

Serving WebObjects

3

To a large extent, WebObjects needs little attention once it is installed.
However, administrators of a WebObjects site still need to know how to
accomplish certain tasks, such as installing applications, creating and
running instances of them, and configuring HTTP adaptors. In addition,
you’ll probably be concerned about improving your site’s performance. The
tools and techniques described in this document help administrators
complete the tasks required to deploy and maintain WebObjects
applications. Because each deployment can be different, the document
gives suggestions and options for making your deployment successful.

This document begins by providing essential background information on
WebObjects HTTP adaptors and how they are used to distribute requests.
Then it describes how to use an application called Monitor to monitor and
administer your deployment. Finally, it describes the basic administrative
tasks are and tells you how to perform them.

Table of Contents

WebObjects HTTP Adaptors
Configuration Files
Adaptor Modes
Installable HTTP Adaptors

Deploying With the Monitor Application
Starting Up Monitor
Setting Up Monitor
Deploying on Multiple Hosts
Adding and Configuring an Application
Creating Application Instances
Monitor Option Reference

Administrative Tasks
Installing Applications
Starting and Stopping an Application Instance
Monitoring Application Activity
Performance Testing
Improving Performance
Automatic Scheduling
Load Balancing
Increasing the Listen Queue Depth
Making Monitor and MonitorProxy Fail-safe

Related Topics

Other WebObjects documents might be of interest to system
administrators:

Serving WebObjects

4

•

Installation Guide

: Includes system requirements, compatibility information,
and location of the WebObjects Home Page. (The

Installation Guide

 is
printed and included with the WebObjects CD-ROM or can be downloaded
from NeXTanswers; it is not online).

•

Post-Installation Instructions

: Describes how to verify the installation and
troubleshoot if WebObjects applications do not run.

• You can find installation instructions for supported HTTP adaptors in

NEXT_ROOT

/Library/WebObjects/Adaptors/InstallationInstructions.html

. Instructions for
building HTTP adaptors from provided source code are located in

NEXT_ROOT

/Developer/Examples/WebObjects/Source/Adaptors/BuildingInstructions.html

.

WebObjects HTTP Adaptors

A key part of WebObjects administration is dealing with adaptors. This section
provides a little background material on what a WebObjects HTTP adaptor is,
how it works, and how you can configure it to suit your needs.

A WebObjects HTTP adaptor (called

WebObjects adaptor

 or sometimes

HTTP
adaptor

) routes client requests processed by an HTTP server to WebObjects
applications and returns the response to the server, which sends it back to the
client. WebObjects makes available several adaptors, of which only one can be
active with a particular server at a time. Every transaction with a WebObjects
application uses the currently active adaptor.

However, the relationships between adaptor and application are (potentially)
many-to-many. Multiple instances of the same WebObjects application can run
on the same machine or a variety of machines and communicate with the same
adaptor. In addition, multiple HTTP servers can be running on the same
machine or on different machines; each server can have its own adaptor, each
with its own constellation of application instances. Although there can be only
one active HTTP adaptor per HTTP server, an application can concurrently
communicate with other types of adaptors, such as an adaptor that uses
Distributed Objects or a secure-socket adaptor.

There are two general types of HTTP adaptors:

• The CGI adaptor, an executable file named

WebObjects

 or

WebObjects.exe

 which
resides in the host HTTP server's

cgi-bin

 or

scripts

 directory. This adaptor is
available on all supported platforms. It is generic in that it works with any
HTTP server conforming to the Common Gateway Interface (CGI).

WebObjects HTTP Adaptors

5

• API-based adaptors, that is, WebObjects adaptors based on APIs
specific to particular web server. The NSAPI adaptor, which is based on
the Netscape Server 3.5 API, is available on all supported platforms
except the Mach-based Mac OS X Server. A WebObjects adaptor based
on Microsoft’s Internet Information Server API (ISAPI) is also
supported on Windows NT. WebObjects also supports an adaptor based
on Apache’s module API on UNIX platforms (including the Mac OS X
Server). In addition, Netscape’s WAI API is provided in this release as
an example project but is not supported; the WAI adaptor is suitable for
all platforms except Mac OS X Server.

The API-based adaptors have a performance advantage over CGI
adaptors in that the associated server can dynamically load the adaptor;
servers using CGI adaptors, on the other hand, spawn a new adaptor
process for each request and kill the process after the response is
provided.

When WebObjects is installed, the CGI adaptor is made active by default.
To use an API-based adaptor, you must specifically activate it. Activating
the API-based adaptor deactivates the CGI adaptor for a particular server.

Configuration Files

WebObjects HTTP adaptors use configuration files to locate WebObjects
application processes. There are two types of configuration files: public and
private.

• The

public configuration file

 is

NEXT_ROOT

/Library/WebObjects/Configuration/WebObjects.conf

. (

NEXT_ROOT

 is
defined at system installation time on Windows NT systems; on Mac
OS X Server and similar systems, it is always

/System

.) This file tells the
adaptor what applications are (or should be) running and allows the
adaptor to balance transactions among different instances of the same
application. You create the public configuration file using the Monitor
application as described in the section “Setting Up the Monitor
Application” in this guide.

In general, you want one public configuration file per site. That means
if you have multiple machines running WebObjects, you should access
all WebObjects applications through a single machine that is running
the HTTP server and that contains the public configuration file.

If you have multiple HTTP servers running on a single machine, they
all share the public configuration file. If you want each server to have
its own configuration file, you can install one

WebObjects.conf

 file in each

Serving WebObjects

6

server’s configuration directory if you a using an API adaptor, or in each
server’s

cgi-bin

 or

scripts

 directory if you are using the CGI adaptor.

• A

private configuration file

 is also named

WebObjects.conf

 and is located in the
temporary directory of the system (

/tmp

 for Mac OS X Server, Solaris, and
HP-UX platforms or the directory specified by the TEMP environment
variable on the Windows NT platform). If the WebObjects adaptor cannot
find the public configuration file, it searches the private configuration file.
Thus the public configuration file ensures security in deployment mode
because only the applications you list are accessible.

A new private configuration file is created automatically any time a
WebObjects application is started and a private configuration file doesn’t
exist. The adaptor contacts only one instance of an application in the
private configuration file; if you manually start HelloWorld and it’s already
been started, the entry for HelloWorld in the file is overwritten. (The old
process will continue to run, but cannot be contacted.) The adaptor also
cannot contact a remote instance of an application using the private
configuration file.

The contents of the private configuration file are essentially the same as
those of the public configuration file. This file should only be directly
modified by the WebObjects adaptor itself.

Adaptor Modes

All WebObjects adaptors route incoming requests to WebObjects applications in
one of two modes:

1. Load-balancing between concurrent instances of the same application
specified in the public configuration file (deployment)

2. Choosing an application from the private configuration file (development)

The active adaptor tries to contact the requested application by going through
the modes in the preceding order.

Load Balancing

: When the client request tries to contact an application, the active
WebObjects adaptor first checks the public configuration file for an application
matching the specification in the URL. Load balancing typically occurs only for
the first request of a session if the application stores state in the server.
Afterwards, the application resolves the URL so that page navigation will always
occur in the context of the same application. But if the application stores state
on the page or in cookies, true load balancing will be performed for

each

 request.

WebObjects HTTP Adaptors

7

Private Configuration File

: If the adaptor cannot find a public configuration file, it
attempts to resolve the URL against entries in the private configuration file.
If the adaptor finds a matching entry but cannot contact it or if the adaptor
cannot find a matching entry, it returns a page listing the contents of the
configuration file. For example, if an application has been stopped, the
adaptor might still list its entry in the private configuration file.

Note that if the public configuration file

NEXT_ROOT

/Library/WebObjects/Configuration/WebObjects.conf

 exists, no applications
listed in the private configuration file are ever contacted. Also note that
adding applications to the Monitor as described in the section “Adding and
Configuring an Application” creates the public configuration file. Thus, if
you are using the Monitor application, autostarting is disabled.

Installable HTTP Adaptors

When WebObjects is installed, the adaptors listed in the table below, when
appropriate to the platform, are put in

NEXT_ROOT

/Library/WebObjects/Adaptors

;
source code for all adaptors is written to

NEXT_ROOT

/Developer/Examples/WebObjects/Source/WOAdaptors

. Note that only the
CGI and Apache adaptors can be found on Mac OS X Server, since neither
Netscape’s nor Microsoft’s servers have been ported to this platform. Also,
no ISAPI binary file is written to Solaris or HP-UX platforms (only source
code).

The following table summarizes the adaptors provided with WebObjects.

Note:

You can find installation instructions for supported HTTP adaptors in

NEXT_ROOT

/Library/WebObjects/Adaptors/InstallationInstructions.html

. The procedure

Server /Library/WebObjects/ Location Executable

CGI many Adaptors/CGI WebObjects[.exe]

NSAPI Netscape 3.51
FastTrack (httpd)
Enterprise (https)

Adaptors/NSAPI WebObjects-NSAPI.dll
or
WebObjects-NSAPI.so

ISAPI Microsoft Internet
Information Server

IIS 1.0
IIS 2.0 (NT Server 4.0)
IIS 3.0 (NT Server 4.0)
Peer Web (NT WS 4.0)

Adaptors/ISAPI WebObjects-ISAPI.dll

Apache 1.3 Adaptors/Apache mod_WebObjects.o

WAI Netscape 3.5 servers Adaptors/WAI (must build example project)

Serving WebObjects

8

for building HTTP adaptors from provided source code is located in

NEXT_ROOT

/Developer/Examples/WebObjects/Source/Adaptors/BuildingInstructions.html

.

Deploying With the Monitor Application

Monitor is an application that facilitates the administration of local and remote
deployments of WebObjects applications. Itself a WebObjects application,
Monitor provides a simple graphical user interface for performing common
administrative tasks such as:

• Adding and removing instances of applications
• Starting and stopping the execution of application instances
• Automatically restarting an instance upon failure
• Sending electronic mail to administrators when an instance fails
• Scheduling instances to be automatically started and stopped at specified

intervals
• Configuring instances to be run on remote hosts

Monitor’s interface reflects three distinct configurable entities: applications,
instances, and hosts. An “application” represents a WebObjects application
abstractly. An “instance” represents a specific instance of an application on a
particular host; an instance is either running or stopped. A “host” represents a
server available to run instances of WebObjects applications.

Setting Up the Monitor Application

When WebObjects is installed, the Monitor application (

Monitor.woa

) is put in

NEXT_ROOT

/Library/WebObjects/Applications/

. Monitor’s images should also be
installed in your web server’s document root under

DOC_ROOT

/WebObjects/Monitor.woa

. Verify that both these paths exist before you
attempt to start Monitor.

Depending on your platform and on other factors related to your deployment,
you might want to configure your server to launch Monitor automatically when
it starts up. If you’re using Monitor on Windows NT, then see “Setting up
Monitor and MonitorProxy as Services on Windows NT” (page 13), which
describes how to set up Monitor as a service.

Starting Up Monitor

To start up Monitor, do the following:

1. Open a command shell window.

Deploying With the Monitor Application

9

Use

Terminal.app

 on Mac OS X Server and the Bourne Shell program on
Windows NT.

2. If you are on a Mac OS X Server (or similar) system,

su

 to root.

3. Change directories to the location where WebObjects is installed (such
as

/System

 on Mac OS X Server and

C:\Apple

 on Windows NT).

4. Enter the following commands:

cd Library/WebObjects/Applications/Monitor.woa

Monitor

If you start Monitor on Windows NT platforms by double-clicking the icon
in the Windows Explorer program, any application instances started with
that Monitor are terminated when the Monitor instance itself terminates
(which usually occurs when the Command-Prompt window is closed or
upon failure).

When the Monitor application launches, it usually opens the default web
browser and displays the Applications Page by default:

Setting Up Monitor

Your first probable task as administrator is to verify and change the
configuration settings that Monitor chooses by default, particularly the
URL used to locate the adaptor. To do this, complete the following steps:

1. Click the Configure button. This brings up the Global Configuration
page:

Serving WebObjects

10

2. Click the small triangle next to the “HTTP Server and WebObjects
Adaptor” item. Doing so causes the display of the following page:

3. In the URL To Adaptor field enter the adaptor’s URL

This URL should include the web server from which clients will access
applications plus the remaining portion of the URL up to the WebObjects
adaptor.

4. Click Update Adaptor URL.

Setting the adaptor URL is the minimal setup task required for administering
applications on the local machine. You might want to fine-tune your site’s
configuration and take advantage of other features such as e-mail notifications.

Deploying With the Monitor Application

11

Deploying on Multiple Hosts

Creating a deployment environment sometimes involves more than one
HTTP server and many WebObjects application instances running on each
server. The Monitor application is designed to run on a single machine.
Thus there can only be one copy of Monitor running at a time and managing
the same set of hosts. To make several hosts available to Monitor, a service
called

MonitorProxy

 must be running. With a

MonitorProxy

 running the Monitor
application can remotely administer a host machine.

A large WebObjects deployment could be depicted as in the following
diagram:

Machine 1 acts as the web server and load balancer between all the
application servers running on Machines 2, 3, and 4. You should run Monitor
on the same host as the web server and the WebObjects adaptor since
Monitor is involved in modifying and updating the

WebObjects.conf

 file. which
the adaptor uses to find instances.

Adding a Host to Monitor

Before you run

MonitorProxy

 on a remote machine, you should let the Monitor
application know about it. To do this, complete the following steps:

1. Click the Hosts button in the Monitor banner. The following page is
displayed:

Serving WebObjects

12

2. Enter the name of a host in the “Add host” field. It must be a valid host
name assigned to an IP address (that is, it must have a DNS entry).

3. Click Add Host.

Running MonitorProxy

The

MonitorProxy

 executable can be found inside the

Monitor.woa

 application
directory in

NEXT_ROOT

/Library/WebObjects/Applications

.To start the

MonitorProxy

service on a remote machine:

1. Open a command shell (using, for instance

Terminal.app

 on Mac OS X Server
or the Bourne Shell program on Window NT).

2. Enter “MonitorProxy” with no arguments to start the service.

MonitorProxy

 launches and searches for a Monitor application running on a nearby
host.

MonitorProxy

 might not find a host running Monitor, but do not be alarmed.
It’s more important that Monitor finds the

MonitorProxy

 than vice versa. Go to the
Hosts page in Monitor to see if Monitor detects that the host is available and
running a

MonitorProxy

.

You might find that

MonitorProxy

 takes a long time to start up because it is searching
for the Monitor’s host. To resolve this problem, specify the host running the
Monitor as a command-line argument when you run

MonitorProxy

. For example:

MonitorProxy –mhost server1

You might want to set up your system so that

MonitorProxy

 starts up at system boot
time. See “Setting up Monitor and MonitorProxy as Services on Windows NT,”
below, for instructions on doing this on Windows NT.

Deploying With the Monitor Application

13

Setting up Monitor and MonitorProxy as Services on Windows NT

If you are using Windows NT as your deployment platform then you may
find it useful to start Monitor and

MonitorProxy

 as services. When the operating
system starts up, it then starts Monitor and

MonitorProxy

 automatically.

When WebObjects is installed on your NT machine, some services are
created. To configure these services, open the Control Panel and click the
Services Icon. Look for a service named “Apple WebObjects Monitor” and
another named “Apple WebObjects MonitorProxy.” You can configure
these services to start up automatically.

Adding and Configuring an Application

To add a new application to Monitor, click the Application button in the
banner. This brings you to the Applications page, which lists all configured
applications. In the Add Application text field, enter the name of a new
application; this should be the same name as the application project, or the
wrapper name minus the

.woa

. For the ElementTour example application,
the entered string would be “ElementTour”.

When you enter the name of your new application and click the Add
Application button, Monitor displays the Application Configuration page:

First enter the full path to the WebObjects application in the Path field. For
ElementTour running on Windows NT you might enter a string similar to
the following example:

Serving WebObjects

14

C:/Apple/Developer/Examples/WebObjects/Java/ElementTour/ElementTour.woa

Be sure that the path specifies the built WebObjects application, including the

.woa

 extension. You cannot start an instance of an application when the wrong
path is specified, and Monitor will not provide feedback when you attempt to
start such an instance. The executable name must be the name of the
application—in this case “ElementTour” (or, on Windows NT,
“ElementTour.exe”). Click the Update for New Instances button on the
bottom of the form to save your changes.

The other fields on this form accept arguments to use when the application
instance is run. For descriptions of these fields and as well as the checkboxes
and the Update for New and Existing Instances button, see “Setting
Command-Line Arguments in Monitor” on page 24.

Creating Application Instances

Each application instance you create adopts the defaults provided in the
Application Configuration page for the application. To create an instance,

1. Click the button labeled “Detail View” in the upper right corner of the
Application Configuration page.

The application’s Detail View page is then displayed:

2. Click the Add Instance button to create a new instance of your application.

A new page appears that gives you a choice of hosts to add your instance to.

Deploying With the Monitor Application

15

3. Select the host from the pop-up menu.

Unless you previously configured hosts in Monitor, there should only
be one item in the pop-up menu.

4. Click the Add Instance button.

After clicking this button you are returned to the Detail View page, where
you can now see a new row in the table showing the status of the instance
you just created. From this page you can start the application instance. See
“Starting and Stopping an Application Instance on page 20” for details.

When you use Monitor to add an application or an instance, or indeed to
change any setting, you are creating or updating the public configuration file

NEXT_ROOT

/Library/WebObjects/Configuration/WebObjects.conf

. The presence of this
file tells the adaptor to do load balancing across multiple instances. See
“Configuration Files” on page 5 for more information on

WebObjects.conf

.

Monitor Option Reference

Many of Monitor’s options are listed on pages with triangles to the left of
them. Clicking the triangle causes a section (a form with fields, buttons, and
so on) to be displayed.

Global Configuration

The Global Configuration page allows you to configure aspects of Monitor
and your site that are not specific to an application. It lists the options
described below.

To Access

: Click the Configure button in the Monitor banner.

Monitor Password

In this section specify a password that is required to access Monitor.
Monitor does not have a password set by default. After you set a password
Monitor prompts users for it each time they access the application.

HTTP Server and WebObjects Adaptor
You use this section primarily to specify the URL that points to the adaptor
on your deployment’s web server. Monitor uses this URL to construct more
URLs that direct the administrator to running instances, the WOStats page,
and other destinations.

Also configurable is the paths to which Monitor writes new versions of the
WebObjects.conf file used by the adaptor for load balancing. You can specify

Serving WebObjects

16

multiple locations for Monitor to write this file in case you have a customized
adaptor or if your web server is on a different machine and you need to have the
file written to a network-mounted drive.

Auto-Recover Settings
This configuration option allows you to have an additional level of recovery
outside the per-instance Auto-Recover feature. This feature restarts application
instances after they fail. When Monitor is notified that an instance has crashed,
it checks the instance’s auto-recover setting to see if it should start a new
instance. With the global auto-recover option, when Monitor is started (perhaps
when a machine is booted) it can locate all instances configured to be auto-
recovered and start them if they are not running. This allows you to have a
machine that has failed to boot up, start Monitor, and then have Monitor start all
the appropriate applications.

When this setting is on, Monitor perform this check on regular intervals. If
Monitor fails or you change an instance’s Auto-Recover setting, Monitor
launches the appropriate instances within 45 seconds.

E-Mail Notification
In this section you specify an SMTP server that Monitor uses to send e-mail to
a set of addresses when application instances fail unexpectedly. In order for
Monitor to send e-mail it requires the name or IP Address of an SMTP server.

Statistics Gathering
Periodically Monitor gathers statistical information from each running instance
of an application and uses it to refresh the Detail View. If you have many
instances of an application, collecting this information on every refresh of the
Detail View can be too time consuming. This section allows you to set how long
Monitor waits before refetching the statistical information from each instance.
The more instances you have the higher this number should probably be. The
fewer instances you have the lower this number can be.

Detail View
In this section you can set the interval at which the Detail View page is
automatically refreshed.

Host Configuration
This page displays the hosts that Monitor is currently aware of, the status of each
host, and whether that host currently can run instances of WebObjects

Deploying With the Monitor Application

17

applications. It also displays the number of instances currently running on
each host.

To Access: Click the Hosts button in the Monitor banner.

A host machine can run WebObjects applications if it has the WebObjects
Deployment packages installed and is running the MonitorProxy service.
In order to run an instance on a host remote from Monitor, you must add the
host in this section (see “Deploying on Multiple Hosts” on page 11). You
should use alphanumeric DNS names to refer to hosts. If you enter the
name of a host that does not exist, it can take Monitor up to 30 seconds to
respond that it cannot contact that host.

Application Configuration Options
The Application Configuration page allows you to configure general aspects
of an application. It lists the options described below.

To Access: Click the Applications button on the Monitor banner, then click the
Config button next to any instance.

New Instance Default Arguments
In this section you can specify a set of default arguments that Monitor uses
when it creates new instances of the application. Most of these arguments
are the normal command-line options used to configure an instance of a
WebObjects application (see “Starting Up Applications From the
Command Line” for descriptions of these options). Two options, Auto
Recover and Minimum Active Sessions, are not command-line options but
are deployment settings that Monitor uses for determining starting and
stopping policy.

The “Setting Command-Line Arguments in Monitor” of this document
discusses how to set launch options using Monitor.

These settings all appear in the Instance Configuration page as well.

Scheduling Instances
This section enables the administrator to configure an application’s pool of
instances to conform to a staggered schedule of starting, running for a period
of time, begin refusing new sessions, and shutting down when the
minimum active session threshold is reached.

Serving WebObjects

18

See “Automatic Scheduling” on page 37 for instructions on setting the
shutdown and startup schedules for all instances of an application as well as
specific instances.

E-Mail Notifications
If the SMTP server has been set in Monitor’s Global Configuration page (see
“Global Configuration” on page 15) then an application can specify a list of
electronic-mail addresses to send an mail to when an instance fails
unexpectedly. This list should be comma delimited (for example,
“jdoe@somewhere.com, mpublic@else.com, foo@bar.com”).

The mail message contains the application name, host, port, and date and time
of the failure.

To turn off the feature, delete all addresses from the text field and click Update.

Instance Configuration Options
With the options of the Instance Configuration page you can override global
application settings for particular instances.

To Access: From the Detail View for an application, click the Config button next
to the desired instance.

Application Start-Up / Command Line Arguments
This section allows you to change the command-line arguments that are used
when the instance is started. See “Setting Command-Line Arguments in
Monitor” on page 24 for details.

For convenience, the entire set of command-line arguments passed to the
instance are displayed in the blue box at the bottom of this section.

Graceful Shutdown
This section allows you to change the minimum active session threshold for an
instance. This threshold is used when the instance begins refusing new sessions.
The default is zero. If your application is usually under heavy traffic, you might
not want to wait for all sessions to time-out before terminating the application.

Scheduling
This section allows you to configure the scheduling settings for a given instance.
Normally you should use the Application level scheduling to create a staggered
schedule of starting and stopping instances. Use the instance-specific section to

Administrative Tasks

19

create your own schedule intervals. See “Automatic Scheduling” on page
37 for the scheduling procedure.

Monitor computes from the desired instance lifespan or from the desired
instance downtime a series of shutdown dates The scheduling algorithm
causes the instance to begin refusing new sessions on regular intervals
based on these two variables.

Administrative Tasks

This section covers typical administrative tasks that you may need to
perform:

Installing Applications
Starting and Stopping an Application Instance
Monitoring Application Activity
Performance Testing
Improving Performance
Automatic Scheduling
Load Balancing
Increasing the Listen Queue Depth
Making Monitor and MonitorProxy Fail-safe

Installing Applications
You can use the developer application Project Builder to deploy
WebObjects applications. When an application is ready to be deployed, do
the following in Project Builder:

1. Click the inspector button to open the Build Attributes Inspector. In
the Install in field, type
$(NEXT_ROOT)/Library/WebObjects/Applications .

If you’re installing a framework, type
$(NEXT_ROOT)/Library/Frameworks

2. If your project contains web server resources, go to the Makefile.preamble
file under Supporting Files. Uncomment the following macro:

INSTALLDIR_WEBSERVER

3. In the Project Build panel, click the checkmark button to bring up the
Build Options panel.

Serving WebObjects

20

4. Choose install as the build target, and close the Build Options panel.

5. Click the Build button to start the build and installation process.

Assuming that your application is named MyApp.woa, this procedure installs these
directories:

NEXT_ROOT/Library/WebObjects/MyApp.woa

MyApp[.exe]

Resources/

WebServerResources/

<DocRoot>/WebObjects/MyApp.woa

WebServerResources/

As discussed in the section “Adaptor Modes,” when the client tries to contact an
application, the adaptor first looks for a public configuration file that names the
application, then for a private configuration file that names the application, and
then for an executable in <DocRoot>/WebObjects and
NEXT_ROOT/Library/WebObjects/Applications. Thus, you can install the entire directory
under <DocRoot>/WebObjects, but doing so presents a security problem if you
have scripted components. Any client can access any file under the document
root, which means that if you install scripted components under the document
root, you are exposing source code to outside users.

Instead, it is recommended that you install most of the application in
NEXT_ROOT/Library/WebObjects/Applications and install only the web server resources
under the document root. It is also recommended that you install the application
directly in the <DocRoot>/WebObjects directory rather than in a subdirectory. If
you install in a subdirectory, your application can still run but cannot find image
files unless you provide the application’s base URL (WOApplicationBaseURL)
on the command line. For more information, see “Starting Up Applications
From the Command Line” in this guide.

Starting and Stopping an Application Instance
You start an instance from the Application Detail View page. To get to this page,
click Applications in the top banner, then click the Detail View button in the
row of the instance you wish to start. If you have just added an application
instance, and are in the Application Configuration page for the application, click
the Detail View button at the top right of the page. A page similar to the
following should then appear:

Administrative Tasks

21

The button that looks like a power switch reports the current state of your
instance: ON or OFF. The rest of the table reports other information about
your instance (for more details see “Obtaining Information From Monitor”
on page 27).

1. Click the power switch.

The Detail View page is refreshed and the power switch appears in an
animated toggle state, signifying that Monitor is trying to start your
instance.

2. After a few seconds, click the Refresh button.

Monitor will refresh the Detail View page and with success your
instance will be running and the power switch will be on.

If successful, this procedure starts an instance of the application but does
not display it in the web browser. When one or more instances are running,
the name of the application above the table of instances turns green,
becoming a hyperlink that, when clicked, access an instance of the
application. In addition, the host name and port number for each instance
also become hyperlinks; clicking one of these accesses a specific instance.

If after completing the startup procedure, the instance’s power switch is off,
it might be due to one of the following reasons:

• Your instance failed to start and exited; check the instance’s error
messages to find out why.

• Your instance is still starting up and Monitor has not received
notification.

Serving WebObjects

22

• Monitor couldn’t start your instance because the path was wrong or the
executable did not exist.

Monitor starts an instance of your application by creating a new task with the
executable; it passes along all the appropriate arguments from the Instance
Configuration page for that instance. Monitor starts instances of your application
in one of two ways, depending on whether the application is on a different host.

• If the application instance is on a different host, it tries to locate a running
MonitorProxy on that host. If it finds a MonitorProxy, it passes the application
arguments to it. If it cannot contact a MonitorProxy, it does not start the
application.

• If the application instance is to run on the same host as the Monitor, Monitor
starts the instance itself.

Clicking the Status switch for an instance when it is ON stops the instance.
Clicking the Start All button causes Monitor to attempt to start all application
instances that are currently stopped; clicking the Stop All button causes Monitor
to stop all instances that are currently running.

Starting Up Applications From the Command Line
The syntax for starting a WebObjects application from a command shell window
is:

AppExecutable [-WODebuggingEnabled YES |NO]
[-WOAutoOpenInBrowser YES |NO]
[-WOMonitorEnabled YES|NO [-WOMonitorHost hostname|subnet]]
[-WOCachingEnabled YES |NO]
[[-WOAdaptor adaptorClass] [-WOPort portNumber]
[-WOListenQueueSize listenQueueSize]]
[-WOWorkerThreadCount int] [-WOOtherAdaptors plist]
[-WOCGIAdaptorURL path] [-WOApplicationBaseURL path]
[-WOFrameworksBaseURL path] [-NSProjectSearchPath plist]
[-WOIncludeCommentsInResponses YES |NO] [-WOSessionTimeout seconds]

The AppExecutable variable represents the name of the WebObjects application
executable to run. You should enter the command from the directory containing
the executable. Compiled applications should either be located in
NEXT_ROOT/Library/WOApps (recommended) or under <DocRoot>/WebObjects. For
scripted applications, go to the application’s .woa directory and execute
WODefaultApp, which is located in NEXT_ROOT/Library/Executables.

Administrative Tasks

23

The following table describes each command-line option:

 Option Description

-WODebuggingEnabled
YES|NO

Sets whether the application prints messages to standard error during startup. By
default, this option is enabled.

WOApplication, WOComponent, and WOSession define a new debugWithFormat:
method (debugString in Java). This method is similar to logWithFormat: except that
it only prints messages if the WODebuggingEnabled option is on

-WOAutoOpenInBrowser
YES|NO

Sets whether the application automatically opens a web browser window to the
application’s URL (starting up the browser if necessary). By default, this option is
enabled.

-WOMonitorEnabled
YES|NO

Enables or disables monitoring. By default, this option is disabled. If this option is
enabled and you manually start an application, the application tries to find a
running WOMonitor.

-WOMonitorHost
hostName | subnet

If the WOMonitorEnabled option is on and you use this option, the application tries
to find a running WOMonitor on the machine named hostName instead of on the local
machine. If subnet is used, the application looks for a running WOMonitor in its
network subnet.

-WOCachingEnabled
YES|NO

Requests that the application cache component definitions (templates) instead of
reparsing HTML and declaration files upon each new HTTP request. By default, this
option is disabled.

-WOAdaptor adaptorClass The WOAdaptor class name. The default is now WOMultiThreadedAdaptor.

-WOPort portNumber The socket port used to connect to an application instance. Unlike previous versions
of WebObjects, this option is independent of the adaptor option. A portNumber of -1
means use an arbitrary high port number; however, you cannot specify -1 as the
value on the command line; to set the value to -1, you must use the defaults
command.

-WOListenQueueSize
listenQueueSize

The depth of the listen queue. The default is now 5, meaning that while the
application process is handling a request, up to five other requests can be in the
socket buffer before the socket starts refusing them. If the application is expected
to experience “spikes” in its processing load, it might be a good idea to increase the
listen queue depth. Increasing this default does not necessarily improve
performance or allow the application to serve more requests at sustained high loads.
For more information, see “Increasing the Listen Queue Depth” in this guide.

-WOWorkerThreadCount int Maximum number of worker threads for a multithreaded application. The default
worker thread count is 8. Setting this count to 0 results in single-threaded
(WebObjects 3.5-style) request dispatch.

-WOOtherAdaptors plist Use this option to attach additional adaptors (other than the one specified by -
WOAdaptor) to the application. The plist option is an array of dictionaries written in
property-list format.

-WOCGIAdaptorURL
path

The absolute URL that points to the WebObjects CGI adaptor.

Serving WebObjects

24

You can also set these options programmatically or by using the defaults utility. Be
careful when setting options programmatically. Most options require knowledge
of the environment in which the application runs, and the appropriate values
change if you move the application to a different machine. For example, you
should never set the WOPort option programmatically.

Notes
The web server uses the <DocRoot> and ApplicationName arguments to build
URLs, so you should use forward slashes as opposed to a backslashes when
specifying these arguments.

As a convenience, you might create a shell script that starts WebObjects
applications when the server machine is booted. You also might create another
shell script that you can run at the command line to start applications.

Setting Command-Line Arguments in Monitor
When you use Monitor to start an instance of an application, it uses a set of
arguments to initialize that instance. Most of these arguments are the command-

-WOApplicationBaseURL
aURL

The URL where your application’s resources are located under the web server’s
document root. You may place your application anywhere under the document root.
This option is required when you’re using a web server. If you install the application
in a subdirectory of <DocRoot>/WebObjects, you should set this to point to the
exact location of the application directory. If you don’t set the application’s base URL,
your application can still run but it cannot find image files and other web server
resources.

-WOFrameworksBaseURL
aURL

The location of frameworks under your document root if you’re using a web server.
The default is /WebObjects/Frameworks (as it was in release 3.5). All frameworks
that your application uses must be in this directory.

-NSProjectSearchPath
pList

An array of paths in which your project directories are located. (The array is written
in property-list format.) The default is a single item: “..”

If you specify this option, WebObjects looks in the locations you specify for a project
that has the same name as the application or framework being loaded. If it finds a
project, it uses the images, scripted components, and other resources from the
project directory instead of from the application or framework’s main bundle. This
way, you can modify images and scripted components in your project and test them
without having to rebuild the application.

-WOIncludeComments
InResponses YES|NO

Sets whether the HTML parser includes comments from the components’ HTML files
in the responses. The default is YES.

-WOSessionTimeout timeout Sets the timeout interval for sessions. By default, they now time out after 3600
seconds.

 Option Description

Administrative Tasks

25

line arguments described in “Starting Up Applications From the Command
Line” on page 22. You can change an applications arguments, even for all
instances that are currently configured and running, by doing the following:

1. Display the Application Configuration page for an application. You can
get to this form using one of two approaches:

• Existing applications: Click the Config button next to an instance in the
Applications page (which you can get by clicking Applications in the
Monitor banner).

• New applications: In the Applications page, enter the name of an
application in the Add Application field and click the Add Application
button.

2. Click the arrow next to the New Instance Default Arguments option of
the Application Configuration page. (This step is not necessary if you
are configuring a new application.)

The following form is exposed:

Serving WebObjects

26

3. Specify the command-line options you want your application’s instances to
have. For the most common options, simply specify the value (not the key).
These options are:

For command-line arguments not included in the above table, enter them
as “-key value” pairs, separated by spaces, in the Additional Command-line
Arguments field.

4. If you want the new settings “pushed” to existing instances, click the
checkbox in the gray area next to each option, then click the Update for
New and Existing Instances button. The existing instances will have to be
restarted for new options to take effect.

You can also set the command-arguments for specific instances. To navigate to
the form for doing this, go to the Detail View page for an application and click
the Config button next to an instance. A list of instance-specific options is
displayed; from the list choose “Application Start-Up/Command-line
arguments.” The following form is exposed:

Field Option

Auto Recover Internal flag. Specifies whether Monitor should
try to restart the instance if the instance fails.

Minimum Active Sessions Internal flag. Specifies the minimum number of
active sessions allowed.

Caching enabled Command-line option -WOCachingEnabled

Adaptor Command-line option -WOAdaptor

Adaptor threads Command-line option -WOWorkerThreadCount

Listen Queue Size Command-line option -WOListenQueueSize

Administrative Tasks

27

Enter the new arguments and click Save Changes in App Starting. Unlike
the previous form, this one allows you to specify a specific port, but it
doesn’t allow you to set Monitor-specific options (such as auto-recover).
Moreover, the changes that you make here do not take effect until the
instance is restarted.

Monitoring Application Activity
There are several ways to obtain information about the applications running
on your server. You can use the Monitor application, analyze logs kept by
the application and the adaptor, and check the application’s statistics page.

Obtaining Information From Monitor
The Applications page gives an overall view of a deployment. It shows
which applications are configured, how many instances each application
has, and which of these is currently running. You get to the Applications
page by clicking the Applications button in Monitor’s banner. A screen
similar to the following example is displayed:

Serving WebObjects

28

Click a hyperlink in the Application column to start a session with an instance
of that application.

The Application Detail View page of the Monitor application provides you with
detailed information about all configured instances of a WebObjects application.
Click the Detail View button next to an application in the Applications page to
go to the detail page, which looks similar to the following example:

At the top of the page is the title of the application. When one or more instances
of an application are running then, this title becomes a hyperlink. Clicking on
the hyperlink opens a new browser window and connects to the running
application.

Administrative Tasks

29

The tables of the Application Detail View contain various information and
controls:

Column Description

Host / Port The host name and the port that the instance runs on. If the instance is running, this
information is hyperlinked; clicking starts a new session with the instance.

Status Indicates whether the instance is running (ON) or is stopped (OFF). Clicking this
control starts and stops the instance (see “Starting and Stopping an Application
Instance” for details).

Schedule Indicates whether scheduling is enabled. When ON is displayed, the Status, Auto-
Recover, and Refuse New Sessions indicators are disabled; scheduling is
responsible for setting all of those states on a schedule basis. See “Automatic
Scheduling” for information on scheduling.

Auto-Recover Displays the Auto-Recover setting for this instance. ON indicates that Monitor should
start a new instance upon failure or shutdown of an instance. You can set this state
when you configure the instance (see “Setting Command-Line Arguments in
Monitor”).

Refuse New Sessions Displays whether the instance is refusing new sessions (YES). If this is the case, all
requests from new clients are redirected to another instance that is not refusing.

Statistics.

Transactions Total number of requests this instance has serviced since it was started.

Active Sessions Total number of sessions that are still active for the instance.

Average Idle Period the average amount of time that the instance is idle between requests.

Deaths The number of unexpected failures or deaths this instance has had. These exclude
“expected” deaths, which include scheduled shutdowns or a manual shutdowns
(using Monitor’s interface).

Exceptions If your instance has an uncaught exception, Monitor may record the number of these
exceptions here. When there are exceptions, a small blue triangle appears; click this
to inspect the messages describing the exceptions.

WOStats Click this button to open a new browser window and connect to the WOStats direct
action to view detailed statistics about this instance.

Config Click this button to link to the Instance Configuration page for this instance.

Delete Click to remove this instance permanently. Deleting an instance also terminates the
instance immediately if it is running.

Transaction Rate This small table indicates the overall transaction rate for the current application.
This table reflects the number of transactions that the application as a whole (all of
its instances) is servicing per minute and per second.

Serving WebObjects

30

Logging and Analyzing Application Activity
WebObjects applications can record information in a log file that can be analyzed
by a Common Log File Format (CLFF) standard analysis tool. Applications do
not maintain this log file by default; log file recording must be enabled
programmatically. If enabled, the application records a list of components
accessed during each session. By default, only component names are recorded,
but programmers may add more information.

Run any CLFF standard analysis tool to analyze the information in the log.

Logging and Analyzing Adaptor Activity
If an adaptor sees that a file named logWebObjects exists in the temporary directory,
it will log its activity in WebObjects.log in that same directory. Logging adaptor
activity significantly decreases performance. Use this feature only if you suspect
something is wrong; do not use it during deployment.

The temporary directory depends on the platform:

• /tmp on Mac OS X Server, Solaris, and HPUX

• The directory indicated by the TEMP environment variable on Windows
NT

You can analyze the information in the log to find out such things as which
applications are being requested, which applications are being autostarted, and
what the HTTP headers of requests are. You can also use the log to verify if
adaptors are properly configured for load balancing. For example, the following
excerpt includes a warning message printed when the adaptor cannot find the
WebObjects.conf file in the expected location.

INFO: -- WOServerAdaptor: Load Balancing for Examples/TimeOff

WARN: -- WOServerAdaptor: "No such file or directory" occurred while

opening the configuration file C:\NETSCAPE\ns-home\httpd-
80\config/WebObjects.conf

The procedure is:

1. Start a command shell window (on NT use the Bourne Shell in the
WebObjects program group).

2. Change to the temporary directory (using the cd command).

3. Enter the following command to create the logWebObjects file:

touch logWebObjects

On UNIX-based systems, you must have root privileges.

Administrative Tasks

31

4. Enter the tail command to print the current activity in the adaptor to
standard output (the shell window):

tail -f WebObjects.log

Accessing the Application Statistics Page
Most WebObjects applications automatically include a WOStats page and
record statistics about themselves in that page while they run. To look at
these statistics, access the WOStats page while the application is running.
You can do this through Monitor or through any browser.

• In Monitor, go to the Detail View page for an application and click the
WOStats button next to an instance.

• From a browser, access the WOStats page with a URL like the
following:

http://myhost/cgi-bin/WebObjects/MyWebApp.woa/wa/WOStats

If there are multiple instances, specify the instance number as well:

http://myhost/cgi-bin/WebObjects/MyWebApp.woa/1/wa/WOStats

The “1” just before “/wa” is the instance number.

The WOStats page looks similar to the following example:

Serving WebObjects

32

See the description of WOStats in the WOExtensions Reference for more
information about what the page displays.

Performance Testing
WebObjects comes with a set of tools that allows you to record a session and then
play it back. Using these tools, you can test your application setup to determine
whether you have the appropriate number of instances running, the appropriate
amount of memory allocated, and so on. The performance tools include:

• The default application adaptor that, when the –WORecordingPath flag is set to
YES, enables the recording of sessions

• A command-line Java tool that plays back recorded sessions

Administrative Tasks

33

• A Playback Manager application that can play back sets of sessions
(NEXT_ROOT/Library/WebObjects/Applications/PlaybackManager.woa)

The recording tools are not designed to handle automated functional
testing, only performance testing. They simply save requests and play them
back after substituting the appropriate session and context identifiers. This
means that the playback tool expects the application to return the same
page and content and when it was recorded.

This section focuses on recording and playing back sessions from the
command line. For information on the Playback Manager application,
consult the application’s online help.

Recording a Session
When a WebObjects application is launched in recording mode, it saves
each request and response made to a recording file (which has an extension
of .rec). You specify the path designating this file with the -WORecordingPath flag,
which also serves as a switch to turn on recording. The application
automatically appends the .rec extension to the given filename and creates
a directory, if one doesn’t exist, with the given path.

To run an application in recording mode:

1. Start the application on a command line similar to the following:

myApplication -WOAutoOpenInBrowser NO -WORecordingPath
/tmp/TestMyApp/tape1

This command creates the file /tmp/TestMyApp/tape1.rec.

2. Using a web browser, run a session of your WebObjects application.

You might want to record what you believe to be a typical session, or
you might want to record a session that puts a maximum load on your
application. For example, you may want to record a session that
performs as many database fetches as possible. As you run the
application, the WebObjects recording adaptor writes each request and
response to the recording file.

Keep in mind that all request and responses are saved to disk, so it’s
recommended that only one user (that is, one session) access the
application while recording is underway. You can later play back a
recorded session multiple times to simulate more users.

3. Stop the application to stop recording

Serving WebObjects

34

Playing Back a Session
Once you have recorded a session with your application, you can use the Playback
command-line tool to simulate users accessing the application. This Java tool is
part of the PlaybackManager project, which must be compiled for the tool to
exist.

To play back a recorded session:

• Start the application as you normally would; do not use the -WORecordingPath
flag here). When you start the application you can use adaptors or direct
connect.

• Start the Playback java tool by entering a command similar to the following:

java com.apple.client.playback.Playback -r /tmp/tape1.rec

The Playback class must be found in the Java classpath. When the
PlayBack Manager project has been compiled, the Playback tool bytecode is
in the subdirectory Playback Manager.woa/WebServerResources/Java.

Alternatively, you can explictly give the class path on the command line, as
in this example:

java -classpath
“.:/MyProjects/PlaybackManager/PlaybackManager.woa/WebServerResources/Ja
va:‘javaconfig DefaultClasspath‘” com.apple.client.playback.Playback -r
/tmp/tape1.rec

The Playback tool plays the recorded session repeatedly until you explicitly stop
it (for example, by pressing Control-C in a command shell window). You can run
several instances of the tool at the same time to put more load on the server. To
manage multiple instances it’s better to use the Playback Manager application.

If you want, you can specify other options of the Playback tool. The following list
describes these options:

-h hostname
Sets the host to send the requests to (the default is localhost).

 -p adaptorPath
Sends requests using the specified adaptor path instead of the recorded URL.
For example, suppose you recorded a session using a Netscape server whose cgi-
bin directory is named cgi-bin and you want to play it back using the Microsoft
Internet Information Server, whose cgi-bin directory is named Scripts and whose
adaptor is named WebObjects.dll. Your adaptor path is /Scripts/WebObjects.dll.

 -port portNumber
Sets the port the requests are sent to (the default is 80).

Administrative Tasks

35

 -c limit
Limits the number of times to repeat the session playback (there is no limit
by default).

-s sleepTime
Sets the interval between requests in seconds (the default is zero).

 -diff percents
Sets the percentage difference between received and recorded response
sizes (the default is 5%).

 -d
Turns debugging on.

 -r recordingDir
Sets the recording directory.

-help
Prints a summary of options

Here is an example of a command beginning a playback session using direct
connect:

java -classpath com.apple.client.playback.Playback -d -h mymachine -r
/tmp/tape1.rec -port 3456 -diff 20

Improving Performance
Performance is a major concern of web site administrators. This section
provides a list of areas to check to achieve the maximum possible
performance.

• Configure your operating system so that it delivers the best
performance possible for your needs. Check your operating system’s
documentation and your web server’s documentation for performance
tuning information.

• When possible, use an API-based adaptor in place of the default CGI
adaptor.

The API-based adaptors have a performance advantage over CGI
adaptors in that the associated server can dynamically load the adaptor;
servers using CGI adaptors, on the other hand, spawn a new adaptor
process for each request and kill the process after the response is
provided.

• Make sure that the applications are written to perform optimally.

Serving WebObjects

36

The WebObjects Developer’s Guide offers some suggested coding practices
to improve performance.

• Enable component-definition caching for all applications.

Component-definition caching is off by default as a convenience for
programmers debugging applications. When the application is deployed,
component-definition caching should be enabled so that each component’s
HTML and declarations files are parsed only once per session.
Component-definition caching can be enabled programmatically by
sending setCachingEnabled: to the WOApplication object (in Java,
WebApplication). You can also use the Monitor to enable caching by doing
the following:

a. In the Declared Apps list, click the inspector button for the application to display
the application inspector.

b. Click the More button to display the application instance inspector.

c. Click the Component caching check box.

d. Click the Save Settings button at the bottom of the frame.

• Shut down and restart application instances periodically.

Because no program is ever perfect, WebObjects applications may leak a
certain amount of memory per transaction. For this reason, you should
periodically shut down and start up each application instance as described
in “Automatic Scheduling” in this guide.

• Perform load balancing or increase the listen queue depth to improve
response time for a specific application.

– If the response time is consistently slow, add more application instances so that
the load is balanced among those instances. For more information, see the sec-
tion “Load Balancing” in this guide.

– If the response time is sometimes acceptable and sometimes slow, consider
increasing the size of the listen queue, which holds requests awaiting processing.
For more information, see the section “Increasing the Listen Queue Depth” in
this guide.

• Consider changing the physical configuration of your system.

Determine the size of a single application instance (you can look this up on
the application’s WOStats page) and multiply that number by the number

Administrative Tasks

37

of instances you intend to run on a given machine. The result is the
amount of physical memory that should be installed on that machine.

If you can’t add that much physical memory, increase the amount of
virtual memory to cover the difference between the physical memory
needed and the physical memory you have.

You can also try to reduce the size of the application instance by
limiting the amount of state that it stores. Set the session time-out
value to ensure that sessions expire after a reasonable length of time.
Shut down and restart the application more often to reduce its size.

If you use WebObjects mainly for applications that access a database,
you’ll achieve the best performance with a dedicated database server
and a separate server for WebObjects applications.

Automatic Scheduling
You can use Monitor to start and stop instances automatically at regular
intervals. Typically, WebObjects applications can run for long periods of
time, even months. If your application caches data or has memory leaks, you
can schedule it to recycle its instances without interrupting service to your
customers.

Use the Scheduling Instances form of the Application Configuration page
to configure a pool of instances. This form allows you establish a staggered
schedule for stopping and restarting the instances. Here is an example of
the Scheduling Instances form:

Serving WebObjects

38

Either specify the instance lifespan or the frequency of shutdown (both in
minutes) and then click the appropriate Use Option button. Each instance runs
for a specified period before it begins refusing new sessions, and then it shuts
down when the minimum active session threshold is reached. The diagram
below displays an example schedule for four instances.

Do not set the frequency of shutdowns too low. If the session time-out for your
application is 30 minutes, then the frequency of application shutdowns should
not be less than 30 minutes. It should probably be several times higher than that.
These settings are configurable because each application may have different
needs.

You can also schedule instances individually with the Scheduling option of the
Instance Configuration page (to go to this page, click Config next to an instance
on the Detail View page):

Specify the start date (in the recommended format) and the lifespan of the
instance in minutes, then click Save Changes

If you have set up scheduling for an application and then add a new instance,
the new instance does not have a schedule that is synchronized with the other
instances. To insert this new instance into the schedule you need to go to the
Application Configuration page and reset the schedule, or you must manually
create the schedule in the Instance’s Configuration page.

Sessions timeout,
active session count reaches 0,
instance terminates

Instance
begins refusing

new sessions

Instance 1

Instance 2

Instance 3

Instance 4

Instance re-started

time

Administrative Tasks

39

You can programmatically set up an application to shut down in addition to
scheduling shutdowns using the Monitor. If you want to use internal
scheduling algorithms in your instance, it is not recommended that you also
use Monitor’s scheduling features. Instead, just use Monitor to recover
failures of your instances and to access statistics.

Load Balancing
You can improve the performance of a WebObjects application by
distributing the processing load among multiple instances of the
application. These application processes can be running on the same
machine as the server or on remote machines. The task that accomplishes
this distribution is called load balancing.

As an example of how load balancing works, suppose you have an
application called MyApp and you have configured WebObjects to run two
instances of MyApp on the host toga and two instances on the host tutu.
When a user types this URL:

http://toga.acme.com/cgi-bin/WebObjects/MyApp

the WebObjects adaptor looks for an instance of MyApp on the host toga. If
it finds an instance and the instance is ready to receive requests, the adaptor
sends the request to that instance. If both of the instances of MyApp on toga
are busy, it accesses an instance on the host tutu.

Use the Monitor application to create multiple new instances of an
application for load balancing. See “Creating Application Instances” on
page 14 for details.

When you create multiple application instances, you are creating the public
configuration file NEXT_ROOT/Library/WebObjects/Configuration/WebObjects.conf.
When the adaptor receives an HTTP request for an application, it first (in
its initial mode) checks WebObjects.conf for an application instance that is
accepting connections and forwards the request to it. The section
“WebObjects HTTP Adaptors” describes in some detail both the public
configuration file and the adaptor modes involved in load balancing.

Monitor always assigns a unique number to each application instance, even
if it is running on a different host. It does this so that it can recover a crashed
instance for you. If an instance dies, Monitor can try to recover it by
launching it on another host. Because of this, instance numbers must be
unique across hosts.

The WebObjects.conf file, however, only requires an instance number to be
unique on a given host. Consider the example given previously, where two

Serving WebObjects

40

instances of MyApp run on host toga and two instances run on host tutu. If you
were to set up a WebObjects.conf file by hand, you could assign instance numbers 1
and 2 to the two instances on toga and instance numbers 1 and 2 to the instances
on tutu. This is legal, but it’s not supported by the Monitor, and if you do this,
you won’t be able to use Monitor for the instances you’ve created.

To determine how many instances of an application you should run, do the
following:

1. Test the application using the recording and playback performance tools as
described in the section “Performance Testing.”

2. Check the application’s response times using the Instance Detail View page
in the Monitor application.

3. If the response time is slow, use Monitor to add another instance of the
application.

4. Continue to add instances and check their response times. When all
instances have reasonable response times, you have the number of instances
you need.

Administrative Tasks

41

Increasing the Listen Queue Depth
The listen queue depth indicates the number of transactions that can be in
the socket buffer (the listen queue) awaiting processing. If the number of
transactions in the buffer reach the limit set by the listen queue depth, the
socket refuses new requests. The default depth is five.

When an application’s request load varies by period (that is, it experiences
“spikes”), you can increase the listen queue depth to improve performance.
For example, suppose an application can process one transaction per second
and it typically receives transactions at the rate of one transaction every two
seconds. The application’s listen queue remains empty because it can
handle the load. Suppose that at certain times of the day, this same
application receives a much heavier load of two requests per second. At
these times, the listen queue fills up because the application cannot process
as many requests as it receives. If you know that the request rate will
eventually return to the normal load of one request every two seconds,
increasing the listen queue depth will help improve performance during the
heavy load time.

On the other hand, suppose that two requests per second becomes the
normal request load for this application. In this case, no matter how big the
listen queue, the application can never catch up because it only processes
one request per second. In this situation, when the average load is higher
than the application can handle, load balancing is the proper solution.

To set the listen queue depth for all instances of an application, do the
following in Monitor:

1. Click Applications in the Monitor banner to go to the Applications page.

2. Click the Config button in any row containing a configured application.

3. In the Application Configuration page, click the triangle next to the
New Instance Default Arguments option; this discloses the following
form:

Serving WebObjects

42

4. Type the new listen queue depth in the Listen Queue Size field.

5. Click the Update for New and Existing Instances button.

6. Restart any existing instance to have it assume the new listen queue depth.

If you want to change the listen queue depth for specific instances, enter the
new depth in the List Queue Size field of the Application Start-Up/Command-
line Arguments form in the Instance Configuration page for an instance.

Making Monitor and MonitorProxy Fail-safe
Because Monitor is a critical piece of any deployment, you should take measures
to make sure that it does not fail. To help you achieve this aim, WebObjects
provides a simple command-line tool, MonitorDaemon. This tool restarts Monitor or
MonitorProxy when they fail. How you use MonitorDaemon depends on the
WebObjects deployment platform.

Using MonitorDaemon on Windows NT
When WebObjects is properly installed, the Services Control panel contains two
services which use MonitorDaemon to keep Monitor and MonitorProxy running.: “Apple
WebObjects Monitor” and “Apple WebObjects MonitorProxy.” Use these
services to keep Monitor and MonitorProxy up and running.

To make Monitor and MonitorProxy start automatically at boot time, you can
configure the services to be started Automatically.

Administrative Tasks

43

Using MonitorDaemon on Mac OS X Server
On these platforms you can enter the MonitorDaemon tool on a shell command
line (such as provided by Terminal.app), start it from a shell script, or configure
it to launch Monitor or MonitorProxy automatically at boot time.

For command line usage you pass as arguments the path to the application
you want to be launched and then any arguments you want to launch it with.
So to start MonitorDaemon for Monitor, you might give the following command:

MonitorDaemon
/System/Library/WebObjects/Applications/Monitor.woa/Monitor

To have Monitor launched at system boot time, you must add a startup
script to /etc/startup. The scripts in /etc/startup follow a naming convention
whereby the first four characters of the script filename are numbers. These
numbers signify the order in which the system runs the scripts in /etc/startup.
You should start Monitor and MonitorProxy near the end of the boot cycle.

You could add the following script, named 3000_Monitor, to /etc/startup to start
MonitorDaemon when the system boots and have it keep Monitor running:

#!/bin/sh

Start Monitor using MonitorDaemon for WebObjects Deployment

#

. /etc/rc.common

the following is one line:

/System/Library/WebObjects/Applications/Monitor.woa/MonitorDaemon
/System/Library/WebObjects/Applications/Monitor.woa/Monitor &

Serving WebObjects

44

	Serving WebObjects
	WebObjects HTTP Adaptors
	Configuration Files
	Adaptor Modes
	Installable HTTP Adaptors

	Deploying With the Monitor Application
	Setting Up the Monitor Application
	Starting Up Monitor
	Setting Up Monitor
	Deploying on Multiple Hosts
	Adding and Configuring an Application
	Creating Application Instances
	Monitor Option Reference

	Administrative Tasks
	Installing Applications
	Starting and Stopping an Application Instance
	Monitoring Application Activity
	Performance Testing
	Improving Performance
	Automatic Scheduling
	Load Balancing
	Increasing the Listen Queue Depth
	Making Monitor and Monitor Proxy Fail-safe

