The File Managr
FUNCTION PBDelete (paramBlock: ParmBlkPtr; async: BOOLEAN)
OSErr;

Trap macro _Delete

Parameter block

22 ioVRefNum word
26 joFVersNum  byte

- 12 ioCompletion  pointer
«— 16 ioResult word
- 18 ioNamePtr pointer
_)

_)

PBDelete removes the closed file having the name ioNamePtr and the version number
ioFVersNum, from the volume specified by ioVRefNum.

Note: This function will delete both forks of the file.

Result codes noErr No error
bdNamErr  Bad file name
extFSEmr External file system

fBsyErmr File busy
fLckdErr File locked

fnfErr File not found

nsvEm No such volume

ioErr 1/Q error

vLckdErr Software volume lock
wPrErr Hardware volume lock

DATA ORGANIZATION ON VOLUMES

This section explains how information is organized on volumes. Most of the information is
accessible only through assembly language, but some advanced Pascal programmers may be
interested.

The File Manager communicates with device drivers that read and write data via block-level
requests to devices containing Macintosh-initialized volumes. {Macintosh-initialized volumes are
volumes initialized by the Disk Initialization Package.) The actual type of volume and device is
unimportant to the File Manager; the only requirements are that the volume was initialized by the
Disk Initialization Package and that the device driver is able to communicate via block-level
requests.

The 3 1/2-inch built-in and optional external drives are accessed via the Disk Driver. If you want
to use the File Manager to access files on Macintosh-initialized volumes on other types of devices,
you must write a device driver that can read and write data via block-level requests to the dzvice
on which the volume will be mounted. If you want to access files on volumes not initialized by
the Macintosh, you must write your own extemnal file system (see the section "Using an External
File System™).

The information on all block-formatted volumes is organized in logical blocks and allocation
blocks. Logical blocks contain a number of bytes of standard information (512 bytes on
Macintosh-initialized volumes), and an additional number of bytes of information specific to the

Data Organization on Volumes II-119




Inside Macintosh

Disk Driver (12 bytes on Macintosh-initialized volumes; for details, see chapter 7). Allocation
blocks are composed of any integral number of logical blocks, and are simply a means of
grouping logical blocks together in more convenient parcels.

The remainder of this section applies only to Macintosh-initialized volumes; the information may
be different in future versions of Macintosh system software. Other volumes must be accessed
via an external file system, and the information on them must be organized by an external
initializing program.

A Macintosh-initialized volume contains system startup information in logical blocks 0 and 1
(see Figure 6) that's read in at system startup. This information consists of certain configurable
system parameters, such as the capacity of the event queue, the initial size of the system heap, and
the number of open files allowed. The development system you're using may include a utility
program for modifying the system startup blocks on a volume.

logical block 0 system startup . .
....................... . ) v+ 2er0 1T not a startup disk
information

volume information

....................... block map o]+ master directory block

file directory

unused

logicsal block n+1 allocation block 2

P file contents &

logical block 799 allocation block m

Figure 6. A 400K-Byte Volume with 1K-Byte Allocation Blocks

Logical block 2 of the volume begins the master directory block. The master directory block
contains volume information and the volume allocation block map, which records whether
each block on the volume is unused or what part of a file it contains data from.

The master directory "block” always occupies two blocks—the Disk Initialization Package varies
the allocation block size as necessary to achieve this constraint.

In the next logical block following the block map begins the file directory, which contains
descriptions and locations of all the files on the volume. The rest of the logical blocks on the

I1-120 Data Organization on Volumes



The File Manager

volume contain files or garbage (such as parts of deleted files). The exact format of the volume
information, volume allocation block map, and file directory is explained in the following

sections.

Volume Information

The volume information is contained in the first 64 bytes of the master directory block (see Figure
7). This information is written on the volume when it's initialized, and modified thereafter by the

File Manager.

byte 0
2
6

10
12
14
16
18
20
24
28
30
34
36
37

drSigWord (word)

drCrDate (long word)

drlsBkUp (long word)

drAtrb (word)

drNmFl3 (word)

drDirSt (word)

drBiLen (word)

driNmAlBlks (word)

drAlBIkSiz (long word)

drClpSiz (long word)

drAiBISt (word)

drNxtFNum (long word)

drFreeBks (word)

drvN (byte)

drvN+1 (bytes)

always $D207
date and time of initialization
date and time of last backup

volume attributes

ES
=
Ly
8
=
£0

L)
(4]
=

number of files in directory

first block of directory

length of directory in blocks

number of allocstion blocks on volume
size of sllocation blocks

number of bytes to allocate

first allocation block in block map
next unused file number

number of unused allocation blocks
tength of volume name

characters of volume name

Figure 7. Volume Information

DrAtrb contains the volume attributes, as follows:

Bit Meaning

7  Setif volume is locked by hardware

15  Setif volume is locked by software

Data Organization on Volumes [I-121



Inside Macintosh

DrClpSiz contains the minimum number of bytes to allocate each time the Allocate function is
called, to minimize fragmentation of files; it's always a multiple of the allocation block size.
DrNxtFNum contains the next unused file number (see the "File Directory” section below for an
explanation of file numbers).

Warning: The format of the volume information may be different in future versions of
Macintosh system software.

Volume Allocation Block Map

The volume allocation block map represents every allocation block on the volume with a 12-bit
entry indicating whether the block is unused or allocated to a file. [t begins in the master directory
block at the byte following the volume information, and continues for as many logical blocks as
needed.

The first entry in the block map is for block number 2; the block map doesn't contain entries for
the system startup blocks. Each entry specifies whether the block is unused, whether it's the last
block in the file, or which allocation block is next in the file:

Entry Meaning
0 Block is unused
1 Block is the last block of the file

2104095  Number of next block in the file

For instance, assume that there's one file on the volume, stored in allocation blocks 8, 11, 12,
and 17; the first 16 entries of the block map would read

0000001100121700001

The first allocation block on a volume typically follows the file directory. It's numbered 2
because of the special meaning of numbers 0 and 1.

Note: As explained below, it's possible to begin the allocation blocks immediately
following the master directory block and place the file directory somewhere within the
allocation blocks. In this case, the allocation blocks occupied by the file directory must be
marked with $FFF's in the allocation block map.

File Directory

The file directory contains an entry for each file. Each entry lists information about one file on the
volume, including its name and location. Each file is listed by its own unique file number,
which the File Manager uses to distinguish it from other files on the volume,

A file directory entry contains 51 bytes plus one byte for each character in the file name. If the
file names average 20 characters, a directory can hold seven file entries per logical block. Entries
are always an integral number of words and don't cross logical block boundaries. The length of a
file directory depends on the maximum number of files the volume can contain; for example, on a
400K-byte volume the file directory occupies 12 logical blocks.

11-122 Data Organization on Volumes



The File Manager

The file directory conventionally follows the block map and precedes the allocation blocks, but a
volume-initializing program could actually place the file directory anywhere within the allocation
blocks as long as the blocks occupied by the file directory are marked with $FFF's in the block

map.

The format of a file directory entry is shown in Figure 8.

byte 0
1
2

18
22
24
28
32
34
38
42
48
50
51

fiFlags (byte)

fITyp (byte)

flUsrwds (16 bytes;

fIFINum (long word)

fI1StBlk (word)

fiLgl.en (long word)

fIPyLen (long word)

fIRStBIk (word)

fIRLgLen (long word)

fIRPyLen (long word)

{1CrDat {long word)

fiMdDat (long word)

fINam (byte)

fINam+ 1 (bytes)

bit 7=1 if entry used; bit 0=1 if file locked
version number

information used by the Finder

file number

first allocation block of data fork
logical end-of-file of data fork
physical end-of-file of date fork

first allocation block of resource fork
logical end-of-file of resource fork
physicel end-of-file of resource fork
date end time of creation

date and time of last modification
length of file name

characters of file name

Figure 8. A File Directory Entry

FIStBlk and fIRStBlk are O if the data or resource fork doesn't exist. FICrDat and fIMdDat are
given in seconds since midnight, January 1, 1904.

Each time a new file is created, an entry for the new file is placed in the file directory. Eachtime a
file is deleted, its entry in the file directory is cleared, and all blocks used by that file on the
volume are released.

Warning: The format of the file directory may be different in future versions of
Macintosh system software.

Data Organization on Volumes I-123

£~N
e
&
©
=
&
ug
[1:3
=



