

Using the Java Bridge
In the worlds of Mac OS X, Yellow Box for Windows, and WebObjects
programming, there are two languages in common use: Java and Objective-C. This
document describes the Java bridge, a technology from Apple that makes
communication between these two languages possible.

The first section, ÒIntroduction,Ó gives a brief overview of the bridgeÕs capabilities.

For a technical overview of the bridge, see ÒHow the Bridge WorksÓ (page 2).

To learn how to expose your Objective-C code to Java, see ÒWrapping Objective-C
FrameworksÓ (page 9).

If you want to write Java code that references Objective-C classes, see ÒUsing
Java-Wrapped Objective-C ClassesÓ (page 6). If you are writing Objective-C code
that references Java classes, read ÒUsing Java from Objective-CÓ (page 5).

Introduction

The original OpenStep system developed by NeXT Software contained a number of
object-oriented frameworks written in the Objective-C language. Most developers
who used these frameworks wrote their code in Objective-C.

In recent years, the number of developers writing Java code has increased
dramatically. For the benefit of these programmers, Apple Computer has provided
Java APIs for these frameworks: Foundation Kit, AppKit, WebObjects, and
Enterprise Objects. They were made possible by using techniques described later in
Introduction 1

Using the Java Bridge

this document. You can use these same techniques to expose your own Objective-C
frameworks to Java code.

Java and Objective-C are both object-oriented languages, and they have enough
similarities that communication between the two is possible. However, there are
some differences between the two languages that you need to be aware of in order
to use the bridge effectively. In general, using Objective-C from Java requires a bit
more work on the part of the programmer than the reverse process.

Once the proper setup has been done, you can:

■ Instantiate and use classes from one language in the other.

■ Pass objects as arguments and receive objects as return values from one
language to the other.

■ Directly subclass Objective-C classes in Java.

■ See Objective-C protocols as Java interfaces.

How the Bridge Works

The term bridge refers to the fact that there is a connection between two different
worlds: the Objective-C world and the Java world. To use the bridge effectively, itÕs
helpful to understand whatÕs happening on each side of the bridge.

The Java bridge allows you to write code in one language that references an object
from the other language. For example, you can send a message to a Java object from
Objective-C:

myInt = [myJavaObject numberOfItems];

And you can send a message to an Objective-C object from Java:

myInt = myObjCObject.numberOfItems();

The bridge uses two basic approaches to allow this type of communication:

■ Objects of certain commonly used classes are transparently converted, or
morphed, into a corresponding object on the other side of the bridge. An example
2 How the Bridge Works

Using the Java Bridge

would be using a Java String object in a method call that expects an Objective-C
NSString. See ÒMorphingÓ for more information.

■ For all other objects, the bridge builds a proxy object that references the actual
object on the other side of the bridge that is being messaged.

Exposing Objective-C classes to Java code requires a bit more work than the
converse. Because Java is a strongly typed language, it requires more information
about the classes and interfaces it manipulates at compile time. Therefore, before
using Objective-C classes as Java ones, a description of them has to be written and
compiled. This is called wrapping the Objective-C classes. The wrapping process
involves creating a Java to Objective-C Bridging Specification (.jobs) fileÑeither with
the WrapIt application or by handÑand processing it with a tool called bridget. See
ÒWrapping Objective-C FrameworksÓ (page 9) for more information.

Java has a facility called the Java Native Interface, which allows a Java programmer
to write methods that are implemented in another language (such as C or
Objective-C). The Java bridge makes use of this capability to allow you to send
messages from Java to Objective-C:

■ It provides a native method for each Objective-C method that is being wrapped.

■ It generates stub code that dispatches to the Objective-C method.

Suppose you have an Objective-C framework containing a class called Foo with a
method called ping, as follows:

@interface Foo:NSObject
 - (void) ping; //the actual Objective-C method

@end

To use this method from Java, you specify in your .jobs file that you want to expose
the Foo class, and that its corresponding Java name should be Foo (you must also
specify the package name, for example, com.yourFirm.whatever.Foo). You also
specify that you want to expose the ping method (and its Java name, if different).

The bridget tool generates a native method declaration (in Foo.java) that looks like
this:

public class Foo() extends com.apple.yellow.foundation.NSObject {
public native void ping(); //native method declaration

}

How the Bridge Works 3

Using the Java Bridge

The native keyword indicates that the code for the method is in a language other
than Java.

Bridget also generates a file containing stub code, which is the actual code that gets
called on the Objective-C side. This stub code lives in a file called
packageName_className_ stubs.m. By convention, the stub routine for the native
method has the name Java_className_methodName. The following code illustrates
what such a stub routine might look like:

void Java_Foo_ping(JAVAHandle object) {
[BRIDGEJavaHandleToId(object) ping]; //the Objective-C method call

}

Note: JAVAHandle is the way the bridge points to a Java object. BRIDGEJavaHandleToId
is a function that converts the Java handle to an Objective-C id. These examples are
intended to give a sense of how the bridge works. Normally, you donÕt need to
understand these internal bridge data types in detail, unless you are writing
morphing conversion routines, for example. In that case, you can refer to the bridge
header files (located in /System/Developer/Java/Headers/) for more information.

To call this method from Java, youÕd write code such as the following:

myFooObject = new Foo();
myFooObject.ping();

When you instantiate a Foo object, the Java bridge creates a proxy object on the Java
side and a ÒrealÓ object on the Objective-C side, which is the receiver of any
messages that you send to it.

Morphing

There are some frequently used classes for which the Java bridge supplies
automatic conversion functions, so that you donÕt need to provide a wrapper. When
you use an instance of one of these classes, it is transparently converted (or morphed)
into the corresponding class on the other side of the bridge.

For example, suppose the ping method took an NSString argument:

@interface Foo:NSObject
 - (void) ping:(NSString *) theString);

@end
4 How the Bridge Works

Using the Java Bridge

When you call this method from Java, you pass in a Java String object:

myFooObject.ping(myString);

The stub code looks something like this:

Java_Foo_ping(JAVAHandle object, JAVAHandle str) {
[BRIDGEJavaHandleToId(object) ping:JavaStringToNSString(str)];

}

The first argument to this function points to the object to which the message is being
sent (that is, myFooObject on the Java side). The second argument points to the Java
String object myString. JavaStringToNSString is a function provided by the bridge
that converts a Java String to an NSString. Its inverse is NSStringToJavaString. This
means that you can use these types on both sides of the bridge, and the conversion
takes place automatically.

You may want to provide your own conversion functions that transparently morph
classes. For example, you might want to expose a C struct as a Java class. See
ÒEditing the Specification FileÓ (page 12) for information on how to specify them.

Other classes that are morphed include Number (NSNumber) and Exception
(NSException). In the case of NSException, this means that your Java code can
handle exceptions as it normally would, regardless of whether the exception might
have arisen in an Objective-C method.

Using Java from Objective-C

In Objective-C, you can use Java classes and interfaces as if they were Objective-C
classes and protocols.

To reference class objects, you must use the function NSClassFromString(), since the
Objective-C compiler can't generate static references to bridged Java classes. For
example, to instantiate an object from the AJavaClass class, you would write code
such as the following:

MyJavaClass = NSClassFromString(@"java.util.AJavaClass");
MyJavaObj = [[MyJavaClass alloc] init];
Using Java from Objective-C 5

Using the Java Bridge

You can instantiate Java classes from Objective-C and see them as if they were pure
Objective-C objects. You can also pass Objective-C objects as parameters to Java
methods.

To invoke a Java method from Objective-C:

■ If youÕve specified an explicit mapping between the selector name and a Java
method name in a .jobs file, your specified Java method name is used.

■ If you havenÕt mapped the selector name to a Java method name in a .jobs file,
the bridge automatically derives the Java method name from the Objective-C
selector name by removing everything beyond the first colon. Thus, a method
such as sendBar:x foo:y would map to sendBar(x,y)

Exceptions raised within the Java code are caught and transformed into
NSExceptions, which can then be handled by your code on the Objective-C side.

Using Java-Wrapped Objective-C Classes

This section describes how to use wrapped Objective-C classes from Java. The next
section, ÒWrapping Objective-C Frameworks,Ó explains how to wrap Objective-C
frameworks.

To get information about the classes in a wrapped framework, you canÕt look at
header files as you would in Objective-C. Instead, you can:

■ Look at documentation provided with wrapped frameworks from Apple, such
as Foundation Kit, AppKit, WebObjects, and Enterprise Objects.

■ Use the Java Class Browser. This application allows you to browse Java
packages found in your CLASSPATH (an environment variable that specifies the
search path for Java .class files. It lists the classes and the syntax of their
methods, even for classes for which you donÕt have the source code.
6 Using Java-Wrapped Objective-C Classes

Using the Java Bridge

Figure 1-1 Java Class Browser

Objective-C methods use keywords for method arguments, while Java uses
comma-separated lists (as with C and C++). For example, in Objective-C, the
following declares an instance method that takes two parameters:

-(void)setObject:(id)anObject forKey:(id)aKey;

In Java, the same method is declared as follows:

void setObjectForKey(Object anObject, Object aKey);
Using Java-Wrapped Objective-C Classes 7

Using the Java Bridge

The Java names for methods and classes may or may not be the same as their
Objective-C counterparts. ItÕs up to the developer of the wrapped framework to
decide how Objective-C names are exposed in Java. ÒWrapping Objective-C
FrameworksÓ (page 9) explains the rules and options for mapping names between
the two languages.

For the most part, you can use the classes in a wrapped Objective-C framework just
as you would use any Java class. The bridge transparently loads in any needed
Objective-C framework whenever a bridged class is used. You can invoke
Objective-C instance methods as youÕd expect:

myInt = myObjCObject.aMethod();

Java objects can be passed back to the Objective-C world and manipulated by the
code there as if they really were Objective-C classes.

You can invoke a class method by referencing the class name directly:

ObjCClassName.classMethod();

One restriction is that instance variables in Objective-C classes are not exposed in
Java. The class must provide accessor methods that set and get their values.

You can subclass Objective-C classes in Java just like you can any other class:

class MySubClass extends MyObjCClass {
...

}

Again, the original classÕs instance variables arenÕt exposed; therefore, they arenÕt
inherited. You can, however, add your own instance variables to the subclass.

As with other classes, you can call super from a Java subclass of an Objective-C class
to invoke the Objective-C classÕs implementation.

In Objective-C, you create objects with alloc and initialize them with class
initialization methods such as init. In Java, you create objects with new and initialize
them with the classÕs constructor.

For example, to create an instance of the Foo class in Objective-C:

someObject = [[Foo alloc] init];
8 Using Java-Wrapped Objective-C Classes

Using the Java Bridge

In Java:

someObject = new Foo();

In Objective-C, initialization methods are instance methods, applied to newly
created objects. In Java, constructors are not used in the same way as instance
methods. Therefore, Objective-C initialization methods must be explicitly specified
as constructors when the classes are wrapped. If there is more than one initialization
method, they become Java constructors with different argument types. See ÒEditing
the Specification FileÓ (page 12) for specifics on how to do this.

One difference between Java and Objective-C is memory management. In Java,
unused objects are garbage-collected. In Objective-C, you must keep track of object
references and release objects when they are no longer needed.

For the most part, you donÕt need to worry about these differences. One possible
occurs if you create a new thread in Java, and that thread manipulates some objects
with Objective-C counterparts. In that case, you must explicitly create an
autorelease pool at the beginning of the thread, and remove it at the end of the
thread.

Wrapping Objective-C Frameworks

The Java bridge allows you to take existing Objective-C code and make it accessible
to Java. To do so, follow these steps:

1. Determine which Objective-C entities (types, classes, methods, and protocols)
you want to expose in Java.

These entities must be packaged in a framework (or possibly more than one).

2. Identify a single header (.h) file that declares, either directly or indirectly
through importing other headers, all the Objective-C entities that you want to
expose. YouÕll specify this header when you edit the .jobs file in step 6 below.

This header file can be one that already exists in your framework. Alternatively,
you can create a header yourself and have it import the other headers you need.
In particular, you'll do this when you add extra code to your Objective-C classes.
Wrapping Objective-C Frameworks 9

Using the Java Bridge

3. Create a Java Wrapper project using Project Builder. See the next section for more
information.

4. Add your framework to the project.

5. Optionally, add extra Objective-C code to your project. See ÒModifying Your
CodeÓ (page 17) for information on when you might need to do this.

6. Edit the .jobs file in your project to specify which entities should be exposed,
and the Java names that should correspond to them.

This process is called mapping and is described in ÒName MappingÓ (page 10).
You use the .jobs file in your project to specify the mapping information.
ÒEditing the Specification FileÓ (page 12) describes the details of working with
the .jobs file.

7. Build the project.

The build process invokes the bridget tool, which outputs the files needed to use
the Objective-C classes in your Java code. See ÒBuilding the projectÓ (page 17).

Creating a Java Wrapper Project

In Project Builder:

1. Choose Project-> New.

2. In the New Project panel, select Java Wrapper from the pop-up list.

3. Specify the project path by typing it in the text box or by clicking Browse to
navigate to it.

4. Click OK.

The newly created project contains the following files of interest:

■ The Other Sources suitcase contains a skeleton specification (.jobs) file.

■ The Frameworks suitcase contains the Foundation framework by default. You
must add the framework you are wrapping to the project.

Name Mapping

This section provides some background information youÕll need in order to
properly edit your .jobs file.
10 Wrapping Objective-C Frameworks

Using the Java Bridge
The Java bridge maintains a table that maps Objective-C selectors to Java method
names. By default, the bridge maps Objective-C selectors to Java by using the first
keyword only. For example, the method doThis would map to doThis() in Java. If
this is what you want, you donÕt need to specify an explicit mapping.

The Java bridge also lets you overload Java method names, as long as each one has
a unique arguement list, so the methods doThis:withThat: and
doThis:withSomethingElse: can both map to doThis() in Java. However, as of press
time, the bridge still had limitations with overloading, so in some cases you may
need specify different Java names, say, doThisWithThat() and
doThisWithSomethingElse().. For more information, check the files in /System/
Documentation/Developer/YellowBox/ReleaseNotes/.

There are some other restrictions on name mapping:

■ A single Objective-C selector canÕt be mapped to different Java method names
for different classes or interfaces. For example, If you map foo: to javaFoo() in a
given class, any method named foo: in another class must map to javaFoo().

■ Different Objective-C selectors canÕt be mapped to the same Java method name.
For example, if you map foo: to javaFoo() in a given class, you canÕt map
fooBar: to javaFoo() in another class.

■ In Objective-C, itÕs possible for an instance method to have the same name as a
class method, while in Java, class (static) and instance methods share the same
name space. Therefore, if an Objective-C class has methods -foo and +foo, you
must map at least one of them to a different name in Java.

Objective-C initialization methods should be exported in Java as constructors, not
as instance methods. This allows you to use the new operator in Java to allocate and
initialize the operator.

You can expose multiple initialization methods as constructors. For example,
suppose the Foo class has two initialization methods: init and
initWithString:(NSString*). The bridge creates the appropriate Java constructors
based on the argument types: init becomes the constructor Foo() in Java, and
initWithString: becomes Foo(String s).
Wrapping Objective-C Frameworks 11

Using the Java Bridge
Editing the Specification File

The specification (.jobs) file shows how the Objective-C class is exposed in Java. It
allows you to choose which Objective-C classes, methods, types, and protocols you
want to expose, and the names they should have on the Java side.

The .jobs file also allows you to add specific code to a Java class or interface. This
can be used to define constants corresponding to enumerated types used in
Objective-C, or simply to provide extended functionality in the Java world.

The .jobs file that is created by default with a Java wrapper project looks like this:
12 Wrapping Objective-C Frameworks

Using the Java Bridge
Figure 1-2 The .jobs file in a new project

There are two ways to edit a .jobs file:

■ Use the WrapIt application, which lets you graphically specify the relationships
between Objective-C and Java classes. ItÕs in the directory System/Developer/
Applications and you can find documentation on it in System/Documentation/
Developer/YellowBox/ReleaseNotes.

■ Edit it manually within Project Builder.

Note that if you use the WrapIt application, you should not manually edit the .jobs
file it creates
Wrapping Objective-C Frameworks 13

Using the Java Bridge
The table below lists the keywords that the specification file understands, and
shows examples each one.

Syntax of .jobs file

name

The name of the package, which comes from the project name (you
shouldnÕt change it). ItÕs also used for the name of the library
initialization file, for example, SimpleWrapper-init.m.

name SimpleWrapper

header

Specifies the header file that bridget should read to parse the
Objective-C @interface declarations. You can only specify one header
file.

header MyFramework/Foo.h

import

Specifies other .jobs files that bridget should include for class
mappings, type definitions, and so on.

import FoundationJava.jobs

stub-import

Specifies header files that you want to output as #import statements in
the generated stub code.

stub-import MyHeader.h

selector

Specifies any non-default mappings between Objective-C selectors and
Java method names. (The default is to use the Objective-C name before
the colon as the Java name.) These mappings apply to all classes. Note:
Put all of the mappings under a single selector specification.

selector
-defineClass:withName: = defineClassWithName
-pathForResource:ofType: = pathForResourceType
14 Wrapping Objective-C Frameworks

Using the Java Bridge
protocol

Exposes an Objective-C protocol as a Java interface. Use one protocol
directive for each protocol. You must specify all methods within the
protocol that you want exposed. Note: Constructors are not allowed in
Java interfaces. Therefore, donÕt specify initialization methods in a
protocol; you must specify them as constructors in each class that uses
the protocol (refer to the class keyword for more information).
protocol MyProtocol = com.myFirm.whatever.myInterface
-doThis:
-doThat:
-doSomethingElse:

class

Specifies the classes that should be exposed and the methods in each
class. Use one class specification for each class. In the example here, the
Objective-C class MyObjCClass is exposed as
com.myFirm.whatever.myJavaClass. The implements directive specifies
an Objective-C protocol that the class conforms to; all methods in this
protocol are exposed. Note: This protocol must also be exposed as a Java
interface using protocol.
All additional methods you want to expose must be shown explicitly.
Objective-C class methods (such as +myClassMethod) are mapped to Java
static methods. Objective-C instance methods (such as
-myInstanceMethod:) are mapped to Java instance methods. The
constructor directive is used to map Objective-C initialization methods
to Java constructors.

class MyObjCClass = com.MyFirm.Whatever.MyJavaClass
implements MyProtocol
-myInstanceMethod:
-myOtherInstanceMethod:withArguments:
+myClassMethod
constructor -init
constructor -init:withSomething:

Within the class specification, you can specify additional Java code to
be added to the class. In the following example, Java constants are
declared, corresponding to enumerated types in Objective-C:
@{

public static final int InnerJoin = 0;
public static final int FullOuterJoin = 1;
Wrapping Objective-C Frameworks 15

Using the Java Bridge
@}

You can also specify statements that will appear at the top or bottom of
a Java package:
@top {

import com.yourFirm.whatever.*
@}

@end {
private class notSeenAnywhereElse {

int secret() { return 2001; }
@}

type

Used to map Objective-C types to Java basic types or classes.
type

NSTimeInterval = double
NSComparisonResult = int

NSMyStruct = com.myFirm.myJavaClass using _f1 _f2 _f3
struct-size 16

This last form is designed to map Objective-C structs to Java classes. If
you need to do this, you must provide three conversion functions: two
that convert the struct to a Java object (by reference and by value), and
one that converts the Java object to the Objective-C struct, as in the
following prototypes:
JAVAHandle _f1(NSMyStruct *n, int *structSize);
JAVAHandle _f2 (NSMyStruct n);
NSMyStruct _f3 (JAVAHandle myJavaObj);

map

Specifies routines for converting (ÒmorphingÓ) Objective-C classes to
Java classes and vice versa.
map

NSNumber = java.lang.Number using _NSNumberToJavaNumber
_JavaNumberToNSNumber

name

The name of the package. ItÕs used for the name of the library
initialization file as well, for example, SimpleWrapper.m.
name SimpleWrapper
16 Wrapping Objective-C Frameworks

Using the Java Bridge
preinit-callout

Allows you to specify a function to execute before the bridgeÕs standard
initialization code (which sets up the Java-to-Objective-C mappings).
preinit-callout your_pre_initialization_function

postinit-callout

Allows you to specify a function to execute after the bridgeÕs standard
initialization code.
postinit-callout your_post_initialization_function

Building the project

The bridget tool uses the .jobs file to generate Java classes and interfaces for a given
set of Objective-C entities.

When you build the project, the following files are generated:

■ A dynamic library containing the Objective-C classes and protocols packaged as
Java classes and interfaces.

■ A .java file for each Objective-C class listed in the .jobs file.

It contains declarations for all of the methods in the class, as well as a static
initialization method that insures that the dynamic library is loaded the first
time an object of the class is instantiated.

■ A C stubs file for each class listed in the .jobs file.

■ A file (projectName-init.m) containing initialization code for the Objective-C
classes. This code is run the first time the dynamic library is loaded, and sets up
the Java-to-Objective-C mappings.

Modifying Your Code

Occasionally, differences between Objective-C and Java may require you to change
your Objective-C framework in order for it to work properly with the bridge.
Typically, changes are done by adding categories rather than changing the original
classes. You add Objective-C .m files to the Classes bucket and .h files to the Headers
bucket in your project.

The following sections describe some reasons why you might need to modify your
code.
Wrapping Objective-C Frameworks 17

Using the Java Bridge
Pointers

Java doesnÕt use pointers, while Objective-C (like C and C++) does. In some cases,
you may need to change your code if an Objective-C method you are wrapping
returns a pointer or takes a pointer as an argument.

■ The bridge automatically converts a pointer to an object (such as an NSArray*) to
a Java object reference. Therefore, any method using an object pointer will work
correctly without modification.

■ Pointers such as int* or id* or void* will not work. The Objective-C method
must be changed.

In the following example, an Objective-C method uses pointers to return two values
Òby referenceÓ.

NSFoo value1:(int*)v1 value2:(int*)v2

In Java, values must be returned explicitly by value, so you need to rewrite this
method. You can, for example, write separate methods to return each of the values
and add them to the NSFoo class via a category, as follows:

@interface NSFoo(MyJavaExtensions)
- (int) value1; //returns first argument
- (int) value2; //returns second argument
@end

@implementation NSFoo(MyJavaExtensions)
- (int) value1 {

int v1, v2;
[self value1:&v1 value2:&v2]; //invokes original method
return v1;

};
- (int) value2 {

int v1, v2;
[self value1:&v1 value2:&v2];
return v2;

};
@end

Another option is to rewrite value1:value2: as a single method whose return type
is an NSDictionary that contains both values.
18 Wrapping Objective-C Frameworks

Using the Java Bridge
Constructors

 Normally, Objective-C initialization methods are mapped to Java constructors
based on the number and types of arguments. A special cases arises when an
Objective-C class has two initialization methods with the same argument types but
different names (say, initWithString: and initWithPathName:, both taking an
NSString). In this case, Java canÕt distinguish between the two needed constructors.

 One solution is to create a ÒcoverÓ method in Objective-C that takes an extra
parameter and calls the correct initialization method depending on the value of the
second parameter. This cover method is mapped to the Java constructor.

A similar approach is to write the cover method in Java. You expose the
initialization methods as instance methods rather than constructors and add a
custom pure Java constructor such as:

public Foo (String myString, boolean isPathName) {
if (isPathName) {

this.initWithPathName(myString);
}
else {

this.initWithString(myString);
}

}

This code can be added to a Java class in the .jobs file. See the description of the
class keyword in ÒEditing the Specification File.Ó
Wrapping Objective-C Frameworks 19

	Using the Java Bridge
	Introduction
	How the Bridge Works
	Morphing

	Using Java from Objective-C
	Using Java-Wrapped Objective-C Classes
	Figure 1-1 Java Class Browser

	Wrapping Objective-C Frameworks
	Creating a Java Wrapper Project
	Name Mapping
	Editing the Specification File
	Figure 1-2 The .jobs file in a new project
	Syntax of .jobs file

	Building the project
	Modifying Your Code
	Pointers
	Constructors

