

Creating a Java Client
WebObjects Application

Apple Developer’s Library

Apple and the publishers have tried to make the information contained in this manual
as accurate and reliable as possible, but assume no responsibility for errors or
omissions. They disclaim any warranty of any kind, whether express or implied, as to
any matter whatsoever relating to this manual, including without limitation the
merchantability or fitness for any particular purpose. In no event shall they be liable
for any indirect, special, incidental, or consequential damages arising out of
purchase or use of this manual or the information contained herein. Apple will from
time to time revise the software described in this manual and reserves the right to
make such changes without obligation to notify the purchaser.

Copyright

 1998 by Apple Computer, Inc., 1 Infinite Loop, Cupertino, CA 95014.
All rights reserved.
[7040.00]

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher or
copyright owner. Printed in the United States of America. Published simultaneously
in Canada.

NeXT, the NeXT logo, OPENSTEP, Enterprise Objects, Enterprise Objects
Framework, Objective-C, WEBSCRIPT, and WEBOBJECTS are trademarks of NeXT
Software, Inc. Apple is a trademark of Apple Computer, Inc., registered in the United
States and othe countries. PostScript is a registered trademark of Adobe Systems,
Incorporated. Windows NT is a trademark of Microsoft Corporation. UNIX is a
registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited. ORACLE is a registered trademark of Oracle
Corporation, Inc. SYBASE is a registered trademark of Sybase, Inc. Java and all
Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All other trademarks mentioned
belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 [or, if applicable,
similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

This manual describes the Java Client feature of WebObjects 4.0.

Written by Terry Donoghue and Katie McCormick
With help from Bruce Arthur, Eric Noyau, Patrick Gates, Andreas Wendker,
and Ray Kiddy
Technical illustrations by Karin Stroud
Production by Terri FitzMaurice
Art, production, and editorial management by Gary Miller
Technical publications management by Ron Hayden

3

Table of Contents

Overview of Java Client 7

Advantages of Java 9

Java Client Architecture 11

Data Synchronization Between Client and Server 14

Java Client as a WebObjects Application 15

Java Client Layers and Classes 18

Client Interface and Control Layers 19
The Distribution Layer 19

Client Distribution Classes 20

Server Distribution Classes 20

Programming With Java Client 21

Tutorial 23

Requirements 25

Enterprise Objects and Relational Databases 26

What Goes Into the StudioManager Application 27

Creating the StudioManager Project 28

Using the Wizard 29

Creating a Model 31

Selecting the Application Template 38

The Ingredients of a Java Client Project 39

Client Files 40

The Nib File 40

The Interface Controller 40
Server Files 41

The WOJavaClientApplet Component 41

Other Server Files 42

Verifying and Modifying the Model 43

Assigning Primary Keys 44
Removing Primary and Foreign Keys as Class Properties 46

Creating the User Interface 47

Formatting Currency Values and Dates 52
Adding Action Methods 53

Table of Contents

4

Building and Testing Your Application 56

Testing the Interface 56
Building the Application 56
Running a Java Client Application 57
What if It Doesn’t Work? 60

Adding Relationships 61

Adding Movies to the Application 63
Creating a Master-Detail Interface 64

Transferring Movies Between Studios 67

Putting the Finishing Touches on Your Model 70

Adding Behavior to Your Enterprise Objects 72

Specifying Custom Enterprise Object Classes 72
Generating Source Files 74

Implementing Custom Behavior for Your Classes 76

Distributing Business Logic in Java Client Applications 76

Writing Derived Methods 77
Performing Validation 82

Providing Default Values for Newly Inserted Objects 83

Invoking Server Methods Remotely 83

Controlling the User Interface 89

Advanced Tasks 93

Debugging Java Client WebObjects Applications 95

Debugging Server Code 95

Debugging Client Code 95

Customizing Your Project With Wizards 96

Adding Client-side Subprojects 96

Adding Interface Controller Subclasses and Nib Files 97

Adding Web Components (with Interface Controllers) 97

Manual Adjustments to Java Client Projects 98

5

Table of Contents

Enterprise Objects Framework Concepts 101

Note to Oracle Users 103

What is an Enterprise Object? 103

What is a Model? 103

What are EODisplayGroups and EOEditingContexts? 104

What is an Association? 105

When Do You Use a Custom Enterprise Object Class? 106

Adding Behavior to Enterprise Objects 106

Glossary 109

Overview of Java Client

Chapter 1

9

The Java Client feature of WebObjects distributes the objects of an Enterprise
Objects Framework application between an application server and one or more
clients—typically Java™ applications or Web browsers. It is based on a
distributed client-server architecture that uses Java for its client-side objects.
This architecture is multi-tier in that processing duties are divided among a
client, an application server, and a database server. With a Java Client
application, you can partition the business logic and data associated with
enterprise objects into a client side and a server side. This partitioning can
improve performance and at the same time help to secure legacy data and
business rules.

Advantages of Java

To understand the difference that Java makes in client-server architectures, it
helps first to consider two of the more common types of client-server
applications: the traditional desktop application and the Web application. Rated
on a set of desirable characteristics, each class of application has complementary
strengths and weaknesses.

Desktop applications can typically draw upon user-interface frameworks that
provide a varied and flexible set of controls, modal dialogs, and multiple
windows. On the other hand, HTML has a limited and static set of controls,
mainly forms, active images, and hyperlinks.

Characteristic Desktop Web

Interactive Yes No

Flexible Controls Yes No

Rich User-interface Paradigm Yes No

Portable No Yes

Easy to Administer No Yes

Accessible No Yes

Secure No Yes

Chapter 1

Overview of Java Client

10

A Web application is, by definition, portable since it can run on any client
browser that implements certain standards and protocols, regardless of the
underlying system; desktop applications are usually limited to the platforms
they were built for. Web applications also have high marks for accessibility
because they are designed to make it easy for users to get data on networks.
Finally, because sensitive data and business logic is confined to the server in
Web applications, they tend to be more secure.

Java scores high on each of these characteristics because it can have a strong
presence on each side of the client-server divide.The principal advantage of
Java is that it runs almost anywhere. The client need only have a compatible
Java virtual machine (VM), something that most operating systems and browsers
now include as a standard feature. A Java application can run on the server or can
be downloaded to the client as an applet. SunSoft’s AWT and JFC packages
provide a rich source of flexible, interactive controls for developers.

Thus the promise of Java is the best of both worlds (“promise” because the
potential of Java is still being realized). So what are some distributed multi-tier
Java-based architectures popular today?

Client JDBC applications use a “fat client” architecture. Custom code invokes
JDBC on the client, which in turn goes through a driver to communicate with a
JDBC proxy on the server; this proxy makes the necessary client-library calls on
the server. The shortcomings of this type of architecture are typical of all fat-
client architectures. Security is a problem because the bytecodes on the client
are easily decompiled, leaving both sensitive data and business rules at risk. The
server has to be open to allow all client operations without being able to control
what the client is doing. In addition, such an architecture doesn’t scale; it is
expensive to move data over the channel to the client.

A JDBC Three-tier application (with CORBA as the transport) is a big
improvement over Client JDBC. In this architecture the client can be thin since
all that is required on the client side is the JFC, non-sensitive custom code
(usually for managing the user interface), and CORBA stubs for communicating
with the server. Sensitive business logic as well as logic related to database
connection are stored on the server. In addition, the server handles all data-
intensive computations.

Although JDBC Three-tier is an improvement over Client JDBC, it has its own
weaknesses. First it results in too much network traffic. Because this
architecture uses “proxy” business objects on the client as handles to the real

Java Client Architecture

11

objects on the server, each client request for an attribute is forwarded to the
server, causing a separate round trip and precipitating a “message storm.”
Second, JDBC Three-tier requires developers to write much of the code
themselves, from code for database access and data packaging to code for user-
interface synchronization and change tracking. Finally, JDBC Three-tier does
not provide much of the functionality associated with application servers, such
as application monitoring and load balancing, nor does it provide HTML
integration.

Java Client Architecture

A Java Client application is essentially an Enterprise Objects Framework
application distributed across an application server (running a WebObjects
application) and one or more Web-browser clients (running applets). As a
starting point, consider the following diagram, which depicts a “traditional”
desktop Enterprise Objects Framework application.

Figure 1.

Architecture of Traditional Enterprise Objects Framework Application

Relational
Database

EOAccess

EOAdaptor

EOControl

Your Code

EOInterface

Application Kit

EOAccess

EOAdaptor

EOControl

Your Code

EOInterface

Application Kit

Chapter 1

Overview of Java Client

12

In this architecture data is fetched from databases through the EOAdaptor layer,
objects of which (adaptors) interact with specific database servers. The
EOAccess layer creates enterprise objects from the “raw” fetched data and
registers these with the EOControl layer; the access layer, through EOModel
and related classes, also provides a mapping between the database schema and
enterprise objects. The EOControl layer manages a graph of enterprise objects,
tracks changes to them, and directs the access layer to commit changes to those
objects. Finally, the EOInterface layer in this traditional desktop application
synchronizes the data displayed in the user interface—here objects of the
Application Kit framework—with the EOControl layer’s graph of enterprise
objects.

The design of Java Client breaks up some of these layers and redistributes them
across the client and the application server, which occupies the middle tier in the
overall architecture. The following figure illustrates how this is done.

Java Client Architecture

13

Figure 2.

Architecture of Java Client

Server

Client

EOAccess

EOControl

Your Code

EOInterface

Application Kit

EODistribution

EOControl

Your Code

EOInterface

JFC

EOAccess

EOControl

Your Code

EOInterface

Application Kit

EOAccess

EOControl

Your Code

WebObjects

EODistribution

EOAccess

EOAdaptor

Database
Server

HTTP/
HOP

Chapter 1

Overview of Java Client

14

Java Client moves the pieces that perform object-to-UI-mapping to the client
and duplicates the control layer on the client so that the graph of enterprise
objects and the management of that graph occurs on both server and client. It
also adds a new layer to both client and server, the EODistribution layer, which
performs by-copy object distribution and synchronization. The final difference,
of course, is the use of the Java Foundation Classes as the user-interface
framework. (The object-to-database mapping layer, EOAccess, remains solely
on the server.)

The diagram in Figure seems to suggest a lot of complexity, but it is important
to keep in mind that the functionality it implies (and the amount of code
required to implement it) are inherent in all true multi-tier architectures. Java
Client provides most of the code for you. Unlike other multi-tier approaches,
you do not have to worry about such things as change tracking, data packaging,
and UI synchronization. In most cases, you need only write your business-logic
code.

Data Synchronization Between Client and Server

In a Java Client application, when the user makes a query, the fetch specification
is passed through the layers on the client (EOInterface to EOControl to
EODistribution), largely through successive invocations of

objectsWithFetchSpecification

. The distribution layer on the client forwards the
fetch specification to the server’s distribution layer—in the default WebObjects
case, synchronously via HTTP. From there the normal mechanisms take over
and a SQL call is eventually made to the database server. The database server
returns the rows of requested data and, as usual, this data is converted to
enterprise objects and is registered with the EOControl layer on the server. The
server’s distribution layer then sends

copies

 of the requested objects back to the
client. When the EODistribution layer on the server receives the objects, it
registers them with the editing context in the control layer and, through the
interface layer’s display-group and association mechanisms, the user interface is
updated with the requested data.

Although requested objects are copied from the server to the client, and these
objects exist in parallel object graphs on both server and client, the enterprise
objects on the client usually do not exactly mirror the enterprise objects on the
server. The objects on the client usually have a subset of the properties of the
objects on the server (although the reverse can be true). You can partition your
application’s enterprise objects so that the objects that exist on the client (or the
server) have a restricted set of data and behaviors.

Java Client as a WebObjects Application

15

Once the client has fetched data, this data is cached and is represented
internally by the client’s object graph. As users modify the data (or delete or add
“rows” of data), the client’s object graph is updated to reflect the new state.
When users request that this data be saved, the changed objects are “pushed”
to the server. If the business logic on the server validates these changes, the
changes are committed to the database.

Note that Java Client automatically pushes updates from the server to the client.
It also, by default, pushes changes before client-side objects remotely invoke
methods on server-side objects.

Java Client as a WebObjects Application

Out of the box, Java Client runs as a type of WebObjects application. In the
multi-tier architecture described earlier, WebObjects provides an application
server as well as HTML and HTTP support. The distribution layer on the
client provides an HTTP channel to handle communication between the
application server and the Java Client applets in client Web pages.

A Java Client WebObjects application gives you considerable flexibility in how
you compose the pages of your application. You can combine Java Client applets
and static and dynamic (WebObjects) HTML elements in various ways. You can
have pages with or without Java Clients or pages with multiple Java Clients,
each with its own controller. For example, you could have a login page that takes
the user to one of many Java Client pages based on some piece of account data.
In addition, Java Client applets are not limited to the downloaded JFC
components; as can any applet, they can create dialogs and secondary windows
on the fly.

When you create a Java Client project using Project Builder, two things of
specific interest (in terms of Java Client) are created for you:

• A subproject of type EOJavaClientSubproject named, by default,

ClientSideJava.subproj

. This subproject contains an Interface Builder “nib”
(or interface) file whose file’s owner is a custom subclass of
EOInterfaceController.

• A

Main.wo

 component which contains a subcomponent of type
WOJavaClientApplet.

The EOJavaClientFramework is also automatically added to your project.

Chapter 1

Overview of Java Client

16

In an EOJavaClientSubproject, when you create a user interface using Interface
Builder, the nib file stores an “archive” of JFC (and other 100% Pure Java™)
objects. Also in the subproject are the interface controller and any other custom
enterprise-object or other classes that you have implemented in Java.

WOJavaClientApplet is a component that is used to download and create an
applet of class com.apple.client.interface.EOApplet. It has a dozen or so
potential bindings, some general to applets (such as codebase and size) and
others specific to Java Client (such as distribution-channel class and interface-
controller class).

When you launch a Java Client application, a WebObjects application (

.woa

)
instance is started on the server. Whenever a client requests a page of this
application that has a WOJavaClientApplet, the

.class

 files implementing the
required objects are downloaded to the page and installed on the client. The
applet is loaded and started and the user is ready to fetch, add, delete, and
modify data.

As you can see from the diagram in Figure 3, each session created and managed
by the WebObjects application has, if it is communicating with a Java Client
application, its own editing context and its own server-side distribution layer. As
described earlier, communication between the server and client is handled
through the distribution layers on the server and the client. The WOApplication
maintains the object store (EODatabaseContext) for all sessions.

Java Client as a WebObjects Application

17

Figure 3.

Java Client in a WebObjects Application

The session object is, by default, the delegate of the distribution layer’s
EODistributionContext, the object that handles communication on the server.
The EODistributionContext class defines several security-related delegate
methods for validating remote invocations; if you wish, you can implement
these methods in your Session class.

Server

WOSession WOSession

Client

Control

Relational
Database

Distribution

EODistributed
ObjectStore

EODistribution
Context

EOEditing
Context

EODistribution
Context

EOEditing
Context

EODatabase
Context

WOApplication

Chapter 1

Overview of Java Client

18

Java Client Layers and Classes

The classes specific to Java Client are found in the distribution layers (both
client and server) and in the client’s control and interface layers.

Figure 4.

Major Classes in a Java Client Application

Relational
Database

EOJavaClient

JavaClient

Application Server

EOControl

EOObjectStore
Coordinator

EOEditing
Context

EOAccess

EODatabase
Context

EODatabase EODatabase
Channel

EOModel

EOAdaptor EOAdaptor
Context

EOAdaptor
Channel

EOControl

EODistributed
ObjectStore

EOEditing
Context

EOMasterDetail
Association

EOControl
Association

EOTableView
Association

EODisplay
Group

EOInterface

EODisplay
Group

EODetail
DataSource

EODistributed
DataSource

EODistribution

EOJavaClient

EODistribution
Context

Java Client Layers and Classes

19

Client Interface and Control Layers

The EOInterface and EOControl layers on the client—implemented as the
com.apple.client.interface and com.apple.client.control packages—contain
classes

almost

 identical (in terms of APIs and behavior) to their counterparts on
the server, which are implemented as Yellow Box frameworks.

Basically, the EOInterface layer displays, in the user interface, properties of the
enterprise objects in the control layer, using display groups and associations.
Changes to the object graph are automatically synchronized with the user
interface and user-entered data is automatically reflected in the object graph.
The primary mechanisms behind this synchronization are display groups
(EODisplayGroup) and associations (EOAssociation subclasses).

As in the server, the EOControl layer’s primary responsibility is the
management of the object graph through an EOEditingContext. It also
implements faulting (on-demand fetching) and tracks editing changes.

The differences between the client and server layers are:

• The client Java classes are written in “100% Pure Java” and do not, as the
server classes do, use bridging technology to access Objective-C code.

• The EOInterface layer on the client is implemented in terms of the Java
Foundation Classes (instead of using Application Kit objects).

• The object store and the data source used by the client EOControl layer are
objects in the distribution layer; basically, these objects communicate
changes to the object graph across the channel to the server.

• The client layers include APIs that enable remote invocations of server
methods.

• The EOControl layer on the client does not implement undo or redo.

The Distribution Layer

The distribution layer (implemented by the EODistribution package on the
client and the EOJavaClient framework on the server) is responsible for
synchronizing the states of the object graphs on the client and on the application
server in the middle tier. The distribution layer moves properties in both
directions, that is, as it fetches objects and saves changes.

Chapter 1

Overview of Java Client

20

The distribution layer has a server side and a client side. The classes in the
server side of this layer are provided by the EOJavaClient framework (and
associated “wrapped” Java classes). The classes on the client side are
implemented in Java and live in the com.apple.client.eodistribution package.

Client Distribution Classes

The client-side distribution layer has four public classes.

EODistributionChannel

 and

EOHTTPChannel

. The distribution layer provides
channels through which the application server and the Java clients
communicate. The EOHTTPChannel class implements an HTTP channel,
which is used by Java Client WebObjects applications, but you can subclass the
abstract class EODistributionChannel and implement a channel that uses a
different transport protocol (such as CORBA). On the client side
EODistributedObjectStore handles communication over the channel; on the
server side it’s EODistributionContext.

EODistributedObjectStore

. On the client the distribution layer provides a
distributed object store. It handles interaction with the distribution layer’s
channel (an EODistributionChannel object), incorporating knowledge of that
channel so it can forward messages it receives from the server to its editing
contexts and forward messages from its editing contexts to the server.

EODistributedDataSource

. A concrete subclass of EODataSource (which is
defined in EOControl) that fetches using an EOEditingContext as its source of
objects; the editing context, in turn, forwards the fetch requests to its object
store (usually an instance of EODistributedObjectStore) where it is ultimately
serviced by an EODatabaseContext on the server.

Server Distribution Classes

The EOClientJava framework has four public classes.

EODistributionContext

. This class encodes data to send to the client and decodes
data it receives from the client over the distribution channel. It also keeps track
of the state of the server-side object graph so it can communicate any changes to
the client and thus synchronize the object graphs. EODistributionContext (or
its delegate) also validate remote invocations originating from client objects.

WOJavaClientApplet

. The WebObjects component is used to download and
create an applet of class com.apple.client.interface.EOApplet.

Programming With Java Client

21

EOClassMapper

. Gives the corresponding class names on the client and server.
The methods in this class are typically of interest to those who are
implementing their own channels.

EOReferenceRecording

. Use to encode and decode objects in a pure Java
environment. The methods in this class are typically of interest to those who are
implementing their own channels.

In addition,

EOAccessAdditions.h

 contains Objective-C categories on EOEntity,
EOClassDescriptions, and EOEntityClassDescription. The methods in these
categories return client-specific information stored in model files.

Programming With Java Client

Generally, programming a Java Client WebObjects application requires some
skills and knowledge common to both Enterprise Objects Framework and
WebObjects programmers. However, it also requires a specific design
technique: object partitioning.

Objects on the server and the client can be instances of custom classes or generic
enterprise objects (EOGenericRecord). Objects that derive from custom
subclasses can have different sets of properties on both the server and the client.
Usually, client objects have the more restricted set of data and behaviors, but it
is really up to you to decide based on the requirements of the application and
your business. As noted earlier, the primary criteria for partitioning are
performance and security.

The basic tools and techniques for creating a Java Client application are covered
in the tutorial for

Creating a Java Client WebObjects Application

.

Chapter 1

Overview of Java Client

22

Tutorial

Chapter 2

25

This tutorial shows you how to create a “Java Client” WebObjects application,
which is a distributed Enterprise Objects Framework application that uses a
Web browser as its display medium. The application is “distributed” in the
sense that business logic can be shared among enterprise objects on the Web
client (which are implemented in Java) and enterprise objects on the server
(which can be implemented in Java or Objective-C). The steps you take to
create a Java Client WebObjects application are remarkably similar to the steps
you take to create a typical stand-alone (or “fat client”) Enterprise Objects
Framework application.

The application you’ll be creating in this chapter, StudioManager, is based on
the Movies sample database distributed with Enterprise Objects Framework
(you must have the sample databases installed to do this tutorial). It centers
around three types of enterprise objects: Studio, Movie, and Talent.
StudioManager own movies, and they have a budget for buying new movies.
Movies feature actors, or “talent.” The StudioManager application lets you
transfer movies between studios and buy all of the movies starring a particular
actor. It also lets you add, modify, and delete studios.

The StudioManager example project upon which this tutorial is based is
installed in

NEXT_ROOT

/Developer/Examples/WebObjects/JavaClient

.

Requirements

To run the SudioManager application, or any Java Client application, you must
have server and client systems with certain capabilities beyond the usual
requirements for Enterprise Objects Framework applications (database
servers, for instance). You must have a client (such as a Web browser) and a
server platform that implement Java virtual machines (VM) on which “100%
pure Java” applications can run. The client must also support the following
standards:

• Java Foundation Classes (JFC), also known as “Swing”
• A transport layer such as HTTP or CORBA,

Currently, Java Client applications can be run from Microsoft Internet
Explorer and Netscape browsers (with the Java Plug-in from SunSoft), and
with the JDK’s

appletviewer

 and

java

 programs.

Related Concepts:

Java Client Architectural Overview

Chapter 2

Tutorial

26

Enterprise Objects and Relational Databases

The Studio, Movie, and Talent enterprise object classes correspond to tables
in a relational database. For example, the Studio enterprise object corresponds
to the STUDIO table in the database, which has NAME and BUDGET
columns. The Studio enterprise object class in turn has

name

 and

budget

instance variables, or

class properties

 (instance variables based on database data
are called “class properties”). In an application, Studio objects are instantiated
using the data from a corresponding database row, as shown in the following
figure:

Select a studio to
display its movies.

Use the pop-up list
to transfer a movie
to a different studio.

Click here to
transfer all of the
movies starring the
selected actor to
the selected studio.

name "MGM"

budget 21,000,000
studio

Enterprise objects are instantiated
from a corresponding database
row. They add behavior to the data
they contain.STUDIO

1028 MGM 21,000,000

STUDIO_ID NAME BUDGET

1132 Paramount 50,000,000

27

What Goes Into the StudioManager Application

The enterprise objects in your application do not merely form a static
representation of your database data, however. Enterprise objects add
behavior to your data. For example, the Studio enterprise object class has a
method for calculating the studio’s portfolio value based on the revenue of its
movies. It also has a method for buying all of the movies starring a specified
actor.

In Java Client WebObjects applications, Enterprise Objects Framework
manages the interaction between the database (on the server), your enterprise
objects (on the server and client), and the user interface (on the client). Its
primary responsibilities are as follows:

• Fetching data from relational databases into enterprise objects (on the
server)

• Binding data in enterprise objects to the user interface (on the client)

• Keeping objects in the application synchronized with each other, with the
database, and with the user interface; this includes keeping enterprise
objects on the client synchronized with their counterparts on the server.

What Goes Into the StudioManager Application

As with most Java Client WebObjects applications, you create the Java Client
StudioManager application using the following ingredients:

•

A model you produce using the EOModeler application provided with Enterprise

Objects Framework.

 A model defines a mapping between your enterprise
objects and data in a relational database.

•

A user interface.

You use Interface Builder to construct a Web-based user
interface that can interact with the Java Client. You must load a special
palette (

EOJavaClient.palette

) as well as the standard

EOPalette.palette

. With
the

EOJavaClient.palette

 you can compose a user interface made from
“widgets” derived from the Java Foundation Classes (JFC), informally
known as Swing. Your application can also have pages dynamically
generated entirely from objects on the server; for help in composing these
pages, use WebObjects Builder.

Chapter 2

Tutorial

28

•

Web components

. The Main component is automatically set up to have a
WOJavaClientApplet component that is bound to the interface controller
on the server. You can add other Web components with or without a Java
Client linkage. Also provided are “skeletal” implementation files for the
server-side application, session, and direct-action objects as well as API
bindings files for server-side components.

•

Source code for enterprise object classes.

 In the StudioManager application,
these are Studio and Talent. Movie uses the default enterprise object
class, EOGenericRecord, since it has no custom behavior. This is
described in more detail in later sections.

In addition, the StudioManager application requires a database server on
which you’ve installed the Movies example database. The final ingredients in
the application are the Enterprise Objects Framework, WebObjects and
Foundation classes, interfaces, and protocols, which you link into your
application.

In this tutorial you’ll learn the basic things you must do to create a Java Client
WebObjects application. You’ll discover how to:

• Create a new project using Project Builder.
• Create a new model based on the Movies database using EOModeler.
• Edit your project’s nib file in Interface Builder.
• Write source code for the Studio and Movie enterprise object classes.
• Build your project in Project Builder.

Related Concepts:

What is an Enterprise Object?

Creating the StudioManager Project

Every Java Client application starts out as a project. A project is a repository for
all the elements that go into the application, such as source code files,
makefiles, frameworks, libraries, packages, the application’s user interface,
sounds, and images. You use the Project Builder application to create and
manage projects.

29

Creating the StudioManager Project

1. Start Project Builder.

Choose Project Builder from the WebObjects program group.

You must create or open a project to get Project Builder’s main window. The
New Project panel allows you to specify a new project’s name and location.

2. Make a new project.

Choose Project New.

In the Project Path field of the New Project panel, type the file system path where the project
is to reside.

Give the project the name “StudioManager” by typing this as the last component of the path.

Select WebObjectsApplication from the Project Type pop-up list.

Click OK to create the project.

To name the project and give it a directory location, you can either use the
Browse button to navigate to the directory in which you want to put the new
project, or you can type the full path in the Project Path field. The item
selected from the Project Type pop-up list causes Project Builder to include all
frameworks and supporting files necessary for that type of project.

Using the Wizard
After you create a new project of the type “WebObjectsApplication” the
WebObjects Application Wizard displays a succession of screens. The
sequence of screens that you see depends on the options you select. The
following sequence shows those screens that are displayed when you request
a Java Client application that includes a newly created model and uses a EOF
“skeletal” application template.

Chapter 2 Tutorial

30

1. Select the type of WebObjects application and the primary language.

Select Java Client under Available Assistance.

Select Java under Primary Language.

You could also select Objective-C or WebScript as the primary language, but
these languages are valid only for objects on the server. As noted earlier,
objects on the client must always be implemented in Java.

2. Create or select a model for your application.

For this tutorial, click “Create new model” and then click Next.

31

Creating the StudioManager Project

If you already have a model file, you can select “Open existing model file” and
type the file system path to that file in the Model File field; or you can also
click Browse and navigate to the file using a browser. This tutorial, however,
invites you to follow a sequence of wizard screens that deal with creating a
model file. If you chose an existing model file, go to Selecting the Application
Template.

You can find a Movies model file (Movies.eomodeld) in
NEXT_ROOT/Developer/Examples/EnterpriseObject/AppKit/Movies.

Related Concepts: What is a Model?

Creating a Model
If you decide to create a model for your application, the wizard steps you
through a succession of windows. The model file, when created, is given the
name of your project, in this case StudioManager.eomodeld.

3. Choose an adaptor for your database server.

Select an adaptor for the database you want to use.

Click Next.

An adaptor is a mechanism that connects your application to a particular
database server. For each type of server you use, you need a separate adaptor.
WebObjects provides adaptors for several relational database servers, such as
OpenBase Lite, Informix, Oracle, and Sybase servers as well as the source

Chapter 2 Tutorial

32

code for a flat-file database adaptor. If you’re working on a Windows platform,
WebObjects also provides an ODBC adaptor for use with ODBC-compliant
database sources. It also provides the source code from which you can build an
adaptor for a flat-file database.

All adaptors expect you to specify the database to use. In addition, before you
can gain access to the database, you must log in. Different databases require
different login information, so each database’s login panel looks different. This
tutorial uses the single-user OpenBase Lite adaptor for of the Movies database
that is pre-installed with Enterprise Objects Framework.

4. Log into your chosen database server.

Select the Movies database.

Log into the database, filling in any required information.

Note: If you are using the pre-installed OpenBase Lite database, click Set Path,
browse to the NEXT_ROOT\Local\Library\Databases\ directory, and click Open.
“Movies” now appears in the Database pop-up list. Click Login.

Related Concepts: Note to Oracle Users

After you log in, the wizard uses the selected adaptor to read the data
dictionary (that is, schema information) from the database. From this
dictionary it creates a default model, but before it does it lets you configure
that model in four different ways.

33

Creating the StudioManager Project

5. Choose options for the creation of your model.

Make sure every option is checked except “Use Custom Enterprise objects”.

The basic model the wizard creates contains entities, attributes, and relationships.
How complete this model is depends on how completely the schema
information is inside your database server. For example, the wizard includes
relationships in your model only if the server’s schema information specifies
foreign key definitions.

Using the options in this page, you can supplement the basic model with
additional information. (Note that the wizard doesn’t modify the underlying
database.) The following sections describe each option:

Assign primary keys to all entities
Enterprise Objects Framework uses primary keys as unique identifiers of
enterprise objects with which it maps these objects to the appropriate database
row. Therefore, you must assign a primary key to each entity you use in your
application. The wizard automatically assigns primary keys to the model if it
finds primary-key information in the database’s schema information. Checking
this box causes the wizard later on to prompt you to choose primary keys if
they aren’t defined in the database’s schema information.

Ask about relationships
If there are foreign-key definitions in the database’s schema information, the
wizard includes the corresponding relationships in the basic model. However,

Chapter 2 Tutorial

34

a definition in the schema information might not provide enough information
for the wizard to set all of a relationship’s options. Checking this box causes the
wizard to prompt later you to provide the additional information it needs to
complete the relationship configurations.

Ask about stored procedures
Checking this box causes the wizard to read stored procedures from the
database’s schema information, display them, and allow you to choose which
to include in your model.

Use custom enterprise objects
An entity maps a table to enterprise objects by storing the name of a database
table (MOVIE, for example) and the name of the corresponding enterprise
object class (a Java class such as Movie). When deciding what class to associate
with an entity, you have two choices: EOGenericRecord or a custom class.
EOGenericRecord is a class whose instances store as key-value pairs an
entity’s properties and the data associated with each property. They do
nothing else.

If you don’t check the “Use custom enterprise objects” box, the wizard maps
all your database tables to EOGenericRecord. If you do check this box, the
wizard maps all your database tables to custom classes. The wizard assumes
that each entity is to be represented by a custom class with the same name. For
example, a table named MOVIE has an entity named Movie, whose
corresponding custom class is also named Movie.

Use a custom enterprise object class only when you need to add business logic;
otherwise use EOGenericRecord. Note that this option, if selected, only
assigns a class name; it does not create a class. The class of an entity remains
EOGenericRecord, even if EOModeler shows a different class name, until
you create the “skeletal” class file and add this file to the project. You’ll
perform this step later using EOModeler.

35

Creating the StudioManager Project

6. Select the database tables to include your model.

Select the following tables: DIRECTOR, MOVIE, MOVIE_ROLE, PLOT_SUMMARY,
REVIEW, STUDIO, TALENT, TALENT_PHOTO, and VOTING.

After you select the database tables for your model, the next panel displayed
depends upon your database. Unless you are using a database that stores
primary key information in its database server’s schema information, the
wizard now asks you to specify a primary key for each entity.

7. Specify the primary keys for your entities.

See the table below.

Chapter 2 Tutorial

36

The entities in your model should have the following primary keys assigned:

8. Specify referential integrity rules for the relationships in the model.

Select the Nullify button in each “referential integrity” window that appears.

If you’re using a database that stores foreign key definitions in its database
server’s schema information, the wizard reads them and creates corresponding
relationships in your model. (The naming convention for relationships varies
according to the adaptor you’re using.) The wizard now asks you to specify
referential integrity rules for the relationships so it can further configure them.

The entity... Should have the primary key attributes...

Director movieId and talentId

Movie movieId

MovieRole movieId and talentId

PlotSummary movieId

Review reviewId

Studio studioId

Talent talentId

TalentPhoto talentId

Voting movieId

37

Creating the StudioManager Project

<Source object> owns its <destination> objects
This option specifies that a destination object in a relationship can’t exist
without its source object; the source object is said to “own” the destination
object or objects in the relationship. For example, consider the case of Movie’s
to-many relationship to MovieRoles, which it owns. When a MovieRole is
removed from its Movie’s array of MovieRoles, the MovieRole is deleted—
deleted in memory and deleted in the database.

When <source object> is deleted
This set of options specifies what to do when the source object in a
relationship is deleted.

• Nullify. Specifies that when the source object is deleted, any reciprocal
relationship that the destination object has with the source object is set to
null.

• Cascade. Specifies that when a source object is deleted, the source’s
destination objects should also be deleted—again, deleted in memory and
correspondingly in the database.

• Deny. Specifies that if the relationship’s source (for instance, a Talent) has
any destination objects (MovieRoles), then the source object can’t be
deleted.

Chapter 2 Tutorial

38

9. Select the stored procedures you want to include in your model.

This panel lists the stored procedures defined in your database, with all procedures
selected by default.

Click Next.

Selecting the Application Template
After you create a model or choose an existing one, the wizard displays a final
screen that lets you select the type of template to use for your project.

10. Select the template project to use for the Java Client application.

Make sure the EOF Application Skeleton radio button is selected.

Click Finish.

39

The Ingredients of a Java Client Project

The EOF Application Skeleton creates an application project with a “blank”
user interface; you must construct the interface by hand in Interface Builder.
For StudioManager, this is the option you want. The other two options
automatically generate different types of interfaces:

• Single Table. The wizard guides you through the creation of an
application with a single EODisplayGroup represented in a single table
view.

• Master Detail. The wizard guides you through the creation of an
application that has a master-detail interface.

For more on the last two options, see “Creating a WebObjects Database
Application” in Getting Started With WebObjects.

The Ingredients of a Java Client Project

Once you’ve finished with the wizard, Project Builder creates a project
directory named after the project—in this case StudioManager—and
populates this directory with an assortment of ready-made files and directories.
It then displays its main window.

Chapter 2 Tutorial

40

Client Files
The significant addition to a Java Client project is a subproject named
ClientSideJava.subproj. This subproject comes with two preconfigured files: a
.java file reflecting the name of the project (in this case, StudioManager.java)
and, in the Interfaces “suitcase,” an Interface Builder archive (or “nib”) file,
also named after the project (StudioManager.nib).

The Nib File
The nib file in a Java Client application seems identical to nib files in stand-
alone Yellow Box applications. You drag objects from palettes onto a window
“surface” and these palettes and their objects look exactly like objects in
stand-alone. However, these similarities of appearances are deceiving.

When the EOJavaClient palette has been loaded into Interface Builder and
you create a user interface, the nib file contains two parallel object graphs, one
populated with Yellow Box objects and the other with Swing (JFC) objects.
The Swing object graph constitutes a “Java archive” that is loaded onto the
client.

The Interface Controller
In a Java Client application an interface controller—an EOInterfaceController
object—mediates between the applet interface and the model objects on the
client. When you use Project Builder to create a Java Client project, it
automatically generates code for a custom EOInterfaceController subclass and
makes an object of this class the owner of the nib file. The class is named after
the project and includes the package prefix of project.client.

In the Model-View-Controller design paradigm, the interface controller plays
the role of (obviously) controller. It has four outlets:

• To its component, which is preset to the window in the nib file and
functions as the “view” (it can be set to something else)

• To the client’s editing context (editingContext), which serves as the
“model”

• To the controller display group (controllerDisplayGroup), a kind of general-
purpose display group that contains the interface controller itself and
nothing else; through it the applications can specify user-interface
dependencies and can control the interface through associations

41

The Ingredients of a Java Client Project

• To the master display group (masterDisplayGroup) in master-detail
interfaces

Server Files
The server-side project files are, as usual, accessible from the first column of
the project browser (the main project). Most notable of these is the Main
component (Main.wo) in the WebComponents suitcase. The Main.html file
contains this generated HTML code:

<HTML>

<HEAD>

 <TITLE>Main</TITLE>

</HEAD>

<BODY>

 <CENTER><WEBOBJECT NAME=Applet></WEBOBJECT></CENTER>

</BODY>

</HTML>

The WOJavaClientApplet Component
The “Applet” WEBOBJECT tag in the HTML above represents a
WOJavaClientApplet component. Java Client applications use this
component to create an applet (of class com.apple.client.interface.EOApplet)
and to pass this applet several parameters, some standard, such as size and
codebase, and others specific to Java Client applications, such as channel class
and interface-controller class.

The Main.wod file created by Project Builder contains the following default
bindings for WOJavaClientApplet:

Applet: WOJavaClientApplet {

 height = 512;

 width = 512;

 interfaceControllerClassName =
“studiomanager.client.StudioManager”;

 useJavaPlugin = NO;

}

Note that Project Builder automatically provides the binding for
interfaceControllerClassName (see “The Interface Controller,” above for
details).

Chapter 2 Tutorial

42

The WOJavaClientApplet bindings specific to the EODistribution layer are:

Other Server Files
A Java Client project includes these other server-side files:

• The application, session, and direct action class (.java) files; if you selected
Objective-C as the primary language, these would be Objective-C
implementation (.m) and header files.

• In the Resources suitcase, the model file (StudioManager.eomodeld)

• Also in the Resources suitcase, the exported bindings file for the Main
component (Main.api)

• In the Supporting Files suitcase, the makefiles Makefile, Makefile.preamble,
and Makefile.postamble.

Related Concepts: Customizing Your Project With Wizards

Property Value

useJavaPlugin If YES, generates HTML that causes Internet Explorer
and Netscape browsers to use SunSoft’s Java Plug-in.

distributionContext The EODistributionContext that the applet uses to
handle requests from the client. If no binding is
specified, WOJavaClientApplet instantiates one with the
session’s default editing context and sets the session as
the delegate of the distribution context and itself as the
invocation target.

interfaceControllerClassName The name of the initial EOInterfaceController subclass.

applicationClassName The name of the EOApplication subclass used for the
shared application object.

language The preferred language for the application. This
corresponds to a localized language.lproj directory in
the application’s resources. When searching for
localized resources, Java Client first looks in the .lproj
directory of the preferred language, next English.lproj
(if English is not the preferred language), and finally
for non-localized resources.

channelClassName The class name of the distribution channel to be used
by the client, EOHTTPChannel by default.

43

Verifying and Modifying the Model

Verifying and Modifying the Model

Even if you use an existing model or create a model with the wizard after
selecting all the automated functions, you still need to do, or at least verify, the
following things:

• Make sure that each entity has a primary key.
• Specify the properties that you don’t want displayed, particularly keys.
• Add or modify relationships to the Studio, Movie, Talent, and Movie Role

entities.
• Generate source files for the Studio and Talent classes.

1. Open the model file.

In Project Builder’s project browser, click Resources in the leftmost column

Select StudioManager.eomodeld.

Double-click the EOModeler document icon, displayed above the right side of the project
browser.

When the model document is opened, the Model Editor (in table mode by
default) lists the entities you selected from the Movies database, along with
the names of their associated database tables and class names.

Chapter 2 Tutorial

44

2. Add a column for client-side classes.

If no Client Side Class column appears in the Model Editor, choose Client-Side Class Name
from the pop-up list at the bottom of the Model Editor.

The steps you should perform with EOModeler are described in more detail
in the following sections.

Assigning Primary Keys
In a relational database, each table has a column or combination of columns
whose values are guaranteed to uniquely identify each row in that table. For
example, in the Movies database the MOVIE table has as its primary key the
column MOVIE_ID. Each row in the MOVIE table has a different value in
the MOVIE_ID column, which uniquely identifies that row. Two movies
could have the same name, but still be distinguished from each other by their
primary keys.

Choose from table mode, digram mode, or browser mode

Tree view of model,
and relationships.
Click an entity to
see its properties.

Detail view showing entities
(if model is selected) or
properties (if entity is selected).

45

Verifying and Modifying the Model

Enterprise Objects Framework uses primary keys to uniquely identify
enterprise objects and to map them to the appropriate database row.
Therefore, you must make sure that each of your entities has a primary key
assigned to it in EOModeler. If your database has primary keys defined in it,
this information is automatically included when you create a model—in that
case, you don’t need to assign primary keys yourself.

1. Make sure that each entity has a primary key.

The following table lists the primary keys that should be assigned to each of
the entities in the model. Note that entities (such as MovieRole) can have a
compound primary key; that is, a primary key that is composed of more than one
attribute. However, EOModeler can assign compound primary keys (such as
rowId and movieId) when only a single primary key is necessary. For more

MOVIE_ID is the MOVIE
table s primary key.
This means that each row
has a unique value in
the MOVIE_ID column.

MOVIE_ID TITLE STUDIO_ID
MOVIE

1132 Taxi Driver 501

1028 Tootsie 501

1119 Star Wars 300

Click in this column next to an attribute to
indicate that the attribute is a primary key.
Click the key icon to remove primary-key status.

Chapter 2 Tutorial

46

discussion of this subject, see the appendix “Entity-Relationship Modeling”
in the Enterprise Objects Framework Developer’s Guide.

Removing Primary and Foreign Keys as Class Properties
By default, EOModeler makes class properties for all of an entity’s attributes
(except for non-database attributes that you add to the entity). When an
attribute is a class property, it means that the property will be included in your
class definition and that it can be fetched from the database. To put it another
way, only attributes that are marked as class properties become part of your
enterprise objects.

You should only mark as class properties those attributes whose values are
meaningful in the objects that are created when you fetch from the database.
Attributes that are essentially database artifacts, such as primary and foreign
keys, shouldn’t be marked as class properties unless the key has meaning to
the user and must be displayed in the user interface. For more discussion of
primary and foreign keys, see the section “Adding Relationships” on page 62.

Eliminating primary and foreign keys as class properties has no adverse effect
on how Enterprise Objects Framework manages enterprise objects in your
application.

The entity... Should have the primary key attributes...

Director movieId and talentId

Movie movieId

MovieRole movieId and talentId

PlotSummary movieId

Review reviewId

Studio studioId

Talent talentId

TalentPhoto talentId

Voting movieId

47

Creating the User Interface

2. Remove primary and foreign keys as class properties.

In the model-entity view of the Model Editor, select the entity you want to modify.

Identify an attribute (typically a primary or foreign key) that you do not want to be a class
property

Click the diamond icon next to the attribute to remove it as a server-side class property.

Click the double-arrow icon next to the attribute to remove it as a client-side class property.

Save the model by choosing Save from the Model menu.

You’ll be returning to EOModeler to enhance your model in later exercises,
but for now you’re ready to build the first stage of the StudioManager
application.

Creating the User Interface

When you create a Java Client WebObjects application project, Project
Builder puts a nib file in the Interfaces suitcase of the ClientSideJava
subproject. A nib file is primarily a description of a user interface (or part of a
user interface); it is created by the Interface Builder application and it can be
archived along with other resources of your application. The nib file in the
ClientSideJava subproject, however, is quite unlike the nib files in typical
applications. When the EOJavaClient palette is loaded and you construct a
user interface, the objects that a nib file contains are derived from the Yellow

Click in this column to toggle the attribute
as a server-side class property.

Click in this column to toggle the
attribute as a client-side class property.

Chapter 2 Tutorial

48

Box frameworks and the Java Foundation Classes (JFC), or Swing. They thus
can be downloaded to Java Client applets that live on the client.

1. Open the StudioManager.nib file.

In the project browser navigate to Subprojects ClientSideJava Interfaces English.

Select StudioManager.nib.

Double-click to open.

By default, a blank window appears when Interface Builder is launched. This
is the window you’ll use to create your user interface.

The Interface Builder application is located in the WebObjects program
group. The icon for the application is this:

nib file window When you first open the nib file,
Interface Builder displays a blank window.

palette window
To open, double-click the
 file name OR...the icon

49

Creating the User Interface

In Interface Builder you typically construct a user interface by dragging
objects from a palette and dropping them into the window. Java Client
WebObjects applications require that two special palettes be loaded into
Interface Builder:

• EOPalette.palette includes two objects: EODisplayGroup and
EOEditingContext.

• EOJavaClientPalette.palette has no visible objects but contains the code that
creates Swing objects equivalent to the Yellow Box objects on the standard
palettes.

If these palettes are not loaded, you must load them.

2. Load the required palettes.

In Interface Builder, choose Tools Palettes Open.

In the Open Palette panel, navigate to NEXT_ROOT/Developer/Palettes.

Double-click EOPalette.palette.

Perform the same sequence of steps, but this time load EOJavaClientPalette.palette.

You’ll be dragging objects off of the palette later. For now, however, you can
construct a basic interface for a Java Client WebObjects application by simply
dragging icons from EOModeler into Interface Builder.

EOEditingContext

EODisplayGroup

Chapter 2 Tutorial

50

3. Drag the Studio entity from EOModeler into the window.

The following figure shows the results of dragging an entity into your window.
In the nib file window, there’s a new EODisplayGroup that’s named “Studio”
after the entity you dragged in. Note that the nib file window also includes an
EOEditingContext object. An EOEditingContext object is added to your
application along with the first entity you drag into Interface Builder. Because
a document typically only needs one EOEditingContext, this object is only
added once.

Related Concepts: What are EODisplayGroups and EOEditingContexts?

The EODisplayGroup has the
same name as the entity from
which it was created.

An EOEditingContext object is
added to your application along
with the first entity you drag into
Interface Builder.

51

Creating the User Interface

An entity EODisplayGroup has keys that correspond to the properties in its
associated entity. You can examine these keys in the EODisplayGroup
Inspector.

4. Examine the EODisplayGroup in the Inspector.

Select the Studio EODisplayGroup in the nib file window.

Choose Tools Inspector.

Make sure that the “Fetch on load” checkbox is checked.

The “Fetch on load” option is important because it allows data to be fetched
from the database when you start your application.

The interface that was created when you dragged an entity into the window is
already a functional (if simple) application. You can test it.

The keys listed correspond to the
class properties you specify for
the Studio entity in EOModeler.

You can add other keys that are
not class properties, such as
methods defined in the associated
enterprise object class.

Chapter 2 Tutorial

52

5. Test the interface.

Choose File Test Interface.

To exit the test, select File Exit.

Note that because the “Fetch on load” option was enabled for the Studio
EODisplayGroup in the Inspector, the data is automatically fetched when you
test your interface.

Formatting Currency Values and Dates
When an attribute is defined in your model as having the internal type
Number, a currency formatter is automatically added to any control with which
the attribute is associated. Likewise, when an attribute has an
NSGregorianDate type, date formatters are added to controls associated with
it.

Not all adaptors map, say, the budget attribute to the Number data type. In that
case, you won’t automatically get currency formatting in the column. You can
fix this problem either by setting budget’s internal type to be Number in the
model, or you can add a currency formatter to the column (as described in
“Writing Derived Methods” on page 81).

Once a control has a formatter, you can use the Inspector to change it.

53

Creating the User Interface

6. Set field formatting.

Select the Budget column head in the table view, and display the Formatter view of the
NSTableColumn Inspector.

Change the format to a standard currency format.

Do not set the format to show negative values in red. The JFC currently does
not implement colored text.

Adding Action Methods
You can add basic behavior to your application, such as giving it the ability to
add, delete, and save objects, without writing a line of code. This is possible
because the EODisplayGroup, EOEditingContext, and
EOInterfaceController objects in Interface Builder have predefined action
methods that you can use to trigger operations in your application. An action
method is a method that’s invoked when the user clicks a button or another
control object.

Use the pop-up list to display the
Formatter view of the Inspector.

Select this format.

Chapter 2 Tutorial

54

7. Add action methods.

Add three buttons to your window and label them “Add,” “Remove,” and “Save.”

These buttons will be used to insert new studios, delete existing studios, and
save changes.

Control-drag from the Add button to the Studio EODisplayGroup.

In the Inspector, select Outlets from the pop-up list at the top of the left column.

Select target in the left column.

Double-click insert: in the right column.

Using the same process, connect the Remove button to the delete: method.

To connect the Save button, control-drag from the button to the File’s Owner object in the
nib file window.

In the Inspector, select target in the left column.

Double-click save: in the right column.

55

Creating the User Interface

The File’s Owner icon represents the object that “owns” the nib file, or the nib
file’s root object. In a Java Client WebObjects application, this object is an
instance of a custom subclass of EOInterfaceController that is automatically
created for you (StudioManager.java, in this case). EOInterfaceController
defines the save method and implements it to commit changes to the database.

Note: The EOEditingContext object in the nib file (“EditingContext”) also
defines a method—saveChanges—that also commits changes to the database.
However, EOInterfaceController’s method is preferable because it catches
exceptions that might arise from this operation.

Chapter 2 Tutorial

56

Building and Testing Your Application

You have now created a Java Client application—a fairly trivial one, to be sure,
but still one with all the essential ingredients. Now and then it is a good idea
to build and test your application to catch any problems. Interface Builder
gives you a way to test your user interface even before any code is compiled.
However, to gauge the complete picture, you still should build your
application and test it using a browser or whatever other tool is intended for
deployment.

Testing the Interface
With your current interface you can test-run your application in Interface
Builder and try inserting and deleting some Studio objects.

1. Test your interface.

Choose File Test Interface.

You will find that you cannot save your changes to the database. The save fails
because the File’s Owner object (an instance of a custom subclass of
EOInterfaceController) is instantiated on the client side when the application
is started. It has no corresponding Yellow Box object that is available during
testing, and thus Interface Builder cannot test it. If you had any custom code,
Interface Builder would also have no way to test it. To test the save function
or any custom code, you must build the project and then run the application.

57

Building and Testing Your Application

Building the Application
You build a Java Client project using Project Builder.

2. Use Project Builder to build the application.

If there are any coding or linking errors the Project Build panel displays them;
click an error message in the upper part of the panel to go to the site of the error
in the code editor.

Related Concepts: Debugging Java Client WebObjects Applications

Running a Java Client Application
A Java Client application is really two applications; one application is on the
server and the other is on the client, and they must be running concurrently.
You start the server application as you do any WebObjects application in one
of the following ways:

• Using Project Builder (during development and testing phases)
• From the command line
• Using the Monitor application (the preferred deployment mechanism)

For the procedures for the last two alternatives, check Serving WebObjects. You
can launch the server application from Project Builder using the Launch panel.

Click here to display
the Build panel.

Click here to build
your application.

Chapter 2 Tutorial

58

1. Launch the application with Project Builder.

Click the Launch button on the main window.

Click the Launch button on the Launch panel

After starting the server application, start the client application; there are
several ways to do this:

• Using the Java interpreter (java): To start the client as a stand-alone Java
application outside a browser, use the java interpreter. The syntax for
using java to start a Java Client application is:

java [-classpath classpath]
com.apple.client.eointerface.EOApplication url
[pageName]

You might want to create a script file to make this command automatic
and hidden.

It might not be necessary to specify the -classpath option, but if the
interpreter cannot find classes, you must either modify your
CLASSPATH environment variable or add the -classpath option to the
command. The url option is the application's URL that you would also
use in a browser and pageName is the name of the page that contains the
WOJavaClientApplet component. If pageName is not specified, “Main” is
assumed.

Please note that “com.apple.client.eointerface.EOApplication” is the
name of the class that contains the static main function that is usually
used to start up a Java Client WebObjects application. If you have a

The Launch button
changes to a Stop
button once launching
has begun.

59

Building and Testing Your Application

different main function you must specify the name of the class that
implements it instead.

• Using Microsoft Internet Explorer browsers: To use your Java Client
application in this browser, you must use version 4.0 or higher. To view the
debugging output, launch Internet Explorer, choose Internet Options
from the View menu, enable both Java Logging and Java Console in the
Advanced options display, restart Internet Explorer, and select View
Java Console. It is recommended that you use Sun's Java Plug-in with
Internet Explorer because there are bugs in the browser’s Java
implementation such as known problems with combo boxes. In addition,
if you start a new applet in a browser that has run another applet, the new
applet freezes because the browser’s Java virtual machine is not restarted.
You will need to restart the browser every time you launch your
application; quit the browser and then launch the client. This procedure
is not necessary if you use Sun’s Java Plug-in. If you wish, WebObjects can
automatically launch the browser for you.

• Using Netscape browsers: To run your Java Client application with a
Netscape browser, you currently have to use Sun's Java Plug-in. If you
wish, WebObjects can automatically launch the browser for you.

• Using appletviewer: The JDK’s appletviewer tool is very useful during
development because it minimizes your start-up time by removing the
need to launch a browser. It also lets you view the debugging output inside
the shell where you run appletviewer. To use the tool, copy the URL of the
server application (displayed in the console output) and paste it a shell
window as the argument, for example:

appletviewer http://<host>:1234/WebObjects/MyApp

If you are running appletviewer on the same machine as the WebObjects
application, <host> is “localhost”; otherwise it is the host name of the
machine on which the application is running.

There are a few considerations to keep in mind when running a Java Client
WebObjects application:

• You can specify -WOAutoOpenInBrowser NO on the command line to avoid
auto-launching a browser when you start up your server application.

Chapter 2 Tutorial

60

• The CLASSPATH environment variable must be correctly set so your
application can find all necessary Java classes. If classes cannot be found,
you should modify your CLASSPATH. The installer should correctly
configure the CLASSPATH.

• If you run the application in a Microsoft Internet Explorer or Netscape
browser, you may have to use Sun's Java Plug-in. These browsers currently
do not implement the AWT specification exactly or have bugs that
prevent Java Client applications from working correctly. In particular,
Microsoft Internet Explorer does not reset the Java virtual machine which
can cause the application to freeze. To use the plug-in, open the Web
component containing your application’s WOJavaClientApplet in
WebObjectsBuilder and set the useJavaPlugin binding to YES. The first
time you start an application using the plug-in, the browser will ask you to
download the plug-in (the concrete behavior depends on the browser).
Afterwards, the plug-in is loaded automatically. Please refer to Sun's
documentation at http://java.sun.com/products for more information.

What if It Doesn’t Work?
What if you test-run the application in Interface Builder, or if you build and
run it, and it doesn’t work?

• If no data appears in the table view, look in the Interface Builder Inspector
to make sure that you have “Fetch on load” enabled for the Studio
EODisplayGroup.

• If the buttons don’t have the desired effect, check to see that they’re
connected to the appropriate action method in the appropriate object.

• If you get database errors when you try to add and delete studios or save
changes, make sure that your model is properly specified. In particular,
check that all of your entities have primary keys. Finally, choose Check
Consistency from the Model menu in EOModeler to confirm that there
are no problems in your model.

• In the current release (WebObjects 4.0), there is no way to edit table-view
cells directly in a Java Client application. To get around this limitation, put
text fields in the user interface for the purpose of data entry.

• If you are using the OpenBase Lite adaptor, exit Interface Builder before
you launch your application, otherwise your application will exit

61

Building and Testing Your Application

immediately. The OpenBase Lite adaptor forbids you to have more than
one database connection open at a time, and Interface Builder opens a
connection to the database and keeps it open as long as it is running. The
other database adaptors do not have this limitation.

Optional Exercise
Enterprise Objects Framework provides additional action methods that you
can use in connections: fetch (EODisplayGroup) and refetch
(EOEditingContext). Try adding controls (such as buttons or menu items) to
the application and connecting them to some of these action methods.

Until now you have still not written a single line of code. However, because of
the built-in features of Enterprise Objects Framework, all of the following
have been provided for you:

• Automatic primary key generation when you insert a new object

As described in the section“Assigning Primary Keys” on page 44, every
row in a database is uniquely identified by its primary key value. When
you create a new object in your application and save it to the database,
you’re adding a new row to a database table, and this row needs a primary
key (that is, it needs to have a unique value for the primary key attribute
you set in EOModeler). Enterprise Objects Framework handles
generating this unique value for you.

• Formatting of money and dates

• Coordinating the user interface with your data

Enterprise Objects Framework keeps all parts of an application
synchronized with the current view of the data. For example, if you have
two windows in an application that are displaying the same data and you
change the values in one window, the other will automatically be updated
to reflect the changes.

Chapter 2 Tutorial

62

Adding Relationships

Creating an application that adds and modifies studios is just the first stage of
the StudioManager application. Now you can enhance the application to
display all of the movies owned by a selected studio.

The Studio, Movie, and Talent entities are not especially interesting when
considered separately. Their real significance only becomes apparent in their
relationships to each other. Every Movie has one corresponding Studio. One
Studio can have many Movies. A particular actor (Talent) can star in several
movies.

Relational databases model not just individual entities, but entities’
relationships to one another. For example, a Movie entity has a corresponding
Studio entity. This is modeled in the database by both the Movie entity and
the Studio entity having a studioID attribute. In Movie, studioID is a foreign key,
while in Studio it’s a primary key. A foreign key correlates with the primary key
of another table in order to model a relationship a source table (Movie) has to
a destination table (Studio). In the following diagram, notice that the value in
the STUDIO_ID column for both movies is “501”. This matches the value in the
STUDIO_ID column of the Columbia Pictures movie studio. In other words, the
movies “Tootsie” and “Taxi Driver” both belong to Columbia Pictures.

This plays out in your running application as follows: Suppose you fetch a
Movie object. Enterprise Objects Framework takes the value for the movie’s
studioID attribute and looks up the studio with the corresponding primary key.

For your application to take advantage of such database-defined relationships,
your model must specify the corresponding relationships. When you created
the model using the wizard, EOModeler created relationships between your
selection of entities based on matching primary and foreign keys; it assigned

The value of the
STUDIO_ID foreign key
for the movies Tootsie
and Taxi Driver matches
the value of the
STUDIO_ID primary key
for Columbia Pictures.

1028 Tootsie 501 501
1132 Taxi Driver 501 703

MOVIE_ID TITLE STUDIO_ID STUDIO_ID NAME
MOVIE STUDIO

Columbia
Pictures
20th

Century Fox

63

Adding Relationships

relationship names of the form “toDestinationEntity”. You might have reason
now to examine these relationships, add new ones, delete generated ones, or
modify things such as whether a relationship is to-one or a to-many.

Note: Your model may already have some relationships in it, based on
information EOModeler read from the database. For the purposes of this
tutorial, you can just ignore these relationships.

You need to ensure that the following relationships are specified:

From the Studio (source) entity:

• Form a to-many relationship to the Movie (destination) entity.
• The source attribute is studioID. The destination attribute is studioID.
• Name the relationship movies.

From the Movie (source) entity:

• Form a to-one relationship to the Studio (destination) entity.
• The source attribute is studioID. The destination attribute is studioID.
• Name the relationship studio.

Chapter 2 Tutorial

64

1. Create a relationship.

Display the attributes view for the entity you want to use as the source of the relationship.

Choose Property Add Relationship.

In the Relationship Inspector, enter the name of the relationship.

Select whether the relationship is to-one or to-many.

Select a destination entity.

Select a source attribute.

Select a destination attribute.

Connect them.

Adding Movies to the Application
The relationships you specified in EOModeler now come into play in your
application. In EOModeler you added a to-many relationship from Studio to
Movie, because a Studio can have many Movies. You can now use this
relationship to display the movies for the selected studio.

In this type of configuration, called master-detail, the master table holds records
for the source of the relationship, while the detail table holds records for the
destination. As individual records in the master table are selected, the contents
of the detail table change to show the records that correspond to the selection

Type the name of the relationship.

Set whether your relationship is
to-one or to-many.

Select a destination entity.

Then select a source attribute...

... and a destination attribute.

When you re done, click here.

65

Adding Relationships

in the master. In the StudioManager application, Studio is the master table and
Movie is the detail table.

Creating a Master-Detail Interface
Starting with this exercise, you will create the final user interface of the
StudioManager application. This means that you should start off by removing
all objects added earlier to your nib file; also, give your application window a
title.

2. Prepare the nib file.

In Interface Builder, delete the table view from the window.

Delete the Studio EODisplayGroup and the EditingContext from the nib file window.

Save the nib file.

3. Set the window title.

Select the window by clicking its title bar.

Choose Inspector from the Tools menu.

Enter “Studio Manager” in the TItle field of the Attributes display.

You can create a master-detail interface by simply dragging a relationship from
EOModeler onto your window.

Chapter 2 Tutorial

66

4. Create a master-detail interface.

Drag Studio’s movies relationship from EOModeler onto the window in Interface Builder.

Rearrange and resize the tables so that they are next to each other.

Reconnect the Add and Remove buttons to the new Studio EODisplayGroup

Reconnect the Save button to File’s Owner (the interface controller).

(See “Adding Action Methods” on page 53 for these procedures.)

This operation creates a master-detail interface. Columns are automatically
added for all of the attributes marked as class properties; you can delete any
columns you don’t want.

For a Java Client application, the interface controller—represented by the
File’s Owner icon in the nib file window—is the “controller” object in the
Model-View-Controller design scheme. The interface controller comes
already connected to its “view” through the component outlet. But you must
connect it to its “model” object, the editing context.

67

Adding Relationships

5. Connect the interface controller to its editing context and display group.

Control-drag from File’s Owner to the EditingContext icon in the nib file window.

In the Connections inspector, select the editingContext outlet.

Click Connect.

Control-drag from File’s Owner to the Studio icon in the nib file window.

In the Connections inspector, select the MasterDisplayGroup outlet.

Click Connect.

In the following figure, you can see the master-detail interface in action.
Notice that the table views have been rearranged, and that titles have been
added above the Studios and Movies tables.

Chapter 2 Tutorial

68

6. Test your interface.

Choose File Test Interface.

7. Use Project Builder to build the application.

To see the effects of your changes, you must compile and run the application.
However, before you run the application, there is one last step to perform. The
applet providing the running environment for your Java Client application is
set to a default size in the WOJavaClientApplet bindings in Main.wod. This
size could be too small to accommodate your user interface (or too large for it).

69

Adding Relationships

8. Learn the size of the window.

Open StudioManager.nib.

Choose Inspector from the Tools menu.

Select the Size inspector.

Write down the w and h parameters.

For example’s sake, let’s assume the window is 503 pixels high and 700 pixels
wide. Transfer these numbers to the WOJavaClientApplet.

9. Set the WOJavaClientApplet size bindings.

Open Main.wod.

Enter the dimensions of the window in the height and width bindings.

Save the file.

Chapter 2 Tutorial

70

Applet: WOJavaClientApplet {

 height = 503; // change this

 width = 700; // and this

 interfaceControllerClassName =
“studiomanager.client.StudioManager”;

 useJavaPlugin = NO;

}

Now you are ready to test the application.

10. Run and test the application.

Choose Tools Launcher Run to launch the server side of the application.

Start up the client side (see “Running a Java Client Application” on page 57).

When you select a studio in the Studios table view, the display changes in the
Movies table view to show the selected studio’s movies.

Transferring Movies Between Studios

One of the primary functions of the StudioManager application is to allow one
studio to purchase movies from another. To make this possible, you’ll now add
a pop-up list to the user interface.

The pop-up list displays a list of all of the studio titles. When you select a new
studio in the pop-up list, you cause that studio to purchase the movie that’s
selected in the table view.

1. Add a pop-up list.

Drag a pop-up list (labeled “Item” on the Views palette) into the window.

Control-drag from the pop-up list to the Studio EODisplayGroup.

In the Inspector, select EOPopupAssoc from the pop-up list at the top of the left column.

Select titles in the left column. The titles aspect is bound to the class key whose values
you want to display in the pop-up list.

Select name in the right column (since you want to display Studio names in the pop-up list).

71

Transferring Movies Between Studios

Put the pop-up list directly below the Studio table view and leave some space
between it and the row of buttons. Later you will be adding fields between the
pop-up list and the buttons. For a guide, see the figure associated with step 2,
“Test your interface and try out the new pop-up list.”

Now you have to add another binding to the EOPopupAssociation so that
when you change the selected studio title, it sets the corresponding studio
relationship property in the selected Movie object.

Chapter 2 Tutorial

72

Control-drag from the pop-up list to the movies EODisplayGroup.

In the Inspector, select EOPopupAssoc from the pop-up list at the top of the left column.

Select selectedObject in the left column.

Select studio in the right column.

The selectedObject aspect is bound to the relationship property (in this
example, Movie’s studio property) that corresponds to the object bound to the
titles aspect (Studio).

73

Transferring Movies Between Studios

2. Test your interface and try out the new pop-up list.

Choose File Test Interface.

3. Build and test-run the application.

(See “Building and Testing Your Application” for details.)

You can now test the behavior of the pop-up list. For example, suppose you
want to transfer the movie “Alien” from the 20th Century Fox studio to
MGM. First select 20th Century Fox to display its movies. Then select
“Alien” in the list of movies. Finally, use the pop-up list to change the selected
studio from 20th Century Fox to MGM. This has the effect of removing
“Alien” from 20th Century Fox’s movies relationship array and adding it to the
movies relationship array of MGM. It also sets the “Alien” Movie object’s
studio relationship property to point to the new studio, MGM. When you use
the pop-up list to transfer a movie, you’ll notice that the movie disappears from
the original studio’s movie list and reappears in the movie list of the new
studio.

These changes aren’t committed to the database until you click Save. At that
time Enterprise Objects Framework translates the changes you made in the
object graph into the appropriate database changes. For example, it sets the

Chapter 2 Tutorial

74

foreign key studioID in the transferred Movie object to have the same value as
the studioID primary key of its new studio.

Note that Enterprise Objects Framework manages all of this for you without
requiring you to write any code.

Related Concepts: What is an Association?

Putting the Finishing Touches on Your Model

You are almost ready to add custom behavior to your enterprise objects. But
first you need to put a few finishing touches on your model.

In“Adding Relationships” on page 62, you added relationships between the
Studio and Movie entities. Now you need to verify or add a few additional
relationships to your model. You might find that the relationship already exists,
but just the name needs to be changed:

From the Movie (source) entity:

• Form a to-many relationship to the MovieRole (destination) entity.
• The source attribute is movieID. The destination attribute is movieID.
• Name the relationship roles.

• Form a to-one relationship to the PlotSummary (destination) entity.
• The source attribute is movieID. The destination attribute is movieID.
• Name the relationship plotSummary.

From the Talent (source) entity:

• Form a to-many relationship to the MovieRole (destination) entity.
• The source attribute is talentID. The destination attribute is talentID.
• Name the relationship roles.

• Form a to-one relationship to the TalentPhoto (destination) entity.
• The source attribute is talentID. The destination attribute is talentID.
• Name the relationship photo.

From the MovieRole (source) entity:

• Form a to-one relationship to the Movie (destination) entity.

75

Putting the Finishing Touches on Your Model

• The source attribute is movieID. The destination attribute is movieID.
• Name the relationship movie.

• Form a to-one relationship to the Talent (destination) entity.
• The source attribute is talentID. The destination attribute is talentID.
• Name the relationship talent.

At this point your model is complete. There might be other relationships in
your model, but the above relationships are the most important for our
example project. Looking at your model using the Diagram View (select the
model icon and choose Tools Diagram View) gives you an overview of the
entities in the model and their relationships to other entities.

Chapter 2 Tutorial

76

Adding Behavior to Your Enterprise Objects

As the preceding sections illustrate, you can go quite far in a Java Client
application without writing any code. However, the real power of such an
application or any Enterprise Objects Framework application lies in the
enterprise objects you create. The behavior (business logic) you add to your
objects is what brings your stored data to life.

Specifying Custom Enterprise Object Classes
If you create the model earlier with the help of the wizard, and choose the
“Create Custom Enterprise objects” option, EOModeler derives both entity
name and class name from the name of the associated database table.
Otherwise, EOModeler maps entities to the EOGenericRecord class, which
can be thought of as the default enterprise object class.

The EOGenericRecord class is sufficient when all you want the entity to do is
get and set properties. However, when you want to add custom behavior to a
class (for example, to assign default values when you create new objects or to
perform validation), you need to implement a custom enterprise object class.
This class includes the default behavior provided in EOGenericRecord as well
as the custom behavior you implement.

1. Specify custom enterprise object classes for the server and the client.

In the Model Editor, select the model (StudioManager).

Select the Studio entity in the table.

Double-click the Studio cell under Class Name.

Type “businesslogic.server.Studio” in the cell (“businesslogic.server” is the package
name).

Double-click the adjoining cell under the Client-Side Class Name column.

Type “businesslogic.client.Studio” in this cell (“businesslogic.client” is the package name).

Repeat the above steps for the Talent entity (append “Talent” to the package names).

77

Adding Behavior to Your Enterprise Objects

For the StudioManager application, ensure that there are custom classes (with
their package prefixes) corresponding to the appropriate entity; these classes
should be named businesslogic.server.Studio and businesslogic.server.Talent under
Class Name and businesslogic.client.Studio and businesslogic.client.Talent under
Client-Side Class Name. Movie doesn’t need to be a custom class since it
doesn’t have any specialized behavior. By convention, the names of classes
(minus the package prefix) are based on the name of the corresponding entity
and the initial letter of the name is capitalized.

There is no requirement that you create matching server and client classes.
You can implement a class only on the server or the client, whichever suits your
needs; the unimplemented class assumes the default behavior of
EOGenericRecord.

Once you specify a custom class for an entity in EOModeler, you can generate
source files for that entity.

Related Concepts: When Do You Use a Custom Enterprise Object Class?

Replace the text
EOGenericRecord
with the package
and class name.

Chapter 2 Tutorial

78

Generating Source Files
To begin creating your custom classes, generate source files for the Studio and
Talent entities. You’ll use these source files as a basis for adding custom
behavior to your enterprise objects. Generating source files in a Java Client
application typically produces “skeletal” .java files for the associated class.
These files are put in the ClientSideJava.subproj subproject.

Note: To generate source files for an entity, you must have replaced the text
“EOGenericRecord” in the Class Name and Client-Side Class Name fields
with a package name concatenated with a class name.

1. Generate source files.

In the Model Editor, select the entity for which you want to generate source files.

Choose Property Generate Client Java File.

In the Choose Class Name panel verify the file name and location
(ClientSideJava.subproj) and click Save.

Click OK when you’re asked if you want to insert the files in the subproject.

For the same entity, choose Property Generate Java FIle.

In the Choose Class Name panel verify the file name and location (main project) and click
Save.

Click OK when you’re asked if you want to insert the files in the main project.

When Project Builder generates a class file (such as Studio.java), it strips off the
package prefix and inserts a package declaration near the top of the file. The

When you choose Generate
Client Java File, the
Choose Class Name panel
displays the subproject
(ClientSideJava.subproj)
as the default destination
and Class.java as the
default file name.

79

Adding Behavior to Your Enterprise Objects

class file also includes the necessary import declarations as well as the instance
variables and accessor methods derived from the properties of the Studio
entity.

Studio.java (ClientSideJava.subproj)
package businesslogic.client;

import com.apple.client.foundation.*;

import com.apple.client.eocontrol.*;

import java.math.BigDecimal;

import java.util.*;

public class Studio extends EOCustomObject {

 protected Number budget;

 protected String name;

 protected NSMutableArray movies;

 public Studio(EOEditingContext context, EOClassDescription
classDesc, EOGlobalID gid) {

 super(context, classDesc, gid);

 }

 public Number budget() {

 willRead();

 return budget;

 }

 public void setBudget(Number value) {

 willChange();

 budget = value;

 }

 public String name() {

 willRead();

 return name;

 }

 public void setName(String value) {

 willChange();

 name = value;

 }

 public NSArray movies() {

Chapter 2 Tutorial

80

 willRead();

 return movies;

 }

 public void setMovies(NSMutableArray value) {

 willChange();

 movies = value;

 }

 public void addToMovies(EOEnterpriseObject object) {

 willChange();

 movies.addObject(object);

 }

 public void removeFromMovies(EOEnterpriseObject object) {

 willChange();

 movies.removeObject(object);

 }

}

Implementing Custom Behavior for Your Classes
The user interface you designed in Interface Builder already allows you to
insert and delete Studio objects. However, it doesn’t do any additional
processing when these operations take place. For example, what if you want
to assign default values to newly created objects? And how can you prevent
users from inserting objects that contain invalid data? You can add methods to
your enterprise objects to handle such issues.

Related Concepts: Adding Behavior to Enterprise Objects

Distributing Business Logic in Java Client
Applications
The value of Java Client applications, of course, lies in their ability to
distribute processing duties among objects on the server and objects on the
client. Primarily for security and performance reasons, you can have only
objects on the server performing some tasks and only objects on the client
performing others.

For example, sometimes you want only objects behind the firewalls and other
security mechanisms of the server to have access to sensitive information, such
as account numbers. On the other hand, processing tasks such as calculation of
balances should be performed by objects on the client, thereby improving

81

Adding Behavior to Your Enterprise Objects

application performance by eliminating the need for a cycle of the request-
response loop.

There are no hard and fast rules for how to distribute object behavior. An
enterprise object on the client can have the same set of methods and instance
variables as its counterpart on the server, or what it has can be a subset (or
superset) of the other object’s methods and instance variables. The best way
to distribute business logic among objects depends on the particular nature of
your application.

Writing Derived Methods
One kind of behavior you might want to add to your enterprise object class is
the ability to perform computations based on the values of class properties. For
example, studios have movies, and the total revenue of the movies times 1.5
constitutes the studio’s portfolio value. To calculate a studio’s portfolio value,
you could have a method in Studio.java like the following:

Studio.java (server and client)
public Number portfolioValue() {

int i, count;

BigDecimal total;

NSArray revenues;

total = new BigDecimal(0);

revenues = (NSArray)(movies().valueForKey("revenue"));

count = revenues.count();

for (i = 0; i < count; i++) {

total =
total.add((BigDecimal)(revenues.objectAtIndex(i)));

}

return total.multiply(new BigDecimal(1.5));

}

You can display the results of this method in the user interface by forming an
association between a control and the method. That way, whenever a new
studio is selected or when a selected studio’s movie revenues change, its
portfolio value is dynamically recalculated and displayed.

Chapter 2 Tutorial

82

2. Add a method as a display-group property.

Display the Attributes view of the Inspector for the Studio EODisplayGroup.

Add the name of the method (portfolioValue) you want to use in an association.

Click Add.

Once you’ve added the method as a class key, you can use it in associations.
But before you do this, add the necessary user-interface control.

3. Add text fields to the user interface.

Drag three text fields from the Views palette.

Make them the same size and align them in a column.

Add labels (as shown at right) to each text field.

Justify the fields’ contents (as shown).

Now make an association between the Revenue text field and the
portfolioValue method.

Type the method name here.

83

Adding Behavior to Your Enterprise Objects

4. Associate a method with a user interface control.

Control-drag from the Revenue text field to the Studio EODisplayGroup.

In the Connections Inspector, choose EOControlAssoc from the pop-up list at the top of the
left column.

Select value in the left column.

In the right column select the method (portfolioValue) you want to associate with the
control.

Double-click portfolioValue to connect.

Repeat the above steps, connecting the Name field to Studio’s name attribute and the
Budget field to the budget attribute.

You now need to add a formatter to the Revenue and Budget fields. The
formatter isn’t added automatically, because the field has no way of knowing
that it’s going to be used to display currency values—it’s just connected to a
property.

Chapter 2 Tutorial

84

5. From the DataViews palette, drag the currency formatter into the new text field.

Once you’ve added the formatter, you can use the Inspector to change the
format.

6. Set the format.

Select the text field, and display the Formatter view of the NSTextField Inspector. Change
the format as shown.

Use the pop-up list to display the
Formatter view of the Inspector.

Select this format.

85

Adding Behavior to Your Enterprise Objects

7. Build and test the application on the client.

(See “Building and Testing Your Application” for details.)

Performing Validation
Another element you’ll likely want to add to your enterprise object classes is
validation. For example, suppose that when a studio buys a new movie, you
want to check to make sure that acquiring the movie won’t cause the studio to
exceed its budget. You could implement a method in the Studio class like the
following:

Studio.java (server and client)
public void validateBudget(Number budget) {

if (budget.intValue() < 100) {

throw new EOValidation.Exception("A budget cannot be less
than $100");

}

}

Now when a studio buys more movies than it can afford, a panel displaying the
message “A budget cannot be less than $100” appears when the user attempts
to save the changes to the database.

Validation methods must be of the form validateAttribute. The validateBudget
method is invoked by the validateValueForKey method, which is part of the
EOValidation interface that uses the EOClassDescription class to provide
default implementations of validation methods. These methods are invoked
automatically by framework components such as EODisplayGroup and
EOEditingContext. They are:

• validateValueForKey
• validateForSave
• validateForDelete
• validateForInsert
• validateForUpdate

For more discussion of this topic, see the chapter “Designing Enterprise
Objects” in the Enterprise Objects Framework Developer’s Guide and the
NSObject Additions class specification in the Enterprise Objects Framework
Reference.

Providing Default Values for Newly Inserted

Chapter 2 Tutorial

86

Objects
When new objects are created in your application and inserted into the
database, it’s common to assign default values to some of their properties. For
example, you might decide to assign newly created Studio objects a default
budget (the budget is the amount a studio is allowed to spend on new movies).

To assign default values to newly created enterprise objects, use the method
awakeFromInsertion. This method is automatically invoked right after your
enterprise object class creates a new object and inserts it into an
EOEditingContext.

The following implementation of awakeFromInsertion in the Studio class sets
the default value of the budget property to be one million dollars:

Studio.java (server and client)
public void awakeFromInsertion(EOEditingContext ec) {

super.awakeFromInsertion(ec);

// no need to invoke willChange here since we're just being
inserted

if (budget == null) {

budget = new BigDecimal("1000000.00");

}

}

When a user clicks the Add Studio button in the StudioManager application,
a new record is inserted, with “$1,000,000.00” already displayed as a value in
the budget column.

Invoking Server Methods Remotely
In a Java Client application you may want some methods to execute only on
the server. This is particularly the case when security is an issue, but
performance can be a reason as well (as when the method consumes a lot of
system resources). Objects on the client side of a Java Client application can
use two methods to invoke a server method:

• invokeRemoteMethod. An enterprise object on the client side can use this
method to invoke a method in the corresponding enterprise object on the
server. The arguments are the name of the method to invoke and an array
of arguments. Before the method is invoked on the server, the current
state of the client-side editing context is “pushed” to the server to ensure

87

Adding Behavior to Your Enterprise Objects

that the method executes in an identical context. (Note that
EODistributedObjectStore has a version of this method that includes a
flag as an argument; setting this flag to false prevents the client from
pushing its editing-context state to the server.)

• invokeRemoteMethodWithKeyPath. You can send a message to any object on
the server with this method, which is defined in
EODistributedObjectStore. For more on this method, see the
specification for this EODistribution class.

In our StudioManager example, let’s say that you want to give studios the
ability to buy all of the movies that star a specified actor, but you consider this
a sensitive computation. You can implement a method such as the following in
Studio.java:

Studio.java (client)
public void buyAllMoviesStarringTalent(Talent talent) {

invokeRemoteMethod("clientSideRequestBuyAllMoviesStarringTalent",
new Object[] {talent});

}

The method begins with “clientSideRequest”; this is not accidental. The
EODistributionContext object on the server-side EODistribution layer will
reject a remote invocation unless it has this prefix or its delegate implements
the proper delegation methods (see the reference documentation for
EODistributionContext or EODistributedObjectStore for more information).

The following is the invoked method, which is implemented in the server’s
Studio.java:

Studio.java (server)
public void clientSideRequestBuyAllMoviesStarringTalent(Talent
talent) {

int i, count;

NSArray talentMovies;

EOEnterpriseObject movie, studio;

talentMovies = talent.moviesStarredIn();

count = talentMovies.count();

for (i = 0; i < count; i++) {

movie =
(EOEnterpriseObject)(talentMovies.objectAtIndex(i));

if (!(movies().containsObject(movie))) {

studio = (EOEnterpriseObject)(movie.valueForKey("studio"));

Chapter 2 Tutorial

88

if (studio != null) {

studio.removeObjectFromBothSidesOfRelationshipWithKey(movie,

"movies");

}

addObjectToBothSidesOfRelationshipWithKey(movie,

"movies");

}

}

}

This method invokes the moviesStarredIn method:

Talent.java (server)
public NSArray moviesStarredIn() {

int i, count;

NSArray movies;

NSMutableArray moviesStarredIn;

EOEnterpriseObject movie;

moviesStarredIn = new NSMutableArray();

movies = (NSArray)(roles().valueForKey("movie"));

count = movies.count();

for (i = 0; i < count; i++) {

movie = (EOEnterpriseObject)(movies.objectAtIndex(i));

if (!(moviesStarredIn.containsObject(movie))) {

moviesStarredIn.addObject(movie);

}

}

return moviesStarredIn;

}

You can associate the buyAllMoviesStarringTalent method with a user interface
control. But first you need to add to your user interface a table view that lists
all actors (talent).

8. Add a new table view to your user interface.

Drag the Talent entity from your model into the nib file window in Interface Builder.

Drag a table view from the Palette onto your window.

Control-drag from each table view column to the Talent EODisplayGroup.

Using the value aspect of the EOColumnAssoc, connect the table view columns to the

89

Adding Behavior to Your Enterprise Objects

firstName and lastName class keys, respectively.

9. Add a button to the window.

Drag a button into the window.

Place it below the Revenue field.

Resize it.

Give it the title “Buy Movies Starring Selected Talent”.

Now that you’ve added the table view, connected it to the firstName and
lastName properties of the Talent EODisplayGroup, and added a Buy button
to the window, you’re ready to use an EOActionAssociation to connect the
button to the buyAllMoviesStarringTalent method.

Chapter 2 Tutorial

90

10. Associate a method with a user interface control.

Display the Attributes view of the Inspector for the Studio EODisplayGroup.

In the text field type the name of the method (buyAllMoviesStarringTalent) you want to use
in an association.

Click Add.

You can now use the buyAllMoviesStarringTalent method in associations.

91

Adding Behavior to Your Enterprise Objects

Control-drag from the “Buy Movies Starring Selected Talent” button to the Studio
EODisplayGroup.

In the Connections Inspector, choose EOActionAssociation from the pop-up list at the top
of the left column.

Select action in the left column, and the method you want to connect to
(buyAllMoviesStarringTalent) in the right column.

Click Connect.

Because the buyAllMoviesStarringTalent method takes a Talent object as an
argument, you also need to make a connection from the Buy button to the
Talent EODisplayGroup.

Chapter 2 Tutorial

92

Control-drag from the “Buy Movies Starring Selected Talent” button to the Talent
EODisplayGroup.

In the Inspector, select argument in the left column. The argument aspect takes the
destination of the connection (Talent) as an argument, which will be supplied to the
buyAllMoviesStarringTalent method.

Click Connect.

Once you finish connecting the button, you can use it to purchase all of the
movies starring the selected actor for the selected studio.

Controlling the User Interface
In Java Client applications you can give the interface controller (implemented
in this project in StudioManager.java on the client) a controller display group. By
creating associations between the controller display group and aspects of user-
interface objects, you can use the interface controller to manage various facets
of the user interface. In the following steps, you add a method as a property of
the controller display group and bind this method to the enabled aspect of the
Revenue field through an EOControlAssociation; since this method simply
returns false, the field is disabled.

93

Adding Behavior to Your Enterprise Objects

1. Add a display group to the nib file.

Drag a display group from the EOPalette to the nib file window.

Double click the title of the display group to select it.

Give the display group the name “Controller”.

As mentioned earlier, the owner of the nib file (File’s Owner) is an instance of
the custom EOInterfaceController automatically created by Project Builder.
EOIntefaceController has a controllerDisplayGroup outlet; in the following step,
connect the interface controller to this outlet.

Chapter 2 Tutorial

94

2. Connect the interface controller to its display group.

Control-drag from File’s Owner to the Controller icon.

In the Connections inspector, select controllerDisplayGroup.

Click Connect.

Next add the neverEnabled method as a property of the controller display
group.

95

Adding Behavior to Your Enterprise Objects

3. Add a property to the controller display group.

Select the Controller display group in the nib file.

In the Attributes inspector, enter “neverEnabled” in the field.

Click Add.

Now hook up the field to the display group using an EOControlAssocation to
bind its enabled aspect to the neverEnabled method.

Chapter 2 Tutorial

96

4. Connect the field’s enabled aspect to the display group property.

Control-drag from the Revenue field to the Controller display group.

In the Connections inspector, select EOControlAssoc from the pop-up list at the top of the
left column.

Select enabled in the left column.

Select neverEnabled in the right column.

Click OK.

5. Implement the neverEnabled method.

Now that the interface controller, the controller display group, and the
Revenue field are interconnected via their outlets and associations, you can
implement the method bound to the enabled aspect (in StudioManager.Java on
the client).

 public boolean neverEnabled() {

 return false;

}

6. Build, run, and test the application.

Build the project and test the application. The Revenue field has a gray
background and cannot be written into.

Advanced TasksChapter 3

99

Debugging Java Client WebObjects Applications

It can be difficult to debug Java Client WebObjects applications because these
applications have a client side and a server side. Each side runs in a totally
different process and in a different virtual machine (VM), so you can't debug
the one side by running a debugger for the other side.

Debugging Server Code
To debug the server side of a Java Client application use the standard
debugging features of Project Builder. Open the launch panel for your
application, specify necessary launch options, and start the debugger by
clicking the debug button (the spray-can icon) in the launch panel. You can use
the Launch panel to perform debugging tasks in all your server side classes.

See the documentation for Project Builder for details on its debugging
features.

Debugging Client Code
Project Builder currently provides no support for debugging the client side of
a Java Client application. Instead, use the Java debugger jdb (included with the
JDK) in a shell window.

Before you can debug client code, compile your Java classes with the -g flag
specified. To do this, either “make debug” your project or enter
OTHER_JAVAC_FLAGS=-g as a build argument in Project Builder's Build Options
panel.

Once your code has compiled, start up the client application with appletviewer
or with the java interpreter (see “Running a Java Client Application” in the
tutorial) with the -debug flag . These tools then print a “password” that you
can use later to attach jdb to your client application. To attach jdb, open another
shell and enter the following command:

jdb -password password

Please refer to the jdb documentation for information on setting breakpoints
and performing other debugging tasks. As with running an application, your
CLASSPATH environment variable has to specify the location of all Java
classes used in your application.

Chapter 3 Advanced Tasks

100

If you don't want to attach to a running client application, you can start up jdb
using appletviewer or the interpreter through a class name, for example:

jdb sun.applet.AppletViewer URL

jdb com.apple.client.eointerface.EOApplication URL

The advantage of starting up jdb like this is that you can set breakpoints before
your application is executed; jdb stops before it executes the main function of
the given class.

Note: Use the -WOAutoOpenInBrowser NO flag when starting up your server
application to prevent the client application from automatically launching in
your default browser.

Customizing Your Project With Wizards

Project Builder includes several features, including wizards, that you can—and
should—use to add web components, client-side subprojects, interface-
controller subclasses, and client-side interface files to Java Client applications.
This is especially true with interface (nib) files; never create a client-side nib
file using Interface Builder (as, for instance, by choosing the New Database
Interface command from the Document menu).

Adding Client-side Subprojects
You can add more than one client-side subproject to your project, especially if
you want to use a framework. The subprojects containing
EOInterfaceController subclasses and their nib files have to have a special
project type: EOJavaClientSubproject.

To add a subproject of this type

1. Open your project in Project Builder.

2. Choose New Subproject from the Project menu.

3. In the New Subproject panel, type a name for your subproject

4. Make sure that the pop-up list displays the project type
EOJavaClientSubproject.

5. Click OK.

101

Customizing Your Project With Wizards

This procedure adds only the subproject; it does not add an interface-
controller subclass, a nib file, or any other files (except makefiles). It also does
not add EOJavaClient.framework to the root project’s list of frameworks.

Adding Interface Controller Subclasses and Nib Files
To add an EOInterfaceController subclass with a new interface file to your
client-side subproject

1. Select the Interfaces bucket in your EOJavaClientSubproject subproject

2. Chose New In Project from the File menu.

3. In the New File panel, enter the name for the new EOInterfaceController
subclass and its interface file.

4. Click OK.

The WebObjects Java Client Interface Wizard then appears, asking you
to choose templates and other options for the interface.

5. Select the options that you want for the new interface file.

6. Follow the subsequent instructions until completion.

After finishing the wizard, ProjectBuilder will add two files to your client-side
subproject: a source (.java) file for the EOInterfaceController subclass and the
nib file that is owned by the interface controller.

Note: When you create a Java Client project, the EOInterfaceController
subclass and its interface file by default have the same name as your
application. If you rename these files, you must make adjustments elsewhere
in your project, as described in “Manual Adjustments to Java Client Projects.”

Adding Web Components (with Interface Controllers)
You can use Project Builder to add a web component containing a
WOJavaClientApplet component with a binding to an EOInterfaceController
subclass in your project. To create such a web component:

1. Select the Web Components bucket in your root (main) project.

2. Choose New In Project from the File menu.

Chapter 3 Advanced Tasks

102

3. In the New File panel, enter the name of the new web component.

This also become the name of the EOInterfaceController subclass and its
interface file to be used in this web component.

4. In the first screen of the WebObjects Component Wizard, select Java
Client for assistance and select a language (usually Java). Click Next. (The
Java Client option is disabled if your project does not contain a
EOJavaClientSubproject subproject.

5. If you have multiple EOJavaClientSubproject subprojects, the next
wizard screen ask you to pick the one you want to associate with the
component. Select a subproject and click Next.

6. In the final wizard screen, select the template and associated options to
use for the user interface. Follow the wizard’s instructions, which vary
depending on which options you choose.

When you complete these steps Project Builder adds the following files to your
main project:

• A web component (.wo) containing a .html and a .wod file
• An .api file for the component in Resources
• A “skeletal” implementation file for the web component in Classes

In addition, Project Builder adds two files to the client-side subproject you
chose in the wizard:

• A implementation (.java) file for the new EOInterfaceController subclass
• A nib file owned by the EOInterfaceController subclass

Project Builder presents the wizard with the Java Client assistance option only
if your project has at least one subproject of type EOJavaClientSubproject.

Manual Adjustments to Java Client Projects
You should always use the Java Client wizards if you can because the files that
they generate have characteristics that are important for Java Client
applications. These files have various dependencies and assumptions, which
you must know about if you decide to create them manually.

• If you create a subproject of type EOJavaClientSubproject by hand, make
sure that EOJavaClient.framework is added to the frameworks of the main

103

Customizing Your Project With Wizards

project. Otherwise the compiler might not find all the Java Client classes
required by the interface controllers.

• The file's owner class of an Java Client interface (nib) file must be the
EOInterfaceController subclass that uses it. It is also very important that
the package name of the file's owner class is identical to the package name
of the interface controller. So if you change the package of the interface
controller, you have to open the interface file in Interface Builder and
change the name of the EOInterfaceController subclass used for the file's
owner.

• The “interfaceControllerClassName” binding of WOJavaClientApplet
used in web components has to be the complete class name of an interface
controller in a EOJavaClientSubproject, including the full package prefix.
If you change the package of the interface controller, you have to change
the value of the “interfaceControllerClassName” binding.

• If you change the size of a window in a nib file which is later placed in a
WOJavaClientApplet (because the WOJavaClientApplet uses the
corresponding EOInterfaceController subclass), you have to modify the
size bindings of the WOJavaClientApplet so that the window contents still
fit into it.

• You might want to add additional bindings to a WOJavaClientApplet. This
component takes standard java.applet bindings plus some special Java
Client ones. See “The Ingredients of a Java Client Project” in the tutorial
for more information or refer to the WOJavaClientApplet directory in the
WebObjects Java Client examples for a complete list of bindings.

• If you use Sun's Java Plug-in, you must set the value of the
“useJavaPlugin” binding of all WOJavaClientApplets to YES.

A typical .wod file for a web component using a WOJavaClientApplet looks
like this:

Applet: WOJavaClientApplet {

 height = 567;

 width = 695;

 interfaceControllerClassName = "movie.client.Movie";

 useJavaPlugin = NO;

}

Chapter 3 Advanced Tasks

104

Enterprise Objects Framework
Concepts

Chapter 4

107

Note to Oracle Users

Note to Oracle Users

The Oracle login panel is designed to work with SQL*Net v2, which gets the
host machine name from the file tnsnames.ora. If you’re using
SQL*Net v1, you must explicitly supply the host machine name along with
the server ID in the Server ID field by using a string of the following format:

T:hostMachine:serverID

For example, if you are using a host machine called “tahoe” and your
database’s server ID is “eof,” you can connect the database by typing the
following in the Server ID field:

T:tahoe:eof

What is an Enterprise Object?

An enterprise object is like any other object, in that it couples data with the
methods for operating on that data. However, an enterprise object class has
certain characteristics that distinguish it from other classes:

• It has properties that map to stored data; an enterprise object instance
typically corresponds to a single row or record in a database.

• It knows how to interact with other parts of the Framework to give and
receive values for its properties.

The ingredients that make up an enterprise object are its class definition and
the data values from the database row or record with which the object is
instantiated. An enterprise object also has a corresponding model that defines
the mapping between the class' object model and the database schema.

What is a Model?

One of the fundamental features of Enterprise Objects Framework is that it
maps the data in relational databases to objects. The correspondence between
an enterprise object class and stored data is established and maintained by
using a model. A model defines, in entity-relationship terms, the mapping
between enterprise object classes and a database.

Chapter 4 Enterprise Objects Framework Concepts

108

The following table describes the database-to-object mapping provided in a
model:

In addition to storing a mapping between the database schema and enterprise
objects, a model file stores information needed to connect to the database
server. This connection information includes the name of an adaptor to load so
that Enterprise Objects Framework can communicate with the database.

What are EODisplayGroups and EOEditingContexts?

EODisplayGroup
EODisplayGroups transport values between an enterprise object and a user
interface object. You also need an EODatabaseDataSource, which acts on
behalf of the EODisplayGroup to fetch enterprise objects from the database.
In combination, EODisplayGroup and EODatabaseDataSource coordinate
the flow of data between the user interface and the database. The
EODisplayGroup that’s created when you drag an entity from EOModeler
into Interface Builder is actually a compound object that consists of both an
EODisplayGroup and an EODatabaseDataSource.

EOEditingContext
When you drag an entity into the nib file window from your model, an
EOEditingContext object is added to your application along with the
EODisplayGroup that’s created from the entity. An EOEditingContext
manages the graph of enterprise objects in your application. The
EOEditingContext is responsible for ensuring that all parts of your application
stay in sync. When an enterprise object changes, the EOEditingContext
broadcasts a notification so that other parts of the application (such as the user

Database Element Model Object Object Mapping

Data Dictionary EOModel —

Table EOEntity Enterprise object class

Column EOAttribute Enterprise object class instance
variable

 (class property)

Row — Enterprise object instance

109

What is an Association?

interface) can update themselves accordingly. The EOEditingContext also
manages undo, and is the object through which you save changes to the
database. For more information, see the EOEditingContext class specification
in the Enterprise Objects Framework Reference.

What is an Association?

In the previous exercise, when you made a connection from the pop-up list to
an EODisplayGroup, you formed an association. Associations were also
involved when you created a table view by dragging an entity from
EOModeler into Interface Builder—the associations were formed for you as a
by-product of dragging in the entity.

EODisplayGroups use associations (EOAssociations) to mediate between
enterprise objects and the user interface. An association ties a single user
interface object, such as a table column, to a key (a named property) in an
enterprise object or objects managed by the EODisplayGroup.

Associations keep the user interface synchronized with enterprise object
values. When an object changes, its display in the user interface updates to
reflect the change. Likewise, when the user edits the user interface, the values
in the object are updated accordingly.

Associations can have multiple aspects. For example, in the preceding exercise
you selected the titles aspect for the EOPopupAssociation to display all of the
class keys whose values you could choose to display in the pop-up list.
EOPopupAssociation also has several other aspects: selectedTitle, selectedTag,

selectedObject, and enabled.

Enterprise Objects Framework includes associations for different types of user
interface objects, such as table columns, text fields, pop-up lists, and so on.
Each association has multiple aspects.

For a complete discussion of this subject and a listing of all possible
associations, see the EOAssociation class and subclass specifications in the
Enterprise Objects Framework Reference.

Chapter 4 Enterprise Objects Framework Concepts

110

When Do You Use a Custom Enterprise Object Class?

Enterprise Objects Framework provides a “default” enterprise object class,
EOGenericRecord. An EOGenericRecord can take on values for any
properties defined in your application’s model, but it implements no custom
behavior. EOGenericRecord objects can hold simple values as well as refer to
other enterprise objects through relationships defined in the model.

The criterion for deciding whether to make your enterprise objects custom
classes or to simply use the EOGenericRecord class is behavior. One of the
main reasons to use the Enterprise Objects Framework is to associate behavior
with your persistent data. Behavior is implemented as methods that “do
something” (as opposed to merely setting or returning the value for a
property). Since the Framework itself handles most of the behavior related to
persistent storage, you can focus on the behavior specific to your application.

Because the Studio and Talent classes need to have specialized behavior (for
example, to perform validation when you attempt to save changes to the
database), they need to be custom classes.

Adding Behavior to Enterprise Objects

Some of the more common ways to add behavior to your enterprise object
classes are:

• Performing computations based on the values of class properties. For
example, from an Employee’s salary property, you might calculate a bonus.

• Managing the creation and insertion of objects (for example, assigning
default values to newly created objects, creating related objects as the by-
product of inserting a new object, appropriately setting relationships for
new objects, and so on)

• Performing validation when a particular operation (such as save or delete)
takes place

• Adding sophisticated business logic

For a more complete discussion of this subject, see the chapter “Designing
Enterprise Objects” in the Enterprise Objects Framework Developer’s Guide.

111

Adding Behavior to Enterprise Objects

Chapter 4 Enterprise Objects Framework Concepts

112

GlossaryChapter 5

Chapter 5 Glossary

114

Several of the terms listed here apply to relational databases and entity-
relationship modeling. Others apply strictly to Java Client applications.

adaptor
A mechanism that connects your application to a particular database server.
For each type of server you use, you need a separate adaptor. Enterprise
Objects Framework provides adaptors for Informix, Oracle, and Sybase
servers, and for any server that is ODBC compliant.

attribute
In Entity-Relationship modeling, an identifiable characteristic of an entity.
For example, lastName can be an attribute of an Employee entity. An attribute
typically corresponds to a column in a database table. See flattened attribute,
entity, and relationship.

class property
An instance variable in an enterprise object that meets two criteria: it’s based
on an attribute in your model, and it can be fetched from the database. “Class
property” can either refer to an attribute or a relationship. In EOModeler you
can specify class properties for server enterprise-object classes and class
properties for client classes.

column
In a relational database, the dimension of a table that holds values for a
particular attribute. For example, a table that contains employee records might
have a column titled “LAST_NAME” that contains the values for each
employee’s last name. See attribute.

compound primary key
In a database table, the group of columns whose values, taken in combination,
are guaranteed to uniquely identify each row. See primary key.

data dictionary
In relational databases, the system tables that describe the organization of data
in a particular database.

115

Glosaary

database server
A data storage and retrieval system. Database servers typically run on a
dedicated computer and are accessed by client applications over a network.

enterprise object
An Objective-C or Java object that conforms to the key-value coding protocol,
whose properties (instance data) can map to stored data. An enterprise object
brings together stored data with the methods for operating on that data. See
key-value coding and property.

entity
In Entity-Relationship modeling, a distinguishable object about which data is
kept. For example, you can have an Employee entity with attributes such as
lastName, firstName, address, and so on. An entity typically corresponds to a
table in a relational database; an entity’s attributes in turn correspond to a
table’s columns. See attribute and table.

Entity-Relationship modeling
A discipline for examining and representing the components and
interrelationships in a database system. Also known as E-R modeling, this
discipline factors a database system into entities, attributes, and relationships.

fetch
In Enterprise Objects Framework applications, to retrieve data from the
database server into the client application, usually into enterprise objects.

flattened attribute
A special kind of attribute that you add from one entity to another by
traversing a relationship. For example, employees work for departments; you
can add an attribute (such as departmentName) from the Department entity
to the Employee entity as a flattened attribute. A flattened attribute is
normally implemented by joining the tables corresponding to the source and
destination entities whenever the attribute’s data is fetched. See relationship
and attribute.

Chapter 5 Glossary

116

foreign key
An attribute in an entity that gives it access to rows in another entity. This
attribute must be the primary key of the related entity. For example, an
Employee entity can contain the foreign key deptID, which matches the
primary key in the entity Department. You can then use deptID as the source
attribute in Employee and as the destination attribute in Department to form
a relationship between the entities. See key, primary key, and relationship.

generic record
An instance of the EOGenericRecord default enterprise object class. A generic
record has properties that map to stored data, but unlike a custom enterprise
object, it adds no behavior to that data. Like custom enterprise objects, generic
records conform to the key-value coding protocol; see key-value coding.

interface controller
An instance of a subclass of EOInterfaceController that is the owner of a nib
file containing a “Java archive” describing a user interface made up of “Swing”
(Java Foundation Classes) objects.

join
An operation that provides access to data from two tables at the same time,
based on the values contained in related columns.

key-value coding
The mechanism that allows the properties in enterprise objects to be accessed
by name (that is, as key-value pairs) by other parts of the Framework.

many-to-many relationship
A relationship in which each record in the source entity may correspond to
more than one record in the destination entity, and each record in the
destination may correspond to more than one record in the source. For
example, an employee can work on many projects, and a project can be staffed
by many employees. See relationship.

model
An EOModel object that defines, in Entity-Relationship terms, the mapping
between enterprise object classes and the database schema. This definition is

117

Glosaary

typically stored in a file created with the EOModeler application. A model also
includes the information needed to connect to a particular database server; see
connection dictionary.

record
The set of values that describes a single instance of an entity; in a relational
database, a record is equivalent to a row.

relational database
A database designed according to the relational model, which uses the
discipline of Entity-Relationship modeling and the data design standards
called normal forms.

relationship
A link between two entities that’s based on attributes of the entities. For
example, the Department and Employee entities can have a relationship
based on the deptID attribute as a foreign key in Employee, and as the
primary key in Department (note that though the join attribute deptID is the
same for the source and destination entities in this example, it doesn’t have to
be). This relationship would make it possible to find the employees for a given
department. See to-one, to-many, many-to-many, primary key, and foreign key.

row
In a relational database, the dimension of a table that groups attributes into
records.

table
A two-dimensional set of values corresponding to an entity. The columns of a
table represent characteristics of the entity and the rows represent instances of
the entity.

to-many relationship
A relationship in which each source record has zero to many corresponding
destination records. For example, a department has many employees

Chapter 5 Glossary

118

to-one relationship
A relationship in which each source record has exactly one corresponding
destination record. For example, each employee has one job title.

	Creating a Java Client WebObjects Application
	Table of Contents
	Overview of Java Client
	Advantages of Java
	Java Client Architecture
	Java Client as a WebObjects Application
	Java Client Layers and Classes
	Programming With Java Client

	Tutorial
	Enterprise Objects and Relational Databases
	What Goes Into the StudioManager Application
	Creating the StudioManager Project
	The Ingredients of a Java Client Project
	Client Files

	Verifying and Modifying the Model
	Creating the User Interface
	Building and Testing Your Application
	Adding Relationships
	Transferring Movies Between Studios
	Putting the Finishing Touches on Your Model
	Adding Behavior to Your Enterprise Objects
	Specifying Custom Enterprise Object Classes
	Implementing Custom Behavior for Your Classes

	Advanced Tasks
	Debugging Java Client WebObjects Applications
	Debugging Server Code
	Debugging Client Code

	Customizing Your Project With Wizards
	Adding Client-side Subprojects
	Adding Interface Controller Subclasses and Nib Files
	Adding Web Components (with Interface Controllers)
	Manual Adjustments to Java Client Projects

	Enterprise Objects Framework Concepts
	Note to Oracle Users
	What is an Enterprise Object?
	What is a Model?
	What are EODisplayGroups and EOEditingContexts?
	What is an Association?
	When Do You Use a Custom Enterprise Object Class?
	Adding Behavior to Enterprise Objects

	Glossary

