g

Getting Started
With WebObjects

Apple, NeXT, and the publishers have tried to make the information contained in
this manual as accurate and reliable as possible, but assume no responsibility for
errors or omissions. They disclaim any warranty of any kind, whether express or
implied, as to any matter whatsoever relating to this manual, including without
limitation the merchantability or fitness for any particular purpose. In no event shall
they be liable for any indirect, special, incidental, or consequential damages arising
out of purchase or use of this manual or the information contained herein. NeXT or
Apple will from time to time revise the software described in this manual and
reserves the right to make such changes without obligation to notify the purchaser.

Copyright 00 1998 by Apple Computer, Inc., 1 Infinite Loop, Cupertino, CA 95014.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher or
copyright owner. Printed in the United States of America. Published simultaneously
in Canada.

NeXT, the NeXT logo, OPENSTEP, Enterprise Objects, Enterprise Objects
Framework, Objective-C, WEBSCRIPT, and WEBOBJECTS are trademarks of
NeXT Software, Inc. Apple is a trademark of Apple Computer, Inc., registered in the
United States and other countries. PostScript is a registered trademark of Adobe
Systems, Incorporated. Windows NT is a trademark of Microsoft Corporation.
UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. ORACLE is a registered trademark
of Oracle Corporation, Inc. SYBASE is a registered trademark of Sybase, Inc. All
other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 [or, if
applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

This manual describes WebObijects 4.0.

Writing: Ron Karr, Kelly Toshach, Nancy Craighill

With help from: Andy Belk, Craig Federighi, Bruce Arthur, John Graziano,
Ben Haller, Kenny Leung, Jean Ostrem, Becky Willrich, Greg Wilson
Graphic Design: Karin Stroud

Production: Gerri Gray

Contents

Table of Contents

Preface 9

About WebObjects 11
About This Book 11
Where to Go From Here 12

Creating a Simple WebObjects Application 13

Creating a WebObjects Application Project 16
Choosing the Programming Language 18
Examining Your Project 19
Launching WebObjects Builder 21
Creating the Page’s Content 23
Entering Static Text 24
Using the Inspector 24
Creating Form-Based Dynamic HTML Elements 26
Resizing the Form Elements 28
Binding Elements 30
Creating Variables 30
Binding the Input Elements 32
Implementing an Action Method 34
Creating the Application’s Output 35
Building and Running Your Application 38

Enhancing Your Application 41

Duplicating Your Project 43
Creating a Custom Guest Class 45
Binding the Class’s Instance Variables to the Form Elements 46
Creating a Table to Display the Output 47
Adding Dynamic Elements to Table Cells 50
Binding the Dynamic Elements in the Table 50
Creating the Guest Object 51

Table of Contents

Keeping Track of Multiple Guests 53
Creating a Guest List 53
Adding Guests to the Guest List 55
Adding a Second Component 56
Using a Repetition 59
Adding the Finishing Touches 62
Clearing the Guest List 62
Adding a Dynamic Hyperlink 63

Creating a WebObjects Database Application 65

The Movies Application 68
Enterprise Objects and Relationships 70
Designing the Main Page 71
Starting the WebObjects Application Wizard 72
Specifying a Model File 72
Choosing an Adaptor 73
Choosing What to Include in Your Model 75
Choosing the Tables to Include 78
Specifying Primary Keys 78
Specifying Referential Integrity Rules 79
Choosing an Entity 81
Choosing a Layout 82
Choosing Attributes to Display 83
Choosing an Attribute to Display as a Hyperlink 84
Choosing Attributes to Query On 84
Running Movies 85
Examining Your Project 86
Examining the Variables 87
Examining the Bindings 89
Refining Main.wo 93
Specifying a Sort Order 95
Specifying Default Values for New Enterprise Objects 96
Setting a Date Format 97
Setting a Number Format 99
Optional Exercise 99

Table of Contents

Adding the MovieDetails Page 103
Creating the MovieDetails Component 103
Storing the Selected Movie 103
Navigating from Main to MovieDetails 104
Designing MovieDetails’ User Interface 106
Adding Date and Number Formats 107
Navigating from MovieDetails to Main 107
Running Movies 107
Refining Your Model 108
Opening Your Model 108
Removing Primary and Foreign Keys as Class Properties 109
Adding Relationships to Your Model 110
Using the Advanced Relationship Inspector 114
Where Do Primary Keys Come From? 116
Setting Up a Master-Detail Configuration 117
Creating a Detail Display Group 118
Adding a Repetition 122
Configuring a Repetition 122
Running Movies 123
Updating Objects in the Detail Display Group 124
Managing a WODisplayGroup’s Selection 125
Adding a Form 126
Adding a Talent Display Group 126
Configuring the Browser 127
Adding Insert, Save, and Delete Buttons 129
Adding Behavior to Your Enterprise Objects 131
Specifying Custom Enterprise Object Classes 131
Generating Custom Enterprise Object Classes 132
Adding Custom Behavior to Talent 133
Providing Default Values in MovieRole 133
Running Movies 134

Preface

About WebObjects

About This Book

WebObjects is an object-oriented environment for developing and
deploying World Wide Web applications. A WebObjects application
runs on a server machine and receives requests from a user’s web
browser on a client machine. It dynamically generates HT'ML pages in
response to the user’s requests. WebObjects provides a suite of tools for
rapid application development, as well as prebuilt application
components and a web application server.

WebObjects is flexible enough to suit the needs of any web
programmer. You can write code using one of three programming
languages: Java, Objective-C, or WebScript. You can write simple
WebObjects applications in a matter of minutes. For more complex
projects, WebObjects makes it easy by performing common web
application tasks automatically and by allowing you to reuse objects
you’ve written for other applications.

"T'his book contains three tutorials that help you learn what
WebObjects is and how to use it:

e Chapter 1, “Creating a Simple WebObjects Application” (page
13), teaches you the basic concepts and steps involved in
creating a WebObjects project, using the Project Builder and
WebObjects Builder tools. You'll create a simple application that
takes input from a user and displays it.

e Chapter 2, “Enhancing Your Application” (page 41), extends the
capabilities of your application and shows you additional
techniques you use when working with WebObjects.

e Chapter 3, “Creating a WebObjects Database Application”
(page 65), teaches you how to create a more complex application,
one that accesses a database.

11

Preface

Where to Go From

12

WebObjects can run on several platforms. Screen shots in this book are for
Windows N'T systems; if you are running on a different platform, the look
of your windows may vary slightly.

Here

After you have worked through the tutorials in this book, you should
have a good working knowledge of WebObjects. For more in-depth
information about how WebObjects works, read the

WebObyjects Developer’s Guide.

Other valuable information about WebObject is available online. You can
access all online information through the WebObjects Info Center. In
particular, the WebObjects Info Center gives you access to some books
that are available only online:

o WebObyjects Tools and Techniques is a more comprehensive guide to
using Project Builder and WebObjects Builder to develop
WebObjects applications.

o Serving WebObyects describes how to administer and deploy
WebObjects applications after you’ve written them.

o 'The Dynamic Elements Reference documents the dynamic elements
provided with WebObjects and provides examples of how to use
them.

o 'The WebObyjects Framework Reference provides a complete reference
to the classes in the WebObjects framework. Reference material is
provided for both the Java and Objective-C languages.

Additionally, for more information on Enterprise Objects Framework,
read the Enterprise Objects Framework Developer’s Guide. This book
provides in-depth information about how Enterprise Objects Framework
works and about techniques for developing database applications with it.

Chaprer 1 Creating a Simple
WebObjects Application

"This chapter introduces you to the basic concepts and procedures of
developing WebObjects applications. You’ll develop, in stages, a simple
application for the World Wide Web. The application you’ll write is called
GuestBook.

When you’ve finished the steps in this chapter, your application will have
a single web page containing a form that allows users to enter their names,
e-mail addresses, and comments. When the form is submitted, the
application redraws the page with the user’s information at the bottom.

e Ed Mew [0 Devessks [ptorm [ecioy siedes oo
slzla|lale|g|a|a] @

i
L
Lu:-ur:|r.lp #facahert 1 (G o b whil] byt Crem i k. proasven oo OO LRI /L1 1 :]

whats Heed | ‘what's ot | tarctock | el Sesch | S Discig | Sotea ||

My Guest Book

Hame 11-IH.-|. igan Mniresise

E-mad }::llrl\.-ui A 1Nt oo

o ornmends

HITE Sniapahls wslnh mine, ;]
if I S5n"L Say b

Fa2p up che gomd uark!

o

wibirml | FH-Ii'll

Sheridan shtedds
2 n el detesr S om
Qi enjoyabls web oges, €1 don't iy g0, Eeep up e good work|

Lﬂ'l:'u:l.-tl:‘u- =

In Chapter 2, “Enhancing Your Application” (page 41), you will add
features to the application, including a second page, a table that displays
information from multiple users, and hyperlinks.

Chapter 1

Creating a Simple WebObjects Application

"This application illustrates the basic techniques you use to create a
WebObjects application. You’ll use two primary tools, Project Builder
and WebObjects Builder.

Project Builder is an integrated software-development application. It
contains a project browser, a code editor, build and debugging support,
and many other features needed to develop an application. In this
tutorial, you’ll learn to use Project Builder to:

e (reate a new WebObjects application project.

e Write scripts or compiled code to provide behavior in your
application.

¢ Build and launch your application.

WebObjects Builder is an application that provides graphical tools for
creating dynamic web pages (components). A web page consists of elements.
WebObjects Builder allows you to add most of the common HTML
elements to a component by using its graphical editing tools. In addition,
WebObjects allows you to create dynamic elements, whose look and
behavior are determined at run time. You’ll learn to use WebObjects
Builder to:

e (reate static content for your pages.
¢ Add dynamic elements to your pages.
* Bind the dynamic elements to variables and methods in your code.

Creating a WebObjects Application Project

16

A WebObjects application project contains all the files needed to build
and maintain your application. You use Project Builder to create a new
project.

1. Launch Project Builder.

On Mac OS X Server, choose Project Builder from the Apple
menu under Developer Applications. On Windows N'T; you can
launch Project Builder from the WebObjects program group in the
Start menu.

Creating a WebObjects Application Project

2. Choose Project » New.

Pl Tyai I
Wl DU EEHAEIsA8a #

Pagat P ain

o |
Canci |

=l

Set project type here.

Click to choose directory

in which to create your project.

3. Inthe New Project panel, select WebObjectsApplication from the

Project "Type pop-up list.

4. Click Browse.

Brepn | o Mifroem

el i T] |
e PR]

Pl parnsr [Gamatl ad

Sawean ppe [airis ||

5. Inthe Save panel, navigate to the directory where you want to save

the project.

6. 'Iype the name of the project you want to create (GuestBook).

7. Click Save.

The New Project panel shows the path you specified.

8. Click OK.

Click when finished.

——— Choose a directory here.

Type project name here.

17

Chapter 1

Creating a Simple WebObjects Application

The WebObjects Application Wizard starts.

'h.l' Chaarse 1ppd of iakapnged B irery | ESpusge
Choose level of assistance.

™ e 1 e i i Wt g, i e

[T
™ LR b) e iyt

AN Beli
™ s Chem Gy B SPp P i O ST e

Rt]
T me Lo F P SR B O o

RS BOORIT R O BRAR oL .
iy | Choose programming language.

1]
~WEee
i Dpciss-C
Coensl | | | [Fes—— Click to proceed.

9. For Available Assistance, choose None.

If you are developing an application that accesses a database, you
may wish to use one of the levels of assistance that WebObjects
provides. For more information on these options, see Chapter 3,
“Creating a WebObjects Database Application” (page 65).

Choosing the Programming Language

18

WebObjects supports three languages:

e Java
¢ Objective-C
o WebScript

Java and Objective-C are compiled languages. They require you to build
your application before running it. WebScript, which is based on
Objective-C, is a scripted language. It allows you to make changes to your
application while it is running.

When you create a new project, Project Builder provides you with a
component called Main. In WebObjects terminology, a component
represents a page in your application (or possibly part of a page).

Examining Your Project

In the Wizard, you specify the language you’ll use to program your Main
component, as well as the application and session code files (which will be
described later).

1. For the primary language, select Java.

Later, you’ll create an additional component for your application
and write its code in WebScript.

2. Click Finish.

Project Builder creates a new application directory called
GuestBook . This directory contains the files you work with in
both Project Builder and WebObjects Builder.

Examining Your Project

Project Builder displays a browser showing the contents of your project.
The first column lists several categories of files that your project may
contain. This section describes some of the most important files

you’ll use.

Boed [& Fped Tk mede fEad e |

Your project's components.

= o
& 2 —— 2
e - | =
| Files in the selected component.
— - Categories ("suitcases") of
g | 2l project resources.

1. Select Web Components.

The next column displays a list with one element, Main.wo , which
is a directory containing the first component in your application.
Every application starts with a component called Main.

19

Chapter 1 Creating a Simple WebObjects Application

2. Select Main.wo .

The files you see displayed in the next column are some of the
files you work with when developing your component:

e Main.html is the HT'ML template for your page. It can include tags for
dynamic WebObjects elements as well as regular HI'ML. Typically,
you do not edit this file directly; you create your page’s elements
graphically using WebObjects Builder.

e Main.wod is the declarations file that specifies bindings between the
dynamic elements and variables or methods in your scripts. Normally,
you don’t edit this file directly; you use WebObjects Builder to
generate the bindings for you.

3. Select Classes in the first column of the browser.

Bowd [[@ Fpse ok 'mede s e

ol

— Your application's Java classes.

Lol % s

The Main component's code
goes here.

=l

You'll see these files listed in the second column:

® Main.java is a file that allows you to specify behavior associated with the
component. You do this by writing code in Java (since you specified
Java as the language when you created the project). You use Project
Builder to edit this file.

e Application.java and Session.java are other Java files that you may want
to work with. Application.java defines application variables that live as
long as the application does. Session.java defines session variables that

20

Launching WebObjects Builder

exist for the lifetime of one user’s session. In Chapter 2, you’ll add
code to Application.java and learn more about application and
session variables.

 DirectAction.java defines a subclass of WODirectAction that you use
as a container class for your action methods. You can rename this class,
or create multiple subclasses of WODirectAction depending on your
application needs.

Launching WebObjects Builder

Now that you’ve created your project, you’ll edit the Main component
with WebObjects Builder.

1. Select Web Components in the first column of the browser.
2. Double-click Main.wo in the second column.

The WebObjects Builder tool launches and displays a window
titled Main.wo . This represents your application’s Main
component.

Pop-up list switches editing modes
Click to inspect selected element.

These buttons change properties of selected elements, or text.
m_:ﬁﬁl
o | ma [t [l
<Ole Blr |L.J_E'J ' _J;E]'.d

[T e | [eu | | Click one of these buttons to
create a specific element.

Elements pop-up list switches
buttons displayed to its right.

This window displays your
| component’s elements graphically.

Object browser shows
variables and methods in
your application’s code

Pull-down menu lets you add
variables, methods, and actions
to your source code.

=

L

21

Chapter 1 Creating a Simple WebObjects Application

You create your component graphically in the upper pane of the
component window. The browser at the bottom of the window
(known as the odject browser) is used to display variables and
methods your component uses. Note that there are two variables
already defined, application and session . You’ll create others later.

The toolbar at the top of the window contains several buttons that
allow you to create the content of your component. WebObjects
Builder also has menu commands corresponding to these buttons.

Note: Depending on the width of the window, the toolbar may
appear in two rows or one.

3. From the ﬂ pop-up list at the left of the toolbar, choose J

"This pop-up list allows you to switch between graphical editing
mode and source editing mode. When you choose source editing
mode, the text of your HI'ML template (Main.html) appears. It
is a skeleton at this point, since the page is empty. As you add
elements graphically, their corresponding HT'ML tags appear in

this file.
I o Fpnm Bomarn [ack Pubms e jeam pen
= I 1 T S B 5
- 1l
. ~ The HTML source for your
TR wm TrilErTIR component.
H . 2|
|
Information about bindings is
displayed here.
L |

The bottom pane shows your declarations (Main.wod) file. Later,
when you bind variables to your dynamic elements, this file stores
the information. Normally, you do not type directly in this file. You
can add elements using the toolbar in either source or graphical
editing mode.

22

Creating the Page’s Content

4. Switch back to graphical editing mode. For the rest of the tutorial,

you’ll work in this mode.

Creating the Page’s Content

A web page consists of elements. In addition to the standard static HI'ML
elements found in all web pages, WebObjects allows you to create
dynamic elements, whose look and behavior are determined at run time.

"To create elements, you use the buttons at the right of the toolbar(or
bottom if your window is small). The a button is a pop-up list that lets
you switch the group of buttons that are displayed to its right. There are
four groups of buttons:

Structures a Use these buttons to create paragraphs, lists,
images, and other static HI'ML elements. This setting is the
default.

Tables ﬂl Use these buttons to create and manipulate HTML
table elements.

Dynamic form elements ﬂ Use these buttons to create form
elements in which users enter information. WebObjects gives your
application access to the data entered by users by allowing you to
associate, or dind, these elements to variables in your application.

Other WebObjects ﬂ Use these buttons to create other dynamic
elements, which you can bind to variables and methods in your
program to control how they are displayed. Some of these (such
as hyperlinks) have direct HI'ML equivalents. Others are abstract
dynamic elements, such as repetitions and conditionals, which
determine how many times an element is displayed or whether

it is displayed at all.

23

Chapter 1

Creating a Simple WebObjects Application

24

Entering Static Text

The simplest way to add text to a page is to type it directly into the
component’s window. To demonstrate this, add a title for the
GuestBook’s page.

1. 'Type My Guest Book and press Enter (on the keyboard).

The text is displayed at the insertion point, in this case at the
beginning of the page.

2. Select the text you just typed.

3. Click the |:| button in the toolbar. This converts the selected text
to a heading element and displays it in a larger font.

4. From the H pop-up list in the toolbar, choose center justification.

T'he toolbar also has buttons that allow you to apply text styles
such as bold, underline, and italics.

HTML provides several levels of headings. To change the level, you use
the Inspector panel. You'll use this panel frequently throughout these
tutorials.

Using the Inspector

You use the Inspector panel to set properties of the elements in your
component. The Inspector’s title and contents reflect the element you’ve
selected in the component window.

1. Click 8]

A panel titled Heading Inspector appears. It allows you to set the
level of the heading.

Creating the Page’s Content

T . - |
D E= The element path. Click to inspect
I = different elements in the hierarchy.

Wil Opndnic |

Hapding Leval
Click here to set the heading level.
1 2 3 4 5 &
2. Click “17.

The text is now part of an <H1> tag, and it is displayed in a larger
font.

3. Click the [A icon at the top of the panel.

The top of the panel shows the element path to the selected
element. Any element can be contained in a hierarchy of several
levels of elements and can in turn contain other elements. Here,
the element path shows that the heading element is contained in
the page element, which is the top level of the hierarchy. By
clicking the icons in the element path, you can easily choose
different elements in the hierarchy.

Each element has its own Inspector that allows you to set
properties appropriate for the element. The Page Attributes
Inspector allows you to set properties such as the page’s title
and its text color.

Chapter 1 Creating a Simple WebObjects Application

L] =
Wiats Dynanic | i i]
™ T= it e
THE [ry s Enct Enter page’s title here.
Fidll dacimsn|]
ik yprine

mavel | cooen | Tedws |

oo N[Freses s |
o W[Vbt — |

4. Choose “Full document” from the “Partial document” pull-down
menu.

5. Enter a title (such as “My Guest Book”, or something else of your
choosing) in the Title text field. This is the title of the window that
appears in your web browser when you run the application.

6. Close the Inspector panel.
7. Choose File » Save to save the Main component.

Although WebObjects Builder supports undo, it is always a good
idea to save your work frequently.

Creating Form-Based Dynamic HTML Elements

In this section, you’ll create a form with several elements to capture input
from a guest. The Submit and Reset buttons you add to the form will
apply to all other elements in the form. These elements look and act like
HTML form elements but are actually dynamic WebObjects elements,
which enable your code to receive and manipulate the data entered by
the user. Refer to the screen shot on page 28.

26

Creating the Page’s Content

10.

11.

12.

13.

"To display the dynamic form elements buttons in the toolbar,
choose ﬂ from the Elements pop-up list.

Place the cursor on the second line after the “My Guest Book” text.
Click

WebObjects Builder adds a form element to your component. The
triangle at the upper-left corner indicates that it is a dynamic form,
as opposed to a static form. The gray border indicates the extent of
the form. You can increase its size by adding additional elements
inside it.

"Type the text “Name: ” and press Enter.
"This text replaces the word “Form” that was displayed by default.
Type “E-mail: 7 and press Enter twice
Type “Comments: ” followed by Enter.

You have just entered three lines (and a blank line) of static text
inside the form. Now you’ll enter some dynamic elements to
receive input from the user: two text fields and a multi-line text
area.

Place the cursor to the right of the text “Name: ”.
Click j to create a dynamic text field element (WO'TextField).
Repeat steps 7 and 8 for “E-mail: 7.

Use the ﬂT_l button to create a multi-line text area below the
“Comments: ” line.

Press Enter twice to create a blank lines.

Click J—'l to create 2 Submit button, which is used to send the data
in the form to the server.

Click -l-|| to create a Reset button, which is used to clear the data
in the form.

27

Chapter 1

Creating a Simple WebObjects Application

28

The window should now look like this:

[T [T P T —— [-TH] =]
e [f Fomsl Dy [‘e Srom
L|0lgl Bli|yjz|s) mio =]

B Tl ad = | = | E|r ——— Dynamic form elements buttons.

| My Guest Book E
|
e
| bt D ic text field el ts.
- _| ynamic text field elements
F o kit
:I] Dynamic text area element.
i At | P
| I |

=+ = 2 Rectangle indicates extent

of form.

| l |
lictnyal o B 0 |

Resizing the Form Elements

"The text ficlds and text area are a bit small, so you’ll resize them using the
Inspector panel.

"To inspect an element, you must first select it. Some elements (such as
text fields and text areas) can be selected simply by clicking them; they
appear with a line underneath.

—

You select text elements as you would in most text-editing applications
(by dragging, or by double-clicking words, or by triple-clicking lines);
they appear highlighted when selected.

Creating the Page’s Content

1. Inspect the Name text field (that is, select the text field and open
the Inspector panel).

Fautiold frapeiim K]
B —
L] -
ke | o 1R :'| Wi Slake JI—— Choose Static Inspector
from this pop-up list.
pame | B
Tipi
F Harral fesid
I Piriciee 1 8 i i
™ Hidden §ek
Zia |

2. Change the setting of the pop-up list at the upper right of the panel
from Dynamic Inspector to Static Inspector.

All WebObjects elements have a dynamic inspector, that is, one that
allows you to set bindings (you’ll work with bindings in the next
section). In addition, many WebObjects elements (those with
direct counterparts in static HI'ML) also have a szazic inspector.
"T'his inspector allows you to set the standard HTML attributes for
that type of element.

In this panel, you can set various attributes of the static
counterpart of a WO'TextField, which is an HI'ML
<INPUT TYPE=TEXT> element.

3. In the Size field, type 20 and press Enter to set the width of the
text field to 20 characters.

Note: Be sure to press Enter after typing the values; otherwise,
they won’t “stick.”

Chapter 1

Creating a Simple WebObjects Application

Binding Elements

30

4. Repeat steps 1 through 3 for the E-mail field.
5. Inspect the multi-line text area.

In Text Area Inspector, you can set various attributes
corresponding to those of a <TEXTAREA>lement.

6. Increase the size of the element by specifying the number of
columns and number of rows to, say, 30 and 6.

7. Save the Main component.

When a user enters information in GuestBook’s form elements, your
application needs a way of accessing that information. This is done by
binding the form elements to variables in your application. When the user
submits the form, WebObjects puts the data into the variables you’ve
specified.

Your application typically processes the data and returns a new page (or
the same page) displaying information that makes sense based on the
user’s input. The information displayed is usually represented by other
dynamic elements that are bound to variables and methods in your code.

"This process of receiving a request (triggered by actions such as
submitting a form or clicking a hyperlink) and responding by returning a
page is known as the request-response loop. 'This loop is at the heart of
WebObjects programming.

In this tutorial, you’ll have WebObjects return the same page, with the
information you received from the user displayed in a slightly different
format at the bottom.

Creating Variables

In this section, you’ll declare individual variables in your code file
(Main.java) to hold the name, e-mail address, and comments entered by a
single guest. Later on, you'll structure this information differently in
order to work with data from multiple users.

Binding Elements

WebObjects Builder allows you to declare variables without having to
edit your source file directly. At the bottom of the panel there is a pull-
down menu titled Edit Main.java. It has three items:

Add Variable/Method allows you to add a £¢y to your source file. A key
can be either an instance variable or a method that returns a value.

Add Action allows you to add the template for an action method,
which is a method that takes no parameters and returns a
component (the next page to be displayed).

View Source File opens the source file in a Project Builder window.
Choose Add Variable/Method from the pull-down menu.

The Add Variable/Method panel opens.

Fivh] W gatade o B

Brm [quusTsemy ———————— Type variable name here.
e B el

PR

{ .1l

|dring = —— Choose variable’s type

from this pop-up menu.
Carwrule s tooe Fr

A A e vl

™ A e Dl méEisrming Che valie

I A e Dl g Th i il

cancel | [asa]

2.

3.

"Iype guestName in the Name field.

"To specify the variable’s type, select String from the pop-up menu
(or you can type String directly in the box).

Click Add.

You have just created a variable called guestName of type String. It
appears in the first column of the object browser. A declaration for
guestName also appears in Main.java, which you’ll edit later.

31

Chapter 1

Creating a Simple WebObjects Application

32

5. Cireate the variables email and comments in the same way (they are
also of type String.)

Note: You may also add variables by editing the source file in Project
Builder. You will need to use Project Builder to remove or modify a
variable. Remember to save the file after editing in Project Builder to
update WebObjects Builder.

Binding the Input Elements

Each dynamic element contains several azzributes. These attributes
determine what happens when the element is displayed or when a form
element is submitted. When you bind an element, you actually bind one
or more of its attributes.

Forexample,a WO'Text element (which represents a multi-line textarea)
is defined as having two attributes:

e value specifies the string the user enters in the text area.
® name specifies a unique identifier for the text area.

In this tutorial, the only attribute you are concerned with is value,, which
represents the string entered by the user in the comments field. You’ll
bind this to the comments variable. You don’t need to bind the name
attribute in this application. In a later example, you’ll bind more than one
attribute of an element.

1. In the object browser, make a connection by pressing the mouse
button down on the comments variable and dragging to the
Comments text area. Then release the mouse button.

Binding Elements

Vi J — Binding appears here
| when complete.

j -

Press the mouse down on the variable name
and drag to element to begin binding.

The Inspector panel comes to the front, displaying the bindings
for the text area. The value attribute is automatically selected
(since that is the one that is most commonly used in bindings). If
you wanted to choose a different attribute to bind (you don’t at
this time), you would simply select the binding of your choice.

2. Click Connect on the Inspector panel.

comments appears in the Binding column next to the value
attribute of the text area, indicating that the binding has been
made. Also, the text comments appears in the text field to show
that it has been bound.

Note: you can also bind a variable by typing its name directly in the
Binding column for the desired attribute.

3. Inthe same way, bind the guestName and email variables to the two
text fields.

4. Save the Main component.

Click here to complete binding.

Chapter 1

Creating a Simple WebObjects Application

34

Implementing an Action Method

When the user clicks the Submit button, your application will respond by
redisplaying the page with the submitted information shown at the
bottom. To make this happen, you implement an action method and bind
that method to the action attribute of the WOSubmitButton.

1. From the Edit Main.java menu at the bottom of the object browser,
choose Add Action.

[[T ———— Enter action name here.

Pig srreal ;.-'—I— Select response page name
from pop-up menu (use null to

P il | return same page).

2. Enter submit as the name of your action method.
3. From the “Page returned” pop-up menu, select null.

The value returned by an action method represents the next page
(component) to be displayed. When you return null (or nil if using
WebScript), the current page is redrawn. In a later task, you’ll see
how to return a new component.

4. Click Add.

T'he submit action appears below a horizontal line in the first
column of the object browser.

5. Make a connection from the submit action in the object browser to
the submit button (press the mouse button down on the action,
drag to the button, and release the mouse button).

The Inspector opens with the button’s action attribute selected.
6. Click Connect.

You just bound the submit method you created to the action
attribute of the WOSubmitButton. You don’t need to write any

Creating the Application’s Output

additional code, so your application is now ready to run. However,
you may want to look at your source file.

7. From the pull-down menu at the bottom of the window, choose
View Source File.

Project Builder becomes active and displays the code for your
component (in Main.java). You’ll notice that this file contains
declarations for the variables you created earlier, as well as a
declaration for the submit action method.

Bowd [l @ Fped Tk mede s g

eh

i
vty e
1P IJ _I
Ll = i |
B i it ey R
u hom oot
g il Variable definitions.
s, |
T e — submit action method.
=

Creating the Application’s Output

So far, you have a way for the guest to enter information and a way for the
application to store that information. Now, the application needs to do
something with the information.

For now, you’ll have the application simply display the same information
the user entered, in a slightly different format. This allows you to verify
that you have correctly received the data. To do this, you’ll add dynamic
string elements (WOStrings) to the main page and bind them. In the next
chapter, you’ll use more complex forms of output.

35

Chapter 1

Creating a Simple WebObjects Application

36

In WebObjects Builder, place the cursor at the end of the
document, making sure that it is oufside the gray rectangle that
represents the form, and press Enter.

Choose a from the Elements pop-up list to display the Structures
buttons.

Click j to create a horizontal rule (an <HR>element).
Press Enter to add a blank line.

Select ﬂ from the Elements pop-up list to display the Other
WebObjects buttons.

Add a WOString element by clicking ﬂ

A WOString is a dynamic element whose value is determined at
run time. It is shown as a small rectangle surrounded by two icons.
T E

In the object browser, make a connection from the guestName
variable to the center rectangle of the WOString.

Notice that the name guestName appears inside the WOString,
and the Inspector panel doesn’t come to the front. The message
“Connected guestName to value” appears in the upper-right
corner of the panel.

WebObjects provides this shortcut for binding to the value
attribute of WOStrings, because it is the attribute you most often
want to bind. The value attribute signifies the string that will be
displayed when the page is drawn. If you want to bind a different
attribute, you make a connection to the left or right icon, and the
Inspector appears as usual.

Click to the right of the WOString and press Enter.

Create two more WOStrings and bind them to email and comments ,
respectively.

Note that it isn’t necessary to resize the WOStrings as you did with
the text fields. They expand at run time to display the value of the
variables to which they are bound.

Creating the Application’s Output

10. Save your component. It should now look like this:

“Manms L Alerdinerey e opect Gaen B i

Fin Ecd Fpesd Eprsendy [oon Polefer Swwdos Sevces Hep

JJ0|s Blrju|T|s /| x|

g (o 17 3) s [BN

My Guest Book -

;
3
e L

SutriflFeast|

By gttt (R
B smny| LR
B commrd 2 (]

agpicahon =]
s
[}

gaeitinmg

Sl _'J _'.J
Exid hisin jen =[] 7|

L

In summary, when the user clicks the Submit button, a new
request-response cycle begins. WebObjects stores the data entered

in the dynamic form elements in the variables they are bound to
(guestName contains the value in the Name field, email contains the value
in the E-mail field, and comments contains the value in the Comments
field). It then triggers the action method bound to the action attribute of
the WOSubmitButton. The action method returns a page (which, in this
example, is the same page). When the page is redrawn, the dynamic
strings at the bottom show the values entered by the user.

Now you are ready to test your application.

37

Chapter 1 Creating a Simple WebObjects Application

Building and Running Your Application

Qajolsle

Make Project Builder active. A quick way to do this from
WebObjects Builder is to choose View Source File from the

pull-down menu at the bottom of the window.

"To build and launch your application, you use buttons in Project

Builder’s toolbar.

Click here to open the Project Build panel.

— Click here to open the Launch panel.

2. Click ﬂ in the toolbar to open the Project Build panel.

3. Click ﬂ in the Project Build panel.

Tasged woomp with prge "’
Riwhin- Jisiilloh - Miakl surs e il

i _a b CrL et an wivip P 1o oG st Bookot G e i b i e _ciraen
By R b0 | B S o Ja e DS C Ao | ot P [it
Copying Jarv s claiss
C o EppleTa el opanTescuteh e L bk enchnod -7 s
Tl hiE e oo Ens b Tue eBmt misf_ciseees
o wiming . rar e sok maichod
Zippeed Agplcalion clasd DrsCbhoh on Class Maim s Sasson dend
Corp i T et o B s b WU Ecl/c - mhicitg 1 angarsl
Lhcage CoAppTes el pTooe: uabirulziiievep jopkony wors deel
£ 14 ppd evTor vwiop e B caria b e H ke [optiona] epurce . divechony

i ot P |5 e p SR [s e, ediding, il

B | [r-d e] oo [HndErec e [=on il pikn|
frarmieres| [+ e v b poabs] G sl s p i
preemiarecanbglejumbened mading sinplef] frachive] Bpein]
K| [+¥y bosic- Rk

38

Click here to build
your application.

The Project Build panel displays the commands that are being
executed to build your project. If all goes well, it displays the

status message “Build succeeded.”

Building and Running Your Application

Close the panel.
Click EJ in the toolbar to open the Launch panel.
Click EJ in the Launch panel to launch your application.

The Launch Panel displays a series of messages. If all goes well,
you should see messages such as the following, which mean that
your application is running successfully.

GuestBook - Launch - "GuestBook.woa *

=

[“x.

A e [(02 |)

&
SE
e

T oo =
Jul 23 16:36:16 GuestBook[241] Setting the stack base of Bxa?4738 to —I
Bx30e0888

Jul 23 16:36:16 GuestBook[241] Setting the stack base o
Bx3cennnn

Jul 23 16:36:16 GuestBook[241] Setting the stack base o
Bx4Beanog

Jul 23 16:36:16 GuestBook[241] Setting the stack base o
Bx44e00aE

Jul 23 16:36:16 GuestBook[241] Setting the stack base o
Ax48eARRE

Jul 23 16:36:16 GuestBook[241] Setting the stack base o
Bx4cedaog

Jul 23 16:36:16 GuestBook[241] Setting the stack base o
AxER=ARRA

Jul 23 16:36:16 GuestBook[241] Setting the stack base of Bxa?4eb5A to
Bx 340080

Jul 23 16:36:16 GuestBook[241] Opening application’s URL in Browser:
http: /#localhost 1835 /cai-binAWeblb jects /GuestBook

Jul 23 16:36:16 GuestBook[241] Waiting for requests

m o

=4

Bxal6d38 to

=

Bxalde?d to

=4

Bxal91f8 to

=4

Bxa57518 to

=4

Bxabbc?8 to

=4

Bx577598 to

Your web browser (such as Netscape Navigator or Internet
Explorer) should launch automatically and load the correct URL
for your application.

"Test your application by entering information and submitting the
form.

If all goes well, your page should look like the one shown at the
beginning of this chapter (page 13).

39

Chapter 2 Enhancing Your Application

Duplicating Your Project

In the previous tutorial, you learned how to create a web component that
has input and output elements and how to bind these elements to
variables and methods in your code.

Now you’ll add some additional features to your project that move it a bit
more in the direction of being a real-world web application. The
application will:

Use a custom Java class to represent the data for a guest, rather than
using three separate variables.

Maintain a guest list, which keeps track of all guest data (whether
entered by you or multiple users of your application), rather than
just the current guest.

Have a second component, so that the guest list is displayed in a
new page rather than the same page. You’ll use WebScript rather
than Java to implement this component’s behavior.

Make use of additional interface elements (such as HT'ML tables).

Duplicating Your Project

Before proceeding, you'll create a new project by copying the old one and
renaming it. This way, you can make changes and still retain your
previous version.

1.

In WebObjects Builder, close the component window.
If there are any unsaved files, you are prompted to save them.
In Project Builder, close GuestBook’s project window.

If there are any unsaved files, you are prompted to save them.

43

Chapter 2

Enhancing Your Application

44

3.

& C:\UsersinancyiMy... =] E3

File Edit “iew Help

In your machine’s file system, navigate to the directory where your
project is located.

|1 nhiect(z] selected | o

4.

Duplicate the GuestBook folder.

On Mac OS X Server, select the folder and press Command-D. On
Windows N'T; select the folder, choose Edit » Copy, then Edit »
Paste.

Open the new folder (Copy of GuestBook) and double-click the
project file PB.project .

Project Builder opens a new browser window for this project.
(Alternatively, you could have opened the project from within
Project Builder by choosing Project » Open, then navigating to
the project folder and selecting PB.project .)

Click "";,‘ from the toolbar to bring up the Project Build panel.
Click r'ﬁp‘ in the Project Build panel.

"This command deletes all the files that were generated when you
built the project previously.

Click m to open the Project Inspector.

Choose Project Attributes from the pop-up list at the top of the
window.

Creating a Custom Guest Class

10. In the Name field, enter GuestBookPlus and press Enter.

11. Respond Yes to the prompt that asks if you want to rename the
folder.

You now have a new project called GuestBookPlus.

Creating a Custom Guest Class

In the first chapter, you created individual variables to store a guest’s
name, e-mail address, and comments. When keeping track of multiple
guests, it’s more useful to encapsulate all the data for a guest as a single
entity. You’ll do this by creating a Java class that contains the data for a
single guest.

1. In Project Builder’s browser, select Classes in the first column.

2. Choose File » New in Project.

Supaoring Lore]
Ciaa Hander OmerSosrce T ankne
LIRETT) =TT
I
Hars |FACRIEDE = Type name of class here.

™ e reanaar Cazral |

3. 'Iype Guest.java as the name of the file.
4. Click OK.

The newly created file contains a skeleton for a class called Guest.

45

Chapter 2

Enhancing Your Application

46

5. Enter the following code to complete the definition of the Guest

class.
| i s AN Rl
i mpde pellon Pl o ® =
o mre el Lo et
- eyt g
4T Add your class’s
Forion Tt instance variables.
— "' Add constructor for
e Guest class.

A class stores information in its zzzstance variables (also referred to as
data members). Here you’re declaring three instance variables for
Guest: guestName , email, and comments . Note that these
declarations are the same as those that appeared in the code for
Main.java when you added the three variables using WebObjects
Builder. In WebObjects, a component is also a class, specifically a
subclass of the class WOComponent.

Java classes require a constructor to initialize an instance (or ofyect)
of a particular class whenever one is created. A constructor has the
same name as the class and returns no value.

Whenever your application creates a new Guest class, its instance
variables are initialized with empty strings, which is the default
value if the user enters no data. (If you prefer, you can use
different strings for these initial values.)

6. Save Guestjava by choosing Save from the File menu.

Saving the file lets WebObjects Builder know about your newly
created Guest class.

Binding the Class’s Instance Variables
to the Form Elements

In the first chapter, you bound the input elements to variables in Main’s
code. Now you’ll modify the bindings to use the class you just created.

Creating a Custom Guest Class

1. Select Web Components in the first column of the browser.

2. Double-click Main.wo in the second column of the browser to open
the component in WebObjects Builder.

3. Using the Add Variable/Method panel, add a variable called
currentGuest to your component and specify its type as Guest.
(Note that you can now choose Guest from the "Type pop-up
menu.)

An entry for currentGuest appears in the object browser. Notice
the “>” symbol to the right of its name. This means that there is
additional data to be displayed in the second column.

4. Seclect currentGuest in the object browser.

The second column displays the three fields of currentGuest , as
determined by the definition of its class, Guest.

5. Make a connection from guestName in the second column of the
object browser (next to currentGuest) to the Name text field (press
the mouse button down on the variable, drag to the element, and
release the mouse button).

"This time, when the Inspector opens, there is already a binding for
the value attribute (guestName), because you bound it in the first
tutorial.

6. Double-click the row containing the value binding.

"This removes the binding for guestName you made previously and
binds currentGuest.guestName to the value attribute.

7. Bind the other two input elements to currentGuest.email and
currentGuest.comments

Creating a Table to Display the Output

In the first chapter, you created three WOString elements to display the
information the guest entered. In this tutorial, you’ll create a different
type of element, an HTML table, to display the information. In later
tasks, you’ll display data for multiple users in the table.

47

Chapter 2

Enhancing Your Application

48

Delete the WOStrings below the horizontal line in the Main
component, because you’ll be replacing them with a table. Select
the WOStrings and choose Cut from the Edit menu to delete them.

Choose ﬂ from the Elements pop-up list to display table
clements.

Click the ﬂ button.

A table with two rows and two columns appears.

T [Click here to

T add a column.

Click here to add a row. Double-click to enter content-editing mode.

Single-click to enter structure-editing mode.
Click the E icon at the upper right of the table.
A third column appears, and the columns are equally spaced.
Select the upper-left cell of the table by clicking it.

There are two modes for table editing: content-editing mode, which
lets you change the text in a cell and add other elements to it; and
structure-editing mode, which lets you perform operations on a cell
such as splitting it in two. The cell you just selected is now in
structure-editing mode.

Double-click the upper-left cell.

You can now edit the contents of the cell. If you want to resume
structure editing, click E in the toolbar, which allows you to
toggle between modes. (Alternatively, you can hold down the
Control key and click in a different cell to enter structure-editing
mode.)

Change the text in the cell to Name
Open the Inspector.

"The Inspector presents a number of modifiable settings that apply
to the table cell you’ve selected. Note also that the top row of the

Creating a Custom Guest Class

Inspector window shows the element path, which includes the
cell, the row it is contained in, and the table itself. Selecting any of
those allows you to set specific properties of the selected element.

Vabla Cite apmia K]
EI b E; T Click here to inspect table row.
Lt | : Click here to inspect table.

I [T h-tn:]

I Check this box to make
I~ Hamgarcgn | Wik the cell a header.

Harioalal aign |~ Unspecfed
i umpiciad | [—==—==———L— Enter table width here.

rLat e

™ Canlsi %

™ Rigai Heighi

sarica aign - | T TREGRed

7 Urnpaced | | | Pl
™ Tap i~ | %5
 Windn

 Robon Eacigraira

" Hassdini@ 1= LN EE]

-

10.

11.

12.

Click the Header Cell checkbox.
The text in the cell becomes bold and centered.

In the Width box, enter 150 in the field marked “pixels” and press
Enter.

The width of the column is set to 150 pixels.
Click in the component window, then press Tab.

Pressing "Tab when editing a table causes the contents of the next
cell to the right to be selected (or the first cell of the next row if in
the rightmost column). Pressing Shift-Tab moves in the opposite
direction through the table.

Repeat steps 7 through 11 for the second and third cells of the
top row. Label the middle column E-mail and set its width to

49

Chapter 2

Enhancing Your Application

50

150 pixels. Label the third column Comments and leave its width
unset. (The comments field takes up the remainder of the width of

the table.)

Note: It isn’t necessary to adjust the height of the columns—if left
unset, they’ll expand at run time to accommodate the size of the
text being displayed.

Adding Dynamic Elements to Table Cells

Tables and cells are static HTML elements, so you can’t bind them to
variables or methods. To display dynamic information in cells, you add
dynamic elements, such as WOStrings, to the cells.

1.

Select the contents of the first cell in the second row of the table by
clicking in the cell, then double-clicking the text.

Choose ﬂ from the Elements pop-up list.

Click g to add a WOString to the cell.

Press the Tab key.

The contents of the next cell to the right are selected.

Repeat steps 3 and 4 for the other two cells in the second row.

Binding the Dynamic Elements in the Table

1.

3.

Make a connection from currentGuest.guestName in the object
browser to the center of the WOString in the first column to bind
its value attribute.

Similarly, bind currentGuest.email and currentGuest.comments to
the WOStrings in the second and third columns.

The table should now look like this:

Py amas waadl [e

o rend B, et e L (8 oeremiGenr: wmecl | B4 corme i Gamy . o i (8

Save the Main component.

Creating a Custom Guest Class

Creating the Guest Object

Earlier in this chapter, you created a Java class of type Guest and wrote a
constructor for it. You also added a variable of that class, currentGuest , to
the Main component. However, adding a variable to the component
doesn’t actually create a new Guest object; you need to create one
explicitly at some point in your code.

You’ll create the Guest object in the constructor method for your
component. This method is called when the component is first created;
that is, the first time the user accesses the component.

Note: In WebScript or Objective-C, you use a method called init for this
purpose.

1. Choose View Source File from the pull-down menu at the bottom
of the window.

Project Builder becomes active and displays the code for Main.java .
Notice the following declaration that was added to your code
when you added the currentGuest variable:

protected Guest currentGuest;

2. Delete the declarations of guestName , email and comments , since
you aren’t using them anymore.

3. Add the constructor method inside the Main class definition:

Main() {
super();
currentGuest = new Guest();

}

The first statement calls the constructor of Main’s superclass
(which is com.apple.yellow.webobjects. WOComponent). The
second statement allocates a new empty Guest object and calls
Guest’s constructor to initialize its instance variables.

4. Save Main.java.

5. Build and run your application.

51

Chapter 2 Enhancing Your Application

The application should work similarly to the first chapter, except
that the guest’s data is displayed in a table at the bottom of the
page instead of as plain text.

My Guest Book

Hams [Abrahan Linools

E-uu.lllhll"al trysburg. cox

(CommEns

Fourscoce ard aeven fERLE ago ;I
our tathers bEought IOCnh On

hi® CORGIiTEET A W DALIOR
conceived in Libercty mmd
dedicated tS Ehe propositian

N

Mame E-mail Cammewis
Fourscone and sevsn years ags o
fb:'.al;hu O r—— fattesrs berough foath on dis conanesat &
mnian

LW el Cenzermed o iy el
dadicaled o &p propostios

At this point, your application still handles information from a single
guest only; in the next section, you’ll modify the application so that it can
keep track of multiple guests.

52

Keeping Track of Multiple Guests

Keeping Track of Multiple Guests

You’ve been using the variable currentGuest in the Main component to
hold the information entered by the user. You’ll need another variable (an
array) to store the list of all the guests who have registered.

Before doing this, it is important to understand the scope and life span of
variables in WebObjects:

o Component variables, such as currentGuest , exist for the lifetime of
the component. These variables are defined in the component (in
this case, Main.java) and are accessible only by its methods. Each
user that uses a component gets a separate instance of the variable.

o Session variables exist for the lifetime of one user’s session and are
accessible by all code in the session. They are defined in
Session.java . An instance of each session variable is created for each
user.

o Application variables live as long as the application does and are
accessible by all code in the application. They are defined in
Application.java . A single instance of an application variable is
shared by all users of the application.

Creating a Guest List

"To store the information from all guests that have accessed the
application, you’ll create an application variable called allGuests , which
exists for the life of the application.

1. InProject Builder, select Classes in the first column of the Browser.
Then select Application.java from the second column.

53

Chapter 2

Enhancing Your Application

54

B [l [Py ok Sede pEeck g

The application’s code appears in the window. The following
figure shows the code generated by the Wizard, along with code
you will add.

- | e

b e e
2 e i
o T TP

|
T3l i |

1 s i oAl

+ rom ogrd e pm b m—

el e -] sl =

m qrde il i ¢

R e e T

tre G e i You add this line.

[LR TEATE N o]

L crermetril - You add this line.

laien skl g Lol e "l

You add these
a1 two methods.

=l

Note that there is one method already defined: Application , which
is the constructor for the application object. The first line calls the
constructor for Application’s superclass (which is the class
WOApplication). The second line prints a message, which you see
in the Launch panel when you launch your application.

After the call to super, enter this code:

allGuests = new NSMutableArray();

"This statement initializes allGuests to be a new object of class
NSMutableArray. This class is the Java equivalent of the
Objective-C class NSMutableArray, which provides an interface
that allows you to add, change and delete objects from an array.

At the top of the Application class definition, enter this declaration:

protected NSMutableArray allGuests;

Keeping Track of Multiple Guests

This declares allGuests to be of type NSMutableArray. Declaring
it protected means that it is accessible only from this class or
one of its subclasses. It is standard object-oriented practice for a
class to prevent other classes from directly manipulating its
instance variables. Instead, you provide accessor methods that other
objects use to read or modify the instance variables.

Add the accessor methods addGuest and clearGuests , as shown in
the figure.

The addGuest method adds an object of class Guest to the end of
the allGuests array, using the NSMutableArray method addObject .

The clearGuests method removes all the objects from the array
using the NSMutableArray method removeAllObjects .

Save Application.java .

Adding Guests to the Guest List

Now, when the user submits the form, you’ll add the information to the

allGuests array rather than displaying it directly.

1.

2.

Switch to the code for Main.java .

In the submit method, add the following code before the return
statement:

((Application)application()).addGuest(currentGuest);
currentGuest = new Guest();

"This code calls the application’s addGuest method, which adds an
object (in this case, currentGuest) to the end of the array. Then it
creates a new Guest object to hold the next guest’s data.

Note: The addGuest method is defined in the class Application,
which is a subclass of WOApplication. The component’s
application method (called in the above statement) returns an
object of type WOApplication, so you must cast it to Application in
order to access its addGuest method.

Your next step is to create a new component to display the list of guests
that allGuests stores.

55

Chapter 2 Enhancing Your Application

Adding a Second Component

In this section, you’ll create a new component. Instead of Java, you’ll
implement its code using WebScript. This section demonstrates the
quick turn around between development cycles when using WebScript.

1. In Project Builder’s browser, click Web Components in the first
column.

2. Choose File » New in Project.
Note that the Web Components suitcase is selected.

3. 'Iype GuestList as the name of the new component, then click
OK.

The WebObjects Component Wizard appears.

4. Choose None for Available Assistance and WebScript for
Component Language.

5. Click Finish.

6. In the second column of the browser, double-click GuestListwo to
bring up the component window in WebObjects Builder.

7. Create a heading for this page, as you did for the Main component.
Call it “Guest List” (or something else of your choosing), then
press Enter twice.

8. Add a WOString below the heading. After the WOStrmg, type the
text “ guests have signed this guestbook

You’re going to bind this WOString so that it reflects the number
of guests who have submitted this form (see screen shot on next

page).

9. In the object browser, click application .

56

Adding a Second Component

There is an entry in the second column for the allGuests
application variable you created. This entry appears in the Main
component as well, since application variables are accessible from
anywhere in the code.

If you click allGuests , you’ll see in the third column an entry for
count . This is a standard method that returns the number of
objects in the array.

10. Make a connection from count to the center rectangle to bind it to
the WOString’s value attribute.

* [l @i m I. Wlesin irasi el phyvemei e il e silead i S

[l [l Fpeesd Fesmsnds ool Paeles gieior Fevices Heg

LJ0]e| Bls|ulT| s -],
* m| @] || *|s| 6] s
Gruest List gl

ity bt di ol v i il

skt B

Ceibush

_ = =l =
Edil Applicalian wes +B_ = 3

allGuests. count represents the
number of objects in the array.
Drag to bind it to the WOString.

11. Save the GuestList component.

You need to do one more thing so that the GuestList page now
displays when the user submits the form.

57

Chapter 2 Enhancing Your Application

12. Go back to Project Builder and view the source code for Main.java .
Replace the return statement in the submit method with the
following code:

return pageWithName("GuestList");

pageWithName is a standard WebObjects method (defined in the
WOApplication class) that allows you to specify a new page to
display.

At this point, the code for Main.java looks like this:

v e prliloes. e li #
colh appls . vellon vebol jacis 4
cos mpple . vellow. socoebral (2

Madn &=t VOl mporent |
famsl ourrentfeeil

Fsrel €
1,
curraviiisst = == 1 8]

L T A T
i
R0 L1003 SADD DA LA L] 1] S R DT e Fas S L
purravilisat = =13}

e thieed il 1ot

13. Save Main.java.
14. Build and run your application.

Each time you submit the form, the number of guests displayed in
the WOString should increase.

"To return to the Main page, you’ll have to use your browser’s
backtrack button. Later in the tutorial, you’ll add a hyperlink to
return to the Main page.

58

Using a Repetition

Using a Repetition

Now you’ll create a table to display the entire list of guests in the
GuestlList component. "To do so, you’ll use a dynamic element called a
repetition (an instance of the WORepetition class). Repetitions are one of
the most important elements in WebObjects, since it is quite common for
applications to display repeated data (often from databases) when the
amount of data to be displayed isn’t known until run time. "Typically, a
repetition is used to generate items in a list or a browser, multiple rows in
a table, or multiple tables.

A repetition can contain any other elements, either static HTML or
dynamic WebObjects elements. In the GuestList component, you’ll
create a repetition that contains a table row.

You'’ll bind the allGuests array to the WORepetition’s list attribute. This
tells WebObjects to generate the elements in the repetition once for each
item in the array. Each time WebObjects iterates through the array, it sets
the repetition’s item attribute to the current array object. You bind item to
the variable currentGuest and use currentGuest ’s fields to bind the
elements inside the repetition (such as WOStrings). At run time, the table
will consist of one row (displaying name,

e-mail address, and comments) for each guest.

1. In WebObjects Builder, make the Main component window active
(double-click Main.wo).

2. Select the table at the bottom of the page by clicking outside it and
dragging across it.

3. Choose Edit» Copy.
4. Make the GuestList component active.
5. Place the cursor at the bottom of the page and choose Edit» Paste.

You have just copied the table from Main into GuestList. It has all
the same properties, including the bindings. The WOStrings in
the table are still bound to instance variables of currentGuest .

59

Chapter 2

Enhancing Your Application

60

10.

11.

12.

Since currentGuest is a component variable defined in Main, it
isn’t accessible from GuestList. Therefore, you need to declare it
here.

From the pull-down menu at the bottom of the window, choose
Add Variable/Method. Enter currentGuest as the name of the
variable and Guest as its type, and click Add.

Choose ﬂ from the Elements pop-up list to display the Tables
buttons.

Click somewhere in the table, then click E in the toolbar to enter
structure-editing mode. (Alternatively, Control-click on the table.)

Click one of the triangles in the second row to select the entire row.

(ﬁoose ﬂ to display Other WebObjects in the toolbar and click
“
When you wrap a repetition around a table row in this way, the
WORepetition symbol g doesn’t appear in the table. Instead, a
blue border appears around the row. For additional examples of
using repetitions, see Chapter 3, “Creating a WebObjects
Database Application” (page 65).

In the object browser, select application in the first column.

In the second column, make a connection from allGuests to the
entire row (7o a WOString in a cell).

The Inspector window for that element opens. To display the
WORepetition bindings click on the ﬂ icon at the top of the
inspector. The list attribute is selected by default.

Using a Repetition

Element path shows that
WORepetition is contained by
table and contains a table row.

dwmrlml w L sl s L e e e i s B Pl

I o Fpnam Beemarn ook Pubms ke e pei

Z{0lp) 8l |u|z| - jm| o=
BRI+ Rl U114 i B[o+ s s

Cwest Lisi - 2 _I

i BT

. o -

P | = s | tes—LL— Click here to bind
allGuests to the
repetition’s list attribute.

Blue border and Drag variable to table row
background means to bind to repetition.
row is in a repetition.

13. Click Connect to bind application.allGuests to the list attribute.
14. Bind currentGuest to the repetition’s item attribute.

As a short cut, you can select the row for item, then double-click in
the Binding column and type currentGuest

By using the name currentGuest for the item attribute, you are
taking advantage of the fact that the strings in your table are
already bound to the fields of currentGuest .

You now have finished implementing the repetition. When the
table is generated, it will have one row for each item in the
allGuests array.

15. Save the Guestl.ist component.

16. Delete the table from the Main component, since you no longer
need it.

61

Chapter 2 Enhancing Your Application

17. Build and launch your application.

18. Test your application by entering data for multiple guests and
verifying that each guest appears in the table.

Adding the Finishing Touches

"There are a few additional things left to do to make your application a bit
more user friendly:

e Add a button that, when clicked, clears the guest list.
® Addahyperlink to the GuestList page that allows users to return to
the Main page.

Clearing the Guest List

While developing your application, you may find it useful to be able to
remove all guests from the list. (Typically, you wouldn’t allow users to
remove all guests from the list.)

1. In WebObjects Builder, make the GuestList component window
active.

2. Choose Add Action from the pull-down menu at the bottom of the
window. In the panel, enter clearGuestList as the name of the
action and set the page returned to nil . Click Add.

3. Choose View Source File from the pull-down menu.

Project Builder displays the code for GuestList.wos . GuestList.wos
is your script file, the WebScript equivalent of Main.java in the
Main component. For WebScript components, the script files are
stored under the component, rather than in the Classes bucket.
You’ll notice that there is a skeleton of the clearGuestList action
method, using WebScript syntax, as well as the declaration for
currentGuest that you created previously.

4. Enter the following code before the return statement in
clearGuestList :

[[self application] clearGuests];

62

Adding the Finishing Touches

10.

11.

"This code calls the application’s clearGuests method, which
removes all the Guest objects from the array.

Save GuestListwos by choosing Save from the File menu.
Go back to WebObjects Builder.
Place the cursor below the table and press Enter.

Choose £z from the Elements pop-up list and click Z toadd a
WOForm element to contain the following button

Click .

'This creates a submit button that the user will click to clear the
guest list.

Using the Inspector, bind the submit button’s value attribute to
Clear Guest List

"T'his changes the title of the button. Note that the quotes are
necessary to indicate that you’re binding a string, not a variable.

Bind the action attribute to clearGuestList .

When the user clicks the button, the clearGuestList action method
is called, which causes the guest list to be cleared and the page to
be redrawn.

Adding a Dynamic Hyperlink

Now you’ll create a hyperlink that returns the user to the Main page.

1.

Place the cursor below the submit button (outside the rectangle of
its containing form).

Choose ﬂ from the Elements pop-up list and click ﬂ

"Type Return to Sign-in Page , replacing the selected text.
Inspect the hyperlink.

Select the pageName attribute, then double-click in the Binding

column and type "Main" (including the quotes) .

63

Chapter 2 Enhancing Your Application

Note: You must specifically type the quotation marks in “Main ”,
because you are specifying a string representing the name of the
page to be returned. If you left off the quotes, you would be
specifying a variable or method called Main.

6. Save the Guestl.ist component.
7. 'Test your application.

Note: In this case, you don’t have to rebuild and relaunch your
application in order to test it. Building is only required when you
have made changes to Java or Objective-C code. If you modify a
component or WebScript code only, the changes take effect even if
the application is already running,.

The GuestList page should now look like this:

oy Hwleciaps - [I"eg= [dla|

Fie [l Yo Go Qosrasio Dotwss Diecksy fiedes bl
zjz|al aln|g|e|8)] @

[
I.::-ln:|1ha.-u:m |Mkpmmnhulua;uﬂtmrumu'nﬁmn'-umj N
wibar's Hiwd | wWhatiCol | Harsbom | Hot Sossch | ol Doty | Saitass |

Guest List
! usdls have sgmed tas gueatock
[vl E-mnail 1 g it
Ron vl com Wi bagis & poall
Koty ketigvel <oy Yeup oo faw thut agen
e e e Mow | gel £
Moy nar b ol Com Do exce lent Dol
Pe= dridman il clouds ooy Likr, weaw man
Tehn milibreme= com I'm pcoedl
Azedy .l_'-‘l'.\w-“ ram Mo myealers hrow
Gesr Gamuilint |
e b S Fag
Bl Deosrwmni Dona | [i

64

Chapter 3 Creating a WebObijects
Database Application

One of the most powerful features of WebObjects is its ability to
provide access to databases. To do so, it uses a framework called the
Enterprise Objects Framework. This chapter introduces you to the
Enterprise Objects Framework by showing you how to create a simple
database application. The steps you take in creating this application
demonstrate the principles you’ll use in every other application you
develop with the WebObjects and Enterprise Objects Framework.

"The application you’ll create in this tutorial is called Movies. It
makes use of a sample database, the Movies database, that contains
information about movies. In this tutorial we’ll use the OpenBase Lite
database that comes with WebObjects. If you wish to use another
database, you need to set up the Movies database as described in the
Post-Installation Instructions. Also, if you aren’t familiar with Project
Builder and WebObjects Builder, read the first tutorials in this book,
“Creating a Simple WebObjects Application” (page 13) and
“Enhancing Your Application” (page 41), which introduce basic
concepts and procedures you should know before you go on.

In this tutorial, you will:

e Use the WebObjects Application Wizard to create a fully
functional Main component that reads and writes from the
Movies database.

e (Create and configure display groups for interacting with a
database in terms of objects.

e (Create bindings between display groups and a user interface.
e Write code to manipulate display groups’ selected objects.

e Set up display groups in a master-detail configuration.

¢ Use EOModeler to maintain a model file.

e (reate custom enterprise object classes.

Along the way, you’ll learn basic Enterprise Objects Framework
concepts you can use to design your own database applications.

67

Chapter 3

Creating a WebObjects Database Application

The Movies Application

68

"The Movies application has two pages, each of which allows you to access
information from the database in different ways:

o MovieSearch (the main page) lets you search for movies that match
user-specified criteria. For example, you can search for all comedies
starting with the letter “A”. Once you find the movie you're
looking for, you can make changes to its data or delete it. You can
also use this page to insert new movies into the database.

o MovieDetails displays the actors who star in a selected movie and the
roles those actors play. You can add new roles, change the name of
a role, and assign a different actor to a role.
Search for Movies Movie Details
Specify which Movies to display below: Alien
) Category:Horror
Title: B Date Released: 25 Oct 1979
Revenue:$ 11,200,000.00
Category: I
katch I Starring:
Tan Holm as Ash
Click a link to select that movwie Harry Dean Stanton as Brett
lien Tom Sleerritt as Dallas
Amarcord John Hurt as Elane
Apocalypee Mow Weronica Cartwright as Lambert
A Good As Tt Gets Taphet Kotto as Parker
Sigourney Weaver as Bipley
e [e, 2
Wampira
Category: IHDerr Kareem Abdul-Jabbar
Date Released: |25 oot 197D lsahelle Adjani ;l
RoleName: IASh
Revenue: |$ 11,200,000.00
% % E InzertsMew § Saveto Delete
datbase
InzertiMew Save to Delete
database
Mlowie Search
blowie Detals

The Movies Application

Enterprise Objects and the Movies Database

Enterprise Objects Framework manages the interaction between the
database and objects in the Movies application. Its primary responsibility
is to fetch data from relational databases into enterprise objects. An
enterprise object, like any other object, couples data with methods for
operating on that data. In addition, an enterprise object has properties
that map to stored data. Enterprise object classes typically correspond to
database tables. An enterprise object instance corresponds to a single row
or record in a database table.

The Movies application centers around three kinds of enterprise objects:
Movies, MovieRoles, and "Talents. A movie has many roles, and talents (or
actors) play those roles.

The Movie, MovieRole, and Talent enterprise objects in the Movies
application correspond to tables in a relational database. For example,
the Talent enterprise object corresponds to the TALEN'T table in the
database, which has LAST _NAME and FIRST NAME columns. The
"Talent enterprise object class in turn has lastName and firstName instance
variables. In an application, Talent objects are instantiated using the data
from a corresponding database row, as shown in the following figure:

lastName "Federighi”
firstName "Craig"

69

Chapter 3

Creating a WebObjects Database Application

70

Enterprise Objects and Relationships

Relational databases model not just individual entities, but entities’
relationships to one another. For example, a movie has zero, one, or more
roles. This is modeled in the database by both the MOVIE table and
MOVIE_ROLE table having a MOVIE_ID column. In the MOVIE
table, MOVIE_ID is a primary key, while in MOVIE_ROLE it’s a foreign
key.

A primary key is a column or combination of columns whose values are
guaranteed to uniquely identify each row in that table. For example, each
row in the MOVIE table has a different value in the MOVIE_ID column,
which uniquely identifies that row. Two movies could have the same
name but still be distinguished from each other by their MOVIE_IDs.

A foreign key matches the value of a primary key in another table. The
purpose of a foreign key is to identify a relationship from a source table to
a destination table. In the following diagram, notice that the value in the
MOVIE_ID column for both MOVIE_ROLE rows is 501. This matches
the value in the MOVIE_ID column of the “Alien” MOVIE row. In other
words, “Ripley” and “Ash” are both roles in the movie “Alien.”

-
MOVIE_ROLE MOVIE
: D'| Mo RO 0 D O D
1028 Ripley 501~a—» 501 Alien
132 Ash 501 703 |Toy S
———

Suppose you fetch a Movie object. Enterprise Objects Framework takes
the value for the movie’s MOVIE_ID attribute and looks up movie roles
with the corresponding MOVIE_ID foreign key. The framework then
assembles a network of enterprise objects that connects a Movie object
with its MovieRole objects. As shown below, a Movie object has an array
of its MovieRoles, and the MovieRoles each have a Movie.

Designing the Main Page

movieRoles

NSMutableArray

Designing the Main Page

Every WebObjects application has at least one component—usually
named Main—that represents the first page the application displays.
In Movies, the Main component represents the MovieSearch page.

"To design the Main component, you’ll use the WebObjects Application
Wizard. The wizard performs all the setup that’s necessary to fetch
database records and display them in a web page. Specifying different
wizard options yields different pages: The MovieSearch page is an
example of one of the many different layouts you can generate with
the wizard.

71

Chapter 3

Creating a WebObjects Database Application

72

Starting the WebObjects Application Wizard

1.

2.

9.

In Project Builder, choose Project » New.

In the New Project panel, select WebObjects Application from the
Project "Iype pop-up list.

Click Browse.

In the Open panel, navigate to a directory where you want to create
your new project.

Type Movies in the “File name” field.

Click Save.

In the New Project panel, click OK.

"This starts the WebObjects Application Wizard.
Choose Wizard under Available Assistance.

With this option, the wizard guides you through the creation of a
Main component for your application. When you finish, you can

immediately build and run your application without performing

any additional steps and without adding any code.

Choose Java as the primary language.

10. Click Next.

Specifying a Model File

A model associates database columns with instance variables of objects.
It also specifies relationships between objects in terms of database join
criteria. You typically create model files using the EOModeler
application, but the wizard can create a first cut at a model as a starting
point. Later on, you’ll use EOModeler to modify the model created by
the wizard.

Designing the Main Page

'hnr Sprcky o reedel the definey your detshaae-ie-chirdy magping

Ll ™ Select this option.
B i T i i Pl _I
bl |

Cwn | L [T | |

1. Choose “Create new model.”

2. Click Next.

Choosing an Adaptor

An adaptoris a mechanism that connects your application to a particular
database server. For each type of server you use, you need a separate
adaptor. WebObjects provides adaptors for OpenBase Lite, Informix,
Oracle, and Sybase servers. If you’re working on a Windows platform,
WebObjects also provides an ODBC adaptor for use with ODBC-
compliant database sources.

1. In the wizard panel, choose the adaptor for your database.
2. Click Next.

A login panel for the selected adaptor opens. Different databases
require different login information, so each database’s login panel
looks different. Shown below are the login panels for the
OpenBase Lite, Oracle and ODBC adaptors.

73

Chapter 3

Creating a WebObjects Database Application

74

3. Complete the login panel.

If you are using the preinstalled OpenBase Lite database, click
“Set Path”, browse to the \Apple\Local\Library\Databases\
directory, and click Open. “Movies” will now appear in the
Database pop-up list. Click Login.

Designing the Main Page

If you are not using OpenBase Lite, specify the connection
information you provided when you created and populated the
Movies database. Post-Installation Instructions provides more
information.

4. Click OK.

When you use the wizard to create a model file, the wizard uses the
adaptor you specify to connect to your database. With the information you
specified in the adaptor’s login panel, the adaptor logs in, reads the
database’s schema information, and creates a model. The wizard uses
your answers to the questions in the next several pages to configure that
model.

Choosing What to Include in Your Model

In this next wizard page, you can specify the degree to which the wizard
configures your model.

.Blf Choose what to inelude im yeur model.

F Baikgn giimaly Lays | A peimay hay b & 2 W
T vt o s Ry s o
R

B askabouimlaierahipn AW o A el ARRER deey Jades
RO

= Ak aboui vormed Az pod o AG RO Peredais dion it e
I edkaea G i O R A e A i A
= Ues camiam aninrpi s Aiges cusion ST OB O e B Snfies M D o
R ol WD it DO P oy inin i i il iateat
e e e [T e B comae e cleasn
RN
Cancol aBazk | Meds |

The basic model the wizard creates contains exntities, attributes, and
relationships. An entity is the part of the database-to-object mapping that
associates a database table with an enterprise object class. For example,
the Movie entity maps rows from the MOVIE table to Movie objects.
Similarly, an a#tribute associates a database column with an instance
variable. For example, the title attribute in the Movie entity maps the

75

Chapter 3

Creating a WebObjects Database Application

76

TITLE column of the MOVIE table to the title instance variable of
Movie objects.

A relationship 1s a link between two entities that’s based on attributes of
the entities. For example, the Movie entity has a relationship to the
MovieRole entity based on the entities’ movield attributes (although the
attributes in this example have the same name in both entities, they don’t
have to). This relationship makes it possible to find all of a Movie’s
MovieRoles.

How complete the basic model is depends on how completely the
schema information is inside your database server. For example, the
wizard includes relationships in your model only if the server’s schema
information specifies foreign key definitions.

Using the options in this page, you can supplement the basic model with
additional information. (Note that the wizard doesn’t modify the
underlying database.)

1. Check the “Assign primary keys to all entities” box.

= Aasign pimuary keyi A privans sy 1 o ok W
e Al il LUSipar e o i s Siasr ot o kT
T Ak

Enterprise Objects Framework uses primary keys to uniquely
identify enterprise objects and to map them to the appropriate
database row. Therefore, you must assign a primary key to each
entity you use in your application. The wizard automatically
assigns primary keys to the model if it finds primary key
information in the database’s schema information.

Checking this box causes the wizard to prompt you to choose
primary keys that aren’t defined in the database’s schema
information. If your database doesn’t define them, the wizard later
prompts you to choose primary keys.

2. Check the “Ask about relationships” box.

F s phout refatiaes hips AR PO 10 5P K VIR Ry moed A
SRR

Designing the Main Page

If there are foreign key definitions in the database’s schema
information, the wizard includes the corresponding relationships
in the basic model. However, a definition in the schema
information doesn’t provide enough information for the wizard to
set all of a relationship’s options. Checking this box causes the
wizard to prompt you to provide the additional information it
needs to complete the relationship configurations.

3. Uncheck the “Ask about stored procedures” box.

I Ask abirsi sioeag Mpbmmmmmm
[Epi e P e ammhmer gy | Ry dnckoc Jo e el

Checking this box causes the wizard to read stored procedures
from the database’s schema information, display them, and allow
you to choose which to include in your model. Because the Movies
application doesn’t require the use of any stored procedures, don’t
check this box.

4. Uncheck the “Use custom enterprise objects” box.

[T Lite cusion sviamiie mmmmm—;m 0 O AT i oy
abjacts Tl B2 0 gy 0 K Sl Sl e e e
i i PO R [P M vl ek e

)

An entity maps a table to enterprise objects by storing the name
of a database table (MOVIE, for example) and the name of the
corresponding enterprise object class (a Java class, Movie, for
example). When deciding what class to map a table to, you have
two choices: EOGenericRecord or a custom class.
EOGenericRecord is a class whose instances store key-value pairs
that correspond to an entity’s properties and the data associated
with each property.

If you don’t check the “Use custom enterprise objects” box, the
wizard maps all your database tables to EOGenericRecord. If you
do check this box, the wizard maps all your database tables to
custom classes. The wizard assumes that each entity is to be
represented by a custom class with the same name. For example,
a table named MOVIE has an entity named Movie, whose
corresponding custom class is also named Movie.

Chapter 3 Creating a WebObjects Database Application

Use a custom enterprise object class only when you need to add business
logic; otherwise use EEOGenericRecord. 'The Movies application uses
EOGenericRecord for the Movie entity and custom classes for the
Talent and MovieRole entities. Later on, you’ll use EOModeler to
specify the custom classes.

5. Click Next.

Choosing the Tables to Include

1. In the wizard panel, select MOVIE, MOVIE_ROLE, and
TALENT in the Tables browser.

Chanrss 188 DS 1 Inbulie | yDur wiiuked

Ctl-shift-click to select more
than one table.

tenian ———L——Click to select all the tables.
e 1swiies————— Click to deselect all
e L | the tables.
Corrm I < Page | Sl = I I

The wizard creates entities only for the tables you select. Since
the Movies application doesn’t interact with any of the other
tables (for example, DIRECTOR, PLOT_SUMMARY,
STUDIO, and TALENT_PHOTO), you don’t need to include
them in the model.

2. Click Next.

Specifying Primary Keys

If you are using a database that stores primary key information in its
database server’s schema information, the wizard skips this step. The
wizard has already successfully read primary key information from the
schema information and assigned primary keys to your model.

78

Designing the Main Page

However, if primary key information isn’t specified in your database
server’s schema information (as with Microsoft Access), the wizard now
asks you to specify a primary key for each entity.

'h.r Chasar the prmany by lar bede.
A | s Y g e Wi
E 2l o mandese #'ow gy ey
T T I L] EFE AT
Cr———— Shift-click to select more
i than one attribute.
k.
|
Conenl | apark | s | |

[u—y

e

Select movield as the primary key for the Movie entity.
Click Next.

Select both movield and talentld as the primary key for the
MovieRole entity.

MovieRole’s primary key is compound, that is, it’s composed of
more than one attribute. Use a compound primary key when any
single attribute isn’t sufficient to uniquely identify a row. For
MovieRole, the combination of the movield and talentld attributes
is guaranteed to uniquely identify a row.

Click Next.
Select talentld as the primary key for the Talent entity.

Click Next.

Specifying Referential Integrity Rules

If you’re using a database that stores foreign key definitions in its
database server’s schema information, the wizard reads them and creates
corresponding relationships in your model. For example, Movie has a
to-many relationship to MovieRole (that is, a Movie has an array of

79

Chapter 3

Creating a WebObjects Database Application

80

MovieRoles), and Talent has a to-many relationship to MovieRole.
The wizard now asks you to provide additional information about the
relationships so it can further configure them.

P Specky reierensal integrivy naley for Koy ¥ In this example, the
E T — relationship name is
movieRoleArray, but the
£ i e I [AT name is dependent on
R R A e, i the adaptor you're using.
Ly o0
"y Loy vy cirin fmi
i Tt b i T Sk
Cmicms| e O A0 T ol S Dol T
i~ hw e oy
P T
Coeesl | o . |

If foreign key definitions aren’t specified in your database server’s schema
information (as with Microsoft Access), the wizard hasn’t created any
relationships at all, and it skips this step. You’ll add relationships to your
model using EOModeler later in this tutorial.

In the first relationship configuration page, the wizard asks you about
Movie’s relationship to MovieRole. The name of the relationship is
dependent on the adaptor you’re using.

1. Check the “Movie owns its MovieRole objects” box.

"This option specifies that a MovieRole can’t exist without its
Movie. Consequently, when a MovieRole is removed from its
Movie’s array of MovieRoles, the MovieRole is deleted—deleted
in memory and deleted in the database.

Designing the Main Page

2. Choose Cascade.

W i i fsie
i ' oo B e oo
i~ Camcadal Dlndade a8 o Wiy s ouss ke inche
™ Bwivg Lk vl ol ko K B dedaliial . Mok aiy

ApLNR e AT

"T'his option specifies what to do when the source object (the
Movie) is deleted. The cascade delete rule specifies that when a
source object is deleted, the source’s destination objects should
also be deleted—again, deleted in memory and correspondingly in
the database.

3. Click Next.

Now the wizard asks you about Talent’s relationship to
MovieRole.

4. Check the “Talent owns its MovieRole objects” box.
5. Choose Deny.

The deny delete rule specifies that if the relationship source (a
"Talent) has any destination objects (MovieRoles), then the source
object can’t be deleted.

6. Click Next.

You’re done with the model configuration part of the wizard. The rest of
the wizard pages are to help you configure your application’s user
interface.

Choosing an Entity

In this page, the wizard asks you to choose the entity around which the
Main component will be centered. Your Main component centers around
the Movie entity.

1. Select the Movie entity.

2. Click Next.

Chapter 3

Creating a WebObjects Database Application

82

Choosing a Layout

"The wizard provides several page layout options for formatting objects
fetched from the database.

1. Choose Selected Record.

2. Choose Matching Records.

A preview of the page is an approximation of what the finished page
will look like given your choices. (The number of fields and items
isn’'t necessarily the exact number that will be in the finished page.)

O Bk B o]

- Comdim 48 Putoedy
T gl B
S | peiPiE

The wizard generates a title
based on your chosen entity.

Specifies that the page will
have a way to select a
record from a list and a way
to edit that selected record.

Specifies that the page
will have a way to specify
search criteria.

Based on your specifications, the wizard shows you a preview of
the page it will generate. To see how the wizard’s preview
corresponds with the actual page the wizard will create, the
finished page is shown below.

Designing the Main Page

Hearch for Movies

Syl B B b el belo e

. I_.—
e S
Mo |

Thik o ke b bt Wl g

dr PR RiyEE HON
IMEEN |h...
LaseFekarei F' TR
rreaET [EFLTET
| -y | = || =
m—ter | |ty (=
| T

This is the query part, where
users type search criteria.
Clicking Match fetches
movies that meet the criteria
and displays their titles in

the repetition part in the
middle of the page.

This is the repetition part.
Clicking a movie title selects
the movie and displays it in
the editing part at the bottom
of the page.

This is the editing part,
which displays information
about the selected movie.
You can use this part to edit
or delete the selected movie,
to create a new movie, and
to save your work.

There are three parts to this page: the query part (at the top of the
page), which contains fields into which users provide search
criteria; the repetition part (in the middle of the page), which
contains a list of matching records fetched from the database; and
the editing part (at the bottom of the page), which allows you to

make changes to the selected record.

3. In the wizard panel, click Next.

Choosing Attributes to Display

T'he next step is to choose which of the Movie entity’s attributes to
display in the editing part at the bottom of the page.

1. Move attributes from the Don’t Include list to the Include list.

83

Chapter 3

Creating a WebObjects Database Application

84

[T R
LT
- 5
Double-click an attribute to
x| move it to the Include list.
OR
i Select an attribute...
...and click here to move it.
=
Carrs I 4 Bk I A - I I

The order in which you add the attributes determines the order in
which they appear on the page, so add them in the following order:
title , category , dateReleased , and revenue .

Don’t add any of the remaining attributes (for example,
trailerName , studiold , posterName , and language)—they aren’t
used in this tutorial.

2. Click Next.

Choosing an Attribute to Display as a Hyperlink

You now need to specify the attribute used in the repetition part of the
page to identify each record. 'This attribute will be displayed as a
hyperlink. Clicking the hyperlink displays the corresponding record in
the detail part of the page.

1. Add the title attribute to the Include browser.
2. Click Next.

Choosing Attributes to Query On

Specify the attributes to display in the query part of the page. The wizard
creates search criteria fields for each of the attributes you choose.

1. Add the title, and category attributes to the Include browser.

2. Click Finish.

Designing the Main Page

When the wizard finishes, your new project is displayed in Project
Builder. The wizard has produced all the files and resources for a fully
functional, one-page application. All you need to do before running your

Movies application is build it.

Running Movies

Build and run the application as you did in the previous tutorials.

Rearch for Movies

Syl el Bl b el B

...-I,—

e 3

b L

]

Thek @ ek b bt e peaar

LasFabiared I--l_'l‘c
R T |
1
|—_l 3 -_E|

Type matching criteria. A
database string matches if it
begins with the string in the
text field. For example,
strings match “The” if they
start with the string “The”.

Click here to fetch and
return matching movies.

Click a movie to select it and
display its information below.

Use these text fields to edit

the information about a movie.

Click here to create a

new, empty movie.

Click here to save your
work in the database (add
the new movies you
inserted, remove the movies
you deleted, and save
changes you made to
existing movies).

Click here to delete the
selected movie.

Experiment with the application by entering different search criteria and
inserting, updating, and deleting movies. For example:

1.

Type “A” in the title field, and click Match.

“Save to database.”

Search for all movies beginning with the letter “A”.

Change the attributes of one of the movies and click

85

Chapter 3

Creating a WebObjects Database Application

When you’re done, perform another search to verify that your
change was saved.

3. Ity entering dates with different formats.

In the same movie, try changing the dateReleased field using
different formats (for example, “6/7/97,” “June 7, 1997,” and
“today”). Save each time after changing the date.

4. Create a new movie

Click Insert/New to create a new, empty movie. Fill out all the
fields, and click “Save to database.” Search for your movie to
verify that it was saved successfully.

5. Delete your movie.

With your movie selected, click Delete and then click “Save to
database.” When you’re done, search for the movie again to verify
that it’s been deleted.

Examining Your Project

86

Whenever you create a new project, Project Builder populates the project
with ready-made files and directories. What it includes depends on the
choices you make in the wizard, so this project has a set of files different
from those of the GuestBook project.

Like GuestBook, the Movies project contains a Main component
(Main.wo). It also includes some files that the GuestBook doesn’t have:
classes (Application.java , Session.java , DirectAction.java , and Main.java),
a model file, and images used by the Main component.

In Project Builder, navigate to the Movie project’s Resources category.
'This is where the model, named Movies.eomodeld , is located. Later in
this tutorial you’ll use EOModeler to open the model and enhance it.

Examining Your Project

‘{\'|G"| ‘} | %| Ejﬂ‘ sz| Bal pavies. powrw padaid ﬂ
e " R 3

Ciher Snwmek
‘Wb o paon

B Py e b

Wi b Sl v 1B
SLpprrting Fik
Frogspamrts ¥
Librares k
rMan Psajaci Fr
- | | A
] 3 |

Navigate to the Web Server Resources category. This is where your
project’s images are located: DBWizardUpdate.gif , DBWizardDelete.gif ,
and DBWizardInsert.gif , for the “Save to database,” “Delete”, and
“Insert/New” buttons, respectively.

The biggest difference between the GuestBook and Movies projects are
their Main components. Whereas the Main component you created for
the GuestBook project was empty, the Main component for the Movies
project contains a fully functional user interface. Also, the Main.java class
already contains code that supplies the component with behavior. In the
next sections, you’ll examine Movies’ Main.wo component and its
Main.java class.

Examining the Variables

1. Double-click Main.wo in Project Builder’s WebObjects
Components category to open the Main component in WebObjects
Builder.

There are four variables in the object browser: the application
and session variables that are available in all components and two
others, movie and movieDisplayGroup .

The movie variable is an enterprise object that represents a row
fetched from the MOVIE table. movieDisplayGroup is a display
group—an object that interacts with a database, indirectly through
classes in the Enterprise Objects Framework. Display groups are
used to fetch, insert, update, and delete enterprise objects that are
associated with a single entity. movieDisplayGroup ’s entity is

87

Chapter 3

Creating a WebObjects Database Application

88

Movie, which you specified in the wizard’s “Choose an entity”
page.

In Project Builder, look at the class file Main.java to see how movie
is declared.

The movie declaration (shown below) declares movie to be an
EOEnterpriseObject—a Java interface that describes the general
behavior that all enterprise objects must have.

/** @Typelnfo Movie */
protected EOEnterpriseObject movie;

At run time, movie is a EOGenericRecord object. Recall that
EOGenericRecord is used to represent enterprise objects unless
you specify a custom class. Since you didn’t check the “Use
custom enterprise objects” box in the wizard’s “Choose what to
include in your model” page, your application defaults to using
EOGenericRecord for all its entities.

The comment (/** @Typelnfo Movie */) is used by
WebObjects Builder to identify movie ’s entity (Movie). Knowing
the entity allows WebObjects Builder to display movie ’s attributes
(category , dateReleased , and so on). You can see movie ’s attributes
if you select the movie variable in the WebObjects Builder’s object
browser.

In Project Builder, examine movieDisplayGroup ’s declaration
in Main.java .

The declaration (shown below) declares movieDisplayGroup
to be a WODisplayGroup.

protected WODisplayGroup movieDisplayGroup;

Also note the comment explaining how movieDisplayGroup is
initialized. The Main.java class doesn’t have any code to create
and initialize the display group. Instead, it’s instantiated from an
archive file, Main.woo , that’s stored in the Main.wo component.
You shouldn’t edit woo files by hand; they’re maintained by
WebObjects Builder. The woo file archiving mechanism is
described in more detail later in “Specifying a Sort Order”
(page 95).

Examining Your Project

Examining the Bindings

Now examine the bindings of your Main component in WebObjects

Builder.
[TEor E T s = |
Search ber Novis
v et alry I—_ Everything within this
gray box is in a form.
F il [T maToY 1L,
“FrIHI-'.-!:LMWl FETEET CHRE
‘ This is a repetition.
Clvk: w4 I—_ Everything within
— = this gray box is in the
RIS | repetition.
; &
I—_ This gray box identifies
another form.
Rs | GREEEIC T Ml“-ti_l--. [Z1 L .
S ey T g This is a table with four
] e rows and two columns.
dvens [erasimisioen sorteit e s This text field is in
= = = atable cell.
E E Thisis a
—— i 1 WOImageButton.

Remember that you can use WebObjects Builder’s Inspector to see the
bindings for an element’s attributes. Simply select the element to inspect,
and click the ﬂ button to open the Inspector.

89

Chapter 3

Creating a WebObjects Database Application

90

Bindings in the Query Part

In the query part of the component, movieDisplayGroup.queryMatch.title

is bound to the Title text field. There are similar bindings to the Category
text fields. The queryMatch bindings allow users to specify search criteria
to use when movieDisplayGroup next fetches movies. The Match button
is bound to movieDisplayGroup.qualifyDataSource , which actually
performs the fetch.

For example, to display all comedies, a user types “Comedy” in the
Category text field, and clicks the Match button. movieDisplayGroup then
refetches, selecting only movies whose category values are set to
Comedy.

Ity fe Semple sogeert | =]
Search for Movies

Sipeenfy whdih P wvten ra Aepap bakar

Hela |=rristaseledeoe eyl Litle

=] ey
curagury |=rrisbasaladame queytelch. oot egery

Maich”

Bindings in the Repetition Part

In the repetition part of the component where matching movies are
listed, movieDisplayGroup.displayedObjects is bound to a repetition.
More specifically, displayedObjects is bound to the repetition’s list
attribute, providing an array of movies for the repetition to iterate over.

"T'he movie variable is bound to the repetition’s item attribute to hold each
movie in turn, and movie.title is bound to the string element inside the
repetition. These bindings produce a list of movie titles.

Selection segment Displays the binding for
Click a link to select that movie. = the repetition’s list attribute.
[&][movieDisplayGroup . displayedib jects | (= wovie ————————— Displays the binding for
[[®[movie title||R|(@] = the repetition’s item attribute.
5 | Displa_ys the binding _for
the string’s value attribute.

The repetition’s string element is enclosed in a hyperlink. By clicking a
movie title, the user selects the corresponding movie.

Examining Your Project

1. Inspect the hyperlink.

Its action attribute is bound to the action method selectObject .

Bi-9-@- 2
Lt Ej
| v s]
EsbCmjec) Hame [Selecoibyeciline
e | By 1]
T L] = |
El

2. Look in the Main.java class to see how the selectObject method
is implemented.

The method (shown below) simply sets movieDisplayGroup ’s
selected object to the movie the user clicked.

public void selectObject() {
movieDisplayGroup.selectObject(movie);

}

Bindings in the Editing Part

The text fields in the editing part are all bound to attributes of the
movieDisplayGroup ’s selectedObject —the movie on which the user
clicked. 'Typing new values into these fields updates the Movie
enterprise object. To actually save the updated values to the database,
the user must click the “Save to database” button.

91

Chapter 3 Creating a WebObjects Database Application

OLpleves abi ety gt |

i jesaliiapleiroun melecisdibmct Litls
CRIREHY. |-:r'.-'l|.:-:-|¢- D, AEETLAID B S5 EETs
darefekacd jsualiplairrg alectelbmct drafuienesd
CANEEEE | TR A RO S BT LD L L i
= 5 =
iR S Dieie

1. Inspect the middle image button.
Its action attribute is bound to the action method saveChanges .

2. Look in the Main.java class to see how saveChanges is
implemented.

The method (shown below with comments omitted) simply saves
any changes that have been made to movieDisplayGroup ’s objects
to the database.

public void saveChanges() throws Exception {
try {

this.session().defaultEditingContext().saveChanges();

}

catch (Exception exception) {
System.err.printin("Cannot save changes ");
throw exception;

}

this.session() returns a Session object that represents a connection
to the application by a single user. A Session object provides access
to an EOEditingContext object. The expression

this.session().defaultEditingContext().saveChanges();

sends a saveChanges message to the Session’s
defaultEditingContext . This default EOEditingContext
object manages graphs of objects fetched from the database,
and all changes to the database are saved through it.

92

Refining Main.wo

For more information, see the EOEditingContext class
specification in the Enterprise Objects Framework Reference.

An EOEditingContext’s saveChanges method uses other
Enterprise Objects Framework objects to analyze its network of
enterprise objects (Movie objects referenced by the application)
for changes and then to perform a set of corresponding operations
in the database. If an error occurs during this process, saveChanges
throws an exception. Main.java s saveChanges method simply
raises the exception, having the effect of returning a diagnostic
page. You could return an error page that explains the reason for
the save failure instead, but the application in this tutorial uses the
default behavior.

3. Inspect the first and third image buttons to see what their action
attributes are bound to.

They are bound to the movieDisplayGroup.insert and
movieDisplayGroup.delete , methods respectively. The
WODisplayGroup insert method creates a new enterprise object,
then inserts it into the display group’s list of objects just past the
current selection. The WODisplayGroup delete method deletes
the display group’s selected object. These changes happen only
in memory—not in the database. To actually insert a new row in
the database (or delete a row), the user must click the “Save to
database” button, invoking saveChanges on the session’s
EOEditingContext. The editing context analyzes the enterprise
objects in memory; determines if any objects have been added,
updated, or deleted; and then executes database operations to
sync the database with the application.

Refining Main.wo

You may have noticed that your application doesn’t list fetched movies in
any particular order. Also, when you insert a new movie, it appears in the
list of movies as a blank line.

Chapter 3

Creating a WebObjects Database Application

94

Search foer Movies

Syl B Bl b el el

.1-|.—
""\-""I—
b |

Thik a b b et el g

A newly inserted movie
doesn’t have a title set,
so it appears in the list
of movies as a blank line.

bEs I—
CatgEy]
latrFrlenicd I—
e I—

| ‘:I-rl- '-1.1‘.1 ﬂi

[
Ay

In this section you’ll tidy up the user interface to fix these things and
a few others. Specifically, you’ll:

¢ Configure movieDisplayGroup to sort the movies it displays.
e Assign default values to new Movie objects.
e Change the way that dates and numbers are displayed.

You can also put the query part of the page in a table and capitalize
Main.wo ’s text field labels—for example, use “Title” instead of “title”
and “Date Released” instead of “dateReleased.”

Refining Main.wo

Specifying a Sort Order

You can change your application to sort movies alphabetically without
writing any code. Display groups manage sorting behavior, and
WebObjects Builder provides a Display Group Options panel for
configuring this and other characteristics of display groups.

1. Double-click the movieDisplayGroup variable in the object
browser.

The Display Group Options panel opens for configuring
movieDisplayGroup .

Bkl |MAnsie =l

kacenTetal
™ Hux detnil dui opms

(B i Dkl |I
OadifcsSorr . Pref: 'Ill

[Frichas m e

Ll L

Sorirg il H————— Choose an attribute to sort on.

= BEcenmag Select this option to sort
™ Dipacaraing from ‘A’ to ‘Z".
™ M Boilad

cwar | Aewn | ocasen |[oe]

2. Select the title attribute in the Sorting pop-up list.
3. Select Ascending,.

4. Click OK.

WebObjects Builder stores your settings in an archive that specifies how
to create and configure movieDisplayGroup at run time. The archive is
stored inside your Main component in a file named Main.woo . You can’t
see the file from Project Builder because you’re not meant to edit it
directly, but WebObjects Builder’s object browser shows you which of

95

Chapter 3

Creating a WebObjects Database Application

96

your component’s variables are initialized from the archive (or woo file)
so you don’t have to view its contents directly.

An image in this column means that
, the variable can be initialized from the

applicalion | component’s archive.
LA o
et i AV means that initialization parameters are
S already set. The variable is created and
i w WA s initialized from the archive as a part of the
b e i component’s initialization.

A [Elmeans that no initialization parameters
have been set, and so the variable isn't
automatically created. Double-click the

variable to configure it and add it to the archive.

Specifying Default VValues for
New Enterprise Objects

When new enterprise objects are created in your application, it’s common
to assign default values to some of their properties. For example, in your
Movies application it makes sense to assign a default value for the title

attribute so a new movie won'’t be displayed in the list of movies as a
blank line.

You could write an action method for the Insert/New button instead
of binding it directly to the display group insert action method. In the
custom action, you would create a new Movie object, assign default
values to it, and then insert the new object into the display group.
However, there are two additional ways to specify default values for
new enterprise objects, without making explicit assignments:

e Assign default values in the enterprise object class.
e Specity default values using a display group.

For a particular situation, one of the approaches is usually better than the
other. If the default values are intrinsic to the enterprise object, assign
them in the enterprise object class. For example, consider a Member class
with a memberSince property. It’s likely that you would automatically
assign the current date to memberSince instead of forcing a user to supply
a value. You'll see how to use this technique in “Adding Behavior to Your
Enterprise Objects” (page 131).

Refining Main.wo

On the other hand, if the default values are specific to an application or to
a particular user interface, explicitly initialize the object in code or specify
the default values using a display group. In the Movies application, the
need for default values is motivated by Main’s user interface: you need to
provide a default value so users can tell when a newly inserted record is
selected. In another situation, you might not want a new movie to have
a default title; you might instead want a new movie’s title to be blank.

The Movies application specifies default values for newly created Movie
objects using the display group, movieDisplayGroup .

1.

2.

Open Main.java in Project Builder.
Add the following constructor:

public Main() {
super();
NSMutableDictionary defaultValues = new NSMutableDictionary();
defaultValues.setObjectForKey("New Movie Title", "title");
movieDisplayGroup.setinsertedObjectDefaultValues(defaultValues);

}

"This method assigns the value “New Movie Title” as the default
value for a new movie’s title attribute. When movieDisplayGroup
inserts 2 new movie (as it does when a user clicks the Insert/New
button), it creates a new movie and assigns this default value to
that movie.

Setting a Date Format

"To change the way that dates are displayed, you assign a date format to
the element that displays the dates.

1.

Using WebObjects Builder, inspect the dateReleased text field,
which is near the bottom of the Main component window.

Notice that the text field has a dateformat attribute that is bound
to the string “%m/%d/%vy”. This binding tells the text field that
it’s displaying dates and describes how to format them. The %m
conversion specifier stands for month as a decimal number,

%d stands for day of the month, and %y stands for year

without century.

97

Chapter 3

Creating a WebObjects Database Application

98

2. Change the dateformat value to the string (including the quotes)
"%d %b %Y" .

"This date format displays dates such as 3 Sep 1997. The %b
conversion specifier stands for abbreviated month name, and
%Y stands for year with century. You can create your own date
formats with any of the conversion specifiers defined for dates.
For more information, see the NSGregorianDate class
specification in the Foundation Framework Reference.

v T e e T a ' |__||. m. E . E. —
vn it
SR [erasT ey e e e e A '

P [Ll e it LI L BT . . v
BB Wi [Pk e

SRS - TN —

bttty — 7

T L =]
-
[y

oy Mgy

A e Ty

1R Cra
Ok
=
G bam nes 1'| i ;|
-]

Refining Main.wo

Setting a Number Format

In addition to a dateformat attribute, text field elements also have a
numberformat attribute.

1. Inspect the revenue text field.

The revenue text field’s numberformat attribute is bound to the
string “###.##”. T'his binding tells the text field that it’s displaying
a number and describes how to format it.

2. Change the text field’s numberformat binding value to the string
(including the quotes)$ #,##0.00"

Using this number format, the Movies application formats the
number 1750000 as $ 1,750,000. For more information on creating
number formats, see the NSNumberFormatter class specification
in the Foundation Framework Reference.

Optional Exercise

You can tidy up the user interface even further by putting the query part
of the page in a table to match the editing part of the page. Also, you
should consider capitalizing Main.wo ’s text field labels.

"To put the query part of the page in a table, follow these steps:

1. Put the cursor inside the form element before the “title” text field
(in the Query By Example Segment).

2. In the Tables toolbar, click the B button to add a table.

A table with two rows and two columns appears. Initially the table
spans the entire width of the page. You’ll resize it later.

When the table is first added, it’s in structure-editing mode. You
can tell it’s in structure-editing mode because it has F buttons
for adding rows and columns and because it has P and 4 icons
around each of the table’s rows.

99

Chapter 3

Creating a WebObjects Database Application

100

3. Inspect the new table.

Click to add a table at
the insertion point.

Click to toggle the table
between structure-editing
and content-editing modes.

Click to add a new row of

I BT N oy cells to the table.
| E 5

-y fmvidunledies s Felad Lille

T T s

— Click to inspect the table itself.

= B B - - d d
-T'-c' - Ll e I I-nh.-l
e

¥ s D Ty

il Rl [ey ey e

i e Select to make the table
H Fump | F[- resize to fit its contents.
M Haa L ria s I_"'
i B
I M e
s i o
ol S E—
L e .
| '
I_T!' [L
I Pl il R

4. In the Table Inspector, choose Unspecified for the table width.

"T'he table resizes to just fit its contents. When you change the cell
contents later, the table will resize again to accommodate the new
values.

Refining Main.wo

5. Also in the Table Inspector, set the border to 0 to remove the
appearance of a border.

6. 'Iype the labels Title: , and Category: in the cells in the first
column.

Recall that to put the table into content-editing mode, click the
I=| button or double-click in one of the table’s cells.

The table doesn’t resize to accommodate new cell content until
you’re done typing; that is, until you move the cursor out of the
edited cell.

7. Cutand paste the query text fields into their corresponding table
cells.

Just click on a text field to select it. When a text field is selected, it
displays with an underline. Choose Cut from the Edit menu,
double-click the cell to select its text, and choose Paste from the
Edit menu.

8. Delete the old query field labels.

When you’re done, the query part should look like this:

Trls l- w LA BT e A Ol LLELS
oty lu-u{lll;-i-l:.l-a-up maryHatch caisgors
“dairit

101

Chapter 3 Creating a WebObjects Database Application

Now edit the text labels in the editing part of the page and put any other
finishing touches on the page that you want. The finished component
might look something like this:

Dy be Soimple sogeer | I
Scarch for Movies
Sgecaly which bwazg v deplay badowr =
B e el AP d T Bl it LLLLE
Caleguiy wxeialapl reGroag oerist oh. orisgery
St

1

ok o bk b o et et e -

ﬁmwwr:mpnywﬂammmE .

|
oL i jackn

THe |lﬂl-'.‘u.'q'.|.|.l¢¢':m.p amisctedibject . 1isds
Cumgury [b vl oo peleTimmE eTt oAt egery

Dlate Feleased |"|n-.|l:r|.'q:..ll¢':r\u.|: smlec baed(ts et . et abs L s
|la-n|:u |I-|:-|.-al:l|.ﬂ.umm-\.q:- 2100 L B L Tt

I_E EI—E 1

Whﬂﬂhu]

102

Adding the MovieDetails Page

Adding the MovieDetails Page

The MovieDetails page shows you the detailed information about a
movie you select in the Main page. For this to work, the Main page

has to tell the MovieDetails page which movie the user selected. The
MovieDetails page keeps track of the selected movie in its own instance
variable. In this section, you’ll:

e (reate a new component whose interface you’ll create yourself.

* Assign Main’s selected movie to a variable in the MovieDetails
page.

e (reate a way to navigate from Main to MovieDetails and back.

In the sections following this one, you’ll extend the MovieDetails page
to display movie roles and the starring actors.

Creating the MovieDetails Component

1. In Project Builder, choose File » New in Project.

2. Inthe New File panel, click the Web Components suitcase.

3. 'Iype MovieDetails in the Name field.

4. Click OK.

5. In the wizard panel, choose None from the available assistance.
6. Choose Java as the component language.

7. Click Finish.

8. Open the new component, MovieDetails.wo , in WebObjects
Builder.

Storing the Selected Movie

Now, in the MovieDetails component, create a variable that holds the
application’s selected movie. Later on, you’ll add code to the Main.java
class that assigns Main’s selected movie to this variable.

103

Chapter 3 Creating a WebObjects Database Application

1. Choose Add Variable/Method from the pull-down menu.

Fih] gty o B e

Pdrms: | ihibr L kv ———— — Type the variable name here.
W o (lpe m gieen Select this.

I Afagdl

T~ Wariale away ol

(=T =—— Choose Movie.

(Carwrsly sowroy oo For
W A iglanda e

F A et sehuising e Valie Check each of these boxes.
[~ Peapead "gaf bv v s

F A sl saling e vakia

carcel | | #sa ———— Click here when you're done.

2. Name the variable selectedMovie
3. Set the variable’s type to Movie.

Movie isn’t actually a class; it’s an entity. It’s listed in the combo
box as a type along with entries for all the entities in your model.
When you choose an entity as the type for your variable,
WebObjects Builder recognizes that the variable is an enterprise
object. Using information in the model, WebObjects Builder can
determine the entity’s corresponding enterprise object class and
the properties of that class.

4. Check the “An instance variable” box.
5. Check the “A method returning the value” box.
6. Check the “A method setting the value” box.

7. Click Add.

Navigating from Main to MovieDetails

"To get to the MovieDetails page from the Main page, users use
a hyperlink. Clicking the hyperlink should set MovieDetail’s
selectedMovie variable and then open the MovieDetails page.

104

Adding the MovieDetails Page

1. Add a hyperlink at the bottom of the Main component.

2. Replace the text “Hyperlink” with “Movie Details.”

e [P A Dl LTI T L

ey [l . L . ne

Add the hyperlink below
Kt bm = the horizontal rule.

3. Choose Add Action from the pull-down menu.
4. In the Add Action panel, type showDetails in the Name field.

5. Select MovieDetails from the “Page returned” pull-down
menu.

6. Click Add.
7. Bind the showDetails action to the hyperlink’s action attribute.

8. In Project Builder, modify the showDetails action in Main.java
to look like the following:

public MovieDetails showDetails() {

MovieDetails nextPage =
(MovieDetails)pageWithName("MovieDetails");

/I Initialize your component here

EOEnterpriseObject selection =
(EOEnterpriseObject)movieDisplayGroup.selectedObject();

nextPage.setSelectedMovie(selection);

return nextPage;

}

T'his method creates the MovieDetails page and then invokes

its setSelectedMovie method with the movie that’s selected in the
Main page. The display group method selectedObject returns its
selected object, which, in the Main component, is set when a user
clicks a movie title hyperlink.

105

Chapter 3 Creating a WebObjects Database Application

Designing MovieDetails’ User Interface

Now lay out the user interface for MovieDetails. When you’re done, your
component should look like the following:

Movie Details -

R el ex badPirin bille [

Contmgerye|] | 61 Lo 6 £ b v il
Dt Fopbemanad; R noloct odosio det pieloared A
Rarwrme| 8 = lactadiovin reserns L

1. Create a top-level heading with the text Movie Details

Recall that to create a top-level heading, you type the text of the
heading, select the text, click the — | button to add a heading
element around the text, and then use the Inspector to set the
heading’s level, as you did in “Using the Inspector” (page 24).

2. Below the heading, add a string element.
3. With the string element selected, add a heading,.

This adds a new level 3 heading element around the string. The
MovieDetails page will show the title of the selected movie in
this heading.

4. Add labels and string elements to display the selected movie’s
category, date released, and revenue.

5. Bold the labels.

6. Bind selectedMovie .title to the value attribute of the first string
element (the one in the heading).

7. Similarly, create bindings for the Category, Date Released, and
Revenue strings.

8. At the bottom of the page, add a horizontal rule.

106

Adding the MovieDetails Page

Adding Date and Number Formats

String elements have dateformat and numberformat attributes just like
text field elements. Create bindings for the Date Released and Revenue
strings so that dateReleased and revenue values are displayed the way
they are in the Main page.

1. Add the date format "%d %b %Y" to the Date Released string.
2. Add the number format "$ #,##0.00" to the Revenue string,

Navigating from MovieDetails to Main

Now add a hyperlink to the MovieDetails page so users can navigate
back to the Main page from MovieDetails.

1. Add a hyperlink to the bottom of the page.

2. Label it Movie Search

ol B Add the hyperlink here.

3. Bind the hyperlink’s pageName attribute to the text (including the
quotes) "Main" .

Recall that the pageName attribute is a mechanism for navigating
to another page without writing code. By setting the attribute to
“Main”, you're telling the application to open the MovieSearch
page when the hyperlink is clicked.

Running Movies

Be sure thatall your project’s files are saved (including the components in
WebObjects Builder), and build and run your application. In the Main
page, select a movie and click the Movie Details link. The MovieDetails
page should display all the movie’s information.

107

Chapter 3 Creating a WebObjects Database Application

Refining Your Model

"The model created for you by the wizard is just a starting point. For most
applications, you need to do some additional work to your model to make
it useful in your application. "To refine your model so that it can be used
in the Movies application, you’ll ultimately need to do all of the
following:

e Remove primary and foreign keys as class properties.

e Add relationships to your model if the wizard didn’t have enough
information to add them for you.

e (Configure your model’s relationships in the Advanced Relationship
Inspector.

® Generate source files for the Talent class.

These steps are described in more detail throughout the rest of
this tutorial.

Opening Your Model
1. In Project Builder, click the Resources category.
2. Select Movies.eomodeld .

3. Double-click the model icon.

";ﬂll:]xlﬂl _.||E | J e e ' Double click to

open the model.
P

Project Builder opens your model file in EOModeler, launching
EOModeler first if it isn’t already running. EOModeler displays your
model in the Model Editor. It lists the entities for the tables you specified
in the wizard—Movie, MovieRole, and Talent.

108

Refining Your Model

_ H v . peEardeld 12 U i e S e UM e E

Bodel [Popsty Jock ke fis

i _nl.)‘.ll_-lIHI‘FJ L e e 1 Rt

m | Tania | Clai Nasw | :||
O = 1 = .-Il o KD IR EOGeneric Ascare =

+ i Vi liol w Ml ARG MWOVE _RIOLE ECHGar e Ao

B4 Tl o Tolent TALENT EOGenenic Aecars

il | Lr'l Lo | [

_j Blwid Perwmierss

Removing Primary and Foreign Keys
as Class Properties

By default, the wizard makes all of an entity’s attributes, except primary
keys, class properties. When an attribute is a class property, it means that
the property is a part of your enterprise object, usually as an instance
variable.

You should mark as class properties only those attributes whose values
are meaningful in the objects that are created when you fetch from the
database. Attributes that are essentially database artifacts, such as primary
and foreign keys, shouldn’t be marked as class properties unless the key
has meaning to the user and must be displayed in the user interface.

Eliminating primary and foreign keys as class properties has no adverse
effect on how Enterprise Objects Framework manages enterprise objects
in your application.

1.

In the left frame (or #ve view), click the Movie entity.

The right frame switches from a view of the entities in the model
to a view of Movie’s attributes.

Click in the Class Property column to remove the # symbol for
the studiold attribute (the wizard already removed movield as a
class property).

109

Chapter 3 Creating a WebObjects Database Application

Click an entity in this
frame to select the entity.

i =
v e afmneme | vessci |idesape .Jr.'-.'
1 g M P [T [T = L
) i e LR e E H n
_§ Wi Y i 2 p | insEmamand v =
& @& NyEge L] :I
ey =3 : = Click in an attribute’s
P . = .
& W HsEa Shusbw lng = Class Property column
. to remove it as a
ek L = = class property.
C M Em - 5
- - _I_I

3. In the MovieRole entity, remove movield and talentld as class
properties.

4. If you are using OpenBase Lite, remove the Rowld attributes from
the Movie, MovieRole, and Talent entities, since they are not used
in this tutorial.

While Rowld is selected, choose Cut from the Edit menu.

Adding Relationships to Your Model

The Movies application uses two pairs of inverse relationships. The first
pair defines the relationship between the Movie and MovieRole entities,
while the second pair defines the relationship between the MovieRole
and Talent entities. An Enterprise Objects Framework relationship is
directed, that is, a relationship has a source and a destination. Generally
models define a relationship for each direction.

1. Select the Movie entity.

The right frame of the Model Editor shows the Movie’s
relationships as well as its attributes.

110

Refining Your Model

Lo et i o) 0y e e g e

ol B8 Powey Jmb frces e

T 0 e o B e |

L
¥ omm [eisfalrmme Tvme i JsnuTye T
- I e @ ol 2T Fidh = =
¥ e | o @ cofmenie bl el g =
R - | = & uepap [v = 3 o
- & = iy - -
§ il P M gy [= o=
st 5
e P —
i Ja]rowa |Corimaian | Sowrs &8 D
W s Py mrarw) o B L
joE i — = The selected entity’s
i’ Y .| e—— " relationships are

displayed here.

Your model’s Movie entity might have a different name than the
toMovieRole relationship shown above. That’s because the wizard
created your relationship, and the relationship’s name is
dependent on the adaptor the wizard used. Adaptors don’t all
have the same naming convention for to-many relationships.

For example, the Oracle adaptor names Movie’s relationship
movieRoleArray instead of toMovieRole .

If your Movie entity doesn’t have a toMovieRole relationship, it
means that the database server’s schema information for your
database didn’t have enough information for the wizard to create
them. You need to create them by hand now. The next several
steps explain how.

2. Choose Property » Add Relationship.

A new relationship named “Relationship” is added in the table
view at the bottom of the Model Editor. The new relationship
is already selected.

3. With the relationship selected in the right frame of the
Model Editor, click the E| button (in the toolbar) to inspect
the relationship.

111

Chapter 3 Creating a WebObjects Database Application

% | i | Don't change the relationship’s name,
because EOModeler updates the name for
Al = you automatically when you connect the
Destination and Join properties.

Ili'll'lllililul. g
Ceiridinn iy

First select whether the relationship
Mom wovee ¢ is to-one or to-many.
Enby

— Then select a destination entity.

Jar Select a source attribute...
S eiwitais Cexbrsien sdnbaies
cplegorg
LET LTI R
|15 i B

— ...and a matching destination attribute.

pralarkisn e
TS ETILE
Huih i E

L When you're done, click here.

4. In the Inspector, select the To Many option.

5. Select MovieRole as the destination entity.

6. Seclect movield in the Source Attributes list.

7. Select movield in the Destination Attributes list.

8. Click Connect.

EOModeler automatically renames the relationship based on

the name of the destination entity. For example, after connecting
a to-many relationship from Movie to MovieRole, EOModeler
names the relationship “toMovieRole.” "To-one relationships are
named with the singular form of the destination entity’s name.
For example, EOModeler names the inverse to-one relationship
(from MovieRole to Movie) “toMovie.”

112

Refining Your Model

10.

If the wizard created your relationship and used a name other than
“toMovieRole,” consider renaming the relationship. The rest of
this tutorial assumes that your relationships are named using
EOModeler’s naming convention.

Repeat the steps above to create the following relationships (if they
do not already exist):

A to-one relationship named “toMovie” in the MovieRole entity
where:

¢ The destination entity is Movie.
¢ The source attribute is movield .
e The destination attribute is movield .

A to-one relationship named “toTalent” in the MovieRole entity
where:

¢ The destination entity is Talent.
e The source attribute is talentld .
¢ The destination attribute is talentld .

A to-many relationship named “toMovieRole” in the Talent entity
where:

¢ 'T'he destination entity is MovieRole.
¢ The source attribute is talentld .
e The destination attribute is talentld .

Choose @ in the toolbar pop-up list to switch the Model Editor to
Diagram View.

s T Movies eomodeld -- C:\Users\nancy\MyProjects\Movies

Model Edit Propertty Tools Windows Help Use this pop-up list to

switch to a different view.

Wl il &1 i ; ;

T T T T Switches to Table View.
Aaro 1 I T T i i i
% T e = Switches to Diagram View.
I:‘I: hnie = bdouia BACIMIE E Switches to Browser View.

‘—;;5 MovieRole |~ povieRole MOVIE_ROLE | E
FHED Talent | T T -

113

Chapter 3

Creating a WebObjects Database Application

114

At this point your model has all the relationships it needs. The
Diagram View gives you an overview of the entities in the model
and their relationships to other entities.

-
[o Fhk | Tadent
Caligary " ra vl - iruHuq- L m
defeesan & | et | (&l flashlare | & »
mguags | m e ient] Melm) || jlaeold il &
Lt [— Lofd St] - r—:ln.':q.uull.l -
Prais ki e "RE]
' ET LS 3L
A i
-] (K]
Tt s |.¢
ThisiAdE | o | fla— =
=
| i ‘:J

You can also use the Diagram View to edit your model. Double-click an
attribute or relationship to change its name. 'To create a relationship and
its inverse, Control-drag from the relationship’s source attribute to its
destination attribute.

Using the Advanced Relationship Inspector

"There are several additional settings you use to configure a relationship’s
referential integrity rules. For these, use the Advanced Relationship
Inspector.

1. Inspect Movie’s toMovieRole relationship.

2. In the Inspector, click the Advanced Relationship button.

Refining Your Model

Advanced Relationship Inspector E2

Advanced Relationship button.

Eatch Faulting

Eatch Size:ID

Optionality
& Optional
" hMandatory

Delete Rule
= Mullify
¢ Cascade This should be selected.
¢ Deny
" No Action

Owns Destination ¥ ———————— This box should be checked.
Fropagate Primary Key ™

3. Ensure that the delete rule is set to Cascade.

If the wizard created relationships for you, the relationship’s delete
rule should already be set to Cascade. You specified this in the
wizard. If you created your relationships by hand, you’ll have to set
the delete rule yourself.

4. Ensure that the Owns Destination box is checked.

As with the delete rule, if the wizard created relationships for you,
the relationship’s Owns Destination box should already be
checked. If you created your relationships by hand, you’ll have to
check this box yourself.

115

Chapter 3 Creating a WebObjects Database Application

5. Check the Propagate Primary Key box.

A relationship that propagates its primary key propagates its key
value to newly inserted objects in the destination of the
relationship. In this case, checking the Propagate Primary Key box
means that if you create a new MovieRole and add it to a Movie’s
list of MovieRoles, the Movie object automatically assigns its
movield value as the value for the new MovieRole’s movield

property.

"T'his option is usually used with relationships that own their
destination. For more information on propagates primary keys, see
“Where Do Primary Keys Come From?” (page 116).

6. Ensure that Talent’s toMovieRole relationship has its delete rule set
to Deny.

7. Ensure that Talent’s toMovieRole relationship owns its destination.

8. Set Talent’s toMovieRole relationship to propagate its primary key.

Where Do Primary Keys Come From?

Enterprise Objects Framework uses primary keys to identify enterprise
objects in memory, and it works best if you never change an enterprise
object’s primary key from its initial value. Consequently, applications
usually generate and assign primary key values automatically instead of
having users provide them. For example, the Movies application assigns
a movield value to a new movie when it’s created, and the value never
changes afterward. 'The Movies interface doesn’t even display movield
values because they aren’t meaningful to users of the application.

Enterprise Objects Framework provides several mechanisms for
generating and assigning unique values to primary key attributes.

By default, Enterprise Objects Framework uses a native database
mechanism to assign primary key values. See the chapter “Answers to
Common Design Questions” in the Enzerprise Objects Framework
Developer’s Guide for more information.

116

Setting Up a Master-Detail Configuration

The Movies application generates primary key values for Movie and
"Talent objects using the default mechanism, but MovieRole is a special
case because:

e MovieRole’s primary key is compound. The default behavior of
generating a primary key value using a native database mechanism
works only on simple (not compound) primary keys.

* A MovieRole’s primary key attributes, movield and talentld , must
match the corresponding attributes in the MovieRole’s Movie and
Talent objects. The default mechanism generates new, unique
values.

Instead of the default mechanism, Enterprise Objects Framework uses
primary key propagation to assign primary keys to MovieRole objects. By
configuring the Movie’s toMovieRole relationship to propagate primary
key, the Framework knows to assign a new MovieRole’s movield to the
same value as the movield of the MovieRole’s Movie. Similarly, a new
MovieRole’s talentld is set to the same value as the talentld of the
MovieRole’s Talent.

Setting Up a Master-Detail Configuration

So far your Movies application fetches, inserts, updates, and deletes only
Movie objects. Considered alone, a Movie object isn’t as interesting as it
is when it’s related to actors and roles. In this section, you’ll add
MovieRole and Talent objects to the Movies application.

"The relationships defined in your model now come into play. Using
Movie’s toMovieRole relationship, you can display the MovieRoles for the
selected Movie. In this type of configuration, called master-detail, a master
display group holds enterprise objects for the source of a relationship,
while a detail display group holds records for the destination. As
individual records are selected in the master display group, the detail
display group gets a new set of enterprise objects to correspond to the
selection in the master.

117

Chapter 3

Creating a WebObjects Database Application

118

In the Movies application, the master-detail configuration is built around
Movie’s toMovieRole relationship. The configuration is split across two
pages in the application. The master, movieDisplayGroup , is in the Main
component, while the detail is in MovieDetails.

In this section, you’ll:

e (ireate and configure the detail display group.
e Extend the MovieDetails user interface to hold MovieRole and
Talent information.

Creating a Detall Display Group

You can create a detail display group several different ways. You can write
a declaration for it in Project Builder, or you can use WebObjects Builder’s
Add Variable/Method command. But the easiest way to create a detail
display group is by dragging a relationship from EOModeler into your
component, as described below.

1. In EOModeler’s tree view, expand the Movie entity.

Click here to expand or
contract an entity.

s sl [e i]

B Evpw [oof ieies [l

i ! S A] e T O

[=] means that the entity
is already expanded.

e L alnms | o Click the dash to contract
& il ki b FgrE—— "5 o - a4 i .
b I:IE ey P -::..-...-. |:'. a.:l-.-:. -.-I.-. E: T the entity.
":“'"I @ e Hd dardty o =)
Qe F SR Wik =l means that the entity
R T g ﬂ T can be expanded to
§ nasa -t] =] display its relationships.
i, =] i Click the plus to expand
b b the entity.
J || | tm e | o 1 I'.ilrlil'l |
& o iy [[wra -
If an entity has neither
£y a dash nor a plus, the
I il'l At =] = entity has no relationships,

and therefore can't be
expanded.

2. Drag the Movie’s toMovieRole relationship from the tree view into

the MovieDetails component’s object browser.

Setting Up a Master-Detail Configuration

[3 gt T Gk e o e I
L T e
B A= 50 5] 3l o

Mowvie Dels @;:;' 3 —
Bmimcaeners it 7}5 el a
.t — & lakain
II L-Iln:l'b'r - : I8 _|$1n||-dl‘1nu
Bevemme: £ sslactrchiiia rvomman] - /
Wi e Fonrih / = Ll
e S Bl el o
‘MM & ::v-ﬁ
& oTalers
i.1|.ln:ilu|| jl_ I
- [TR | e—
A = H
T TR D) S]

An Add Display Group panel opens.

(I - ik el Gy ——————— WebObjects Builder

assigns a default
. name based on the
Larcel | AH | mananaconigun_| relationship name.

3. In the Add Display Group panel, change the name to
movieRoleDisplayGroup

4. Click Add and Configure.

119

Chapter 3 Creating a WebObjects Database Application

"The Display Group Options panel opens so you can immediately
configure the newly created display group.

Identifies this display group as

bty i 5 | a detail display group.
MariTeiad I——You can’t set the entity of a detail
FF Hes: detei iy e display group. The entity is computed
g preem =] from the Master/Detail settings.
Datsl By | {nbdrvasAnde =
Bl e Dk |-
Omttctor: Prots 4] Check this box so the display group
F Friches o g automatically fetches its objects.
Sag mokstane H————— Sort MovieRole objects by roleName...
I AsCinmag ...from ‘A'to ‘'Z'.
™ Dipgcaraiing
™ Ml Soried
Frith 3pe |
o | Aewn | ocasen |[oe]

Ensure that the “Has detail data source” box is checked. This
means that movieRoleDisplayGroup gets its objects from a
EODetailDataSource object.

All display groups use some kind of data source to fetch their
objects. A data source is an object that exists primarily as a simple
means for a WODisplayGroup to access a store of objects. It’s
through a data source that a display group fetches, inserts, updates,
and deletes database records.

A EODetailDataSource is a subclass of DataSource that’s intended
for use in master-detail configurations. A detail data source keeps
track of a master object and a detail #ey. The master object is typically
the selected object in a master display group, but a master display
group isn’t strictly required. The detail key is the name of the
relationship on which the master-detail configuration is based.

120

Setting Up a Master-Detail Configuration

When a detail display group asks its data source to fetch, the
EODetailDataSource simply gets the destination objects from
the master object as follows:

detailObjects = masterObject.valueForKey(detailKey);

In your master-detail configuration, the master object is the
selected Movie, and the detail key is toMovieRole . When
movieRoleDisplayGroup asks its data source for its MovieRole
objects, the detail WODisplayGroup returns the objects in the
selected Movie’s toMovieRole array of MovieRoles. Similarly,
when MovieRole objects are inserted or deleted in
movieRoleDisplayGroup , they are added and removed from
the master object’s toMovieRole array.

5. Set the display group to sort alphabetically by roleName .
6. Check the “Fetches on load” box.

When “Fetches on load” is selected, the display group fetches

its objects as soon as the component is loaded into the application.
You want this feature in the MovieDetails page so that users

are immediately presented with the selected movie’s roles. In
contrast, the Main page does not fetch on load; it shouldn’t present
a list of movies until the user has entered search criteria and
clicked Match.

7. Click OK.

8. InProject Builder, modify MovieDetail’s setSelectedMovie method
to look like the following:

public void setSelectedMovie(EOEnterpriseObject
newSelectedMovie) {

selectedMovie = newSelectedMovie;
movieRoleDisplayGroup.setMasterObject(newSelectedMovie);

}

With this addition, whenever a user navigates to the MovieDetails
page, setSelectedMovie updates the movieRoleDisplayGroup s
master object so it displays the corresponding MovieRole objects.

121

Chapter 3 Creating a WebObjects Database Application

Adding a Repetition

Now you’ll extend the user interface of the MovieDetails component
to display the actors in the selected movie. Because different movies
have different numbers of roles, you need the dynamism of a repetition

element. When you’re done adding the repetition, your component
should look like this:

Movie Details -

B salectediosim. tikia (8

F—-FT.'L mlectecPayia, codegary &
Date Relessed) |5 19 lectedfionns dutaFalonmed | &)
[PP TR —rpep———]

El

1. In the MovieDetails component window, add the bolded text
Starring: beneath the Revenue line.

2. Below the Starring label, add a repetition.
3. Replace the “Repetition” text with three string elements.

T'he strings should all be on the same line, so don’t type carriage
returns between them.

4. 'Iype a space between the first two strings and the word
“as 7 (with a space before and after) between the last two.

5. Add a carriage return after the last string.
Configuring a Repetition
Now configure MovieDetails’ repetition in a way similar to the way

Main’s repetition is configured. First you need to create a new variable
to bind to the repetition’s item attribute.

122

Setting Up a Master-Detail Configuration

1. Use the Add Variable/Method command to add a new variable,
movieRole, whose type is set to the MovieRole entity.

Don’t create set and get methods for movieRole . You won’t need
accessor methods because the variable is used only within the
MovieDetails component and shouldn’t be visible to any other
classes.

2. Bind movieRoleDisplayGroup .displayedObjects to the repetition’s
list attribute.

3. Bind movieRole to the repetition’s item attribute.

4. Bind movieRole .toTalent .firstName to the value attribute of the first
string in the repetition.

5. Bind movieRole .toTalent .lastName to the value attribute of the
second string.

6. Bind movieRole .roleName to the value attribute of the last string.

When you’re done, the repetition bindings should look like the following:

- s i Ll spl walooap displwsdlh jects e) s ssals
B i pinds inTaleck firstisss (8 LB sorvicfeds inTalent |asbinss M|

[mriains jo e ERY

: '. o _1 i st e J

tobdavie

¥ W P b D by G omi
TLETE Hi o T 1

Running Movies

Be sure thatall your project’s files are saved (including the components in
WebObjects Builder and the model in EOModeler), and build and run
your application. In the Main page, select a movie and click the Movie
Details link. Now, in addition to displaying all the movie’s information,
the Movie Details page should also display the movie’s roles and actors.

123

Chapter 3

Creating a WebObjects Database Application

Updating Objects in the Detail Display Group

124

In this section, you’ll add the ability to insert, update, and delete movie
roles. The MovieDetails page will then look something like this:

Movie Details

Alien

L gy ELre ooy
ane Plaleasad: =) Oy [559
Reveniie:§ 171 200 000 OO

Starring:

Ian Holm s Ak Click a role to select it and
Harry Dean. Sramios i Ereq display its information in the
Torre Sleesmitt 29 Dralag editing part below.

Tebn Hunt ws X ane

Use the browser to choose

1 ETO s
LTI = an actor for the selected role.
Wi e
Fansem Ak dabling Edit the name of the selected role.
Fabvad ke i =l
Fl.uhl}-lm.l-'-rh | Click here to create a new, empty role.
|_J :._;'i :E_! Click here to delete the selected role.
s | Ewslo Ol
o s
Click here to save your work in

the database (add the new roles

1 Lo you inserted, remove the roles
you deleted, and save changes
you made to existing roles).

Many of the features in this page are similar to features in the Main page,
but in this section you perform by hand the tasks the wizard performed
for you to create Main. Already you’ve learned how to create a
WODisplayGroup variable and how to bind it to dynamic elements.

In this section you’ll:

e Write code to update a display group’s selected object.

Updating Objects in the Detail Display Group

e (reate and configure a browser.
e (reate a custom enterprise object class.

* Configure image buttons to insert, update, and delete using display
group actions.

Managing a WODisplayGroup’s Selection

Remember how clicking a movie title in the Main page selects the
corresponding Movie object in movieDisplayGroup . MovieDetails has
a similar behavior for selecting a MovieRole object in
movieRoleDisplayGroup .

First you need to add a hyperlink element around the repetition’s role
name string so that users can select a particular MovieRole. When a user
clicks one of the movie role hyperlinks, the application should select the
corresponding MovieRole object in the movieRoleDisplayGroup .

1. Seclect the repetition’s role name string element.

2. (Click the Add WOHyperlink button in the Other WebObjects
toolbar to add a hyperlink element around the string.

Now you need to create an action method to invoke when the
hyperlink is clicked.

3. Use the Add Action command in the pull-down menu to add an
action named selectObject , returning null .

Before you write the body of the selectObject method, bind it to
the hyperlink while you’re still in WebObjects Builder.

4. Bind the selectObject method to the hyperlink’s action attribute.

5. Now write the code for selectObject in MovieDetail.java . Modify the
selectObject action to look like the following:

public WOComponent selectObject() {
movieRoleDisplayGroup.selectObject(movieRole);
return null;

}

125

Chapter 3

Creating a WebObjects Database Application

126

Adding a Form

Now lay out the user interface used to view and edit the selected
MovieRole. When you’re done, it should look like the following:

||

"

Rasla i Jl-u-ll:l- Lyl sl mwilronp . oe Ll ool ol . £ ol o

g v g i B

1. Add another horizontal rule after the repetition.

2. Use the g button (in the “Dynamic form elements” toolbar)
to add a WOForm element between the two horizontal rules.

3. While the Form text is highlighted, click the & button to replace
the text with a WOBrowser element.

4. Beneath the browser (within the bounds of the new form), type the
bolded text Role Name: .

5. Add a text field.

6. Bind the text field to
movieRoleDisplayGroup.selectedObject.roleName

Adding a Talent Display Group

T'he browser you just created is going to display a list of Talent objects.
Like a repetition element, a browser has list and item attributes. As the
browser moves through its list, the browser sets item to the object at the
current index. The Movies application uses a display group to provide the
browser with a list of Talent objects, so now you need to create the new
display group and a variable to bind to the browser’s item attribute.

1. Use the Add Variable/Method command to create two new
instance variables:

¢ talentDisplayGroup , whose type is WODisplayGroup
¢ talent, whose type is Talent

Updating Objects in the Detail Display Group

The Movies application uses a display group to provide Talent objects,

You don’t need to add set and get methods for the variables.

Using the Display Group Options panel, assign
talentDisplayGroup ’s entity to Talent.

Remember that to open the Display Group Options panel, simply
double-click the talentDisplayGroup variable in the object browser.
The E icon initially displayed next to the variable indicates that
initialization parameters have not yet been set.

Configure talentDisplayGroup to sort its objects alphabetically
(ascending) by lastName .

Configure it to fetch on load and click OK

After you configure talentDisplayGroup , the object browser shows
a ¥ icon next to the variable.

but you could fetch the Talent objects from the database without one.

Display groups provide a simple way to fetch, insert, update, and delete
enterprise objects without writing much, if any, code. To get finer-grained

control over these operations, you can work directly with an
EOEditingContext object. An editing context can do everything a
display group does and much more, but you have to write more code
to use one. For more information, see the EOEditingContext class
specification in the Enterprise Objects Framework Reference.

Configuring the Browser

Similar to the way you created bindings for a repetition, create your
browser’s bindings.

1.

Bind talentDisplayGroup.displayedObjects to the browser’s list
attribute.

Bind talent to the browser’s item attribute.
Bind talent.lastName to the browser’s value attribute.

The value attribute tells the browser what string to display.
For each item in its list, the browser evaluates the item’s value .

127

Chapter 3 Creating a WebObjects Database Application

The browser in the MovieDetails page should display the actors’
full names, but there isn’t an attribute for full name. In the next
section, you'll create a custom Talent class that implements a
fullName method, but for now just use talent.lastName as the
value attribute.

A browser also has a selections attribute that should be bound

to an array of objects. A browser’s selection can be zero, one, or
many objects; but in the Talent browser, the selection should refer
to a single object. Consequently, you need to add two methods to
manage the browser’s selection: one to return an array containing
the selected Talent and one to set the selected Talent from an
array object.

4. Add the method talentSelection to the MovieDetails.java class as
follows:

public NSArray talentSelection() {
EOEnterpriseObject aTalent;

EOEnterpriseObject aMovieRole =
(EOEnterpriseObject)movieRoleDisplayGroup.selectedObject();

if (@MovieRole == null){
return null;

}

aTalent = (EOEnterpriseObject)aMovieRole.valueForKey("toTalent");
if (@Talent == null){

return null;
}else {

return new NSArray(aTalent);

}
}

Because the browser expects an array for its selections attribute,
this method packages the selected MovieRole’s talent object in
an array. If the selected MovieRole object is null, talentSelection
simply returns null to indicate that the browser shouldn’t set

a selection.

128

Updating Objects in the Detail Display Group

5. Add the method setTalentSelection as follows:

public void setTalentSelection(NSArray talentArray){
if (talentArray.count() > 0){
EOEnterpriseObject aMovieRole =

(EOEnterpriseObject)movieRoleDisplayGroup.selectedObject();

EOEnterpriseObject selectedTalent =

(EOEnterpriseObject)talentArray.objectAtindex(0);

aMovieRole.addObjectToBothSidesOfRelationshipWithKey(

selectedTalent, "toTalent");
}
}

Again because the browser uses an array for its selections attribute,
the setTalentSelection method must take an array as its argument.
If talentArray ’s count is nonzero, then this method sets the
selected MovieRole’s talent to the first object in the array. Note
that by default, a user can’t select more than one actor in a browser.

With the addition of these methods, WebObjects Builder now
displays talentSelection in MovieDetail’s object browser.

6. Bind talentSelection to the browser’s selections attribute.

Adding Insert, Save, and Delete Buttons

Now add the buttons that let users insert, save, and delete MovieRoles.

When you’re done, it should look like the following:

=
H
El
i 8 |
L 1.)] Lann
TH+
Bk ekl =

Add the image buttons
inside the form element,
which is bounded by

a light gray box.

1. Inside the form, add three image buttons below the Role Name

text field.

2. Inspect the first active image element.

129

Chapter 3

Creating a WebObjects Database Application

130

3. Bind the filename attribute to the text (including the quotes)
"DBWizardInsert.gif"

4. Follow the same procedure to set the second image’s
filename attribute to the text (including the quotes)
"DBWizardUpdate.gif"

5. Set the last image’s filename attribute to the text (including
the quotes) "DBWizardDelete.gif"

The WODisplayGroup class defines the actions insert and delete.
You’ll bind to the Insert/New and Delete buttons. It doesn’,
however, provide a save method. You’ll have to provide that
yourself.

6. Copy the saveChanges method from the Main.java class and paste it
into the MovieDetails.java class:

public void saveChanges() throws Exception {
try {

this.session().defaultEditingContext().saveChanges();

}

catch (Exception exception) {
System.err.printin("Cannot save changes ");
throw exception;

}
}

7. Bind movieRoleDisplayGroup.insert to the Insert/New image’s
action attribute.

8. Bind the saveChanges method to the “Save to database” image’s
action attribute.

9. Bind movieRoleDisplayGroup.delete to the Delete image’s
action attribute.

Adding Behavior to Your Enterprise Objects

Adding Behavior to Your Enterprise Objects

Right now, the Movies application maps all its entities to the
EOGenericRecord class. As the preceding sections illustrate, you can go
quite far in an application using just this default enterprise object class,
but now you need to add some custom classes to the Movies application.

In this section, you’ll learn how to:

e Generate source code for a custom enterprise object class.
e Provide default values in a custom enterprise object class.

You’ll create custom classes for the Talent and MovieRole entities. In the
"Talent class, you’ll write a fullName method that concatenates a Talent’s
first and last names. You’ll use the method to populate MovieDetail’s
browser element. In the MovieRole class, you’ll provide default values
for newly inserted MovieRoles so they don’t show up in the list of movie
roles as a blank line.

Specifying Custom Enterprise Object Classes

Unless you specity otherwise, EOModeler maps entities to the
EOGenericRecord class. When you want to use a custom class instead,
you need to specify that custom class in the model.

1. In EOModeler, inspect the Talent entity.

131

Chapter 3 Creating a WebObjects Database Application

2. In the Entity Inspector for Talent, type Talent in the Class field.

D‘@‘ Eﬁ‘m‘

k] =

rm-l.| Vi il

Tabdi HH-l.l TALEKT

|'_||.u.| T il Type the name of your custom class here.

Preparien

- a =»
i | & |frofiems j
LRE SIS

- [y]

= —| & ichtviaAde

3. Set the MovicRole entity’s class to MovieRole.

Now you can generate the source files for your Talent and MovieRole
classes.

Generating Custom Enterprise Object Classes

You can easily create a custom class to hold your business logic:
EOModeler provides a command to generate enterprise object classes.

1. In EOModeler, select the Talent entity.
2. Choose Property » Generate Java Files.

A Choose Class Name panel opens. If you opened the model file
from Project Builder, the Choose Class Name panel displays the
project as the destination directory and Talent.java as the default
file name.

132

Adding Behavior to Your Enterprise Objects

3.

4,

Ensure that the Movies project directory is selected.

Click Save.

A panel opens, asking if you want to insert the file in your project.
Click Yes.

EOModeler creates the source file Talentjava and adds it to your
project.

Follow the same procedure for MovieRole.

Adding Custom Behavior to Talent

Now add the fullName method to Talent and bind it to the browser.

1.

Open Talentjava in Project Builder.

The class file declares instance variables for all of Talent’s class
properties (firstName and lastName) and implements set and get
methods for those instance variables.

Add the method, fullName , as follows.

public String fullName(){
return firstName() + " " + lastName();

}

After you save, fullName appears in the object browser of
WebObjects Builder as a property of Talent.

Bind talent.fullName to the browser’s value attribute.

Providing Default Values in MovieRole

As discussed in “Specifying Default Values for New Enterprise Objects”
(page 96), there are two main ways to specify default values for new
enterprise objects without making explicit assignments:

Assign default values in the enterprise object class.
Specify default values using a display group.

133

Chapter 3

Creating a WebObjects Database Application

134

For the Movie class, you specified default values using a display group.
"This approach is also the more appropriate choice for the MovieRole
class, but you’ll use the other approach for MovieRole just to see how its
done.

1. Open MovieRole.java in Project Builder.
2. Add the method, awakeFrominsertioninEditingContext , as follows

public void awakeFrominsertion(EOEditingContext context){
super.awakeFrominsertion(context);
roleName = "New Role";

}

"This method is automatically invoked right after your enterprise
object class creates a new MovieRole and inserts it into an editing
context, which happens when you use a display group to insert.

Running Movies

Be sure that all your project’s files are saved (including your model file),
and build and run your application. Now when a user clicks the
Insert/New button on the MovieDetails page, a new MovieRole is
inserted, with “New Role” already displayed as the role name.

	Getting Started With WebObjects
	Contents
	Preface
	About WebObjects
	About This Book
	Where to Go From Here

	Creating a Simple WebObjects Application
	Creating a WebObjects Application Project
	Choosing the Programming Language
	Examining Your Project
	Launching WebObjects Builder
	Creating the Page’s Content
	Entering Static Text
	Using the Inspector
	Creating Form-Based Dynamic HTML Elements
	Resizing the Form Elements

	Binding Elements
	Creating Variables
	Binding the Input Elements
	Implementing an Action Method

	Creating the Application’s Output
	Building and Running Your Application

	Enhancing Your Application
	Duplicating Your Project
	Creating a Custom Guest Class
	Binding the Class’s Instance Variables to the Form Elements
	Creating a Table to Display the Output
	Adding Dynamic Elements to Table Cells
	Binding the Dynamic Elements in the Table
	Creating the Guest Object

	Keeping Track of Multiple Guests
	Creating a Guest List
	Adding Guests to the Guest List

	Adding a Second Component
	Using a Repetition
	Adding the Finishing Touches
	Clearing the Guest List
	Adding a Dynamic Hyperlink

	Creating a WebObjects Database Application
	The Movies Application
	Enterprise Objects and the Movies Database
	Enterprise Objects and Relationships

	Designing the Main Page
	Starting the WebObjects Application Wizard
	Specifying a Model File
	Choosing an Adaptor
	Choosing What to Include in Your Model
	Choosing the Tables to Include
	Specifying Primary Keys
	Specifying Referential Integrity Rules
	Choosing an Entity
	Choosing a Layout
	Choosing Attributes to Display
	Choosing an Attribute to Display as a Hyperlink
	Choosing Attributes to Query On
	Running Movies

	Examining Your Project
	Examining the Variables
	Examining the Bindings
	Bindings in the Query Part
	Bindings in the Repetition Part
	Bindings in the Editing Part

	Refining Main.wo
	Specifying a Sort Order
	Specifying Default Values for New Enterprise Objects
	Setting a Date Format
	Setting a Number Format
	Optional Exercise

	Adding the MovieDetails Page
	Creating the MovieDetails Component
	Storing the Selected Movie
	Navigating from Main to MovieDetails
	Designing MovieDetails’ User Interface
	Adding Date and Number Formats
	Navigating from MovieDetails to Main
	Running Movies

	Refining Your Model
	Opening Your Model
	Removing Primary and Foreign Keys as Class Properties
	Adding Relationships to Your Model
	Using the Advanced Relationship Inspector
	Where Do Primary Keys Come From?

	Setting Up a Master-Detail Configuration
	Creating a Detail Display Group
	Adding a Repetition
	Configuring a Repetition
	Running Movies

	Updating Objects in the Detail Display Group
	Managing a WODisplayGroup’s Selection
	Adding a Form
	Adding a Talent Display Group
	Configuring the Browser
	Adding Insert, Save, and Delete Buttons

	Adding Behavior to Your Enterprise Objects
	Specifying Custom Enterprise Object Classes
	Generating Custom Enterprise Object Classes
	Adding Custom Behavior to Talent
	Providing Default Values in MovieRole
	Running Movies

