INSIDE MACINTOSH

More Macintosh Toolbox

[Apple Computer, Inc.

© 1993, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleShare, AppleTalk,
EtherTalk, ImageWriter, LaserWriter,
LocalTalk, Macintosh, MPW,
StyleWriter, and TokenTalk are
trademarks of Apple Computer, Inc.,
registered in the United States and other
countries.

Apple Desktop Bus, Balloon Help,
BalloonWriter, Chicago, Finder, Geneva,
KanjiTalk, QuickDraw, QuickTime,
ResEdit, System 7, and System 7.0 are
trademarks of Apple Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

AGFA is a trademark of Agfa-Gevaert.

America Online is a service mark of
Quantum Computer Services, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Contents

Figures, Tables, and Listings xvii
Preface About This Book xxv
Format of a Typical Chapter XXVi
Conventions Used in This Book Xxvii
Special Fonts xxvii
Types of Notes XXVii
Empty Strings XXViii
Assembly-Language Information xxviii
The Development Environment ~ xxviii
Chapter 1 Resource Manager 11

Introduction to Resources 1-3
The Data Fork and the Resource Fork 1-4
Resource Types and Resource IDs 1-6
The Resource Map 1-8
Search Path for Resources 1-10
About the Resource Manager 1-12
Using the Resource Manager 1-13
Creating a Resource 1-15
Getting a Resource 1-18
Releasing and Detaching Resources 1-22
Opening a Resource Fork 1-24
Opening an Application’s Resource Fork 1-24
Creating and Opening a Resource Fork 1-25
Specifying the Current Resource File 1-28
Reading and Manipulating Resources 1-30
Writing Resources 1-36
Working With Partial Resources 1-40
Resource Manager Reference 1-42
Data Structure, Resource Types, and Resource IDs
The Resource Type 1-42
Resource IDs 1-46

Resource IDs of Owned Resources 1-47
Resource Names 1-49
Resource Manager Routines 1-49

Initializing the Resource Manager 1-50
Checking for Errors 1-51
Creating an Empty Resource Fork ~ 1-53

1-42

iii

Opening Resource Forks 1-58
Getting and Setting the Current Resource File 1-68
Reading Resources Into Memory 1-71
Getting and Setting Resource Information 1-81
Modifying Resources 1-87
Writing to Resource Forks 1-92
Getting a Unique Resource ID 1-95
Counting and Listing Resource Types 1-97
Getting Resource Sizes 1-104
Disposing of Resources 1-106
Closing Resource Forks 1-110
Reading and Writing Partial Resources 1-111
Getting and Setting Resource Fork Attributes 1-116
Accessing Resource Entries in a Resource Map 1-119
Resource File Format 1-121
Resources in the System File 1-126

User Information Resources 1-127
Packages 1-128
Function Key Resources 1-129

Standard Icons 1-129
ROM Resources 1-134
Inserting the ROM Resource Map 1-134
Overriding ROM Resources 1-135
Summary of the Resource Manager ~ 1-137
Pascal Summary 1-137
Constants 1-137
Data Type 1-139
Routines 1-139
C Summary 1-142
Constants 1-142
Data Type 1-143
Routines 1-144
Assembly-Language Summary 1-147
Trap Macros 1-147
Global Variables 1-147
Result Codes 1-148

Chapter 2 Scrap Manager 21

Introduction to the Scrap Manager 2-4
The Clipboard 2-10
Intelligent Cut and Paste 2-10
About the Scrap Manager 2-12
Location of the Scrap ~ 2-12
Using the Scrap Manager 2-14
Getting Information About the Scrap 2-15

iv

Putting Data in the Scrap 2-15
Handling the Cut Command 2-15
Handling the Copy Command 2-19
Handling Suspend Events 2-19
Getting Data From the Scrap ~ 2-20
Handling the Paste Command 2-20
Handling Resume Events 2-25
Converting Data Between a Private Scrap and the Scrap 2-26
Converting Data Between the TextEdit Scrap and the Scrap 2-28
Handling Editing Operations in Dialog Boxes 2-31
Scrap Manager Reference 2-31
Data Structures 2-32
The Scrap Information Record 2-32
The Scrap Format Types 2-33
Routines 2-34
Getting Information About the Scrap 2-34
Writing Information to the Scrap ~ 2-35
Reading Information From the Scrap ~ 2-38
Transferring Data Between the Scrap in Memory and the Scrap on
Disk 2-40
Summary of the Scrap Manager 2-42
Pascal Summary 2-42
Constants 2-42
Data Types 2-42
Routines 2-42
C Summary 2-43
Data Types 2-43
Routines 2-44
Assembly-Language Summary 2-45
Data Structures 2-45
Result Codes 2-45

Chapter 3 Help Manager 3-1

About the Help Manager 3-6
How the Help Manager Displays Balloons 3-8
Default Help Balloons for Menus, Windows, and Icons 3-13
About BalloonWriter 3-17
Using the Help Manager 3-18
Providing Text or Pictures for Help Balloons 3-18
Defining Help Messages 3-19
Using Clear, Concise Phrases 3-20
Using Active Constructions 3-22
Using Parallel Structure 3-22
Offering Hints 3-22
Using Consistent Terminology 3-23

vi

Defining the Help Balloon Position 3-23
Specifying the Format for Help Messages 3-23
Specifying Options in Help Resources 3-25
Providing Help Balloons for Menus 3-27
Specifying Header Information for the 'hmnu' Resource 3-32
Specifying Help for Menu Items Missing From the Resource 3-33
Specifying Help for Menu Titles and for Items Dimmed by System
Software 3-36
Specifying Help for Menu Items ~ 3-39
Specifying Help for a Changing Menu Item 3-43
Specifying Resources by Item Name 3-45
Providing Help Balloons for Menus You Disable for Dialog Boxes 3-47
Providing Help Balloons for Items in Dialog Boxes and Alert Boxes 3-51
Specifying Header Information for the 'hdlg' Resource 3-54
Specifying Missing-Item Information ~ 3-54
Specifying Help for Items in an Alert or Dialog Box 3-56
Adding a Help Item to an Item List Resource 3-62
Using a Help Item Versus Using an "hwin' Resource 3-63
Providing Help Balloons for Window Content 3-63
Providing Help Balloons for Static Windows 3-65
Specifying Header Information for the 'hrct' Resource 3-67
Specifying Help for Rectangles in Windows 3-67
Associating Help Resources With Static Windows ~ 3-68
Specifying Header Information for the 'hwin' Resource 3-69
Specifying 'hdlg' or 'hrct' Resources in the "hwin' Resource 3-69
Providing Help Balloons for Dynamic Windows 3-74
Overriding Help Balloons for Non-Document Icons 3-84
Specifying Header Information for the "hfdr’' Resource 3-85
Specifying Help for an Icon ~ 3-85
Overriding Other Default Help Balloons ~ 3-87
Specifying Header Information for the 'hovr' Resource 3-88
Overriding Default Help 3-88
Adding Menu Items to the Help Menu 3-90
Writing Your Own Balloon Definition Function 3-93
Help Manager Reference ~ 3-95
Data Structures 3-95
The Help Message Record 3-95
The Help Manager String List Record 3-97
Help Manager Routines 3-97
Determining Balloon Help Status 3-98
Displaying and Removing Help Balloons ~ 3-99
Enabling and Disabling Balloon Help Assistance ~ 3-107
Adding Items to the Help Menu 3-108
Getting and Setting the Font Name and Size 3-110
Setting and Getting Information for Help Resources 3-114
Determining the Size of a Help Balloon ~ 3-119
Getting the Message of a Help Balloon = 3-122

Application-Defined Routines 3-128
Resources 3-132
The Menu Help Resource 3-132
The Dialog-Item Help Resource 3-140
The Rectangle Help Resource =~ 3-148
The Window Help Resource 3-154
The Finder Icon Help Resource 3-156
The Default Help Override Resource 3-160
Summary of the Help Manager 3-166
Pascal Summary 3-166
Constants 3-166
Data Types 3-168
Help Manager Routines 3-169
Application-Defined Routines 3-170
C Summary 3-170
Constants 3-170
Data Types 3-173
Help Manager Routines 3-173
Application-Defined Routines 3-175
Assembly-Language Summary 3-176
Data Structures 3-176
Trap Macros 3-176
Result Codes 3-177

Chapter 4 List Manager 41

Introduction to Lists 4-4
Appearance of Lists 4-4
Selection of List Items 4-9
Keyboard Navigation of Lists ~ 4-15
Movement of a Selection With Arrow Keys 4-15
Extension of a Selection With Arrow Keys 4-16
Type Selection in a Text-Only List ~ 4-20
Multiple Lists in a Window 4-20
About the List Manager =~ 4-22
Using the List Manager =~ 4-26
Creating a List ~ 4-27
Adding Rows and Columns to a List ~ 4-30
Responding to Events Affecting a List ~ 4-32
Working With List Selections 4-34
Customizing Cell Highlighting ~ 4-38
Manipulating List Cells 4-40
Searching a List for a Particular Item 4-43
Supporting Keyboard Navigation of Lists =~ 4-45
Supporting Type Selection of List Items 4-45
Supporting Arrow-Key Navigation of Lists 4-48

vii

Supporting the Anchor Algorithm for Extending Lists With Arrow
Keys 4-52
Outlining the Current List ~ 4-53
Writing Your Own List Definition Procedure 4-58
Responding to the Initialization Message 4-60
Responding to the Draw Message 4-60
Responding to the Highlighting Message 4-62
Responding to the Close Message 4-62
Using the Pictures List Definition Procedure 4-63
List Manager Reference 4-65
Data Structures 4-65
The Cell Record ~ 4-65
The Data Handle 4-66
The List Record 4-66
List Manager Routines 4-70
Creating and Disposing of Lists ~ 4-70
Adding and Deleting Columns and Rows To and From a List ~ 4-73
Determining or Changing the Selection 4-77
Accessing and Manipulating Cell Data 4-79
Responding to Events Affecting Lists 4-84
Modifying a List’s Appearance 4-87
Searching a List for a Particular Item 4-90
Changing the Size of Cells and Lists =~ 4-91
Getting Information About Cells ~ 4-93
Application-Defined Routines 4-96
List Definition Procedures 4-96
Match Functions 4-99
Click-Loop Procedures ~ 4-100
Summary of the List Manager ~ 4-102
Pascal Summary 4-102
Constants 4-102
Data Types 4-102
List Manager Routines 4-103
Application-Defined Routines 4-105
C Summary 4-106
Constants 4-106
Data Types 4-106
List Manager Routines 4-107
Application-Defined Routines 4-109
Assembly-Language Summary 4-110
Data Structures 4-110
Trap Macros 4-111

viii

Chapter 5 lcon Utilities 51

Introduction to the Icon Utilities 5-3
About the Icon Utilities 5-6
Using the Icon Utilities 5-7
Drawing Icons in an Icon Family 5-8
Drawing an Icon Directly From a Resource 5-10
Getting an Icon Suite and Drawing One of Its Icons 5-11
Drawing Specific Icons From an Icon Family 5-12
Manipulating Icons 5-13
Drawing Icons That Are Not Part of an Icon Family 5-13
Icon Utilities Reference 5-17
Data Structure 5-17
The Color Icon Record 5-17
Icon Utilities Routines 5-18

Drawing Icons From Resources 5-19
Getting Icons From Resources That Don’t Belong to an Icon
Family 5-28

Disposing of Icons ~ 5-30
Creating an Icon Suite ~ 5-30

Getting Icons From an Icon Suite 5-34
Drawing Icons From an Icon Suite 5-35
Performing Operations on Icons in an Icon Suite 5-38

Getting and Setting the Label for an Icon Suite 5-40
Getting Label Information =~ 5-41
Disposing of Icon Suites 5-42
Converting an Icon Mask to a Region ~ 5-43
Determining Whether a Point or Rectangle Is Within an Icon
Working With Icon Caches 5-53
Application-Defined Routines 5-57
Icon Action Functions 5-57
Icon Getter Functions 5-58
Summary of the Icon Utilities ~ 5-60
Pascal Summary 5-60
Constants 5-60
Data Types 5-62
Icon Utilities Routines 5-62
Application-Defined Routines 5-65
C Summary 5-65
Constants 5-65
Data Types 5-67
Icon Utilities Routines 5-68
Application-Defined Routines 5-71
Assembly-Language Summary 5-71
Data Structure 5-71
Trap Macros 5-72
Result Codes 5-73

5-46

ix

Chapter 6 Component Manager 61

Introduction to Components 6-3
About the Component Manager 6-4
Using the Component Manager 6-6
Opening Connections to Components 6-7
Opening a Connection to a Default Component 6-7
Finding a Specific Component 6-8
Opening a Connection to a Specific Component 6-9
Getting Information About a Component ~ 6-10
Using a Component 6-11
Closing a Connection to a Component 6-12
Creating Components 6-13
The Structure of a Component 6-13
Handling Requests for Service 6-18
Responding to the Open Request 6-19
Responding to the Close Request 6-21
Responding to the Can Do Request 6-22
Responding to the Version Request 6-22
Responding to the Register Request 6-23
Responding to the Unregister Request 6-24
Responding to the Target Request 6-25
Responding to Component-Specific Requests 6-26
Reporting an Error Code 6-28
Defining a Component’s Interfaces 6-28
Managing Components 6-30
Registering a Component 6-30
Creating a Component Resource 6-32
Establishing and Managing Connections 6-34
Component Manager Reference 6-37
Data Structures for Applications 6-37
The Component Description Record 6-37
Component Identifiers and Component Instances ~ 6-40
Routines for Applications 6-41
Finding Components 6-42
Opening and Closing Components 6-44
Getting Information About Components 6-47
Retrieving Component Errors 6-51
Data Structures for Components 6-52
The Component Description Record 6-52
The Component Parameters Record 6-54
Routines for Components 6-56
Registering Components 6-57
Dispatching to Component Routines 6-63
Managing Component Connections 6-65
Setting Component Errors 6-69
Working With Component Reference Constants 6-70

Accessing a Component’s Resource File 6-71
Calling Other Components 6-73
Capturing Components 6-75
Targeting a Component Instance 6-77
Changing the Default Search Order ~ 6-78
Application-Defined Routines ~ 6-79
Resources 6-80
The Component Resource 6-80
Summary of the Component Manager 6-86
Pascal Summary 6-86
Constants 6-86
Data Types 6-87
Routines for Applications 6-89
Routines for Components 6-90
Application-Defined Routines 6-92
C Summary 6-92
Constants 6-92
Data Structures 6-93
Routines for Applications 6-95
Routines for Components 6-96
Application-Defined Routines 6-97
Assembly-Language Summary 6-98
Trap Macros 6-98
Result Codes 6-99

Chapter 7 Translation Manager 71

About the Translation Manager 7-4
Opening Documents From the Finder 7-5
Opening Documents Within an Application 7-8
Translating Documents on the Desktop 7-9
Sharing Data Between Applications 7-10
Using the Translation Manager ~ 7-10
Checking for the Translation Manager 7-12
Declaring the File Types Your Application Can Open 7-13
Declaring Custom Kind Strings 7-14
Using File-Opening Dialog Boxes 7-15
Translating Files Explicitly 7-17
Writing a Translation Extension 7-18
Creating a Translation Extension 7-19
Dispatching to Translation Extension-Defined Routines 7-24
Creating a Translation List 7-27
Identifying Files 7-32
Translating Files ~ 7-33
Writing Application Translation Extensions 7-35

Translation Manager Reference 7-36
Translation Manager Routines 7-36
Getting Translation Information 7-37
Translating Files 7-42
Resources 7-43
The Open Resource 7-44
The Kind Resource 7-45
Translation Extension Reference 7-46
Translation Extension Data Structures 7-46
File Type Specifications 7-46
File Translation Lists 7-48
Scrap Type Specifications 7-49
Scrap Translation Lists 7-49
Translation Extension Routines 7-50
Managing Translation Progress Dialog Boxes 7-50
Translation Extension-Defined Routines 7-54

File Translation Extension Routines 7-54
Scrap Translation Extension Routines 7-58
Summary of the Translation Manager 7-63

Pascal Summary 7-63
Constants 7-63
Data Types 7-63
Translation Manager Routines 7-64
C Summary 7-64
Constants 7-64
Data Types 7-65
Translation Manager Routines 7-65
Assembly-Language Summary 7-66
Data Structures 7-66
Trap Macros 7-66
Result Codes 7-67
Summary of Translation Extensions 7-68
Pascal Summary 7-68
Constants 7-68
Data Types 7-68
Translation Extension Routines 7-70
Translation Extension-Defined Routines 7-70
C Summary 7-71
Constants 7-71
Data Types 7-71
Translation Extension Routines 7-73
Translation Extension-Defined Routines 7-73
Assembly-Language Summary 7-74
Data Structures 7-74
Trap Macros 7-75
Result Codes 7-75

xii

Chapter 8 Control Panels s-1

About Control Panels 8-4
Control Panels 8-4
A Control Panel’s Resources 8-6
The Finder’s Interaction With Control Panels 8-7
Control Panels and System Extensions 8-8
About User Documentation for Control Panels 8-8
The Monitors Control Panel and Extensions toIt ~ 8-9
Creating Control Panel Files 8-12
Defining the User Interface for a Control Panel 8-12
Creating a Control Panel’s Resources 8-14
Resource IDs for Control Panels 8-14
Defining the Control Panel Rectangles 8-15
Creating the Item List Resource 8-17
Defining the Icon for a Control Panel ~ 8-20
Specifying the Machine Resource 8-20
Creating the File Reference, Bundle, and Signature Resources 8-21
Providing Additional Resources for a Control Panel 8-22
Specifying the Font of Text in a Control Panel 8-23

Creating a Font Information Resource 8-23
Defining Text in a Control Panel as User Items 8-24
Writing a Control Panel Function 8-25
Determining If a Control Panel Can Run on the Current System 8-29

Initializing the Control Panel Items and Allocating Storage 8-29
Responding to Activate Events 8-33
Responding to Keyboard Events ~ 8-37
Responding to Mouse Events 8-39
Responding to Update Events 8-43
Handling Text Defined as User Items 8-43
Responding to Null Events 8-45
Responding to the User Closing the Control Panel 8-45
Handling Edit Menu Commands ~ 8-46
Handling Errors 8-47
Creating an Extension for the Monitors Control Panel 8-48
Designing the User Interface for a Monitors Extension 8-49
Creating the Required Resources for a Monitors Extension 8-51
Creating a Card Resource for a Monitors Extension 8-51

Defining a Rectangle for a Monitors Extension 8-52
Creating an Item List Resource for a Monitors Extension 8-54
Creating the Monitor Code Resource 8-56

Supplying Optional Resources for a Monitors Extension 8-56

Specifying an Icon for the Options Dialog Box 8-57

Specifying Version Information 8-58

Providing an Alternative Name for a Video Card ~ 8-58
Supplying Gamma Table Resources 8-59

Creating File Reference, Bundle, and Signature Resources 8-59

xiii

Including a System Extension Resource 8-61

Writing a Monitors Extension Function 8-61
Handling the Startup Message 8-66
Performing Initialization 8-68
Responding to a Click in the OK Button ~ 8-70
Responding to a Cancel Request 8-71
Handling Mouse Events for a Monitors Extension 8-71
Handling Keyboard Events 8-73

Including Another Control Panel Definition in a Monitors Extension

File 8-73
Control Panels Reference 8-74

Application-Defined Routines 8-74
Control Device Functions 8-74
Monitors Extension Functions 8-78

Resources 8-82
The Machine Resource 8-84
The Rectangle Positions Resource ~ 8-85
The Font Information Resource 8-86
The Control Device Function Code Resource 8-87
The Card Resource 8-87
The Monitor Code Resource 8-88
The Rectangle Resource 8-88

Summary of Control Panels ~ 8-89

Pascal Summary 8-89
Constants 8-89
Application-Defined Routines 8-90

C Summary 8-90
Constants 8-90
Application-Defined Routines ~ 8-92

Chapter 9 Desktop Manager 91

About the Desktop Database 9-4
Using the Desktop Manager 9-4
Desktop Manager Reference 9-6
Data Structure 9-6
The Desktop Parameter Block 9-7
Routines 9-8
Locating, Opening, and Closing the Desktop Database 9-9
Reading the Desktop Database 9-12
Adding to the Desktop Database 9-17
Deleting Entries From the Desktop Database 9-20
Manipulating the Desktop Database Itself =~ 9-23
Summary of the Desktop Manager ~ 9-27
Pascal Summary 9-27
Constants 9-27

Xiv

Data Types 9-27
Routines 9-28
C Summary 9-30
Constants 9-30
Data Types 9-31
Routines 9-31
Assembly-Language Summary 9-34
Data Structures 9-34
Trap Macros 9-35
Result Codes 9-35

Glossary GL-1

Index IN-1

XV

Chapter 1

Figures, Tables, and Listings

Resource Manager 1-1

Figure 1-1
Figure 1-2

Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8

Figure 1-9

Figure 1-10
Figure 1-11
Figure 1-12
Figure 1-13
Figure 1-14
Figure 1-15
Figure 1-16

Figure 1-17
Figure 1-18

Figure 1-19

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8

Listing 1-1
Listing 1-2
Listing 1-3
Listing 1-4
Listing 1-5

Listing 1-6
Listing 1-7
Listing 1-8
Listing 1-9
Listing 1-10

The data fork and resource fork of a file 1-4

An application’s and a document’s data fork and resource
fork 1-6

Resource attributes 1-8

A typical search order for a specific resource 1-11

The ResEdit window for the SurfWriter application 1-15
The menus of the SurfWriter application 1-16

Getting a handle to a resource 1-19

A handle to a purgeable resource after the resource has been
purged 1-20

Detaching a resource 1-23

Resource ID of an owned resource 1-48

Format of a resource fork 1-121

Format of a resource header in a resource fork 1-122
Format of resource data for a single resource 1-122
Format of the resource map in a resource fork 1-123
Format of an item in a resource type list 1-123

Format of an entry in the reference list for a resource
type 1-124
Format of an item in a resource name list 1-124

Offsets in a resource fork and an entry for a single resource in a
reference list 1-125

Structure of a compiled ROM override (' ROv# ') resource 1-136

Typical locations of resources 1-12

Standard resource types 1-43

Resource types reserved for use by system software 1-46
Document and application icons 1-130

Folder icons 1-131

System Folder icons 1-132

Desktop icons 1-133

Standard File Package icons 1-133

A menu in Rez input format 1-17

Safely changing a resource that is purgeable 1-21
Releasing a resource 1-22
Detaching a resource 1-24

Getting the file reference number for your application’s resource
fork 1-25

Creating an empty resource fork 1-26

Creating and opening a resource fork 1-27
Saving and restoring the current resource file 1-29
Getting a resource from a document file 1-32
Counting and indexing through resources 1-34

xvii

Listing 1-11 Saving a resource to a resource fork 1-38

Listing 1-12 Using partial resource routines 1-41
Chapter 2 Scrap Manager 2-1
Figure 2-1 Copying and pasting data between two applications using the
scrap 2-5
Figure 2-2 Writing both standard formats to the scrap 2-8
Figure 2-3 Using a private scrap 2-9
Figure 2-4 Intelligent cut and paste 2-11
Figure 2-5 Non-intelligent cut and paste 2-11
Figure 2-6 Location of the scrap in memory 2-13
Table 2-1 Actions your application perfoms in response to editing

commands 2-6

Listing 2-1 Writing data to the scrap 2-16

Listing 2-2 Writing data to a private scrap 2-18

Listing 2-3 Copying data from the scrap in response to suspend
events 2-19

Listing 2-4 Handling the Paste command using the scrap 2-21

Listing 2-5 Handling the Paste command using a private scrap 2-24

Listing 2-6 Handling resume events 2-25

Listing 2-7 Converting data between the scrap and a private scrap 2-27

Listing 2-8 Using TextEdit to handle the Cut command 2-29

Listing 2-9 Using TextEdit to handle the Paste command 2-30

Chapter 3 Help Manager 3-1

Figure 3-1 The Help menu for the Finder 3-7

Figure 3-2 A help balloon drawn with the standard balloon definition
function 3-8

Figure 3-3 The tip and hot rectangle for a help balloon 3-9

Figure 3-4 Standard balloon positions and their variation codes 3-10

Figure 3-5 Alternate positions of a help balloon 3-11

Figure 3-6 Default help balloons for the window frame 3-15

Figure 3-7 Default help balloons for the Apple and Help menus 3-16

Figure 3-8 Default help balloons for application and document icons 3-17

Figure 3-9 Help balloons for different states of the Cut command 3-29

Figure 3-10 A help balloon for an enabled menu title 3-37

Figure 3-11 A help balloon for a dimmed menu title 3-37

Figure 3-12 A help balloon for a menu title dimmed by the Dialog
Manager 3-38

Figure 3-13 A help balloon for menu items dimmed by the Dialog
Manager 3-38

Figure 3-14 A help balloon for a menu item 3-39

Figure 3-15 A help balloon for a dimmed menu item 3-40

Figure 3-16 Help balloons for a changing menu item 3-45

Figure 3-17 A help balloon in a modal dialog box 3-61

Figure 3-18 Static and dynamic windows 3-64

Xviii

Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 3-28
Figure 3-29
Figure 3-30
Figure 3-31
Figure 3-32
Figure 3-33
Figure 3-34

Figure 3-35
Figure 3-36

Figure 3-37
Figure 3-38
Figure 3-39

Figure 3-40
Figure 3-41

Figure 3-42
Figure 3-43
Figure 3-44
Figure 3-45
Figure 3-46
Figure 3-47
Figure 3-48

Figure 3-49

A tool palette with a help balloon 3-70

A help balloon for a dialog box with a title 3-72

Default and custom help balloons for an application icon 3-86
The Help menu with an appended menu item 3-90

Structure of a compiled menu help (' hmnu ') resource 3-133

Structure of an ' hmnu' component compiled with the
HMStringItem identifier 3-135

Structure of an 'hmnu' component compiled with the
HMStringResItem identifier 3-136

Structure of an 'hmnu ' component compiled with the HMPictItem,
HMTEResItem, or HISTRResItem identifier 3-137

Structure of an 'hmnu' component compiled with the HMSkipItem
identifier ~ 3-138

Structure of a menu-item component compiled with the
HMCompareItem identifier 3-139

Structure of a menu-item component compiled with the
HMNamedResourceltem identifier 3-140

Structure of a compiled dialog-item help (' hdlg"')
resource 3-141

Structure of an 'hdlg' component compiled with the
HMStringItem identifier 3-144

Structure of an 'hdlg' component compiled with the
HMStringResItem identifier 3-145

Structure of an 'hdlg' component compiled with the HMPictItem,
HMTEResItem, of HUISTRResItem identifier 3-146

Structure of an 'hdlg' component compiled with the HMSkipItem
identifier 3-148

Structure of a compiled rectangle help (' hrct ') resource 3-149

Structure of an 'hrct ' component compiled with the
HMStringItem identifier 3-150

Structure of an 'hrct ' component compiled with the
HMStringResItem identifier 3-151

Structure of an 'hrct ' component compiled with the HMPictItem,
HMTEResItem, Of HMISTRResItem identifier 3-152

Structure of an 'hrct ' component compiled with the HMSkipItem
identifier 3-153

Structure of a compiled window help (' hwin') resource 3-155

Structure of a compiled Finder icon help (' hfdr ')
resource 3-157

Structure of an 'hfdr' component compiled with the
HMStringItem identifier 3-158

Structure of an 'hfdr' component compiled with the
HMStringResItem identifier 3-158

Structure of an 'hfdr ' component compiled with the HMPictItem,
HMTEResItem, Of HUISTRResItem identifier 3-159

Structure of an 'hfdr' component compiled with the HMSkipItem
identifier 3-160

Structure of a compiled default help override (' hovr ')
resource 3-161

Structure of an 'hovr' component compiled with the
HMStringItem identifier 3-163

Structure of an 'hovr' component compiled with the
HMStringResItem identifier 3-163

Structure of an 'hovr ' component compiled with the HMPictItem,
HMTEResItem, or HMSTRResItem identifier 3-164

xix

Chapter 4

XX

Figure 3-50
Listing 3-1
Listing 3-2
Listing 3-3
Listing 3-4
Listing 3-5

Listing 3-6

Listing 3-7

Listing 3-8
Listing 3-9

Listing 3-10
Listing 3-11

Listing 3-12
Listing 3-13
Listing 3-14
Listing 3-15

Listing 3-16
Listing 3-17

Listing 3-18
Listing 3-19

Listing 3-20
Listing 3-21
Listing 3-22

List Manager

Structure of an 'hovr ' component compiled with the HMSkipItem
identifier ~ 3-165

Rez input for a partial 'hmnu' resource 3-31

Rez input for the missing-items component of an ' hmnu'
resource 3-35

Rez input for corresponding 'hmnu' and ' STR# '
resources 3-41

Rez input for an ' hmnu' resource that uses HMCompareItem for a
changing menu item 3-44

Rez input for specifying help messages with named
resources 3-46

Specifying an alternate ' hmnu ' resource for a menu that your
application disables when it displays movable modal dialog
boxes 3-49

Reassigning 'hmnu' resources before displaying a movable modal
dialog box 3-50

Rez input for an item list resource and an 'hdlg' resource 3-59

Rez input for corresponding 'hwin' and 'hrct'
resources 3-71

Rez input for specifying help for titled and untitled windows 3-72

Using a string resource as the help message for
HMShowBalloon 3-77

Using a picture resource as the help message for
HMShowBalloon 3-77

Using a handle to a picture resource as the help message for
HMShowBalloon 3-78

Using a string list resource as the help message for
HMShowBalloon 3-79

Using styled text resources as the help message for
HMShowBalloon 3-80

Using HMShowBalloon to display help balloons 3-82
Rez input for creating an 'hfdr ' resource for an application
icon 3-86

Rez input for an 'hovr' resource 3-89

Rez input for specifying help balloons for items in the Help
menu 3-91

Responding to the user’s choice in a menu command 3-92
Using the HMExtractHelpMsg function 3-124
Using a tip function 3-131

4-1

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6

Figure 4-7
Figure 4-8
Figure 4-9

A one-column, text-only list without a scroll bar 4-4

A one-column, text-only list with a vertical scroll bar 4-5

A list whose scroll bar has been disabled 4-6

A deactivated list 4-6

A list containing multiple columns and graphical elements 4-7

A list of items whose cells display more than one type of
information 4-8

A list with an item selected 4-9
Selection of a range of items in a list 4-10
Effect of dragging after Shift-clicking 4-11

Figure 4-10
Figure 4-11

Figure 4-12
Figure 4-13
Figure 4-14

Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19

Listing 4-1
Listing 4-2
Listing 4-3
Listing 4-4

Listing 4-5
Listing 4-6
Listing 4-7
Listing 4-8
Listing 4-9
Listing 4-10
Listing 4-11
Listing 4-12
Listing 4-13
Listing 4-14
Listing 4-15
Listing 4-16

Listing 4-17
Listing 4-18
Listing 4-19

Listing 4-20
Listing 4-21
Listing 4-22
Listing 4-23
Listing 4-24
Listing 4-25
Listing 4-26
Listing 4-27
Listing 4-28
Listing 4-29
Listing 4-30
Listing 4-31
Listing 4-32
Listing 4-33
Listing 4-34

Selection of discontiguous items in a list 4-12

Effect of Shift-clicking in a list that contains discontiguous
items 4-13

Notifying the user of nonstandard list behavior 4-14
Response to pressing the Command—-Up Arrow keys 4-16

Response to user making a discontiguous selection, then pressing
Shift—Right Arrow followed by Shift-Left Arrow using the extend
algorithm 4-17

Response to Shift-Right Arrow using the anchor algorithm 4-19
An outlined list in a window with more than one list 4-21
Coordinates of cells 4-22

Selection flags 4-38

The Chooser’s use of a custom list definition procedure 4-58

Creating a list with a vertical scroll bar 4-27
Installing a list in a dialog box 4-29
Drawing a border around a list 4-30

Adding items from a string list to a one-column, text-only
list 4-31

Responding to a mouse-down event in a list 4-33
Responding to an update event in a list 4-33
Finding the first selected cell in a list 4-34
Finding the last selected cell in a list 4-35
Selecting a cell and deselecting other cells 4-36
Scrolling so that a particular cell is visible 4-37
Clearing all cell data 4-40

Getting a copy of the data of a cell 4-41

Directly accessing a cell’'s data 4-41

Adding an item to a one-column, alphabetical text list 4-42
A match function 4-43

Searching a list for a cell containing certain text or the next cell
alphabetically 4-44

Resetting variables related to type selection 4-46
Selecting an item in response to a key-down event 4-47

Determining the location of a new cell in response to an arrow-key
event 4-49

Moving the selection in response to an arrow-key event 4-50
Extending the selection in response to an arrow-key event 4-51
Processing an arrow-key event 4-52

Drawing an outline around a list 4-54

Adding a list to the ring 4-55

Updating the outline of all lists in a window 4-56

Moving the outline to the next list in a window 4-57

Moving the outline to the previous list in a window 4-57
Processing messages to a list definition procedure 4-59
Using the default initialization method 4-60

Responding to the 1DrawMsg message 4-61

Responding to the 1HiliteMsg message 4-62
Responding to the 1CloseMsg message 4-63

Setting the cell size of a list 4-63

Adding an icon to a list of icons 4-64

xxi

Chapter 5

Chapter 6

xxii

Icon Utilities

5-1

Figure 5-1
Figure 5-2

Listing 5-1
Listing 5-2
Listing 5-3
Listing 5-4
Listing 5-5
Listing 5-6

Listing 5-7
Listing 5-8

Listing 5-9

The ResEdit view of an icon 5-4
An icon family 5-5

Drawing the icon from an icon family that is best suited to the user’s
display 5-10

Drawing the icon from an icon suite that is best suited to the display
device 5-11

Drawing a specific icon from an icon family or icon suite 5-12
Manipulating icon data in memory 5-13
Drawing an icon of resource type ' ICON' 5-14

Drawing an icon of resource type ' ICON' with a specific alignment
and transform 5-15

Drawing an icon of resource type 'cicn' 5-15

Drawing an icon of resource type 'cicn' with a specific alignment
and transform 5-16

Drawing an icon of resource type ' SICN' with a specific alignment
and transform 5-16

Component Manager 6-1

Figure 6-1

Figure 6-2
Figure 6-3

Figure 6-4
Figure 6-5

Table 6-1

Listing 6-1
Listing 6-2
Listing 6-3
Listing 6-4
Listing 6-5
Listing 6-6
Listing 6-7
Listing 6-8
Listing 6-9
Listing 6-10
Listing 6-11
Listing 6-12
Listing 6-13
Listing 6-14
Listing 6-15
Listing 6-16

The relationship between an application, the Component Manager,
and components 6-5

Supporting multiple component connections 6-34

Interaction between the componentFlags and
componentFlagsMask fields 6-40

Format of a component file 6-84
Structure of a compiled component (' thng') resource 6-85

Request codes 6-14

Finding a component 6-9

Opening a specific component 6-10

Getting information about a component 6-10
Using a drawing component 6-11

A drawing component for ovals 6-16
Responding to an open request 6-20
Responding to a close request 6-21
Responding to the can do request 6-22
Responding to the setup request 6-26
Responding to the draw request 6-27
Responding to the erase request 6-27
Responding to the click request 6-27
Responding to the move to request 6-28
Registering a component 6-31

Rez input for a component resource 6-33
Delegating a request to another component 6-36

Chapter 7

Chapter 8

Translation Manager 7-1

Figure 7-1
Figure 7-2

Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8

Figure 7-9

Figure 7-10
Figure 7-11
Figure 7-12

Listing 7-1

Listing 7-2
Listing 7-3
Listing 7-4
Listing 7-5
Listing 7-6
Listing 7-7
Listing 7-8

Control Panels

The Finder’s application-unavailable alert box 7-5

The application-unavailable alert box for ' TEXT' and ' PICT'
documents 7-5

The translation choices dialog box 7-6

A translation progress dialog box 7-7

The modified application-unavailable alert box 7-7
The enhanced file-opening dialog box 7-8

Document Converter configuration dialog box 7-9

A translation group with multiple source and destination
types 7-29

A translation group with a single destination type 7-29
Point-to-point translation 7-30

Structure of a compiled open (' open') resource 7-44
Structure of a compiled kind (' kind ") resource 7-45

Translation-specific selectors and response bit for
Gestalt 7-12

A sample resource of type 'open' 7-13

A sample resource of type 'kind' 7-15

Sample resources for a translation extension 7-22
Handling Component Manager request codes 7-25
Creating a file translation list 7-30

Identifying file types 7-33

Translating a document 7-34

8-1

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9

Figure 8-10
Figure 8-11
Figure 8-12
Figure 8-13
Figure 8-14
Figure 8-15
Figure 8-16
Figure 8-17

Figure 8-18
Figure 8-19
Figure 8-20

Two control panels, each with its own window 8-5

The General Controls control panel 8-6

Control panel icons in the Control Panels folder 8-9

The Monitors control panel 8-10

An Options dialog box for the SurfBoard video card 8-11
The River control panel interface 8-13

An icon for the River control panel file 8-14

The Color control panel 8-15

Coordinates defining the rectangles of the River control panel
display area 8-16

Example of an inactive control panel 8-34

An Options dialog box with standard controls 8-49

An Options dialog box with superuser controls 8-50

The SurfBoard monitors extension icon 8-51

Display area defined by a rectangle resource 8-53

The SurfBoard Options dialog box with superuser controls 8-54
Structure of a compiled machine ('mach ') resource 8-84

Structure of a compiled rectangle positions ('nrct ')
resource 8-85

Structure of a compiled font information (' finf ') resource 8-86
Structure of a compiled card (' card') resource 8-87
Structure of a compiled rectangle (' RECT ') resource 8-88

xxiii

XXiv

Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5

Listing 8-1
Listing 8-2
Listing 8-3
Listing 8-4
Listing 8-5
Listing 8-6
Listing 8-7
Listing 8-8
Listing 8-9

Listing 8-10
Listing 8-11
Listing 8-12
Listing 8-13
Listing 8-14
Listing 8-15

Listing 8-16
Listing 8-17
Listing 8-18
Listing 8-19

Listing 8-20

Listing 8-21
Listing 8-22
Listing 8-23

Listing 8-24
Listing 8-25
Listing 8-26
Listing 8-27

Listing 8-28
Listing 8-29
Listing 8-30

Possible settings for the machine resource masks
Error codes and their meaning

Messages from the Finder
Messages from the Monitors control panel

8-47

8-76

Possible settings for the machine resource masks

8-21

8-80

8-85

Rez input for a rectangle positions list (' nrct ') resource

Rez input for an item list (' DITL') resource
Rez input for a machine ('mach') resource

Rez input for a file reference (' FREF ') resource
8-22

Rez input for a signature resource
Rez input for a bundle (' BNDL ') resource

A control device function

8-27

8-18
8-21

8-21

8-22
A control panel’s static text defined as user items

8-24

Initializing a control panel: Allocating memory and setting
controls 8-31

Responding to an activate event
Responding to a keyboard event
Responding to the user’s interaction with controls
Responding to update events

Drawing text defined as user items

8-35

8-38

8-43

8-44

8-41

Terminating a control device function when the user closes the

control panel

8-45

Responding to Edit menu commands
Rez input for a card (' card') resource

Rez input for a rectangle (' RECT ') resource

8-46
8-52

8-53

Rez input for the SurfBoard monitors extension item list

resource

8-55

Rez input for icon family resources for a monitors

extension

Rez input for a version (' vers') resource

8-57

Rez input for the SurfBoard string list resource
Rez input for a file reference resource of a monitors

extension

8-60

8-58

8-59

Rez input for a bundle resource of a monitors extension
A monitors extension function
Handling the startup message

Using a normal user rectangle or extending it to display superuser
controls 8-67

Initializing a monitors extension
Drawing a line to separate superuser controls
Responding when a user clicks a control

8-64
8-66

8-69

8-72

8-70

8-60

P REFAUCE

About This Book

This book, Inside Macintosh: More Macintosh Toolbox, together with the book
Inside Macintosh: Macintosh Toolbox Essentials, describes features you can build
into your Macintosh application and documents the system software routines
for implementing those features.

For information about events, windows, menus, controls, alert boxes, and
dialog boxes and about how your application interacts with the Finder, see
Inside Macintosh: Macintosh Toolbox Essentials.

This book, More Macintosh Toolbox, describes how you can enhance your
application by supporting copy and paste and providing messages for help
balloons. In addition, it describes other features you may want to use in your
application, such as scrolling lists in dialog boxes and icons in windows. It
also explains how to create resources, components, translation extensions, and
control panels.

To read and write resources, see the chapter “Resource Manager.” This chapter
describes how you can use resources to store the descriptions of user interface
elements such as menus, windows, controls, dialog boxes, and icons. You can
also use resources to store variable settings, such as the location of the window
at the time the user closes it. When the user opens the document again, your
application can read the information in the resource and restore the window to
its previous location.

To support copy-and-paste operations in your application, see the chapter
“Scrap Manager.” By using the Scrap Manager, you can allow users to copy
and paste data between documents created by your application and
documents created by other applications.

To provide messages for help balloons for elements of your application, see
the chapter “Help Manager.” Help balloons are rounded-rectangle windows
that contain explanatory information for the user. With tips pointing at the
objects they annotate, help balloons look like the bubbles used for dialog in
comic strips. Help balloons are turned on by the user from the Help menu;
when Balloon Help assistance is on, a help balloon appears whenever the user
moves the cursor over the balloon’s hot rectangle.

To create lists in your application’s dialog boxes, including lists that contain
scroll bars, see the chapter “List Manager.” You can use the List Manager to
create one-column or multicolumn lists. Lists are useful for allowing the user
to select one or more items from a group of items.

To display icons in a window or dialog box of your application, see the
chapter “Icon Utilities.” By using Icon Utilities routines, you can automatically
draw the icon from an icon family that is best suited for the current bit depth
of the monitor.

XXV

XXVi

P REFAUCE

To use or create components, see the chapter “Component Manager.”
Components can provide your application with various services such as image
compression or decompression services. You can also provide services to other
applications by creating your own component.

To direct the translation of documents from one format to another, see the
chapter “Translation Manager.” Macintosh Easy Open uses the Translation
Manager to automatically provide some translation services for your
application. Optionally, you can enhance your application’s interaction with
Macintosh Easy Open or provide your own translation services.

To create a control panel or an extension to the Monitors control panel, see the
chapter “Control Panels.” Control panels allow the user to set preferences for
systemwide features, such as the the speaker volume, desktop pattern, or
picture displayed by a screen saver. Extensions to the Monitors control panel
should be created only by the manufacturer of a video device.

To get information from the desktop database, see the chapter “Desktop
Manager.” The desktop database contains information used by the Finder,
such as icon definitions and their associated file types, as well as any
comments that the user has added to the information window for desktop
objects.

If you are new to programming on the Macintosh computer, you should read
Inside Macintosh: Overview for an introduction to general concepts of
Macintosh programming and read Macintosh Human Interface Guidelines for a
complete discussion of user interface guidelines and principles that every
Macintosh application should follow.

Some related topics can be found in other Inside Macintosh books. For
information on how to read and write to the data fork of a file, see the chapter
“Introduction to File Management” in Inside Macintosh: Files. For information
about drawing into a window or other graphics port, see Inside Macintosh:
Imaging with QuickDraw. For information on handling text in your application,
see Inside Macintosh: Text. For information on communicating with other
applications, see Inside Macintosh: Interapplication Communication.

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the
chapter “Resource Manager” contains these sections:

m “Introduction to Resources.” This section presents a general introduction to
resources, resource types, and resource forks.

m “About the Resource Manager.” This section provides an overview of the
features provided by the Resource Manager.

m “Using the Resource Manager.” This section describes the tasks you can
accomplish using the Resource Manager. It describes how to use the most
common routines, gives related user interface information, provides code
samples, and supplies additional information.

P REFAUCE

m “Resource Manager Reference.” This section provides a complete reference
to the Resource Manager by describing the data structures, routines, and
resources it uses. Each routine description also follows a standard format,
which presents the routine declaration followed by a description of every
parameter of the routine. Some routine descriptions also give additional
descriptive information, such as assembly-language information or
result codes.

m “Summary of the Resource Manager.” This section provides the Pascal and
C interfaces for the constants, data structures, routines, and result codes
associated with the Resource Manager. It also includes relevant assembly-
language interface information.

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as the contents of registers, use special formats so that you
can scan them quickly.

Special Fonts

All code listings, reserved words, and names of actual data structures,
fields, constants, parameters, and routines are shown in Courier (this
is Courier).

Words that appear in boldface are key terms or concepts and are defined in
the Glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but not essential
to an understanding of the main text. (An example appears on
page1-9.) &

IMPORTANT
A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-5.) A

WARNING

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on page
page1-5.) A

XXvii

Xxviii

P REFAUCE

Empty Strings

This book occasionally instructs you to provide an empty string in routine
parameters and resources. How you specify an empty string depends on what
language and development environment you are using. In Rez input files and
in C code, for example, you specify an empty string by using two double
quotation marks ("), and in Pascal you specify an empty string by using two
single quotation marks ().

Assembly-Language Information

Inside Macintosh provides information about the registers for specific routines
like this:

Registers on entry
A0 Contents of register AO on entry

Registers on exit
DO Contents of register D0 on exit

In the “Assembly-Language Summary” section at the end of each chapter,
Inside Macintosh presents information about the fields of data structures in
this format:

0 what word event code
2 message long event message
6 when long ticks since startup

The left column indicates the byte offset of the field from the beginning of the
data structure. The second column shows the field name as defined in the
MPW Pascal interface files; the third column indicates the size of that field.
The fourth column provides a brief description of the use of the field. For a
complete description of each field, see the discussion of the data structure in
the reference section of the chapter.

The Development Environment

The system software routines described in this book are available using Pascal,
C, or assembly-language interfaces. How you access these routines depends
on the development environment you are using. When showing system
software routines, this book uses the Pascal interface available with the
Macintosh Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal (except for listings that
describe resources, which are shown in Rez-input format). They show
methods of using various routines and illustrate techniques for accomplishing
particular tasks. All code listings have been compiled and in many cases
tested. However, Apple Computer, Inc., does not intend for you to use these

P REFAUCE

code samples in your application. You can find the location of code listings in
the list of figures, tables, and listings beginning on page xvii. If you know the
name of a particular routine (such as DoPictBalloon or MyPlotAnICON)
shown in a code listing, you can find the page on which the routine occurs by
looking under the entry “sample routines” in the index of this book.

To make the code listings in this book more readable, they show only limited
error handling. You need to develop your own techniques for handling errors.

This book occasionally illustrates concepts by referring to a sample application
called SurfWriter; this book also refers to the sample applications SurfPaint and
SurfDB. These applications are not actual products of Apple Computer, Inc.
This book also refers to a River control panel and SurfBoard display card.
These are not actual products of Apple Computer, Inc. In addition, the name
River Change Systems is used to represent a fictitious company.

XXix

CHAPTER 1

Resource Manager

Contents

Introduction to Resources 1-3
The Data Fork and the Resource Fork 1-4
Resource Types and Resource IDs 1-6
The Resource Map 1-8
Search Path for Resources 1-10
About the Resource Manager 1-12
Using the Resource Manager 1-13
Creating a Resource 1-15
Getting a Resource 1-18
Releasing and Detaching Resources 1-22
Opening a Resource Fork 1-24
Opening an Application’s Resource Fork 1-24
Creating and Opening a Resource Fork 1-25
Specifying the Current Resource File 1-28
Reading and Manipulating Resources 1-30
Writing Resources 1-36
Working With Partial Resources 1-40
Resource Manager Reference 1-42
Data Structure, Resource Types, and Resource IDs 1-42
The Resource Type 1-42
Resource IDs 1-46

Resource IDs of Owned Resources 1-47
Resource Names 1-49

Resource Manager Routines 1-49
Initializing the Resource Manager 1-50

Checking for Errors 1-51

Creating an Empty Resource Fork 1-53

Opening Resource Forks 1-58

Getting and Setting the Current Resource File 1-68
Reading Resources Into Memory 1-71

Contents

1-1

CHAPTER 1

Getting and Setting Resource Information 1-81
Modifying Resources 1-87
Writing to Resource Forks 1-92
Getting a Unique Resource ID 1-95
Counting and Listing Resource Types 1-97
Getting Resource Sizes 1-104
Disposing of Resources 1-106
Closing Resource Forks 1-110
Reading and Writing Partial Resources 1-111
Getting and Setting Resource Fork Attributes 1-116
Accessing Resource Entries in a Resource Map 1-119
Resource File Format 1-121
Resources in the System File 1-126
User Information Resources 1-127
Packages 1-128
Function Key Resources 1-129
Standard Icons 1-129
ROM Resources 1-134
Inserting the ROM Resource Map 1-134
Overriding ROM Resources 1-135
Summary of the Resource Manager 1-137
Pascal Summary 1-137
Constants 1-137
Data Type 1-139
Routines 1-139
C Summary 1-142
Constants 1-142
Data Type 1-143
Routines 1-144
Assembly-Language Summary 1-147
Trap Macros 1-147
Global Variables 1-147
Result Codes 1-148

1-2 Contents

CHAPTER 1

Resource Manager

This chapter describes how to use the Resource Manager to read and write resources. You
typically use resources to store the descriptions for user interface elements such as
menus, windows, controls, dialog boxes, and icons. In addition, your application can
store variable settings, such as the location of a window at the time the user closes the
window, in a resource. When the user opens the document again, your application can
read the information in the resource and restore the window to its previous location.

This chapter begins with an introduction to basic concepts you should understand before
you begin to use Resource Manager routines. The rest of the chapter describes how to

m create resources

m get a handle to a resource

m release and detach resources

m create and open a resource fork
m set the current resource file

m read and manipulate resources
m write resources

m read and write partial resources

To use this chapter, you should be familiar with basic memory management on
Macintosh computers and the Memory Manager. See the chapter “Introduction to
Memory Management” in Inside Macintosh: Memory for details. You should also be
familiar with the File Manager and the Standard File Package. See Inside Macintosh: Files
for this information.

For information on how to create resources using a high-level resource editor like the
ResEdit application or a resource compiler like Rez, see ResEdit Reference and

Macintosh Programmer’s Workshop Reference. (Rez is provided with Apple’s Macintosh
Programmer’s Workshop [MPW]; both MPW and ResEdit are available through APDA.)

To get information on the format of an individual resource type, see the documentation
for the manager that interprets that resource. For example, to get the format of a ' MENU"
resource, refer to the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

Introduction to Resources

A resource is data of any kind stored in a defined format in a file’s resource fork. The
Resource Manager keeps track of resources in memory and allows your application to
read or write resources.

Resources are a basic element of every Macintosh application. Resources typically include
data that describes menus, windows, controls, dialog boxes, sounds, fonts, and icons.
Because such resources are separate from the application’s code, you can easily create
and manage resources for menu titles, dialog boxes, and other parts of your application

Introduction to Resources 1-3

CHAPTER 1

Resource Manager

without recompiling. Resources also simplify the process of translating interface elements
containing text into other languages.

Applications and system software interpret the data for a resource according to its
resource type. You usually create resources using a resource compiler or resource editor.
This book shows resources in Rez format (Rez is a resource compiler provided with
MPW). You can also use other resource tools, such as ResEdit, to create the resources for
your application.

Inside Macintosh: Macintosh Toolbox Essentials describes how other managers, such as the
Menu Manager, Window Manager, Dialog Manager, and Control Manager, use the
Resource Manager to read resources for you. For example, you can use the Menu
Manager, Window Manager, Dialog Manager, and Control Manager to read descriptions
of your application’s menus, windows, dialog boxes, and controls from resources. These
managers all interpret a resource’s data appropriately once it is read into memory.
Although you'll typically use these managers to read resources for you, you can also use
the Resource Manager directly to read and write resources.

The Data Fork and the Resource Fork

In Macintosh system software, a file is a named, ordered sequence of bytes stored on a
volume and divided into two forks, the data fork and the resource fork. The data fork
usually contains data created by the user; the application creating the file can store and
interpret the data in the data fork in whatever manner is appropriate. The resource fork
of a file consists of a resource header, the resources themselves, and a resource map.

Figure 1-1 shows the data fork and resource fork of a file.

Figure 1-1 The data fork and resource fork of a file
'
Resource header
—
Data — — Resources
_/
Resource map
A
Data fork Resource fork

Introduction to Resources

CHAPTER 1

Resource Manager

The resource header includes offsets to the beginning of the resource data and
to the resource map. The resource map includes information about the resources in the
resource fork and offsets to the location of each resource.

A Macintosh file always contains both a resource fork and a data fork, although one or
both of those forks can be empty. The data fork of a document file typically contains data
created by the user, and the resource fork contains any document-specific resources, such
as preference settings and the document’s last window position. The resource fork of an
application file (that is, any file with the file type ' APPL ') typically includes resources
that describe the application’s menus, windows, controls, dialog boxes, and icons, as well
as the application’s ' CODE ' resources. The resource fork of a file is also called a resource
file, because in some respects you can treat it as if it were a separate file.

IMPORTANT

You should store all language-dependent data of your application, such
as text used in help balloons and dialog boxes, as resources. If you do
this, you can begin to localize your application by editing your
application’s resources without recompiling the application code. A

When your application writes data to a file, it writes to either the file’s resource fork or its
data fork. Typically, you use File Manager routines to read from and write to a file’s data
fork and Resource Manager routines to read from and write to a file’s resource fork.

Whether you store data in the data fork or the resource fork of a document file depends
largely on whether you can structure that data in a useful manner as a resource. For
example, it’s often convenient to store document-specific settings, such as the document’s
previous window size and location, as a resource in the document’s resource fork. Data
that the user is likely to edit is usually stored in the data fork of a document.

WARNING

Don’t use the resource fork of a file for data that is not in resource
format. The Resource Manager assumes that any information in a
resource fork can be interpreted according to the standard resource
format described in this chapter. A

Introduction to Resources 1-5

CHAPTER 1

Resource Manager

Figure 1-2 illustrates the typical contents of the data forks and resource forks of an
application file and a document file.

Figure 1-2 An application’s and a document’s data fork and resource fork

1-6

SurfWriter
J1
Empty Description of User’s data Last location
menus, dialog of window
boxes, icons
Text strings for Document
help balloons preferences
and dialog
boxes
Application code

Data fork Resource fork Data fork Resource fork

A resource fork can contain at most 2727 resources. The Resource Manager uses a linear
search when searching a resource fork’s resource types and resource IDs. In general, you
should not create more than 500 resources of the same type in any one resource fork.

Resource Types and Resource IDs

You typically use resources to store structured data, such as icons and sounds, and
descriptions of menus, controls, dialog boxes, and windows. When you create a resource,
you assign it a resource type and resource ID. A resource type is a sequence of four
characters that uniquely identifies a specific type of resource, and a resource ID identifies
a specific resource of a given type by number. (You can also use a resource name instead
of a resource ID to identify a resource of a given type. However, a resource ID is preferred
because it’s generally more convenient to generate unique numbers than unique names.)

For example, to create a description of a menu in a resource, you create a resource of type
'MENU' and give it a resource ID or resource name that differs from any other 'MENU"
resources that you have defined. In general, resource numbers 128 through 32767 are
available for your use, although the numbers you can use for some types of resources are
more restricted. (See “Resource IDs” on page 1-46 for more information about restrictions
on the resource IDs used with specific resource types.)

Introduction to Resources

CHAPTER 1

Resource Manager

System software defines a number of standard resource types. Here are some examples:

Resource

type Description

"ALRT Alert box

"CNTL' Control

"CODE' Application code segment

'DITL' Item list in a dialog box or alert box

'DLOG ' Dialog box

" ICN# ! Large (32-by-32 pixel) black-and-white icon, with mask
"ICON' Large (32-by-32 pixel) black-and-white icon, without mask
'MBAR' Menu bar

'MENU' Menu

'NFNT Bitmapped font

"STR String

'STR# String list

'"WIND' Window

"movv' QuickTime movie

‘snd Sound

You can use these resource types to define their corresponding elements (for example, use
a 'WIND' resource to define a window). You can also create your own resource types if
your application needs resources other than the standard resource types defined by the
system software. See Table 1-2 on page 1-43 for a complete list of standard resource types.

The Resource Manager does not interpret the format of an individual resource type.
When you request a resource of a particular type with a given resource ID, the Resource
Manager looks for the specified resource and, if it finds it, reads the resource into
memory and returns a handle to it.

Your application or other system software routines can use the Resource Manager to read
resources into memory. For example, when you use the Window Manager to read a
description of a window from a 'WIND' resource, the Window Manager uses the
Resource Manager to read the resource into memory. Once the resource is in memory, the
Window Manager interprets the resource’s data and creates a window with the
characteristics described by the resource.

System software stores certain resources for its own use in the System file’s resource fork.
Although many of these resources are used only by the system software, your application
can use some of them if necessary. For example, the standard images for the I-beam and
wristwatch cursors are stored as resources of type ' CURS' in the System file. Your
application can use these resources to change the appearance of the cursor.

Introduction to Resources 1-7

CHAPTER 1

Resource Manager

The Resource Map

The resource map in the resource fork of a file contains entries for each resource in the
resource fork. Each entry lists the resource’s resource type, resource ID, name, attributes,
and location. When the Resource Manager opens the resource fork of a file, it reads the
resource map into memory. The resource map remains in memory until the file is closed.

The entries in the resource map on disk give the locations of resources as offsets to

their locations in the resource fork. The entries in the resource map in memory specify the
location of resources using handles—a handle whose value is NIL, if the resource is not
currently in memory, or a handle to the resource’s location in memory.

Resource attributes are flags that tell the Resource Manager how to handle the resource.
For example, resource attributes specify whether the resource should be read into
memory immediately when the Resource Manager opens the resource fork or read

into memory only when needed; whether the resource should be read into the
application or system heap; and whether the resource is purgeable.

The resource attributes for a resource are described by bits in the low-order byte of an
integer value. Figure 1-3 shows which bits correspond to each resource attribute.

Figure 1-3 Resource attributes

1-8

Low-order byte (high-order byte is ignored)
7 6 5 4 3 2 1 0
* *

—_

if read into system heap, 0 if application heap ——

—_

if purgeable, 0 if not
if locked, 0 if not

—_

—_

if protected, 0 if not

—_

if to be preloaded, 0 if not

—_

if to be written to resource file, 0 if not

* Reserved for use by the Resource Manager

When it first opens a resource fork, the Resource Manager examines the resource
attributes for each resource listed in the resource map. If the preloaded attribute of the
resource is set, the Resource Manager reads the resource into memory and specifies its
location by setting the resource’s resource map entry in memory to contain a handle to
the resource data. If the preloaded attribute of the resource is not set, the Resource
Manager does not read the resource into memory; instead, it specifies the resource’s
location in the resource map entry in memory with a handle whose value is NIL.

Introduction to Resources

CHAPTER 1

Resource Manager

When searching for a resource, the Resource Manager always looks in the resource map
in memory, not the resource map of the resource fork on disk. If the resource map in
memory specifies a handle for a particular resource, the Resource Manager uses the
resource in memory; if the resource map in memory specifies a handle whose value is
NIL, the Resource Manager reads the resource from the resource fork on disk into
memory.

You can set the system heap attribute of a resource if you want to read a resource into the
system heap. In most cases you should not set this attribute. If you do not set the system
heap attribute, the Resource Manager reads the resource into relocatable blocks of your
application’s heap.

The purgeable attribute specifies whether the Resource Manager can purge a resource
from memory to make room in memory for other data. If you specify that a resource is
purgeable, you need to use the Resource Manager to make sure the resource is still in
memory before referring to it through its resource handle.

Some resources must not be purgeable. For example, the Menu Manager expects menu
resources to remain in memory, so you should not set the purgeable attribute of a
menu resource. Other resources, such as windows, controls, and dialog boxes, do not
have to remain in memory once the corresponding user interface element has been
created. You should set the purgeable attribute for these kinds of resources.

You can set the locked attribute of a resource if you do not want the resource to be
relocatable or purgeable. The locked attribute overrides the purgeable attribute; when the
locked attribute is set, the resource is not purgeable, even if the purgeable attribute

is set.

Note
If both the preloaded attribute and the locked attribute are set, the
Resource Manager loads the resource as low in the heap as possible.

You can set the protected attribute of a resource to ensure that your application doesn’t
accidentally change the resource ID or name of the resource, modify its contents, or
remove the resource from its resource fork. In most cases you do not need to set this
attribute. If you do set the protected attribute of a resource, you can still use a Resource
Manager routine to change the protected attribute or to set other attributes of the
resource.

The changed attribute applies only while the resource map is in memory. You should
specify a value of 0 for the bit representing the changed attribute of a resource stored on
disk. The Resource Manager sets the changed attribute of a resource’s entry in the
resource map in memory whenever your application changes a resource using the
ChangedResource procedure, changes a resource map entry using the SetResAttrs
or SetResInfo procedure, or adds a resource using the AddResource procedure.

Introduction to Resources 1-9

1-10

CHAPTER 1

Resource Manager

Search Path for Resources

When your application uses a Resource Manager routine to read or perform an operation
on a resource, the Resource Manager follows a defined search path to find the resource.
The file whose resource fork the Resource Manager searches first is referred to as the
current resource file. Whenever your application opens a resource fork of a file, that file
becomes the current resource file. Thus, the current resource file usually corresponds to
the file whose resource fork was opened most recently. However, your application can
change the current resource file if needed by using the UseResFile procedure.

Most of the Resource Manager routines assume that the current resource file is the file on
whose resource fork they should operate or, in the case of a search, the resource fork in
which to begin the search. If the Resource Manager can’t find the resource in the current
resource file, it continues searching until it either finds the resource or has searched all
files in the search path.

On startup, system software calls the InitResources function to initialize the Resource
Manager. The Resource Manager creates a special heap zone within the system heap and
builds a resource map that points to ROM-resident resources. It opens the resource fork
of the System file and reads its resource map into memory.

When a user opens your application, system software opens your application’s resource
fork. When your application opens a file, your application typically opens both the file’s
data fork and the file’s resource fork. When the Resource Manager searches for a
resource, it normally looks first in the resource map in memory of the last resource fork
that your application opened. So, if your application has a single file open, the

Resource Manager looks first in the resource map for that file’s resource fork. If

the Resource Manager doesn’t find the resource there, it continues to search the resource
maps of each resource fork open to your application in reverse order of opening (that is,
the most recently opened is searched first). After looking in the resource maps of the
resource files your application has opened, the Resource Manager searches your
application’s resource map. If it doesn’t find the resource there, it searches the System
file’s resource map.

This default search order allows your application to use resources defined in the System
file, to override resources defined in the System file, to share a single resource among
several files by storing it in your application’s resource fork, and to override
application-defined resources with document-specific resources.

When the Resource Manager opens a resource fork, the File Manager assigns that
resource fork a file reference number, which is a unique number identifying an access
path to the resource fork. Your application needs to keep track of the file reference
number of its own resource fork, so that it can refer specifically to that resource fork
when necessary. Your application may also need to keep track of the file reference
numbers for other resource forks that it opens.

For example, the SurfWriter application stores in its own resource fork the first few bars
of Beethoven’s Fifth Symphony as a resource of type 'snd '. The SurfWriter application
plays this sound whenever the user writes more than one page of text per hour. The user
can change this sound for all documents created by SurfWriter by using SurfWriter’s
Preferences command to specify or record a new sound.

Introduction to Resources

CHAPTER 1

Resource Manager

SurfWriter also allows the user to associate a sound with a specific document by

using SurfWriter’s Set Reward Sound command to specify or record a new sound. When
SurfWriter wants to play the sound, it uses the Resource Manager to read the resource of
type 'snd ' with the resource ID kProductiveWriter. Figure 1-4 shows the search
path the Resource Manager takes to find this sound resource.

Figure 1-4 A typical search order for a specific resource

Look for:

|

=)

|

Usual search path
[

—> Not found
Document
resource map
—> Not found
SurfWriter
Preferences
resource map

o) =)

Application
resource map

Found

A

=)

System
resource map

System software opens SurfWriter’s resource fork when the user opens the SurfWriter
application. On startup, SurfWriter opens its preferences file (SurfWriter Preferences).
When the user opens a SurfWriter document, SurfWriter opens the document’s data fork
and resource fork. When SurfWriter attempts to read an 'snd ' resource, the Resource
Manager looks first in the resource map in memory of the current resource file (in the
example illustrated in Figure 1-4, the SurfWriter document) for the requested resource. If
the Resource Manager doesn’t find the resource, it searches the resource map of the next
most recently opened file (in this example, SurfWriter Preferences). It continues searching
the resource forks in memory of any resource forks open to the SurfWriter application

Introduction to Resources 1-11

CHAPTER 1

Resource Manager

until it either finds the resource or has searched the last resource map in its search path.
Typically the last resource map searched by the Resource Manager is the resource map of
the System file. This allows your application to use resources in the System file as a
default.

Table 1-1 summarizes the typical locations of resources used by an application.

Table 1-1 Typical locations of resources
Resource fork Resources contained in resource fork
Resource fork of System file Sounds, icons, cursors, and other elements available

for use by all applications, and code resources that
manage user interface elements such as menus,
controls, and windows

Resource fork of application Static data (such as text used in dialog boxes or help
balloons) and descriptions of menus, windows,
controls, icons, and other elements

Resource fork of application’s Data that encodes the user’s global preferences for the
preferences file application
Resource fork of document Data that defines characteristics specific only to this

document, such as its last size and location

Although you can take advantage of the Resource Manager’s search order to find a
particular resource, in general your application should set the current resource file to the
file whose resource fork contains the desired resource before reading and writing
resource data. In addition, you can restrict the Resource Manager search path by using
Resource Manager routines that look only in the current resource file’s resource map
when searching for a specific resource.

About the Resource Manager

1-12

The Resource Manager provides routines that allow your application (and system
software) to create, delete, open, read, modify, and write resources; get information about
them; and alter the Resource Manager’s search path.

Most Macintosh applications commonly read data from resources either indirectly, by
calling other system software routines (such as Menu Manager routines) that in turn call
the Resource Manager, or directly, by calling Resource Manager routines. At any time
during your application’s execution, at least two resource forks from which it can read
information are likely to be open: the System file’s resource fork and your application’s
resource fork.

About the Resource Manager

CHAPTER 1

Resource Manager

As previously described, system software opens the System file’s resource fork at startup
and your application’s resource fork at application launch. Your application is likely to
open the resource forks of several other files at various times while it is running. For
example, if your application saves the last position and size of a window (as determined
by the user), you can use Resource Manager routines to write this information to an
application-defined resource in the document file’s resource fork. The next time the user
opens the document, your application can use the Resource Manager to read the
information saved in this resource and position the document accordingly.

You can store the user’s general preferences, such as the default font or paper size, in
your application’s preferences file. You store a preferences file in the Preferences folder of
the System Folder. The name of an application’s preferences file typically consists of the
name of the application followed by the word “Preferences.” If your application can be
shared by multiple users, you can use the Resource Manager to create a separate
preferences file for each user.

Using the Resource Manager

You use the Resource Manager to perform operations on resources. To determine whether
certain features of the Resource Manager are available (support for FSSpec records and
partial resources), use the Gestalt function.

Two commonly used Resource Manager routines use a file system specification (FSSpec)
record: the FSpCreateResFile procedure and the FSpOpenResFile function. These
routines are available only in System 7 or later. Call the

Gestalt function with the gestaltFSAttr selector to determine whether the Resource
Manager routines that use FSSpec records exist. If the bit indicated by the constant
gestaltHasFSSpecCalls is set, then the routines are available.

CONST

gestaltFSAttr = 'fs '; {Gestalt selector for }
{ File Mgr attributes}
{check this bit in the }
{ response parameter}

gestaltHasFSSpecCalls

Il
J

In addition, the Resource Manager routines for reading and writing partial resources are
available only in System 7 or later versions of system software. Use the Gestalt
function to determine whether these features are available. Call the Gestalt function
with the gestaltResourceMgrAttr selector to determine whether the routines for
handling partial resources exist. If the bit indicated by the constant
gestaltPartialRsrcs is set, then the Resource Manager routines for handling partial
resources are available. For more information about the Gestalt function, see Inside
Macintosh: Operating System Ultilities.

Using the Resource Manager 1-13

1-14

CHAPTER 1

Resource Manager

CONST
gestaltResourceMgrAttr = 'rsrc'; {Gestalt selector for }
{ Resource Mgr attributes}
0; {check this bit in the }
{ response parameter}

gestaltPartialRsrcs

You can use the ResError function to retrieve errors that may result from calling
Resource Manager routines. Resource Manager procedures do not report error
information directly. Instead, after calling a Resource Manager procedure your
application should call the ResError function to determine whether an error occurred.

Resource Manager functions usually return NIL or —1 as the function result when there’s
an error. For Resource Manager functions that return —1, your application can call the
ResError function to determine the specific error that occurred. For Resource Manager
functions that return handles, your application should always check whether the value of
the returned handle is NIL. If it is, your application can use ResError to obtain specific
information about the nature of the error. Note, however, that in some cases ResError
returns noErr even though the value of the returned handle is NIL.

The rest of this section describes how to create a resource using ResEdit or the Rez
resource compiler. It then describes how to use Resource Manager routines to

m get a handle to a resource and modify a purgeable resource safely
m release and detach resources
m create and open a resource fork

m set the current resource file (the file whose resource fork the Resource Manager
searches first)

m read and manipulate resources
m write resources
m read and write partial resources

For detailed descriptions of all Resource Manager routines, see “Resource Manager
Reference” beginning on page 1-42. For information on writing data to a file’s data fork,
see Inside Macintosh: Files.

Using the Resource Manager

CHAPTER 1

Resource Manager

Creating a Resource

You typically define the user interface elements of your application, such as menus,
windows, dialog boxes, and controls, by specifying descriptions of these elements in
resources. You can then use Menu Manager, Window Manager, Dialog Manager, or
Control Manager routines to create these elements—based on their resource
descriptions—as needed. You can create resource descriptions using a resource editor,
such as ResEdit, which lets you create the resources in a visual manner; or you can
provide a textual, formal description of resources in a file and then use a resource
compiler, such as Rez, to compile the description into a resource. Figure 1-5 shows the
window ResEdit displays for the SurfWriter application. This window lists all of the
resources in the resource fork of the SurfWriter application.

Figure 1-5 The ResEdit window for the SurfWriter application

|
i

S[I== Surfllriter
Type Count

ALRT 4
EMDL

CMTL 1
CODE
DATA
DITL

DLOG
DREL
FREF
hdlg

hfdr

hrmnu
icld

icld

ICH*
[COM
ics®
iced
icsd

MEAR
MEML

[y — — — —]] = — [— R = — [0 — R

Using the Resource Manager 1-15

CHAPTER 1

Resource Manager

You can use ResEdit to examine any of your application’s resources. For example, to view
your application’s 'MENU' resources, double-click that resource in the ResEdit window.
Figure 1-6 shows how ResEdit displays the menus of the SurfWriter application.

Figure 1-6 The menus of the SurfWriter application

Surflllriter
Type Count

Agﬂz— MENUs from Surfllriter

il « I I Fi- I
L || About Surflriter.] New #EN Can't Undo]
DA Open... #0
DI Cut 5
DL Close EL Copy 3
DR Save S Paste E
FH Save As... Clear
hd
h w

hf
iy
ic
icld
ICH#*
ICOM
ics®
icsd
icsd
MEAR
MEMLU
SIZE
STR#*
vers
WIMD

[E
I
B

129 1Z0

o — N — T — — — — 0 —

Using the Resource Manager

CHAPTER 1

Resource Manager

Listing 1-1 shows the definition of SurfWriter’s Apple menu in Rez input format.

Listing 1-1 A menu in Rez input format

#define mApple 128

resource 'MENU' (mApple, preload) { /*resource ID, preload resource*/
mApple, /*menu ID*/
textMenuProc, /*uses standard menu definition */
/* procedure*/
Ob1111111111111111111111111111101, /*enable About item, */
/* disable divider, */

/* enable all other items*/

enabled, /*enable menu title*/
apple, /*menu title*/
{

/*first menu item*/
"About SurfWriter..", /*text of menu item*/
noicon, nokey, nomark, plain; /*item characteristics*/
/*second menu item*/
-, /*item text (divider)*/

noicon, nokey, nomark, plain /*item characteristics*/

Your application can also create, modify, and save resources as needed using various
Resource Manager routines.

You can store your application-specific resources in the application file itself. You need
not add resources to your application after it is created. Instead, store any
document-specific resources in the relevant document and store user preferences in a
preferences file in the Preferences folder of the System Folder.

To retrieve resources from your application’s resource fork, you usually use other
managers (such as the Menu Manager or Window Manager). To retrieve resources other
than menus, windows, dialog boxes, or controls, you usually use Resource Manager
routines.

Using the Resource Manager 1-17

CHAPTER 1

Resource Manager

To retrieve a resource from a document file or a preferences file, your application needs to
open the resource fork of the file and then use Resource Manager routines to retrieve any
resources in the file. The section that follows, “Getting a Resource,” describes how the
Resource Manager returns a handle to a resource at your application’s request and how
to modify a purgeable resource safely. The sections “Opening a Resource Fork” and
“Reading and Manipulating Resources” beginning on page 1-24 and page 1-30,
respectively, describe in detail how to use Resource Manager routines to open and read
resources.

Getting a Resource

You usually use the GetResource function to read data from resources other than
menus, windows, dialog boxes, and controls. You supply the resource type and resource
ID of the desired resource, and the Get Resource function searches the resource maps of
open resource forks (according to the search path described in “Search Path for
Resources” beginning on page 1-10) for that resource’s entry.

If the GetResource function finds an entry for the requested resource in the resource
map and the resource is in memory (that is, if the resource map in memory does not
specify the resource’s location with a handle whose value is NIL), GetResource returns
a handle to the resource. If the resource is listed in the resource map but is not in memory
(the resource map in memory specifies the resource’s location with a handle whose value
is NIL), GetResource reads the resource data from disk into memory, replaces the entry
for the resource’s location with a handle to the resource, and returns to your application a
handle to the resource. For a resource that cannot be purged (that is, whose purgeable
attribute is not set) you can use the returned handle to refer to the resource in other
Resource Manager routines. (Handles to purgeable resources are discussed later in this
section.)

For example, this code uses GetResource to get a handle to an 'snd ' resource with
resource ID 128.

VAR
resourceType: ResType;
resourcelD: Integer;
myHndl : Handle;
resourceType := 'snd ';
resourceID := 128;
myHndl := GetResource (resourceType, resourcelD);

Using the Resource Manager

CHAPTER 1

Resource Manager

Figure 1-7 shows how GetResource returns a handle to a resource at your application’s

request.

Figure 1-7 Getting a handle to a resource

SurfWriter

'snd ' 128 J
'snd ' 129 -
'snd ' 130

L1

7

Resource data

I\'

Master pointer

NN\

Resource fork

'snd ' [128] |

'snd '[129

NN\

Resource handle (myHnd1l)

Application heap in memory

Resource map

Note that the handle returned to your application is a copy of the handle in the resource
map. The resource map contains a handle to the resource data, and the Resource Manager

returns a handle to the same block of memory for use by your application. If you use

GetResource to get a handle to a resource that has the purgeable attribute set or if you
intend to modify such a resource, keep the following discussion in mind.

Using the Resource Manager

1-19

CHAPTER 1

Resource Manager

If a resource is marked purgeable and the Memory Manager determines that it must
purge a resource to make more room in your application’s heap, it releases the memory
occupied by the resource. In this case, the handle to the resource data is no longer valid,
because the handle’s master pointer is set to NIL. If your application attempts to use the
handle previously returned by the Resource Manager, the handle no longer refers to the
resource. Figure 1-8 shows a handle to a resource that is no longer valid, because the
Memory Manager has purged the resource. To avoid this situation, you should call the
LoadResource procedure to make sure that the resource is in memory before
attempting to refer to it.

Figure 1-8 A handle to a purgeable resource after the resource has been purged

1-20

§ J

SurfWriter

! Arbitrary data

'snd ' 128 / /

'snd ' 129 — .

Tond " 130 Master pointer (NTL)

Resource fork 'snd ' [128] | Resource map
'snd '[129

NN\«
NN\

Resource handle (myHnd1l)

Application heap in memory

Using the Resource Manager

CHAPTER 1

Resource Manager

If you need to make changes to a purgeable resource using routines that may cause the
Memory Manager to purge the resource, you should make the resource temporarily not
purgeable. You can use the Memory Manager procedures HGet State, HNoPurge, and
HSetState for this purpose. After calling HGet State and HNoPurge, change the
resource as necessary. To make the changes permanent, use the ChangedResource and
WriteResource procedures; then call HSet State when you're finished. Listing 1-2
illustrates the use of these routines.

Listing 1-2 Safely changing a resource that is purgeable
VAR

resourceType: ResType;

resourcelD: Integer;

myHndl: Handle;

state: SignedByte;
resourceType := 'snd ';
resourcelID := 128;

{read the resource into memory}

myHndl := GetResource(resourceType, resourcelD);
state := HGetState(myHndl); {get the state of the handle}
HNoPurge (myHndl) ; {mark the handle as not purgeable}

{modify the resource as needed}

(...}

ChangedResource (myHndl) ; {mark the resource as changed}
WriteResource (myHndl) ; {write the resource to disk}
HSetState (myHndl, state); {restore the handle's state}

Although you'll usually want to use WriteResource to write a resource’s data to disk
immediately (as shown in Listing 1-2), you can instead use the SetResPurge procedure
and specify TRUE in the install parameter. If you do this, the Memory Manager calls
the Resource Manager before purging data specified by a handle. The Resource Manager
determines whether the passed handle is that of a resource in your application’s heap,
and, if so, calls WriteResource to write the resource to disk if its changed attribute is
set. You can call the SetResPurge procedure and specify FALSE in the install
parameter to restore the normal state, so that the Memory Manager purges resource data
in memory without checking with the Resource Manager.

Using the Resource Manager 1-21

CHAPTER 1

Resource Manager

Releasing and Detaching Resources

When you've finished using a resource, you can call ReleaseResource to release the
memory associated with that resource. For a given resource, the ReleaseResource
procedure releases the memory associated with the resource, setting the handle’s master
pointer to NIL, thus making your application’s handle to the resource invalid. (This is
similar to the situation shown in Figure 1-8.) After releasing a resource, use another
Resource Manager routine if you need to use the resource again. For example, the code in
Listing 1-3 first uses Get Resource to get a handle to a resource, manipulates

the resource, then uses ReleaseResource when the application has finished

using the resource. If the application needs the resource later, it must get a valid handle to
the resource by reading the resource into memory again (using GetResource, for
example).

Listing 1-3 Releasing a resource

1-22

PROCEDURE MyGetAndPlaySoundResource (resourcelID: Integer) ;
VAR
myHndl: Handle;
BEGIN
myHndl := GetResource('snd ', resourcelD);
{use the resource}
{when done, release the resource}
ReleaseResource (myHndl) ;
END;

Your application can also use the Det achResource procedure to replace a resource’s
handle in the resource map with a handle whose value is NIL. However, the
DetachResource procedure does not release the memory associated with the resource.
You can use DetachResource when you want your application to access the resource’s
data directly, without the aid of the Resource Manager, or when you need to pass the
handle to a routine that does not accept a resource handle. (For example, the
AddResource routine used in Listing 1-4 on page 1-24 takes a handle to data, not a
handle to a resource.) Once you detach a resource, the Resource Manager does not
recognize the resource’s handle in the resource map in memory as a valid handle to a
resource, but your application can still manipulate the resource’s data through its own
handle to the data.

Figure 1-9 shows how both your application and the Resource Manager have a handle to
a resource after your application calls Get Resource. The figure also shows how the
Resource Manager replaces the handle in the resource map in memory with a handle
whose value is NIL when your application calls DetachResource.

Using the Resource Manager

CHAPTER 1

Resource Manager

Figure 1-9

Detaching a resource

SurfWriter
'snd ' 128 J
'snd ' 129 -
'snd ' 130

L1

Before DetachResource (myHndl)

Resource data

{

Master pointer

Y
/

Resource fork

'snd

128] |

'snd

129

NN\«

SurfWriter
'snd ' 128 J
'snd ' 129 o
'snd ' 130

L1

Resource fork

Resource handle (myHndl)

Application heap in memory

After DetachResource (myHndl)

Resource data

Master pointer

N\

NN\ N
L

'snd

128 |NIL

'snd

129

N\

N\

Resource handle (myHnd1l)

LN

Application heap in memory

— Resource map

Resource map

Using the Resource Manager

1-23

CHAPTER 1

Resource Manager

You can also easily copy a resource by first reading in the resource using GetResource,
detaching the resource using DetachResource, then copying the resource by using
AddResource (and specifying a new resource ID). Listing 1-4 uses this technique to copy
a resource within the current resource file.

Listing 1-4 Detaching a resource

1-24

PROCEDURE MyCopyAResource (resourceType: ResType;
resourcelD: Integer;
VAR myHndl: Handle) ;

VAR
newResourcelID: Integer;

BEGIN
myHndl := GetResource (resourceType, resourcelD);
DetachResource (myHndl) ; {detach the resource}
newResourceID := UniquelD(resourceType) ;

AddResource (myHndl, resourceType, newResourcelD, '');
END;

Opening a Resource Fork

When your application opens a file’s resource fork or data fork, the File Manager returns
a file reference number. You use a file reference number in File Manager routines (and

in a few Resource Manager routines) to identify a unique access path to an open fork of a
specific file. Even though the file reference number of the data fork and the resource fork
usually match, you should use the file reference number of a file’s resource fork in
Resource Manager routines; don’t assume that it has the same value as the file reference
number for the same file’s data fork.

Opening an Application’s Resource Fork

Because system software automatically opens your application’s resource fork when the
user opens your application, you do not need to open it explicitly. However, you should
save your application’s file reference number. You can do this by calling the CurResFile
function early in your initialization procedure. (The CurResFile function returns the
file reference number of the current resource file.) Listing 1-5 shows the part of
SurfWriter’s initialization procedure that gets the file reference number of the
application’s resource fork.

Using the Resource Manager

CHAPTER 1

Resource Manager

Listing 1-5 Getting the file reference number for your application’s resource fork

PROCEDURE MyInitialize;

BEGIN
MaxApplzZone; {extend heap zone to limit}
MoreMasters; {get 64 more master pointers}
MoreMasters; {get 64 more master pointers}
InitGraf (@thePort) ; {initialize QuickDraw}
InitFonts; {initialize Font Manager}
InitWindows; {initialize Window Manager}
TEInit; {initialize TextEdit}
InitDialogs (Nil) ; {initialize Dialog Manager}
InitCursor; {set cursor to arrow}

{get the file ref num of this app's resource file }
{ and save it in a global variable}
gAppsResourceFork := CurResFile;

{do other initialization}

END;

SurfWriter uses an application-defined global variable (gAppsResourceFork) to refer to
its resource fork in subsequent calls to Resource Manager routines.

Creating and Opening a Resource Fork

To save resources in the resource fork of a file, you must first create the resource fork (if it
doesn’t already exist in a form that can be used by the Resource Manager) and obtain a
file reference number for it. After creating a new resource fork, you must open it before
writing any resources to it. You'll usually want to save the file reference number of any
resource fork that your application opens.

To create a resource fork, use the FSpCreateResFile procedure. This procedure
requires four parameters: a file-system specification record (identifying the name and
location of the file), the signature of the application creating the file, the file type of the
file, and the script code for the file.

A file system specification record is a standard format for identifying a file or directory.
The file system specification record for files and directories is available in System 7 and
later versions of system software and is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD
vRefNum: Integer; {volume reference number}
parID: LongInt; {directory ID of parent directory}
name: Str63; {filename or directory name}

END;

Using the Resource Manager 1-25

CHAPTER 1

Resource Manager

Certain File Manager routines—those that open a file’s data fork—also take a file system
specification record as a parameter. You can use the same FSSpec record in Resource
Manager routines that create or open the file’s resource fork.

If the file specified by the FSSpec record doesn’t already exist (that is, if the file has
neither a data fork nor a resource fork), the FSpCreateResFile procedure creates a
resource file—that is, a resource fork, including a resource map. In this case, the file has a
zero-length data fork. The FSpCreateResFile procedure also sets the creator, type, and
script code fields of the file’s catalog information record to the specified values.

If the file specified by the FSSpec record already exists and includes a resource fork with
a resource map, FSpCreateResFile does nothing, and the ResError function returns
an appropriate result code. If the data fork of the file specified by the FSSpec record
already exists but the file has a zero-length resource fork, FSpCreateResFile creates an
empty resource fork and resource map for the file; it also changes the creator, type, and
script code fields of the catalog information record of the file to the specified values.

Listing 1-6 shows a function that creates a new resource fork, including a resource map.

Listing 1-6 Creating an empty resource fork

1-26

FUNCTION MyCreateResourceFork (myFSSpec: FSSpec): OSErr;
BEGIN
FSpCreateResFile (myFSSpec, gAppSignature, 'TEXT',
smSystemScript) ;
MyCreateResourceFork := ResError;
END;

After creating a resource fork, you can open it using the FSpOpenResFile function. The
FSpOpenResFile function returns a file reference number that you can use to change or
limit the Resource Manager’s search order or to close a resource fork.

After opening a resource fork, you can write resources to it using the routines described
in “Writing Resources” beginning on page 1-36. (You can also write to a resource fork
using File Manager routines; in general, you should use the Resource Manager.) When
you are finished using a resource fork that your application has specifically opened, you
should close it using the CloseResFile procedure. The Resource Manager
automatically closes any resource forks opened by your application that are still open
when your application calls ExitToShell.

Using the Resource Manager

CHAPTER 1

Resource Manager

Listing 1-7 shows a routine that uses the application-defined function
MyCreateResourceFork (shown in Listing 1-6) to create a new resource fork, opens
the resource fork, writes resources to it, then closes the resource fork when it is finished.

Listing 1-7 Creating and opening a resource fork

FUNCTION MyCreateAndOpenResourceFork (myFSSpec: FSSpec): OSErr;
VAR

myErr: OSErr;
myRefNum: Integer;
BEGIN
{create a resource file}
myErr := MyCreateResourceFork (myFSSpec) ;
IF myErr = noErr THEN {open the resource file}
myRefNum := FSpOpenResFile (myFSSpec, fsRdWrPerm) ;
IF ResError = noErr THEN {write to the resource file}
myErr := MyWriteResourcesToFile (myRefNum) ;
CloseResFile (myRefNum) ; {close the resource file}
MyCreateAndOpenResourceFork := myErr;
END;

Note that when you open a resource fork, the Resource Manager resets the search path so
that the file whose resource fork you just opened becomes the current resource file. For
example, suppose the SurfWriter application file is open, and the user opens document A,
then document B. SurfWriter opens the resource forks of both documents. In this case, the
search order is

1. document B (the current resource file)
2. document A

3. the SurfWriter application

4. the System file

If the user is working with document A and SurfWriter uses the UseResFile procedure
to set the current resource file to document A, the new search order is

1. document A (the current resource file)
2. the SurfWriter application
3. the System file

Using the Resource Manager 1-27

1-28

CHAPTER 1

Resource Manager

If the user opens another document, document C, and SurfWriter opens its resource fork,
the new search order becomes

1. document C (the current resource file)
2. document B

3. document A

4. the SurfWriter application

5. the System file

Specifying the Current Resource File

When you request a resource, the Resource Manager follows the search order described
in “Search Path for Resources” on page 1-10. To change the starting point of the search or
to restrict the search to the resource fork of a specific file, you can use CurResFile and
UseResFile. To get the file reference number for the current resource file, use the
CurResFile function. You can then use the UseResFile procedure to set the current
resource file to the desired file, use other Resource Manager routines to retrieve any
desired resources, and then use UseResFile again to restore the current resource file to
its previous setting.

For example, the SurfWriter application allows users to specify or record either a special
reward sound that applies only to a specific document or a general reward sound that
can apply to any document. SurfWriter stores a document-specific reward sound resource
in the document and the general reward sound resource in either the SurfWriter
Preferences file (if the reward sound is user-defined) or in the application file. If several
documents are open and SurfWriter needs to play a document-specific reward sound,
SurfWriter attempts to get the sound from that document without searching the resource
forks of any other documents that might be open. If the document doesn’t have the
specified reward sound, SurfWriter searches for the sound in the resource fork of the
preferences file and, if necessary, of the application file and System file.

Listing 1-8 shows how the SurfWriter application uses CurResFile and UseResFile to
get and play the appropriate reward sound for a given document. All reward sounds
share the same resource ID, kProductiveWriter. The application-defined procedure
MyGetAndPlayRewardSoundResource first checks whether the reward sound setting
for the document specifies a sound stored in that document or a general reward sound
stored in the preferences file or elsewhere. If the document has a reward sound, the
procedure sets the current resource file to that document, searches just that document’s
resource fork for the sound, and plays the sound. If the document doesn’t have a reward
sound, the MyGetAndPlayRewardSoundResource procedure sets the current resource
file to SurfWriter Preferences, searches the entire resource chain from that point on for the
sound, and plays the sound. This scheme ensures that SurfWriter always plays the correct
reward sound, even if different reward sound resources in different documents share the
same resource ID.

Using the Resource Manager

CHAPTER 1

Resource Manager

Listing 1-8 Saving and restoring the current resource file

PROCEDURE MyGetAndPlayRewardSoundResource (refNum: Integer) ;
VAR

myHndl: Handle;
prevResFile: Integer;
BEGIN
prevResFile := CurResFile; {save the current resource file}

IF MyHasDocumentRewardSound (refNum) THEN
BEGIN
{first set the current resource file to a specific document}
UseResFile (refNum) ;
{get reward sound from the document using GetlResource }
{ to limit search to current resource file and avoid }
{ searching the resource forks of any other open documents}
myHndl := GetlResource('snd ', kProductiveWriter) ;
END
ELSE
BEGIN
{set current resource file to SurfWriter Preferences}
UseResFile (gSurfPrefsResourceFork) ;
{get reward sound resource using GetResource to search }
{ entire resource chain starting with preferences file}

myHndl := GetResource('snd ', kProductiveWriter);
END;
IF myHndl <> NIL THEN
BEGIN

MyPlayThisSound (myHndl) ;
ReleaseResource (myHndl) ;
END;
UseResFile (prevResFile) ; {restore the current resource }
{ file to its previous setting}

END;

Using the Resource Manager 1-29

1-30

CHAPTER 1

Resource Manager

The MyGetAndPlayRewardSoundResource procedure saves the reference number of
the current resource file and then calls the application-defined routine

MyHasDocument RewardSound to check whether the document has a reward sound
associated with it. If so, MyGet AndPlayRewardSoundResource sets the current
resource file to the value specified by the re fNum parameter. The procedure then uses the
Get1Resource function to get, from the current resource file, a handle to the resource of
type 'snd ' with the ID specified by kProductivewWriter.

If the document doesn’t have a specified reward sound,
MyGetAndPlayRewardSoundResource uses UseResFile to set the current resource
file to the SurfWriter Preferences file’s resource fork and GetResource to search the
entire resource chain from that point. If GetResource locates a resource with the
specified resource ID in the SurfWriter Preferences file, it returns a handle to that
resource; if not, it continues to search until it finds the specified resource or reaches the
end of the resource chain. This ensures that the procedure won't get a user-defined
resource with the same resource ID in some other SurfWriter document that is currently
open instead of the general reward sound saved in SurfWriter Preferences or in
SurfWriter itself.

If the call to Get IResource or GetResource is successful (that is, if it does not return a
handle whose value is NIL), M\yGet AndPlayRewardSoundResource plays the
appropriate reward sound, then uses ReleaseResource to release the memory
occupied by the sound resource. Finally, the procedure uses UseResFile to restore the
current resource file to its previous setting.

Reading and Manipulating Resources

The Resource Manager provides a number of routines that read resources from a resource
fork. When you request a resource, the Resource Manager follows the search path
described in “Search Path for Resources” on page 1-10. That is, the Resource Manager
searches each resource fork open to your application, beginning with the current resource
file, and continues until it either finds the resource or reaches the end of the chain.

You can change where the Resource Manager starts its search using the UseResFile
procedure. (See the previous section, “Specifying the Current Resource File,” for details.)
You can limit the search to only the current resource file by using the Resource Manager
routines that contain a “1” in their names, such as Get 1Resource,
Get1NamedResource, GetlIndResource, UniquelID, and CountlResources.

To get a resource, you can specify it by its resource type and resource ID or by its resource
type and resource name. By convention, most applications refer to a resource by its
resource type and resource ID, rather than by its resource type and resource name.

Using the Resource Manager

CHAPTER 1

Resource Manager

You can use the SetResLoad procedure to enable and disable automatic loading of
resource data into memory for routines that return handles to resources. Such routines
normally read the resource data into memory if it’s not already there. This is the default
setting and the effect of calling SetResLoad with the 1oad parameter set to TRUE. If you
call SetResLoad with the 1oad parameter set to FALSE, subsequent calls to routines
that return handles to resources will not load the resource data into memory. Instead,
such routines return a handle whose master pointer is set to NIL unless the resource is
already in memory. This setting is useful when you want to read from the resource map
without reading the resource data into memory. To read the resource data into memory
after a call to SetResLoad with the 1oad parameter set to FALSE, call LoadResource.

WARNING

If you call SetResLoad with the 1oad parameter set to FALSE, be sure
to call SetResLoad with the 1oad parameter set to TRUE as soon as
possible. Other parts of system software that call the Resource Manager
rely on the default setting (the 1oad parameter set to TRUE), and some
routines won't work if resources are not loaded automatically. A

In addition to the SetResLoad procedure, you can use the preloaded attribute of an
individual resource to control loading of that resource’s data into memory. The Resource
Manager loads a resource into memory when it first opens a resource fork if the
resource’s preloaded attribute is set.

Note
If both the preloaded attribute and the locked attribute are set, the
Resource Manager loads the resource as low in the heap as possible.

Here’s an example of a situation in which an application might need to read a resource.
The SurfWriter application always saves the last position of a document window when
the user saves the document, storing this information in a resource that it has defined for
this purpose. SurfWriter defines a resource with resource type rivinState and resource
ID kLastWinStateID to store information about the window (its position and its
state—that is, either the user state or the standard state). SurfWriter’s window state
resource has this format, defined by a record of type MyWindowState:

TYPE MyWindowState =

RECORD
userStateRect: Rect; {user state rectangle}
zoomState: Boolean; {window state: TRUE = standard; }
{ FALSE = user}
END;

MyWindowStatePtr = "MyWindowState;
MyWindowStateHnd "MyWindowStatePtr;

Using the Resource Manager 1-31

CHAPTER 1

Resource Manager

Listing 1-9 shows a procedure called My SetWindowPosition that the SurfWriter
application uses in the process of opening a document. The SurfWriter application stores
the last location of a document in its window state resource. When SurfWriter opens the
document again, it uses My SetWindowPosition to read the document’s window state
resource and uses the resource data to set the window’s location.

Listing 1-9 Getting a resource from a document file

PROCEDURE MySetWindowPosition (myWindow: WindowPtr) ;

VAR
myData: MyDocRecHnd;
lastUserStateRect: Rect;
stdStateRect: Rect;
curStateRect: Rect;
myRefNum: Integer;
myStateHandle: MyWindowStateHnd;
resourceGood: Boolean;
savePort: GrafPtr;
myErr: OSErr;
BEGIN
myData := MyDocRecHnd (GetWRefCon (myWindow)) ; {get document record}
HLock (Handle (myData)) ; {lock the record while manipulating it}
{open the resource fork and get its file reference number}
myRefNum := FSpOpenResFile (myData””.fileFSSpec, fsRdWrPerm) ;
myErr := ResError;

1-32

IF myErr <> noErr THEN
Exit (MySetWindowPosition) ;

{get handle to rectangle that describes document's last window position}

myStateHandle := MyWindowStateHnd (GetlResource (rWinState,
kLastWinStatelID)) ;
IF myStateHandle <> NIL THEN {handle to data succeeded}
BEGIN {retrieve the saved user state}
lastUserStateRect := myStateHandle””.userStateRect;
resourceGood := TRUE;
END
ELSE
BEGIN
lastUserStateRect.top := 0; {force MyVerifyPosition to calculate }
resourceGood := FALSE; { the default position}
END;
Using the Resource Manager

CHAPTER 1

Resource Manager

{verify that user state 1s practical and calculate new standard state}
MyVerifyPosition (myWindow, lastUserStateRect, stdStateRect) ;
IF resourceGood THEN {document had state resource}

IF myStateHandle””.zoomState THEN {if window was 1in standard state }

curStateRect := stdStateRect { when saved, display it in }
{ newly calculated standard state}
ELSE {otherwise, current state is the user state}
curStateRect := lastUserStateRect
ELSE {document had no state resource}
curStateRect := lastUserStateRect; {use default user state}

{move window}

MoveWindow (myWindow, curStateRect.left, curStateRect.top, FALSE);

{convert to local coordinates and resize window}

GetPort (savePbPort) ;

SetPort (myWindow) ;

GlobalToLocal (curStateRect.topLeft) ;

GlobalToLocal (curStateRect .botRight) ;

SizeWindow (myWindow, curStateRect.right, curStateRect.bottom, TRUE) ;

IF resourceGood THEN {reset user state and standard }

BEGIN { state--SizeWindow may have changed them}
MySetWindowUserState (myWindow, lastUserStateRect) ;
MySetWindowStdState (myWindow, stdStateRect) ;

END;

ReleaseResource (Handle (myStateHandle)) ; {clean up}

CloseResFile (myRefNum) ;

HUnlock (Handle (myData)) ;

SetPort (savePort) ;

END;

The My SetWindowPosition procedure uses the FSpOpenResFile function to open
the document’s resource fork, then uses Get IResource to get a handle to the resource
that contains information about the window’s last position. The procedure can then
verify that the saved position is practical and move the window to that position.

Note that when a Resource Manager routine returns a handle to a resource, the routine
returns the resource using the Handle data type. You usually define a data type (such as
MyWindowState) to access the resource’s data. If you also define a handle to your
defined data type (such as MywWindowStateHnd), you need to coerce the returned handle
to the appropriate type, as shown in this line from Listing 1-9:

myStateHandle := MyWindowStateHnd (GetlResource (rWinState, kLastWinStateID)) ;

Using the Resource Manager 1-33

CHAPTER 1

Resource Manager

If you use this method, you also need to coerce your defined handle back to a handle of
type Handle when you use other Resource Manager routines. For example, after it has
finished moving the window, My SetWindowPosition uses ReleaseResource to
release the memory allocated to the resource’s data (which also sets the master pointer of
the resource’s handle in the resource map in memory to NIL). As shown in this line from
Listing 1-9, SurfWriter coerces the defined handle back to a handle:

ReleaseResource (Handle (myStateHandle)) ;

After releasing the resource data’s memory, My SetWindowPosition uses the
CloseResFile procedure to close the resource fork.

Note

Listing 1-9 assumes the window state resource is not purgeable. If it
were, My SetWindowPosition would need to call LoadResource
before accessing the data in the resource.

The Resource Manager also provides routines that let you index through all resources of
a given type (for example, using CountResources and Get IndResource). This can be
useful whenever you want to read all the resources of a given type.

Listing 1-10 shows an application-defined procedure that allows a user to open a file that
contains sound resources. The SurfWriter application opens the specified file, counts the
number of 'snd ' resources in the file, then performs an operation on each 'snd '
resource (adding the name of each resource to its Sounds menu).

Listing 1-10 Counting and indexing through resources

PROCEDURE MyDoOpenSoundResources;

Using the Resource Manager

VAR
mySFReply: StandardFileReply; {reply record}
myNumTypes : Integer; {number of types to display}
myTypeList: SFTypeList; {file type of files}
myRefNum: Integer; {resource file reference no}
mySndHandle: Handle; {handle to sound resource}
numberOfSnds: Integer; {# of sounds in resource file}
index: Integer; {index of sound resource}
resName: Str255; {name of sound resource}
curRes: Integer; {saved current resource file}
nmyType: ResType; {resource type}
myResID: Integer; {resource ID of snd resource}
myWindow: WindowPtr; {window pointer}
menu: MenuHandle; {handle to Sounds menu}
nyErr: OSErr; {error information}

CHAPTER 1

Resource Manager

BEGIN
curRes := CurResFile;
myWindow := FrontWindow;

MyDoActivate (myWindow, FALSE) ; {deactivate front window}
myTypeList[0] := 'SFSD'; {show files of this type}

myNumTypes := 1;

{let user choose a file that contains sound resources}
StandardGetFile (NIL, myNumTypes, myTypeList, mySFReply) ;
IF mySFReply.sfGood = TRUE THEN

BEGIN

myRefNum := FSpOpenResFile (mySFReply.sfFile, fsRdWrPerm) ;

IF myRefNum = -1 THEN

DoError;
menu := GetMenuHandle (mSounds) ;
numberOfSnds := CountlResources('snd ');
FOR index := 1 TO numberOfSnds DO
BEGIN {the loop}

mySndHandle := GetlIndResource('snd ', index) ;

IF mySndHandle = NIL THEN

DoError
ELSE
BEGIN

GetResInfo (mySndHandle, myResID, myType, resName) ;

AppendMenu (menu, resName) ;
ReleaseResource (mySndHandle) ;
END; {of mySndHandle <> NIL}
END; {of the loop}

UseResFile (curRes) ;

gSoundResFileRefNum := myRefNum;

END; {of sfReply.good}

END;

After the user selects a file that contains SurfWriter sound resources (that is, a file of type
'SFSD'), the MyDoOpenSoundResources procedure calls FSpOpenResFile to open
the file’s resource fork and obtain its file reference number. (If FSpOpenResFi1e fails to

open the resource fork, it returns -1 instead of a file reference number.) The

MyDoOpenSoundResources procedure then uses the Count 1IResources function to
count the number of 'snd ' resources in the resource fork. It can then index through the
resources one at a time, using Get 1 IndResource to open each resource, GetResInfo

to get the resource’s name, and AppendMenu to append each name to SurfWriter’s

Sounds menu.

Using the Resource Manager

1-35

1-36

CHAPTER 1

Resource Manager

Note

In most situations, you can use the Menu Manager procedure
AppendResMenu to add names of resources to a menu. See Inside
Macintosh: Macintosh Toolbox Essentials for details. &

Writing Resources

After opening a resource fork (as described in “Creating and Opening a Resource Fork”
beginning on page 1-25), you can write resources to it. You can write resources only to the
current resource file. To ensure that the current resource file is set to the appropriate
resource fork, you can use CurResFile to save the file reference number of the

current resource file, then UseResFile to set the current resource file to the desired
resource fork.

To specify data for a new resource, you usually use the AddResource procedure, which
creates a new entry for the resource in the resource map in memory and sets the entry’s
location to refer to the resource’s data. Note that AddResource changes only the
resource map in memory; it doesn’t change anything on disk. Use the UpdateResFile
or WriteResource procedure to write the resource to disk. The AddResource
procedure always adds the resource to the resource map in memory that corresponds to
the current resource file. For this reason, you usually need to set the current resource file
to the desired file before calling AddResource.

If you change a resource that is referenced through the resource map in memory, you use
the ChangedResource procedure to set the resChanged attribute of that resource’s
entry. You should then immediately call the UpdateResFile or WriteResource
procedure to write the changed resource data to disk. Note that although the
UpdateResFile procedure writes only those resources that have been added or
changed to disk, it also writes the entire resource map to disk (overwriting its previous
contents). The WriteResource procedure writes only the resource data of a single
resource to disk; it does not update the resource’s entry in the resource map on disk.

The ChangedResource procedure reserves enough disk space to contain the changed
resource. It does this every time it’s called, but the actual writing of the resource does not
take place until a call to WriteResource or UpdateResFile. Thus, if you call
ChangedResource several times on a large resource before the resource is actually
written, you may unexpectedly run out of disk space, because many times the amount of
space actually needed is reserved. When the resource is actually written, the file’s
end-of-file (EOF) is set correctly, and the next call to ChangedResource will work as
expected.

Using the Resource Manager

CHAPTER 1

Resource Manager

IMPORTANT

If your application frequently changes the contents of resources
(especially large resources), you should call WriteResource or
UpdateResFile immediately after calling ChangedResource. A

To ensure that the Resource Manager does not purge a purgeable resource while your
application is in the process of changing it, use the Memory Manager procedures
HGetState, HNoPurge, and HSetState. First call HGet State and HNoPurge, then
change the resource as necessary. To make a change to a resource permanent, use the
ChangedResource and WriteResource (or UpdateResFile) procedures; then call
HSetState when you're finished. (See Listing 1-2 on page 1-21 for an example of this
technique.) However, most applications do not make resources purgeable and therefore
don’t need to take this precaution.

Here’s an example of a situation in which an application might need to write a resource.
As previously described, the SurfWriter application always saves the last position of a
document window when the user saves the document, storing this information in a
resource that it has defined for this purpose. SurfWriter defines a resource with resource
type rivinState and resource ID kLastWinStateID to store the window state (its
position and state, that is, either the user or the standard state). SurfWriter’s window
state resource has this format, defined by a record of type MyWindowState:

TYPE MyWindowState =

RECORD
userStateRect: Rect; {user state rectangle}
zoomState: Boolean; {window state: TRUE = standard; }
{ FALSE = user}
END;
MyWindowStatePtr = "MyWindowState;

MyWindowStateHnd = "MyWindowStatePtr;

Using the Resource Manager 1-37

CHAPTER 1

Resource Manager

Listing 1-11 shows SurfWriter’s application-defined routine for saving the last position of
a window in a window state resource in a document’s resource fork.

Listing 1-11 Saving a resource to a resource fork

PROCEDURE MySaveWindowPosition (myWindow: WindowPtr;
myResFileRefNum: Integer) ;

VAR
lastWindowState: MyWindowState;
myStateHandle: MyWindowStateHnd;
curResRefNum: Integer;

BEGIN
{set user state provisionally and determine whether window is zoomed}
lastWindowState.userStateRect := WindowPeek (myWindow) ”.contRgn”™”.rgnBBox;
lastWindowState.zoomState := EqualRect (lastWindowState.userStateRect,

MyGetWindowStdState (myWindow)) ;
{if window 1is in standard state, then set the window's user state from }

{ the userStateRect field in the state data record}

IF lastWindowState.zoomState THEN {window was in standard state}
lastWindowState.userStateRect := MyGetWindowUserState (myWindow) ;
curResRefNum := CurResFile; {save the refNum of current resource file}
UseResFile (myResFileRefNum); {set the current resource file}
myStateHandle := MyWindowStateHnd (GetlResource (rWinState,
kLastWinStatelID)) ;
IF myStateHandle <> NIL THEN {a state data resource already exists}
BEGIN {update it}
myStateHandle”” := lastWindowState;

ChangedResource (Handle (myStateHandle)) ;
IF ResError <> noErr THEN

DoError;
END
ELSE {no state data has yet been saved}
BEGIN {add state data resource}
myStateHandle := MyWindowStateHnd (NewHandle (SizeOf (MyWindowState))) ;
IF myStateHandle <> NIL THEN
BEGIN
myStateHandle”” := lastWindowState;
AddResource (Handle (myStateHandle), rWinState, kLastWinStateID,
'last window state');
END;
END;

1-38 Using the Resource Manager

CHAPTER 1

Resource Manager

IF myStateHandle <> NIL THEN
BEGIN
UpdateResFile (myResFileRefNum) ;
ReleaseResource (Handle (myStateHandle)) ;
END;
UseResFile (curResRefNum) ;
END;

The My SaveWindowPosition procedure first sets the userStateRect field of the
window state record to the bounds of the current content region of the window. It also
sets the zoomState field of the record to a Boolean value that indicates whether the
window is currently in the user state or standard state. If the window is in the standard
state, the procedure sets the userStateRect field of the window state record to the user
state of the window. (SurfWriter always saves the user state and the last state of the
window. When it opens a document, it sets the user state to its previous state, verifies
that this position is still valid, then calculates the window’s standard state.)

The My SaveWindowPosition procedure then saves the file reference number of the
current resource file and sets the current resource file to the document displayed in

the current window. The procedure then uses the Get IResource function to determine
whether the resource file of the document already contains a window state resource. If so,
the procedure changes the resource data, then calls ChangedResource to set the
resChanged attribute of the resource’s entry of the resource map in memory. If the
resource doesn’t yet exist, the procedure simply adds the new resource using the
AddResource procedure.

Note that when a Resource Manager routine returns a handle to a resource, it returns the
resource using the Handle data type. You usually define a data type (such as
MyWindowState) to access the resource’s data. If you also define a handle to your
defined data type (such as MyWindowStateHnd), you need to coerce the returned handle
to the appropriate type, as shown in this line from Listing 1-11:

myStateHandle := MyWindowStateHnd (GetlResource (rWinState, kLastWinStatelID)) ;

If you use this method, you also need to coerce your defined handle back to a handle of
type Handle when you use other Resource Manager routines, as shown in this line from
Listing 1-11:

AddResource (Handle (myStateHandle), rWinState, kLastWinStateID,
'last window state');

After My SaveWindowPosition changes or adds the resource (affecting only the
resource map and resource data in memory), the My SaveWindowPosition procedure
makes the change permanent by calling UpdateResFile and specifying the file
reference number of the resource fork to update on disk. The UpdateResFile procedure
writes the entire resource map in memory to disk and updates the resource data of any
resource whose resChanged attribute is set in the resource map in memory. (If you want

Using the Resource Manager 1-39

1-40

CHAPTER 1

Resource Manager

to update only the resource that was just changed or added, you can use
WriteResource instead of UpdateResFile.)

Note

Listing 1-11 assumes the window state resource is not purgeable. If it
were, My SaveWindowPosition would need to call HGet State and
HNoPurge before changing the resource. ¢

When done with the resource, My SaveWindowPosition uses ReleaseResource,
which releases the memory allocated to the resource’s data (and at the same time sets the
master pointer of the resource’s handle in the resource map in memory to NIL). Then

My SaveWindowPosition restores the current resource file to its previous setting.

Working With Partial Resources

Some resources, such as the 'snd ' and 'sfnt' resources, can be quite large—
sometimes too large to fit in the available memory. The ReadPartialResource and
WritePartialResource procedures, which are available in System 7 and later
versions of system software, allow you to read a portion of the resource into memory or
alter a section of the resource while it is still on disk. You can also use the
SetResourceSize procedure to enlarge or reduce the size of a resource on disk. When
you use ReadPartialResource and WritePartialResource, you specify how far
into the resource you want to begin reading or writing and how many bytes you actually
want to read or write at that spot, so you must be sure of the location of the data.

WARNING

Be aware that having a copy of a resource in memory when you are
using the partial resource routines may cause problems. For example, if
you read the resource into memory using GetResource, modify the
resource in memory, and then access the resource on disk using either the
ReadPartialResource or WritePartialResource procedure, note
that these procedures work with the data in the buffer you specify, not
the data referenced through the resource’s handle. A

To read or write any part of a resource, call the SetResLoad procedure specifying FALSE
for its 1oad parameter, then use the GetResource function to get an empty handle (that
is, a handle whose master pointer is set to NIL) to the resource. (Because of the call to the
SetResLoad procedure, the GetResource function does not load the entire resource
into memory.) Then call SetResLoad specifying TRUE for its 1oad parameter and use
the partial resource routines to access portions of the resource.

Using the Resource Manager

CHAPTER 1

Resource Manager

Listing 1-12 illustrates one way to deal with partial resources. The application-defined
procedure MyReadAPartial begins by calling SetResLoad (with the 1oad parameter
set to FALSE) to ensure that the Resource Manager will not attempt to read the entire
resource into memory in the subsequent call to GetResource. After calling
GetResource and checking for errors, MyReadAPartial calls SetResLoad (with the
load parameter set to TRUE) to restore normal loading of resource data into memory. The
procedure then calls ReadPartialResource, specifying as parameters the handle
returned by GetResource, an offset to the beginning of the resource subsection to be
read, a buffer into which to read the subsection, and the length of the subsection. The
ReadPartialResource procedure reads the specified partial resource into the specified
buffer.

Listing 1-12 Using partial resource routines

PROCEDURE MyReadAPartial (myRsrcType: ResType; myRsrcID: Integer;
start: LongInt; count: LongInt;
VAR putItHere: Ptr);

VAR
myResHd1: Handle;
myErr: OSErr;

BEGIN
SetResLoad (FALSE) ; {don't load resource}
myResHd]l := GetResource (myRsrcType, myRsrcID) ;
myErr := ResError;
SetResLoad (TRUE) ; {reset to always load}
IF myErr = noErr THEN
BEGIN

ReadPartialResource (myResHdl, start, putItHere, count);
myErr := ResError;
{check and report error}
IF myErr <> noErr THEN DoError (myErr) ;

END

ELSE {handle error from GetResource}
DoError (myErr) ;

END;

Using the Resource Manager 1-41

CHAPTER 1

Resource Manager

Resource Manager Reference

This section begins by describing the data type, standard resource types, and ranges of
resource IDs used for various kinds of resources. “Resource Manager Routines”
beginning on page 1-49 describes the routines provided by the Resource Manager for
manipulating resources.

“Resource File Format” beginning on page 1-121 describes the format of a resource
fork. “Resources in the System File” beginning on page 1-126 describes System file
resources such as packages and icons. “ROM Resources” beginning on page 1-134
describes how to access ROM resources directly and how to override them.

Data Structure, Resource Types, and Resource IDs

This section describes the data type for the resource type, lists the standard resource
types, and describes the ranges of resource IDs available to your application for different
kinds of resources. The Resource Manager and your application use a resource type and a
resource ID to identify a specific resource.

The Resource Type

1-42

The Resource Manager uses the resource type along with the resource ID to identify a
resource uniquely. A resource type is defined by the ResType data type.

TYPE ResType = PACKED ARRAY([1l..4] OF Char;

A resource type can be any sequence of four alphanumeric characters, including the
space character. You can define your own resource types, but they must consist of all
uppercase letters and must not conflict with any of the standard resource types.

IMPORTANT

When identifying resource types, the Resource Manager distinguishes
between uppercase letters and their lowercase counterparts. In addition,
Apple reserves for its own use all resource types that consist of all
lowercase letters, all spaces, or all international characters (characters
greater than $7F). A

Resource Manager Reference

CHAPTER 1

Resource Manager

Table 1-2 lists the standard resource types.

Table 1-2 Standard resource types

Resource

type Description

'ADBS' Apple Desktop Bus service routine

"ALRT Alert box

'BNDL' Bundle

'CDEF' Control definition function

'CDEV' Control device function for a control panel

'CNTL' Control

'CODE" Application code segment

'CURS' Cursor

‘DITL' Item list in a dialog or alert box

'DLOG' Dialog box

'DRVR' Desk accessory or other device driver

'FKEY' Command-Shift-number combination

'FOND' Font family record

'FONT" Bitmapped font

'"FREF' File reference

" TCN# Large (32-by-32 pixel) black-and-white icon, with mask
"TICON' Large (32-by-32 pixel) black-and-white icon, without mask
"INIT' System extension

'KCAP' Physical keyboard description (used by Key Caps desk accessory)
'KCHR' Keyboard layout (software); maps virtual key codes to character codes
'LDEF' List definition procedure

'MBAR' Menu bar

'MDEF' Menu definition procedure

'MENU Menu

'NFNT Bitmapped font

'PACK' Package

"PAT Pattern

'PATH! Pattern list

continued

Resource Manager Reference 1-43

1-44

CHAPTER 1

Resource Manager

Table 1-2 Standard resource types (continued)

Resource

type Description

"PICT' QuickDraw picture

"POST' PostScript® resource

'PREC Print record

"SICN' Small (16-by-16 pixel) icon (mask optional)

'SIZE' Size of application’s partition and other information

'STR String

'STR# String list

'"WDEF' ' Window definition function

'"WIND' Window

ractb! Alert color table

ralis’ Alias record

'card' Video card name

'cetb! Control color table

'cicn! Color icon

'clut Color look-up table

'crsr! Color cursor

"detb! Dialog color table

"ddev Database extension

'eadr Ethernet hardware address

"fotb! Font color table

'hdlg" Help for dialog box or alert box items

'hfdr! Help for application icons

"hmnu ' Help for application menus

"hovr! Help that overrides Finder help

‘hret! Help for areas in windows

'hwin' Association of 'hrct' and 'hdlg' resources to specific windows
ticla: Large (32-by-32 pixel) color icon with 4 bits of color data per pixel
'icl8! Large (32-by-32 pixel) color icon with 8 bits of color data per pixel
‘ics#! Small (16-by-16 pixel) black-and-white icon, with mask

'icsd! Small (16-by-16 pixel) color icon with 4 bits of color data per pixel
'ics8! Small (16-by-16 pixel) color icon with 8 bits of color data per pixel

Resource Manager Reference

CHAPTER 1

Resource Manager

Table 1-2 Standard resource types (continued)

Resource

type Description

'ictb! Item color table

'itl0" Date and time formats

"itll! Names of days and months

ritl2! Text Utilities sort hooks

ritl4: Localizable tables and code

"itlk! Remappings of certain key combinations before the KeyTrans function is
called for the corresponding 'KCHR' resource

‘kcs#! List of small black-and-white icons, with mask, for a corresponding
'"KCHR' resource

'kcsd! Small (16-by-16 pixel) color icon with 4 bits of color data per pixel for a
corresponding 'KCHR' resource

'kcs8'! Small (16-by-16 pixel) color icon with 8 bits of color data per pixel for a
corresponding 'KCHR' resource

'mctb! Menu color information table

'mntr' Monitors extension code resource

'movv' QuickTime movie

'pltt! Color palette

'ppat’ Pixel pattern

'gdef! Query definition function

'grsc' Query resource

'sect Section record

'sfnt' Outline font

‘snd Sound

‘snth' Synthesizer

'styl! TextEdit style record

'sysz' System heap space required by a system extension

'vers' Version number

'weth! Window color table

‘wstr! String (uses word for length byte)

Resource Manager Reference

1-45

CHAPTER 1

Resource Manager

Table 1-3 lists resource types that are reserved for use by system software. These resource
types consist entirely of uppercase letters or combinations of uppercase and lowercase
letters and the number sign (#). Other resource types specific to system software that
consist entirely of lowercase letters or other characters are not included in Table 1-3. This
list is provided for your information; you should not use these resource types in your
application.

Table 1-3 Resource types reserved for use by system software

Resource

type Description

"CACH' RAM cache code

'DSAT System startup alert table

'"FCMT" “Get Info” comments

'FMTR' 3.5-inch disk formatting code

'"FOBJ Folder information for an MFS volume

'"FRSV' IDs of system fonts

"INTL" International resource (obsolete)

'KMAP' Keyboard mapping (hardware); maps raw key codes to virtual key codes
"KSWP' Defines special key combinations for Script Manager operations
'MBDF' ' Default menu definition function

'MMAP ' Mouse-tracking code

'NBPC' AppleTalk bundle

'PDEF Printing code

"PTCH' ROM patch code

'"ROV# ! List of ROM resources to override

'"ROVT Code for overriding ROM resources

'SERD' RAM Serial Driver

Resource IDs

1-46

A resource is identified by its resource type and resource ID (or, optionally, its resource
type and resource name). The IDs for resources used by the system software and those
used by applications are assigned from separate ranges. By using these ranges correctly,
you can avoid resource ID conflicts.

Resource Manager Reference

CHAPTER 1

Resource Manager

In general, system resources use IDs in the range —32767 through 127, and application
resources must use IDs that fall between 128 and 32767. The IDs for some categories

of resources, such as definition procedures and font families, fall in different ranges or
in ranges that are broken down for more specific purposes. This list shows the resource
ID ranges used for most resources.

Range Description

-32768 through —-16385 Reserved; do not use. Any application resource whose ID is
in this range will not work properly in current versions of
system software.

-16384 through —4065 Used for system resources owned by other system resources.

—4064 through —4033 Reserved for use by control panels. (See the chapter “Control
Panels” in this book.)

—4032 through -1 Used for system resources owned by other system resources.

The exception is the ' SIZE' resource, whose ID can be -1,
0 (preferred size), or 1 (minimum size).

0 through 127 Used for system resources and any definition procedures in
the system software. Applications should not use these
resource IDs.

128 through 32767 Available for your use. Your application’s definition
procedures should use IDs in the range 128 through 4095,
although other resources may use these IDs as well. Font
families for individual script systems have additional
restrictions defined in the appendix on international
resources in Inside Macintosh: Text.

For a general discussion of font family resource IDs, see Inside Macintosh: Text.

The ID range of definition procedures (which are usually contained in resources such as
the 'WDEF ' or 'CDEF' resources) is limited to 12 bits (0 through 4095). The system
software’s own definition procedures, which are located in the System file, have resource
IDs from 0 through 127. The IDs of your definition procedures should be in the range 128
through 4095.

Resource IDs of Owned Resources

Certain types of resources used by system software may have resources of their own in
the same resource fork; the “owning” resource consists of code that reads the “owned”
resource into memory. For example, a desk accessory might have its own pattern and
string resources. This section describes the numbering convention used for owned
resources. This information can be useful if you are writing a desk accessory or other
driver or special types of definition functions for windows, controls, or menus.

Resource Manager Reference 1-47

CHAPTER 1

Resource Manager

You should use the numbering convention described in this section to associate owned
resources with the resources to which they belong. This allows resource-copying
programs (such as installers) to recognize which additional resources need to be copied
along with an owning resource. Figure 1-10 illustrates the ID of an owned resource.

Figure 1-10 Resource ID of an owned resource

1-48

15 14 13 1110 5 4 0

1 1 Type bits ID of owning resource Variable

Bits 14 and 15 are always 1. Bits 11 through 13 specify the type of the owning resource, as
follows:

Type bits Type

000 'DRVR'
001 '"WDEF
010 'MDEF'
011 'CDEF'
100 'PDEF
101 'PACK'
110 Reserved for future use
111 Reserved for future use

Bits 5 through 10 contain the resource ID of the owning resource (limited to 0 through
63). Bits 0 through 4 contain any desired value (0 through 31).

Some types of resources can’t be owned because their IDs don’t conform to this
convention. For example, a resource of type 'WDEF' can own other resources but cannot
itself be owned, because its resource ID can’t be more than 12 bits long (see the chapter
“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials). The chapters
describing individual resources provide detailed information about such restrictions.

An owned resource may itself contain the ID of a resource associated with it. For
example, a dialog (' DLOG ') resource owned by a desk accessory contains the resource ID
of its item list. Although the item list is associated with the dialog resource, it’s actually
owned (indirectly) by the desk accessory. The resource ID of the item list should conform
to the same special convention as the ID of the dialog resource. For example, if the
resource ID of the desk accessory is 17, the IDs of both the dialog resource and the item
list should contain the value 17 in bits 5 through 10.

Resource Manager Reference

CHAPTER 1

Resource Manager

A program that copies resources may need to change the resource ID of a resource so as
not to duplicate an existing resource ID. Bits 5 through 10 of resources owned, directly or
indirectly, by the copied resource should also be changed when those resources are
copied. In the example just discussed, if the desk accessory must be given a new ID,

bits 5 through 10 of both the dialog resource and the item list resource should also
change.

A WARNING
When a resource-copying program changes the ID of an owned resource,
it should also change the ID where it appears in
other resources (such as an item list’s ID contained in a dialog box
resource). A

Resource Names

You can use a resource name instead of a resource ID to identify a resource of a given
type. Like a resource ID, a resource name should be unique within each type. If you
assign the same resource name to two resources of the same type, the second assignment
of the name overrides the first, thereby making the first resource inaccessible by name.
When comparing resource names, the Resource Manager ignores case (but does not
ignore diacritical marks).

Resource Manager Routines

This section describes the routines provided by the Resource Manager. You can use these
routines to create, open, and close resource forks; get and set the current resource file;
read resources into memory; get and set resource information; modify resources; write

to resource forks on disk; get a unique resource ID; count and list resource types; get
resource sizes; dispose of resources; read and write partial resources; get and set resource
fork attributes; and access resource entries in the resource map.

The FSpCreateResFile procedure and the FSpOpenResFile function use a file
system specification (FSSpec) record. These routines are available only in System 7 or
later. Use the Gestalt function to determine if these routines are available. If they’re not
available, you can call the equivalent File Manager HFS routines, the HCreateResFile
procedure and the HOpenResFile function.

The Resource Manager provides a means for reporting errors specifically related to
resources. After calling a Resource Manager routine, you can call the ResError function
to determine whether any error occurred. The ResError function returns an integer
value identifying any error reported by the Resource Manager routine that was executed
last. The values listed in the ResError description signify only those errors dealing
specifically with resources. The ResError function can also return values corresponding
to Operating System result codes. The description for each Resource Manager routine
includes the errors ResError may report for that routine under the subheading “Result
Codes”; this list includes both the integer result codes for the Resource Manager routine
as well as common Operating System result codes.

Resource Manager Reference 1-49

CHAPTER 1

Resource Manager

Initializing the Resource Manager

Unlike other Toolbox managers, the Resource Manager does not need to be explicitly
initialized. System software automatically calls the Resource Manager’s

two initialization routines, the InitResources function and the RsrcZoneInit
procedure—the former when the system starts up, and the latter when the system starts
up and when the Process Manager starts up. You should not call either of these routines
directly.

InitResources

DESCRIPTION

When the system starts up, it automatically calls the InitResources function. This
routine is for system use only, and your application should not call it at any time.

FUNCTION InitResources: Integer;

The InitResources function initializes the Resource Manager. InitResources
creates a special heap zone within the system heap and builds a resource map that points
to ROM-resident resources. It opens the resource fork of the System file and reads its
resource map into memory. The InitResources function returns an integer, which is
the file reference number for the System file’s resource fork.

Your application does not need to know the file reference number for the System file’s
resource fork, because every Resource Manager routine with a file reference number
parameter also accepts 0 to mean the System file’s resource fork.

ASSEMBLY-LANGUAGE INFORMATION

The InitResources function sets up three global variables: SysResName, Sy sMap, and
SysMapHndl. These contain, respectively, the name of the System file’s resource fork, the
file reference number for the resource fork, and a handle to the System file’s resource
map.

RsrcZonelnit

1-50

System software automatically calls the RsrcZoneInit procedure when system
software starts up and when the Process Manager starts up. Your application should not
call this routine directly.

PROCEDURE RsrczZonelInit;

Resource Manager Reference

DESCRIPTION

CHAPTER 1

Resource Manager

System software automatically calls the RsrcZoneInit procedure at system startup
when extensions are loaded, because each extension has its own application heap. System
software calls RsrcZoneInit once again when the Process Manager starts up. After
that, the procedure is not called again.

Checking for Errors

ResError

You can use the ResError function in your application to retrieve errors that may result
from calling Resource Manager routines. You also can use ResError to check for an
error after application startup (system software opens the resource fork of your
application during application startup).

DESCRIPTION

After calling a Resource Manager routine, you can use the ResError function to
determine whether an error occurred and, if so, what it was.

FUNCTION ResError: Integer;

The ResError function reads the value stored in the system global variable ResErr and
returns an integer result code identifying errors, if any, that occurred. If no error
occurred, ResError returns noErr. If an error occurs at the Resource Manager level,
ResError returns one of the integer result codes listed in this section. If an error occurs
at the Operating System level, ResError returns an Operating System result code, such
as the Memory Manager error memFullErr or the File Manager error 1oErr.

Resource Manager procedures do not report error information directly. Instead, after
calling a Resource Manager procedure, your application should call the ResError
function to determine whether an error occurred.

Resource Manager functions usually return NIL or -1 as the function result when there’s
an error. For Resource Manager functions that return -1, your application can call the
ResError function to determine the specific error that occurred. For Resource Manager
functions that return handles, your application should always check whether the value of
the returned handle is NIL. If it is, your application can use ResError to obtain specific
information about the nature of the error. Note, however, that in some cases ResError
returns noErr even though the value of the returned handle is NTL.

IMPORTANT

In certain cases, the ResError function returns noErr even though a
Resource Manager routine was unable to perform the requested
operation. See the individual routine descriptions for details about the
circumstances under which this happens. a

Resource Manager Reference 1-51

CHAPTER 1

Resource Manager

Only those result codes dealing specifically with resources are listed in this section. See
the description of each Resource Manager routine for a list of errors specific to that
routine and that the ResError function returns.

ASSEMBLY-LANGUAGE INFORMATION

The global variable ResErr stores the current value of ResError, that is, the result code
of the most recently performed Resource Manager operation. In addition, you can specify
an application-defined procedure to be called whenever an error occurs. To do this, store
the address of the procedure in the global variable ResErrProc. The value of the
ResErrProc global variable is usually 0. Before returning a result code other than
noErr, the ResError function puts that result in register DO and calls the procedure
identified by the ResErrProc global variable.

If you use ResErrProc to detect resource errors, you will get unexpected calls to your
application-defined procedure if you call GetMenu. The Menu Manager routine
GetMenu makes a call to GetResInfo, requesting resource information about

'MDEF' 0. Unfortunately, because ROMMapInsert is set to FALSE, this call fails, setting
ResErr to —192 (resNotFound). This, in turn, causes a call to your application-defined
procedure, even though the GetMenu routine has worked correctly.

To avoid this problem, follow these steps when you call GetMenu if you are using
ResErrProc:

1. Save the address of your application-defined procedure.

2. Clear ResErrProc.

3. Call GetResource for the menu resource you want to get.
4

. Check whether GetResource returns a handle whose value is NIL; if so, process the
error in whatever way is appropriate for your application.

a1

. Call GetMenu.

6. When you are finished calling GetMenu, restore the previous value of ResErrProc.

RESULT CODES
noErr 0 No error
resNotFound -192 Resource not found
resFNotFound -193 Resource file not found
addResFailed -194 AddResource procedure failed
rmvResFailed -196 RemoveResource procedure failed
resAttrErr -198 Attribute inconsistent with operation
mapReadErr -199 Map inconsistent with operation

1-52 Resource Manager Reference

CHAPTER 1

Resource Manager

Creating an Empty Resource Fork

You can use FSpCreateResFile, HCreateResFile, or CreateResFile when you
want to create an empty resource fork—that is, a resource fork that contains no resource
data but does include a resource map. Note that creating a resource fork does not
automatically open it. To open a resource fork of a file created with one of these routines,
use the corresponding routines FSpOpenResFile, HOpenResFile, or OpenResFile.

The FSpCreateResFile procedure is available only in System 7 and later versions of
system software. If FSpCreateResFile is not available, you can use HCreateResFile
or CreateResFile to create a resource fork. The HCreateResFile procedure allows
you to specify a directory ID and a volume reference number, and is therefore preferred
over CreateResFile. The CreateResFile procedure is an earlier version of
HCreateResFile that is still supported but has more restricted capabilities.

Don’t use the resource fork of a file for data that is not in resource format. The Resource
Manager assumes that any information in a resource fork can be interpreted according to
the standard resource format described in this chapter.

The File Manager assumes that the first block of a file’s resource fork is part of the
resource header and puts information there that it uses during scavenging—for example,
after the user presses the Reset switch. For this reason, if you copy a resource file, the
duplicate may not be exactly like the original.

FSpCreateResFile

You can use the FSpCreateResFile procedure to create an empty resource fork using a
file system specification (FSSpec) record.

PROCEDURE FSpCreateResFile (spec: FSSpec;
creator, fileType: O0SType;
scriptTag: ScriptCode) ;

spec A file system specification record that indicates the name and location of
the file whose resource fork is to be created.

creator The signature of the application creating the file.
fileType The file type of the new file.

scriptTag The script code of the script system in which the Finder and standard file
dialog boxes display the file’s name.

Resource Manager Reference 1-53

DESCRIPTION

1-54

CHAPTER 1

Resource Manager

The FSpCreateResFile procedure creates an empty resource fork for a file with the
specified type, creator, and script code in the location and with the name designated by
the spec parameter. (An empty resource fork contains no resource data but does include
a resource map.)

This procedure is available only in System 7 and later versions of system software. If
FSpCreateResFile is not available to your application, you can use HCreateResFile
or CreateResFile.

The spec parameter is a file system specification record, which is the standard format in
System 7 and later versions for identifying a file or directory. The file system specification
record for files and directories is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD
vRefNum: Integer; {volume reference number}
parID: LongInt; {directory ID of parent directory}
name: Str63; {filename or directory name}

END;

Certain File Manager routines—those that open a file’s data fork—also take a file system
specification record as a parameter. You can use the same FSSpec record in Resource
Manager routines that create or open the file’s resource fork.

The creator parameter of FSpCreateResFile contains the signature of the
application that creates the file. Whenever your application creates a document, it assigns
a creator and a file type to that document. Typically your application sets its signature as
the document’s creator.

The £ileType parameter indicates the type of file. You can set the file type to a type
especially defined for your application or one of the existing general types, such as 'TEXT'
for text (a stream of ASCII characters), or pref' for a preferences file.

Note

The file type should be as descriptive of the file’s data format as possible.
You should not use ' TEXT ' as a file type unless the document contains
plain ASCII characters. &

The value of the scriptTag parameter is the script code of the script system in which
the Finder and the Standard File Package dialog boxes display the name of the file. For
example, to specify the Roman script system, specify the constant smRoman in the
scriptTag parameter.

If the file specified by the file system specification record doesn’t already exist (that is, if it
has neither a data fork nor a resource fork), the FSpCreateResFile procedure creates a
resource file—that is, a resource fork, including a resource map. In this case the file has a
zero-length data fork. The FSpCreateResFile procedure also sets the creator, type, and
script code fields of the file’s catalog information record to the specified values.

Resource Manager Reference

CHAPTER 1

Resource Manager

If the file specified by the file system specification record already exists and includes a
resource fork with a resource map, FSpCreateResFile does nothing. If the data fork of
the file specified by the file system specification record already exists but the file has a
zero-length resource fork, FSpCreateResFile creates an empty resource fork and
resource map for the file; it also changes the creator, type, and script code fields of the
catalog information record of the file to the specified values.

If your application uses Standard File Package routines, note that the
StandardPutFile procedure returns a standard file reply record that contains a file
system specification record in the sfFile field.

Before you can work with the newly created file’s resource fork, you must use the
FSpOpenResF1ile function to open it.

SPECIAL CONSIDERATIONS

The FSpCreateResFile procedure may move or purge memory blocks in the
application heap. Your application should not call this procedure at interrupt time.

RESULT CODES
noErr 0 No error
dirFulErr -33 Directory full
dskFulErr -34 Disk full
nsvErr -35 No such volume
ioErr -36 1/0 error
bdNamErr =37 Bad filename or volume name (perhaps zero length)
tmfoErr —42 Too many files open
wPrErr —44 Disk is write-protected
fLckdErr —45 File is locked

SEE ALSO

To check for errors, call the ResError function as described on page 1-51. For
information about using the Gestalt function to determine whether the
FSpCreateResFile procedure is available, see “Using the Resource Manager,”
beginning on page 1-13. For a discussion of the use of the FSpCreateResFile
procedure, see “Creating and Opening a Resource Fork” beginning on page 1-25. For a
description of the FSpOpenResF1ile function, see page 1-58. For information about the
StandardPutFile procedure and standard file reply records, see Inside Macintosh: Files.
For more information on creators and file types, see the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the FSpCreateResFile procedure are

Trap macro Selector
_HighLevelFSDispatch $000E

Resource Manager Reference 1-55

CHAPTER 1

Resource Manager

HCreateResFile

If the FSpCreateResFile procedure is not available, you can use the
HCreateResFile procedure to create an empty resource fork.

PROCEDURE HCreateResFile (vRefNum: Integer; dirID: LongInt;
fileName: Str255);

vRe fNum The volume reference number of the volume on which the file is located.
diriD The directory ID of the directory where the file is located.

fileName The name of the file whose resource fork is to be created.

DESCRIPTION

The HCreateResFile procedure creates a file with an empty resource fork in the
directory specified by the vRefNum and dirID parameters. (An empty resource fork
contains no resource data but does include a resource map.)

If no other file with the given name exists in the specified directory, HCreateResFile
creates a resource file—that is, a resource fork, including a resource map. In this case the
file has a zero-length data fork.

If a file with the specified name already exists and includes a resource fork with a
resource map, HCreateResFile does nothing. If the data fork of the specified file
already exists but the file has a zero-length resource fork, HCreateResFile creates an
empty resource fork and resource map for the file.

Before you can work with the newly created file’s resource fork, you must first use
HOpenResFile or a related function to open it.

SPECIAL CONSIDERATIONS

The HCreateResFile procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

RESULT CODES
noErr 0 No error
dirFulErr -33 Directory full
dskFulErr -34 Disk full
nsvErr -35 No such volume
ioErr -36 I/0O error
bdNamErr -37 Bad filename or volume name (perhaps zero length)
tmfoErr —42 Too many files open
wPrErr 44 Disk is write-protected
fLckdErr —45 Fileis locked

1-56 Resource Manager Reference

SEE ALSO

CHAPTER 1

Resource Manager

To check for errors, call the ResError function as described on page 1-51.

For a description of the HOpenResF1ile function, see page 1-62.

CreateResFile

DESCRIPTION

If the FSpCreateResFile procedure is not available, you can use the CreateResFile
procedure to create an empty resource fork.

PROCEDURE CreateResFile (fileName: Str255);

fileName The name of the file to be created.

The CreateResFile procedure creates a file with an empty resource fork in your
application’s default directory—that is, the directory in which your application is located.

If no other file with the given name exists in the default directory or any of the other
directories searched by PBOpenRF (see the following section, “Special Considerations”),
CreateResFile creates a resource file—that is, a resource fork, including a resource
map. In this case the file has a zero-length data fork.

If a file with the specified name already exists and includes a resource fork with a
resource map, CreateResFile does nothing. Call ResError to determine whether an
error occurred. If the data fork of the specified file already exists but the file has a
zero-length resource fork, Creat eResFile creates an empty resource fork and resource
map for the file.

Before you can work with the newly created file’s resource fork, you must use
OpenResFile or a related function to open it.

SPECIAL CONSIDERATIONS

The CreateResFile procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

The CreateResFile procedure first checks whether a file with the specified name
exists. (If so, ResError returns the result code dupFNErr.) To perform this check,
CreateResFile calls PBOpenRF, which looks first in the default directory for a file with
the same name, then in the root directory of the boot volume (if the default directory is
on the boot volume), and then in the System Folder (if one exists on the same volume as
the default directory). It is thus impossible, for example, to use CreateResFile to
create a file in the default directory if a file with the same name already exists in the
System Folder. To avoid this problem, use FspCreateResFile or HCreateResFile
whenever possible.

Resource Manager Reference 1-57

RESULT CODES

SEE ALSO

CHAPTER 1

Resource Manager

noErr 0 No error

dirFulErr -33 Directory full

dskFulErr -34 Disk full

nsvErr -35 No such volume

ioErr -36 I/0O error

bdNamErr =37 Bad filename or volume name (perhaps zero length)

tmfoErr —42 Too many files open

wPrErr —44 Disk is write-protected

fLckdErr —45 File is locked

dupFNErT —48 Another file with the same name exists in the default directory,
the root directory of the boot volume, or the System Folder

To check for errors, call the ResError function as described on page 1-51.

For a description of the OpenResFile function, see page 1-66.

Opening Resource Forks

To open a resource fork, the Resource Manager calls the appropriate File Manager routine
and returns the file reference number that it gets from the File Manager. If the file
reference number returned is greater than 0, you can use this number to refer to the
resource fork in some other Resource Manager routines.

The FSpOpenResFile, HOpenResFile, OpenRFPerm, and OpenResFile functions all
open resource forks. Use the FSpOpenResFile function to open a resource fork using a
file system specification (FSSpec) record. You can determine whether FSpOpenResFile
is available by calling the Gestalt function with the gestaltFSAttr selector code.

If FSpOpenResFile is not available, you can use HOpenResFile, OpenRFPerm, or
OpenResFile to open a resource fork. The HOpenResFile function allows you to
specify both a directory ID and a volume reference number, and is therefore preferred if
FSpOpenResFile is not available. The OpenRFPerm and OpenResFile functions are
earlier versions of HOpenResFile that are still supported but are more restricted in their
capabilities.

FSpOpenResFile

1-58

You can use the FSpOpenResFile function to open a file’s resource fork using a file
system specification (FSSpec) record.

FUNCTION FSpOpenResFile (spec: FSSpec;
permission: SignedByte): Integer;

Resource Manager Reference

DESCRIPTION

CHAPTER 1

Resource Manager

spec A file system specification record specifying the name and location of the
file whose resource fork is to be opened.

permission
A value that specifies a read /write permission combination.

The FSpOpenResFile function opens the resource fork of the file identified by the spec
parameter. It also makes this file the current resource file.

This function is available only in System 7 and later versions of system software. If
FSpOpenResFile is not available to your application, you can use HOpenResFile,
OpenRFPerm, or OpenResFile instead.

The spec parameter is a file system specification record, which is a standard format in
System 7 and later versions for identifying a file or directory. The file system specification
record for files and directories is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD
vRefNum: Integer; {volume reference number}
parID: LongInt; {directory ID of parent directory}
name: Str63; {filename or directory name}

END;

You can specify the access path permission for the resource fork by setting the
permission parameter to one of these constants:

CONST
fsCurPerm = 0; {whatever is currently allowed}
fsRdPerm = 1; {read-only permission}
fsWrPerm = 2; {write permission}
fsRdWrPerm = 3; {exclusive read/write permission}
fsRAWrShPerm= 4; {shared read/write permission}

Use fsCurPerm to request whatever permission is currently allowed. If write access is
unavailable (because the file is locked or because the resource fork is already open with
write access), then read permission is granted. Otherwise, read /write permission is
granted.

Use £sRdPerm to request permission to read the file, and fsWrPerm to write to it. If
write permission is granted, no other access paths are granted write permission. Because
the File Manager doesn’t support write-only access to a file, f sWwrPerm is synonymous
with fsRdWrShPerm.

Use fsRAWrPermand fsRAWrShPerm to request exclusive or shared read /write
permission, respectively. If your application is granted exclusive read /write permission,
no users are granted permission to write to the file; other users may, however, be granted

Resource Manager Reference 1-59

CHAPTER 1

Resource Manager

permission to read the file. Shared read /write permission allows multiple access paths
for writing and reading.

The Resource Manager reads the resource map from the specified file’s resource fork into
memory. It also reads into memory every resource in the resource fork whose
resPreload attribute is set.

The FSpOpenResFile function returns a file reference number for the resource fork. You
can use this reference number to refer to the resource fork in other Resource Manager
routines.

If you attempt to use FSpOpenResFile to open a resource fork that is already open,
FSpOpenResFile returns the existing file reference number or a new one, depending on
the access permission for the existing access path. For example, your application receives
a new file reference number after a successful request for read-only access to a file
previously opened with write access, whereas it receives the same file reference number
in response to a second request for write access to the same file. In this case,
FSpOpenResFile doesn’t make that file the current resource file.

If the FSpOpenResFile function fails to open the specified file’s resource fork (for
instance, because there’s no file with the given file system specification record or because
there are permission problems), it returns -1 as the file reference number. Use the
ResError function to determine what kind of error occurred.

You don’t have to call FSpOpenResFile to open the System file’s resource fork or an
application file’s resource fork. These resource forks are opened automatically when the
system and the application start up, respectively. To get the file reference number for your
application, call the CurResF1ile function after your application starts up and before
you open any other resource forks.

The FSpOpenResFile function checks that the information in the resource map is
internally consistent. If it isn’t, ResError returns the result code mapReadErr.

To open a resource fork just for block-level operations, such as copying files without
reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

1-60

The FSpOpenResFile function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

It’s possible to create multiple, unique, read-only access paths to a resource fork using
FSpOpenResF1ile; however, you should avoid doing so. If a resource fork is opened
twice—once with read /write permission and once with read-only permission—two
copies of the resource map exist in memory. If you change one of the resources in
memory using one of the resource maps, the two resource maps become inconsistent and
the file will appear damaged to the second resource map.

If you must use this technique for read-only access, call FSpOpenResFile immediately
before your application reads information from the file and close the file immediately
afterward. Otherwise, your application may get unexpected results.

Resource Manager Reference

CHAPTER 1

Resource Manager

If an application attempts to open a second access path with write access and the
application is different from the one that originally opened the resource fork,
FSpOpenResFile returns —1, and the ResError function returns the result code
OpPWrErr.

If you want to open the resource fork for another application (or any resource fork other
than your application’s that includes ' CODE ' resources), you must bracket your calls to
FSpOpenResFile with calls to SetResLoad with the 1oad parameter set to FALSE and
then to TRUE. You must also avoid making intersegment calls while the other
application’s resource fork is open. If you don’t do this, the Segment Loader Manager
treats any preloaded ' CODE' resources as your code resources when you make an
intersegment call that triggers a call to LoadSeg while the other application is first in the
resource chain. In this case, your application can begin executing the other application’s
code, and severe problems will ensue. If you need to get ' CODE' resources from the
other application’s resource fork, you can still prevent the Segment Loader Manager
problem by calling UseResFile with your application’s file reference number to make
your application the current resource file.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

A handle to the resource map for the most recently opened resource fork is stored in the
global variable TopMapHndl. The trap macro and routine selector for the
FSpOpenResFile are

Trap macro Selector

_HighLevelFSDispatch $0000

NnoErr 0 No error

nsvErr -35 No such volume

ioErr -36 I/0 error

bdNamErr -37 Bad filename or volume name (perhaps zero length)
eofErr -39 End of file

tmfoErr —42 Too many files open

fnfErr —43 File not found

OpPWrErr -49 File already open with write permission
permErr -54 Permissions error (on file open)
extFSErr -58 Volume belongs to an external file system
memFullErr -108 Not enough room in heap zone
dirNFErr -120 Directory not found

mapReadErr -199 Map inconsistent with operation

To check for errors, call the ResError function as described on page 1-51. For
information about using the Gestalt function to determine whether the
FSpOpenResFile procedure is available, see “Using the Resource Manager” beginning
on page 1-13. For an example of the use of FSpOpenResFile to open a resource fork, see
Listing 1-7 on page 1-27.

Resource Manager Reference 1-61

CHAPTER 1

Resource Manager

For information about the CurResFile and UseResFile routines, see page 1-68 and
page 1-69, respectively.

For more information about permission parameter constants or the OpenRF function,
see Inside Macintosh: Files.

HOpenResFile

DESCRIPTION

1-62

If the FSpOpenResFile function is not available, you can use HOpenResFile to open a
file’s resource fork.

FUNCTION HOpenResFile (vRefNum: Integer; dirID: LonglInt;
fileName: Str255;
permission: SignedByte): Integer;

vRefNum The volume reference number of the volume on which the file is located.
dirID The directory ID of the directory where the file is located.
fileName The name of the file whose resource fork is to be opened.

permission
A constant for one of the read /write permission combinations.

The HOpenResF1ile function opens the resource fork of the file with the name specified
by the fileName parameter in the directory specified by the vRefNum and dirID
parameters. It also makes this file the current resource file.

You can specify the access path permission for the resource fork by setting the
permission parameter to one of these constants:

CONST
fsCurPerm = 0; {whatever is currently allowed}
fsRdPerm = 1; {read-only permission}
fsWrPerm = 2; {write permission}
fsRdWrPerm = 3; {exclusive read/write permission}
fsRdWrShPerm = 4; {shared read/write permission}

See page 1-59 for information about specifying access path permission with
FSpOpenResFile. The same information applies to HOpenResFile.

The Resource Manager reads the resource map from the resource fork of the specified file
into memory. It also reads into memory every resource whose resPreload attribute is
set.

Resource Manager Reference

CHAPTER 1

Resource Manager

The HOpenResFile function returns a file reference number for the file. You can use this
file reference number to refer to the file in other Resource Manager routines. If the file’s
resource fork is already open, HOpenResF1ile returns the file reference number but does
not make that file the current resource file.

If the HOpenResF1ile function fails to open the specified file’s resource fork (because
there’s no file with the specified name or because there are permission problems), it
returns -1 as the file reference number. Use the ResError function to determine what
kind of error occurred.

You don’t have to call HOpenResFile to open the System file’s resource fork or an
application file’s resource fork. These files are opened automatically when the system and
the application start up, respectively. To get the file reference number for your
application, call the CurResFile function after the application starts up and before you
open the resource forks for any other files.

The HOpenResF1ile function checks that the information in the resource map is
internally consistent. If it isn’t, ResError returns the result code mapReadErr.

To open a resource fork just for block-level operations, such as copying files without
reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

The HOpenResF1ile function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

It’s possible to create multiple, unique, read-only access paths to a resource fork using
HOpenResF1ile; however, you should avoid doing so. See page 1-60 for discussion of
this issue in relation to FSpOpenResFile. The HOpenResFile function works the same
way.

Versions of system software before System 7 do not allow you to use HOopenResFile to
open a second access path, with write access, to a resource fork. In this case,
HOpenResF1ile returns the reference number already assigned to the file.

If you want to open the resource fork for another application (or any resource fork other
than your application’s that includes ' CODE ' resources), you must bracket your calls to
HOpenResF1ile with calls to SetResLoad with the 1oad parameter set to FALSE and
then to TRUE. You must also avoid making intersegment calls while the other
application’s resource fork is open. The discussion of this issue in relation to
FSpOpenResFile (page 1-60) also applies to HOpenResFile.

ASSEMBLY-LANGUAGE INFORMATION

A handle to the resource map for the most recently opened resource fork is stored in the
global variable TopMapHndl.

Resource Manager Reference 1-63

RESULT CODES

SEE ALSO

CHAPTER 1

Resource Manager

noErr 0 No error

nsvErr -35 No such volume

ioErr -36 1/0 error

bdNamErr -37 Bad filename or volume name (perhaps zero length)
eofErr -39 End of file

tmfoErr —42 Too many files open

fnfErr —43 File not found

OpWrErr —49 File already open with write permission
permErr -54 Attempt to open locked file for writing
extFSErr -58 Volume belongs to an external file system
memFullErr -108 Not enough room in heap zone
dirNFErr -120 Directory not found

mapReadErr -199 Map inconsistent with operation

To check for errors, call the ResError function as described on page 1-51.

For more information about permission parameter constants and the OpenRF function,
see Inside Macintosh: Files.

OpenRFPerm

DESCRIPTION

1-64

If the FSpOpenResFile and HOpenResFile functions are not available, you can use
the OpenRFPerm function to open a file’s resource fork.

FUNCTION OpenRFPerm (fileName: Str255; vRefNum:

SignedByte) :

Integer;

permission: Integer;

fileName The name of the file whose resource fork is to be opened.

vRe fNum The volume reference number or directory ID for the volume or directory

in which the file is located.

permission
A constant for one of the read /write permission combinations.

The OpenRFPerm function opens the resource fork of the file with the name specified by
the £ileName parameter in the directory or volume specified by the vRe fNum
parameter. It also makes this file the current resource file.

In addition to opening the resource fork for the file with the specified name,
OpenRFPerm lets you specify in the permission parameter the read /write permission
of the resource fork the first time it is opened.

Resource Manager Reference

CHAPTER 1

Resource Manager

You can use the OpenRFPerm function if the FSpOpenResFile function is not
available. You can determine whether FSpOpenResFile is available by calling the
Gestalt function with the gestaltFSAttr selector code. The OpenRFPerm is an
earlier version of the HOpenResF1i1le function.

You can specify the access path permission for the resource fork by setting the
permission parameter to one of these constants:

CONST
fsCurPerm = 0; {whatever is currently allowed}
fsRdPerm = 1; {read-only permission}
fsWrPerm = 2; {write permission}
fsRdWrPerm = 3; {exclusive read/write permission}
fsRAWrShPerm = 4; {shared read/write permission}

See page 1-59 for information about specifying access path permission with
FSpOpenResFile. The same information applies to OpenRFPerm.

The Resource Manager reads the resource map from the resource fork for the specified
file into memory. It also reads into memory every resource in the resource fork whose
resPreload attribute is set.

The OpenRFPerm function returns a file reference number for the file whose resource
fork it has opened. You can use this file reference number to refer to the file in other
Resource Manager routines. If the file’s resource fork is already open, OpenRFPerm
returns the file reference number but does not make that file the current resource file.

If the OpenRFPerm function fails to open the specified file’s resource fork (because
there’s no file with the given name or because there are permission problems), it
returns —1 as the file reference number. Use the ResError function to determine what
kind of error occurred.

You don’t have to call OpenRFPerm to open the System file’s resource fork or an
application file’s resource fork. These files are opened automatically when the system and
the application start up, respectively. To get the file reference number for your
application, call the CurResFile function after the application starts up and before you
open the resource forks for any other files.

The OpenRFPerm function checks that the information in the resource map is internally
consistent. If it isn’t, ResError returns the result code mapReadErr.

To open a resource fork just for block-level operations, such as copying files without
reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS
The OpenRFPerm function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

It’s possible to create multiple, unique, read-only access paths to a resource fork using
OpenRFPerm; however, you should avoid doing so. See page 1-60 for discussion of this
issue in relation to FSpOpenResFile; OpenRFPerm works the same way.

Resource Manager Reference 1-65

CHAPTER 1

Resource Manager

Versions of system software before System 7 do not allow you to use OpenRFPerm to
open a second access path, with write access, to a resource fork. In this case,
OpenRFPerm returns the reference number already assigned to the file.

If you want to open the resource fork for another application (or any resource fork other
than your application’s that includes ' CODE ' resources), you must bracket your calls to
OpenRFPerm with calls to SetResLoad with the 1oad parameter set to FALSE and then
to TRUE. You must also avoid making intersegment calls while the other application’s
resource fork is open. The discussion of this issue in relation to FSpOpenResFile

(page 1-60) also applies to OpenRFPerm.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Ahandle to the resource map for the most recently opened resource fork is stored in the
global variable TopMapHndl.

NnoErr 0 No error

nsvErr -35 No such volume

ioErr -36 I/0 error

bdNamErr -37 Bad filename or volume name (perhaps zero length)
eofErr -39 End of file

tmfoErr —42 Too many files open

fnfErr —43 File not found

OPWrErr -49 File already open with write permission
permErr -54 Attempt to open locked file for writing
extFSErr -58 Volume belongs to an external file system
memFullErr -108 Not enough room in heap zone
dirNFErr -120 Directory not found

mapReadErr -199 Map inconsistent with operation

To check for errors, call the ResError function as described on page 1-51.

For more information about permission parameter constants and the OpenRF function,
see Inside Macintosh: Files.

OpenResFile

1-66

If the FSpOpenResF1ile function is not available, you can use the OpenResFile

function to open a resource fork.
FUNCTION OpenResFile Str255) :

(fileName: Integer;

fileName The name of the file whose resource fork is to be opened.

Resource Manager Reference

DESCRIPTION

CHAPTER 1

Resource Manager

The OpenResF1ile function opens the resource fork of the file with the name specified by
the fileName parameter in the application’s default directory—that is, the directory in
which the application is located. It also makes this file the current resource file.

Like the OpenRFPerm function, the OpenResF1ile function takes a filename and opens
the resource fork for the file with that name. Unlike OpenRFPerm, OpenResFile does
not let you specify the read/write permission of the resource fork the first time it is
opened. The OpenResFile function is an earlier version of the OpenRFPerm function.

If it finds the specified file in your application’s default directory, OpenResFile reads
the file’s resource map into memory and returns a file reference number for the file. It
also reads into memory every resource in the resource fork whose resPreload attribute
is set.

You can use the file reference number returned by OpenResF1ile to refer to the file in
other Resource Manager routines. If the file’s resource fork is already open,
OpenResFile returns the file reference number but does not make that file the current
resource file.

If the OpenResFile function fails to open the specified file’s resource fork (for instance,
because there’s no file with the given name), it returns -1 as the file reference number.
Use the ResError function to determine what kind of error occurred.

You don’t have to call OpenResFile to open the System file’s resource fork or an
application file’s resource fork. These resource forks are opened automatically when the
system and the application start up, respectively. To get the file reference number for your
application, call the CurResFile function after the application starts up and before you
open the resource forks for any other files.

The OpenResFile function checks that the information in the resource map is internally
consistent. If it isn’t, ResError returns the result code mapReadErr.

To open a resource fork just for block-level operations, such as copying files without
reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

The OpenResFile function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

If you want to open the resource fork for another application (or any resource fork other
than your application’s that includes ' CODE ' resources), you must bracket your calls to
OpenResFile with calls to SetResLoad with the 1oad parameter set to FALSE and
then to TRUE. You must also avoid making intersegment calls while the other
application’s resource fork is open. The discussion of this issue in relation to
FSpOpenResFile (page 1-60) also applies to OpenResFile.

ASSEMBLY-LANGUAGE INFORMATION

Ahandle to the resource map for the most recently opened resource fork is stored in the
global variable TopMapHndl.

Resource Manager Reference 1-67

RESULT CODES

SEE ALSO

CHAPTER 1

Resource Manager

noErr 0 No error

nsvErr -35 No such volume

ioErr -36 1/0 error

bdNamErr -37 Bad filename or volume name (perhaps zero length)
eofErr -39 End of file

tmfoErr —42 Too many files open

fnfErr —43 File not found

OpWrErr —49 File already open with write permission
permErr -54 Attempt to open locked file for writing
extFSErr -58 Volume belongs to an external file system
memFullErr -108 Not enough room in heap zone
dirNFErr -120 Directory not found

mapReadErr -199 Map inconsistent with operation

To check for errors, call the ResError function as described on page 1-51.

Getting and Setting the Current Resource File

CurResFile

Most of the Resource Manager routines assume that the current resource file is the file on
whose resource fork they should operate or, in the case of a search, the file where they
should begin. In general, the current resource file is the last one whose resource fork your
application opened unless you specify otherwise.

Two routines work specifically with the current resource file: CurResFile and
UseResFile. The CurResFile function tells you which of the files whose resource
forks are currently open is the current resource file. The UseResFile procedure sets the
current resource file.

The HomeResF1ile function gets the file reference number associated with a particular
resource.

DESCRIPTION

1-68

You can use the CurResFile function to get the file reference number of the current
resource file.

FUNCTION CurResFile: Integer;

The CurResFile function returns the file reference number associated with the current
resource file. You can call this function when your application starts up (before opening
the resource fork of any other file) to get the file reference number of your application’s

resource fork.

Resource Manager Reference

CHAPTER 1

Resource Manager

If the current resource file is the System file, CurResFile returns the actual file reference
number. You can use this number or 0 with routines that take a file reference number for
the System file. All Resource Manager routines recognize both 0 and the actual file
reference number as referring to the System file.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODE

SEE ALSO

UseResFile

The current resource file’s reference number is stored in the global variable CurMap.

noErr 0 No error

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the CurResFile function, see Listing 1-8 on page 1-29.

DESCRIPTION

You can use the UseResF1ile procedure to set the current resource file.
PROCEDURE UseResFile (refNum: Integer);

refNum The file reference number for a resource fork.

The UseResF1ile procedure searches the list of files whose resource forks have been
opened for the file specified by the re fNum parameter. If the specified file is found, the
Resource Manager sets the current resource file to the specified file. If there’s no resource
fork open for a file with that reference number, UseResF1ile does nothing. To set the
current resource file to the System file, use 0 for the re fNum parameter.

Open resource forks are arranged as a linked list with the most recently opened resource
fork at the beginning. When searching open resource forks, the Resource Manager starts
with the most recently opened file. You can call the UseResF1ile procedure to set the
current resource file to a file opened earlier, and thereby start subsequent searches with
the specified file. In this way, you can cause any files higher in the resource chain to be
left out of subsequent searches.

When a new resource fork is opened, this action overrides previous calls to UseResFile
and the entire list is searched. For example, if five resource forks are opened in the order
RO, R1, R2, R3, and R4, the search order is R4-R3-R2-R1-R0. Calling UseResFile (R2)
changes the search order to R2-R1-R0; R4 and R3 are not searched. When the resource
fork of a new file (R5) is opened, the search order becomes R5-R4-R3-R2-R1-R0.

Resource Manager Reference 1-69

CHAPTER 1

Resource Manager

You typically call CurResFile to get and save the current resource file, UseResFile to
set the current resource file to the desired file, then (after you are finished using the
resource) UseResF1ile to restore the current resource file to its previous value. Calling
UseResFile (0) causes the Resource Manager to search only the System file’s resource
map. This is useful if you no longer wish to override a system resource with one by the
same name in your application’s resource fork.

SPECIAL CONSIDERATIONS

The FSpOpenResFile, HOpenResFile, and OpenResFile functions, which also set
the current resource file, override previous calls to UseResFile.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

1-70

The settings of the system global variables RomMapInsert and TmpResLoad affect
resource search order. These global variables determine whether the Resource Manager
searches ROM-resident resources before the System file’s resources.

The Resource Manager normally searches ROM resources only when you use the
RGetResource function to get a handle to the resource, and even then only after it
searches the System file’s resource fork. To search for a resource in ROM before searching
the System file’s resource fork, your application must first alter the resource search order
by inserting the ROM resource map in front of the System file’s resource map.

When the value of the system global variable RomMapInsert is TRUE, the Resource
Manager inserts the ROM resource map before the System file’s resource map for the next
call only (including any Resource Manager routine that gets a resource, not just
RGetResource). When the value of RomMapInsert is TRUE, the adjacent variable
TmpResLoad determines whether the value of the global variable ResLoad is considered
TRUE or FALSE, overriding the actual value of ResLoad for the next call only. The values
of the RomMapInsert and TmpResLoad variables are cleared after each call to a
Reso