Altering Execution
Once you think you have found an error in your program, you might want to find out for certain whether correcting the apparent error would lead to correct results in the rest of the run. You can find the answer by experiment, using the GDB features for altering execution of the program.
For example, you can store new values into variables or memory locations, give your program a signal, restart it at a different address, or even return prematurely from a function.
Assignment to variables
To alter the value of a variable, evaluate an assignment expression. See section Expressions. For example,
print x=4
stores the value 4 into the variable x
, and then prints the
value of the assignment expression (which is 4).
See section Using GDB with Different Languages, for more
information on operators in supported languages.
If you are not interested in seeing the value of the assignment, use the
set
command instead of the print
command. set
is
really the same as print
except that the expression's value is
not printed and is not put in the value history (see section Value history). The expression is evaluated only for its effects.
If the beginning of the argument string of the set
command
appears identical to a set
subcommand, use the set
variable
command instead of just set
. This command is identical
to set
except for its lack of subcommands. For example, if your
program has a variable width
, you get an error if you try to set
a new value with just `set width=13', because GDB has the
command set width
:
(gdb) whatis width type = double (gdb) p width $4 = 13 (gdb) set width=47 Invalid syntax in expression.
The invalid expression, of course, is `=47'. In
order to actually set the program's variable width
, use
(gdb) set var width=47
Because the set
command has many subcommands that can conflict
with the names of program variables, it is a good idea to use the
set variable
command instead of just set
. For example, if
your program has a variable g
, you run into problems if you try
to set a new value with just `set g=4', because GDB has
the command set gnutarget
, abbreviated set g
:
(gdb) whatis g type = double (gdb) p g $1 = 1 (gdb) set g=4 (gdb) p g $2 = 1 (gdb) r The program being debugged has been started already. Start it from the beginning? (y or n) y Starting program: /home/smith/cc_progs/a.out "/home/smith/cc_progs/a.out": can't open to read symbols: Invalid bfd target. (gdb) show g The current BFD target is "=4".
The program variable g
did not change, and you silently set the
gnutarget
to an invalid value. In order to set the variable
g
, use
(gdb) set var g=4
GDB allows more implicit conversions in assignments than C; you can freely store an integer value into a pointer variable or vice versa, and you can convert any structure to any other structure that is the same length or shorter.
To store values into arbitrary places in memory, use the `{...}'
construct to generate a value of specified type at a specified address
(see section Expressions). For example, {int}0x83040
refers
to memory location 0x83040
as an integer (which implies a certain size
and representation in memory), and
set {int}0x83040 = 4
stores the value 4 into that memory location.
Continuing at a different address
Ordinarily, when you continue your program, you do so at the place where
it stopped, with the continue
command. You can instead continue at
an address of your own choosing, with the following commands:
jump linespec
-
Resume execution at line linespec. Execution stops again
immediately if there is a breakpoint there. See section Printing source lines, for a description of the different forms of
linespec. It is common practice to use the
tbreak
command in conjunction withjump
. See section Setting breakpoints. Thejump
command does not change the current stack frame, or the stack pointer, or the contents of any memory location or any register other than the program counter. If line linespec is in a different function from the one currently executing, the results may be bizarre if the two functions expect different patterns of arguments or of local variables. For this reason, thejump
command requests confirmation if the specified line is not in the function currently executing. However, even bizarre results are predictable if you are well acquainted with the machine-language code of your program. jump *address
- Resume execution at the instruction at address address.
On many systems, you can get much the same effect as the jump
command by storing a new value into the register $pc
. The
difference is that this does not start your program running; it only
changes the address of where it will run when you continue. For
example,
set $pc = 0x485
makes the next continue
command or stepping command execute at
address 0x485
, rather than at the address where your program stopped.
See section Continuing and stepping.
The most common occasion to use the jump
command is to back
up--perhaps with more breakpoints set--over a portion of a program
that has already executed, in order to examine its execution in more
detail.
Giving your program a signal
signal signal
-
Resume execution where your program stopped, but immediately give it the
signal signal. signal can be the name or the number of a
signal. For example, on many systems
signal 2
andsignal SIGINT
are both ways of sending an interrupt signal. Alternatively, if signal is zero, continue execution without giving a signal. This is useful when your program stopped on account of a signal and would ordinary see the signal when resumed with thecontinue
command; `signal 0' causes it to resume without a signal.signal
does not repeat when you press RET a second time after executing the command.
Invoking the signal
command is not the same as invoking the
kill
utility from the shell. Sending a signal with kill
causes GDB to decide what to do with the signal depending on
the signal handling tables (see section Signals). The signal
command
passes the signal directly to your program.
Returning from a function
return
return expression
-
You can cancel execution of a function call with the
return
command. If you give an expression argument, its value is used as the function's return value.
When you use return
, GDB discards the selected stack frame
(and all frames within it). You can think of this as making the
discarded frame return prematurely. If you wish to specify a value to
be returned, give that value as the argument to return
.
This pops the selected stack frame (see section Selecting a frame), and any other frames inside of it, leaving its caller as the innermost remaining frame. That frame becomes selected. The specified value is stored in the registers used for returning values of functions.
The return
command does not resume execution; it leaves the
program stopped in the state that would exist if the function had just
returned. In contrast, the finish
command (see section Continuing and stepping) resumes execution until the
selected stack frame returns naturally.
Calling program functions
print expr
- Evaluate the expression expr and display the resuling value. expr may include calls to functions in the program being debugged.
call expr
-
Evaluate the expression expr without displaying
void
returned values. You can use this variant of theprint
command if you want to execute a function from your program that does not return anything (a.k.a. a void function), but without cluttering the output withvoid
returned values that GDB will otherwise print. If the result is not void, it is printed and saved in the value history.
It is possible for the function you call via the print
or
call
command to generate a signal (e.g., if there's a bug in
the function, or if you passed it incorrect arguments). What happens
in that case is controlled by the set unwindonsignal
command.
set unwindonsignal
- Set unwinding of the stack if a signal is received while in a function that GDB called in the program being debugged. If set to on, GDB unwinds the stack it created for the call and restores the context to what it was before the call. If set to off (the default), GDB stops in the frame where the signal was received.
show unwindonsignal
- Show the current setting of stack unwinding in the functions called by GDB.
Sometimes, a function you wish to call is actually a weak alias for another function. In such case, GDB might not pick up the type information, including the types of the function arguments, which causes GDB to call the inferior function incorrectly. As a result, the called function will function erroneously and may even crash. A solution to that is to use the name of the aliased function instead.
Patching programs
By default, GDB opens the file containing your program's executable code (or the corefile) read-only. This prevents accidental alterations to machine code; but it also prevents you from intentionally patching your program's binary.
If you'd like to be able to patch the binary, you can specify that
explicitly with the set write
command. For example, you might
want to turn on internal debugging flags, or even to make emergency
repairs.
set write on
set write off
-
If you specify `set write on', GDB opens executable and
core files for both reading and writing; if you specify `set write
off' (the default), GDB opens them read-only.
If you have already loaded a file, you must load it again (using the
exec-file
orcore-file
command) after changingset write
, for your new setting to take effect. show write
- Display whether executable files and core files are opened for writing as well as reading.
Go to the first, previous, next, last section, table of contents.