gxQmi t Tr ansf er Set Mask = 0x30,
gxOni t Tr ansf er Profi | eMask 0x0C

}s

Constant descriptions

gxQmi t Tr ansf er SpaceMask
The mask used to select the data compression bits for the space
field descriptor.

gxQmi t Tr ansf er Set Mask
The mask used to select the data compression bits for the set field
descriptor.

gxQmi t Transf er Profi | eMask
The mask used to select the data compression bits for the profi | e
field descriptor.

Once one of the gxQri t Tr ansf er Mask1 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxTr ansf er Mode structure, the
corresponding bit shift from the gxOni t Tr ansf er Shi f t 1 enumeration can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the data compression opcode so that it can be compared to other values.

enum gxQm t TransferShiftl {

gxOm t Tr ansf er SpaceShi f t = 6,
gxQmi t Transf er Set Shi f t = 4,
gxOnmit TransferProfileShift = 2

s

Constant descriptions

gxQmi t Tr ansf er SpaceShi ft
The bit shift required to isolate the compression bits for the space
field descriptor.

gxQmi t Tr ansf er Set Shi f t
The bit shift required to isolate the compression bits for the set
field descriptor.

gxQOrit TransferProfil eShift
The bit shift required to isolate the compression bits for the
pr of i | e field descriptor.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

The gxOnmi t Tr ansf er Mask2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional field descriptors in the

gxTr ansf er Mode structure. The sequence of data is also defined. The omit byte and its

related data sequence is given in the section “Transfer Mode Data” beginning on

page 7-44.

enum gxQmi t Tr ansf er Mask2 {
gxOni t Tr ansf er Sour ceMat ri xMask= 0xC0,
gxQm t Tr ansf er Devi ceMat ri xMask= 0x30,
gxQmi t Tr ansf er Resul t Mat ri xMask= 0x0C,
gxOmi t Tr ansf er Fl agsMask = 0x03

}s

Constant descriptions

gxQmi t Tr ansf er Sour ceMat ri xMask
The mask used to select the data compression bits for the
sour ceMat ri x field descriptor.

gxQmi t Tr ansf er Devi ceMat ri xMask
The mask used to select the data compression bits for the
devi ceMat ri x field descriptor.

gxQmi t Transf er Resul t Mat ri xMask
The mask used to select the data compression bits for the
resul t Mat ri x field descriptor.

gxQmi t Tr ansf er Fl agsMask

The mask used to select the data compression bits for the f | ags

field descriptor.

Once one of the gxOnmi t Tr ansf er Mask2 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxTr ansf er Mbde structure, the
corresponding bit shift from the gxQOni t Tr ansf er Shi f t 2 enumeration can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the data compression opcode so that it can be compared to other values.

enum gxQOni t TransferShift2 {

gxOnmi t Tr ansf er SourceMatri xShift =
gxQm t Transf er Devi ceMatri xShift =
gxQOrit TransferResul t Matri xShift =
gxOnmi t Tr ansf er Fl agsShi ft =

oN A~O

QuickDraw GX Stream Format Reference

7-111

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Constant descriptions

gxQm t Tr ansf er Sour ceMat ri xShi ft
The bit shift required to isolate the compression bits for the
sour ceMat ri x field descriptor.

gxQri t Tr ansf er Devi ceMat ri xShi ft
The bit shift required to isolate the compression bits for the
devi ceMnt ri x field descriptor.

gxQm t Transfer Resul t Mat ri xShi ft
The bit shift required to isolate the compression bits for the
resul t Mat ri x field descriptor.

gxOnmi t Tr ansf er Fl agsShi ft
The bit shift required to isolate the compression bits for the f | ags
field descriptor.

Transfer Component Omit Byte Masks and Shifts

7-112

The gxOnmi t Tr ansf er Conponent Mask1 enumeration defines which bits in an omit
byte correspond to the data compression opcode for the field descriptors in the

gxTr ansf er Conponent structure. The sequence of data is also defined. The omit byte
and its related data sequence is given in the section “Transfer Mode Data” beginning on
page 7-44.

enum gxQm t Transf er Component Mask1 {

gxOnmi t Tr ansf er Conponent ModeMask = 0x80,
gxQmi t Tr ansf er Component Fl agsMask = 0x40,
gxOni t Tr ansf er Conponent Sour ceM ni mumvask = 0x30,
gxOni t Tr ansf er Conponent Sour ceMaxi munivask = 0x0C,
gxQmi t Tr ansf er Conponent Devi ceM ni numvask = 0x03

b

Constant descriptions

gxQm t Tr ansf er Conponent ModeMask
The mask used to select the data compression bits for the node field
descriptor.

gxQrmi t Tr ansf er Corponent Fl agsMask
The mask used to select the data compression bits for the f | ags
field descriptor.

gxQm t Tr ansf er Conponent Sour ceM ni nunivask
The mask used to select the data compression bits for the
sour ceM ni mumfield descriptor.

gxOmi t Tr ansf er Conponent Sour ceMaxi nunivask
The mask used to select the data compression bits for the
sour ceMaxi numfield descriptor.

gxQm t Tr ansf er Conponent Devi ceM ni nunivask
The mask used to select the data compression bits for the
devi ceM ni mumfield descriptor.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Once one of the gxQmi t Tr ansf er Conponent Mask1 enumeration masks has been
used to select a data compression opcode for a field descriptor in the

gxTr ansf er Conponent structure, the corresponding bit shift from the

gxQmi t Tr ansf er Conponent Shi ft 1 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxQOnmi t Tr ansf er Corponent Shi ft1 {
gxQmi t Tr ansf er Conmponent ModeShi f t =
gxOni t Tr ansf er Conponent Fl agsShi ft
gxQmi t Tr ansf er Conponent Sour ceM ni nunthi ft
gxQmi t Tr ansf er Conponent Sour ceMaxi nunthi ft
gxOni t Tr ansf er Conponent Devi ceM ni munthi f t

I
oN A O N

b

Constant descriptions
gxQmi t Tr ansf er Conmponent ModeShi f t
The bit shift required to isolate the compression bits for the node
field descriptor.
gxQmi t Tr ansf er Conponent Fl agsShi ft
The bit shift required to isolate the compression bits for the f | ags
field descriptor.
gxQmi t Tr ansf er Conponent Sour ceM ni nunthi f t
The bit shift required to isolate the compression bits for the
sour ceM ni mumfield descriptor.
gxQmi t Tr ansf er Conponent Sour ceMaxi nunthi ft
The bit shift required to isolate the compression bits for the
sour ceMaxi mumfield descriptor.
gxQmi t Tr ansf er Conponent Devi ceM ni nunthi f t
The bit shift required to isolate the compression bits for the
devi ceM ni mumfield descriptor.
The gxQOmi t Tr ansf er Conponent Mask?2 enumeration defines which bits in a second
omit byte correspond to the data compression opcode for additional field descriptors in
the gxTr ansf er Conponent structure. The sequence of data is also continued. The omit
byte and its related data sequence is given in the section “Transfer Mode Data”
beginning on page 7-44.

enum gxQmi t Tr ansf er Conponent Mask2 {
gxOni t Tr ansf er Conponent Devi ceMaxi mumvask = 0xC0,

gxOni t Tr ansf er Conponent Cl anpM ni nmumvask = 0x30,
gxQmi t Tr ansf er Conponent Cl anpMaxi nmumvask = 0x0C,
gxOni t Tr ansf er Conponent Oper andMask = 0x03

b

QuickDraw GX Stream Format Reference 7-113

Tew.o4 weans Xo meiayaind .

7-114

CHAPTER 7

QuickDraw GX Stream Format

Constant descriptions

gxQm t Tr ansf er Conponent Devi ceMaxi nunmivask
The mask used to select the data compression bits for the
devi ceMaxi mumfield descriptor.

gxOni t Tr ansf er Conponent Cl anpM ni nmumvask
The mask used to select the data compression bits for the
cl anpM ni mumfield descriptor.

gxQm t Tr ansf er Conponent Cl anpMaxi nmumvask
The mask used to select the data compression bits for the
cl ampMaxi mumfield descriptor.

gxQrmi t Tr ansf er Conponent Qper andMask
The mask used to select the data compression bits for the oper and
field descriptor.

Once one of the gxQmi t Tr ansf er Conponent Mask2 enumeration masks has been
used to select a data compression opcode for a field descriptor in the

gxTr ansf er Conponent structure, the corresponding bit shift from the

gxQmi t Tr ansf er Conponent Shi ft 2 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxQm t Tr ansf er Conponent Shi ft2 {
gxQmi t Tr ansf er Conponent Devi ceMaxi nunthi f t
gxQmi t Tr ansf er Conponent C anpM ni munshi f t
gxQm t Tr ansf er Conponent Cl anpMaxi munshi f t
gxQmi t Tr ansf er Conponent Oper andShi f t

I
oONA~O

b

Constant descriptions

gxQmi t Tr ansf er Conponent Devi ceMaxi nunthi f t
The bit shift required to isolate the compression bits for the
devi ceMaxi numfield descriptor.

gxQm t Tr ansf er Conponent Cl anpM ni munshi ft

The bit shift required to isolate the compression bits for the
cl ampM ni numfield descriptor.

gxQmi t Tr ansf er Conponent C anpMaxi munshi f t
The bit shift required to isolate the compression bits for the
cl anpMaxi mumfield descriptor.

gxQm t Tr ansf er Conponent Oper andShi f t
The bit shift required to isolate the compression bits for the
oper and field descriptor.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Shape Object Omit Byte Constants and Data Types

This section describes the constants and data types that are used to interpret omit bytes
that are used with shape object data. The use of omit bytes is described in the section
“Omit Byte Masks and Omit Byte Shifts” beginning on page 7-22.

Path Shape Omit Byte Masks and Shifts

The gxOnmi t Pat hMask enumeration defines which bits in an omit byte correspond to
the data compression opcode for the field descriptors in the gxPat hs structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Path Shape Data” beginning on page 7-31.

enum gxOnmi t Pat hvask {

gxQmi t Pat hPosi ti onXMask = 0xCO,
gxOni t Pat hPosi ti onYMask = 0x30,
gxOni t Pat hDel t aXMask = 0x0C,
gxQmi t Pat hDel t aYMask = 0x03

s

Constant descriptions

gxQmi t Pat hPosi t i onXMask
The mask used to select the data compression bits for the
vect or[0] . x field descriptor.

gxOni t Pat hPosi ti onYMask
The mask used to select the data compression bits for the
vect or[0] . y field descriptor.

gxQm t Pat hDel t aXMask
The mask used to select the data compression bits for the
vect or [n] . x field descriptor where n is greater than zero,
represented as a delta from the previous value.

gxOni t Pat hDel t aYMask
The mask used to select the data compression bits for the
vect or [n] . y field descriptor where n is greater than zero,
represented as a delta from the previous value.

Once one of the gxQOmi t Pat hMask enumeration masks has been used to select a data
compression opcode for a field descriptor in the gxPat hs?? structure, the
corresponding bit shift from the gxOni t Pat hShi f t enumeration can be applied to the
selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

QuickDraw GX Stream Format Reference 7-115

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

enum gxQmi t Pat hshi ft {
gxOni t Pat hPosi ti onXShi ft =
gxQmi t Pat hPosi ti onYShi ft =
gxQmi t Pat hDel t aXshi ft =
gxOni t Pat hDel t aYShi ft =

oONA~O

b

Constant descriptions

gxQmi t Pat hPosi ti onXShi ft
The bit shift required to isolate the compression bits for
thevect or [0] . x field descriptor.

gxQmi t Pat hPosi ti onYShi ft
The bit shift required to isolate the compression bits for
thevect or [0] . y field descriptor.

gxOmi t Pat hDel t aXShi ft
The bit shift required to isolate the compression bits for the
vect or [n] . x field descriptor where n is greater than zero,
represented as a delta from the previous value.

gxQrmi t Pat hDel t aYShi ft
The bit shift required to isolate the compression bits for the
vect or[n] . y field descriptor where n is greater than zero,
represented as a delta from the previous value.

Bitmap Shape Omit Byte Masks and Shifts

The gxOni t Bi t mapMask1 enumeration defines which bits in an omit byte correspond

to the data compression opcode for the field descriptors in the gxBi t nap structure. The
sequence of data is also defined. The omit byte and its related data sequence is given in

the section “Bitmap Shape Data” beginning on page 7-32.

enum gxQm t Bi t mmpMaskl {

gxOni t Bi t mapl mageMask = 0xCo,
gxQmi t Bi t mapW dt hiask = 0x30,
gxOni t Bi t mapHei ght Mask = 0x0C,
gxOni t Bi t mapRowByt esMask = 0x03

}s

7-116 QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Constant descriptions

gxQm t Bi t mapl nageMask
The mask used to select the data compression bits for the i nage
field descriptor.

gxOni t Bi t mapW dt hask
The mask used to select the data compression bits for the wi dt h
field descriptor.

gxQm t Bi t mapHei ght Mask
The mask used to select the data compression bits for the hei ght
field descriptor.

gxOm t Bi t mapRowByt esMask
The mask used to select the data compression bits for the
r owByt es field descriptor.

Once one of the gxQmi t Bi t mapMask1 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBi t map structure, the
corresponding bit shift from the gxOni t Bi t mapShi f t 1 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOmi t Bi t mapShi ft1 {
gxOni t Bi t mapl nageShi f t
gxOnmi t Bi t mapW dt hShi ft
gxQmi t Bi t mapHei ght Shi ft
gxOni t Bi t mapRowByt esShi ft

[
oN A~

s

Constant descriptions

gxQmi t Bi t mapl mageShi f t
The bit shift required to isolate the compression bits for the i nage
field descriptor.

gxQmi t Bi t mapW dt hShi ft
The bit shift required to isolate the compression bits for the wi dt h
field descriptor.

gxQmi t Bi t mapHei ght Shi ft
The bit shift required to isolate the compression bits for the hei ght
field descriptor.

gxQrmi t Bi t mapRowByt esShi ft
The bit shift required to isolate the compression bits for the
r owByt es field descriptor.

The gxOni t Bi t mapMask?2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional field descriptors in the

gxBi t map structure. The sequence of data is also defined. The omit byte and its related
data sequence is given in the section “Bitmap Shape Data” beginning on page 7-32.

QuickDraw GX Stream Format Reference 7-117

Tew.o4 weans Xo meiayaind .

7-118

CHAPTER 7

QuickDraw GX Stream Format

enum gxQmi t Bi t mapMask?2 {

gxOni t Bi t mapPi xel Si zeMask = 0xC0,
gxOni t Bi t mapSpaceMask = 0x30,
gxQmi t Bi t mapSet Mask = 0x0C,
gxOni t Bi t mapPr ofi | eMask = 0x03

b

Constant descriptions
gxQmi t Bi t mapPi xel Si zeMask
The mask used to select the data compression bits for the
pi xel Si ze field descriptor.
gxQmi t Bi t mapSpaceMask
The mask used to select the data compression bits for the space
field descriptor.

gxQmi t Bi t mapSet Mask
The mask used to select the data compression bits for the set field
descriptor.

gxQmi t Bi t mapProf i | eMask
The mask used to select the data compression bits for the profi | e
field descriptor.
Once one of the gxQri t Bi t mapMask2 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBi t map structure, the
corresponding bit shift from the gxOmi t Bi t mapShi f t 2 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxQm tBi t mapShi ft2 {
gxOnmi t Bi t mapPi xel Si zeShi ft
gxQmi t Bi t mapSpaceShi ft
gxOni t Bi t mapSet Shi f t
gxOm t Bi t mapPr of i | eShi ft

[
oON A~O

}s

Constant descriptions
gxQmi t Bi t mapPi xel Si zeShi ft
The bit shift required to isolate the compression bits for the
pi xel Si ze field descriptor.
gxOni t Bi t napSpaceShi ft
The bit shift required to isolate the compression bits for the space
field descriptor.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

gxQmi t Bi t mapSet Shi ft
The bit shift required to isolate the compression bits for the set
field descriptor.
gxQmi t Bi t mapProfil eShift
The bit shift required to isolate the compression bits for the
pr ofi | e field descriptor.

The gxOni t Bi t mapMask3 enumeration defines which bits in a third omit byte
correspond to the data compression opcode for additional field descriptors in the

gxBi t map structure. The sequence of data is also defined. The omit byte and its related
data sequence is given in the section “Bitmap Shape Data” beginning on page 7-32.

enum gxQOmi t Bi t mapMask3 {
gxQmi t Bi t mapPosi ti onXMask
gxOni t Bi t mapPosi ti onYMask

0xCo,
0x30

b

Constant descriptions

gxQmi t Bi t mapPosi ti onXMask
The mask used to select the data compression bits for the
posi ti onXfield descriptor.

gxQmi t Bi t mapPosi ti onYMask
The mask used to select the data compression bits for the
posi ti onY field descriptor.

Once one of the gxQmi t Bi t mapMask3 enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBi t map structure, the
corresponding bit shift from the gxOni t Bi t mapShi f t 3 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxQm tBi t mapShi ft3 {
gxOni t Bi t mapPosi ti onXShi ft
gxQmi t Bi t mapPosi ti onYShi ft

61
4

b

Constant descriptions

gxQm t Bi t mapPosi ti onXShi ft
The bit shift required to isolate the compression bits for the
posi ti onXfield descriptor.

gxOni t Bi t mapPosi ti onYShi ft
The bit shift required to isolate the compression bits for the
posi ti onY field descriptor.

QuickDraw GX Stream Format Reference 7-119

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Bit Image Omit Byte Masks and Shifts

7-120

The gxOni t Bi t | mageMask enumeration defines which bits in an omit byte correspond
to the data compression opcode for additional field descriptors. The sequence of data is
also defined. The omit byte and its related data sequence is given in the section “New Bit
Image Object Data” on page 7-49.

enum gxOnmi t Bi t | mageMask {

gxQmi t Bi t | mageRowByt esMask = 0xCO,
gxOni t Bi t | mageHei ght Mask = 0x30,
gxOm t Bi t | mageDat aMask = 0x08

b

Constant descriptions
gxQrmi t Bi t | mageRowByt esMask
The mask used to select the data compression bits for the
r owByt es field descriptor.
gxOni t Bi t | mageHei ght Mask
The mask used to select the data compression bits for the height.
gxOni t Bi t | mageDat aMask
The mask used to select the data compression bits for the image.

Once one of the gxQri t Bi t | mageMask enumeration masks has been used to select a
data compression opcode for a field descriptor in the gxBi t map structure, the
corresponding bit shift from the gxOni t Bi t | mageShi ft enumeration can be applied
to the selected bits. The selected bits must be moved to the right by the indicated number
of bits to isolate the data compression opcode so that it can be compared to other values.

enum gxOm tBitl nageShi ft {

gxQOmi t Bi t | mrageRowByt esShi f t = 6,
gxOni t Bi t | nageHei ght Shi ft = 4,
gxQm t Bi t | mageDat ashi ft =3

b

Constant descriptions
gxOni t Bi t | mageRowByt esShi ft
The bit shift required to isolate the compression bits for the
r owByt es field descriptor.
gxQrmi t Bi t | mageHei ght Shi ft
The bit shift required to isolate the compression bits for the height.
gxOni t Bi t | mageDat aShi ft
The bit shift required to isolate the compression bits for the image.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Text Shape Omit Byte Masks and Shifts

The gxOnmi t Text Mask enumeration defines which bits in an omit byte correspond to
the data compression opcode for parameters of the GXNewText function. The sequence
of data is also defined. The omit byte and its related data sequence is given in the section
“Text Shape Data” beginning on page 7-32.

enum gxOnmi t Text Mask {
gxQrmi t Text Char act er sMask = 0xQO,

gxOni t Text Posi ti onXMask = 0x30,
gxOnmi t Text Posi ti onYMask = 0x0C,
gxQmi t Text Dat aMask = 0x02

s

Constant descriptions

gxQm t Text Char act er sMask
The mask used to select the data compression bits for the
char Count parameter.

gxOnmi t Text Posi ti onXMask
The mask used to select the data compression bits for the
posi ti on. X parameter.

gxQm t Text Posi ti onYMask
The mask used to select the data compression bits for the
posi ti on.Y parameter.

gxOnmi t Text Dat aMask
The mask used to select the data compression bits for the t ext
parameter.
Once one of the gxQmi t Text Mask enumeration masks has been used to select a data
compression opcode for the parameters of the GXNewText function, the corresponding
bit shift from the gxQOmi t Text Shi ft enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxQmi t Text Shift {
gxOni t Text CharactersShift =
gxQri t Text Posi ti onXShi ft
gxQrmi t Text Posi tionYShi ft
gxOni t Text Dat asShi ft =

P NAO

b

QuickDraw GX Stream Format Reference 7-121

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Constant descriptions

gxQm t Text Char act er sShi ft
The bit shift required to isolate the compression bits for the
char Count field descriptor.

gxQri t Text Posi ti onXShi ft
The bit shift required to isolate the compression bits for the
posi ti on. Xfield descriptor.

gxQmi t Text Posi ti onYShi ft
The bit shift required to isolate the compression bits for the
posi ti on.Y field descriptor.

gxQrmi t Text Dat aShi f t
The bit shift required to isolate the compression bits for the t ext
field descriptor.

Glyph Shape Omit Byte Masks and Shifts

7-122

The gxOni t A yphMask1 enumeration defines which bits in an omit byte correspond to
the data compression opcode for additional field descriptors in the gx New@ yphs
structure. The sequence of data is also defined. The omit byte and its related data
sequence is given in the section “Glyph Shape Data” beginning on page 7-33.

enum gxQm t d yphMaskl {

gxOni t d yphChar actersMask = 0xQ0,
gxOnmi t d yphLengt hMask = 0x30,
gxQri t d yphRunNunber Mask = 0x0C,
gxOni t d yphOnePosi ti onMask = 0x02,
gxQri t d yphDat aMask = 0x01

}s

Constant descriptions

gxQri t d yphChar act er sMask
The mask used to select the data compression bits for the
char Count function parameter.

gxOni t d yphLengt hMask
The mask used to select the data compression bits for the length in
bytes of the data.

gxOnmi t d yphRunNunber Mask
The mask used to select the data compression bits for the number of
styl eRuns.

gxOni t d yphOnePosi ti onMask
The mask used to specify that the position can be represented with
one point.

gxQmi t d yphDat aMask
The mask used to select the data compression bits for the t ext
function parameter.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Once one of the gxOmi t A yphMask1 enumeration masks has been used to select a data
compression opcode for the parameters to GXNewd yphs function, the corresponding
bit shift from the gxOnm t A yphShi f t 1 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxQOmit d yphShift1 {
gxQrit d yphChar act er sShi ft
gxQm t d yphLengt hShi ft
gxQOmi t d yphRunNumnber Shi f t
gxOm t d yphOnePosi ti onShi ft
gxQm t d yphbDat ashi ft =

n
oOr NAMNO

s

Constant descriptions

gxOni t d yphChar act er sShi f t
The bit shift required to isolate the compression bits for the
char Count function parameter.

gxOni t d yphLengt hShi ft
The bit shift required to isolate the compression bits for the length
in bytes of the data.

gxOni t d yphRunNunber Shi f t
The bit shift required to isolate the compression bits for the number
of styl eRuns.

gxOni t d yphOnePosi ti onShi ft
The bit shift required to specify that the position can be represented
with 1 point.

gxOni t d yphDat aShi f t
The bit shift required to isolate the compression bits for the t ext
function parameter.

The gxOm t A yphMask2 enumeration defines which bits in an omit byte correspond to
the data compression opcode for the parameters of the GXNewd yphs function. The

sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Glyph Shape Data” beginning on page 7-33.

enum gxQm t d yphMask2 {
gxQri t d yphPosi ti onsMask = 0xQO,

gxQm t d yphAdvancesMask = 0x20,
gxQmi t d yphTangent sMask = 0x18,
gxOni t d yphRunsMask = 0x04,
gxQm t d yphSt yl esMask = 0x03

QuickDraw GX Stream Format Reference 7-123

Tew.o4 weans Xo meiayaind .

7-124

CHAPTER 7

QuickDraw GX Stream Format

Constant descriptions

gxQm t d yphPosi ti onsMask
The mask used to select the data compression bits for the
posi ti ons function parameter.

gxOnm t d yphAdvancesMask
The mask used to select the data compression bits for the advance
function parameter.

gxQm t d yphTangent sMask
The mask used to select the data compression bits for the
t angent s function parameter.

gxOnm t d yphRunsMask
The mask used to select the data compression bits for the
st yl eRuns function parameter.

gxQm t d yphSt yl esMask

The mask used to select the data compression bits for the

gl yphSt yl es function parameter.
Once one of the gxQOmi t A yphMask2 enumeration masks has been used to select a data
compression opcode for the parameters to the GXNewd yph function, the corresponding
bit shift from the gxOnmi t A yphShi f t 2 enumeration can be applied to the selected bits.
The selected bits must be moved to the right by the indicated number of bits to isolate
the data compression opcode so that it can be compared to other values.

enum gxQOmt d yphShift2 {
gxOni t d yphPosi ti onsShi ft
gxQm t d yphAdvancesShi ft
gxQri t d yphTangent sShi ft
gxOnmi t d yphRunsShi f t =
gxQOmi td yphStyl esShi ft

non
oON WUl o

}s

Constant descriptions

gxOni t d yphPosi ti onsShi ft
The bit shift required to isolate the compression bits for the
posi ti ons function parameter.

gxQri t d yphAdvancesShi ft
The bit shift required to isolate the compression bits for the
advance function parameter.

gxOni t d yphTangent sShi f t
The bit shift required to isolate the compression bits for the
t angent s function parameter.

gxOnmi t d yphRunsShi f t
The bit shift required to isolate the compression bits for the
st yl eRuns function parameter.

gxOnit d yphStyl esShi ft
The bit shift required to isolate the compression bits for the
gl yphStyl es function parameter.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Layout Shape Omit Byte Masks and Shifts

The gxQOnmi t Layout Mask1 enumeration defines which bits in an omit byte correspond
to the data compression opcode for parameters for the GXNewLayout function. The
sequence of data is also defined. The omit byte and its related data sequence is given in
the section “Layout Shape Data” beginning on page 7-33.

enum gxOnmi t Layout Maskl {

gxQmi t Layout Lengt hMask = 0xQO,
gxOni t Layout Posi ti onXMask = 0x30,
gxOni t Layout Posi ti onYMask = 0x0C,
gxQmi t Layout Dat aMask = 0x02

s

Constant descriptions

gxQm t Layout Lengt hMask
The mask used to select the data compression bits for the
t ext RunLengt h parameter.

gxOni t Layout Posi ti onXMask
The mask used to select the data compression bits for the
posi ti on. X parameter.

gxQmi t Layout Posi ti onYMask

The mask used to select the data compression bits for the

posi ti on. Y parameters.
gxOni t Layout Dat aMask

The mask used to select the data compression bits for the t ext

parameter.
Once one of the gxQmi t Layout Mask1 enumeration masks has been used to select a
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOni t Layout Shi f t 1 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxQOmit Layout Shiftl {
gxOni t Layout Lengt hShi ft
gxQmi t Layout Posi ti onXShi ft
gxQmi t Layout Posi ti onYShi ft
gxOni t Layout Dat aShi ft =

1
=N~ O

b

QuickDraw GX Stream Format Reference 7-125

Tew.o4 weans Xo meiayaind .

7-126

CHAPTER 7

QuickDraw GX Stream Format

Constant descriptions

gxQm t Layout Lengt hShi ft
The bit shift required to isolate the compression bits for the
t ext RunLengt h parameter.

gxQrmi t Layout Posi ti onXShi ft
The bit shift required to isolate the compression bits for the
posi ti on. X parameter.

gxQm t Layout Posi ti onYShi ft
The bit shift required to isolate the compression bits for the
posi ti on. Y parameter.

gxQri t Layout Dat asShi ft
The bit shift required to isolate the compression bits for the t ext
parameter descriptor.

The gxQOnmi t Layout Mask?2 enumeration defines which bits in a second omit byte
correspond to the data compression opcode for additional parameters for the
GXNewlLayout function. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Layout Shape Data” beginning on
page 7-33.

enum gxQmi t Layout Mask2 {

gxOni t Layout W dt hMask = 0xQ0,
gxOni t Layout Fl ushMask = 0x30,
gxQm t Layout Just Mask = 0x0C,
gxOni t Layout Opti onsMask = 0x03

b

Constant descriptions

gxQmi t Layout W dt hivask
The mask used to select the data compression bits for the wi dt h
field descriptor.

gxQmi t Layout Fl ushMask
The mask used to select the data compression bits for the f | ush
field descriptor.

gxQOmi t Layout Just Mask
The mask used to select the data compression bits for the j ust field
descriptor.

gxQmi t Layout Opt i onsMask
The mask used to select the data compression bits for the f | ags
field descriptor.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

Once one of the gxQmi t Layout Mask2 enumeration masks has been used to select a
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOm t Layout Shi f t 2 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxQmi t Layout Shift2 {
gxQmi t Layout W dt hShi ft
gxQm t Layout Fl ushShi f t
gxQmi t Layout Just Shi ft =
gxQmi t Layout Opt i onsShi ft

I
oN A~O

b

Constant descriptions

gxQmi t Layout W dt hShi ft
The bit shift required to isolate the compression bits for the wi dt h
field descriptor.

gxQmi t Layout Fl ushShi f t
The bit shift required to isolate the compression bits for the f | ush
field descriptor.

gxQmi t Layout Just Shi ft
The bit shift required to isolate the compression bits for the j ust
field descriptor.

gxQmi t Layout Opt i onsShi ft
The bit shift required to isolate the compression bits for the f | ags
field descriptor.
The gxOnmi t Layout Mask3 enumeration defines which bits in a third omit byte
correspond to the data compression opcode for additional parameters for the
GXNewlLayout function. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Layout Shape Data” beginning on
page 7-33.

enum gxQmi t Layout Mask3 {
gxQm t Layout St yl eRunNunber Mask= 0xC0,
gxQmi t Layout Level RunNunber Mask= 0x30,
gxOni t Layout HasBasel i neMask = 0x08,
gxQmi t Layout St yl eRunsMask = 0x04,
gxQmi t Layout St yl esMask 0x03

QuickDraw GX Stream Format Reference 7-127

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Constant descriptions

gxQm t Layout St yl eRunNunber Mask
The mask used to select the data compression bits for the
st yl eRunCount field descriptor.

gxOni t Layout Level RunNumber Mask
The mask used to select the data compression bits for the
| evel RunCount field descriptor.

gxQm t Layout HasBasel i neMask
The mask used to select the data compression bits for the
hasBasel i ne field descriptor.

gxOni t Layout St yl eRunsMask
The mask used to select the data compression bits for the
st yl eRunLengt hs field descriptor.

gxQm t Layout St yl esMask
The mask used to select the data compression bits for the 2?7 field
descriptor.

Once one of the gxQmi t Layout Mask3 enumeration masks has been used to select a
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOni t Layout Shi ft 3 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxQmi t Layout Shift3 {
gxQmi t Layout St yl eRunNurber Shi ft
gxQm t Layout Level RunNurber Shi ft
gxQmi t Layout HasBasel i neShi ft
gxOni t Layout St yl eRunsShi ft =
gxQm t Layout St yl esShi ft =

oo
oONWAO

s

Constant descriptions

gxOni t Layout St yl eRunNunber Shi ft
The bit shift required to isolate the compression bits for the
st yl eRunCount field descriptor.

gxQri t Layout Level RunNurber Shi ft
The bit shift required to isolate the compression bits for the
| evel RunCount field descriptor.

gxOni t Layout HasBasel i neShi ft
The bit shift required to isolate the compression bits for the
hasBasel i ne field descriptor.

gxQrmi t Layout St yl eRunsShi ft
The bit shift required to isolate the compression bits for the
st yl eRunLengt hs field descriptor.

gxOni t Layout St yl esShi ft
The bit shift required to isolate the compression bits for the ???
field descriptor.

7-128 QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

The gxOnmi t Layout Mask4 enumeration defines which bits in a fourth omit byte
correspond to the data compression opcode for additional parameters for the
GXNewLayout function. The sequence of data is also defined. The omit byte and its
related data sequence is given in the section “Layout Shape Data” beginning on
page 7-33.

enum gxQmi t Layout Mask4 {

gxQmi t Layout Level RunsMask
gxOni t Layout Level sMask

0x80,
0x40

b

Constant descriptions
gxQmi t Layout Level RunsMask
The mask used to select the data compression bits for the
| evel RunLengt hs parameter.
gxQmi t Layout Level sMask
The mask used to select the data compression bits for the | evel s
parameter.

Once one of the gxOm t Layout Mask4 enumeration masks has been used to a select
data compression opcode for the parameters for the GXNewLayout function, the
corresponding bit shift from the gxOni t Layout Shi f t 4 enumeration can be applied to
the selected bits. The selected bits must be moved to the right by the indicated number of
bits to isolate the data compression opcode so that it can be compared to other values.

enum gxQOmi t Layout Shift4 {
gxQm t Layout Level RunsShi ft
gxQmi t Layout Level sShi ft

7!
6

b

Constant descriptions

gxQmi t Layout Level RunsShi ft
The bit shift required to isolate the compression bits for the
| evel RunLengt hs parameter.

gxQm t Layout Level sShi ft

The bit shift required to isolate the compression bits for the | evel s
parameter.

Picture Shape Omit Byte Masks and Shifts

The gxOm t Pi ct ur ePar anet er sMask enumeration defines which bits in an omit byte
correspond to the data compression opcode for parameters of the GXDr awPi ct ur e
function. The sequence of data is also defined. The omit byte and its related data
sequence is given in the section “Picture Shape Data” beginning on page 7-34.

QuickDraw GX Stream Format Reference 7-129

Tew.o4 weans Xo meiayaind .

7-130

CHAPTER 7

QuickDraw GX Stream Format

enum gxQOmi t Pi ct ur ePar anet er sMask {
gxOni t Pi ct ur eShapeMask = 0xQ0,

gxOnmi t Overri deStyl eMask = 0x30,
gxQrmi t Overri del nkMask = 0x0C,
gxOni t Overri deTr ansf or mivask = 0x03

b

Constant descriptions

gxQmi t Pi ct ur eShapeMask
The mask used to select the data compression bits for the shapes
parameter.

gxQmit Overri deSt yl eMask
The mask used to select the data compression bits for the st yl es
parameter.

gxQmi t Overri del nkivask
The mask used to select the data compression bits for the i nks
parameter.

gxQmi t Overri deTr ansf or mvask
The mask used to select the data compression bits for the
t ransf or ms parameter.

enum gxOnmi t Pi ctureParanetersShift {

gxQmi t Pi ct ur eShapeshi ft = 0x6,
gxOnmit Overri deStyl eShi ft = 0x4,
gxQmit Overri del nkShi ft = 0x2,

gxQmit OverrideTransfornthift = 0x0
b

Constant descriptions

gxQm t Pi ct ur eShapeshi ft
The bit shift required to isolate the compression bits for the shapes
parameter.

gxOnmi t Overri deStyl eShift
The bit shift required to isolate the compression bits for the st yl es
parameter.

gxQm t Overri del nkShi ft
The bit shift required to isolate the compression bits for the i nks
parameter.

gxQri t Overri deTr ansf or nthi ft
The bit shift required to isolate the compression bits for the
t ransf or ns parameter.

QuickDraw GX Stream Format Reference

CHAPTER 7

QuickDraw GX Stream Format

QuickDraw GX Stream Format Summary

Opcode Constants and Data Types

Operation Opcode Byte

enum gxG aphi csQOper at i onOpcode {
gxNewObj ect Opcode = 0x00,

gxSet Dat aOpcode = 0x40,
gxSet Def aul t Opcode= 0x80,
gxReservedOpcode = 0xCO,
gxNext Opcode = OxFF

}s

Data Type Opcode Byte

enum gxG aphi csNewOpcode {
gxHeader TypeOpcode = 0x00,
gxStyl eTypeOpcode = 0x28,
gxl nkTypeOpcode,
gxTransf or mlypeQpcode,
gxCol or Profi | eTypeQOpcode,
gxCol or Set TypeOpcode,
gxTagTypeOpcode,
gxBi t | mageOpcode,
gxFont NaneTypeOpcode,
gxTrail er TypeOpcode,

b

Generic Data Opcode

enum gxGeneri cDat aOpcode {
gxTypeOpcode,
gxSi zeOpcode

}s /* constants used by current operand when
current operation is gxNextOpcode */

#def i ne gxConpr essi onShi ft 6
#def i ne gx(Obj ect TypeMask Ox3F

QuickDraw GX Stream Format Summary

7-131

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

#def i ne gxBitl mageOpcodeMask 0xCO
#defi ne gxBitl mageCount Mask Ox3F
#defi ne gxBitl mgeOQpcodeShi ft 6

Modified Shape Data Opcodes

enum gxShapeDat aCpcode {
gxShapeAttri but esOpcode,
gxShapeTagOpcode,
gxShapeFi | | Opcode

}s

Modified Style Data Opcodes

enum gxStyl eDat aCpcode {
gxStyl eAttri but esOpcode,
gxStyl eTagOpcode,
gxStyl eCur veEr r or Opcode,
gxSt yl ePenOpcode,
gxSt yl eJoi nOpcode,
gxStyl eDashOpcode,
gxSt yl eCapsOpcode,
gxStyl ePat t er nOpcode,
gxStyl eText Attri but esOpcode,
gxStyl eText Si zeOpcode,
gxSt yl eFont Opcode,
gxStyl eText FaceOpcode,
gxStyl ePl at f or mOpcode,
gxSt yl eFont Vari ati onsOpcode,
#i f def gxLayout Styl eRuns
gxSt yl eRunCont r ol sOpcode,
gxStyl eRunPriorityJust Overri deOpcode,
gxStyl eRund@ yphJust Overri desOpcode,
gxStyl eRun@ yphSubsti t uti onsOpcode,
gxSt yl eRunFeat ur esOpcode,
gxSt yl eRunKer ni ngAdj ust ment sQpcode,
gxSt yl eLayout | nf oOpcode,
gxStyl eJustificati onOpcode

7-132 QuickDraw GX Stream Format Summary

CHAPTER 7

QuickDraw GX Stream Format

Modified Ink Data Opcodes

enum gxl nkDat aOpcode {
gxl nkAttri but esOpcode,
gxl nkTagOpcode,
gxl nkCol or Opcode,
gxl nkTr ansf er ModeQOpcode

b

Modified Color Set Data Opcodes

enum gxCol or Set Dat aCpcode {
gxCol or Set Reser vedQOpcode,
gxCol or Set TagOpcode

b

Modified Color Profile Data Opcodes

enum gxPr of i | eDat aOpcode {
gxCol orProfil eAttri butesOpcode,
gxCol or Profi | eTagOpcode

b

Modified Transform Data Opcodes

enum gxTr ansf or nDat aOpcode {
gxTr ansf or nrReser vedOpcode,
gxTransf or MifagOpcode,
gxTransfornCl i pOpcode,
gxTr ansf or mivappi ngOpcode,
gxTr ansf or nPar t MaskOpcode,
gxTr ansf or nTol er anceOpcode

b

Bit Image Compression Opcodes

enum gxBi t | mageConpr essi on {
gxCopyBi t | mageByt esOpcode = 0x00,
gxRepeat Bi t | nageByt esOpcode= 0x40,
gxLookupBi t | mageByt esOpcode= 0x80,
gxRepeat Bi t | mageScanOpcode = 0xC0

QuickDraw GX Stream Format Summary

7-133

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Two Bit Compression Values

enum gxTwoBi t Conpr essi onVal ues {

gxNoConpr essi on, = 0x00
gxWor dConpr essi on, = 0x40
gxByt eConpr essi on, = 0x80
gxOni t Conpression = = 0x??

b

Flatten Header Bytes

struct gxFl attenHeader {
fixed ver sion;
unsi gned char fl atFl ags;

b

Style Object Omit Byte Constants and Data Types

Dash Style Omit Byte Masks and Shifts

enum gxQm t DashMaskl {

gxQri t DashAt t ri but esMask = 0xQO,
gxOni t DashShapeMask = 0x30,
gxQm t DashAdvanceMask = 0x0C,
gxQri t DashPhaseMask = 0x03

b

enum gxQmi t Dashshi ft1 {

gxQmi t DashAttri butesShift = 6,
gxQri t DashShapeShi ft = 4,
gxQmi t DashAdvanceShi f t = 2,
gxQOmi t DashPhaseShi ft =0
b
enum gxOnmi t Dashiask2 {
gxQm t DashScal eMask = 0xCo
1
enum gxQOni t DashShift2 {
gxQmi t DashScal eshi ft =6

7-134 QuickDraw GX Stream Format Summary

CHAPTER 7

QuickDraw GX Stream Format

Pattern Style Omit Byte Masks and Shifts

enum gxQOmi t Patt er nMaskl {

gxQmi tPatternAttri but esMask = 0xQ0,
gxQmi t Pat t er nShapeMask = 0x30,
gxQmi t Pat t er nUXMask = 0x0C,
gxQm t Pat t er nUYMask = 0x03

b

enum gxOni tPatternShiftl {

gxQritPatternAttri butesShift = 6,
gxOni t Patt er nShapeShi ft = 4,
gxQrmi t Pat t er nUXShi ft = 2,
gxQmi t Pat t er nUYShi ft =0
b
enum gxQmi t Patt er nMask2 {
gxOni t Pat t er nVXMask = 0xCO,
gxQm t Patt er nVYMask = 0x30

b

enum gxOni tPatternShift2 {
gxQmi t Patt er nVXshi ft= 6,
gxOnit PatternVYShift= 4

b

Join Style Omit Byte Masks and Shifts

enum gxOnmi t Joi nMask {
gxQmi t Joi nAttri but esMask= 0xQ0,
gxQmi t Joi nShapeMask = 0x30,
gxOni t Joi nM t er Mask = 0x0C

}s

enum gxQm t Joi nShi ft {
gxQmitJoi nAttri but esShi ft
gxQmi t Joi nShapesShi ft = 4,
gxQm tJoi nM t er Shi ft

l
o

|
N

b

QuickDraw GX Stream Format Summary

7-135

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

Cap Style Omit Byte Masks and Shifts

enum gxQOnmi t CapMask {

gxOnit CapAttri butesMask = 0xCO,
gxOnmi t CapSt ar t ShapeMask = 0x30,
gxQmi t CapEndShapeMask = 0x0C
b
enum gxQmit CapShi ft {
gxOni t CapAttri butesShift= 6,

gxQm t CapSt art ShapeShi ft= 4,
gxQrmi t CapEndShapeShi ft = 2
b

Text Face Style Omit Byte Masks and Shifts

enum gxOni t FaceMask {
gxQm t FaceLayer sMask = 0xQO0,
gxQri t FaceMappi ngMask= 0x30
b

enum gxQm t FaceShi ft {
gxQmi t FaceLayersShift = 6,
gxQri t FaceMappi ngShi ft= 4
1

Face Layer Omit Byte Masks and Shifts

enum gxQOmi t FaceLayer Mask1 {

gxQmi t FacelLayer Fi | | Mask = 0xQO,
gxQri t FaceLayer Fl agsMask = 0x30,
gxQm t FacelLayer St yl eMask = 0x0C,
gxQrmi t FacelLayer Tr ansf or mvask = 0x03
1
enum gxQmi t FacelLayer Shiftl {
gxOni t FaceLayer Fi |l | Shift = 6,
gxQri t FacelLayer Fl agsShi ft = 4,
gxQrmi t FacelLayer St yl eShi ft = 2,
gxOni t FaceLayer Transfornthift = 0

7-136 QuickDraw GX Stream Format Summary

CHAPTER 7

QuickDraw GX Stream Format

enum gxQOni t FaceLayer Mask2 {
gxOni t FacelLayer Bol dXMVask
gxOni t FaceLayer Bol dYMask

0x 0,
0x30

}s

enum gxQm t FacelLayer Shift2 {
gxQmi t FacelLayer Bol dXShi ft = 6,
gxOni t FaceLayer Bol dYShift = 4

b

Ink Object Omit Byte Constants and Data Types

Colors Omit Byte Masks and Shifts

enum gxQOmi t Col or sMask {

gxOni t Col or sSpaceMask = 0xCo,
gxQmi t Col or sProfi | eMask = 0x30,
gxQmi t Col or sConponent sMask = OxOF,
gxOni t Col or sl ndexMask = 0x0C,
gxQm t Col or sl ndexSet Mask = 0x03
1
enum gxQOmi t Col orsShift {
gxQmi t Col or sSpaceShi ft = 6,
gxOnit Col orsProfil eShift = 4,
gxOni t Col or sConponent sShi ft = 0,
gxQmi t Col or sl ndexShi ft = 2,
gxOni t Col or sl ndexSet Shi ft =0

b

Transfer Omit Byte Masks and Shifts

enum gxOnmi t Tr ansf er Maskl {

gxQm t Tr ansf er SpaceMask = 0xQo,
gxQmi t Tr ansf er Set Mask = 0x30,
gxOnit TransferProfil eMask = 0x0C
1
enum gxQOmit TransferShift1l {
gxQri t Tr ansf er SpaceShi ft = 6,
gxQmi t Tr ansf er Set Shi f t = 4,
gxQmitTransferProfileShift = 2

b

QuickDraw GX Stream Format Summary

7-137

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

enum gxQOmi t Tr ansf er Mask2 {
gxOni t Transf er Sour ceMat ri xMask= 0xCO,
gxOni t Tr ansf er Devi ceMat ri xMask= 0x30,
gxQmit Transf er Resul t Mat ri xMask= 0x0C,
gxOni t Tr ansf er Fl agsMask 0x03

b

enum gxQOni t TransferShift2 {

gxQmi t Tr ansf er Sour ceMat ri xShi ft
gxOni t Transf er Devi ceMat ri xShi ft
gxQmit Transfer Resul t Mat ri xShi ft
gxQmi t Transf er Fl agsShi ft =

n
oN MO

s

Transfer Component Omit Byte Masks and Shifts

enum gxQmi t Tr ansf er Conponent Mask1{
gxOnmi t Tr ansf er Conponent ModeMask = 0x80,
gxQm t Tr ansf er Conponent Fl agsMask = 0x40,
gxQmi t Tr ansf er Conponent Sour ceM ni numvask = 0x30,
gxOni t Tr ansf er Conponent Sour ceMaxi munivask = 0x0C,
gxQm t Tr ansf er Conponent Devi ceM ni numvask = 0x03

b

enum gxQmi t Tr ansf er Conponent Shi ft1 {
gxQmi t Tr ansf er Conponent ModeShi f t =7,
gxQm t Tr ansf er Conponent Fl agssShi ft 6,
gxQmi t Tr ansf er Conponent Sour ceM ni nunthi f t 4,
gxQmi t Tr ansf er Conponent Sour ceMaxi munshi ft = 2,
gxQm t Tr ansf er Conponent Devi ceM ni nunthi ft = 0

1

enum gxOni t Tr ansf er Conponent Mask2 {
gxQm t Tr ansf er Conponent Devi ceMaxi numvask = 0xQC0,
gxQmi t Tr ansf er Conponent Cl anpM ni nmumnivask = 0x30,
gxQmi t Tr ansf er Conponent C anpMaxi mumvask = 0x0C,
gxQmi t Tr ansf er Conponent Qper andMask = 0x03

7-138 QuickDraw GX Stream Format Summary

CHAPTER 7

QuickDraw GX Stream Format

enum gxQmi t Tr ansf er Conponent Shi ft2 {
gxOni t Tr ansf er Conponent Devi ceMaxi munthi f t
gxQmi t Tr ansf er Conrponent C anpM ni munshi f t
gxQmi t Tr ansf er Conponent Cl anpMaxi munshi f t
gxOni t Tr ansf er Conponent Oper andShi f t

I
oONA~O

b

Shape Object Omit Byte Constants and Data Types

Path Shape Omit Byte Masks and Shifts

enum gxQm t Pat hMask {

gxQmi t Pat hPosi ti onXMask = 0xQO0,
gxOni t Pat hPosi ti onYMask = 0x30,
gxQm t Pat hDel t aXMask = 0x0C,
gxQOmi t Pat hDel t aYMask = 0x03
b
enum gxQmi t Pat hshi ft {
gxOni t Pat hPosi ti onXShi ft = 6,
gxQrmi t Pat hPosi ti onYShi ft = 4,
gxQmi t Pat hDel t aXShi ft = 2,
gxOni t Pat hDel t aYShi ft =0

b

Bitmap Shape Omit Byte Masks and Shifts

enum gxOnmi t Bi t mapMaskl {

gxQmi t Bi t mapl nageMask = 0xQo,
gxQOmi t Bi t mapW dt hivask = 0x30,
gxOni t Bi t mapHei ght Mask = 0x0C,
gxOni t Bi t mapRowBYyt esMask = 0x03
b
enum gxQOmi t Bi t mapShi ft1 {
gxQmi t Bi t mapl nageShi f t = 6,
gxQm t Bi t mapW dt hShi f t = 4,
gxQmi t Bi t mapHei ght Shi ft = 2,
gxQmi t Bi t mapRowByt esShift =0

QuickDraw GX Stream Format Summary

7-139

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

enum gxQmi t Bi t mapMask?2 {

gxOni t Bi t mapPi xel Si zeMask = 0xC0,
gxOni t Bi t mapSpaceMask = 0x30,
gxQrmi t Bi t mapSet Mask = 0x0C,
gxQmi t Bi t mapProf i | eMask = 0x03

i

enum gxOmi t Bi t mapShi ft2 {
gxQm t Bi t mapPi xel Si zeShi ft = 6,
gxQmi t Bi t mapSpaceShi ft = 4,
gxQmi t Bi t mapSet Shi ft = 2,
gxOnmi t Bi t mapProf i | eShi ft =0

1

enum gxOmi t Bi t mapMask3 {
gxQmi t Bi t mapPosi ti onXMask = 0xC0,

gxOni t Bi t mapPosi ti onYMask = 0x30

i

enum gxQOmi t Bi t mapShi ft3 {
gxQm t Bi t mapPosi ti onXShift = 6,
gxQmi t Bi t mapPosi ti onYShift = 4

b

Bit Image Omit Byte Masks and Shifts

enum gxOnmi t Bi t | nageMask {

gxQm t Bi t | mageRowByt esMask = 0xCO,
gxQmi t Bi t | mageHei ght Mask = 0x30,
gxOni t Bi t | mageDat aMask = 0x08
1
enum gxQOmi t Bit I mageShi ft {
gxQrmi t Bi t | mrageRowByt esShi f t = 6,
gxQmi t Bi t | mageHei ght Shi ft = 4,
gxQmi t Bi t | mageDat aShi ft =3

b

7-140 QuickDraw GX Stream Format Summary

CHAPTER 7

QuickDraw GX Stream Format

Text Shape Omit Byte Masks and Shifts

enum gxQmi t Text Mask {

gxOni t Text Char act er sMask = 0xQ0,
gxOnmi t Text Posi ti onXMask = 0x30,
gxQmi t Text Posi ti onYMask = 0x0C,
gxOni t Text Dat aMask = 0x02
i
enum gxOnmi t Text Shift {
gxQm t Text CharactersShift = 6,
gxQmi t Text Posi ti onXShi ft = 4,
gxQrmi t Text Posi tionYShi ft = 2,
gxQmi t Text Dat aShi f t =1

Glyph Shape Omit Byte Masks and Shifts

enum gxQOmi t d yphMask1 {

gxQmi t d yphCharact ersMask = 0xCO,
gxQm t d yphLengt hivask = 0x30,
gxQOri t d yphRunNunber Mask = 0x0C,
gxOnmi t d yphOnePosi ti onMask = 0x02,
gxOnmi t d yphDat aMask = 0x01
1
enum gxOmi td yphShift1l {
gxQmi t d yphChar act er sShi ft = 6,
gxQmi t d yphLengt hShi f t = 4,
gxOnmi t d yphRunNunber Shi ft = 2,
gxQOmit d yphOnePosi ti onShi ft = 1,
gxQOmi t d yphDat aShi ft =0
b
enum gxOnm t d yphMask2 {
gxQm t d yphPosi ti onsMask = 0xQo,
gxQOmi t d yphAdvancesMask = 0x20,
gxQmi t d yphTangent sMask = 0x18,
gxQm t d yphRunsMask = 0x04,
gxQOrit d yphSt yl esivask = 0x03

QuickDraw GX Stream Format Summary

7-141

Tew.o4 weans Xo meiayaind .

CHAPTER 7

QuickDraw GX Stream Format

enum gxQOmit d yphShift 2 {
gxOni t d yphPosi ti onsShi ft
gxQri t d yphAdvancesShi ft
gxQri t d yphTangent sShi ft
gxOni t d yphRunsShi f t =
gxOni t d yphSt yl esShi ft

I
ON WUl O

}s

Layout Shape Omit Byte Masks and Shifts

enum gxQmi t Layout Mask1 {

gxQmi t Layout Lengt hMask = 0xQ0,
gxOni t Layout Posi ti onXMask = 0x30,
gxQmi t Layout Posi ti onYMask = 0x0C,
gxQOmi t Layout Dat aMask = 0x02

b

enum gxOnmi t Layout Shift1 {
gxQm t Layout Lengt hShi ft = 6,
gxQmi t Layout Posi ti onXShift = 4,
gxQmi t Layout Posi ti onYShift = 2,
gxQm t Layout Dat aShi ft =1

1

enum gxQOnmi t Layout Mask2 {
gxQmi t Layout W dt hiask = 0xQo,
gxQmi t Layout Fl ushiask = 0x30,
gxOni t Layout Just Mask = 0x0C,
gxQmi t Layout Opti onsMask = 0x03

1

enum gxQmi t Layout Shift2 {
gxQmi t Layout W dt hShi ft = 6,
gxQm t Layout Fl ushShi f t = 4,
gxQrmi t Layout Just Shi ft = 2,
gxQmi t Layout Opt i onsShi ft =0

7-142 QuickDraw GX Stream Format Summary

CHAPTER 7

QuickDraw GX Stream Format

enum gxQmi t Layout Mask3 {
gxOni t Layout St yl eRunNunber Mask= 0xCO,
gxOni t Layout Level RunNunber Mask= 0x30,
gxQrmi t Layout HasBasel i neMask = 0x08,
gxOni t Layout St yl eRunsMask = 0x04,
gxOni t Layout St yl esMask 0x03

}s

enum gxQmi t Layout Shift3 {
gxQmi t Layout St yl eRunNunber Shift =
gxOni t Layout Level RunNunber Shift =
gxQm t Layout HasBasel i neShi ft =
gxQmi t Layout St yl eRunsShi ft =
gxQmi t Layout St yl esShi ft =

ON WA O

b

enum gxQm t Layout Mask4 {
gxOni t Layout Level RunsMask
gxQmi t Layout Level sMask

0x80,
0x40

s

enum gxQmi t Layout Shift4 {
gxQrmi t Layout Level RunsShi ft
gxQm t Layout Level sShi ft

| 1
o ~N

b

Picture Shape Omit Byte Masks and Shifts

enum gxQmi t Pi ct ur ePar amet er sMask {
gxOni t Pi ct ur eShapeMask = 0xCo,

gxQm t Overri deStyl eMask = 0x30,
gxQrmi t Overri del nkiask = 0x0C,
gxOnmi t Overri deTr ansf or mvask = 0x03

1

enum gxQm t Pi ct ur ePar anet er sShi ft {
gxOni t Pi ct ur eShapeShi ft = 0x6,
gxQmitOverrideStyl eShift = 0x4,
gxQmi t Overri del nkShi ft = 0x2,

gxQmit OverrideTransfornthift = 0x0
b

QuickDraw GX Stream Format Summary

7-143

Tew.o4 weans Xo meiayaind .

	QuickDraw GX Stream Format
	About QuickDraw GX Stream Format
	Characteristics
	Stream Design
	Operation Opcode Byte
	Operation Opcode
	Record Size

	Data Type Opcode Byte
	Compression Type Opcode
	Data Type Opcode

	Data
	Omit Byte Masks and Omit Byte Shifts
	Header Data
	New Shape Object Data
	Modified Shape Object Data
	New Style Object Data
	Modified Style Object Data
	New Ink Object Data
	Modified Ink Object Data
	New Object Transform Data
	Modified Transform Object Data
	New Color Profile Object Data
	Modified Color Profile Object Data
	New Color Set Object Data
	Modified Color Set Object Data
	New Tag Object Data
	New Bit Image Object Data
	New Font Name Data
	New Trailer Object Data

	About Print Files and Portable Digital Documents
	Print Files
	Portable Digital Documents

	Using QuickDraw GX Stream Format
	Flattening Shapes With GraphicsBug
	Analyzing the Data Streams of Flattened Shapes
	Creating a Picture With Seven Shapes
	Analyzing a Flattened Line Shape
	Analyzing a Flattened Rectangle Shape
	Analyzing a Flattened Curve Shape
	Analyzing a Flattened Path Shape
	Analyzing a Flattened Text Shape
	Analyzing a Flattened Polygon Shape
	Analyzing a Flattened Bitmap Shape

	Obtaining Data From a Print File

	QuickDraw GX Stream Format Reference
	Opcode Constants and Data Types
	Operation Opcode Byte
	Data Type Opcode Byte
	Generic Data Opcode
	Bit Image Compression Opcode Byte
	Modified Shape Data Opcodes
	Modified Style Data Opcodes
	Modified Ink Data Opcodes
	Modified Color Set Data Opcodes
	Modified Color Profile Data Opcodes
	Modified Transform Data Opcodes
	Bit Image Compression Opcodes
	Flatten Header Bytes

	Style Object Omit Byte Constants and Data Types
	Dash Style Omit Byte Masks and Shifts
	Pattern Style Omit Byte Masks and Shifts
	Join Style Omit Byte Masks and Shifts
	Cap Style Omit Byte Masks and Shifts
	Text Face Style Omit Byte Masks and Shifts
	Face Layer Omit Byte Masks and Shifts

	Ink Object Omit Byte Constants and Data Types
	Colors Omit Byte Masks and Shifts
	Transfer Omit Byte Masks and Shifts
	Transfer Component Omit Byte Masks and Shifts

	Shape Object Omit Byte Constants and Data Types
	Path Shape Omit Byte Masks and Shifts
	Bitmap Shape Omit Byte Masks and Shifts
	Bit Image Omit Byte Masks and Shifts
	Text Shape Omit Byte Masks and Shifts
	Glyph Shape Omit Byte Masks and Shifts
	Layout Shape Omit Byte Masks and Shifts
	Picture Shape Omit Byte Masks and Shifts

	QuickDraw GX Stream Format Summary
	Opcode Constants and Data Types
	Style Object Omit Byte Constants and Data Types
	Ink Object Omit Byte Constants and Data Types
	Shape Object Omit Byte Constants and Data Types

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 QuickDraw GX and the Macintosh Environment TOC
	 QuickDraw GX and the Macintosh
	 QuickDraw GX Memory Management TOC
	 QuickDraw GX Memory Management
	 Errors, Warnings, and NoticesTOC
	 Errors, Warnings, and Notices
	 QuickDraw GX Debugging TOC
	 QuickDraw GX Debugging
	 Collection Manager TOC
	 Collection Manager
	 Message Manager TOC
	 Message Manager
	 QuickDraw GX Stream Format TOC
	 QuickDraw GX Mathematics TOC
	 QuickDraw GX Mathematics
	 Glossary
	 Index
	 Colophon

