

C H A P T E R 1

1

Introduction to S
ound on the M

acintosh

Introduction to Sound on the Macintosh 1

This chapter provides an introduction to managing sound on Macintosh computers. It’s
intended to help you quickly get started integrating sound into your application. This
chapter introduces the concepts described in detail throughout the rest of this book and
provides source code examples that show you how to use the most basic sound-related
capabilities of Macintosh computers. These examples use the Sound Manager to play
sounds, the Sound Input Manager to record sounds, and the Speech Manager to convert
text strings into spoken words.

Even if your application is not specifically concerned with creating or playing sounds,
you can often improve your application at very little programming expense by using
these system software services to integrate sound or speech into its user interface. For
example, you might use the techniques described in this chapter to

■ play a sound to alert the user that a lengthy spreadsheet calculation is completed

■ provide voice annotations for a word-processing document

■ read aloud the text string that is displayed in a dialog box

If you want to use sound in these simple ways, this chapter will probably provide all the
information you need. The Sound Manager, Sound Input Manager, and Speech Manager
provide high-level routines that make it very easy to play or record sounds without
knowing very much about how sounds are stored or produced electronically.

If, on the other hand, you are writing an application that is primarily concerned with
sound, you should read this chapter and some of the remaining chapters in this book.
You also need to read those chapters if you want to play computer-generated tones
without using sound resources or sound files, play sounds asynchronously, play sounds
at different pitches, record sounds without using the standard sound recording interface,
or customize the quality of speech output to make it easier to understand.

To benefit most from this chapter, you should already be familiar with simple resource
and file management, discussed in the chapters “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox and “Introduction to File Management” in Inside Macintosh: Files.
In particular, this chapter does not explain how to open or close resource or data files,
although it does provide source code examples that demonstrate how to play a sound
from, or record a sound to, a resource or data file that is already open.

This chapter begins with an overview of sound on Macintosh computers. It describes the
audio capabilities available on all Macintosh computers and some of the capabilities
achievable by adding additional hardware and software to Macintosh computers. Then
this chapter describes how you can use the available system software routines to

■ play the system alert sound

■ play sounds stored as resources

■ play sampled sounds stored in sound files

■ determine whether a particular Macintosh computer is capable of recording sounds

■ record sounds into resources

■ record sounds into sound files

■ convert text strings into spoken words
1-3

C H A P T E R 1

Introduction to Sound on the Macintosh

For your convenience, this chapter also includes a reference section containing complete
descriptions of the routines used to perform these tasks, and both Pascal and C language
summaries. All of the routines in the reference section of this chapter are also in the
reference sections of the chapter that describes the manager they are part of.

About Sound on Macintosh Computers 1

The Macintosh hardware and system software provide a standard and extensible set
of capabilities for producing and recording sounds. No matter what kind of application
you are developing, you can use these capabilities to enrich your application, often at
very little programming expense. For example, you might allow users to attach voice
annotations to documents or to other collections of data. Or, you might play a certain
sound to signal that some operation has completed.

This section provides a general overview of the sound input and output capabilities
available on Macintosh computers. It defines some of the concepts used throughout
this book and describes how sounds can be stored by your application. This section
also describes the standard ways of representing sounds in the Macintosh graphical
user interface.

Sound Capabilities 1
The Macintosh family of computers provides sound input and output capabilities that
far exceed the capabilities of most other personal computers. The principal reason
for this is that the hardware and software aspects of creating or recording sounds are
more tightly integrated with one another than they are on other personal computers.
Figure 1-1 illustrates the basic audio hardware and the sound-related system software
that are now standard on all Macintosh computers.

Figure 1-1 Basic sound capabilities on Macintosh computers

Internal

speaker

Sound Input Manager Sound Manager

Speech Manager

Built-in

microphone
1-4 About Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1

Introduction to S
ound on the M

acintosh

The audio hardware includes an internal speaker (for producing sounds), a microphone
(for recording sounds), and one or more integrated circuits that convert digital data to
analog signals, or analog signals to digital data. The actual integrated circuits that
perform the conversion of digital to analog data (and vice versa) vary among different
models of Macintosh computers. What’s important is that, together with the available
sound-related system software, the basic audio hardware provides a wide range of
sound input and output capabilities, including

■ playback of digitally recorded (that is, sampled) sounds

■ playback of simple sequences of notes or of complex waveforms

■ recording of sampled sounds

■ conversion of text to spoken words

■ mixing and synchronization of multiple channels of sampled sounds

■ compression and decompression of sound data to minimize storage space

In general, you’ll interact directly with the system software that provides these and other
capabilities. The Macintosh sound architecture includes three principal system software
services:

■ The Sound Manager provides the ability to play sounds through the speaker. It also
provides an extensive set of tools for manipulating sounds. You can use the Sound
Manager to alter virtually any characteristic of a sound, such as its loudness, pitch,
timbre, and duration. You can also use the Sound Manager to compress sounds so that
they occupy less disk space. The Sound Manager can work with sounds stored in
resources or in a file’s data fork. It can also play sounds that are generated
dynamically (and not necessarily stored on disk).

■ The Sound Input Manager provides the ability to record sounds through a
microphone or other sound input device. It manages the standard sound recording
dialog box (shown in Figure 1-12 on page 1-17) and can record sounds into resources
or into files.

■ The Speech Manager provides the ability to convert written text into spoken words.
You might use the Speech Manager to read aloud a block of text that for various
reasons cannot be sampled (perhaps the amount of text is too large to be recorded and
then replayed, or perhaps the text itself is generated dynamically by the user). The
Speech Manager allows you to select from among a number of different voices, alter
some of the readback characteristics (such as speech, pitch, and volume), and provide
custom pronunciation dictionaries.

The basic sound hardware and system software also provide the ability to integrate and
synchronize sound production with the display of other types of information, such as
video and still images. For example, QuickTime uses the Sound Manager to handle all
the sound data in a QuickTime movie.

It’s very easy for users to enhance the quality of the sounds they play back or record by
substituting different speakers or microphones for the ones built into a Macintosh
computer. All current Macintosh computers include a stereo sound output jack that
allows users to add high quality speakers (such as the AppleDesign Powered Speakers).
A user can also substitute a higher quality microphone for the one supplied with the
About Sound on Macintosh Computers 1-5

C H A P T E R 1

Introduction to Sound on the Macintosh

computer. Figure 1-2 illustrates a slightly better audio configuration than the one shown
in Figure 1-1.

Figure 1-2 Enhanced sound capabilities on Macintosh computers

Note that the enhanced sound input and output capabilities shown in Figure 1-2 are
provided entirely by the improved hardware. The system software (in particular, the
Sound Manager and the Sound Input Manager) can support both the built-in audio
hardware and any external hardware connected to the built-in audio jacks.

It’s possible to enhance the audio capabilities of a Macintosh computer even further. For
example, a user can add a NuBus™ expansion card that contains very high quality
digital signal processing (DSP) circuitry, together with sound input or output hardware.
These cards typically bypass the standard Macintosh sound circuitry altogether and
therefore require additional software (a device driver) to work with the Sound Manager
or the Sound Input Manager. The system software is, however, designed to make it easy
for developers to add software to drive their sound output or sound input devices.

A user can also enhance the audio capabilities of a Macintosh computer by adding a
MIDI interface to one of its serial ports. MIDI (the Musical Instrument Digital Interface)
is a standard protocol for sending audio data and commands to digital devices. A user
can connect any MIDI devices (such as synthesizers, drum machines, or lighting
controllers) to a Macintosh computer through the MIDI interface. Apple Computer
supplies a software driver, the MIDI Manager, to control the flow of MIDI data and
commands through the MIDI interface.

Note
The MIDI Manager is not documented in this book. For complete
information about the MIDI Manager, contact APDA. ◆

Sound Input Manager Sound Manager

Speech Manager

External

microphone

External speakers
1-6 About Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1

Introduction to S
ound on the M

acintosh

Figure 1-3 illustrates a very high capability sound and music configuration built around
a Macintosh computer. This enhanced hardware and system software configuration
allows users to run digital sound editing or recording applications and MIDI sequencing
applications.

Figure 1-3 High quality sound capabilities on Macintosh computers

It’s possible to enhance the sound environment on a Macintosh computer by adding
software alone, for example by adding custom sound compression/decompression
components (codecs). Apple Computer supplies codecs that can handle 3:1 and 6:1
compression and expansion, which are suitable for most audio requirements. For special
purposes, however, it might be advantageous to use other compression and expansion
ratios or algorithms. The Sound Manager can use any available codec to handle
compression and expansion of audio data.

More generally, the Sound Manager supports arbitrary modifications on sound data
using stand-alone code resources known as sound components. A sound component can

SCSI port

Digital sound

compact disc

Digital sound card

Digital

audio

data

Audio

Serial port

MIDI

data

MIDI

converter

MIDI-controlled

instruments

Sound ManagerSound Input Manager

Device driver MIDI Manager
About Sound on Macintosh Computers 1-7

C H A P T E R 1

Introduction to Sound on the Macintosh

perform one or more signal-processing operations on sound data. For example, the
Sound Manager includes sound components for compressing and decompressing sound
data (as described in the previous paragraph) and for converting sample rates. Sound
components have a standard programming interface and local storage, which allows
them to be hooked together in series to perform complex tasks. For instance, to play an
11 kHz compressed sampled sound on a Macintosh II computer, the Sound Manager
needs to expand the compressed data into audio samples, convert the samples from
11 kHz to 22 kHz, mix the samples with any other sounds that are playing, and then
send the mixed samples to the available audio hardware (in this case, the Apple Sound
Chip). The Sound Manager uses four different sound components to accomplish this
task, as shown in Figure 1-4.

Figure 1-4 A sound component chain

Except for the lowest-level components that communicate directly with hardware (here,
the Apple Sound Chip), the components of this chain operate solely on a stream of bytes.
This allows Apple and other developers to create sound components that operate
independently of the actual sound-producing hardware available on a particular
Macintosh computer. This also allows the Sound Manager to modify the component
chain used at any time according to the actual capabilities of the output hardware. For
example, a digital signal processing card might be able to do rate conversion internally.
In that case, the Sound Manager can bypass the rate conversion component and send the
11 kHz samples directly to the DSP card, as shown in Figure 1-5.

Audio

hardware

Sound

Manager

Source Expansion

component

Apple

Mixer

Output device

component

(ASC driver)

Application

Rate

conversion

component

11 kHz

compressed

sound

Decompressed

audio samples

22 kHz

audio samples

22 kHz

decompressed

sound
'snd ' resource
1-8 About Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1

Introduction to S
ound on the M

acintosh

Figure 1-5 A sound component chain with a DSP board

In general, an application that wants to produce a sound is unaware of the sound
component chain required to produce that sound on the current sound output device.
The Sound Manager keeps track of which sound output device the user has selected and
constructs a component chain suitable for producing the desired quality of sound on that
device. As a result, even though the capabilities of the available sound output hardware
can vary greatly from one Macintosh computer to another, the Sound Manager ensures
that a given chunk of audio data always sounds as good as possible on the available
sound hardware. This means that you can use the same code to play sounds, regardless
of the actual sound-producing hardware that is available on a particular machine.

The Sound Manager provides sound components for modifying and producing sounds
on the built-in audio hardware and on any hardware attached to the sound output jack.
The Macintosh sound architecture currently allows you to add sound components for
two special purposes: to support alternate compression and decompression algorithms
and to support third-party audio hardware. See the chapter “Sound Components” in this
book for information on developing codecs and sound output device components.

IMPORTANT

You don’t need to know how to develop sound components simply to
play or record sounds on Macintosh computers using the available
sound output or input devices. ▲

The following sections describe in greater detail the operations of the Sound Manager,
the Sound Input Manager, and the Speech Manager. You’ll use the Sound Manager to
produce sounds, the Sound Input Manager to record sounds, and the Speech Manager to
generate speech from text.

Sound Production 1
A Macintosh computer produces sound when the Sound Manager sends some data
through a sound channel to the available audio hardware, usually at the request of an
application. The audio hardware is a digital-to-analog converter (DAC) that translates
digital sound data into analog audio signals. Those signals are then sent to the internal
speaker, to a sound output connector (to which the user can connect headphones,
external speakers, or sound amplification equipment), or to other sound output
hardware.

The DAC in Macintosh Plus and Macintosh SE computers is a Sony sound chip. The
Macintosh II, Macintosh Portable, Macintosh PowerBook and Macintosh Quadra

Audio

hardware

Sound

Manager

Source
Apple

Mixer

Output device

component

(DSP driver)

Application

Expansion

component
About Sound on Macintosh Computers 1-9

C H A P T E R 1

Introduction to Sound on the Macintosh

families of computers contain two Sony sound chips (to provide stereo output
capability) as well as the Apple Sound Chip (ASC), a customized chip that provides
enhanced audio output characteristics as well as emulation capabilities for the earlier
sound hardware.

Some recent models of Macintosh computers contain built-in sound hardware that
extends the Apple Sound Chip’s features. For example, Macintosh computers with
built-in microphones include the Enhanced Apple Sound Chip (EASC). Some
Macintosh computers contain DSP chips that provide very high-quality sound (16-bit
stereo sound, at rates up to 44 kHz). There are also NuBus expansion cards available
from third-party developers that provide other audio DAC hardware.

A user can select a sound output device or control characteristics of the selected device
through the Sound Out control panel, shown in Figure 1-6. The available sound output
devices are listed in the center of the panel. In this case, two sound output devices are
attached to the computer, the built-in speaker and a speaker attached to the SurfBoard
DSP card. The highlighted icon shows which device is the current sound output device.
All sounds produced by the Sound Manager are sent to that device for playback, unless
you specify some other device when creating a sound channel. (See the description of
SndNewChannel in the chapter “Sound Manager” for details on specifying an output
device explicitly.)

Figure 1-6 The Sound Out control panel

Note
This book shows the Sound control panels introduced with version 3.0
of the Sound Manager. Users can use the pop-up menu at the top of the
panel to select one of four or more subpanels (Alert Sounds, Sound In,
Sound Out, and Volumes). It’s possible to add new subpanels to the
Sound control panel. See the chapter on control panel extensions in the
book Inside Macintosh: Operating System Utilities. ◆

You can play a sound by calling a Sound Manager routine such as SysBeep (to play the
system alert sound), SndPlay (to play a sound stored in memory), or
1-10 About Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1

Introduction to S
ound on the M

acintosh

SndStartFilePlay (to play a sound stored in a file). The Sound Manager then issues
one or more sound commands to the audio hardware. A sound command is an
instruction to produce sound, modify sound, or otherwise assist in the overall process of
sound production.

To ensure that sound commands are issued in the correct order, the Sound Manager uses
a structure called a sound channel to store commands. A sound channel is associated
with a first-in, first-out (FIFO) queue of sound commands. Queued commands are sent
to the sound hardware through a sound output device component, a component that
manages the last stage of communication with the audio hardware. Figure 1-7 shows
how your application communicates, through the Sound Manager and the sound output
device component, with the current sound output device.

Figure 1-7 The relation of the Sound Manager to the audio hardware

Sound channel

Audio

hardware

Sound Manager

Commands

Sound component

chain
About Sound on Macintosh Computers 1-11

C H A P T E R 1

Introduction to Sound on the Macintosh

Note
This chapter does not discuss sound commands or channels in detail,
because you do not need to know about these details to play sound data
stored in sound resources or sound files. This chapter describes only
how to play and record sampled sounds. For more information on
sound channels and sound commands, see the chapter “Sound
Manager” in this book. ◆

You can play sounds either synchronously or asynchronously. When you play a sound
synchronously, the Sound Manager alone has control over the CPU while it executes
commands in a sound channel. Your application does not continue executing until the
sound has finished playing. When you play a sound asynchronously, your application
can continue other processing while the sound is playing. This chapter shows how to
play sounds only synchronously. To learn how to play sounds asynchronously, see the
chapter “Sound Manager” in this book.

Sometimes it is necessary to bypass the queue of sound commands. If, for example, you
want to stop all sound production on a particular channel immediately, it would be
counterproductive to put the command into the sound channel because that command
wouldn’t be processed until any others already in the queue were processed. You can
send sound commands directly to the hardware component, as shown in Figure 1-8.

When you bypass the sound channel in this way, any commands that are already queued
but not yet sent to the sound output device component remain queued. You can,
however, flush the channel at any time by sending the Sound Manager the appropriate
request.
1-12 About Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1

Introduction to S
ound on the M

acintosh

Figure 1-8 Bypassing the command queue

It’s possible to have several channels of sound open at one time. The Sound Manager
(using a sound-mixing component called the Apple Mixer component) mixes together
the data coming from all open sound channels and sends a single stream of sound data
to the current sound output device. This allows a single application to play two or more
sounds at once. It also allows multiple applications to play sounds at the same time, as
illustrated in Figure 1-9.

Sound channel

Audio

hardware

Sound Manager

Commands

Sound component

chain
About Sound on Macintosh Computers 1-13

C H A P T E R 1

Introduction to Sound on the Macintosh

Figure 1-9 Mixing multiple channels of sampled sound

The Sound Manager was first released for all Macintosh computers as part of system
software version 6.0. System software versions 6.0.7 and later include an enhanced
Sound Manager (that is, version 2.0) that provides routines for continuous play from
disk, sound mixing, and audio compression and expansion. System software versions
6.0.7 and later also include the Sound Input Manager, which allows for recording sounds
through either a built-in microphone or some other sound input device.

More recent versions of the Sound Manager significantly improve the performance of the
Sound Manager’s operations and extends its capabilities. Version 3.0 of the Sound
Manager is as much as two to three times more efficient than previous versions, which
allows your application to do more processing while a sound is playing. In addition,
version 3.0 of the Sound Manager provides three important new capabilities:

■ Support for 16-bit audio samples. Versions of the Sound Manager earlier than
version 3.0 support only 8-bit monophonic or stereo audio samples with sample rates
up to 22 kHz. The Sound Manager version 3.0 supports 16-bit stereo audio samples
with sample rates up to 64 kHz, thereby allowing your application to produce
CD-quality sound. Moreover, the Sound Manager version 3.0 automatically converts
16-bit samples into 8-bit samples on Macintosh computers that do not have the
hardware to output 16-bit sounds.

■ Support for non-Apple audio hardware. The Sound Manager version 3.0 and later
use a sound architecture that allows support for third-party audio hardware. This
allows a user to install audio hardware capable of recording and producing
CD-quality sound. Versions 3.0 and later also include a new Sound control panel that
allows the user to redirect sound output to any available audio hardware.

■ Support for plug-in codecs. Versions of the Sound Manager earlier than version 3.0
support audio compression and expansion only at ratios of 3:1 and 6:1. The Sound
Manager version 3.0 provides support for other compressed audio data formats by
allowing plug-in audio compression and expansion components (or codecs).

Audio

hardware

Sound

Manager

Source

Source

Source

Expansion

component

Expansion

component

Apple

Mixer

Output device

component

(ASC driver)

Application 1

Application 2

Rate

conversion

component

Rate

conversion

component
1-14 About Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1

Introduction to S
ound on the M

acintosh

You provide support for your own sound output devices or for your own compression
and decompression algorithms by writing an appropriate sound component. See the
chapter “Sound Components” later in this book for complete details.

The Sound Manager version 3.0 is supported only on Macintosh computers with an ASC
or comparable hardware. In particular, the Sound Manager version 3.0 is not supported
on Macintosh Classic, Macintosh Plus, or Macintosh SE computers. As a result, you
should always test whether the specific capabilities you want to use are present before
attempting to use them. You can use the Gestalt function to do this, as illustrated in
“Checking For Sound-Recording Equipment” beginning on page 1-27 and in “Checking
For Speech Capabilities” beginning on page 1-31.

This book describes the capabilities and programming interfaces of version 3.0 of the
Sound Manager. Many of the techniques described here can also be used with earlier
versions of the Sound Manager, but some cannot. Make sure to test your application
thoroughly with all versions of the Sound Manager you want to run under.

Sound Recording 1
The Sound Input Manager provides the ability to record and digitally store sounds in a
device-independent manner. You can create a resource or a file containing a recorded
sound simply by calling either the SndRecord function or the SndRecordToFile
function. You can then use the recorded sound in any way appropriate to your
application.

The sound input and storage routines can be used with any available sound input
hardware for which there is an appropriate device driver. A user can select from
among the available sound input devices through the Sound In control panel,
shown in Figure 1-10.

Figure 1-10 The Sound In control panel
About Sound on Macintosh Computers 1-15

C H A P T E R 1

Introduction to Sound on the Macintosh
The available sound input devices are listed in the center of the panel. The control panel
lists a device if its driver has previously registered itself with the Sound Input Manager
and has provided a name and device icon. In Figure 1-10, two sound input devices are
available, a device named Built-in and a device named WaveMaker. The highlighted icon
shows which device is the current sound input device.

The Alert Sounds control panel lists the available system alert sounds, as illustrated in
Figure 1-11.

Figure 1-11 The Alert Sounds control panel

The Alert Sounds control panel also includes two buttons, Add and Remove. These
buttons allow the user to add sounds to and remove sounds from the list of available
system alert sounds. The Add button is used to record a new alert sound and add it to
the list. Clicking the Add button causes the Sound Input Manager to display a sound
recording dialog box (described later in this section). Clicking the Remove button causes
the Sound Input Manager to remove the selected alert sound from the list. The user can
achieve the same effect by selecting a sound and then choosing the Clear command in
the Edit menu. If no sound input drivers are installed in the system, these two buttons
do not appear.

If the user records a sound using the Alert Sounds control panel, the recorded sound is
saved as a resource of type 'snd ' in the System file. That sound then appears in the list
of available alert sounds. Note that the Alert Sounds control panel supports the standard
Edit menu commands on sounds stored in the System file. The Cut command copies the
selected sound to the Clipboard and removes it from the list of system alert sounds. The
Copy command just copies the selected sound to the Clipboard. The Paste command
takes a sound copied from the Clipboard and places it in the list of available alert
sounds. If your application allows users to manipulate sound resources, it should
support the copying and pasting of sound resources through the Clipboard. However,
the Undo command does not work with sound-related editing operations.
1-16 About Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
The Sound Input Manager provides two high-level routines that allow your application
to record sounds from the user and store them in memory or in a file. When you call
either SndRecord or SndRecordToFile, the Sound Input Manager presents a sound
recording dialog box to the user, illustrated in Figure 1-12.

Figure 1-12 The sound recording dialog box

Using the controls in this dialog box, the user can start, pause, resume, and stop
recording on the currently selected sound input device. The user can also play back the
recorded sound. The time indicator bar provides an indication of the current length of
the recorded sound.

When the user clicks the Save button after initiating a recording from the Sound control
panel, another dialog box appears asking the user to give the sound a name. Unless the
user cancels the save operation at that point, the Sound control panel saves the recorded
sound into a sound resource in the System file. Note that if your application can save
recorded sound resources, the SndRecord function does not present the dialog box that
allows the user to name the sound and does not automatically save the recorded sound
into a resource file. Your application must provide code to accomplish these tasks.

Sound Resources 1
Resources of type 'snd ' (also called sound resources) can contain both sound
commands and sound data, and are widely used by sound-producing applications.
These resources provide a simple and portable way for you to incorporate sounds into
your application. For example, the sounds that a user can select in the Sound control
panel as the system alert sound are stored in the System file as 'snd ' resources. The
user can select the current system alert sound with the Alert Sounds control panel, as
illustrated in Figure 1-11. More generally, you can load a sound resource into memory
and then play it by calling the SndPlay function.

Note
If you do not use the sound-recording routines provided by the Sound
Input Manager, you must know the structure of 'snd ' resources
before you can create them. For information on this, see the chapter
“Sound Manager” in this book. You can also use the SetupSndHeader
function, described in the chapter “Sound Input Manager” in this book,
to help you create an 'snd ' resource. ◆
About Sound on Macintosh Computers 1-17

C H A P T E R 1

Introduction to Sound on the Macintosh
The Sound Manager can read sound resources in two formats, format 1 or format 2.
However, the format 2 'snd ' resource is obsolete, so your application should use
format 1 'snd ' resources. For more information on the differences between format 1
and format 2 'snd ' resources, see the chapter “Sound Manager” in this book.

The format 1 'snd ' resource is the most general kind of sound resource. A format 1
'snd ' resource can contain a sequence of Sound Manager commands and associated
sound data (such as wave-table data or a sampled sound header that both describes a
digitally recorded sound and includes the sampled-sound data itself). Your application
can produce sounds simply by passing a handle to that resource to the SndPlay
function, which opens a sound channel and sends the commands and data contained in
the resource into the channel. Alternatively, a format 1 'snd ' resource might contain a
sequence of commands that describe a sound, without providing any other sound data.
For example, such a resource could contain a command that alters the amplitude (or
loudness) of sound playing on a channel. In this case, your application can use the
SndPlay function to execute the commands on any channel.

Sound Files 1
Although most sampled sounds that you want your application to produce can be stored
as sound resources, there are times when it is preferable to store sounds in sound files.
For example, it is usually easier for different applications to share files than it is to share
resources. So, if you want your application to play a sampled sound created by another
application (or if you want other applications to be able to play a sampled sound created
by your application), it might be better to store the sampled-sound data in a file, not in a
resource. Similarly, if you are developing versions of your application that run on other
operating systems, you might need a method of storing sounds that is independent of
the Macintosh Operating System and its reliance on resources to store data. Generally, it
is easier to transfer data stored in data files from one operating system to another than it
is to transfer data stored in resources.

There are other reasons you might want to store some sampled sounds in files and not in
resources. If you have a very large sampled sound, it might not be possible to create a
resource large enough to hold all the audio data. Resources are limited in size by the
structure of resource files (and in particular because offsets to resource data are stored as
24-bit quantities). Sound files, however, can be much larger because the only size
limitations are those imposed by the file system on all files. If the sampled-sound data
for some sound occupies more than about a half megabyte of space, you should
probably store the sound as a file.

To address these various needs, Apple and several third-party developers have defined
two sampled-sound file formats, known as the Audio Interchange File Format (AIFF)
and the Audio Interchange File Format Extension for Compression (AIFF-C). The
names emphasize that the formats are designed primarily as data interchange formats.
However, you should find both AIFF and AIFF-C flexible enough to use as data storage
formats as well. Even if you choose to use a different storage format, your application
should be able to convert to and from AIFF and AIFF-C if you want to facilitate sharing
1-18 About Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
of sound data among applications. AIFF format files have file type 'AIFF' and AIFF-C
format files have file type 'AIFC'.

Note
Do not confuse AIFF and AIFF-C files (referred to in this chapter as
sound files) with Finder sound files. Each Finder sound file contains a
sound resource that plays when the user double clicks on the file in the
Finder (or selects the file and chooses Open from the File menu). A user
can create a Finder sound file by dragging a sound out of the System
file, and a user can drag a Finder sound file into the System file to add
the file’s sound to the list of available system alert sounds. You can
create a Finder sound file by creating a file of type 'sfil' with a
creator of 'movr' and placing in the file a single sound resource. You
can play such a file by using Resource Manager routines to open the
Finder sound file and then by using the SndPlay function to play the
single sound resource contained in it. ◆

The main difference between the AIFF and AIFF-C formats is that AIFF-C allows you to
store either compressed or noncompressed audio data, whereas AIFF allows you to store
noncompressed audio data only. The AIFF-C format is more general than the AIFF
format and is easier to modify. The AIFF-C format can be extended to handle new
compression types and application-specific data. As a result, if your application reads or
writes sound files, it should be able to handle both AIFF and AIFF-C files. Table 1-1
summarizes the capabilities of the AIFF and AIFF-C file formats.

The enhanced Sound Manager includes play-from-disk routines that allow you to play
AIFF and AIFF-C files continuously from disk even while other tasks execute. You might
think of the play-from-disk routines as providing you with the ability to install a “tape
player” in a sound channel. Once the sound begins to play, it continues uninterrupted
until it finishes or until an application pauses or stops it.

You can play a sampled sound stored in a file of type AIFF or AIFF-C by opening the file
and passing its file reference number to the SndStartFilePlay function. If the file is of
type AIFF-C and the data is compressed, then the data is automatically expanded during
playback. The SndStartFilePlay function works like the SndPlay function but does
not require the entire sound to be in RAM at one time. Instead, the Sound Manager uses
two buffers, each of which is smaller than the sound itself. The Sound Manager plays
one buffer of sound while filling the other with data from disk. After it finishes playing
the first buffer, the Sound Manager switches buffers, and plays data in the second while
refilling the first. This double buffering technique minimizes RAM usage at the expense

Table 1-1 AIFF and AIFF-C capabilities

File
type

Read
sampled

Read
compressed

Write
sampled

Write
compressed

AIFF Yes No Yes No

AIFF-C Yes Yes Yes Yes
About Sound on Macintosh Computers 1-19

C H A P T E R 1

Introduction to Sound on the Macintosh
of additional disk overhead. As a result, SndStartFilePlay is ideal for playing very
large sounds.

The disk overhead incurred when using SndStartFilePlay is relatively light, and
most mass-storage devices currently available for Macintosh computers have response
times that are good enough that SndStartFilePlay can retrieve audio data from disk
and play a sound without audible gaps. There are no limits on the number of concurrent
disk-based sampled-sound playbacks other than those imposed by processor speed and
disk capability. On machines with sufficient CPU resources, several continuous
playbacks can occur at once. Disk fragmentation can affect the performance of playing
sampled-sound files from disk. In addition, playing multiple sounds from the same hard
disk may degrade overall performance.

The Sound Manager currently supports continuous play from disk only on certain
Macintosh computers. You should use the Gestalt function to determine whether a
specific machine supports play from disk. Also, if a sound channel is being used for
continuous play from disk, then no other sound commands can be sent to that channel.

Speech Generation 1
The Speech Manager converts text into sound data, which it passes to the Sound
Manager to play through the current sound output device. The Speech Manager’s
interaction with the Sound Manager is transparent to your application, so you don’t
need to be familiar with the Sound Manager to take advantage of the Speech Manager’s
capabilities. This section provides an overview of the Speech Manager and outlines the
process that the Speech Manager uses to convert text into speech.

Figure 1-13 illustrates the speech generation process. Your application can initiate speech
generation by passing a string or a buffer of text to the Speech Manager. The Speech
Manager is responsible for sending the text to a speech synthesizer, a component that
contains executable code that manages all communication between the Speech Manager
and the Sound Manager. A synthesizer is usually contained in a resource in a file within
the System Folder. The synthesizer uses built-in dictionaries and pronunciation rules to
help determine how to pronounce text. Your application can use the default system voice
to generate speech; it can also specify that some other available voice be used for speech
generation.

As Figure 1-13 suggests, the Speech Manager is a dispatching mechanism that allows
your application to take advantage of the capabilities of whatever speech synthesizers,
voices, and hardware are installed. The Speech Manager itself does not do any of the
work of converting text into speech; it just provides a convenient programming interface
that manages access to speech synthesizers and, indirectly, to the sound hardware. The
Speech Manager uses the Component Manager to access whatever speech synthesizers
are available and allows applications to take maximum advantage of a computer’s
speech facilities without knowing what those facilities are.
1-20 About Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
Figure 1-13 The speech generation process

Note
The Component Manager is described in Inside Macintosh:
More Macintosh Toolbox, but you do not need to be familiar with
it to use the Speech Manager. ◆

A speech synthesizer can include one or more voices, as illustrated in Figure 1-14. Just as
different people’s voices have different tonal qualities, so too can different voices in a
synthesizer. A synthesized voice might sound male or female, and might sound like an
adult or child. Some voices sound distinctively synthetic, while others sound more like
real people. As speech synthesizing technology develops, the voices that your
application can access are likely to sound more and more human. Because the Speech
Manager’s routines work on all voices and synthesizers, you will not need to rewrite
your application to take advantage of improvements in speech technology.

Figure 1-14 The Speech Manager and multiple voices

Text

Sound ManagerSpeech Manager

Audio

hardware

Speech synthesizer

Speech Manager

Speech

synthesizers

Voice 1 Voice 2 Voice 3 Voice 4

A B C
About Sound on Macintosh Computers 1-21

C H A P T E R 1

Introduction to Sound on the Macintosh
Any given person has only one voice, but can alter the characteristics of his or her speech
in a number of different ways. For example, a person can speak slowly or quickly, and
with a low or a high pitch. Similarly, the Speech Manager provides routines that allow
you to modify these and other speech attributes, regardless of which voice is in use.

To indicate to the Speech Manager which voice or attributes you would like it to use in
generating speech, your application must use a speech channel. A speech channel is a
data structure that the Speech Manager uses when processing text; it can be associated
with a particular voice and particular speech attributes. Because multiple speech
channels can coexist, your application can create several different vocal environments (to
simulate a conversation, for example). Because a synthesizer can be associated with only
one language and region, your application would need to create a separate speech
channel to process each language in bilingual or multilingual text. (Currently, however,
only English-producing synthesizers are available.)

Different speech channels can even generate speech simultaneously, subject to processor
capabilities and Sound Manager limitations. This capability should be used with
restraint, however, because it can be hard for the user to understand any speech when
more than one channel is generating speech at a time. Also, your application should in
general generate speech only at the specific request of the user and should allow the user
to turn off speech output. At the very least, your application should include an option
that allows the user to view text instead of hearing it. Some users might have trouble
understanding speech generated by the Speech Manager, and others might be
hearing-impaired. Even users who are able to clearly understand computer-synthesized
speech might prefer to read rather than hear.

In general, your application does not need to know which speech synthesizer it is using.
You can obtain a list of all available voices, but in most cases, you do not need to be
concerned with which speech synthesizer a voice is associated. Sometimes, however, a
speech synthesizer may provide special capabilities beyond that provided by the Speech
Manager. For example, a speech synthesizer might allow you to select an option to read
numbers in a nonstandard way. The Speech Manager allows you to determine which
synthesizer is associated with a voice for these circumstances, and provides hooks that
allow your application to take advantage of synthesizer-specific capabilities.

In general, however, your application can achieve the best results by making no
assumptions about which synthesizers might be available. The user of a 2 MB Macintosh
Classic® might use a synthesizer with low RAM requirements, while the user of a 20 MB
Macintosh Quadra 950 might take advantage of a synthesizer that provides better audio
quality at the expense of memory usage. The Speech Manager makes it easy to
accommodate both kinds of users.

The most basic use of the Speech Manager is to convert a text string into speech. The
SpeakString function, described in “Generating Speech From a String” beginning on
page 1-32, lets you do this even without allocating a speech channel. The chapter
“Speech Manager” in this book describes how you can customize the quality of speech
output to make it easier to understand and how you can obtain more control over speech
by allocating speech channels and embedding commands within text strings.
1-22 About Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
The User Interface for Sound 1
As you have seen, the Macintosh system software provides you with a wide array of
easy-to-use sound-input and sound-output services. With very little programming,
you can

■ play the user’s system alert sound or any sound contained in a sound resource or file

■ record sounds through the available sound-input hardware

■ convert text into speech

The system software has already defined a set of user interface elements and metaphors
that are designed to facilitate the integration of sound into the Macintosh graphical user
interface. In general, you should use the existing system software services to present the
standard interface elements designed by Apple. For example, if you want to have the
user record through the available sound-input hardware, you can call the SndRecord
function, which displays the sound recording dialog box (shown in Figure 1-12 on
page 1-17). That dialog box contains controls that are modelled on the buttons typically
found on an audio tape recorder or a video cassette recorder. In this way, the system
software draws on the user’s knowledge of how to operate a tape recorder and uses it as
a metaphor for recording sounds on Macintosh computers.

The system software also provides visual representations of sounds themselves. In some
cases, sounds are represented by their names only, as in the Alert Sounds control panel
(shown in Figure 1-11 on page 1-16). In other cases, sounds are represented by icons. For
example, the icon for a Finder sound looks like the one shown in Figure 1-15. All Finder
sounds are represented by the same icon; they are distinguished from each other by their
names.

Figure 1-15 An icon for a Finder sound

If the user copies or cuts a sound from the available system alert sounds and then pastes
the sound into the Scrapbook, the sound is shown as in Figure 1-16.
About Sound on Macintosh Computers 1-23

C H A P T E R 1

Introduction to Sound on the Macintosh
Figure 1-16 A sound in the Scrapbook

As you can see, the metaphor in both cases is that of a speaker, a sound-producing
device familiar to most computer users. If you need to design icons to represent sounds
created by your application, you might want to use (or suitably adapt) these existing
metaphors. For example, if your application supports document annotations with
recorded voices or other sounds, you can display a speaker icon within the document.
Clicking or double-clicking the icon should result in playing the sound.

Keep in mind that applications that play sound should allow users to turn off sound
output, because there might be users who object to it or environments where it is
inappropriate. Also, there might be cultural biases or preferences associated with certain
sounds. Thus, if your application plays specific sounds, you should store them as
resources, which can be easily modified for local regions, or if they are very large, in
sound files, which you can replace easily during localization.

Using Sound on Macintosh Computers 1

This section describes the most basic ways of using the Sound Manager, the Sound Input
Manager, and the Speech Manager. In particular, it provides source code examples that
show how to produce an alert sound, play a sound resource, play a sound file, determine
whether your application can access sound recording equipment, record a sound
resource, record a sound file, and convert a text string to spoken words.

Producing an Alert Sound 1
You can produce a system alert sound to catch the user’s attention by calling the
SysBeep procedure. The SysBeep procedure is a Sound Manager routine that plays the
alert sound selected by the user in the Alert Sounds control panel. Here’s an example of
calling SysBeep:
1-24 Using Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
IF myErr <> noErr THEN

SysBeep(30);

You must supply a parameter when you call the SysBeep procedure, even though the
Sound Manager ignores that parameter in most cases. All system alert sounds are stored
as format 1 'snd ' resources in the System file and are played by the Sound Manager.
There is one instance in which the number passed to SysBeep is not ignored: if the user
has selected the Simple Beep as the system alert sound on some Macintosh computers
(for example, a Macintosh Plus or Macintosh SE), the beep is generated by code stored in
ROM rather than by the Sound Manager, and the duration parameter is interpreted in
ticks (sixtieths of a second).

The SysBeep procedure has no effect if an application has disabled the system alert
sound. You might do this to prevent the system alert sound from interrupting some
other sound. For information on enabling and disabling the system alert sound, see the
chapter “Sound Manager” in this book.

You should not call the SysBeep procedure at interrupt time, because doing so causes
the Sound Manager to attempt to allocate memory and load a resource.

Note
If your primary use of the SysBeep procedure is to alert the user of
important or abnormal occurrences, it might be preferable to use the
Notification Manager. See the chapter “Notification Manager” in
Inside Macintosh: Processes for complete details on alerting the user. ◆

Playing a Sound Resource 1
You can play a sound stored in a resource by calling the SndPlay function, which
requires a handle to an existing 'snd ' resource. An 'snd ' resource contains sound
commands that play the desired sound. The 'snd ' resource might also contain sound
data. If it does (as in the case of a sampled sound), that data might be either compressed
or noncompressed. SndPlay decompresses the data, if necessary, to play the sound.
Listing 1-1 illustrates how to play a sound resource.

Listing 1-1 Playing a sound resource with SndPlay

FUNCTION MyPlaySndResource (mySndID: Integer): OSErr;

CONST

kAsync = TRUE; {for asynchronous play}

VAR

mySndHandle: Handle; {handle to an 'snd ' resource}

myErr: OSErr;

BEGIN

mySndHandle := GetResource('snd ', mySndID);

myErr := ResError; {remember any error}

IF mySndHandle <> NIL THEN {check for a NIL handle}
Using Sound on Macintosh Computers 1-25

C H A P T E R 1

Introduction to Sound on the Macintosh
BEGIN

HLock(mySndHandle); {lock the sound data}

myErr := SndPlay(NIL, mySndHandle, NOT kAsync);

HUnlock(mySndHandle); {unlock the sound data}

ReleaseResource(mySndHandle);

END;

MyPlaySndResource := myErr; {return the result}

END;

When you pass SndPlay a NIL sound channel pointer in its first parameter, the Sound
Manager automatically allocates a sound channel (in the application’s heap) and then
disposes of it when the sound has completed playing. Note, however, that when your
application does pass NIL as the pointer to a sound channel, the third parameter to
SndPlay is ignored; the sound plays synchronously even if you specify that you want it
to play asynchronously.

IMPORTANT

The handle you pass to SndPlay must be locked for as long as the
sound is playing. ▲

Playing a Sound File 1
You can initiate and control a playback of sampled sounds stored in a file using the
SndStartFilePlay, SndPauseFilePlay, and SndStopFilePlay functions. You use
SndStartFilePlay to initiate the playing of a sound file. If you allocate your own
sound channel and specify that play be asynchronous, you can then use the
SndPauseFilePlay and SndStopFilePlay functions to pause, resume, and stop
sound files that are playing. The chapter “Sound Manager” in this book describes these
two functions in detail.

To play a sampled sound that is contained in a file, you pass SndStartFilePlay the
file reference number of the file to play. The sample should be stored in either AIFF or
AIFF-C format. If the sample is compressed, it is automatically expanded during
playback. If you specify NIL as the sound channel, then SndStartFilePlay allocates
memory for a channel internally. Listing 1-2 defines a function that plays a file specified
by its file reference number.

Listing 1-2 Playing a sound file with SndStartFilePlay

FUNCTION MyPlaySoundFile (myFileRefNum: Integer): OSErr;

CONST

kAsync = TRUE; {for asynchronous play}

kBufferSize = 20480; {20K play buffer}

VAR

myErr: OSErr;

BEGIN
1-26 Using Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
myErr := SndStartFilePlay(NIL, myFileRefNum, 0, kBufferSize,

NIL, NIL, NIL, NOT kAsync);

MyPlaySoundFile := myErr;

END;

To allow the Sound Manager to handle all memory allocation automatically, you should
pass NIL as the first and fifth parameters to SndStartFilePlay, as done in Listing 1-2.
The first NIL specifies that you want SndStartFilePlay to allocate a sound channel
itself. The NIL passed as the fifth parameter specifies that SndStartFilePlay should
automatically allocate buffers to play the sound. The SndStartFilePlay function then
allocates two buffers, each half the size specified in the fourth parameter; if the fourth
parameter is 0, the Sound Manager chooses a default size for the buffers.

The third parameter passed to SndStartFilePlay here is set to 0. That parameter is
used only when playing sound resources from disk.

The seventh parameter to SndStartFilePlay allows you to specify a routine to be
executed when the sound finishes playing. This is useful only for asynchronous play. In
Listing 1-2, the value NOT kAsync (that is, FALSE) is passed as the eighth parameter to
SndStartFilePlay to request synchronous playback. SndStartFilePlay would
return a badChannel result code if you request asynchronous playback because
MyPlaySoundFile does not allocate a sound channel.

Checking For Sound-Recording Equipment 1
Before allowing a user to record a sound, you must ensure that sound-recording
hardware and software are installed. You can record sound through the microphone built
into several Macintosh models, or through third-party sound input devices. Because
low-level sound input device drivers handle communication between your application
and the sound recording hardware, you do not need to know what type of microphone is
available. Listing 1-3 defines a function that determines whether sound recording
hardware is available.

Listing 1-3 Determining whether sound recording equipment is available

FUNCTION MyHasSoundInput: Boolean;

VAR

myFeature: LongInt;

myErr: OSErr;

BEGIN

myErr := Gestalt(gestaltSoundAttr, myFeature);

IF myErr = noErr THEN {test sound input device bit}

MyHasSoundInput := BTst(myFeature, gestaltHasSoundInputDevice)

ELSE

MyHasSoundInput := FALSE; {no sound features available}

END;
Using Sound on Macintosh Computers 1-27

C H A P T E R 1

Introduction to Sound on the Macintosh
The MyHasSoundInput function defined in Listing 1-3 uses the Gestalt function to
determine whether sound input hardware is available and usable on the current
Macintosh computer. MyHasSoundInput tests the gestaltHasSoundInputDevice
bit and returns TRUE if you can record sounds. MyHasSoundInput returns FALSE if you
cannot record sounds (either because no sound input device exists or because the Sound
Input Manager is not available).

Note
For more information on the Gestalt function, see Inside Macintosh:
Operating System Utilities. ◆

Recording a Sound Resource 1
You can record sounds from the current input device by using the SndRecord function.
The SndRecord function presents the sound recording dialog box. When calling
SndRecord, you need to provide a handle to a block of memory where the incoming
data should be stored. If you pass the address of a NIL handle, however, the Sound
Input Manager allocates a large block of space in your application heap and resizes it
when the recording stops. Listing 1-4 illustrates how to call SndRecord.

Listing 1-4 Recording through the sound recording dialog box

PROCEDURE MyRecordThruDialog (VAR mySndHandle: Handle);

VAR

myErr: OSErr;

myCorner: Point;

BEGIN

MyGetTopLeftCorner(myCorner);

mySndHandle := NIL; {use default memory allocation}

myErr := SndRecord(NIL, myCorner, siBestQuality, mySndHandle);

IF (myErr <> noErr) AND (myErr <> userCanceledErr) THEN

DoError(myErr);

END;

If the user cancels sound recording, then the SndRecord function returns the result code
userCanceledErr. The MyRecordThruDialog procedure defined in Listing 1-4
returns a NIL sound handle if the user cancels recording.

If you pass a sound handle that is not NIL as the fourth parameter to the SndRecord
function, the Sound Input Manager derives the maximum time of recording from the
amount of space reserved by that handle. The handle is resized on completion of the
recording.

The first parameter in the call to SndRecord is the address of a filter procedure
that determines how user actions in the dialog box are filtered. In Listing 1-4, no
filter procedure is desired, so the parameter is specified as NIL. For information
1-28 Using Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
on filter procedures, see the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

The second parameter in the call to SndRecord is the desired location (in global
coordinates) of the upper-left corner of the dialog box. For example, the Sound control
panel displays the dialog box near the control panel. Your application might place the
dialog box elsewhere (for example in the standard alert position on the main screen).
For more information on centering dialog boxes, see the chapter “Dialog Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

The third parameter in the call to SndRecord specifies the quality of the recording.
Currently three values are supported:

CONST

siBestQuality = 'best'; {the best quality available}

siBetterQuality = 'betr'; {a quality better than good}

siGoodQuality = 'good'; {a good quality}

The precise meanings of these constants are defined by the current sound-input device
driver. The constant siBestQuality indicates that you want the highest quality
recorded sound, usually at the expense of increased storage space (possibly because no
compression is performed on the sound data). The constant siGoodQuality indicates
that you are willing to sacrifice audio quality if necessary to minimize the amount of
storage space required (typically this means that 6:1 compression is performed on the
sound data). For most voice recording, you should specify siGoodQuality. The
constant siBetterQuality defines a quality and storage space combination that is
between those provided by the other two constants.

You could play the sound recorded using the MyRecordThruDialog procedure defined
in Listing 1-4 by calling SndPlay and passing it the sound handle mySndHandle. That
handle refers to some data in memory that has the structure of an 'snd ' resource, but
it is not a handle to an existing resource. To save the recorded data as a resource, you can
use the Resource Manager. Listing 1-5 calls the MyRecordThruDialog procedure and
then uses the Resource Manager to save the recorded data as a resource in an open
resource file.

Listing 1-5 Recording a sound resource

PROCEDURE MyRecordSndResource (resFileRefNum: Integer);

CONST

kMinSysSndRes = 0; {lowest reserved 'snd ' resource ID}

kMaxSysSndRes = 8191; {highest reserved ID}

VAR

myPrevResFile: Integer; {current resource file}

mySndHandle: Handle; {handle to resource data}

myResID: LongInt; {ID of resource}

myResName: Str255; {name of resource}
Using Sound on Macintosh Computers 1-29

C H A P T E R 1

Introduction to Sound on the Macintosh
myErr: OSErr;

BEGIN

myPrevResFile := CurResFile; {remember current resource file}

UseResFile(resFileRefNum); {temporarily switch resource files}

MyRecordThruDialog(mySndHandle); {record via standard interface}

IF mySndHandle <> NIL THEN

BEGIN {recording finished successfully}

REPEAT {find acceptable resource ID number}

myResID := Unique1ID('snd ');

UNTIL (myResID < kMinSysSndRes) OR (myResID > kMaxSysSndRes);

MyGetSoundName(myResName); {get name for sound resource}

{add resource to file}

AddResource(mySndHandle, 'snd ', myResID, myResName);

myErr := ResError;

IF myErr = noErr THEN

BEGIN

UpdateResFile(resFileRefNum); {update resource file}

myErr := ResError;

END;

IF myErr <> noErr THEN

DoError(myErr);

END;

UseResFile(myPrevResFile); {restore previous resource file}

END;

The MyRecordSndResource procedure defined in Listing 1-5 takes as a parameter the
reference number of an open resource file to which you wish to record. The procedure
makes that resource file the current resource file and, after recording, reverts to what was
previously the active resource file. Note that you should not record to your application’s
resource fork, because applications that write to their own resource forks cannot be used
by multiple users at once over a network. For more information on reference numbers
for resource files, see the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox.

The MyRecordSndResource procedure first presents the sound recording dialog box
by calling the MyRecordThruDialog procedure defined in Listing 1-4 on page 1-28.
If that procedure returns a valid sound handle, MyRecordSndResource finds an
acceptable resource ID for the resource file and then calls a procedure that returns a
name for the resource (perhaps by presenting a dialog box that asks the user to name the
sound). Finally, MyRecordSndResource adds the resource to the specified resource file
and updates that file by calling the Resource Manager procedure UpdateResFile.
1-30 Using Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
Recording a Sound File 1
To record a sound directly into a file, you can call the SndRecordToFile function,
which works exactly like SndRecord except that you pass it the file reference number
of an open file instead of a handle to some memory. When SndRecordToFile exits
successfully, that file contains the recorded audio data in AIFF or AIFF-C format.
You can then play the recorded sound by passing that file reference number to the
SndStartFilePlay function. (See Listing 1-2 on page 1-26 for a sample function that
uses the SndStartFilePlay function.) Listing 1-6 defines a procedure that records a
sound into a file using SndRecordToFile.

Listing 1-6 Recording a sound file

PROCEDURE MyRecordSoundFile (myFileRefNum: Integer);

VAR

myErr: OSErr;

myCorner: Point;

BEGIN

MyGetTopLeftCorner(myCorner);

myErr := SndRecordToFile(NIL, myCorner, siBestQuality, myFileRefNum);

IF (myErr <> noErr) AND (myErr <> userCanceledErr) THEN

DoError(myErr);

END;

The SndRecordToFile function records the sound in the file specified in its
fourth parameter. You must open the file before calling the MyRecordSoundFile
procedure, and you must close the file after calling it. For more information on creating,
opening, and closing files, see the chapter “Introduction to File Management” in
Inside Macintosh: Files.

Checking For Speech Capabilities 1
Because the Speech Manager is not available in all system software versions, your
application should always check for speech capabilities before attempting to use them.
Listing 1-7 defines a function that determines whether the Speech Manager is available.

Listing 1-7 Checking for speech generation capabilities

FUNCTION MyHasSpeech: Boolean;

VAR

myFeature: LongInt; {feature being tested}

myErr: OSErr;

BEGIN

myErr := Gestalt(gestaltSpeechAttr, myFeature);
Using Sound on Macintosh Computers 1-31

C H A P T E R 1

Introduction to Sound on the Macintosh
IF myErr = noErr THEN {test Speech Manager-present bit}

MyHasSpeech := BTst(myFeature, gestaltSpeechMgrPresent)

ELSE

MyHasSpeech := FALSE; {no speech features available}

END;

The MyHasSpeech function defined in Listing 1-7 uses the Gestalt function to
determine whether the Speech Manager is available. The MyHasSpeech function tests
the gestaltSpeechMgrPresent bit and returns TRUE if and only if the Speech
Manager is present. If the Gestalt function cannot obtain the desired information and
returns a result code other than noErr, the MyHasSpeech function assumes that the
Speech Manager is not available and therefore returns FALSE.

Generating Speech From a String 1
It is easy to have the Speech Manager generate speech from a string stored as a variable
of type Str255. The SpeakString function takes one parameter, the string to be
spoken. SpeakString automatically allocates a speech channel, uses that channel to
produce speech, and then disposes of the speech channel when speaking is complete.
Speech generation is asynchronous, but because SpeakString copies the string you
pass it into an internal buffer, you are free to release the memory you allocated for the
string as soon as SpeakString returns.

Listing 1-8 show how you can use the SpeakString function to convert a string stored
in a resource of type 'STR#' into speech.

Listing 1-8 Using SpeakString to generate speech from a string

PROCEDURE MySpeakStringResource (myStrListID: Integer; myIndex: Integer);

VAR

myString: Str255; {the string to speak}

myErr: OSErr;

BEGIN

GetIndString(myString, myStrListID, myIndex); {load the string}

myErr := SpeakString(myString); {start speaking}

IF myErr <> noErr THEN

DoError(myErr);

END;

The MySpeakStringResource procedure defined in Listing 1-8 takes as parameters
the resource ID of the 'STR#' resource containing the string and the index of the
string within that resource. MySpeakStringResource passes these values to the
GetIndString procedure, which loads the string from the resource file into memory.
MySpeakStringResource then calls the SpeakString function to convert the string
into speech; if an error occurs, it calls an application-defined error-handling procedure.
1-32 Using Sound on Macintosh Computers

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
The speech that the SpeakString function generates is asynchronous; that is, control
returns to your application before the function finishes speaking the string. If you would
like to generate speech synchronously, you can use SpeakString in conjunction with
the SpeechBusy function, which returns the number of active speech channels,
including the speech channel created by the SpeakString function.

Listing 1-9 illustrates how you can use SpeechBusy and SpeakString to generate
speech synchronously.

Listing 1-9 Generating speech synchronously

PROCEDURE MySpeakStringResourceSync (myStrListID: Integer; myIndex: Integer);

VAR

activeChannels: Integer; {number of active speech channels}

BEGIN

activeChannels := SpeechBusy; {find number of active channels}

MySpeakStringResource(myStrListID, myIndex); {speak the string}

{Wait until channel is no longer processing speech.}

REPEAT

UNTIL SpeechBusy = activeChannels;

END;

The MySpeakStringResourceSync procedure defined in Listing 1-9 uses the
MySpeakStringResource procedure defined in Listing 1-8 to speak a string. However,
before calling MySpeakStringResource, MySpeakStringResourceSync calls the
SpeechBusy function to determine how many speech channels are active. After the
speech has begun, the MySpeakStringResourceSync function does not return until
the number of speech channels active again falls to this level.

Note
Ordinarily, you should play speech asynchronously, to allow the user to
perform other activities while speech is being generated. You might play
speech synchronously if other activities performed by your application
should not occur while speech is being generated. ◆

You can use the SpeakString function to stop speech being generated by a prior call
to SpeakString. You might do this, for example, if the user switches to another
application or closes a document associated with speech being generated. To stop
speech, simply pass a zero-length string to the SpeakString function (or if you are
programming in C, pass NULL).

Listing 1-10 shows how your application can stop speech generated by a call to the
SpeakString function.
Using Sound on Macintosh Computers 1-33

C H A P T E R 1

Introduction to Sound on the Macintosh
Listing 1-10 Stopping speech generated by SpeakString

PROCEDURE MyStopSpeech;

VAR

myString: Str255; {an empty string}

myErr: OSErr;

BEGIN

myString[0] := Char(0); {set length of string to 0}

myErr := SpeakString(myString); {stop previous speech}

IF myErr <> noErr THEN

DoError(myErr);

END;

The MyStopSpeech procedure defined in Listing 1-10 sets the length byte of a string to
0 before calling the SpeakString function. To execute this code in some development
systems, you need to ensure that range checking is disabled. Consult your development
system’s documentation for details on enabling and disabling range checking.

Sound Reference 1

This section describes the routines used in this chapter to illustrate basic sound
producing and recording operations. These are high-level routines that you can use to
play and record sound resources and sound files, and to convert text to speech. The
routines described in this section also appear in the appropriate reference sections of the
other chapters in this book.

For a description of sound-related data structures and other sound-related routines, see
the chapters “Sound Manager,” “Sound Input Manager,” and “Speech Manager” in this
book. For a detailed description of the formats of sound resources and sound files, see
the chapter “Sound Manager” in this book.

Routines 1
This section describes the high-level system software routines that you can use to play
and record sound resources and sound files, or to convert a text string to spoken words.
These routines belong to the Sound Manager.

Playing Sounds 1

You can use the SysBeep procedure to play the system alert sound, the SndPlay
function to play the sound stored in any 'snd ' resource, and the SndStartFilePlay
function to play a sound file.
1-34 Sound Reference

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
SysBeep 1

You can use the SysBeep procedure to play the system alert sound.

PROCEDURE SysBeep (duration: Integer);

duration The duration (in ticks) of the resulting sound. This parameter is ignored
except on a Macintosh Plus, Macintosh SE, or Macintosh Classic when
the system alert sound is the Simple Beep. The recommended duration is
30 ticks, which equals one-half second.

DESCRIPTION

The SysBeep procedure causes the Sound Manager to play the system alert sound at its
current volume. If necessary, the Sound Manager loads into memory the sound resource
containing the system alert sound and links it to a sound channel. The user selects a
system alert sound in the Alert Sounds subpanel of the Sound control panel.

The volume of the sound produced depends on the current setting of the system alert
sound volume, which the user can adjust in the Alert Sounds subpanel of the Sound
control panel. The system alert sound volume can also be read and set by calling the
GetSysBeepVolume and SetSysBeepVolume routines. If the volume is set to 0 (silent)
and the system alert sound is enabled, calling SysBeep causes the menu bar to blink
once.

SPECIAL CONSIDERATIONS

Because the SysBeep procedure moves memory, you should not call it at interrupt time.

SEE ALSO

For information on enabling and disabling the system alert sound or for information on
reading and adjusting the system alert sound volume, see the chapter “Sound Manager”
in this book.

SndPlay 1

You can use the SndPlay function to play a sound resource that your application has
loaded into memory.

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;

async: Boolean): OSErr;

chan A pointer to a valid sound channel. You can pass NIL instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.
Sound Reference 1-35

C H A P T E R 1

Introduction to Sound on the Macintosh
sndHdl A handle to the sound resource to play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). This parameter is
ignored (and the sound plays synchronously) if NIL is passed in the
first parameter.

DESCRIPTION

The SndPlay function attempts to play the sound located at sndHdl, which is expected
to have the structure of a format 1 'snd ' resource. If the resource has not yet been
loaded, the SndPlay function fails and returns the resProblem result code. The handle
you pass in the sndHdl parameter must be locked for as long as the sound is playing
asynchronously.

The chan parameter is a pointer to a sound channel. If chan is not NIL, it is used as a
valid channel. If chan is NIL, an internally allocated sound channel is used. Commands
and data contained in the sound handle are then sent to the channel. Note that you can
pass SndPlay a handle to some data created by calling the Sound Input Manager’s
SndRecord function as well as a handle to an actual 'snd ' resource that you have
loaded into memory.

SPECIAL CONSIDERATIONS

Because the SndPlay function moves memory, you should not call it at interrupt time.

RESULT CODES

SEE ALSO

For an example of how to play a sound resource using the SndPlay function, see
“Playing a Sound Resource” on page 1-25. For more information on the SndPlay
function, see the chapter “Sound Manager” in this book.

SndStartFilePlay 1

You can call the SndStartFilePlay function to initiate a play from disk.

FUNCTION SndStartFilePlay (chan: SndChannelPtr; fRefNum: Integer;

 resNum: Integer; bufferSize: LongInt;

 theBuffer: Ptr;

noErr 0 No error
notEnoughHardwareErr –201 Insufficient hardware available
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable
1-36 Sound Reference

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
theSelection: AudioSelectionPtr;

theCompletion: ProcPtr;

async: Boolean): OSErr;

chan A pointer to a valid sound channel. You can pass NIL instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

fRefNum The file reference number of the AIFF or AIFF-C file to play. To play a
sound resource rather than a sound file, this field should be 0.

resNum The resource ID number of a sound resource to play. To play a sound file
rather than a sound resource, this field should be 0.

bufferSize
The number of bytes of memory that the Sound Manager is to use for
input buffering while reading in sound data. For SndStartFilePlay to
execute successfully on the slowest Macintosh computers, use a buffer of
at least 20,480 bytes. You can pass the value 0 to instruct the Sound
Manager to allocate a buffer of the default size.

theBuffer A pointer to a buffer that the Sound Manager should use for input
buffering while reading in sound data. If this parameter is NIL, the Sound
Manager allocates two buffers, each half the size of the value specified in
the bufferSize parameter. If this parameter is not NIL, the buffer
should be a nonrelocatable block of size bufferSize.

theSelection
A pointer to an audio selection record that specifies which portion of a
sound should be played. You can pass NIL to specify that the Sound
Manager should play the entire sound.

theCompletion
A pointer to a completion routine that the Sound Manager calls when the
sound is finished playing. You can pass NIL to specify that the Sound
Manager should not execute a completion routine. This field is useful
only for asynchronous play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). You can play sound
asynchronously only if you allocate your own sound channel (using
SndNewChannel). If you pass NIL in the chan parameter and TRUE for
this parameter, the SndStartFilePlay function returns the
badChannel result code.

DESCRIPTION

The SndStartFilePlay function begins a continuous play from disk on a sound
channel. The chan parameter is a pointer to the sound channel. If chan is not NIL, it
is used as a valid channel. If chan is NIL, an internally allocated sound channel is used
for play from disk. This internally allocated sound channel is not passed back to you.
Because SndPauseFilePlay and SndStopFilePlay (described in the chapter
“Sound Manager”) require a sound-channel pointer, you must allocate your own
channel if you wish to use those routines.
Sound Reference 1-37

C H A P T E R 1

Introduction to Sound on the Macintosh
The sounds you wish to play can be stored either in a file or in an 'snd ' resource. If
you are playing a file, then fRefNum should be the file reference number of the file to be
played and the parameter resNum should be set to 0. If you are playing an 'snd '
resource, then fRefNum should be set to 0 and resNum should be the resource ID
number (not the file reference number) of the resource to play.

SPECIAL CONSIDERATIONS

Because the SndStartFilePlay function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndStartFilePlay function are

RESULT CODES

SEE ALSO

For an example of how to play a sound file using the SndStartFilePlay function, see
“Playing a Sound File” on page 1-26. For information on completion routines, see the
chapter “Sound Manager” in this book.

Recording Sounds 1

The Sound Input Manager provides two high-level sound input routines, SndRecord
and SndRecordToFile, for recording sound. These input routines are analogous to the
two Sound Manager functions SndPlay and SndStartFilePlay. By using these
high-level routines, you can be assured that your application presents a user interface
that is consistent with that displayed by other applications recording sounds. Both
SndRecord and SndRecordToFile attempt to record sound data from the sound
input hardware currently selected in the Sound In control panel.

Trap macro Selector

_SoundDispatch $0D000008

noErr 0 No error
notEnoughHardwareErr –201 Insufficient hardware available
queueFull –203 No room in the queue
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable
notEnoughBufferSpace –207 Insufficient memory available
badFileFormat –208 File is corrupt or unusable, or not AIFF or

AIFF-C
channelBusy –209 Channel is busy
buffersTooSmall –210 Buffer is too small
siInvalidCompression –223 Invalid compression type
1-38 Sound Reference

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
SndRecord 1

You can use the SndRecord function to record sound resources into memory.

FUNCTION SndRecord (filterProc: ProcPtr; corner: Point;

quality: OSType; VAR sndHandle: Handle):

OSErr;

filterProc
A pointer to an event filter function that determines how user actions in
the sound recording dialog box are filtered (similar to the filterProc
parameter specified in a call to the ModalDialog procedure). By
specifying your own filter function, you can override or add to the
default actions of the items in the dialog box. If filterProc isn’t NIL,
SndRecord filters events by calling the function that filterProc
points to.

corner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound.

sndHandle On entry, a handle to some storage space or NIL. On exit, a handle to a
valid sound resource (or unchanged, if the call did not execute
successfully).

DESCRIPTION

The SndRecord function records sound into memory. The recorded data has the
structure of a format 1 'snd ' resource and can later be played using the SndPlay
function or can be stored as a resource. SndRecord displays a sound recording dialog
box and is always called synchronously. Controls in the dialog box allow the user to
start, stop, pause, and resume sound recording, as well as to play back the recorded
sound. The dialog box also lists the remaining recording time and the current
microphone sound level.

The quality parameter defines the desired quality of the recorded sound. Currently,
three values are recognized for the quality parameter:

CONST

siBestQuality = 'best'; {the best quality available}

siBetterQuality = 'betr'; {a quality better than good}

siGoodQuality = 'good'; {a good quality}

The precise meanings of these parameters are defined by the sound input device driver.
For Apple-supplied drivers, this parameter determines whether the recorded sound is to
be compressed, and if so, whether at a 6:1 or a 3:1 ratio. The quality siBestQuality
does not compress the sound and provides the best quality output, but at the expense of
increased memory use. The quality siBetterQuality is suitable for most nonvoice
recording, and siGoodQuality is suitable for voice recording.
Sound Reference 1-39

C H A P T E R 1

Introduction to Sound on the Macintosh
The sndHandle parameter is a handle to some storage space. If the handle is NIL, the
Sound Input Manager allocates a handle of the largest amount of space that it can find in
your application’s heap and returns this handle in the sndHandle parameter. The
Sound Input Manager resizes the handle when the user clicks the Save button in the
sound recording dialog box. If the sndHandle parameter passed to SndRecord is not
NIL, the Sound Input Manager simply stores the recorded data in the location specified
by that handle.

SPECIAL CONSIDERATIONS

Because the SndRecord function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndRecord function are

RESULT CODES

SEE ALSO

For an example of how to record a sound resource using the SndRecord function, see
“Recording a Sound Resource” on page 1-28. See the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for a complete description of event filter functions.

SndRecordToFile 1

You can use SndRecordToFile to record sound data into a file.

FUNCTION SndRecordToFile (filterProc: ProcPtr; corner: Point;

quality: OSType;

fRefNum: Integer): OSErr;

filterProc
A pointer to a function that determines how user actions in the sound
recording dialog box are filtered.

corner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

Trap macro Selector

_SoundDispatch $08040014

noErr 0 No error
userCanceledErr –128 User canceled the operation
siBadSoundInDevice –221 Invalid sound input device
siUnknownQuality –232 Unknown quality
1-40 Sound Reference

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
quality The desired quality of the recorded sound. The values you can use for this
parameter are described on page 1-39.

fRefNum The file reference number of an open file to save the audio data in.

DESCRIPTION

The SndRecordToFile function works just like SndRecord except that it stores the
sound input data into a file. The resulting file is in either AIFF or AIFF-C format and
contains the information necessary to play the file by using the Sound Manager’s
SndStartFilePlay function. The SndRecordToFile function is always called
synchronously.

Your application must open the file specified in the fRefNum parameter before calling
the SndRecordToFile function. Your application must close the file sometime after
calling SndRecordToFile.

SPECIAL CONSIDERATIONS

Because the SndRecordToFile function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndRecordToFile function are

RESULT CODES

SEE ALSO

For an example of how to record a sound file using the SndRecordToFile function, see
“Recording a Sound File” on page 1-31. See the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for a complete description of event filter functions.

Generating and Stopping Speech 1

Your application can use the SpeakString function to generate speech or stop speech
currently being generated by SpeakString. By calling the SpeechBusy function
before and after a call to SpeakString, your application can determine when speaking
is complete. These routines belong to the Speech Manager.

Trap macro Selector

_SoundDispatch $07080014

noErr 0 No error
userCanceledErr –128 User canceled the operation
siBadSoundInDevice –221 Invalid sound input device
siUnknownQuality –232 Unknown quality
Sound Reference 1-41

C H A P T E R 1

Introduction to Sound on the Macintosh
SpeakString 1

You can use the SpeakString function to have the Speech Manager read a text string.

FUNCTION SpeakString (s: Str255): OSErr;

s The string to be spoken.

DESCRIPTION

The SpeakString function attempts to speak the Pascal-style text string contained in
the string s. Speech is produced asynchronously using the default system voice. When
an application calls this function, the Speech Manager makes a copy of the passed string
and creates any structures required to speak it. As soon as speaking has begun, control is
returned to the application. The synthesized speech is generated asynchronously to the
application so that normal processing can continue while the text is being spoken. No
further interaction with the Speech Manager is required at this point, and the application
is free to release the memory that the original string occupied.

If SpeakString is called while a prior string is still being spoken, the sound currently
being synthesized is interrupted immediately. Conversion of the new text into speech is
then begun. If you pass a zero-length string (or, in C, a null pointer) to SpeakString,
the Speech Manager stops any speech previously being synthesized by SpeakString
without generating additional speech. If your application uses SpeakString, it is often
a good idea to stop any speech in progress whenever your application receives a
suspend event. (Note, however, that calling SpeakString with a zero-length string has
no effect on speech channels other than the one managed internally by the Speech
Manager for the SpeakString function.)

The text passed to the SpeakString function may contain embedded speech
commands, which are described in the chapter “Speech Manager” in this book.

SPECIAL CONSIDERATIONS

Because the SpeakString function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeakString function are

Trap macro Selector

_SoundDispatch $0220000C
1-42 Sound Reference

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
RESULT CODES

SEE ALSO

For an example of how to read a text string using the SpeakString function, see
“Generating Speech From a String” on page 1-32. See the chapter “Dialog Manager”
in Inside Macintosh: Macintosh Toolbox Essentials for a complete description of event
filter functions.

SpeechBusy 1

You can use the SpeechBusy function to determine whether any channels of speech are
currently synthesizing speech.

FUNCTION SpeechBusy: Integer;

DESCRIPTION

The SpeechBusy function returns the number of speech channels that are currently
synthesizing speech in the application. This is useful when you want to ensure that an
earlier speech request has been completed before having the system speak again. Note
that paused speech channels are counted among those that are synthesizing speech.

The speech channel that the Speech Manager allocates internally in response to calls to
the SpeakString function is counted in the number returned by SpeechBusy. Thus, if
you use just SpeakString to initiate speech, SpeechBusy always returns 1 as long as
speech is being produced. When SpeechBusy returns 0, all initiated speech has finished.

SPECIAL CONSIDERATIONS

You can call the SpeechBusy function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeechBusy function are

noErr 0 No error
memFullErr –108 Not enough memory to speak
synthOpenFailed –241 Could not open another speech synthesizer channel

Trap macro Selector

_SoundDispatch $003C000C
Sound Reference 1-43

C H A P T E R 1

Introduction to Sound on the Macintosh
Summary of Sound 1

Pascal Summary 1

Constants 1

CONST

{Gestalt sound attributes selector and response bits}

gestaltSoundAttr = 'snd ';{sound attributes selector}

gestaltStereoCapability = 0; {built-in hw can play stereo sounds}

gestaltStereoMixing = 1; {built-in hw mixes stereo to mono}

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

gestaltLineLevelInput = 9; {built-in input hw needs line level}

gestaltSndPlayDoubleBuffer = 10; {play from disk routines available}

gestaltMultiChannels = 11; {multiple channels of sound supported}

gestalt16BitAudioSupport = 12; {16-bit audio data supported}

{Gestalt selector and response bits for speech attributes}

gestaltSpeechAttr = 'ttsc';{speech attributes selector}

gestaltSpeechMgrPresent = 0; {Speech Manager is present}

{recording qualities}

siBestQuality = 'best'; {the best quality available}

siBetterQuality = 'betr'; {a quality better than good}

siGoodQuality = 'good'; {a good quality}

Routines 1

Playing Sounds

PROCEDURE SysBeep (duration: Integer);

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;
async: Boolean): OSErr;
1-44 Summary of Sound

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
FUNCTION SndStartFilePlay (chan: SndChannelPtr; fRefNum: Integer;
resNum: Integer; bufferSize: LongInt;
theBuffer: Ptr;
theSelection: AudioSelectionPtr;
theCompletion: ProcPtr; async: Boolean): OSErr;

Recording Sounds

FUNCTION SndRecord (filterProc: ProcPtr; corner: Point;
quality: OSType; VAR sndHandle: Handle): OSErr;

FUNCTION SndRecordToFile (filterProc: ProcPtr; corner: Point;
quality: OSType; fRefNum: Integer): OSErr;

Generating and Stopping Speech

FUNCTION SpeakString (s: Str255): OSErr;

FUNCTION SpeechBusy : Integer;

C Summary 1

Constants 1

/*Gestalt sound attributes selector and response bits*/

#define gestaltSoundAttr 'snd ' /*sound attributes selector*/

enum {

gestaltStereoCapability = 0, /*built-in hw can play stereo sounds*/

gestaltStereoMixing = 1, /*built-in hw mixes stereo to mono*/

gestaltSoundIOMgrPresent = 3, /*sound input routines available*/

gestaltBuiltInSoundInput = 4, /*built-in input hw available*/

gestaltHasSoundInputDevice = 5, /*sound input device available*/

gestaltPlayAndRecord = 6, /*built-in hw can play while recording*/

gestalt16BitSoundIO = 7, /*built-in hw can handle 16-bit data*/

gestaltStereoInput = 8, /*built-in hw can record stereo sounds*/

gestaltLineLevelInput = 9, /*built-in input hw needs line level*/

gestaltSndPlayDoubleBuffer = 10, /*play from disk routines available*/

gestaltMultiChannels = 11, /*multiple channels of sound supported*/

gestalt16BitAudioSupport = 12 /*16-bit audio data supported*/

};
Summary of Sound 1-45

C H A P T E R 1

Introduction to Sound on the Macintosh
/*Gestalt selector and response bits for speech attributes*/

#define gestaltSpeechAttr 'ttsc' /*speech attributes selector*/

enum {

gestaltSpeechMgrPresent = 0 /*Speech Manager is present*/

};

/*recording qualities*/

#define siBestQuality 'best' /*the best quality available*/

#define siBetterQuality 'betr' /*a quality better than good*/

#define siGoodQuality 'good' /*a good quality*/

Routines 1

Playing Sounds

pascal void SysBeep (short duration);

pascal OSErr SndPlay (SndChannelPtr chan, Handle sndHdl,
Boolean async);

pascal OSErr SndStartFilePlay
(SndChannelPtr chan, short fRefNum,
short resNum, long bufferSize, void *theBuffer,
AudioSelectionPtr theSelection,
FilePlayCompletionProcPtr theCompletion,
Boolean async);

Recording Sounds

pascal OSErr SndRecord (ModalFilterProcPtr filterProc, Point corner,
OSType quality, Handle *sndHandle);

pascal OSErr SndRecordToFile
(ModalFilterProcPtr filterProc, Point corner,
OSType quality, short fRefNum);

Generating and Stopping Speech

pascal OSErr SpeakString (StringPtr s);

pascal short SpeechBusy (void);
1-46 Summary of Sound

C H A P T E R 1

Introduction to Sound on the Macintosh

1
Introduction to S

ound on the M
acintosh
Result Codes 1
noErr 0 No error
userCanceledErr –128 User canceled the operation
noHardwareErr –200 Required sound hardware not available
notEnoughHardwareErr –201 Insufficient hardware available
queueFull –203 No room in the queue
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable
notEnoughBufferSpace –207 Insufficient memory available
badFileFormat –208 File is corrupt or unusable, or not AIFF or AIFF-C
channelBusy –209 Channel is busy
buffersTooSmall –210 Buffer is too small
siBadSoundInDevice –221 Invalid sound input device
siInvalidCompression –223 Invalid compression type
siUnknownQuality –232 Unknown quality
synthOpenFailed –241 Could not open another speech synthesizer channel
Summary of Sound 1-47

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Sound TOC
	Introduction to Sound
	About Sound on Macintosh Computers
	Sound Capabilities
	Sound Production
	Sound Recording
	Sound Resources
	Sound Files
	Speech Generation
	The User Interface for Sound

	Using Sound on Macintosh Computers
	Producing an Alert Sound
	Playing a Sound Resource
	Playing a Sound File
	Checking For Sound-Recording Equipment
	Recording a Sound Resource
	Recording a Sound File
	Checking For Speech Capabilities
	Generating Speech From a String

	Sound Reference
	Routines
	Playing Sounds
	Recording Sounds
	Generating and Stopping Speech

	Summary of Sound
	Pascal Summary
	Constants
	Routines

	C Summary
	Constants
	Routines

	Result Codes

	 Sound Manager TOC
	 Sound Manager
	 Sound Input Manager TOC
	 Sound Input Manager
	 Speech Manager TOC
	 Speech Manager
	 Sound Components TOC
	 Sound Components
	 Audio Components TOC
	 Audio Components
	 Glossary
	 Index
	 Colophon

