The EOAccess Framework

Framework: /System/Library/Frameworks/EOAccess.framework

Header File Directories: /System/Library/Frameworks/EOAccess.framework/Headers

Introduction

The EOAccess framework is one of a group of frameworks known collectively as the Enterprise Objects
Framework. The classes and protocols that make up the EOAccess framework allow your applications to
interact with database servers at a high level of abstraction. These classes make up what is known as the
access layelThe access layer is divided into two main parts:

» Thedatabase levelWwhich allows applications to treat records as full-fledged enterprise objects.
» Theadaptor levelwhich provides server-independent database access.

Working with the access layer allows you to have a finer level of control over database operations.



EOAccess Framework Class Hierarchy

The EOAccess class hierarchy is rooted in the Foundation Framework’s NSObject class (see Figure 1). The
remainder of the EOAccess Framework consists of several related groups of classes, a few miscellaneous
classes, and a number of protocols.

Figure 1 The EOAccess Framework class hierarchy

— EOAdaptor

= EOAdaptorChannel
— ECAdaptorContext
— ECdaptorOperation
— EOAftrbute
—EODatabase

= EODatabaseChannel
MWSOec!  m—t—EODatabaseOperation
= ECEntity

— EOJoin

— ECLognPanel

— EOModel

— ECModelGroup

— ECRalaticnship

— EOSOLExpression
— EOStoredProcedure

—:EDFﬁuIIHanﬂlet W Component WOComponent
WOComponent

L — ECCooperatingObjectStore | ECDatabaseContext

= ECDataSource | ECDatabaseDataSource

— EOC|assDescription ; ECEntityClassDescription

— ECCualifier | ECSQLCualifier

EOControl Classes

The Database Level

The database level is where enterprise objects are created from the dictionaries retreived by the adaptor
level. It's also where snapshotting is performed. The database level is primarily made up of the following
classes:

« EODatabaseis a class that represents a single database server.

« EODatabaseChannels a class that represents an independent communication channel to the database
server.



Classes:

EODatabaseContextis subclass of EOObjectStore for accessing relational databases, creating and

saving objects based on EOEntity definitions in an EOModel.

EODatabaseOperationis a class that represents an operation—insert, update, or delete—to perform on
an enterprise object and all the necessary information required to perform the operation.

The Adaptor Level

The adaptor level deals with database rows packaged as dictionaries. The adaptor level is primarily made
up of the following classes:

EOAdaptor is an abstract class that provides concrete subclasses with a structure for connecting to a
database.

EOAdaptorChannel is an abstract class that provides its concrete subclasses with a structure for
performing database operations.

EOAdaptorContext is an abstract class that defines transaction handling in Enterprise Objects
Framework applications.

EOAdaptorOperation is a class that represents a primitive operation in a database server and all the
necessary information required by the operation.

The Modeling Classes

A model defines, in entity-relationship terms, the mapping between enterprise object classes and a database.
The following are the principal modeling classes in the EOAccess framework:

EOAttribute is a class that represents a column, field or property in a database, and associates an internal
name with an external name or expression by which the property is known to the database.

EOEntity is a class that describes a table in a database and associates a name internal to the Framework
with an external name by which the table is known to the database.

EQOJoin is a class that describes one source-destination attribute pair for an EORelationship.

EOModel is a class that represents a mapping between a database schema and a set of classes based on
the entity-relationship model.

EOModelGroup is a class that represents an aggregation of related models.

EORelationshipis a class that describes an association between two entities, based on attributes of those
two entities.

Faulting

These classes implement or are used to implement object faulting:



EOAccessArrayFaultHandler is a subclass of EOAccessGenericFaultHandler that implements a fault for
an array of enterprise objects.

EOAccessFaultHandleris a subclass of EOAccessGenericFaultHandler that implements an object fault
for enterprise objects.

EOAccessGenericFaultHandlelis an abstract class that helps an EOAccessFault to fire by fetching data
using an EODatabaseContext.

Additions to Other Frameworks
The EOAccess framework adds methods to a number of classes in different frameworks:

EOGenericRecord Additionsadds one method to the control layer’s class, for returning a generic record’s
associated EOEntity.

EOODbjectStoreCoordinator Additions adds two methods to the EOControl class for accessing the
coordinator’s EOModelGroup.

EOQualifier Additions adds one method to the class, for “rerooting” a qualifier to another entity.

NSString Additions adds two methods to the class, to convert modeling object names to database schema
names, and database schema names to modeling object names

Miscellaneous Classes
The EOAccess framework also has a number of other useful classes, including:

« EODatabaseDataSources a concrete subclass of EODataSource that fetches objects based on an
EOModel, using an EODatabaseContext that services the data source’s EOEditingContext.

» EOEntityClassDescription is a subclass of the control layer's EOClassDescription and extends the
behavior of enterprise objects by deriving information about them from an associated EOModel.

« EOLoginPanelis an abstract class that defines how users provide database login information.

« EOSQLEXxpressionis an abstract superclass that defines how to build SQL statements for adaptor
channels.

* EOSQLQualifier is a subclass of EOQualifier that contains unstructured text that can be transformed
into an SQL expression.

« EOStoredProcedureis a class that represents a stored procedure defined in a database, and associates a
name internal to EOF with an external name known to the database.



Classes:

Delegates

A number of EOAccess classes delegate behavior. The delegate methods are defined in these Objective-C
protocols:

An EOAdaptorChannel delegate receives messages for nearly every operation that would affect data in
the database server, and it can preempt, modify, or track these operations.

A EOAdaptorContext delegate receives messages for any transaction begin, commit, or rollback, and it
can preempt, modify, or track these operations.

An EOAdaptor delegate implements a method that can perform a database-specific transformations on
a value.

An EODatabaseContextdelegate can intervene when objects are created and when they’re fetched from
the database.

An EOModelGroupClassdelegate implements a method that returns the default model group.

An EOModelGroup delegate influences how the model group finds and loads models.

Miscellaneous Protocols

EOCustomClassArchivingis an informal protocol that defines methods that can write any object that
conforms to NSCoding to the database as binary data, as generated by NSArchiver.

EOEditingContext Additions is a collection of convenience methods intended to make common
operations with EOF easier.

EOPropertyListEncoding declares methods that read and write objects to property lists.

EOQualifierSQLGeneration declares two methods that are adopted by qualifier classes to qualify
fetches from a database.






Classes: EOAccessArrayFaultHandler

EOAccessArrayFaultHandler

Inherits From: EOAccessGenericFaultHandler :EOFaultHandler (EOControl) : NSObject

Declared In: EOAccess/EOAccessFault.h

Class Description

EOAccessArrayFaultHandler is a subclass of EOAccessGenericFaultHandler that implements a fault for an
array of enterprise objects.

Instance Methods
completelnitializationOfObject
— (void)completelnitializationOfObject:(id)object;

Asks the receiver’s database context to fetch the object if it is not already in memory. This method is called
when the fault is fired and uses the EOObjectStore protocol to get the information from the reciever’s
editing context

databaseContext
— (EODatabaseContextdatabaseContext

Returns the receiver’s database context.

editingContext
— (EOEditingContext ®ditingContext

Returns the receiver’s editing context.



initWithSourceGloballD:relationshipName:databaseContext:editingContext:

— initWithSourceGloballD: (EOKeyGloballD *sourceGID
relationshipName:(NSString *yelationshipName
databaseContext(EODatabaseContextdatabaseContext
editingContext:(EOEditingContext *¢ditingContext

Initializes the handler with all of the information necessary to fetch the appropriate objects when the fault
is fired. When the fault is fired, the database context asks the editing context for the required objects using
the EOObjectStore protocol.

relationshipName
— (NSString *yelationshipName

Returns the receiver’s relationship name.

sourceGloballD
— (EOKeyGloballD *sourceGloballD

Returns the receiver’s source global ID.



Classes: EOAccessFaultHandler

EOAccessFaultHandler

Inherits From: EOAccessGenericFaultHandler :EOFaultHandler (EOControl) : NSObject

Declared In: EOAccess/EOAccessFault.h

Class Description

EOAccessFaultHandler is a subclass of EOAccessGenericFaultHandler that implements an object fault for
enterprise objects.

Instance Methods
completelnitializationOfObject
— (voidompletelnitializationOfObject: (id)anObject

Asks the receiver’s database context to fatw@bjectif it is not already in memory. This method is called
called when the fault is fired and uses the EOODbjectStore protocol to get the information from the receiver’s
editing context.

databaseContext
— (EODatabaseContextdatabaseContext

Returns the receiver’s database context.

editingContext
— (EOEditingContext ®ditingContext

Returns the receiver’s editing context.

globallD
— (EOKeyGloballD *ploballD

Returns the receiver’s global ID.



10

initWithgloballD:relationshipName:databaseContext:editingContext:

— initWithGloballD: (EOKeyGloballD *)globallD
databaseContext{EODatabaseContextdatabaseContext
editingContext:(EOEditingContext *¢ditingContext

Initializes the handler with all of the information necessary to fetch the object when the fault is fired. When
the fault is fired, this object cak®mpletelnitializationOfObject on the object.



Classes: EOAccessGenericFaultHandler

EOAccessGenericFaultHandler

Inherits From: EOFaultHandler (EOControl) : NSObject

Declared In: EOAccess/EOAccessFault.h

Class Description

EOAccessGenericFaultHandler is an abstract class that helps an EOAccessFault to fire by fetching data
using an EODatabaseContext. Don't use EOAcceessGenericFaultHandler directly; instead, use its
subclasses EOAccessFaultHandler and EOAccessArrayFaultHandler.

EOAccessGenericFaultHandler lets you chain together all the fault handlers in the access layer, so the batch
faulting mechanism can find other faults related to the one that triggered the batimkAfter:
usingGeneration:to link one fault after another. Usext andprevious to traverse the chain.

Instance Methods
generation
- (unsigned ingeneration

Returns the the receiver’s generation, a number that represents when the fault handler was built.

linkAfter:usingGeneration:

- (void)linkAfter. (EOAccessGenericFaultHandlerfgyltHandler
usingGeneration{unsigned infyeneration

Adds the receiver to a chain of fault handlers, dételtHandler generationis a number that represents
when the handler was built. All faults in an access layer can be chained together, so the batch faulting
mechanism can find other faults related to the one that triggered the batch.

See also: — next, —previous

next
- (EOAccessGenericFaultHandlengxt

Returns the next fault in the chain.

11



12

previous

public EOAccessGenericFaultHandpgevious()
- (EOAccessGenericFaultHandleptevious

Returns the previous fault in the chain.



Classes: EOAdaptor

EOAdaptor

Inherits From: NSObiject
Conforms To: NSObject (NSObject)
Declared In: EOAccess/EOAdaptor.h

Class Description

EOAdaptor is an abstract class that provides concrete subclasses with a structure for connecting to a
database. A concrete subclass of EOAdaptor provides database-specific method implementations and
represents a single database server. You never interact with instances of the EOAdaptor class, but you use
its class methodsidaptorWithName: andadaptorWithModel: , to create instances of a concrete

subclass. The EOAdaptor class defines the methods that find and load the concrete adaptors from bundles.
However, you rarely interact with a concrete adaptor either. Generally, adaptors are automatically created
and used by other classes in the Enterprise Objects Framework.

The EOAdaptor class has the following principal attributes:

* Dictionary of connection information
* Login panel

« Array of adaptor contexts

» Expression class

Other framework classes create EOAdaptor objadiptorwithModel: creates a new adaptor with the
adaptor name in the specified modehptorwithName: creates a new adaptor with the specified name.

The following table lists the most commonly-used methods in the EOAdaptor class:

assertConnectionDictionarylsValid Verifies that the adaptor can connect with its connection information.
setConnectionDictionary: Sets the connection dictionary.

— assertConnectionDictionarylsValid Verifies that the adaptor can connect with its connection information.
— runLoginPanel Runs the login panel without affecting the connection dictionary.

Runs the login panel until the user enters valid connection

— runLoginPanelAndValidateConnectionDictionary information or cancels the panel

— setConnectionDictionary: Sets the connection dictionary.

13



For information on subclassing an EOAdaptor, see “Creating an EOAdaptor Subclass”.

Method Types

14

Creating an EOAdaptor
+ adaptorWithName:
+ adaptorWithModel:
— initWithName:

Accessing an adaptor's name
— name

Accessing the names of all available adaptors
+ availableAdaptorNames

Accessing connection information
— assertConnectionDictionarylsValid
— connectionDictionary
— setConnectionDictionary:
— runLoginPanelAndValidateConnectionDictionary
— runLoginPanel
— databaseEncoding

Performing database-specific transformations on values
— fetchedValueForValue:attribute:
— fetchedValueForDataValue:attribute:
— fetchedValueForDateValue:attribute:
— fetchedValueForNumberValue:attribute:
— fetchedValueForStringValue:attribute:

Servicing models
— canServiceModel:
+ internalTypeForExternalType:model:
+ externalTypesWithModel:
+ assignExternallnfoForEntireModel:
+ assignExternallinfoForEntity:
+ assignExternallnfoForAttribute:
— isValidQualifierTypeln:model:

Creating adaptor contexts
— createAdaptorContext
— contexts

Checking connection status
— hasOpenChannels



Classes: EOAdaptor

Accessing a default expression class
+ setExpressionClassName:adaptorClassName:
— expressionClass
— defaultExpressionClass

Accessing an adaptor’s login panel
+ sharedLoginPanellinstance
— runLoginPanelAndValidateConnectionDictionary
—runLoginPanel

Accessing the delegate
— delegate
— setDelegate:

Other
— createDatabaseWithAdministrativeConnectionDictionary:
— dropDatabaseWithAdministrativeConnectionDictionary:
— prototypeAttributes

Class Methods

adaptorWithModel:
+(id)adaptorWithModel: (EOModel *)model

Creates and returns a new adaptor by extracting the adaptor nammaddarinvoking
adaptorWithName:, and assigningrodels connection dictionary to the new adaptor. Raises an
NSinvalidArgumentException ifhodelis nil, if models adaptor name isil, or if the adaptor named in
modelcan’t be loaded.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsiggeto

See also: — adaptorName(EOModel), —setConnectionDictionary:

adaptorWithName:
+ (id)adaptorWithName: (NSString *hame

Creates and returns a new adaptor, loading it from the framework mamed necessary and sending it
aninitWithName: message. For example, this code excerpt creates an adaptor from a framework named
AcmeEOAdaptor.framework:

EOAdaptor *myAdaptor = [EOAdaptor adaptorWithName:@"Acme"];

15



16

This method searches the application’s main burdléhrary/Frameworks ,

Network/Library/Frameworks , andSystem/Library/Frameworks for the first framework whose base
filename (that is, the filename without the “.framework” extension) corresponds®However, note

that dynamic loading isn’t available on PDO platforms. Consequently, you must statically link your adaptor
into applications for PDO: In this caselaptorWithName: simply looks in the runtime for an adaptor

class corresponding with the specified name. Raises an NSInvalidArgumentExceyatioasfnil or if an
adaptor class corresponding withmecan't be found.

Usually you'd useadaptorWithModel: to create a new adaptor, but you can use this method when you
don’t have a model. In fact, this method is typically used when you're creating an adaptor for the purpose
of creating a model from an existing database.

assignExternallnfoForAttribute:
+ (void)assignExternallnfoForAttribute: (EOAttribute *)attribute

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsggeto

Overridden by adaptor subclasses to assign database-specific charactedttibste EOAdaptor’'s
implementation invokeassignExternalTypeForAttribute: to assign an external type and then assigns a
column name based on the attribute name. For exaagdghExternallnfoForAttribute: assigns the
column name “FIRST_NAME" to an attribute named “firstName”. The method makes no changes to
attributés column name iattributeis derived.

assignExternalinfoForEntireModel:
+ (void)assignExternallinfoForEntireModel: (EOModel *)model

Assigns database-specific characteristiocaadel Used in EOModeler to switch a model’s adaptor. This
method examines each entitynodel If an entity’s external name is not set and all of the entity’s attribute’s
external names are not set, then this methodassegnExternallnfoForEntity: and
assignExternallnfoForAttribute: to assign external names. If the entity’s external name is set or if any of
the entity’s attributes’ external names are set, then the method doesn’t assign external names to the entity
or any of its attributes. Regardless, this method invakeignExternalTypeForAttribute: for each

attribute in the model to assign external types.

A subclass of EOAdaptor doesn’t need to override this method.



Classes: EOAdaptor

assignExternallnfoForEntity:
+ (void)assignExternallnfoForEntity: (EOEntity *)entity

Overridden by adaptor subclasses to assign database-specific characteestits E®OAdaptor's
implementation assigns an external namentity based orentitys name. For example,
assignExternallnfoForEntity: assigns the external name “MOVIE” to an entity named “Movie”. An

adaptor subclass should override this method to assign additional database-specific characteristics, if any.

See also: + assignExternallnfoForEntireModel:

assignExternalTypeForAttribute:
+ (void)assignExternalTypeForAttribute: (EOAttribute *jattribute

Overridden by adaptor subclasses to assign the external gébiste EOAdaptor’s implementation does
nothing. A subclass of EOAdaptor should override this method to assign an external tygetiiisings
internal type, precision, and length information.

See also: + assignExternallnfoForEntireModel:

availableAdaptorNames
+ (NSArray *JavailableAdaptorNames

Returns an array containing the names of all available adaptors, as found by searching the paths returned
by NSStandardLibraryPaths(). If no adaptors are found, this method returns an empty array.

See also: + assignExternallnfoForEntireModel:

externalTypesWithModel:
+ (NSArray *)externalTypesWithModel:(EOModel *)model

Implemented by subclasses to return the names of the database types (such as Sybase “varchar” or Oracle
“NUMBER”) for use with the adaptomodelis an optional argument that can be used to supplement the
adaptor’s set of database types with additional, user-defined database types. See your adaptor’s
documentation for information on if and how it usesdel

internalTypeForExternalType:model:
+ (NSString *jnternalTypeForExternalType: (NSString *extTypanodel:(EOModel *)model

Implemented by subclasses to return the name of the Objective-C class used to represent values stored in
the database &tTypemodelis an optional argument that can be used to supplement the adaptor’s set of

17



type mappings with additional mappings for user-defined database types. See your adaptor’s documentation
for information on if and how it usesodel Returnail if no mapping folextTypeis found.

An adaptor subclass should override this method without invoking EOAdaptor’s implementation.

setExpressionClassName:adaptorClassName:

+ (void)setExpressionClassNaméNSString *sqlExpressionClassNanaglaptorClassName:
(NSString *adaptorClassName

Sets the expression class for instances of the class rataptbrClassNamto sglExpressionClassName
If sglExpressionClassNanenil, restores the expression class to the default. Raises an
NSiInvalidArgumentException #ddaptorClassNames nil or the empty string.

Use this method to substitute a subclass of EOSQLExpression for the expression class provided by the
adaptor. For example, the default expression class for the Oracle adaptor is OracleSQLExpression. The
following statement substitutes the class named MySQLEXxpression:

[EOAdaptor setExpressionClassName:@"MySQLExpression" adaptorClassName:
@"OracleAdaptor'T;

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsiggeto

See also: — defaultExpressionClass

Instance Methods

18

assertConnectionDictionarylsValid

— (void)assertConnectionDictionarylsValid
Implemented by subclasses to verify that the adaptor can connect to the database server with its connection
dictionary. Briefly forms a connection to the server to validate the connection dictionary and then closes the

connection. Raises an EOGeneralAdaptorException if the connection dictionary contains invalid
information.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: —setConnectionDictionary; —runLoginPanel,
—runLoginPanelAndValidateConnectionDictionary



Classes: EOAdaptor

canServiceModel:
— (BOOL)anServiceModel(EOModel *)model

Returns YES if the receiver can servinede] NO otherwise. EOAdaptor’s implementation returns YES if
the receiver’'s connection dictionary is equattodels connection dictionary as determined by
NSDictionary’sisEqual: method.

A subclass of EOAdaptor doesn’t need to override this method.

connectionDictionary
— (NSDictionary *ronnectionDictionary

Returns the receiver’s connection dictionarynibif the adaptor doesn’t have one. The connection

dictionary contains the values, such as user name and password, needed to connect to the database server.
The dictionary’s keys identify the information the server expects, and its values are the values that the
adaptor will try when connecting. Each adaptor uses different keys; see your adaptor's documentation for
keys it uses.

A subclass of EOAdaptor doesn’t need to override this method.

See also:  setConnectionDictionary:

contexts
— (NSArray *xcontexts

Returns the adaptor contexts created by the receiveit,ibno adaptor contexts have been created. A
subclass of EOAdaptor doesn’t need to override this method.

See also: — createAdaptorContext

createAdaptorContext
— (EOAdaptorContext treateAdaptorContext

Implemented by subclasses to create and return a new EOAdaptorContéxf,anew context can't be
created.The new context retains the receiver. A newly created EOAdaptor has no contexts.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: —contexts —initWithAdaptor: (EOAdaptorContext)

19



20

createDatabaseWithAdministrativeConnectionDictionary:

— (voidcreateDatabaseWithAdministrativeConnectionDictionary:
(NSDictionary *connectionDictionary

Uses the administrative login information to create the database (or user for Oracle) defined by the
connectionDictionary

See also: — dropDatabaseWithAdministrativeConnectionDictionary:, EOLoginPanel class

databaseEncoding
— (NSStringEncodinglatabaseEncoding

Returns the string encoding used to encode and decode database strings. An adaptor’s database encoding is
stored in the connection dictionary with the key “databaseEncoding”. If the connection dictionary doesn’t
have an entry for the database encoding, the default C string encoding is used. This method raises an
NSiInvalidArgumentException if the receiver’s database encoding isn’t valid.

A database system stores strings in a particular character set. The Framework needs to know what character
set the database system uses so it can encode and decode strings coming from and going to the database
server. The string encoding returned from this method specifies the character set the Framework uses.

A subclass of EOAdaptor doesn’t need to override this method.

See also: — availableStringEncodings(NSString), -defaultCStringEncoding (NSString)

defaultExpressionClass
— (ClassjlefaultExpressionClass

Implemented by subclasses to return the subclass of EOSQLEXxpression used as the default expression class
for the adaptor. You wouldn't ordinarily invoke this method directly. It's invoked automatically to determine
which class should be used to represent query language expressions.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also:  + setExpressionClassName:adaptorClassName:

delegate
— (id)delegate

Returns the receiver’s delegatendrif a delegate has not been assigned. A subclass of EOAdaptor doesn’t
need to override this method.

See also: —setDelegate:



Classes: EOAdaptor

dropDatabaseWithAdministrativeConnectionDictionary:

— (voiddropDatabaseWithAdministrativeConnectionDictionary:
(NSDictionary *connectionDictionary

Uses the administrative login information to drop the database (or user for Oracle) defined by the
connectionDictionary

See also: — createDatabaseWithAdministrativeConnectionDictionary;, EOLoginPanel class

expressionClass

— (ClassgxpressionClass
Returns the subclass of EOSQLExpression used by the receiver for query language expressions. Returns
the expression class assigned using the class meteifixpressionClassName:adaptorClassNamdf

no class has been set for the receiver’s class, this method determines the expression class by sending
defaultExpressionClasgo self.

You wouldn't ordinarily invoke this method directly. It's invoked automatically to determine which class
should be used to represent query language expressions.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsiggeto

fetchedValueForDataValue:attribute:
— (NSData *jetchedValueForDataValue(NSData *yalueattribute: (EOAttribute *)attribute
Overridden by subclasses to return the value that the receiver’s database server would ultimately store for

valueif it was inserted or updated in the column describedittofpute This method is invoked from
fetchedValueForValue:attribute: when the value argument is an NSData.

EOAdaptor’s implementation returmalueunchanged. An adaptor subclass should override this method if
the adaptor’'s database performs transformations on binary types, such as BLOBs.

fetchedValueForDateValue:attribute:
— (NSCalendarDate fgtchedValueForDateValue(NSCalendarDate ¥galue
attribute: (EOALttribute *)attribute

Overridden by subclasses to return the value that the receiver's database server would ultimately store for
valueif it was inserted or updated in the column describedttripute This method is invoked from
fetchedValueForValue:attribute: when the value argument is a date.

21



22

EOAdaptor's implementation returaalueunchanged. An adaptor subclass should override this method to
convert or format date values. For example, a concrete adaptor subclass c@llasenillisecond value
to 0.

fetchedValueForNumberValue:attribute:

— (NSNumber *etchedValueForNumberValue(NSNumber *yalue
attribute: (EOAttribute *Jattribute

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
valueif it was inserted or updated in the column describedttripute This method is invoked from
fetchedValueForValue:attribute: when the value argument is a number.

EOAdaptor’s implementation returmalueunchanged. An adaptor subclass should override this method to
convert or format numeric values. For example, a concrete adaptor subclass should probakgiueund
according to the precision and scattibute

fetchedValueForStringValue:attribute:
— (NSString*fetchedValueForStringValue:(NSString *yvalueattribute: (EOAttribute *)attribute

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
valueif it was inserted or updated in the column describedttripute This method is invoked from
fetchedValueForValue:attribute: when the value argument is a string.

EOAdaptor’s implementation trims trailing spaces and retoufigil for zero-length strings. An adaptor
subclass should override this method to perform any additional conversion or formatting on string values.
For example, a concrete adaptor subclass could trim trailing spaces.

fetchedValueForValue:attribute:
— (id)fetchedValueForValue{id)valueattribute: (EOAttribute *)attribute

Returns the value that the receiver’'s database server would ultimately staakiéf it was inserted or

updated in the column describeddiyribute The Framework uses this method to keep enterprise object
shapshots in sync with database values. For example, assume that a product’s price is marked down 15%.
If the product’s original price is 5.25, the sale price is 5.25*.85, or 4.4625. When the Framework updates
the product’s price, the database server truncates the price to 4.46 (assuming the scale of the database’s price
column is 2). Before performing the update, the Framework sends the adigbtbedValueForValue:

attribute: message with the value 4.4625. The adaptor performs the database-specific transformation and
returns 4.46. The Framework assigns the truncated value to the product object and to the product object’s
snapshot and then proceeds with the update.



Classes: EOAdaptor

An adaptor subclass can override this method or one of the data type-d$ewtiédValue...methods.
EOAdaptor's implementation détchedValueForValue:attribute: invokes one of the data type-specific
methods depending aalu€s class. Ifvalueis not a string, number, date, or data object (that is, an instance
of NSString, NSNumber, NSDate, NSData, or any of their subclagsietiedValueForValue:attribute:
returnsvalueunchanged.

This method invokes the delegate mettaathptor:fetchedValueForValue:attribute: which can override
the adaptor’s default behavior.

See also: —fetchedValueForDataValue:attribute:, —fetchedValueForDateValue:attribute:,
—fetchedValueForNumberValue:attribute:, —fetchedValueForStringValue:attribute:,
— valueFactoryMethod (EOAttribute)

hasOpenChannels
— (BOOLhasOpenChannels

Returns YES if any of the receiver’s contexts have open channels, NO otherwise. A subclass of EOAdaptor
doesn’t need to override this method.

See also: — hasOpenChannel{EOAdaptorContext)

initWithName:

— (id)initWithName: (NSString *name
The designated initializer for the EOAdaptor class, this method is overridden by adaptor subclasses to
initialize a newly allocated EOAdaptor subclass widime nameis usually derived from the base filename
(that is, the filename without the “.framework” extension) of the framework from which the adaptor is

loaded. For example, an adaptor named “Acme” is loaded from the framework
AcmeEOAdaptor.framework. Returnsself.

Never invoke this method directly. It is invoked automatically feaaptorWithName: and
adaptorWithModel: —EOAdaptor class methods you use to create a new adaptor.

A subclass of EOAdaptor doesn’t need to override this method, but may override it to perform additional
initialization. A subclass that does override this method must incorporate the superclass’s version through
a message tsuper.

isValidQualifierTypeln:model:
— (BOOL)isValidQualifierType: (NSString *typeNamenodel:(EOModel *)model

Implemented by subclasses to return YES if an attribute otype®lamesan be used in a qualifier (a SQL
WHERE clause) sent to the database server, or NO othetyyisdlamas the name of a type as required

23



24

by the database server, such as Sybase “varchar” or Oracle “NUMBIBRElis an optional argument that
can be used to supplement the adaptor’s set of type mappings with additional mappings for user-defined
database types. See your adaptor's documentation for information on if and hownbdsés

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

name
— (NSString *hame
Returns the adaptor’s name; this is usually the base filename of the framework from which the adaptor was

loaded. For example, if an adaptor was loaded from a framework Aeomedt OAdaptor.framework, this
method returns “Acme”.

A subclass of EOAdaptor doesn’t need to override this method.

See also: + adaptorWithName:, —initWithName:

prototypeAttributes
— (NSArray *prototypeAttributes
Returns an array of prototype attributes specific to the adaptor class. Adaptor implementers should note that

this method looks for an EOModel nameddgiaptorNamerototypes in the resources directory of the
adaptor.

runLoginPanel
— (NSDictionary *yunLoginPanel

Runs the adaptor’s login panel by sendingrsPanelForAdaptor:validate: message to the adaptor’s

login panel object with the validate flag NO. Returns connection information entered in the panel without
affecting the adaptor’s connection dictionary. The connection dictionary returned isn't validated by this
method.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsggeto

See also: —runLoginPanelAndValidateConnectionDictionary, —setConnectionDictionary:,
—assertConnectionDictionarylsValid + sharedLoginPanellnstance



Classes: EOAdaptor

runLoginPanelAndValidateConnectionDictionary
— (BOOLYunLoginPanelAndValidateConnectionDictionary

Runs the adaptor’s login panel by sendingrsPanelForAdaptor:validate: message to the adaptor’s
login panel object with the validate flag YES. Returns YES if the user enters valid connection information,
or NO if the user cancels the panel.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsiggeto

See also: —runLoginPanel, —setConnectionDictionary:; —assertConnectionDictionarylsValid
+ sharedLoginPanelinstance

setConnectionDictionary:
— (void)setConnectionDictionary{NSDictionary *dictionary

Sets the adaptor’s connection dictionargietionary, which must only contain NSString,
NSData,NSDictionary, and NSArray objects. Raises an NSinvalidArgumentException if there are any open
channels—you can’t change connection information while the adaptor is connected.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsggeto

See also: —connectionDictionary, —hasOpenChannels—assertConnectionDictionarylsValid
—runLoginPanelAndValidateConnectionDictionary, — runPanelForAdaptor:validate:
(EOLoginPanel)

setDelegate:
— (voidsetDelegate(id)delegate

Sets the receiver’s delegatelwegateor removes its delegatediélegatasnil. The receiver does not retain
delegateA subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this
method must incorporate the superclass’s version through a messagerto

See also: —delegate

sharedLoginPanellinstance
+ (EOLoginPanel §haredLoginPanellnstance

Returns the receiver’s login panel in applications that have a graphical user interface. rileifutines
application doesn’t have an NSApplication object. Otherwise, looks for the bundle named “LoginPanel” in
the resources for the adaptor framewaork, loads the bundle, and returns an instance of the bundle’s principal

25



26

class (see the NSBundle class specification for information on loading bundles). The returned object is used
to implementunLoginPanelAndValidateConnectionDictionary andrunLoginPanel.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsiggeto



Classes:

Creating an EOAdaptor Subclass

Enterprise Objects Framework provides concrete adaptors for three standard relational database
management systems—Informix, Oracle, and Sybase—as well as a concrete adaptor for ODBC-compliant
databases. You may want to create a subclass of one of these adaptors to extend its behavior, or you may
want to create a concrete EOAdaptor subclass for a different database or persistent storage system.
EOAdaptor provides many default method implementations that are sufficient for concrete subclasses:

* + assignExternalinfoForEntireModel:
» — connectionDictionary

* — contexts

» — databaseEncoding
e —delegate

¢ —hasOpenChannels
* —name

The following methods establish structure and conventions that other Enterprise Objects Framework classes
depend on and should be overridden with caution:

e + adaptorWithModel:

+ adaptorWithName:

« + setExpressionClassName:adaptorClassName:
+ sharedLoginPanellnstance

— initWithName:

e — expressionClass

e —runLoginPanel

* — runLoginPanelAndValidateConnectionDictionary
» — setConnectionDictionary:

» —setDelegate:

If you override any of the above methods, your implementations should incorporate the superclass’s
implementation through a messageuper.

The remaining EOAdaptor methods must be overridden by concrete adaptor subclasses in terms of the
persistent storage system with which it interacts:

¢ + assignExternallnfoForAttribute:

¢ + assignExternalinfoForEntity:

+ externalTypesWithModel:

+ internalTypeForExternalType:model:

« —assertConnectionDictionarylsValid

— createAdaptorContext

— defaultExpressionClass

— fetchedValueForDataValue:attribute:

— fetchedValueForDateValue:attribute:

— fetchedValueForNumberValue:attribute:

27



28

» — fetchedValueForStringValue:attribute:
» — fetchedValueForValue:attribute:
e —isValidQualifierTypeln:model:



Classes: EOAdaptorChannel

EOAdaptorChannel

Inherits From: NSObiject
Conforms To: NSObject (NSObject)
Declared In: EOAccess/EOAdaptorChannel.h

Class Description

EOAdaptorChannel is an abstract class that provides its concrete subclasses with a structure for performing
database operations. It's associated with EOAdaptor and EOAdaptorContext, which, together with
EOAdaptorChannel, form tredaptor levebf Enterprise Objects Framework’s access layer. See the
EOAdaptor class specification for more information about accessing, creating, and using adaptor level
objects.

A concrete subclass of EOAdaptorChannel provides database-specific method implementations and
represents an independent communication channel to the database server to which its EOAdaptor object is
connected. You never interact with instances of the EOAdaptorChannel class, rather your Enterprise Objects
Framework applications use instances of concrete subclasses that are written to interact with a specific
database or other persistent storage system. To create an instance of a concrete EOAdaptorChannel
subclass, you sendceeateAdaptorChannelmessage to an instance of the corresponding
EOAdaptorContext subclass. You rarely create adaptor channels yourself. They are generally created
automatically by other framework objects.

You use an adaptor channel to manipulate rows (records) by selecting, fetching, inserting, deleting, and
updating them. An adaptor channel also gives you access to some of the metadata on the server, such as
what stored procedures exist, what tables exist, and what their basic attributes and relationships are.

All of an adaptor channel’s operations take place within the context of transactions controlled or tracked by
its EOAdaptorContext. An adaptor context may manage several channels (though not all can), but a channel
is associated with only one context.

Notifying the Adaptor Channel’s Delegate

You can assign a delegate to an adaptor channel. The EOAdaptorChannel sends certain messages directly
to the delegate, and the delegate responds to these messages on the channel’s behalf. Many of the adaptor
channel methods notify the channel’'s delegate before and after an operation is performed. Some delegate
methods, such aglaptorChannel:shouldEvaluateExpression; let the delegate determine whether the

channel should perform an operation. Others, sucdastorChannel:didEvaluateExpression; are

simply notifications that an operation has occurred. The delegate has an opportunity to respond by
implementing the delegate methods. If the delegate wants to intervene, it impladsgnitsChannel:

29



30

shouldEvaluateExpression: If it simply wants notification when a transaction has begun, it implements

adaptorChannel.didEvaluateExpression:

The principal attributes of the EOAdaptorChannel class are:

» Adaptor context
» Delegate

Other framework classes create EOAdaptorChannel objects, using EOAdaptorContext’s
createAdaptorChannel method, which both creates an adaptor channel and assigns its context.

The following table lists EOAdaptorChannel’s more commonly-used methods:

openChannel

Opens the channel so it can perform database operations.

closeChannel

Close the channel.

selectAttributes:fetchSpecification:lock:entity:

Selects rows matching the specified qualifier.

Fetches a row resulting from the last selectAttributes:
fetchSpecification:lock:entity:

fetchRowWithZone: executeStoredProcedure:withValues: , or
evaluateExpression: .
insertRow:forEntity: Inserts the specified row.

updateValues:inRowsDescribedByQualifier:entity:

Updates the row described by the specified qualifier.

deleteRowDescribedByQualifier:entity:

Deletes the row described by the specified qualifier.

executeStoredProcedure:withValues:

Performs the specified stored procedure.

evaluateExpression: Sends the specified expression to the database.
—openChannel Opens the channel so it can perform database operations.
— closeChannel Close the channel.

— selectAttributes:fetchSpecification:lock:entity:

Selects rows matching the specified qualifier.

— fetchRowWithZone:

Fetches a row resulting from the last select... ,
executeStoredProcedure... , or evaluateExpression: .

— insertRow:forEntity:

Inserts the specified row.

— updateValues:inRowDescribedByQualifier:entity:

Updates the row described by the specified qualifier.




Classes: EOAdaptorChannel

— deleteRowDescribedByQuialifier:entity: Deletes the row described by the specified qualifier.
— executeStoredProcedure:withValues: Performs the specified stored procedure.
— evaluateExpression: Sends the specified expression to the database.

Performs an adaptor operation by invoking the
— performAdaptorOperation: EOAdaptorChannel method appropriate for performing the
specified operation.

For more information on subclassing EOAdaptorChannel, see “Creating an EOAdaptorChannel Subclass”.

Method Types
Accessing the adaptor context
— adaptorContext
Opening and closing a channel
— openChannel
— closeChannel
— isOpen
Creating an EOAdaptorChannel
— initWithAdaptorContext:

Modifying rows
— insertRow:forEntity:
— updateValues:inRowDescribedByQualifier:entity:
— updateValues:inRowsDescribedByQualifier:entity:
— deleteRowDescribedByQualifier:entity:
— deleteRowsDescribedByQualifier:entity:

Fetching rows
— selectAttributes:fetchSpecification:lock:entity:
— describeResults
— setAttributesToFetch:
— attributesToFetch
— fetchRowWithZone:
— dictionaryWithObijects:forAttributes:zone:
— cancelFetch
— isFetchInProgress

Invoking stored procedures
— executeStoredProcedure:withValues:
— returnValuesForLastStoredProcedurelnvocation

31



Assigning primary keys
— primaryKeyForNewRowWithEntity:

Sending SQL to the server
— evaluateExpression:

Batch processing operations
— performAdaptorOperation:
— performAdaptorOperations:

Accessing schema information
— describeTableNames
— describeStoredProcedureNames
— addStoredProceduresNamed:toModel:
— describeModelWithTableNames:

Debugging
— setDebugEnabled:
— isDebugEnabled
Accessing the delegate
— delegate

— setDelegate:

Instance Methods

32

adaptorContext
— (EOAdaptorContext ‘gdaptorContext

Returns the receiver's EOAdaptorContext. A subclass of EOAdaptorChannel doesn’t need to override this
method.

See also:  —initWithAdaptorContext:

addStoredProceduresNamed:toModel:

— (voidaddStoredProceduresNamedNSArray *)storedProcedureNames
toModel:(EOModel *)model

Overridden by subclasses to create EOStoredProcedure objects for the stored procedures named in
storedProcedureNamesd then to add them taodel This method is used in conjunction with
describeStoredProcedureNameto build a default model in EOModeler. Raises an exception if an error
occurs.



Classes: EOAdaptorChannel

attributesToFetch
— (NSArray *attributesToFetch

Implemented by subclasses to return the set of attributes to retrievdéatdiddowWithZone: is next
invoked. An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also:  setAttributesToFetch:

cancelFetch
— (void)ancelFetch

Implemented by subclasses to clear all result sets established by Hedeletztttributes:
fetchSpecification:lock:entity:, executeStoredProcedure:withValues:orevaluateExpressionmessage
and terminate the current fetch, so ts&etchinProgressreturns NO.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

closeChannel
— (voidcloseChannel

Implemented by subclasses to close the EOAdaptorChannel so that it can’t perform operations with the
server. Any fetch in progress is canceled. If the receiver is the last open channel in an adaptor context and
if the channel’'s adaptor context has outstanding transactions, closing the channel has server-dependent
results: some database servers roll back all outstanding transactions but others do nothing. Regardless of
whether outstanding transactions are rolled back, this method has the side effect of closing the receiver's
adaptor context’s connection with the database if the receiver is its adaptor context’s last open channel.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: — cancelFetch —transactionNestingLevel(EOAdaptorContext)

delegate
— (id)delegate

Returns the receiver’s delegate ndrif the receiver doesn’'t have a delegate. A subclass of
EOAdaptorChannel doesn’t need to override this method.

See also: setDelegate:

33



34

deleteRowDescribedByQualifier:entity:
— (void)deleteRowDescribedByQualifier{fEOQualifier *)jualifier entity: (EOEntity *)entity
Deletes the row described byalifier from the database table correspondingrttity. Invokes

deleteRowsDescribedByQualifier:entity:and raises an exception unless exactly one row is deleted. A
subclass of EOAdaptorChannel doesn't need to override this method.

deleteRowsDescribedByQualifier:entity:
— (unsigned ingeleteRowsDescribedByQualifietEOQualifier *)gualifier entity: (EOEntity *)entity
Implemented by subclasses to delete the rows descritmdhbfier from the database table corresponding

to entity Returns the number of rows deleted. Raises an exception on failure. Some possible reasons for
failure are:

* The adaptor channel isn’t open
e The adaptor channel is in an invalid state (for example, it's fetching).
» An error occurs in the database server

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: — deleteRowDescribedByQualifier:entity; —isOpen —isFetchinProgress
— transactionNestingLevel(EOAdaptorContext)

describeModelWithTableNames:
— (EOModel *describeModelWithTableNames{NSArray *tableNames
Overridden by subclasses to create and return a default model containing entities for the tables specified in

tableNamesAssigns the adaptor name and connection dictionary to the new model. This method is
typically used in conjunction wittescribeTableNamesnddescribeStoredProcedureNames

EOAdaptorChannel’'s implementation does nothing. An adaptor channel subclass should override this
method to create a default model from the database’s metadata.

describeResults
— (NSArray *describeResults

Implemented by subclasses to return an array of EOAttributes describing the properties available in the
current result set, as determineddejectAttributes:describedByQualifier:fetchOrder:lock:,
executeStoredProcedure:withValues:or a statement evaluatedénaluate Expression: Only invoke this
method if a fetch is in progress as determine@bgtchinProgress



Classes: EOAdaptorChannel

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

describeStoredProcedureNames
— (NSArray *describeStoredProcedureNames
Overridden by subclasses to read and return an array of stored procedure names from the database. This

method is used in conjunction witiildStoredProceduresNamed:toModelto build a default model in
EOModeler. Raises an exception if an error occurs.

describeTableNames
— (NSArray *describeTableNames

Overridden by subclasses to read and return an array of table names from the database. This method in
conjunction withdescribeModelWithTableNames:is used to build a default model.

EOAdaptorChannel’s implementation simply retunilsAn adaptor channel subclass should override this
method to construct an array of table names from database metadata.

dictionaryWithObjects:forAttributes:zone:

— (NSMutableDictionary WictionaryWithObjects: (id *) objects
forAttributes: (NSArray *)attributes
zone(NSZone *fone

Used by EOAdaptorChannel subclasses to create dictionaries that can be returned from
fetchRowWithZone:. You don't ordinarily invoke this method unless you are writing your own concrete
adaptor. If you are writing a concrete adaptor, use of this method is optional but strongly recommended
because it enables performance optimizations. The objeatgaatsare the values for the row that
correspond to the EOAttribute objectsaitributes The dictionary representation of the row is created from
zone

A subclass of EOAdaptorChannel shouldn't override this method.

evaluateExpression:
— (void)evaluateExpressionfEOSQLEXxpression Bxpression

Implemented by subclasses to sergressioro the database server for evaluation, beginning a transaction
first and committing it after evaluation if a transaction isn’t already in progress. Raises an exception if an
error occurs. An EOAdaptorChannel uses this method to send SQL expressions to the database.

35



36

If expressiomesults in a select operation being performed, you can fetch the results as you would if you
had sent aelectAttributes:fetchSpecification:lock:entity.. You must use the method
setAttributesToFetch: before you begin fetching. Also,akpressiorevaluates to multiple result sets, you
must invokesetAttributesToFetch: before you begin fetching each subsequent set.

evaluateExpressioninvokes the delegate methaatfaptorChannel:shouldEvaluateExpressionand
adaptorChannel:didEvaluateExpression:

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation. Note, however, that the upper layers of the Framework neveramabkate Expression:

directly. Thus, adaptors for data stores that don't naturally support an expression language (for example, flat
file adaptors) don’t need to implement this method to work with the Framework.

See also; —fetchRowWithZone:

executeStoredProcedure:withValues:

— (void)executeStoredProcedurdEOStoredProcedure $foredProcedure
withValues:(NSDictionary *yvalues

Implemented by subclasses to exeatteedProcedureAny arguments to the stored procedure are in
values a dictionary whose keys are the argument namesdfettisdRowWithZone: to get result rows and
returnValuesForLastStoredProcedurelnvocationto get return arguments and result status, if any. Raises
an exception if an error occurs.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation. Note, however, that the upper layers of the Framework never invoke
executeStoredProcedure:withValuesdirectly. Thus, adaptors for data stores that don’t support stored
procedures (for example, flat file adaptors) don’'t need to implement this method to work with the
Framework

fetchRowWithZone:
— (NSMutableDictionary #etchRowWithZone:(NSZone *zone

Implemented by subclasses to fetch the next row from the result set of seddasAttributes:
fetchSpecification:lock:entity:, executeStoredProcedure:withValues:or evaluateExpression:

message sent to the receiver. Returns values for the recattrdistesToFetch in a dictionary whose keys
are the attribute names. When there are no more rows in the current result set, this method refnuons
invokes the delegate methadaptorChannelDidChangeResultSetif there are more results sets. When
there are no more rows or result sets, this method retilyreds the fetch, and invokes
adaptorChannelDidFinishFetching:. isFetchinProgressreturns YES until the fetch is canceled or until
this method exhausts all result sets and remitn3 his method also invoke the delegate methods
adaptorChannelWillFetchRow: andadaptorChannel:didFetchRow:. Raises an exception if an error
occurs.



Classes: EOAdaptorChannel

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: — SsetAttributesToFetch:

initWithAdaptorContext:
—initWithAdaptorContext: (EOAdaptorContext ‘gdaptorContext

The designated initializer for the EOAdaptorChannel class, this method is overridden by subclasses to
initialize a newly allocated EOAdaptorChannel subclass and adaijotorContextReturnsself.

You never invoke this method directly unless you are implementing a concrete adaptor context. It is invoked
automatically froncreateAdaptorChannel—he EOAdaptorContext method you use to create a new
adaptor channel.

A subclass of EOAdaptorChannel doesn'’t need to override this method, but may override it to perform
additional initialization. A subclass that does override this method must incorporate the superclass’s version
through a message soper.

See also: —adaptorContext

insertRow:forEntity:
— (void)insertRow:(NSDictionary *yow forEntity: (EOEntity *)entity
Implemented by subclasses to insert the valueswinto the table in the database that corresponds to

entity row is a dictionary whose keys are attribute names and whose values are the values to insert. Raises
an exception on failure. Some possible reasons for failure are:

* The user logged in to the database doesn’t have permission to insert a new row.
« The adaptor channel is in an invalid state (for example, fetching).
» The row fails to satisfy a constraint defined in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

isDebugEnabled
— (BOOL)sDebugEnabled

Returns YES if the adaptor channel logs evaluated SQL and other useful information to the console (or to
the standard error stream), NO if not. A subclass of EOAdaptorChannel doesn’t need to override this
method.

See also: —setDebugEnabled; —setDebugEnabled:(EOAdaptorContext)

37



38

isFetchinProgress
— (BOOL)isFetchinProgress

Implemented by subclasses to return YES if the receiver is fetching, NO otherwise. An adaptor channel is
fetching if:

* It's been sent a success$dlectAttributes:describedByQualifier:fetchOrder:lock: message.

« A stored procedure that returns rows has been successfully executeexesimgStoredProcedure:
withValues:.

« An expression sent througlvaluateExpressionresulted in a select operation being performed.

An adaptor channel stops fetching when there are no more records to fetch or when itasesifatch
message.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: —fetchRowWithZone:

iIsOpen
— (BOOL)isOpen

Implemented by subclasses to return YES if the channel has been openggewifihanne] NO if not.
An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: —closeChannel

lockRowComparingAttributes:entity:qualifier:snapshot:

— (void)ockRowComparingAttributes: (NSArray *)attributes
entity: (EOEntity *)entity
qualifier: (EOQualifier *gualifier
shapshot(NSDictionary *snapshot

Attempts to lock a row in the database by selecting it with locking on. The lock operation succeeds if a
select statement generated wijthalifier retrieves exactly one row and the values in the row match the
values insnapshaqta dictionary whose keys are attribute names and whose values are the values that were
last fetched from the database.

lockRowComparingAttributes:entity:qualifier:snapshot: invokesselectAttributes:fetchSpecification:
lock:entity: with attributesas the attributes to select, a fetch specification built faatifier, locking on,
andentity as the entity. If the select returns no rows or more than one row, the method raises an
EOGeneralAdaptorException. It also raises an EOGeneralAdaptorException if the values in the returned
row don’t match the corresponding valuestmapshat



Classes: EOAdaptorChannel

The Framework uses this method whenever it needs to lock a row. When the Framework irnyaddédeit,
specifies the primary key of the row to be locked and attributes used for locking to be compared in the
database server. If any of the values specifiegiatifier are different from the values in the database row,
the select operation will not retrieve or lock the row. When this happens, the row to be locked has been
updated in the database since it was last retrieved, and it isn’t safe to update it.

Some attributes (such as BLOB types) can’t be compared in the datdtrdmdesshould specify any such
attributes. (If the row doesn’t contain any such attribatidsbutescan benil.) If qualifiergenerates a select
statement that returns and locks a single row, this method performs an in-memory comparison between the
value in the retrieved row and the valusi@apshofor each attribute iattributes Thereforesnapshomust

contain an entry for each attributeattributes In addition, it must contain an entry for the row’s primary

key.

A subclass of EOAdaptorChannel doesnt need to override this method.

openChannel
— (void)openChannel

Implemented by subclasses to put the channel and both its context and adaptor into a state where they are
ready to perform database operations. Raises an exception if an error occurs. An adaptor channel subclass
should override this method without invoking EOAdaptorChannel’s implementation.

See also: —isOpen —closeChannel

performAdaptorOperation:
— (voidyperformAdaptorOperation: (EOAdaptorOperation gdaptorOperation

PerformsadaptorOperatiorby invoking the adaptor channel method appropriate for performing the
specified operation. For example, if the adaptor operatad@ptorOperatioris
EOAdaptorinsertOperator, this method invokesertRow:forEntity: using information in
adaptorOperatiorto supply the arguments. Raises an exception if an error occurs.

A subclass of EOAdaptorChannel doesn’t need to override this method.

See also: — performAdaptorOperations:

performAdaptorOperations:
— (void)performAdaptorOperations: (NSArray *)adaptorOperations

Performs adaptor operations by invokperformAdaptorOperation: with each EOAdaptorOperation
object in the arragdaptorOperationsAn adaptor channel subclass may be able to override this method to

39



40

take advantage of database-specific batch processing capabilities. Invokes the delegate methods
adaptorChannel:willPerformOperations: andadaptorChannel:didPerformOperations:exception.

This method raises an exception if an error occurs. The exception’s userinfo dictionary contains these keys:
« EOAdaptorOperationsKey
Corresponds to the array of adaptor operations that’s being executed.
» EOFailedAdaptorOperationKey
Corresponds to the particular adaptor operation that failed.
» EOAdaptorFailureKey

If present, offers additional information on the type of error that occurred. Currently, the only
possible value for this key is EOAdaptorOptimisticLockingFailure, which indicates that an update

or lock operation failed because the row found in the database did not match the snapshot taken when
the row was last fetched into the application.

A subclass of EOAdaptorChannel doesn’t need to overrideditiermAdaptorOperations: method.

primaryKeyForNewRowWithEntity:
— (NSDictionary *primaryKeyForNewRowWithEntity: (EOEntity *)entity

Overridden by subclasses to return a primary key for a new row in the database table that corresponds to
entity The primary key returned from this method is a dictionary whose keys are the primary key attribute
names. For example, suppose you've got a table MOVIE with primary key MOVIE_ID, and the
corresponding Movie Entity’s primary key attributemsvielD. In this scenario, the dictionary returned

from primaryKeyForNewRowWithEntity: has one entry whose keyn®vielD and whose value is the
unique value to assign. If the primary key is compound (made up of more than one attribute), the dictionary
should contain an entry for each primary key attribute. Note, however, that the Enterprise Objects
Frameworks adaptors don't handle compound primary keys; they rétdram
primaryKeyForNewRowWithEntity: if the primary key is compound.

If information inentity specifies an adaptor-specific means to assign a new primary key (for example, a
sequence name or stored procedure), then this method returns a new primary key. Otherwise, if the key is a
simple integer, the method tries to fetch a new primary key from the database using an adaptor-specific
scheme. Otherwise, the method returihs

EOAdaptorChannel’'s implementation simply retuniis See your adaptor channel’s documentation for
information on how it generates primary keys.

A subclass of EOAdaptorChannel must override this method. For example, to return a value generated by
a sequence, you'd create the proper SQL statement (using EOSQLEXxpresgcessionForString:
method) and evaluate it (using tnaluateExpressionmethod).



Classes: EOAdaptorChannel

returnValuesForLastStoredProcedurelnvocation
— (NSDictionary *yeturnValuesForLastStoredProcedurelnvocation

Implemented by subclasses to return stored procedure parameter and return values. Used in conjunction
with executeStoredProcedure:withValues:The dictionary returned by this method has entries whose

keys are stored procedure parameter names and whose values are the parameter values. The dictionary also
contains a special entry for the stored procedures return value with the key “returnValue”. Returns an empty
dictionary for stored procedures that have void return types. Retiliifithe stored procedure has results

to fetch. In this case, you must desechRowWithZone: until there are no more results to fetch before the

return value will be available.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

selectAttributes:fetchSpecification:lock:entity:

— (void)selectAttributes:(NSArray *)attributes
fetchSpecification(EOFetchSpecification f@tchSpecification
lock: (BOOL)flag
entity: (EOEntity *)entity

Implemented by subclasses to seltiibutesin rows matching the qualifier fietchSpecificatioand set

the receiver’s attributes to fetch. The selected rows compose one or more result sets, each row of which will
be returned by subsequéatchRowWithZone: messages accordingfaichSpecificatioa sort orderings.

If flagis YES, the rows are locked if possible so that no other user can modify them (the lock specification
in fetchSpecificatiors ignored). Raises an exception if an error occurs. Some possible reasons for failure
are:

» The adaptor channel is in an invalid state (for example, fetching).
» The database failed to lock the specified rows.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: — setAttributesToFetch:

setAttributesToFetch:
— (void)setAttributesToFetch:(NSArray *)attributes

Implemented by subclasses to specify the set of attributes used to describe fetch data from a corresponding
selectattributesis an array of the attributes to fetch. This method is invokedeafadwate Expressionbut

before the first call ttetchRowWithZone:. For more information on using this method, see “Sending SQL
Statements Directly to the Server” in the “WebObjects Programming Topics.” Is that a good
cross-reference? This method raises if invoked when there is no fetch in progress.

41



42

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: — attributesToFetch, —selectAttributes:fetchSpecification:lock:entity:

setDebugEnabled:
— (void)setDebugEnabled(BOOL)flag

Enables debugging in the receiver and all its channdlaglis YES, enables debugging; otherwise,

disables debugging. When debugging is enabled, the adaptor channel logs evaluated SQL and other useful
debugging information to the console (or to the standard error stream). The information provided may vary
from adaptor to adaptor and may change from release to release.

A subclass of EOAdaptorChannel doesn’t need to override this method. A subclass that does override it
must incorporate the superclass’s version through a messsiggeto

See also: —isDebugEnabled —setDebugEnabled(EOAdaptorContext)

setDelegate:
— (voidsetDelegate(id)delegate
Sets the receiver’s delegatelwegateor removes its delegatediélegatasnil. The receiver does not retain

its delegate. A subclass of EOAdaptorChannel doesn’t need to override this method. A subclass that does
override it must incorporate the superclass’s version through a messagerno

See also: —delegate

updateValues:inRowDescribedByQualifier:entity:

— (voidupdateValues(NSDictionary *yvalues
inRowDescribedByQualifier:(EOQualifier *)yualifier
entity: (EOEntity *)entity

Updates the row described Qualifier. InvokesupdateValues:inRowsDescribedByQualifier:entity:and
raises an exception unless exactly one row is updated.

A subclass of EOAdaptorChannel doesn’t need to override this method.



Classes: EOAdaptorChannel

updateValues:inRowsDescribedByQualifier:entity:

— (unsigned in)pdateValues(NSDictionary *Values
inRowsDescribedByQualifier(EOQualifier *qualifier
entity: (EOEntity *)entity

Implemented by subclasses to update the rows descrilmpaabijer with the values ivalues valuesis a
dictionary whose keys are attribute names and whose values are the new values for those attributes (the
dictionary need only contain entries for the attributes being changed). Returns the number of updated rows.
Raises an exception if an error occurs. Some possible reasons for failure are:

* The user logged in to the database doesn’'t have permission to update.
« The adaptor channel is in an invalid state (for example, fetching).
e The new values fail to satisfy a constraint defined in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: —updateValues:inRowDescribedByQualifier:entity:

43



44



Classes:

Creating an EOAdaptorChannel Subclass

EOAdaptorChannel provides many default method implementations that are sufficient for concrete
subclasses:

« — adaptorContext

» —delegate

— deleteRowDescribedByQualifier:entity:

— isDebugEnabled

* —lockRowComparingAttributes:entity:qualifier:snapshot:
« — performAdaptorOperation:

» — performAdaptorOperations:

» — updateValues:inRowDescribedByQualifier:entity:

The following methods establish structure and conventions that other Enterprise Objects Framework classes
depend on and should be overridden with caution:

» — dictionaryWithObijects:forAttributes:zone:
» —initWithAdaptorContext:

e —setDebugEnabled:

» —setDelegate:

If you override any of the above methods, your implementations should incorporate the superclass’s
implementation through a messageuiper.

The remaining EOAdaptorChannel methods must be overridden by concrete subclasses in terms of the
persistent storage system with which it interacts:

» — attributesToFetch

+ — cancelFetch

» — closeChannel

— deleteRowsDescribedByQualifier:entity:

» — describeModelWithTableNames:

* —describeResults

— describeStoredProcedureNames

— describeTableNames

— evaluateExpression:

— executeStoredProcedure:withValues:

— fetchRowWithZone:

* — insertRow:forEntity:

— isFetchInProgress

* —isOpen

e —openChannel

» — primaryKeyForNewRowWithEntity:

— returnValuesForLastStoredProcedurelnvocation
— selectAttributes:fetchSpecification:lock:entity:

45



46

» — setAttributesToFetch:
» — updateValues:inRowsDescribedByQualifier:entity:



Classes: EOAdaptorContext

EOAdaptorContext
Inherits From: NSObiject
Declared In: EOAccess/EOAdaptorContext.h

Class Description

EOAdaptorContext is an abstract class that defines transaction handling in Enterprise Objects Framework
applications. You typically don't interact with EOAdaptorContext API directly; rather, a concrete adaptor
context subclass inherits from EOAdaptorContext and overrides many of its methods, which are invoked
automatically by the Enterprise Objects Framework. If you're not creating a concrete adaptor context
subclass, there aren’t very many methods you need to use, and you'll rarely invoke them directly.

The EOAdaptorContext class has the following principal attributes:

» Array of adaptor channels
* Delegate
« Adaptor

Other framework classes create EOAdaptorContext objects automatically. This is typically done with
EOAdaptor’s- createAdaptorContext method, which creates an adaptor context and assigns its adaptor.

The following table lists the most commonly-used EOAdaptorContext methods:

— beginTransaction Begins a transaction in the database server.

—commitTransaction Commits the last transaction begun.

—rollbackTransaction Rolls back the last transaction begun.

—setDebugEnabled: Enables debugging in all the adaptor context’s channels.

For more information, see “EOAdaptorContext”.

Method Types

Creating an EOAdaptorContext
— initWithAdaptor:

a7



Accessing the adaptor
— adaptor

Creating adaptor channels
— createAdaptorChannel
— channels

Checking connection status
— hasOpenChannels
— hasBusyChannels

Controlling transactions
— beginTransaction
— commitTransaction
— rollbackTransaction
— transactionDidBegin
— transactionDidCommit
— transactionDidRollback
— canNestTransactions
— transactionNestingLevel

Debugging
+ setDebugEnabledDefault:
+ debugEnabledDefault
— setDebugEnabled:
— isDebugEnabled

Accessing the delegate
— delegate
— setDelegate:

Class Methods

48

debugEnabledDefault
+ (BOOL)debugEnabledDefault

Returns YES if new adaptor context instances have debugging enabled by default, NO otherwise. By
default, adaptor contexts have debugging enabled if the user default EOAdaptorDebugEnabled is YES. (For
more information on user defaults, see the NSUserDefaults class specificatioRaaritiation

Framework ReferencgYou can override the user default using the class mes#ibebugEnabledDefault:

, Or you can set debugging behavior for a specific instance with the instance sstbhetnligEnabled:



Classes: EOAdaptorContext

setDebugEnabledDefault:
+ (void)setDebugEnabledDefaulttBOOL)flag
Sets default debugging behavior for new instances of EOAdaptorConfied.i¢f YES, debugging is

enabled for new instancesfldgis NO, debugging is disabled. Use the instance messibiebugEnabled:
to enable debugging for a specific adaptor context.

See also: + debugEnabledDefault —isDebugEnabled

Instance Methods

adaptor
— (EOAdaptor *adaptor

Returns the receiver’s EOAdaptor.

See also: — initWithAdaptor:

beginTransaction
— (voideginTransaction

Implemented by subclasses to attempt to begin a new transaction, nested within the current one if nested
transactions are supported. Each successful invocatimegaiTransaction must be paired with an
invocation of eithecommitTransaction or rollbackTransaction to end the transaction.

The Enterprise Objects Framework automatically wraps database operations in transactions, so you don't
have to begin and end transactions explicitly. In fact, letting the framework manage transactions is
sometimes more efficient. You typically useginTransactiononly to execute more than one database
operation in the same transaction scope.

This method invokes the delegate metaddptorContextShouldBegin:before beginning the transaction.

If the transaction is begun successfully, sesifmtransactionDidBegin message and invokes the delegate
methodadaptorContextDidBegin:. Raises if the attempt is unsuccessful. Some possible reasons for failure
are:

» A connection to the database hasn’t been established.

» Nested transactions aren't supported, and a transaction is already in progress.
¢ Afetch is in progress.

* The delegate refuses

The database server fails to begin a transaction.

49



50

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: —commitTransaction, —rollbackTransaction, —canNestTransactions
—transactionNestingLevel

canNestTransactions
— (BOOL)anNestTransactions

Implemented by subclasses to return YES if the database server and the adaptor context can nest
transactions, NO otherwise. An adaptor context subclass should override this method without invoking
EOAdaptorContext’s implementation.

See also: —transactionNestingLevel

channels
— (NSArray *channels

Returns an array of channels created by this context.

See also: createAdaptorChannel

commitTransaction
— (void}commitTransaction

Implemented by subclasses to attempt to commit the last transaction begun. Invokes the delegate method
adaptorContextShouldCommit: before committing the transaction. If the transaction is committed
successfully, sendslf atransactionDidCommit message and invokes the delegate method
adaptorContextDidCommit:. Raises if the attempt is unsuccessful. Some possible reasons for failure are:

« A transaction is not in progress.

» Fetches are in progress.

e The delegate refuses.

» The database server fails to commit.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: —beginTransaction —createAdaptorChannel —transactionDidCommit, —hasBusyChannels



Classes: EOAdaptorContext

createAdaptorChannel
— (EOAdaptorChannel tyeateAdaptorChannel

Implemented by subclasses to create and return a new AdaptorChaniiaf,anew channel cannot be
created. Initializes the new channel by sendimgtitvithAdaptorContext:self . The newly created channel
retains its context. A newly created adaptor context has no channels. Specific adaptors have different limits
on the maximum number of channels a context can havereagAdaptorChannelfails if a newly

created channel would exceed the limits.

See also: —channels

delegate
—delegate

Returns the receiver’s delegate ndrif the receiver doesn’t have a delegate.

See also: —setDelegate:

hasBusyChannels
— (BOOL)hasBusyChannels

Returns YES if any of the receiver’s channels have outstanding operations (that is, have a fetch in progress),
NO otherwise.

See also: —isFetchlnProgress(EOAdaptorChannel)

hasOpenChannels
— (BOOLhasOpenChannels

Returns YES if any of the receiver’'s channels are open, NO otherwise.

See also: —openChannel(EOAdaptorChannel), isOpen (EOAdaptorChannel)

initWithAdaptor:
— initwithAdaptor: (EOAdaptor *pdaptor

The designated initializer for the EOAdaptorContext class, this method is overridden by subclasses to
initialize a newly allocated EOAdaptorContext subclass and ratiiptor Returnsself.

51



52

You never invoke this method directly. You must use the EOAdaptor metbai AdaptorContextto
create a new adaptor context.

See also: —adaptor

isDebugEnabled
— (BOOL)sDebugEnabled

Returns YES if debugging is enabled in the receiver, NO otherwise.

See also: —setDebugEnabled; + debugEnabledDefault + setDebugEnabledDefault:

rollbackTransaction

— (voidYyollbackTransaction
Implemented by subclasses to attempt to roll back the last transaction begun. Invokes the delegate method
adaptorContextShouldRollback: before rolling back the transaction. If the transaction is begun

successfully, sendself atransactionDidRollback message and invokes the delegate method
adaptorContextDidRollback:. Raises if the attempt is unsuccessful. Some possible reasons for failure are:

« A transaction is not in progress.

» Fetches are in progress.

e The delegate refuses.

» The database server fails to rollback.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: — beginTransaction —commitTransaction

setDebugEnabled:
— (void)setDebugEnabled(BOOL)flag

Enables debugging in the receiver and all its channdlaglis YES, enables debugging; otherwise,
disables debugging.

See also: —setDebugEnabled(EOAdaptorChannel), isDebugEnabled + setDebugEnabledDefault;
—channels



Classes: EOAdaptorContext

setDelegate:
— (voidsetDelegatedelegate

Sets the receiver’s delegate and the delegate of all the receiver’'s chadetdgdte or removes their
delegates itlelegates nil. The receiver does not retalelegate

See also: —delegate —channels

transactionDidBegin
— (voidtransactionDidBegin

Informs the adaptor context that a transaction has begun in the database server, so the receiver can update
its state to reflect this fact and send an EOAdaptorContextBeginTransactionNotification. This method is
invoked frombeginTransaction after a transaction has successfully been started. It is also invoked when

the Enterprise Objects Framework implicitly begins a transaction.

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’'s implementation of
beginTransaction method and anywhere else it begins a transaction—either implicitly or explicitly. For
example, an adaptor channel's implementatioevafuateExpressionshould check to see if a transaction
is in progress. If no transaction is in progress, it can start one explicitly by indmgmgTransaction
Alternatively, it can start an implicit transaction by invokiransactionDidBegin.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a messagedo

See also: —transactionDidCommit, —transactionDidRollback

transactionDidCommit
— (voidtransactionDidCommit

Informs the adaptor context that a transaction has committed in the database server, so the receiver can
update its state to reflect this fact and send an EOAdaptorContextCommitTransactionNotification. This
method is invoked fromommitTransaction after a transaction has successfully committed.

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’s implementation of
commitTransaction method and anywhere else it commits a transaction—either implicitly or explicitly.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a messagedo

See also: —transactionDidBegin, —transactionDidRollback

53



transactionDidRollback
— (void)transactionDidRollback

Informs the receiver that a transaction has rolled back in the database server, so the adaptor context can
update its state to reflect this fact and send an EOAdaptorContextRollbackTransactionNotification. This
method is invoked fromollbackTransaction after a transaction has successfully been rolled back.

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’'s implementation of
rollbackTransaction method and anywhere else it rolls back a transaction—either implicitly or explicitly.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a messaged¢o

See also: —transactionDidBegin, —transactionDidCommit

transactionNestingLevel
— (unsignedyansactionNestingLevel

Returns the number of transactions in progress. If the database server and the adaptor support nested
transactions, this number may be greater than 1.

See also: —canNestTransactions

Notifications

54

EOAdaptorContextBeginTransactionNotification

Sent fromtransactionDidBegin to tell observers that a transaction has begun. The notification contains:

Notification Object The notifying EOAdaptorContext object

Userinfo None

EOAdaptorContextCommitTransactionNotification

Sent frontransactionDidCommit to tell observers that a transaction has been committed. The notification
contains:

Notification Object The notifying EOAdaptorContext object




Classes: EOAdaptorContext

Userinfo None

EOAdaptorContextRollbackTransactionNotification

Sent fromtransactionDidRollback to tell observers that a transaction has been rolled back. The
notification contains:

Notification Object The notifying EOAdaptorContext object

Userinfo None

55



56



Classes: EOAdaptorContext

EOAdaptorContext

EOAdaptorContext is an abstract class that provides its concrete subclasses with a structure for handling
database transactions. It's associated with EOAdaptor and EOAdaptorChannel, which, together with
EOAdaptorContext, form thadaptor levebf Enterprise Objects Framework’s access layer. See the
EOAdaptor class specification for more information about accessing, creating, and using adaptor level
objects.

A concrete subclass of EOAdaptorContext provides database-specific method implementations and
represents a single transaction scope (logical user) on the database server to which its EOAdaptor object is
connected. You never interact with instances of the EOAdaptorContext class, rather your Enterprise Objects
Framework applications use instances of concrete subclasses that are written to work with a specific
database or other persistent storage system. To create an instance of a concrete EOAdaptorContext subclass,
you send areateAdaptorContextmessage to an instance of the corresponding EOAdaptor subclass. You
rarely create adaptor contexts yourself. They are generally created automatically by other framework
objects.

If a database server supports multiple concurrent transaction sessions, an adaptor context’'s EOAdaptor can
have several contexts. When you use multiple EOAdaptorContexts for a single EOAdaptor, you can have
several database server transactions in progress simultaneously. You should be aware of the issues involved
in concurrent access if you do this.

An EOAdaptorContext has an EOAdaptorChannel, which handles actual access to the data on the server. If
the database server supports it, a context can have multiple channels. See your adaptor context’s
documentation to find out if your adaptor supports multiple channels. An EOAdaptorContext by default has
no EOAdaptorChannels; to create a new channel send your EOAdaptorCaméateAdaptorChannel

message.

Controlling Transactions

EOAdaptorContext defines a simple set of methods for explicitly controlling transactions:
beginTransaction commitTransaction, androllbackTransaction. Each of these messages confirms the
requested action with the adaptor context’s delegate, then performs the action if possible.

There’s also a set of methods for notifying an adaptor context that a transaction has been started, committed,
or rolled back without using tHeeginTransaction commitTransaction, orrollbackTransaction

methods. For example, if you invoke a stored procedure in the server that begins a transaction, you need to
notify the adaptor context that a transaction has been started. Use the following methods to keep an adaptor
context synchronized with the state of the database staresactionDidBegin,

transactionDidCommit, andtransactionDidRollback. These methods post notifications.

The Adaptor Context’s Delegate and Notifications

You can assign a delegate to an adaptor context. The delegate responds to certain messages on behalf of the
context. An EOAdaptorContext sends these messages directly to its delegate. The transaction-controlling

57



58

methods—beginTransaction, commitTransaction, androllbackTransaction—notify the adaptor

context's delegate before and after a transaction operation is performed. Some delegate methods, such as
adaptorContextShouldBegin; let the delegate determine whether the context should perform an

operation. Others, such adaptorContextDidBegin:, are simply notifications that an operation has

occurred. The delegate has an opportunity to respond by implementing the delegate methods. If the delegate
wants to intervene, it implemeragaptorContextShouldBegin: If it simply wants notification when a
transaction has begun, it implemeati&ptorContextDidBegin..

EOAdaptorContext also posts notifications to the application’s default notification center. Any object may
register to receive one or more of the notifications posted by an adaptor context by sending the message
addObserver:selector:name:objectito the default notification center (an instance of the
NSNotificationCenter class). For more information on notifications, see the NSNotificationCenter class
specification in thé&oundation Framework Reference

Creating an EOAdaptorContext Subclass

EOAdaptorContext provides many default method implementations that are sufficient for concrete
subclasses. The following methods establish structure and conventions that other Enterprise Objects
Framework classes depend on and should never be overridden:

* + setDebugEnabledDefault:
» — transactionDidBegin

e — transactionDidCommit

» —transactionDidRollback

« —transactionNestingLevel

Other methods require database-specific implementations that can be provided only by a concrete adaptor
context subclass. A subclass must override the following methods in terms of the persistent storage system
to which it interacts:

e — beginTransaction

* — canNestTransactions
* — commitTransaction

e — createAdaptorChannel
— rollbackTransaction



Classes: EOAdaptorOperation

EOAdaptorOperation

Inherits From: NSObiject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabaseOperation.h

Class Description

An EOAdaptorOperation object represents a primitive operation in a database server—Iock, insert, update,
or delete a row; or execute a stored procedure—and all the necessary information required by the operation.
An EOAdaptorOperation is processed by an EOAdaptorChannel object in the method
performAdaptorOperation: . You don't ordinarily create instances of EOAdaptorOperation; rather, the
Framework automatically creates an EOAdaptorOperation object and sends it to an adaptor channel when
your application needs the database server to perform an operation. You generally interact with
EOAdaptorOperation objects only if you need to specify the order in which a set of operations are carried
out (see the description for the EODatabaseContext delegate ndathbdseContext:
willOrderAdaptorOperationsFromDatabaseOperations:).

An EOAdaptorOperation has an entity and an operator (the type of operation the object represents). An
adaptor operation’s operator (EOAdaptorLockOperator, EOAdaptorinsertOperator,
EOAdaptorUpdateOperator, EOAdaptorDeleteOperator, or EOAdaptorStoredProcedureOperator)
determines additional, operator-dependent information used by the EOAdaptorOperation object. For
example, only a stored procedure operation has an EOStoredProcedure object. The operator-dependent
information is accessible using the methods described below.

Method Types
Creating a new EOAdaptorOperation
— initWithEntity:
Accessing the entity
— entity
Accessing the operator
— setAdaptorOperator:
— adaptorOperator
Accessing the qualifier
— setStoredProcedure:
— qualifier

59



Accessing locking attributes
— setAttributes:
— attributes

Accessing operation values
— setChangedValues:
— changedValues

Accessing a stored procedure
— setStoredProcedure:
— storedProcedure

Handling errors during the operation
— setException:
— exception

Comparing operations
— compareAdaptorOperation:

Instance Methods
adaptorOperator
— (EOAdaptorOperataaflaptorOperator

Returns the receiver’s adaptor operator. The operator indicates which of the other adaptor operation
attributes are valid. For example, an adaptor operation whose operator is EOAdaptorinsertOperator uses
changedValues but notattributes, qualifier, or storedProcedure

See also: setAdaptorOperator:

attributes
— (NSArray *attributes

Returns the array of attributes to select when locking the row. If attributes have not been assigned to the
receiver, the primary key attributes are selected. Only valid for adaptor operations with the
EOAdaptorLockOperator.

See also: — setAttributes:

60



Classes: EOAdaptorOperation

changedValues
— (NSDictionary *rhangedValues

Returns the dictionary of values that need to be updated, inserted, or compared for locking purposes.

See also: —setChangedValues:

compareAdaptorOperation:
— (NSComparisonResutympareAdaptorOperation:(EOAdaptorOperation tperation

Orders adaptor operations alphabetically by entity name and by adaptor operator within the same entity. The
adaptor operators are ordered as follows:

» EOAdaptorLockOperator

» EOAdaptorinsertOperator

« EOAdaptorUpdateOperator

« EOAdaptorDeleteOperator

» EOAdaptorStoredProcedureOperator

EOAdaptorLockOperator precedes EOAdaptorinsertOperator, EOAdaptorinsertOperator precedes
EOAdaptorUpdateOperator, and so on.

An EODatabaseContext ussmmpareAdaptorOperation: to order adaptor operations before invoking
EOAdaptorChannel’performAdaptorOperations: method.

entity
— (EOEntity *entity
Returns the entity to which the operation will be applied.

See also: —initWithEntity:

exception
— (NSException *@xception

Returns the exception that was raised when an adaptor channel attempted to process the receiver. Returns
nil if no exception was raised or if the receiver hasn’t been processed yet.

See also: — setException:

61



62

qualifier
— (EOQualifier *pualifier

Returns the qualifier that identifies the specific row to which the operation applies. Not valid with adaptor
operations with the operators EOAdaptorinsertOperator and EOAdaptorStoredProcedureOperator.

InitWithEntity:
— initWithEntity: (EOEntity *)entity

The designated initializer, initializes a new EOAdaptorOperation instance, and sets the entity to which the
operation will be applied. Retursslf

See also: —entity

setAdaptorOperator:
— (void)setAdaptorOperator: (EOAdaptorOperatogdaptorOperator

Sets the receiver’s operatoradaptorOperatorwhich is one of the following:

» EOAdaptorLockOperator

« EOAdaptorinsertOperator

» EOAdaptorUpdateOperator

« EOAdaptorDeleteOperator

« EOAdaptorStoredProcedureOperator

For more information, see the discussion on adaptor operators in the class description above.

See also: —adaptorOperator

setAttributes:
— (void)setAttributes: (NSArray *)attributes

Sets the array of attributes to select when locking the row. The selected values are compared in memory to
the corresponding snapshot values to determine if a row has changed since the application last fetched it.
attributesis an array of EOAttribute objects that can’t be compared in a qualifier (generally BLOB types);

it should not bail or empty. Generally, an adaptor operation’s qualifier contains all the comparisons needed
to verify that a row hasn’t changed since the application last fetched, inserted, or updated it. In this case (if
there aren't any attributes that can’t be compared in a qual#tailputesshould contain primary key

attributes. This method is only valid for adaptor operations with the EOAdaptorLockOperator.

See also: — attributes, —entity



Classes: EOAdaptorOperation

setChangedValues:
— (void)setChangedValuegNSDictionary *thangedValues

Sets the dictionary of values that need to be updated, inserted, or compared for locking purposes.

changedValuess a dictionary object whose keys are attribute names and whose values are the values for

those attributes. As summarized in the following table, the contentenfjedValuedepends on the
receiver’s operator:

Operator Contents of changedValues Dictionary

EOAdaptorLockOperator snapshot yalues l_Jsed tq ve_rlfy that the data_lbase row hasn'’t
changed since this application last fetched it

EOAdaptorinsertOperator the values to insert

EOAdaptorUpdateOperator the new values for the columns to update

snapshot values (changedValues is only valid for
EOAdaptorDeleteOperator AdaptorDeleteOperation if the receiver’s entity uses a stored
procedure to perform delete operations.)

EOAdaptorStoredProcedureOperator  snapshot values

See also: —changedValues

setException:
— (void)setException(NSException *gxception

Sets the receiver’s exceptiondxception This method is typically invoked from EOAdaptorChannel’s
performAdaptorOperations: method. If a database error occurs while processing an adaptor operation
the adaptor channel creates an exception and assigns it to the adaptor operation.

See also: —exception

setQualifier:
— (void)setQualifier:(EOQualifier *)qualifier
Sets the qualifier that identifies the row to which the adaptor operation is to be apglatifier.

See also: — qualifier

63



64

setStoredProcedure:
— (void)setStoredProcedure(EOStoredProcedure $loredProcedure

Sets the receiver’s stored procedursttwedProcedure

See also: — storedProcedure

storedProcedure
— (EOStoredProcedurestpredProcedure

Returns the receiver’s stored procedure. Only valid with adaptor operations with the
EOAdaptorStoredProcedureOperation.

See also: —setStoredProcedure:



Classes: EOAttribute

EOAttribute

Inherits From: NSObiject

Conforms To: NSObject (NSObject)
Declared In: EOAccess/EOAttribute.h

Class Description

An EOAttribute represents a column, field or property in a database, and associates an internal name with
an external name or expression by which the property is known to the database. The property an
EOAttribute represents may be a meaningful value, such as a salary or a name, or it may be an arbitrary
value used for identification but with no real-world applicability (ID numbers and foreign keys for
relationships fall into this category). An EOAttribute also maintains type information for binding values to
the instance variables of objects.

EOAttributes are also used to represent arguments for EOStoredProcedures.

You usually define attributes in your EOModel with the EOModeler application, which is documented in
WebObjects Tools and Techniguésur code probably won't need to programmatically interact with
EOAttribute unless you're working at the adaptor level. See “Creating Attributes” for information on
creating your own attribute objects.

Fore detailed discussion of using attribute objects to map database data types to JavaObijective-C objects,
see “Mapping Attributes.” EOAttributes can also alter the way values are selected, inserted, and updated in
the database by defining special format strings; see “SQL Statement Formats” for more information.

Adopted Protocols

EOPropertyListEncoding
— awakeWithPropertyList
— encodelntoPropertyList:
— initWithPropertyList:owner:

65



Method Types

66

Accessing the entity
— entity
— parent

Accessing the name
— setName:
— name
— validateName:
— beautifyName

Accessing date information
— serverTimeZone
— setServerTimeZone:

Accessing external definitions
— setColumnName:
— columnName
— setDefinition:
— definition
— setExternalType:
— externalType

Accessing value type information
— setValueClassName:
— valueClassName
— setValueType:
—valueType
— setAllowsNull:
— allowsNull
— setPrecision:
— precision
— setScale:
— scale
— setWidth:
— width
— validateValue:

Converting to adaptor value types
— adaptorValueByConvertingAttributeValue:
— adaptorValueType



Classes: EOAttribute

Working with custom value types
— setValueFactoryMethodName:
— valueFactoryMethod
— valueFactoryMethodName
— setFactoryMethodArgumentType:
— factoryMethodArgumentType
— setAdaptorValueConversionMethodName:
— adaptorValueConversionMethod
— adaptorValueConversionMethodName

Accessing attribute characteristics
— setReadOnly:
— isReadOnly
— isDerived
— isFlattened

Accessing SQL statement formats
— setReadFormat:
— readFormat
— setWriteFormat:
— writeFormat

Accessing the user dictionary
— setUserInfo:
— userinfo

Methods used by the adaptor
— newDateForYear:month:day:hour:minute:second:millisecond:
timezone:zone:
— newValueForBytes:length:
— newValueForBytes:length:encoding:

Working with stored procedures
— setParameterDirection:
— parameterDirection
— storedProcedure

Working with prototypes
— overridesPrototypeDefinitionForKey:
— prototype
— prototypeName
— setPrototype:

<<Need to add more info to this on the implications to custom value classes.>>

67



Instance Methods

68

adaptorValueByConvertingAttributeValue:
— (id)adaptorValueByConvertingAttributeValue: (id)value

Ensures thatalueis eitheran NSString, NSNumber, NSData, or NSDate, converting it if necessahyelf
needs to be convertealaptorValueByConvertingAttributeValue: uses the adaptor conversion method
to convertvalueto one of these four primitive types. If the attribute hasn’t a specific adaptor conversion
method, and the type to be fetched from the database is EOAdaptorBytesType, “archiveData” will be
invoked to convert the attribute value.

See also: — adaptorValueConversionMethod —adaptorValueType

adaptorValueConversionMethod
— (SEL)daptorValueConversionMethod

Returns the method used to convert a custom class into one of the primitive types that the adaptor knows
how to manipulate: NSString, NSNumber, NSData, or NSDate. The return value of this method is derived
from the attribute’s adaptor value conversion method name. If that name doesn’t map to a valid selector in
the Objective-C run-timeyil is returned.

See also: — adaptorValueByConvertingAttributeValue: , — adaptorValueConversionMethodName

adaptorValueConversionMethodName
— (NSString *adaptorValueConversionMethodName

Returns the name of the method used to convert a custom class into one of the primitive types that the
adaptor knows how to manipulate: NSString, NSNumber, NSData, or NSDate.

See also: — adaptorValueByConvertingAttributeValue:



Classes: EOAttribute

adaptorValueType
— (EOAdaptorValue TypadaptorValueType

Returns an EOAdaptorValueType that indicates the data type that will be fetched from the database.
Currently, this method returns one of the following values:

Constant Description
EOAdaptorNumberType A number value
EOAdaptorCharactersType A string of characters
EOAdaptorBytesType Raw bytes
EOAdaptorDateType A date

See also: —factoryMethodArgumentType

allowsNull
— (BOOLallowsNull

Returns YES to indicate that the attribute can havéalue, NO otherwise. If the attribute maps directly
to a column in the database, it also is used to determine whether the database column can have a NULL
value.

See also: —setAllowsNull:

beautifyName
— (voidbeautifyName

Makes the attribute name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME" becomes “name”, and “FIRST_NAME" becomes “firstName”. This method is used in
reverse-engineering an EOModel.

See also: —validateName; —beautifyNames(EOModel)

69



70

columnName
— (NSString *rolumnName

Returns the name of the column in the database that corresponds to this attnitiuifiether attribute isn’t

simple (that is, if it's derived or flattened). An adaptor uses this name to identify the column corresponding
to the attribute. Your application should never need to use this name. No@uhatNameanddefinition

are mutually exclusive; if one returns a value, the other rehilrns

See also: , — externalType

definition
— (NSString *Jefinition

Returns a derived or flattened attribute’s definitiomiloif the attribute is simple. An attribute’s definition

is either a value expression defining a derived attribute, such as “salary * 12", or a data path for a flattened
attribute, such as “toAuthor.name”. Note tbalumnNameanddefinition are mutually exclusive; if one

returns a value, the other retumis

See also: — externalType, — setDefinition:

entity
— (EOEntity *entity

Returns the entity that owns the attributenibif this attribute is acting as an argument for a stored
procedure.

See also: — storedProcedure

externalType
— (NSString *gxternalType

Returns the attribute’s type as understood by the database; for example, a Sybase “varchar” or an Oracle
“NUMBER”.

See also: —columnName, — setExternalType:



Classes: EOAttribute

factoryMethodArgumentType
— (EOFactoryMethodArgumentTydagtoryMethodArgumentType

Returns the type of argument that should be passed to the “factory method”—which is invoked by the
attribute to create an attribute value for a custom class. This method returns one of the following values:

Constant Argument Type

EOFactoryMethodArgumentlsNSData  NSData

EOFactoryMethodArgumentlsNSString  NSString

EOFactoryMethodArgumentlsBytes raw bytes

See also: —valueFactoryMethod, —setFactoryMethodArgumentType:

isDerived
— (BOOL)sDerived

Returns NO if the attribute corresponds exactly to one column in the table associated with its entity, and
YES if it doesn’t. For example, an attribute with a definition of “otherAttributeName + 1" is derived.

Note that flattened attributes are also considered as derived attributes.

See also: —isFlattened —definition

isFlattened
— (BOOL)sFlattened

Returns YES if the attribute is flattened, NO otherwise. A flattened attribute is one that's accessed through
an entity’s relationships but belongs to another entity.

Note that flattened attributes are also considered to be derived attributes.

See also: —isDerived, —definition

isReadOnly
— (BOOL)sReadOnly

Returns YES if the value of the attribute can’t be modified, NO if it can.

See also: —setReadOnly:

71



72

name
— (NSString *hame
Returns the attribute’s name.

See also: —columnName —definition, — setName:

newDateForYear:month:day:hour:minute:second:millisecond:timezone:zone:

— (NSCalendarDate mewDateForYear:(int)yearmonth: (unsignednonthday:(unsignedilay hour:
(unsignedhour minute: (unsignedninutesecond(unsigned$econdnillisecond:
(unsignediillisecondtimezone(NSTimeZone *}imezoneone(NSZone *xone

Returns an NSCalendarDate given discrete values for year, month, day, and so on. This method is used by
EOAdaptorChannel subclasses to create a calendar date object to return in an adaptor row. For efficiency
reasons, the caller is responsible for releasing the return value.

newValueForBytes:length:
— (id)newValueForBytes(const void *pyteslength:(int)length

Generates an NSString or custom class value object from a supplied set of bytes. This method is called by
the adaptor during value creation while fetching from the database. For efficiency reasons, the caller is
responsible for releasing the return value.

newValueForBytes:length:encoding:

— (id)newValueForBytes(const void *pyteslength:(int)lengthencoding:
(NSStringEncodingncoding

Generates an NSData or custom class value object from a supplied set of bytes with a given
NSStringEncoding. This method is called by the adaptor during value creation while fetching from the
database. For efficiency reasons, the caller is responsible for releasing the return value.

overridesPrototypeDefinitionForKey:
— (BOOL)overridesPrototypeDefinitionForKey:(NSString *key

Returns NO if the requested key gets its value from the prototype attribute. If the attribute has an override,
then this method returns YES. Valid values for key include @“columnName,” @“valueClass,” and so on.

See also: — prototype



Classes: EOAttribute

parameterDirection
— (EOParameterDirectioparameterDirection

Returns the parameter direction for attributes that are arguments to a stored procedure. This method returns
one of the following values:

Constant Description
EOVoid No parameters
EOInParameter Input only parameters

EOOutParameter Output only parameters

EOInOutParameter Bidirectional parameters (input and output)

See also: — storedProcedure —storedProcedureForOperation: (EOEntity), —setParameterDirection:

parent
— (id)parent

Returns the attribute’s parent, which is either an EOEntity or an EOStoredProcedure. Use this method when
you need to find the model for an attribute:

EOModel *myModel = [[anAttribute parent] model];

precision
— (unsigned)recision

Returns the precision of the database representation for attributes with a value class of NSNumber or
NSDecimalNumber.

See also: —scale

prototype
— (EOAttribute *prototype

Returns the prototype attribute that is used to define default settings for the receiver.

See also: —overridesPrototypeDefinitionForKey:

73



74

prototypeName
— (NSString *prototypeName

Returns the name of the prototype attribute of the receiver.

See also: — prototype

readFormat
— (NSString *yeadFormat

Returns a format string of the appropriate type that can be used when building an expression that contains
the value of the attribute.

See also: —setReadFormat; — writeFormat

scale
— (int)scale

Returns the scale of the database representation for attributes with a value class of NSNumber or
NSDecimalNumber. The returned value can be negative.

See also: — precision, — setScale:

serverTimeZone
— (NSTimeZone *3erverTimeZone

Returns the time zone assumed for NSDates in the database server, or the local time zone if one hasn’t been
set. An EOAdaptorChannel automatically converts dates between the time zones used by the server and the
client when fetching and saving values. Applies only to attributes that represent dates.

See also: + localTimeZone (NSTimeZone), setServerTimeZone:

setAdaptorValueConversionMethodName:
— (void)setAdaptorValueConversionMethodName(NSString *)conversionMethodName

Sets toconversionMethodNarntae name of the method used to convert a custom class into one of the
primitive types that the adaptor knows how to manipulate: NSString, NSNumber, NSData, or NSDate. Note
that your adaptor value conversion method should return an autoreleased object.

See also: — adaptorValueConversionMethodName



Classes: EOAttribute

setAllowsNull:
— (void)setAllowsNull:(BOOL)allowsNull

Sets according tallowsNullwhether or not the attribute can havalavalue. If the attribute maps directly
to a column in the database, it also controls whether the database column can have a NULL value.

See also: —allowsNull

setColumnName:
— (void)setColumnName(NSString *olumnName

Sets tacolumnNaméehe name of the attribute used in communication with the database server. An adaptor
uses this name to identify the column corresponding to the attribute; this name must match the name of a
column in the database table corresponding to the attribute’s entity.

This method makes a derived or flattened attribute simplelgetfir@tion is released and the column name
takes its place for use with the server.

Note: setColumnName:andsetDefinition: are closely related. Only one can be set at any given time.
Invoking either of these methods causes the other value to bendet to

See also: — columnName

setDefinition:
— (void)setDefinition:(NSString *definition

Sets tadefinitionthe attribute’s definition as recognized by the database s#efiaitionshould be either a
value expression defining a derived attribute, such as “salary * 12", or a data path for a flattened attribute,
such as “toAuthor.name”.

Prior to invoking this method, the attribute’s entity must have been set by adding the attribute to an entity.
This method will not function correctly if the attribute’s entity has not been set.

This method converts a simple attribute into a derived or flattened attributejuhemnNameis released
and the definition takes its place for use with the server.

Note: setColumnName:andsetDefinition: are closely related. Only one can be set at any given time.
Invoking either of these methods causes the other value to benget to

See also: — definition

75



76

setExternalType:
— (void)setExternalType(NSString *typeName

Sets taypeNamehe type used for the attribute in the database adaptor; for example, a Sybase “varchar” or
an Oracle7 “NUMBER”. Each adaptor defines the set of types that can be suppé#gxiernalType:.
The external type you specify for a given attribute must correspond to the type used in the database server.

See also: — setDefinition:, — externalType

setFactoryMethodArgumentType:
— (void)setFactoryMethodArgumentType (EOFactoryMethodArgumentTypagumentType

Sets the type of argument that should be passed to the “factory method"—which is invoked by the receiver
to create a value for a custom class. Factory methods can accept NSStrings, NSDatas, or raw bytes; specify
anargumentTypas EOFactoryMethodArgumentIsNSString, EOFactoryMethodArgumentisNSData, or
EOFactoryMethodArgumentisBytes as appropriate.

See also: —setValueFactoryMethodName:, — factoryMethodArgumentType

setName:
— (void)setName(NSString *name

Sets the attribute’s nameiame Raises an NSinvalidArgumentExceptiom@#imeis already in use by
another attribute or relationship of the same entity, oaifieis not a valid attribute name.

See also: —VvalidateName:, — name

setParameterDirection:
— (void)setParameterDirection{EOParameterDirectioparameterDirection

Sets the parameter direction for attributes that are arguments to a stored prpesdometerDirection
should be one of the following values:

+ EOVoid

e EOInParameter

e EOOutParameter
EOInOutParameter

See also: — setStoredProcedure:forOperation:(EOEntity), —parameterDirection



Classes: EOAttribute

setPrecision:
— (void)setPrecision(unsignedprecision

Sets tqorecisionthe precision of the database representation for attributes with a value class of NSNumber
or NSDecimalNumber.

See also: —setScale:, — precision

setPrototype:
— (void)setPrototype(EOAttribute *)prototype

Sets the prototype attribute. This overrides any existing settings in the attribute.

See also: —prototype

setReadFormat:
— (void)setReadFormat(NSString *aString

Sets the format string that's used to format the attribute’s value for SELECT statema8tsinip %P is
replaced by the attribute’s external name. For example:

[myAttribute setReadFormat: @ TO_UPPER(%P)'T;
The read format string is used whenever the attribute is referenced in a select list or qualifier.

See also: — setWriteFormat:, — readFormat

setReadOnly:
— (void)setReadOnly(BOOL)flag

Sets whether the value of the attribute can be modified accordiag.tBaises an
NSinvalidArgumentException flagis NO and the argument is derived but not flattened.

See also: —isDerived, —isFlattened, — isReadOnly

setScale:
— (void)setScale(int)scale

Sets toscalethe scale of the database representation for attributes with a value class of NSNumber or
NSDecimalNumbeiscalecan be negative.

See also: — setPrecision:, — scale

77



78

setServerTimeZone:
— (void)setServerTimeZone(NSTimeZone *aTimeZone

Sets taaTimeZonghe time zone used for NSDates in the database ser@&miéZones nil then the local
time zone is used. An EOAdaptorChannel automatically converts dates between the time zones used by the
server and the client when fetching and saving values. Applies only to attributes that represent dates.

See also: —serverTimeZone

setUserInfo:
— (void)setUserinfoi(NSDictionary *dictionary

Sets tadictionarythe dictionary of auxiliary data, which your application can use for whatever it needs.
dictionary can only contain property list data types (that is, NSDictionary, NSArray, NSData, and
NSString).

See also: —userinfo

setValueClassName:
— (void)setValueClassNamgNSString *hame

Sets the class name for values of this attributeatne When an EOAdaptorChannel fetches data for the
attribute, it's presented to the application as an instance of this class.

The class need not exist in the run-time system when this message is sent, but it must exist when an adaptor
channel performs a fetch; if the class isn't present the result depends on the adaptor. See your adaptor’s
documentation for information on how absent value classes are handled.

As an example, if your attribute’s values are instances of NSImage, send the following:
[myAttribute setValueClassName:@"NSImage'T;

See also: —setValueType:, — valueClassName

setValueFactoryMethodName:

— (void)setValueFactoryMethodName{NSString *factoryMethodName
Sets the “factory method”—which is invoked by the attribute to create an attribute value for a custom
class—tdofactoryMethodNameT he factory method should be a class method returning an autoreleased

object of your custom value class. WstFactoryMethodArgumentType:to specify the type of argument
that is to be passed to your factory method.

See also: —VvalueFactoryMethodName



Classes: EOAttribute

setValueType:
— (void)setValueType(NSString *typeName

Sets taypeNamehe conversion character (such as “i” or “d”) for the data type an NSNumber attribute is
converted to and from in your application. Value types are scalars sinthfisat, anddouble. Each

adaptor supports a different set of conversion characters for numeric types. However, in most (if not all)
cases it's safe to supply a value of “i” (int) or “d” (double).

See also: —setValueClassName:, — valueType

setWidth:
— (void)setWidth: (unsignedength

Sets tdengththe maximum amount of bytes the attribute’s value may contain. Adaptors may use this
information to allocate space for fetch buffers.

See also: — width

setWriteFormat:
— (void)setWriteFormat: (NSString *}tring

Sets the format string that's used to format the attribute’s value for INSERT or UPDATE expressions. In
string, %P is replaced by the attribute’s value. For example:

[myAttribute setWriteFormat: @ " TO_LOWER(%P)'];

See also: — setReadFormat:, — writeFormat

storedProcedure
— (EOStoredProcedurestpredProcedure

Returns the stored procedure for which this attribute is an argument. If this attribute isn’t an argument to a
stored procedure but instead is owned by an entity, this method neilurns

See also: —entity

userinfo
— (NSDictionary *userinfo

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: — setUserlnfo:

79



80

validateName:

— (NSException ®alidateName(NSString *hame
Validatesnameand returnsil if it is a valid name, or an exception if it isn’'t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@”, “#”, or “_"; or contains a character other
than a letter, a number, “@”, “#”, “_", or “$”. A name is also invalid if the receiver’s EOEntity already has

an EOAttribute with the same name, or if the model has a stored procedure that has an argument with the
same name.

setName:uses this method to validate its argument.

validateValue:

— (NSException ®alidateValue:(id *)valueP
Validates the argument by converting it to the attribute’s value type and by testing other attribute validation
constraints (such adlowsNull, width, and so on). Returmsl if *valuePis deemed to be a legal value for

this attribute. Returns a validation exception otherwise. If, during the validation process, any coercion was
performed, the converted value is assignetatueP

See also: — adaptorValueByConvertingAttributeValue:, —allowsNull, —valueType —valueClassName
— width

valueClassName
— (NSString *valueClassName
Returns the name of the class for custom value types. When data is fetched for the attribute, it's presented

to the application as an instance of this class. For example, if a column from the database is represented by
instances of NSImage, this method returns “NSIimage”.

This class must be present in the run-time system when an EOAdaptorChannel fetches data for the attribute;
if the class isn’t present the result depends on the adaptor. See your adaptor’s documentation for information
on how absent value classes are handled.

See also: —valueType, — setValueClassName:

valueFactoryMethod
— (SEL)alueFactoryMethod
Returns the factory method that's invoked by the attribute when creating an attribute value that’s of a custom

class. The value returned from this method is derived from the attribate&FactoryMethodName If
that name doesn’t map to a valid selector in the Objective-C run-time, this method méturns



Classes: EOAttribute

valueFactoryMethodName
— (NSString *valueFactoryMethodName

Returns the name of the factory method that's used for creating a custom class value.

See also: —VvalueFactoryMethod, — setValueFactoryMethodName:

valueType
— (NSString *YvalueType

Returns the conversion character (such as “i" or “d”) for the data type an NSNumber attribute is converted
to and from in your application. Value types are scalars suich,d®at, anddouble.

See also: —valueClassName, — setValueType:

width
— (unsignedyidth

Returns the maximum length (in bytes) for values that are mapped to this attribute. Returns zero for numeric
and date types.

See also: —setWidth:

writeFormat
— (NSString *WwriteFormat

Returns the format string that's used to format the attribute’s value for INSERT or UPDATE expressions.
In the returned string, %P is replaced by the attribute’s value.

See also: — readFormat, — setWriteFormat:

81



82



Classes: EOAttribute

83



84



Classes: EOAttribute

85



86



Classes: EOAttribute

87



88



Classes: EOAttribute

89



90



Classes:

Creating Attributes

An attribute may be simple, derived, or flattened. A simple attribute typically corresponds to a single
column in the database, and may be read or updated directly from or to the database. A simple EOAttribute
may also be set as read-only withs&sReadOnly:method. Read-only attributes of enterprise objects are
never updated.

A derived attribute doesn’t necessarily correspond to a single database column in its entity’s database table,
and is usually based on some other attribute, which is modified in some way. For example, if an Employee
entity has a simple monthly salary attribute, you can define a daerivehlSalary attribute as “salary *

12". Derived attributes, since they don't correspond to actual values in the database, are effectively
read-only; it makes no sense to write a derived value.

A flattened attribute of an entity is actually an attribute of some other entity that’s fetched through a
relationship with a database join. A flattened attribute’s external definition is a data path ending in an
attribute name. For example, if the Employee entity has the relatidogtuigressand the Address entity
has the attributstreet, you can definstreetNameas an attribute of your Employee EOEntity by creating
an EOAttribute for it with a definition of “toAddress.street”.

Creating a Simple Attribute
A simple attribute needs at least the following characteristics:
* A name unique within its EOEntity

« The name of a column in the database table for its entity (the EOAttribute’s external name)

A declaration of the type of that column as defined by the database and adaptor (the EOAttribute’s
external type)

A declaration of the Objective-C class used to represent values outside the context of an enterprise object
« For Objective-C value classes that require it, a subtype for such distinctions as between numeric types

You also have to set whether the attribute is part of its entity’s primary key, is a class property, or is used for
locking. See the EOEntity class description for more information on these three groups of attributes. This
code excerpt gives an example of creating a simple EOAttribute and adding it to an EOEntity:

EOEntity *employeeEntity; /* Assume this exists. */
EOAttribute *salaryAttribute;

NSArray *empClassProps;

NSArray *empLockAttributes;

BOOL result;

salaryAttribute = [[EOAttribute alloc] init];

[salaryAttribute setName:@"salary'];

[salaryAttribute setColumnName:@"SALARY"T;
[salaryAttribute setExternalType:@"money'];
[salaryAttribute setValueClassName:"NSDecimalNumber'T;

91



92

[employeeEntity addAttribute:salaryAttribute];
[salaryAttribute release];

empClassProps = [[employeeEntity classProperties] mutableCopy];
[empClassProps addObject:salaryAttribute];

[employeeEntity setClassProperties:empClassProps];
[empClassProps release];

empLockAttributes = [[employeeEntity attributesUsedForLocking]
mutableCopy];

[empLockAttributes addObject:salaryAttribute];

result = [employeeEntity setAttributesUsedForLocking:empLockAttributes];

[empLockAttributes release];

Creating a Derived Attribute

A derived attribute depends on another attribute, so you base it on a definition including that attribute’s
name rather than on an external name. Because a derived attribute isn't mapped directly to anything in the
database, you shouldn’t include it in the entity’s set of primary key attributes or attributes used for locking:

EOEntity *employeeEntity; /* Assume this exists. */
EOAttribute *bonusAttribute;

NSArray *empClassProps;

BOOL result;

bonusAttribute = [[EOAttribute alloc] init];

[bonusAttribute setName:@"bonus';

[bonusAttribute setDefinition:@"salary * 0.5';

[bonusAttribute setValueClassName:@"NSDecimalNumber'];
[employeeEntity addAttribute:bonusAttribute];

[bonusAttribute release];

empClassProps = [[employeeEntity classProperties] mutableCopyj;
[empClassProps addObject:bonusAttribute];

result = [employeeEntity setClassProperties:empClassProps];
[empClassProps release];

Creating a Flattened Attribute

A flattened attribute depends on a relationship, so you base it on a definition including that relationship’s
name rather than on an external name. Because a flattened attribute doesn’t correspond directly to anything
in its entity’s table, you don't have to specify an external name, and shouldn’t include it in the entity’s set

of primary key attributes or attributes used for locking:

EOEntity *employeeEntity; /* Assume this exists. */
EOAttribute *deptNameAttribute;



Classes:

NSArray *empClassProps;
BOOL result;

deptNameAttribute = [[EOAttribute alloc] init];
[deptNameAttribute setName:@"departmentName'];
[deptNameAttribute setValueClassName:"NSString'];
[deptNameAttribute setExternalType:@"varchar";
[employeeEntity addAttribute:deptNameAttribute];
[deptNameAttribute setDefinition:@"toDepartment.name’];
[deptNameAttribute release];

empClassProps = [[employeeEntity classProperties] mutableCopy];
[empClassProps addObject:deptNameAttribute];

result = [employeeEntity setClassProperties:empClassProps];
[empClassProps release];

Instead of flattening attributes in your model, a better approach is often to directly traverse the object graph
through relationships. See the chapter “Using EOModeler” iktherprise Objects Framework
Developer's Guiddor a discussion on when to use flattened attributes.

93



94



Classes:

Mapping Attributes

Mapping from Database to Objects

Every EOAttribute has an external type, which is the type used by the database to store its associated data,
and an Objective-C class used as the type for that data in the client application. The type used by the
database is accessed with se¢ExternalType: andexternalType methods. The class type used by the
application is accessed with th@lueClassNamamethod. You can map database types to a set of standard
value classes, which includes:

e NSString

* NSNumber

* NSDecimalNumber
* NSData

¢ NSDate

Database-specific adaptors automatically handle value conversions for these classes. You can also create
your own custom value class, so long as you define a format that it uses to interpret data. Your value class
must also implement the EOCustomClassArchiving protocol to work as a customvalue; see that protocol
specification for more information. For more information on using EOAttribute methods to work with
custom data types, see the next section, “Working with Custom Data Types.”

The handling of dates assumes by default that both the database server and the client application are running
in the same, local, time zone. You can alter the server time zone wigt8erverTimeZone:method. If

you alter the server time zone, the adaptor automatically converts dates as they pass into and out of the
server.

Working with Custom Data Types

When you create a new model, EOModeler maps each attribute in your model to one of the primitive data
types the adaptor knows how to manipulate: NSString, NSNumber, NSDecimalNumber, NSData, and
NSDate. For example, suppose you hapba@to attribute that’s stored in the database as a LONG RAW.
When you create a new model, this attribute is mapped to NSData. However, NSData is just an object
wrapper for binary data—for instance, it doesn’t have any methods for operating on images, which would
limit what you'd be able to do with the image in your application. This is a case in which you'd probably
choose to use a custom data type, such as NSimage.

For a custom data type to be usable in Enterprise Objects Framework, it must supply methods for importing
and exporting itself as one of the primitive types so that it can be read from and written to the database.
Specifically, to use a custom data type you need to do the following:

« Set the attribute’s value class using the meguitfalueClassName:

» Set the factory method that will be used to create instances of your class from raw data using the method
setValueFactoryMethodName:

95



96

« Set the type of the argument that should be passed to the factory method using the method
setFactoryMethodArgumentType..

» Set the conversion method that is used to convert your data back into one of the primitive data types the
adaptor can work with using the metraatAdaptorValueConversionMethodName; this enables the
data to be stored in the database.

If an EOAttribute represents a binary column in the database, the factory method argument type can be
either EOFactoryMethodArgumentisNSData or EOFactoryMethodArgumentisBytes, indicating that the
method takes an NSData object or raw bytes as an argument. If the EOAttribute represents a string or
character column, the factory method argument type can be either EOFactoryMethodArgumentIsNSString
or EOFactoryMethodArgumentisBytes, indicating that the method takes an NSString object or raw bytes
as an argument. These types apply when fetching custom values, as described below.

The following code excerpt demonstrates how these methods work together. The example shows two
custom data types: an image that’s initialized with an NSData, and a custom zip code that’s initialized with
a string.

[imageAttribute setValueClassName:@"NSImage'];

[imageAttribute setFactoryMethodArgumentType:EOFactoryMethodArgumentisNSDatal;
[imageAttribute setValueFactoryMethodName:@"imageWithData:"];

[imageAttribute setAdaptorValueConversionMethodName:@"TIFFRepresentation'];

[zipCodeAttribute setValueClassName:@"MyZipCodeClass';

[zipCodeAttribute setFactoryMethodArgumentType:EOFactoryMethodArgumentlsBytes];
[zipCodeAttribute setValueFactoryMethodName: @""zipCodeWithBytes:length:'];
[zipCodeAttribute setAdaptorValueConversionMethodName:@"zipCodeString'];

Instead of setting the class information programmatically, you can use the Attributes Inspector in
EOModeler, which is more common. For more information, see the chapter "“Advanced Modeling
Techniques” in th&nterprise Objects Framework Developer’s Guide

Fetching Custom Values

Custom values are created during fetching in EOAdaptorChameeldRowWithZone: method. This

method fetches data in the external (server) type and converts it to a value object. For scalar database types
such as numbers and dates, the EOAdaptorChannel converts the value itself. For binary and string database
types, it calls upon the EOAttribute being fetched to perform the conversion, into either a standard or
custom value class. EOAttribute’s methods for performing this conversioeakalueForBytes:length:

for binary data andewValueForBytes:length:encodingfor strings. These methods either convert the raw

data directly into an NSData or NSString, or apply the custom value factory method to convert it into the
custom class. Once the value is converted, the EOAdaptorChannel puts it into the dictionary for the row
being fetched.

newValueForBytes:length:can handle NSData and raw bytesid *). It converts the raw bytes into an
NSData if the custom value argument type is EOFactoryMethodArgumentisNSData, then invokes the



Classes:

custom value factory method with the NSData or bytes. If the EOAttribute has no custom value factory
method, this method simply returns an NSData object containing the bytes.

newValueForBytes:length:encoding:can handle NSString and raw bytes. It converts the raw bytes into
an NSString if the custom value argument type is EOFactoryMethodArgumentlsNSString, then it invokes
the custom value factory method with the string or bytes. If the EOAttribute has no custom value factory
method, this method simply returns an NSString object created from the bytes.

Converting Custom Values

Custom values are converted back to binary or character data in EOAdaptorClemahedteExpression:

method. For each value in the EOSQLEXxpression to be evaluated, the EOAdaptorChannel sends the
appropriate EOAttribute asdaptorValueByConvertingAttributeValue: message to convert it. If the

value is any of the standard value classes, it's returned unchanged. If the value is of a custom class, though,
it's converted by applying the conversion methadaptorValueConversionMethod specified in the
EOAttribute.

97



98



Classes:

SQL Statement Formats

In addition to mapping database values to object values, an EOAttribute can alter the way values are
selected, inserted, and updated in the database by defining special format strings. These format strings allow
a client application to extend its reach right down to the server for certain operations. For example, you
might want to view an employee’s salary on a yearly basis, without defining a derived attribute as in a
previous example. In this case, you could set the salary attribute’s SELECT statement format to

“salary * 12” (withsetReadFormat) and the INSERT and UPDATE statement formats to “salary / 12"
(setWriteFormat:). Thus, whenever your application retrieves values for the salary attribute they're
multiplied by 12, and when it writes values back to the database they're divided by 12.

Your application can use any legal SQL value expression in a format string, and can even access
server-specific features such as functions and stored procedures (see EGEtityiedProcedure:
forOperation: method description for more information). Accessing server-specific features can offer your
application great flexibility in dealing with its server, but does limit its portability. You're responsible for
ensuring that your SQL is well-formed and will be understood by the database server.

Format strings for theetReadFormat.andsetWriteFormat: methods should use “%P” as the substitution
character for the value that is being formatted. “%@” will not work. For example:

[myAttribute setReadFormat:@"TO_UPPER(%P)'];
[myAttribute setWriteFormat: @ ' TO_LOWER(%P)'T;

Instead of setting the read and write formats programmatically, you can set them in EOModeler, which is
more common. For more information, see the chapter “Using EOModeM#®bjects Tools and
Techniques

99



100



Classes: EODatabase

EODatabase

Inherits From: NSObiject

Conforms To: NSObject (NSObject)
Declared In: EOAccess/EODatabase.h

Class Description

An EODatabase object represents a single database server. It contains an EOAdaptor which is capable of
communicating with the server, a list of EOModels that describe the server's schema, a list of

EODatabaseContexts that are connected to the server, and a set of snapshots representing the state of all
objects stored in the server.

For more information, see “EODatabase”.

Method Types
Creating instances — initwithModel:
— initWithAdaptor:
Adding and removing models
— addModel:
— addModellfCompatible:
— removeModel:
— models
Accessing entities
— entityForObject:
— entityNamed:

101



Recording snapshots
— recordSnapshot:forGloballD:
— forgetSnapshotForGloballD:
— forgetSnapshotsForGloballDs:
— recordSnapshots:
— forgetAllSnapshots
— snapshotForGloballD:
— snapshots
— recordSnapshot:forSourceGloballD:relationshipName:
— recordToManySnapshots:
— snapshotForSourceGloballD:relationshipName:

Registering database contexts
— registerContext:
— unregisterContext:
— registeredContexts

Accessing the adaptor
— adaptor

Managing the result cache
— invalidateResultCache
— invalidateResultCacheForEntityNamed:
— resultCacheForEntityNamed:
— setResultCache:forEntityNamed:

Instance Methods

102

adaptor
— (EOAdaptor *adaptor
Returns the EOAdaptor used by the receiver for communication with the database server. Your application

can interact directly with the EOAdaptor, but should avoid altering its state (for example, by starting a
transaction with one of its adaptor contexts).

addModel:
— (voidjaddModel:(EOModel *)aModel

AddsaModelto the receiver’s list of EOModels. This allows EODatabases to load entities and their
properties only as they're needed, by dividing them among separate EOMddgImust use the same
EOAdaptor as the receiver and use the same connection dictionary as the receiver’s other EOModels.

See also: —addModellfCompatible:, —models —removeModel:



Classes: EODatabase

addModellfCompatible:
— (BOOL)addModellfCompatible: (EOModel *)aModel

AddsaModelto the receiver’s list of EOModels, checking first to see whether it's compatible with those
other EOModels. Returns YESaModelis already in the list or if it's successfully added. Returns NO if
aModels adaptor name differs from that of the receivers or if the recem@aptor returns NO to a
canServiceModel:message.

See also: —addModel;, —models —removeModel:

entityForObject:
— (EOEntity *)entityForObject: (id)anObject
Returns the EOEntity from one of the receiver’'s Models that's mapedioject ornil if there is no such

EOEntity. This method works by sendiagtityForObject: messages to each of the receiver's EOModels
and returning the first one found.

See also: —entityNamed:

entityNamed:
— (EOEntity *entityNamed:(NSString *entityName
Returns the EOEntity from one of the receiver’s Models that's namiggiNameor nil if there is no such

EOEntity. This method works by sendiegtityNamed: messages to each of the receiver's EOModels and
returning the first one found.

See also: — entityForObject:

forgetAllSnapshots
— (void)forgetAllSnapshots
Clears all of the receiver’s snapshots and posts an EOObjectsChangedinStoreNotification (defined in the

EOControl framework’s EOObjectStore class) describing the invalidated object. For a description of
shapshots and their role in an application, see the class description.

See also: —forgetSnapshotForGloballD:, —forgetSnapshotsForGloballDs; —recordSnapshot:
forGloballD: , —recordSnapshots; —recordSnapshot:forSourceGloballD:relationshipName:
, —recordToManySnapshots:

103



104

forgetSnapshotForGloballD:
— (void)forgetSnapshotForGloballD:(EOGIloballD *)globallD

Clears the snapshot made for the enterprise object identifigldlislID and posts an
EOObjectsChangedInStoreNotification (defined in the EOControl framework’s EOObjectStore class)
describing the invalidated object. For a description of snapshots and their role in an application, see the class
description.

See also: —forgetSnapshotsForGloballDs; —forgetAllSnapshots —recordSnapshot:forGloballD:

forgetSnapshotsForGloballDs:
— (void)forgetSnapshotsForGloballDs(NSArray *)globallDs

Clears the snapshots made for the enterprise objects identified by each of the EOGlolyibtidl s

and posts an EOObjectsChangedinStoreNotification (defined in the EOControl framework’s
EOODbjectStore class) describing the invalidated objects. For a description of snapshots and their role in an
application, see the class description.

See also: —forgetSnapshotForGloballD:, —forgetAllSnapshots —recordSnapshots:

initWithAdaptor:
— initWithAdaptor: (EOAdaptor *anAdaptor

The designated initializer, this method initializes a newly allocated EODatabassn#ihptoras its
adaptor and returrself

Typically, you don’t need to programmatically create EODatabase objects. Rather, they are created
automatically by the control layer. See the class description for more information. If you do need to create
an EODatabase programmatically, you should never associate more than one EODatabase with a given
EOAdaptor. In general, useitWithModel: , which automatically selects the adaptor.

initWithModel:

—initWithModel: (EOModel *)aModel
Initializes a newly allocated EODatabase by creating an instance of EOAdaptor naivediagand
invoking initWithAdaptor: . Returnsself. Typically, you don’t need to programmatically create

EODatabase objects. Rather, they are created automatically by the control layer. See the class description
for more information.

See also: + adaptorWithModel: (EOAdaptor), -adaptorName (EOModel)



Classes: EODatabase

invalidateResultCache
— (void)nvalidateResultCache

Invalidates the receiver’s result cache. See the class description for more discussion of this topic.

See also: —invalidateResultCacheForEntityNamed; —resultCacheForEntityNamed:

invalidateResultCacheForEntityNamed:
— (void)invalidateResultCacheForEntityNamed(NSString *entityName

Invalidates the result cache containing an array of globallDs for the objects associated with the entity
entityName See the class description for more discussion of this topic.

See also: —invalidateResultCache —resultCacheForEntityNamed:

models
— (NSArray *models

Returns the receiver's EOModels.

Seealso: —initWithModel: , —addModel:, —addModellfCompatible:, —removeModel:

recordSnapshot:forGloballD:
— (voidyecordSnapshot(NSDictionary *aSnapshotorGloballD: (EOGloballD *)globallD

RecordsaSnapshotindergloballD. For a description of snapshots and their role in an application, see the

class description.

See also: —globallDForRow: (EOEntity), —recordSnapshots; —forgetSnapshotForGloballD:

recordSnapshot:forSourceGloballD:relationshipName:

— (voidyecordSnapshot(NSArray *)globallDs
forSourceGloballD: (EOGIloballD *)globallD
relationshipName:(NSString *hame

For the object identified byloballD, records an NSArray gfloballDsfor the to-many relationship named
name ThesgyloballDsidentify the objects at the destination of the relationship. For a description of
shapshots and their role in an application, see the class description.

See also: —recordSnapshot:forGloballD:, —recordSnapshots; —recordSnapshot:forGloballD:,
—snapshotForSourceGloballD:relationshipName:

105



106

recordSnapshots:
— (voidyecordSnapshots{(NSDictionary *snapshots

Records the snapshotssnapshotssnapshotss a dictionary whose keys are EOGIloballDs and whose
values are the snapshots for those global IDs. For a description of snapshots and their role in an application,
see the class description.

See also: —recordSnapshot:forGloballD:, —forgetSnapshotsForGloballDs:

recordToManySnapshots:
— (voidyecordToManySnapshots(NSDictionary *snapshots

Records the objects snapshotssnapshotshould be an NSDictionary of NSDictionaries, in which the
top-level dictionary has as its key the globalD of the enterprise object for which to-many relationships are
being recorded. The key’s value is a dictionary whose keys are the names of the enterprise object’s to-many
relationships. Each of these keys in turn has as its value an array of globallDs that identify the objects at the
destination of the relationship. For a description of snapshots and their role in an application, see the class
description.

See also: —recordSnapshot:forSourceGloballD:relationshipName; —recordSnapshot:forGloballD:,
—snapshotForSourceGloballD:relationshipName:

registerContext:
— (voidyegisterContext:(EODatabaseContextaontext

RecordsaContextas one of the receiver's EODatabaseContexts, without retainimgibntextmust have
been created with the receiver using EODatabaseCoritettithDatabase: method, which invokes this
method automatically. You should never need to invoke this method directly.

See also: — unregisterContext:, —registeredContexts

registeredContexts
— (NSArray *yegisteredContexts

Returns all the EODatabaseContexts that have been registered with the receiver, generally all the database
contexts that were created with the receiver as their EODatabase object.

See also: —registerContext:, —unregisterContext:



Classes: EODatabase

removeModel:
— (voidyemoveModel(EOModel *)aModel

RemovesaModelfrom the receiver’s list of EOModels. Raises an exceptiaMiddelisn’t one of the
receiver's models.

See also: —addModel:, —addModellfCompatible:, —models

resultCacheForEntityNamed:
— (NSArray *yesultCacheForEntityNamed:(NSString *entityName

Returns an array containing the globallDs of the objects associateentifffName See the class
description for more discussion of this topic.

See also: —invalidateResultCache —invalidateResultCacheForEntityNamed:

setResultCache:forEntityNamed:
— (void)setResultCachgiNSArray *)cacheforEntityNamed: (NSString *entityName

Updates the receiver’s cache &mtityNamewith cache an array of EOGIloballD objects, for all the
enterprise objects associated with the EOEntity naanétyNameThis method is invoked automatically,
and you should never need to invoke it directly. For more information on this topic, see the class description.

See also: —invalidateResultCache —invalidateResultCacheForEntityNamed;
—resultCacheForEntityNamed:

snapshotForGloballD:
— (NSDictionary *snapshotForGloballD:(EOGloballD *)globallD

Returns the snapshot associated witiballD if there is one; otherwise returns. For a description of
snapshots and their role in an application, see the class description.

See also: —recordSnapshot:forGloballD:, —forgetSnapshotForGloballD:

snapshotForSourceGloballD:relationshipName:

— (NSArray *snapshotForSourceGloballD(EOGIloballD *)globallD
relationshipName(NSString *name

Returns a snapshot that consists of an array of globallDs. These globallDs identify the objects at the
destination of the to-many relationship nameade which is a property of the object identified by

107



108

globallD. If there is no snapshot, retumik For a description of snapshots and their role in an application,
see the class description.

snapshots
— (NSDictionary *snapshots

Returns all of the receiver’s snapshots, stored in a dictionary under their EOGloballDs.

See also: —recordSnapshot:forSourceGloballD:relationshipName; —recordToManySnapshots:

unregisterContext:
— (voidunregisterContext:(EODatabaseContextaLontext

RemovesaContexias one of the receiver's EODatabaseContexts, without releasing it. An
EODatabaseContext automatically invokes this method when deallocated; you should never need to invoke
it directly.

See also: —registerContext:, —registeredContexts



Classes: EODatabase

EODatabase

Each of an EODatabase’s EODatabaseContexts forms a separate transaction scope, and is in effect a
separate logical user to the server. An EODatabaseContext uses one or more pairs of EODatabaseChannel
and EOAdaptorChannel objects to manage data operations (insert, update, delete, and fetch). Adaptors may
support a limited number of contexts per database or channels per context, but an application is guaranteed
at least one of each.

The EODatabase, EODatabaseContext, and EODatabaseChannel classesdatabdise levedf the
Enterprise Objects Framework. The database level is a client addpgor level which is defined by the
adaptor classes: EOAdaptor, EOAdaptorContext, and EOAdaptorChannel. Together, the database and
adaptor levels make up thecess layeof the Enterprise Objects Framework.

Databrase Lessal

EQDalabasa EQDalabase
Cofilaxt Chanal

| |
v v

) EQAdaplor — EQAdaptar
EQAdaptor Context Channel

EQDatabase [€—p

Adaplor Level
Figure 2 The Access Layer

The database level acts as an intermediary between the adaptor levelamtrthéayer which includes

an EOObjectStoreCoordinator and an EOEditingContext (Figure 3). The control layer operates in terms of
enterprise objects, while the adaptor level operates in terms of database rows packaged as NSDictionaries.
It's the job of the database level to perform the necessary object-to-relational translation between the two.

There’s little need for your code to interact directly with an EODatabase object. An EOEditingContext
creates its own database level objects, which create their own corresponding adaptor level objects. Once the
network of objects is in place, your code might interact with an EODatabase to access its corresponding
EOAdaptor object, but additional programmatic interaction is usually unnecessary.

109



110

EOQEditing
Contaxt
EQObjectStone
Coordinator
Controd Layer
Access Layer
EODatabase Ec’nn"“l T’ E%[I’_I:"::“
EOQAdaplor EQAdaptor
Skl Contaxt Chanmed

Figure 3 The EODatabase Level as an Intermediary Between the Adaptor Level and the Control Layer

Snapshots

EODatabase’s most significant responsibility is to resaapshotgor its EODatabaseContexts. A

shapshot is a dictionary whose keys are attribute names and whose values are the corresponding, last-known
database values. Enterprise Objects Framework records snapshots as it successfully fetches, inserts and
updates enterprise objects. Snapshot information is used when changes to enterprise objects are saved back
out to the database to ensure that row data has not been changed by someone else since it was last recorded
by the application.

A snapshot contains entries for a row's primary key, class properties, foreign keys for class property
relationships, and attributes used for locking. They are recorded under the globallDs of their enterprise
objects. (EOGIoballDs are based on an object's primary key and its associated entity; see the class
specification for EOGloballD in the EOControl framework for more information.)

EODatabase also records snapshots for to-many relationships. These snapshots consist of an NSDictionary
of NSDictionaries, in which the top-level dictionary has as its key the globalD of the enterprise object for
which to-many relationships are being recorded. The key’s value is a dictionary whose keys are the names
of the enterprise object’s to-many relationships. Each of these keys in turn has as its value an array of
globallDs that identify the objects at the destination of the relationship.



Classes: EODatabase

The snapshots made by an EODatabase form the global view of data for nearly every other part of the
application, representing the current view of data in the server as far as the application is concerned (though
other applications may have made changes). This global view is temporarily overridden locally by
EODatabaseContexts, which form their own snapshots as they make changes during a transaction. When
an EODatabaseContext commits its top-level transaction, it reconciles all changed snapshots with the
global view of the database object, so that other database contexts (except those with open transactions)
immediately use the new shapshots as well. EODatabaseContexts automatically use their EODatabase to
record snapshots, so there’s no need for your application to intervene in an EODatabase’s snapshotting
mechanism.

For more information on snapshots and how they relate to an application’s update strategy, see the
EODatabaseContext class specification.

Result Cache

An EODatabase object also performs the function of caching enterprise objects for entities that cache their
objects (see the EOEntity class specification). An EODatabase’s result cache stores the globallDs of
enterprise objects for entities that cache their objects. The first time you perform a fetch against such an
entity, all of its objects are fetched, regardless of the fetch specification used. The globallDs of the resulting
objects are stored in the EODatabase’s result cache by entity name. Whenever possible, subsequent fetches
are performed against the cache (in memory) rather than against the database. With a globallD, Enterprise
Objects Framework can look up the values for the corresponding object in its snapshot using EODatabase’s
or EODatabaseContextmapshotForGloballD: method.

As an example, suppose that you have an entity named Rating that contains all the valid ratings for Movies
(G, PG, R, and so on). Rather than store a Movie’s rating directly in the Movie as an attribute, Movie
maintains a relationship to a Rating. To specify a rating for a movie, users select the rating from a pop-up
list of the possible values. This Rating entity should cache its objects. The values that populate the rating
pop-up list are only fetched once, and there’s no need to fetch them again; the relationships between Movies
and Ratings can be maintained without subsequent fetches.

The result cache is managed automatically; you shouldn’t have to manipulate it explicitly. However, if you
need to access or alter the cache, EODatabase provides several methods for interacting with it.

111



112



Classes: EODatabaseChannel

EODatabaseChannel
Inherits From: NSObiject
Declared In: EOAccess/EODatabaseChannel.h

Class Description

An EODatabaseChannel represents an independent communication channel to the database server. It's
associated with an EODatabaseContext and an EODatabase, which, together with the EODatabaseChannel,
form thedatabase levedf Enterprise Objects Framework’s access layer. See the EODatabase class
specification for more information.

An EODatabaseChannel has an EOAdaptorChannel that it uses to connect to the database server its
EODatabase object represents. An EODatabaseChannel fetches database records as instances of enterprise
object classes that are specified in its EODatabase’s EOModel objects. An EODatabaseChannel also has an
EODatabaseContext, which uses the channel to perform fetches and to lock rows in the database. All of the
database level objects are used automatically by EOEditingContexts and other components of Enterprise
Objects Framework. You rarely need to interact with them directly. In particular, you wouldn’t ordinarily

use an EODatabaseChannel to fetch objects. Rather, you'd use an EOEditingContext.

Method Types

Creating instances — initWithDatabaseContext:

Accessing cooperating objects — adaptorChannel
— databaseContext

Fetching objects — selectObjectsWithFetchSpecification:editingContext:
— isFetchinProgress
— fetchObject
— cancelFetch

Accessing internal fetch state — setCurrentEntity:
— setCurrentEditingContext:
— setlsLocking:
— isLocking
— setlsRefreshingObjects:
— isRefreshingObjects

Accessing the delegate — setDelegate:
— delegate

113



Instance Methods
adaptorChannel
— (EOAdaptorChannel daptorChannel

Returns the EOAdaptorChannel used by the receiver for communication with the database server.

cancelFetch
— (void)xancelFetch
Cancels any fetch in progress.

See also: —isFetchinProgress —selectObjectsWithFetchSpecification:editingContext:—fetchObject

databaseContext
— (EODatabaseContextdatabaseContext

Returns the EODatabaseContext that controls transactions for the receiver.

delegate

— (id)delegate
Returns the receiver’s delegate. An EODatabaseChannel shares the delegate of its EODatabaseContext. See
the EODatabaseContext class specification for the delegate methods you can implement.

See also: —setDelegate:

fetchObject
— (id)fetchObject

Fetches and returns the next object in the result set produceskl®ctObjectsWithFetchSpecification:
editingContext: message; returmsl if there are no more objects in the current result set or if an error
occurs. This method uses the receiver's EOAdaptorChannel to fetch a row, records a snapshot with the
EODatabaseContext if necessary, and creates an enterprise object from the row if a corresponding object
doesn't already exist. The new object is seraaakeFromFetchinEditingContext: message to allow it

to finish setting up its state.

If no snapshot exists for the fetched object, the receiver sends its EODatedrame @napshot:
forGloballD: message to record one. If a snapshot already exists (because the object was previously
fetched), the receiver checks whether it should overwrite the old snapshot with the new one. It does so by

114



Classes: EODatabaseChannel

asking the delegate withdatabaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globallD:
databaseChannelmethod. If the delegate doesn’t respond to this method, the EODatabaseChannel
overwrites the snapshot if it's locking or refreshing fetched objects. Further, if the EODatabaseChannel is
refreshing fetched objects, it posts an EOObjectsChangedinStoreNotification on behalf of its
EODatabaseContext (which causes any EOEditingContext using that EODatabaseContext to update its
enterprise object with the values recorded in the new snapshot).

For information on locking and update strategies, see the EODatabaseContext class specification. For
information on refreshing fetched objects, see the EOFetchSpecification class specification.

Ordinarily, you don't directly use an EODatabaseChannel to fetch objects. Rather, you use an
EOEditingContext, which uses an underlying EODatabaseChannel to do its work.

See also: — cancelFetch —isFetchinProgress —isLocking, —isRefreshingObjects

initWithDatabaseContext:
— initWithDatabaseContext:(EODatabaseContextapatabaseContext

The designated initializer, this method initializes a newly allocated EODatabaseChannel with
aDatabaseContexs the EODatabaseContext in which it works. The new EODatabaseChannel retains
aDatabaseContexand creates an EOAdaptorChannel to communicate with the database server. Returns
self. Raises if the underlying adaptor context can't create a corresponding adaptor channel.

Typically, you don’t need to programmatically create EODatabaseChannel objects. Rather, they are created
automatically by the control layer. See the EODatabase class description for more information.

isFetchinProgress
— (BOOL)sFetchinProgress

Returns YES if the receiver is fetching, NO otherwise. An EODatabaseChannel is fetching if it's been sent
a successfuelectObjectsWithFetchSpecification:editingContextmessage. An EODatabaseChannel
stops fetching when there are no more objects to fetch or when it iscsaTted-etchmessage.

isLocking
— (BOOL)sLocking

Returns YES if the receiver is locking the objects selected, as determined by its EODatabaseContext’s
update strategy or the EOFetchSpecification used to perform the select. Returns NO otherwise. This method
always returns NO when no fetch is in progress.

See also: —locksObjects(EOFetchSpecification), setlsLocking:

115



isRefreshingObjects
— (BOOL)isRefreshingObjects

Returns YES if the receiver overwrites existing snapshots with fetched values and causes the current
EOEditingContext to overwrite existing enterprise objects with those values as well. Returns NO otherwise.
This behavior is controlled by the EOFetchSpecification usedéteatObjectsWithFetchSpecification:
editingContext: message.

See also: — refreshesRefetchedObject$EOFetchSpecification), fetchObject,
—setlsRefreshingObjects:

selectObjectsWithFetchSpecification:editingContext:

— (void)selectObjectsWithFetchSpecificatio(EOFetchSpecification f@tchSpecification
editingContext:(EOEditingContext *anEditingContext

Selects objects describedfeychSpecificationo that they'll be fetched inemEditingContextThe selected
objects compose one or more result sets, each object of which will be returned by sulisein@bject
messages in the order prescribeddighSpecificatida EOSortOrderings.

Raises an exception if an error occurs; the particular exception depends on the specific error, and is
indicated in the exception’s description. Some possible reasons for failure are:

« fetchSpecificatiors invalid.

» The receiver's EODatabaseContext has no transaction in progress.

¢ The delegate disallows the select operation.

* The receiver's EOAdaptorChannel fails to perform the select operation.

This method invokes the delegate methdaimbaseContext:
shouldSelectObjectsWithFetchSpecification:databaseChannetiatabaseContext:
shouldUsePessimisticLockWithFetchSpecification: databaseChanngiinddatabaseContext:
didSelectObjectsWithFetchSpecification:databaseChannelSee their descriptions in the
EODatabaseContext class specification for more information.

You wouldn'’t ordinarily invoke this method directly; rather, you'd use an EOEditingContext to select and
fetch enterprise objects.

See also: —fetchObject

116



Classes: EODatabaseChannel

setCurrentEditingContext:
— (void)setCurrentEditingContext: (EOEditingContext *anEditingContext

Sets the EOEditingContext that's made the owner of fetched objeni&tiitingContextThis method is
automatically invoked bgelectObjectsWithFetchSpecification:editingContext:You should never
invoke it directly.

See also: —setCurrentEntity:

setCurrentEntity:
— (void)setCurrentEntity: (EOEntity *)anEntity

Sets the EOEntity used when fetching enterprise objeetsHntity SubsequerfetchObject messages
during a fetch operation create an object of the class associateahtittity This method is invoked
automatically byselectObjectsWithFetchSpecification:editingContextYou should never need to invoke
it directly.

See also: —setCurrentEditingContext:

setDelegate:
— (void)setDelegatdiid)anObject

Sets the receiver’s delegateattObject An EODatabaseChannel shares the delegate of its
EODatabaseContext; you should never invoke this method directly. See the EODatabaseContext class
specification for the delegate methods you can implement.

See also: delegate

setlsLocking:
— (void)setlsLocking:(BOOL)flag

Records whether the receiver locks the records it selects. A EODatabaseChannel modifies its interaction
with the database server and its snapshotting behavior based on this sdidigis ¥ES the
EODatabaseChannel modifies its fetching behavior to lock objefitgy i NO it simply fetches them.

An EODatabaseChannel automatically sets this flag according to the fetch specification used in a
selectObjectsWithFetchSpecification:editingContextmessage. You might invoke this method directly
if evaluating SQL directly with EOAdaptorChannel’s method.

See also: —locksObjects(EOFetchSpecification), setlsLocking:

117



118

setisRefreshingObijects:
— (void)setlsRefreshingObjects(BOOL)flag

Records whether the receiver causes existing snapshots and enterprise objects to be overwritten with
fetched values. Iflagis YES the receiver overwrites existing snapshots with fetched values and posts an
EOODbjectsChangedinStoreNaotification on behalf of its EODatabaseContext (which typically causes the an
existing object’s EOEditingContext to replace its values with the new on#iag.if NO, the receiver relies

on the delegate to determine whether snapshots should be overwritten, and doesn’t cause enterprise objects
to be overwritten.

An EODatabaseChannel automatically sets this flag according to the fetch specification used in a
selectObjectsWithFetchSpecification:editingContextmessage. You might invoke this method directly
if evaluating SQL directly with EOAdaptorChannetgaluateExpression:method.

See also: —refreshesRefetchedObject$EOFetchSpecification)



Classes: EODatabaseContext

EODatabaseContext

Inherits From: EOCooperatingObjectStore : EOObjectStore : NSObject
Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabaseContext.h

Class Description

An EODatabaseContext object is an EOObjectStore for accessing relational databases, creating and saving
objects based on EOEntity definitions in an EOModel.

An EODatabaseContext represents a single connection to a database server, and it determines the updating
and locking strategy used by its EODatabaseChannel objects. An EODatabaseContext has a corresponding
EODatabase object. If the server supports multiple concurrent transactions, the EODatabase object may
have several database contexts. If the server and adaptor support it, a database context may in turn have
several database channels, which handle access to the data on the server.

For a more information, see “EODatabaseContext”.

Method Types

Initializing instances
— initWithDatabase:

Fetching objects
— objectsWithFetchSpecification:editingContext:
— objectsForSourceGloballD:relationshipName:editingContext:
— arrayFaultWithSourceGloballD:relationshipName:editingContext:
— batchFetchRelationship:forSourceObjects:editingContext:

Accessing the adaptor context
— adaptorContext

Accessing the database object
— database

Accessing the coordinator
— coordinator

119



120

Managing channels
— availableChannel
— registerChannel:
— registeredChannels
— unregisterChannel:

Accessing the delegate
— setDelegate:
— delegate

Committing or discarding changes
— invalidateAllObjects
— invalidateObjectsWithGloballDs:
— rollbackChanges
— saveChangesInEditingContext:
— commitChanges
— performChanges
— prepareForSaveWithCoordinator:editingContext:
— recordUpdateForObject:changes:
— recordChangesInEditingContext
— refaultObject:withGloballD:editingContext:

Determining if the EODatabaseContext is responsible for a particular operation
— ownsObject:
— ownsGloballD:
— handlesFetchSpecification:

Managing Snapshots
— forgetSnapshotForGloballD:
— forgetSnapshotsForGloballDs:
— localSnapshotForGloballD:
— recordSnapshot:forGloballD:
— recordSnapshots:
— snapshotForGloballD:
— recordSnapshot:forSourceGloballD:relationshipName:
— snapshotForSourceGloballD:relationshipName:
— localSnapshotForSourceGloballD:relationshipName:
— recordToManySnapshots:

Initializing objects
— initializeObject:withGloballD:editingContext:

Obtaining an EODatabaseContext
+ registeredDatabaseContextForModel:editingContext:



Classes: EODatabaseContext

Locking objects
— setUpdateStrategy:
— updateStrategy
— registerLockedObjectWithGloballD:
— isObjectLockedWithGloballD:
— isObjectLockedWithGloballD:editingContext:
— forgetAllLocks
— forgetLocksForObjectsWithGloballDs:
— lockObjectWithGloballD:editingContext:

Returning information about objects
— valuesForKeys:object:

Setting the context class
+ contextClassToRegister
+ setContextClassToRegister:

Checking connection status
— hasBusyChannels

Other
+ forceConnectionWithModel:connectionDictionaryOverrides:
editingContext:
—lock
— unlock

Class Methods

contextClassToRegister
+ (ClassgontextClassToRegister

Returns the class that is registered with an EOObjectStoreCoordinator when the coordinator broadcasts an
EOCooperatingObjectStoreNeeded notification. By default this is EODatabaseContext, but you can
usesetContextClassToRegisterto specify your own subclass of EODatabaseContext.

When an EOObijectStoreCoordinator sends an EOCooperatingObjectStoreNeeded notification for an
EOEntity in the default model group gbntextClassToRegisters nonsil (and it should be—it makes no

sense to satontextClassToRegisteto nil), an instance of the that class is created, the EOModel for the
EOEntity is registered, and the context class is registered with the requesting EOObjectStoreCoordinator.

121



forceConnectionWithModel:connectionDictionaryOverrides:editingContext:

+ (EODatabaseContextfyceConnectionWithModel:(EOModel *Jamodel
connectionDictionaryOverrides:(NSDictionary *pverrides
editingContext:(EOEditingContext *anEditingContext

Forces the stack of objects in the EOAccess layer to be instantiated, if necessary, and then makes a
connection to the database. If there is an existing connectiamfmale] it is first closed and then

reconnected. The new connection dictionary is effectively made up of the model's connection dictionary,
overlaid withoverrides All compatible models in the model’s group also are associated with the new
connection (so they share the same adaptor). Returns the EODatabaseContext associated with the model for
anEditingContext

registeredDatabaseContextForModel:editingContext:

+ (EODatabaseContextrggisteredDatabaseContextForMode(EOModel *aModel
editingContext:(EOEditingContext *anEditingContext

Finds the EOObjectStoreCoordinator mEditingContexand checks to see if it already contains an
EODatabaseContext cooperating storeafdodel If it does, it returns that EODatabaseContext. Otherwise
it instantiates a new EODatabaseContext, adds it to the EOObjectStoreCoordinator, and returns the
EODatabaseContext.

setContextClassToRegister:
+ (void)setContextClassToRegiste(ClassfontextClass

Sets tocontextClasshe “contextClassToRegister.” For more discussion of this topic, see the method
description forcontextClassToRegister

Instance Methods

adaptorContext
— (EOAdaptorContext ‘gdaptorContext

Returns the EOAdaptorContext used by the EODatabaseContext for communication with the database
server.

122



Classes: EODatabaseContext

arrayFaultWithSourceGloballD:relationshipName:editingContext:

— (NSArray *arrayFaultWithSourceGloballD: (EOGIloballD *)globallD
relationshipName:(NSString *hame
editingContext:(EOEditingContext *anEditingContext

Overrides the inherited implementation to create a to-many fawdhteditingContextnamemust
correspond to an EORelationship in the EOEntity for the speglidxliD.

See also: —faultForGloballD:editingContext:

availableChannel
— (EODatabaseChannelatjailableChannel

Returns an EODatabaseChannel that's registered with the receiver and that isn’t busy. If the method can’t
find a channel that meets these criteria, it posts an EODatabaseChannelNeededNotification in the hopes that
someone will provide a new channel. After posting the notification, the receiver checks its list of channels
again. If there are still no available channels, the receiver creates an EODatabaseChannel itself. However,
if the list is not empty and there are no available channels, the method néturns

See also: —registerChannel; —registeredChannels —unregisterChannel:

batchFetchRelationship:forSourceObjects:editingContext:

— (void)patchFetchRelationship(EORelationship *elationship
forSourceObjects{NSArray *)objects
editingContext:(EOEditingContext *anEditingContext

Clear all the faults for theelationshipof anEditingContex$ objectsand performs a single, efficient, fetch

(at most two fetches, if the relationship is many-to-many). This method provides a way to fetch the same
relationship for multiple objects. For example, given an array of Employee objects, this method can fetch
all of their departments with one round trip to the server, rather than asking the server for each of the
employee’s departments individually.

commitChanges
— (voidcommitChanges

Overrides the inherited implementation to instruct the adaptor to commit the transaction. If the commit is
successful, any primary and foreign key changes are written back to the saved objects, database locks are
released, and an EOObjectsChangedInStoreNotification (defined in EOObjectStore) is posted describing

123



the committed changes. Raises an exception if the adaptor is unable to commit the transaction; the error
message indicates the nature of the problem. You should never need to invoke this method directly.

See also: — performChanges —rollbackChanges

coordinator
— (EOODbjectStoreCoordinatorcgordinator

Returns the receiver’s EOODbjectStoreCoordinatariloif there is noneThis method is only valid during
a save operation.

database
— (EODatabase Hatabase

Returns the receiver's EODatabase.

See also: —initWithDatabase:

delegate
— (id)delegate
Returns the receiver’s delegate.

See also: — setDelegate:

faultForGloballD:editingContext:

— (id)faultForGloballD: (EOGloballD *)globallD editingContext:
(EOEditingContext *xnEditingContext

Overrides the inherited implementatitincreate a to-one fault for the object identifiecdghyballD and
register it inanEditingContext.

See also: —arrayFaultWithSourceGloballD:relationshipName:editingContext:

124



Classes: EODatabaseContext

faultForRawRow:entityNamed:editingContext:

— (id <EOEnterpriseObjectfgultForRawRow: (id)row entityNamed:(NSString *entityName
editingContext:(EOEditingContext *ontext

Returns a fault for a raw rowow is the raw data, typically in the form of an NSDictionanytityNameas
the name of the appropriate entity for the EO you want to create (as aefditilhgContexis the
EOEditingContext in which to create the fault

forgetAllLocks
— (void)forgetAllLocks

Clears all of the receiver’s locks. Doesn't cause the locks to be forgotten in the server, only in the receiver.
This method is useful when something has happened to cause the server to forget the locks and the receiver
needs to be synced up. This method is invoked whenever a transaction is committed or rolled back.

See also: —registerLockedObjectWithGloballD: , —isObjectLockedWithGloballD: ,
—isObjectLockedWithGloballD:editingContext: , —forgetLocksForObjectsWithGloballDs:,
—lockObjectWithGloballD:editingContext: , —lockObject: (EOEditingContext)

forgetLocksForObjectsWithGloballDs:
— (void)forgetLocksForObjectsWithGloballDs: (NSArray *)globallDs

Clears the locks made for the enterprise objects identified by each of the EOGlobgltibsitDs
Doesn’t cause the locks to be forgotten in the server, only in the receiver.

See also: — registerLockedObjectWithGloballD: , —isObjectLockedWithGloballD: ,
—isObjectLockedWithGloballD:editingContext: , —forgetAllLocks,
—lockObjectWithGloballD:editingContext: , —lockObject: (EOEditingContext)

forgetSnapshotForGloballD:
— (void)forgetSnapshotForGloballD:(EOGIloballD *)globallD

Deletes the snapshot made for the enterprise object identifgddidaliD.

See also: —recordSnapshot:forGloballD:, —localSnapshotForGloballD:, —recordSnapshots;
—snapshotForGloballD:, —forgetSnapshotsForGloballDs:

125



forgetSnapshotsForGloballDs:
— (void)forgetSnapshotsForGloballDs(NSArray *)globallDs

Deletes the snapshots made for the enterprise objects identifigabbiiDs an array of EOGloballD
objects.

See also: —recordSnapshot:forGloballD:, —localSnapshotForGloballD:, —recordSnapshots;
—snapshotForGloballD:

handlesFetchSpecification:
— (BOOL)handlesFetchSpecificatiofEOFetchSpecification fétchSpecification

Overrides the inherited implementation to return YES if the receiver is responsible for fetching the objects
described by the entity namefetchSpecification

See also: —ownsObject;, —ownsGloballD:

hasBusyChannels
— (BOOL)hasBusyChannels

Returns YES if the receiver's EOAdaptorContext has channels that have outstanding operations (that is,
have a fetch in progress), NO otherwise.

initializeObject:withGloballD:editingContext:
— (void)initializeObiject: (id)object
withGloballD: (EOGIoballD *)globallD
editingContext:(EOEditingContext *3nEditingContext

Overrides the inherited implementation initiali#giectfor anEditingContexby filling it with properties
based on row data fetched from the adaptor. The snapsiybbiiatiD is looked up and those attributes in
the snapshot that are marked as class properties in the EOEntity are assibjesd For relationship class
properties, faults are constructed and assigned to the object.

initWithDatabase:

— initWithDatabase: (EODatabase gDatabase
Initializes a newly allocated EODatabaseContext aidlatabaseas the EODatabase object it works with.
The new EODatabaseContext retaalsmtabase Returnsself, or nil if unable to create another

EOAdaptorContext for the EOAdaptor @aDatabaseThis is the designated initializer for the
EODatabaseContext class.

126



Classes: EODatabaseContext

invalidateAllObjects

— (void)invalidate AllObjects
Overrides the inherited implementation to discard all snapshots in the receiver's EODatabase, forget all
locks, and post an EOlnvalidatedAllObjectsinStoreNotification, as well as an
EOObjectsChangedinStoreNotification with the invalidated global IDs ingénfo dictionary. Both of

these notifications are defined in EOObjectStore. This method works by invoking
—invalidateObjectsWithGloballDs: for all of the snapshots in the receiver's EODatabase.

invalidateObjectsWithGloballDs:
— (void)invalidateObjectsWithGloballDs: (NSArray *)globallDs

Overrides the inherited implementation to discard the snapshots for the objects identified by the
EOGloballDs ingloballDs and broadcasts an EOObjectsChangedinStoreNotification (defined in
EOODbjectStore), which causes the EOEditingContext containing objects fetched from the receiver to refault
those objects. The result is that these objects will be refetched from the database the next time they're
accessed.

isObjectLockedWithGloballD:
— (BOOL)isObjectLockedWithGloballD: (EOGloballD *)globallD

Returns YES if the enterprise object identifiecgbgballD is locked, NO otherwise.

See also: — registerLockedObjectWithGloballD: , —forgetAllLocks, — isObjectLockedWithGloballD:
editingContext:, —forgetLocksForObjectsWithGloballDs:, —lockObjectWithGloballD:
editingContext:, —lockObject: (EOEditingContext)

isObjectLockedWithGloballD:editingContext:

— (BOOL)isObjectLockedWithGloballD: (EOGloballD *)globallD editingContext:
(EOEditingContext *anEditingContext

Overrides the EOObjectStore meths@bjectLockedWithGloballD:editingContext: to return YES if the
database row correspondinggioballD has been locked in an open transaction held by the receiver.

See also: —registerLockedObjectWithGloballD: , —isObjectLockedWithGloballD: , —forgetAllLocks,
—forgetLocksForObjectsWithGloballDs:, —lockObjectWithGloballD:editingContext: ,
—lockObject: (EOEditingContext)

127



128

localSnapshotForGloballD:
— (NSDictionary *JocalSnapshotForGloballD{(EOGIoballD *)globallD

Returns the snapshot for the object identifiedloypallD, if there is one; else returngd. Only searches
locally (in the transaction scope), not in the EODatabase.

See also: —recordSnapshot:forGloballD:, —forgetSnapshotForGloballD:, —recordSnapshots;
—snapshotForGloballD:

localSnapshotForSourceGloballD:relationshipName:

— (NSArray *JocalSnapshotForSourceGloballD(EOGIoballD *)globallD relationshipName:
(NSString *name

Returns an array that is the snapshot for the objects at the destination of the to-many relationship named
name which is a property of the object identifieddigballD. The returned array contains the globallDs

of the destination objects. If there is no snapshot, retirn®nly searches locally (in the transaction

scope), hot in the EODatabase.

See also: —recordSnapshot:forSourceGloballD:relationshipName; —snapshotForSourceGloballD:
relationshipName:

lock
— (void)ock

Used internally to protect access to the receiver in a multi-threaded environment. Do not confuse this with
any methods which work with the database locking mechanism.

See also: —unlock

lockObjectWithGloballD:editingContext:

— (void)ockObjectWithGloballD: (EOGIloballD *)globallD
editingContext:(EOEditingContext *anEditingContext

Overrides the inherited implementation to attempt to lock the database row correspogtbbglid in
the underlying database server, on behadfndditingContextlf a transaction is not already open at the
time of the lock request, the transaction is begun and is held open untiteitiitChangesor
invalidateAllObjects is invoked. At that point all locks are released. Raises an
NSinternallinconsistencyException if unable to obtain the lock.

See also: — registerLockedObjectWithGloballD: , —isObjectLockedWithGloballD: , —forgetAllLocks,
—forgetLocksForObjectsWithGloballDs:, —lockObject: (EOEditingContext)



Classes: EODatabaseContext

objectsForSourceGloballD:relationshipName:editingContext:

— (NSArray *pbjectsForSourceGloballD{EOGIoballD *)globallD
relationshipName:(NSString *hame
editingContext:(EOEditingContext *anEditingContext

Overrides the inherited implementation to service a to-many fault. The snapshot for the source object
identified bygloballD is located and the EORelationship nhamatheis used to construct a qualifier from
that snapshot. This qualifier is then used to fetch the requested objeatsEdttingContextising the
methodobjectsWithFetchSpecification:editingContext:

objectsWithFetchSpecification:editingContext:

— (NSArray *pbjectsWithFetchSpecification(EOFetchSpecification f@tchSpecification
editingContext:(EOEditingContext *anEditingContext

Overrides the inherited implementation to fetch objects from an external stoamffditingContextThe
receiver obtains an available EODatabaseChannel and issues a fefeltchv@becificatiorlf one of these
objects is already present in memory, by default this method doesn’t overwrite its values with the new
values from the database (you can change this behavior; ssRefreshesRefetchedObjectsnethod

in the EOFetchSpecification class specification).

You can fine-tune the fetching behavior by adding hinfetthSpecificatioa hints dictionary. For this
purpose, Enterprise Objects Framework defines the following keys (NSStrings):

Constant Corresponding value in the hints dictionary

An NSString specifying raw SQL with which to perform the fetch. There is no

EOCustomQueryExpressionHintkey way to pass down parameters with this hint.

An NSString specifying a name for a stored procedure in the model that should
be used rather than building the SQL statement. The stored procedure must
query the the exact same attributes in the same order as EOF would query if

EOStoredProcedureNameHintKey generating the SELECT expression dynamically. If this key is supplied, other
aspects of the EOFetchSpecification such as isDeep, qualifier , and
sortOrderings are ignored (in that sense, this key is more of a directive than a
hint). There is no way to pass down parameters with this hint.

The class description contains additional information on using these hints. See “Using a Custom Query.”

You can also use this method to implement “on-demand” locking by utetch&pecificatiothat includes
locking. For more discussion of this subject, see “Updating And Locking Strategies” in the class
description.

129



130

Raises an exception if an error occurs; the error message indicates the nature of the problem.

See also: — objectsWithFetchSpecification:(EOEditingContext)

ownsGloballD :
— (BOOL)wnsGloballD:(EOGIoballD *)globallD

Overrides the inherited implementation to return YES if the receiver is responsible for fetching and saving
the object identified bgloballD, NO otherwise. The receiver is determined to be responsitiebiliD

is a subclass of EOKeyGloballD aghbballD has an entity from one of the receiver's EODatabase’s
EOModels.

See also: —handlesFetchSpecification:—ownsObject:

ownsObject:
— (BOOL)wnsObject (id)object

Overrides the inherited implementation to return YES if the receiver is responsible for fetching and saving
object NO otherwise. The receiver is determined to be responsible if the entity corresporutijegtis
in one of the receiver's EODatabase’s EOModels.

See also: —ownsGloballD:, —handlesFetchSpecification:

performChanges
— (void)performChanges

Overrides the inherited implementation to construct EOAdaptorOperations from the
EODatabaseOperations produced durgaprdChangesinEditingContextand
recordUpdateForObject.changes: Invokes the delegate methddtabaseContext:
willOrderAdaptorOperationsFromDatabaseOperations: to give the delegate an opportunity to

construct alternative EOAdaptorOperations from the EODatabaseOperations. Then invokes the delegate
methoddatabaseContext:willPerformAdaptorOperations:adaptorChannel: to let the delegate

substitute its own array of EOAdaptorOperations. Gives the EOAdaptorOperations to an available
EOAdaptorChannel for execution. If the save succeeds, updates the snapshots in the receiver to reflect the
new state of the server. You should never need to invoke this method directly.

This method raises an exception if the adaptor is unable to perform the operations. The exception’s userinfo
dictionary contains these keys:

+ EODatabaseContextKey

The EODatabaseContext object that was trying to save to its underlying repository when the
exception was raised.



Classes: EODatabaseContext

« EODatabaseOperationsKey

The list of database operations the EODatabaseContext was trying to perform when the failure
occurred.

« EOFailedDatabaseOperationKey
The database operation the EODatabaseContext failed to perform.

The userinfo dictionary may also contain some of the keys listed in the method description for the
EOAdaptorChannel methquerformAdaptorOperation: . For more information, see the
EOAdaptorChannel class specification.

See also: —commitChanges —rollbackChanges

prepareForSaveWithCoordinator:editingContext:

— (void)prepareForSaveWithCoordinator: (EOObjectStoreCoordinator ¢pordinator
editingContext:(EOEditingContext *anEditingContext

Overrides the inherited implementation to do whatever is necessary to prepare to save changes. If needed,
generates primary keys for any new objectmiditingContexthat are owned by the receiver. This method

is invoked before the object graph is analyzed and foreign key assignments are performed. You should never
need to invoke this method directly.

recordChangesInEditingContext

— (voidyecordChangesinEditingContext
Overrides the inherited implementation to construct a list of EODatabaseOperations for all changes to
objects in the EOEditingContext that are owned by the receiver. Forwards any relationship changes
discovered but not owned by the receiver to the EOObjectStoreCoordinator. This method is typically
invoked in the course of an EOObjectStoreCoordinator saving changes through its

saveChangeslnEditingContextmethod. It's invoked aftgerepareForSaveWithCoordinator:
editingContext: and beforgoerformChanges You should never need to invoke this method directly.

recordSnapshot:forGloballD:
— (voidyecordSnapshot(NSDictionary *snapshoforGloballD: (EOGloballD *)globallD

RecordsaSnapshotindergloballD. This method only records snapshots locally (in the transaction scope).
If you want to record snapshots globally, use the corresponding EODatabase method.

See also: —forgetSnapshotForGloballD:, —localSnapshotForGloballD:, —recordSnapshots;
—snapshotForGloballD:

131



132

recordSnapshot:forSourceGloballD:relationshipName:

— (voidyecordSnapshot(NSArray *)globallDsforSourceGloballD:(EOGIloballD *)globallD
relationshipName:(NSString *hame

For the object identified hyloballD, records an NSArray @fioballDsfor the to-many relationship named

name ThesgyloballDsidentify the objects at the destination of the relationship. This method only records
shapshots locally (in the transaction scope). If you want to record snapshots globally, use the corresponding
EODatabase method.

See also: — shapshotForSourceGloballD:relationshipName; —localSnapshotForSourceGloballD:
relationshipName:, —recordToManySnapshots:

recordSnapshots:
— (voidyecordSnapshots(NSDictionary *snapshots

Records the objects sfmapshotsa dictionary of snapshots. Taapshots; keyare GloballDs and its values

are the corresponding snapshots represented as NSDicationaries. This method only records snapshots
locally (in the transaction scope). If you want to record snapshots globally, use the corresponding
EODatabase method.

See also: —recordSnapshot:forGloballD:, —localSnapshotForGloballD;,
—forgetSnapshotForGloballD:, —snapshotForGloballD:

recordToManySnapshots:
— (voidyecordToManySnapshots(NSDictionary *snapshots

Records the objects snapshotssnapshotshould be an NSDictionary of NSDictionaries, in which the
top-level dictionary has as its key the globalD of the enterprise object for which to-many relationships are
being recorded. The key's value is a dictionary whose keys are the names of the Enterprise Object’s to-many
relationships. Each of these keys in turn has as its value an array of globallDs that identify the objects at the
destination of the relationship.

This method only records snapshots locally (in the transaction scope). If you want to record snapshots
globally, use the corresponding EODatabase method.

See also: —recordSnapshot:forSourceGloballD:relationshipName; —snapshotForSourceGloballD:
relationshipName:, —localSnapshotForSourceGloballD:relationshipName:



Classes: EODatabaseContext

recordUpdateForObject:changes:
— (voidyecordUpdateForObject:(id)objectchanges{NSDictionary *thanges

Overrides the inherited implementation to communicate to the receivehdrajedrom another
EOCooperatingObjectStore (through the EOObjectStoreCoordinator) need to be madejéctamthe

receiver. For example, an insert of an object in a relationship property might require changing a foreign key
property in an object owned by another cooperating store. This method can be invoked any time after
prepareForSaveWithCoordinator:editingContext: and beforgoerformChanges

refaultObject:withGloballD:editingContext:

— (voidyefaultObject: (id)anObject
withGloballD: (EOGloballD *)globallD
editingContext:(EOEditingContext *anEditingContext

Overrides the inherited implementation to refault the enterprise object object identigjkdbaiyD in
anEditingContextNewly-inserted objects should not be refaulted, since they can’t be refetched from the
external store. If you attempt to do this, an exception will be raised. Don't refault to-many relationship
arrays, just recreate them.

This method should be used with caution since refaulting an object doesn’t remove the object snapshot from
the undo stack, after which the object snapshot may not refer to the proper object..

registerChannel:
— (voidyegisterChannel(EODatabaseChannelchannel

Registerchanne] which means that it adds it to the pool of available channels used to service fetch and
fault requests. Registered channels are retained by the receiver. You use this method if you need to perform
more than one fetch simultaneously.

See also: —availableChanne| —registeredChannels —unregisterChannel:

registeredChannels
— (NSArray *yegisteredChannels

Returns all of the EODatabaseChannels that have been registered for use with the receiver.

See also: —registerChannel;, —availableChanne| —unregisterChannel:

133



134

registerLockedObjectWithGloballD:
— (voidyegisterLockedObjectWithGloballD: (EOGIloballD *)globallD

Registers as a locked object the enterprise object identifigibbalID. This method is used internally to
keep track of objects corresponding to rows that are locked in the database.

See also: —forgetAllLocks, —isObjectLockedWithGloballD: ,
—forgetLocksForObjectsWithGloballDs:, —lockObjectWithGloballD:editingContext: ,
—lockObject: (EOEditingContext)

rollbackChanges
— (voidyollbackChanges

Overrides the inherited implementation to instruct the adaptor to roll back the transaction. Rolls back any
changed snapshots, and releases all locks.

See also: — performChanges —commitChanges

saveChangesInEditingContext:
— (void)saveChangesinEditingContextEOEditingContext *3nEditingContext

Overrides the inherited implementation to save the changes mateditingContextThis message is sent

by an EOEditingContext to its EOObjectStore to commit changes. Normally an editing context doesn’t send
this message to an EODatabaseContext, but to an EOObjectStoreCoordinator. Raises an exception if an
error occurs; the error message indicates the nature of the problem.

setDelegate:
— (void)setDelegategiid)delegate

Sets the receiver’s delegatedislegate and propagates the delegate to all of the receiver’s
EODatabaseChannels. EODatabaseChannels share the delegate of their EODatabaseContext.

See also: —delegate

setUpdateStrategy:
— (void)setUpdateStrategy(EOUpdateStrateggjrategy

Sets the update strategy used by the EODatabaseCorgéetégy See “Updating And Locking
Strategies” in the class description for information on the update strategies:

» EOUpdateWithOptimisticLocking



Classes: EODatabaseContext

« EOUpdateWithPessimisticLocking

Raises an NSInvalidArgumentException if the receiver has any transactions in progress or if you try to set
strategyto EOUpdateWithPessimisticLocking and the receiver's EODatabase already has snapshots.

See also: —updateStrategy

snapshotForGloballD:
— (NSDictionary *snapshotForGloballD:(EOGloballD *)globallD

Returns the snapshot for the object identifiedliopallD, if there is one; else returng. Searches first
locally (in the transaction scope) and then in the EODatabase.

See also: —recordSnapshot:forGloballD:, —localSnapshotForGloballD:,
—forgetSnapshotForGloballD:, —recordSnapshots:

snapshotForSourceGloballD:relationshipName:

— (NSArray *snapshotForSourceGloballD(EOGIloballD *)globallD
relationshipName:(NSString *hame

Returns a snapshot that consists of an array of global IDs. These global IDs identify the objects at the
destination of the to-many relationship nameaae which is a property of the object identified by
globallD. If there is no snapshot, retumi.

See also: —recordSnapshot:forSourceGloballD:relationshipName;
—localSnapshotForSourceGloballD:relationshipName;: —recordToManySnapshots:

unlock
— (voidunlock

Used internally to release the lock that protects access to the receiver in a multi-threaded environment.

See also: —lock

unregisterChannel:
— (voidunregisterChannel(EODatabaseChannelchannel

Unregisters the EODatabaseCharaielnne] which means that it removes it from the pool of available
channels used for database communication (for example, to service fetch and fault requests).

See also: —registerChannel;, —registeredChannels—availableChannel

135



updateStrategy
— (EOUpdateStrategypdateStrategy

Returns the update strategy used by the receiver, one of:

» EOUpdateWithOptimisticLocking
» EOUpdateWithPessimisticLocking

The default strategy is EOUpdateWithOptimisticLocking. See the class description for information on
update strategies.

See also: —setUpdateStrategy:

valuesForKeys:object:
— (NSDictionary *yaluesForKeys(NSArray *)keysobject:(id)object
Overrides the inherited implementation to return values for the spddifjstiom the snapshot abject

The returned values are used primarily by another EODatabaseContext to extract foreign key properties for
objects owned by the receiver.

Notifications

136

EODatabaseChannelNeededNotification

This notification is broadcast whenever an EODatabaseContext is asked to perform an object store
operation and it doesn't have an available EODatabaseChannel. Subscribers can create a new channel and
add it to the EODatabaseContext at this time.

Notification Object The EODatabaseContext.

userinfo Dictionary None.




Classes: EODatabaseContext

EODatabaseContext

The relationship between EODatabaseContext and other classes in the control and access layers is
illustrated in the following diagram.

EQEditing
Context
E0ObjectStore
Coordinator
EQDatabase
Context
EQDatabase — L [ODatabase —k ECMadel
Channel GroUp
ECAdaptor EQAdaptor
Channel — Context EQAdaptor

As a subclass of EOCooperatingObjectStore, EODatabaseContext acts as one of possibly several
EOCooperatingObjectStores for an EOODbjectStoreCoordinator, which mediates between
EOEditingContexts and EOCooperatingObjectStores.

An EODatabaseContext creates an EOAdaptorContext when initialized, and uses this object to
communicate with the database server.

Creating and Using an EODatabaseContext

Though you can create an EODatabaseContext explicitly by using the class method
registeredDatabaseContextForModel:editingContext: you should rarely need to do so. If you're using
the “higher-level” objects EOEditingContexts and EODatabaseDataSources, the database contexts those

137



138

objects need are created automatically, on demand. When you create database data source (typically for use
with a display group—one ofEODisplayGroup, EODisplayGroup, or WODisplayGroup), it registers a
database context that’s capable of fetching objects for the data source’s entities. If objects fetched into an
editing context (described more in the following section) have references to objects from EOModels that
are based on another database, an EODatabaseContext is creates and registered for each of the additional
databases.

EODatabaseContexts are created on demand when an EOObjectStoreCoordinator posts an
EOCooperatingObjectStoreNeeded notification. The EODatabaseContext class registers for the
notification, and it provides the coordinator with a new EODatabaseContext instance that can handle the
request. For more discussion of this topic, see the chapter “Application ConfigurationsEimdhmise

Objects Framework Developer’s Guide

For the most part, you don’t need to programmatically interact with an EODatabaseContext. However, some
of the reasons you might want to are as follows:

« To implement your own locking strategy, either application-wide, or on a per-fetch basis. This is
described in the section “Updating And Locking Strategies.”

« To do performance tuning, which is described in the section “Faulting.”

« To intervene when objects are created and fetched to provide custom behavior. This is described in the
section “Delegate Methods,” and in the individual delegate method descriptions in the section “Instance
Methods.”

Fetching and Saving Objects

Conceptually, an EODatabaseContext fetches and saves objects on behalf of an EOEditingContext.
However, the two objects don't interact with each other directly—an EOObjectStoreCoordinator acts as a
mediator between them. The relationship between EOEditingContext, EOObjectStoreCoordinator, and
EODatabaseContext is illustrated in the following figure. This configuration includes one
EOODbjectStoreCoordinator, and can include one or more EOEditingContexts, and one or more
EODatabaseContexts.



Classes: EODatabaseContext

EQEditing ECEditing EOEditing
Context Context Context
ECChjectStore
Coordinator
EdDalabase EQDatabase

Conlaxl Context

When an editing context fetches objects, the request is passed through the coordinator, which forwards it to
the appropriate database context based on the fetch specification or global ID. When the database context
receives a request to fetch or write information to the database, it tries to use one of its
EODatabaseChannels. If all of its channels are busy, it broadcasts an
EODatabaseChannelNeededNoatification in the hopes that an observer can provide a new channel or that an
existing channel can be freed up. This observer could be a manager that decides how many database cursors
can be opened by a particular client.

EODatabaseContext knows how to interact with other EOCooperatingObjectStores to save changes made
to an object graph in more than one database server. For a more detailed discussion of this subject, see the
class specifications for EOObjectStoreCoordinator and EOCooperatingObjectStore.

Setting a Fetch Limit

EODatabaseContext defines a hint for use with an EOFetchSpecification in the
objectsWithFetchSpecification:editingContext:method. Named by the key EOFetchLimitHintKey, the
hint’s value is an NSNumber containing an unsigned integer value indicating the maximum number of
objects to fetch. Depending on the value of the EOPromptAfterFetchLimitHintKey (NO or YES), the
EODatabaseContext will either stop fetching objects when this limit is reached or it will ask the
EOEditingContext’s message handler to ask the user whether it should continue fetching. For more
information on hint keys, see the method descriptionliggctsWithFetchSpecification:editingContext:

Using a Custom Query

EODatabaseContext defines a hint for use with an EOFetchSpecification in the
objectsWithFetchSpecification:editingContext:method. Named by the key
EOCustomQueryExpressionHintKey, the hint’s value is a SQL string for performing the fetch. The
expression must query the same attributes in the same order that Enterprise Objects Framework would if it
were generating the SELECT expression dynamically. If this key is supplied, other characteristics of the

139



140

EOFetchSpecification such i@®eep qualifier, andsortOrderings are ignored—in that sense this key is
more of a directive than a hint. For more information on hint keys, see the method description for
objectsWithFetchSpecification:editingContext:

Faulting

When an EODatabaseContext fetches an object, it examines the relationships defined in the model and
creates objects representing the destinations of the fetched object’s relationships. For example, if you fetch
an employee object, you can ask for its manager and immediately receive an object; you don't have to get
the manager’'s employee ID from the object you just fetched and fetch the manager yourself.

However, EODatabaseContext doesn’'t immediately fetch data for the destination objects of relationships
since fetching is fairly expensive. To avoid this waste of time and resources, the destination objects are
created as EOFault objects which act as placeholders. EOFaults (or faults) come in two varieties: single
object faults for to-one relationships, and array faults for to-many relationships.

When an EOFault is accessed (sent a message), it triggers its EODatabaseContext to fetch its data and
transform it into an instance of the appropriate object class. This preserves both theidlgadtiss
EOGloballD.

You can fine-tune faulting behavior for additional performance gains by using two different mechanisms:
batch faulting, and prefetching relationships.

Batch Faulting

When you access a fault, its data is fetched from the database. However, triggering one fault has no effect
on other faults—it just fetches the object or array of objects for the one fault. You can take advantage of this
expensive round trip to the database server by batching faults together. EODatabaseContext provides the
batchFetchRelationship:forSourceObjects:editingContextmethod for doing this. For example, given

an array of Employee objects, this method can fetch all of their departments with one round trip to the
server, rather than asking the server for each of the employee’s departments individually. You can use the
delegate methodatabaseContext:shouldFetchArrayFault:anddatabaseContext:

shouldFetchObjectFault: to fine-tune batch faulting behavior.

You can also set batch faulting in an EOModel. In that approach, you spedifyntifierof faults that

should be triggered along with the first fault; you don’t actually control which faults are triggered the way
you do withbatchFetchRelationship:forSourceObjects:editingContext: For more information on

setting batch faulting in an EOModel, see the chapter “Using EOModeler” Entleeprise Objects
Framework Developer's Guide

Prefetching Relationships

EODatabaseContext defines a hint for use with an EOFetchSpecification in the
objectsWithFetchSpecification:editingContext:method. Named by the key
EOPrefetchingRelationshipHintKey, the hint’s value specifies relationships whose destinations should be



Classes: EODatabaseContext

fetched along with the objects matching the fetch specification. Although prefetching increases the initial
fetch cost, it can improve overall performance by reducing the number of round trips made to the database
server. For more information on this and other hint keys, see the method description for
objectsWithFetchSpecification:editingContext:

Using this key also has an effect on how an EOFetchSpecification refreshes. “Refreshing” refers to existing
objects being overwritten with fetched values—this allows your application to see changes to the database
that have been made by someone else. Normally, when you set an EOFetchSpecification to refresh using
setRefreshesRefetchedObijectsit only refreshes the objects you're fetching. For example, if you fetch
employees, you don't also fetch the employees’ departments. However, if you have the
EOPrefetchingRelationshipHintKey set, the refetch is propagated for all of the relationships specified for
the hint.

Delegate Methods

An EODatabaseContext shares its delegate with its EODatabaseChannels. These delegate methods are
actually sent from EODatabaseChannel, but they're defined in EODatabaseContext for ease of access:

« databaseContext.didSelectObjectsWithFetchSpecification:databaseChannel:

» databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:

« databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globallD:databaseChannel:
« databaseContext:shouldUsePessimisticLockWithFetchSpecification: databaseChannel:

— databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:

— databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:

— databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globallD:databaseChannel:
— databaseContext:shouldUsePessimisticLockWithFetchSpecification: databaseChannel:

You can use the EODatabaseContext delegate methods to intervene when objects are created and when
they're fetched from the database. This gives you more fine-grained control over such issues as how an
object’s primary key is generatedbfabaseContextNewPrimaryKeyForObjectdatabaseContext:
newPrimaryKeyForObiject:entity: ), how and if objects are locked
(databaseContextShouldLockObjectWithGloballDdatabaseContext:
shouldLockObjectWithGloballD:snapshot:), what fetch specification is used to fetch objects
(databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChanngehow batch

faulting is performeddatabaseContext:shouldFetchArrayFault:anddatabaseContext:
shouldFetchObjectFault), and so on. For more information, see the individual delegate method
descriptions in the section “Instance Methods.”

Snapshots

An EODatabase records snapshots for its EODatabaseContexts. These snapshots form the application’s
view of the current state of the database server. This global view is overridden locally by database contexts,

141



142

which form their own snapshots as they make changes during a transaction. When a database context
commits its top-level transaction, it reconciles all changed snapshots with the global view of the database
object, so that other database contexts (except those with open transactions) immediately use the new
snapshots as well.

Updating And Locking Strategies
EODatabaseContext supports two updating strategies defined B tedateStrategytype as integer

values:

Type Description

The default update strategy. Under optimistic locking, objects aren’t locked
immediately on being fetched from the server. Instead, whenever you attempt
to save updates to an object in the database, the object’s snapshot is used to
ensure that the values in the corresponding database row haven't changed
since the object was fetched. As long as the snapshot matches the values in
the database, the update is allowed to proceed.

EOUpdateWithOptimisticLocking

Causes objects to be locked in the database when they're selected. This
ensures that no one else can modify the objects until the transaction ends.
However, this doesn’t necessarily mean that either the select or the update
operation will succeed.

EOUpdateWithPessimisticLocking

EODatabaseContext also supports “on-demand” locking, in which specific optimistic locks can be
promoted to database locks during the course of program execution. You can either use
lockObjectWithGloballD:editingContext: to lock a database row for a particular object, or
objectsWithFetchSpecification:editingContext:to fetch objects with a fetch specification that includes
locking.

For more discussion of locking strategies, see the chapter “Behind the Sceneg&ntetpese Objects
Framework Developer's Guide



Classes: EODatabaseDataSource

EODatabaseDataSource

Inherits From: EODataSource : NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabaseDataSource.h

Class Description

EODatabaseDataSource is a concrete subclass of EODataSource (defined in EOControl) that fetches
objects based on an EOModel, using an EODatabaseContext that services the data source’s
EOEditingContext (defined in EOControl). An EODatabaseDataSource can be set up to fetch all objects for
its root entity, to fetch objects matching a particular EOFetchSpecification, and to further filter its fetching
with an auxiliary qualifier.

EODatabaseDataSource implements all the functionality defined by EODataSource: In addition to fetching
objects, it can insert and delete them (provided the entity isn’t read-only). See the EODataSource class
specification for more information on these topics.

As with other data sources, EODatabaseDataSource can also provide a detail data source. The most
significant consequence of using an master-detail configuration is that the detail operates directly on the
master’s object graph. The EODetailDataSource maasier objecand adetail keythrough which the

detail data source accesses the its objects. The master object is simply the object that’s selected in the master
display group, and the detail key is the name of a relationship property in the master object. When the detail
display group asks its data source to fetch, the EODetailDataSource simply gets the value for the
relationship property nametetail keyfrom its master object and returns it. When you add and remove

objects from the detail, you're directly modifying the master’s relationship array. In fact, you can think of
EODetailDataSource as an interface to its master object’s relationship property.

Method Types

Creating instances
— initWithEditingContext:entityName:fetchSpecificationName:
— initWithEditingContext:entityName:fetchSpecificationName:

143



Accessing selection criteria
— auxiliaryQualifier
— fetchSpecification
— fetchSpecificationForFetch
— fetchSpecificationName
— setAuxiliaryQualifier:
— setFetchSpecification:
— setFetchSpecificationByName:

Accessing objects used for fetching
— entity
— databaseContext

Enabling fetching
— setFetchEnabled:
— isFetchEnabled

Accessing qualifier bindings
— qualifierBindingKeys
— qualifierBindings
— setQualifierBindings:

Instance Methods

144

auxiliaryQualifier

— (EOQualifier *puxiliaryQualifier
Returns the EOQualifier used to further filter the objects fetched by the receiver's EOFetchSpecification (in
EOControl).

See also: — setAuxiliaryQualifier: , —fetchSpecificationForFetch —fetchSpecification

databaseContext
— (EODatabaseContextdatabaseContext

Returns the EODatabaseContext that the receiver uses to access the external database. This is either the root
EOObjectStore for the receiver's EOEditingContext, or if the root is an EOCooperatingObjectStore, it's the
EODatabaseContext under that EOCooperatingObjectStore that services the EOModel containing the
EOEntity for the receiver. (EOObjectStore, EOEditingContext, and EOCooperatingObjectStore are all
defined in EOControl.)

DeletesanObjectfrom the data source. This method raises an exception on failure. If the receiver registers
undos for the deletion, the receiver may receive a possibly redundariObject call.



Classes: EODatabaseDataSource

entity
— (EOEntity *)entity

Returns the EOEntity from which the receiver fetches objects.

fetchSpecification
— (EOFetchSpecification fgtchSpecification

Returns the receiver’s basic EOFetchSpecification. Its EOQuialifier is conjoined with the receiver’s
auxiliary EOQualifier when the receiver fetches objects. The sender of this message can alter the
EOFetchSpecification directly, or replace it usseg-etchSpecification:

See also: fetchSpecificationForFetch auxiliaryQualifier

fetchSpecificationForFetch
— (EOFetchSpecification fgtchSpecificationForFetch

Returns a copy of the EOFetchSpecification that the receiver uses to fetch. This is constructed by conjoining
the EOQualifier of the receiver's EOFetchSpecification with its auxiliary EOQualifier. Modifying the
returned EOFetchSpecification doesn't affect the receiver’s fetching behavieetbistchSpecification:
andsetAuxiliaryQualifier: for that purpose.

See also: —fetchSpecification —auxiliaryQualifier

fetchSpecificationName
— (NSString *JetchSpecificationName

Returns the name of the fetch specificatiom(bif there is no name).

See also: — setFetchSpecificationByName:

initWithEditingContext:entityName:

— (id)initwithEditingContext: (EOEditingContext *anEditingContexéntityName:
(NSString *anEntityName

Initializes a newly allocated EODatabaseDataSource to fetch objectsmBditingContexfor the

EOEntity named bgnEntityNameThis method checlenEditingContexs EOODbjectStoreCoordinator for

an EODatabaseChannel that services the EOModel containing the named EOEntity. If none exists, this
method creates one. This method works by caititgVithEditingContext:entityName:
fetchSpecificationName:and specifyingil for the fetchSpecificationName.

145



146

initWithEditingContext:entityName:fetchSpecificationName:

— (id)initwithEditingContext: (EOEditingContext *anEditingContext
entityName:(NSString *)anEntityName
fetchSpecificationName{NSString *fetchSpecificationName

Initializes a newly allocated EODatabaseDataSource to fetch objectmbBditingContexfor the

EOEntity named bgnEntityNameThis method checkaEditingContex$ EOObjectStoreCoordinator for

an EODatabaseChannel that services the EOModel containing the named EOERntity. If none exists, this
method creates one. TfetchSpecificationNamagument is used to find the named fetch specification in
the entity. If theetchSpecificationNamisnil, a new fetch specification will be instantiated that will fetch

all objects of the entity. This is the primitive initializer. Retusel.

Insertsobjectinto the data source.

isFetchEnabled
— (BOOL)isFetchEnabled

Returns YES if the receiverfstchObjectsmethod actually fetches objects, NO if it returns an empty array
without fetching. Fetching is typically disabled in a master-peer configuration when no object is selected in
the master.

See also: — setFetchEnabled:

qualifierBindingKeys
— (NSArray *gualifierBindingKeys

Returns an array of strings which is a union of the binding keys from the fetch specification’s qualifier and
the data source’s auxiliary qualifier.

See also: — setQualifierBindings:

qualifierBindings
— (NSDictionary *pualifierBindings

Returns a set of bindings that will be used for variable replacement on the fetch specification’s qualifier and
the auxiliary qualifier before the fetch is executed.

See also: — setQualifierBindings:



Classes: EODatabaseDataSource

setAuxiliaryQualifier:

— (void)setAuxiliaryQualifier: (EOQualifier *)aQualifier
Sets the receiver’s auxiliary qualifieraQualifier The auxiliary qualifier usually adds conditions to the
primary qualifier and is useful for narrowing the scope of a data source without altering its primary qualifier.
This is especially useful for setting a qualifier on a qualified peer data source, since a peer’s primary

qualifiers specifies the matching criteria for the relationship it fetches for. For more information on auxiliary
qualifiers, see “Creating a Master-Peer Configuration” in the “WebObjects Programming Topics.”

See also: —fetchSpecificationForFetch —fetchSpecification —auxiliaryQualifier

setFetchEnabled:
— (void)setFetchEnabled(BOOL)flag

Controls whether the receiver can fetctldfjis YES the receiverfetchObjectsmethod actually fetches
objects, if NO it returns an empty array without fetching. Fetching is typically disabled in a master-peer
configuration when no object is selected in the master. For example, EODatabaseDataSource’s
implementation ofjualifyWithRelationshipKey:ofObject: invokes this method to enable or disable
fetching based on whether a master object is provided.

See also: —isFetchEnabled

setFetchSpecification:
— (void)setFetchSpecification(EOFetchSpecification &FetchSpecification

Sets the receiver’s basic EOFetchSpecificati@iratichSpecificatiarits EOQualifier is conjoined with the
receiver’s auxiliary EOQualifier when the receiver fetches objects. This method also sets the name of the
fetch specification to nil.

See also: — setAuxiliaryQualifier: , —fetchSpecificationForFetch —fetchSpecification
— setFetchSpecificationByName:

setFetchSpecificationByName:
— (void)setFetchSpecificationByNaméNSString *fetchSpecificationName

Sets thdetchSpecificationNanas given, and sets the fetch specification (used when supplying objects) to
the named fetch specification of the entity that was used to initialize the data source. This method is an
alternative tesetFetchSpecification:

See also: —fetchSpecificationName

147



setQualifierBindings:
— (NSDictionary *pketQualifierBindings:(NSDictionary *pindings

Sets a set of bindings that will be used for variable replacement on the fetch specification’s qualifier and the
auxiliary qualifier before the fetch is executed.

See also: —qualifierBindingKeys, —qualifierBindings

148



Classes: EODatabaseOperation

EODatabaseOperation

Inherits From: NSObiject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabaseOperation.h

Class Description

An EODatabaseOperation object represents an operation—insert, update, or delete—to perform on an
enterprise object and all the necessary information required to perform the operation. You don'’t ordinarily
create instances of EODatabaseOperation; rather, the Framework automatically creates an
EODatabaseOperation object for each new, updated, or deleted object in an EOEditingContext. An
EODatabaseContext object analyzes a set of database operations and maps each operation to one or more
adaptor operations. The adaptor operations are then performed by an EOAdaptorChannel object. You
generally interact with EODatabaseOperation objects only if you need to specify the order in which a set

of operations are carried out (see the description for the EODatabaseContext delegate method
databaseContextWillOrderAdaptorOperationsFromDatabaseOperationsdatabaseContext:
willOrderAdaptorOperationsFromDatabaseOperations:).

An EODatabaseOperation specifies an enterprise object (called “object”) on which the operation is
performed, the EOGloballD for the object, and the object’s entity. In addition, the database operation has a
snapshot containing the last known database values for the objech@n®aw dictionary of new or

updated values to save in the database. Finally, a database operation specifies one of the following operators
(the type of operation represented by the database operation).

EODatabaseNothingOperator
EODatabaselnsertOperator
EODatabaseUpdateOperator
EODatabaseDeleteOperator

Method Types

Creating a new EODatabaseOperation
— initWithGloballD:object:entity:

Accessing the global ID object
— globallD

Accessing the object
— object

149



Accessing the entity

— entity
Accessing the operator

— setDatabaseOperator:

— databaseOperator
Accessing the database snapshot

— setDBSnapshot:

— dbSnapshot
Accessing the row

— setNewRow:

— newRow
Accessing the adaptor operations

— addAdaptorOperation:

— removeAdaptorOperation:
— adaptorOperations

Comparing new row and snapshot values
— rowDiffs
— rowDiffsForAttributes:

Working with to-many shapshots
— recordToManySnapshot:relationshipName:
— toManySnapshots

Instance Methods
adaptorOperations
— (NSArray *)adaptorOperations

Returns the EOAdaptorOperation objects that need to be performed to carry out the operation represented
by the receiver.

See also: —addAdaptorOperation:, —removeAdaptorOperation:

addAdaptorOperation:
— (voidladdAdaptorOperation: (EOAdaptorOperation gdaptorOperation

AddsadaptorOperatiorto the receiver’s list of adaptor operations. Raises an exception if
adaptorOperations nil .

See also: —adaptorOperations, —removeAdaptorOperation:

150



Classes: EODatabaseOperation

databaseOperator
— (EODatabaseOperatdgtabaseOperator

Returns the receiver’s database operator.

See also: setDatabaseOperator:

dbSnapshot
— (NSDictionary *pIbSnapshot

Returns the database snapshot for the receiver’'s enterprise object. The snapshot contains the last known
database values for the enterposgect. The dictionary returned from this method will be empty if the
receiver’s object has just been inserted into an EOEditingContext and has not yet been saved in persistent
storage. For more information on EOEditingContexts, see the EOEditingContext class specification in the
EOControl framework.

See also: —setDBSnapshot; —setDatabaseOperator:

entity
— (EOEntity *)entity
Returns the entity that corresponds to the receiver’s enterprise object.

See also:  —initWithGloballD:object:entity:

globallD
— (EOGIoballD *ploballD

Returns the EOGloballD object that corresponds to the receiver’s enterprise object.

initWithGloballD:object:entity:
— initWithGloballD: (EOGIoballD *)globallD object:(id)objectentity: (EOEntity *)entity

The designated initializer, this method initializes a new EODatabaseOperation instance. Sets the enterprise
object to which the operation will be applied, the object’s global ID, and the object’s entity. Reltirns

See also: — Object, —entity

151



152

newRow
— (NSMutableDictionary HlewRow

Returns a dictionary representation of the receiver’s enterprise object. In addition to all the properties of the
enterprise object that are stored in the database, the dictionary contains values for the non-derived attribute’s
of the enterprise object’s entity that aren’t visible in the enterprise object. For example, primary and foreign
keys aren’t ordinarily properties of an enterprise object but are attributes of the object’s entity.

ThenewRowdictionary is initialized with the values in the receiver’s snapshot. New or updated values are
added to th@ewRowdictionary (replacing out-of-date values) as the Framework maps changes in the
object to an operation.

See also: —setNewRow:

object
— (id)object

Returns the receiver’s enterprise object.

primaryKeyDiffs
— (NSDictionary *primaryKeyDiffs

See also: Returns a dictionary that contains any primary key valuaswRowthat are different from
those in thalbSnapshot Returnanil if the receiver doesn’t have EODatabaseUpdateOperator
set as its database operateetbatabaseOperator, —newRow

recordToManySnapshot:relationshipName:
— (voidyecordToManySnapshot(NSArray *)globallDsrelationshipName:(NSString *hame

Records the objects globallDs globallDsis an array of the globallDs that identify the objects at the
destination of the to-many relationship namedhe nameis a property of the receiver’s enterprise object.

See also: —toManySnapshots

removeAdaptorOperation:
— (voidyemoveAdaptorOperation:(EOAdaptorOperation gdaptorOperation

RemovesadaptorOperatiorfrom the receiver’s list of adaptor operations.

See also: —adaptorOperations, —addAdaptorOperation:



Classes: EODatabaseOperation

rowDiffs
— (NSDictionary *yowDiffs

Returns values in the receivenewRowdictionary that are different than the corresponding values in its
dbSnapshot The dictionary returned from this method contains the new values from the enterprise object.

See also: — primaryKeyDiffs

rowDiffsForAttributes:
— (NSDictionary *yowDiffsForAttributes: (NSArray *)attributes

For the EOAttribute objects mttributes this method returns values in the receivaesyRowdictionary
that are different than the corresponding values ahi&napshot The dictionary returned contains the new
values from the enterprise object.

setDatabaseOperator:
— (void)setDatabaseOperator{EODatabaseOperatagtabaseOperator

Sets the receiver’s database operalatabaseOperatocan be one of the following:

EODatabaseNothingOperator
EODatabaselnsertOperator
EODatabaseUpdateOperator
EODatabaseDeleteOperator

See also: — databaseOperator

setDBSnapshot:
— (void)setDBSnapshot{NSDictionary *dbSnapshot

Sets the snapshot for the receiver’s enterprise object. If the object has just been inserted into an an
EOEditingContext, it won’t have a snapshot. In this cds8napshoshould be an empty dictionary.

See also: —dbSnapshot

153



setNewRow:
— (void)setNewRow(NSMutableDictionary *lewRow

Sets the dictionary representation of the receiver’s enterprise atgedowshould contain values for all
the properties of the enterprise object that are stored in the database and for the non-derived attribute’s of
the enterprise object’s entity that aren't visible in the enterprise object.

See also: —newRow, —databaseOperator

toManySnapshots
— (NSDictionary *JoManySnapshots

Returns the NSDictionary containing the snapshots for the to-many relationships of the receiver’s enterprise
object.

See also: —recordToManySnapshot:relationshipName:

154



Classes: EOEntity

EOEntity

Inherits From: NSObiject
Conforms To: NSObject (NSObject)
Declared In: EOAccess/EOEntity.h

Class Description

An EOEntity describes a table, file, or collection in a database and associates a name internal to the
Framework with an external name by which the table is known to the database. An EOEntity maintains a
group of attributes and relationships, which are collectively called properties. These are represented by the
EOAttribute and EORelationship classes, respectively; see their specifications for more information.

You usually define entities in a model with the EOModeler application, which is documeweloldijects
Tools and TechniqgueEOEntity objects are primarily used by the Enterprise Objects Framework for
mapping tables in the database to enterprise objects; your code will probably make limited use of them
unless you're specifically working with models.

An EOEntity is associated with a specific class whose instances are used to represent records (rows) from
the database in applications using layers at or above the database layer of the Enterprise Objects
Framework. If an EOEntity doesn’t have a specific class associated with it, instances of EOGenericRecord
(defined in EOControl) are created.

An EOEntity may be marked as read-only, in which case any changes to rows or objects for that entity made
by the database level objects are denied.

You can define an external query for an EOEntity to be used when a selection is attempted with an
unrestricted qualifier (one that would select all rows in the entity’s table). An external query is sent unaltered

to the database server and so can use database-specific features such as stored procedures; external queries
are thus useful for hiding records or invoking database-specific features. You can also assign stored
procedures to be invoked upon particular database operations through the use of EOEntity’s
setStoredProcedure:forOperation:method.

Like the other major modeling classes, EOEntity provides a user dictionary for your application to store any
application-specific information related to the entity.

For more information on programmatically creating EOEntity objects, see “Creating an Entity.”

155



Adopted Protocols

EOPropertyListEncoding
— awakeWithPropertyList
— encodelntoPropertyList:
— initWithPropertyList:owner:

Method Types

156

Accessing the name
— setName:
— name
— validateName:
— beautifyName

Accessing the model
— model

Specifying fetching behavior for the entity
— setExternalQuery:
— externalQuery
— setRestrictingQualifier:
— restrictingQualifier

Accessing primary key qualifiers
— qualifierForPrimaryKey:
— isQualifierForPrimaryKey:

Accessing attributes
— addAttribute:
— anyAttributeNamed:
— attributeNamed:
— attributes
— removeAttribute:
— attributesToFetch

Accessing relationships
— addRelationship:
— anyRelationshipNamed:
— relationships
— relationshipNamed:
— removeRelationship:

Checking referential integrity
— externalModelsReferenced
— referencesProperty:



Classes: EOEntity

Accessing primary keys
— globallDForRow:
— isPrimaryKeyValidInObiject:
— primaryKeyForGloballD:
— primaryKeyForRow:

Accessing primary key attributes
— setPrimaryKeyAttributes:
— primaryKeyAttributes
— primaryKeyAttributeNames
— primaryKeyRootName:
— isValidPrimaryKeyAttribute:

Accessing class properties
— setClassProperties:
— classProperties
— classPropertyNames
— isValidClassProperty:

Accessing the enterprise object class
— classDescriptionForinstances
— setClassName:
— className

Accessing locking attributes
— setAttributesUsedForLocking:
— attributesUsedForLocking

— isValidAttributeUsedForLocking:

Accessing external name
— seteExternalName:
— externalName

Accessing whether an entity is read only
— setReadOnly:
— isReadOnly

Accessing the user dictionary
— setUserlnfo:
— userinfo

Working with stored procedures

— setStoredProcedure:forOperation:

— storedProcedureForOperation:

157



Working with fetch specifications
— addFetchSpecification:withName:
— fetchSpecificationNamed:
— fetchSpecificationNames
— removeFetchSpecificationNamed:

Working with entity inheritance hierarchies
— parentEntity
— SubEntities
— addSubEntity:
— removeSubEntity:
— setlsAbstractEntity:
— isAbstractEntity

Specifying fault behavior
— setMaxNumberOfinstancesToBatchFetch:
— maxNumberOflnstancesToBatchFetch

Caching objects
— setCachesObijects:
— cachesObijects

Instance Methods
addAttribute:
— (void)addAttribute: (EOAttribute *)JanAttribute

AddsanAttributeto the receiver. Raises an NSinvalidArgumentExceptianAfttributés name is already
in use by another attribute or relationship. Sei&ttributeés entity toself.

See also: —removeAttribute: , —attributes, —attributeNamed:

addFetchSpecification:withName:

— (void)addFetchSpecification{fEOFetchSpecification f@tchSpec
withName:(NSString *fetchSpecName

Adds the fetch specification and associféshSpecNamwith it.

See also: —fetchSpecificationNamed; —fetchSpecificationNames—removeFetchSpecificationNamed:

158



Classes: EOEntity

addRelationship:
— (voidaddRelationship:(EORelationship *aRelationship

AddsaRelationshigo the receiver. Raises an NSinvalidArgumentExceptiaRdlationshifs hame is
already in use by another attribute or relationship. &edationshifs entity toself.

See also: —removeRelationship; —relationships, —relationshipNamed:

addSubEntity:
— (void)addSubEntity: (EOEntity *)child

Causes the child entithild to “inherit” from the receiver. This is the first step in setting up an inheritance
hierarchy between entities.

See also: — SubEntities, —removeSubEntity:

anyAttributeNamed:
— (EOAttribute *anyAttributeNamed: (NSString *jattributeName

Returns the user-created attribute identifiedtybuteNamelf no such attribute exists, this method looks
through the “hidden” attributes created by the Enterprise Objects Framework for one with the given name.
Hidden attributes are used for such things as primary keys on target entities of flattened attributes. If none
is found,nil is returned.

See also: — attributeNamed:, —attributes

anyRelationshipNamed:
— (EOREelationship gnyRelationshipNamed(NSString *yelationshipName

Returns the user-created relationship identifiecelationshipNamelf none exists, this method looks
through the “hidden” relationships created by the Enterprise Objects Framework for one with the given
name. If none is founahjl is returned.

See also: —relationshipNamed:, —relationships

attributeNamed:
— (EOAttribute *pattributeNamed: (NSString *jattributeName

Returns the attribute namattributeNameor nil if no such attribute exists.

See also: —anyAttributeNamed:, —attributes, —relationshipNamed:

159



160

attributes
— (NSArray *attributes

Returns all of the receiver’s attributes,nirif the receiver has none.

See also: —anyAttributeNamed:, —attributeNamed:

attributesToFetch
— (NSArray *attributesToFetch

Returns an array of the EOAttributes that need to be fetched so that they can be included in the row
shapshot. The set of attributes includes:

1. Attributes that are class properties, “used for locking,” or primary keys.
2. Source attributes of any to-many relationship (flattened or non-flattened) that is a class property.

3. Source attributes of any non-flattened, to-one relationship that is a class property or that is used by a flattened
attribute that is a class property.

4. The foreign key attributes of any flattened, to-one relationship that is a class property or that is used by a class
property.

attributesUsedForLocking
— (NSArray *attributesUsedForLocking

Returns an array containing those properties whose values must match a snapshot any time a row is updated.

Attributes used for locking are those whose values are compared when a database-level object performs an
update. When the database-level classes fetch an enterprise object, they cache these attributes’ values in a
shapshot. Later, when the enterprise object is updated, the values of these attributes in the object are
checked with those in the snapshot—if they differ, the update fails. See the EODatabaseContext class
specification for more information.

beautifyName
— (voideautifyName

Makes the receiver's name conform to a standard convention. EOEntity names that conform to this style are
all lower-case except for the initial letter of each word, which is upper case. Thus, “MOVIE” becomes
“Movie”, and “MOVIE_ROLE" becomes “MovieRole".

See also: —setName; —validateName;, —beautifyNames(EOModel)



Classes: EOEntity

cachesObjects

— (BOOL)achesObjects
Returns YES if all of the objects from the receiver are to be cached in memory and queries are to be
evaluated in-memory using this cache rather than in the database. This method should only be used for fairly
small tables of read-only objects, since the first access to the receiver will trigger fetching the entire table.
You should generally restrict this method to read-only entities to avoid cached data getting out of sync with

database data. Also, you shouldn’t use this method if your application will be making queries against the
entity that can’t be evaluated in memory.

See also: —setCachesObjects:

classDescriptionForinstances
— (EOClassDescription ¢)assDescriptionForinstances

Returns the EOClassDescription associated with the receiver. The EOClassDescription class provides a
mechanism for extending classes by giving them access to the metadata contained in an EOModel (or
another external source of information). In an application, EOClassDescriptions are registered on demand
for the EOEntity on which an enterprise object is based. For more information, see the class specifications
for EOClassDescription (in EOControl) and EOEntityClassDescription.

className
— (NSString *rlassName

Returns the name of the enterprise object class associated with the receiver. When a row is fetched for the
receiver by a database-level object, it's returned as an instance of this class. This class might not be present
in the run-time system, and in fact your application may have to load it on demand. If your application
doesn’t load a class, EOGenericRecord is used.

An enterprise object class other than EOGenericRecord can be mapped to only one entity.

classProperties
— (NSArray *xlassProperties

Returns an array containing the properties that are bound to the receiver’s class (so that instances of the class
will be passed values corresponding to those properties). This is a subset of the receiver’s attributes and
relationships.

See also: —classPropertyNames

161



classPropertyNames
— (NSArray *xlassPropertyNames

Returns an array containing the names of those properties that are bound to the receiver’s class (so that
instances of the class will be passed values corresponding to those properties). This is a subset of the
receiver’s attributes and relationships.

See also: — classProperties

externalModelsReferenced
— (NSArray *externalModelsReferenced

Examines each of the receiver’s relationships and returns a list of all external models referenced by the
receiver.

See also: —referencesProperty:

externalName
— (NSString *pxternalName

Returns the name of the receiver as understood by the database server.

externalQuery
— (NSString *gxternalQuery
Returns a query statement that's used by an EOAdaptorChannel to select rows for the receiver when a

qualifier is empty, onil if the receiver has no external query. An empty qualifier is one that specifies only
the entity, and would thus fetch all enterprise objects for that entity.

External queries are useful for hiding records or invoking database-specific features such as stored
procedures when an application attempts to select all records for an entity. You can also use the
EOStoredProcedure class to work with stored procedures; for more information see the EOStoredProcedure
class specification.

See also: — setExternalQuery:

162



Classes: EOEntity

fetchSpecificationNamed:
— (EOFetchSpecification f§tchSpecificationNamed{NSString *fetchSpecName

Returns the fetch specification associated fetthSpecName

See also: —addFetchSpecification:withName; —fetchSpecificationNames
—removeFetchSpecificationNamed:

fetchSpecificationNames
— (NSArray *¥etchSpecificationNames

Returns an alphabetically sorted array of names of the entity’s fetch specifications.

See also: —addFetchSpecification:withName; —fetchSpecificationNamed;
—removeFetchSpecificationNamed:

globallDForRow:
— (EOGIoballD *globallDForRow: (NSDictionary *aRow

Constructs a global identifier from the specified row for the receiver.

See also: — primaryKeyForGloballD:

isAbstractEntity
— (BOOL)isAbstractEntity

Returns YES to indicate that the receiver is abstract, NO otherwise. An abstract entity is one that has no

corresponding enterprise objects in your application. Abstract entities are used to model inheritance

relationships. For example, you might have a Person abstract entity that acts as the parent of Customer and
Employee entities. Customer and Employee would inherit certain characteristics from Person (such as name
and address attributes). However, though your application might have Customer and Employee objects, it

would never have a Person object.

See also: — setIsAbstractEntity:

163



164

isPrimaryKeyValidInObject:
— (BOOL)isPrimaryKeyValidinObject: (id)anObject
Returns YES if every key attribute is presemam®bjectand has a value that is mok. Returns NO

otherwise. This method uses the key-value coding protocol so a dictionary may be provided instead of an
enterprise object.

See also: — primaryKeyForRow:

isQualifierForPrimaryKey:
— (BOOL)isQualifierForPrimaryKey: (EOQualifier *aQualifier
Returns YES iiQualifierdescribes the primary key and nothing but the primary key, NO otherwise.

iISReadOnly
— (BOOL)sReadOnly

Returns YES if the receiver can't be modified, NO if it can. If an entity can’t be modified, then enterprise
objects fetched for that entity also can’t be modified (that is, inserted, deleted, or updated).

isValidAttributeUsedForLocking:
— (BOOL)isValidAttributeUsedForLocking: (EOAttribute *JanAttribute
Returns NO ifanAttributeisn’'t an EOAttribute, if the EOAttribute doesn’t belong to the receiver, or if

anAttributeis derived. Otherwise returns YES. An attribute that isn’t valid for locking will cause
setAttributesUsedForLocking: to fail.

See also: — attributesUsedForLocking

isValidClassProperty:
— (BOOL)isValidClassProperty:(id)aProperty

Returns NO if eitheaPropertyisn’'t an EOAttribute or EORelationship, oraiPropertydoesn’t belong to

the receiver. Otherwise returns YES. Note that this method doesn’t tell you wdietbgertyis a member

of the array returned lglassProperties In other words, unlikelassProperties classPropertyNames
andsetClassProperties;: this method doesn't interact with the properties bound to the entity’s enterprise
object class.



Classes: EOEntity

isValidPrimaryKeyAttribute:
— (BOOL)isValidPrimaryKeyAttribute: (EOAttribute *JanAttribute

Returns NO ifanAttributeisn't an EOAttribute, doesn't belong to the receiver, or is derived. Otherwise
returns YES.

See also: — setPrimaryKeyAttributes:

maxNumberOflnstancesToBatchFetch
— (unsigned inthaxNumberOfinstancesToBatchFetch

Returns the maximum number of to-one EOFaults from the receiver to fire at one time. See the method
description forsetMaxNumberOfinstancesToBatchFetchfor more explanation of what this means.

model
— (EOModel *model

Returns the model that contains the receiver.
See also: —addEntity: (EOModel)

name
— (NSString *hame

Returns the receiver’'s name.

parentEntity
— (EOEntity *)parentEntity

Returns the entity from which the receiver inherits.

See also: —SuUbEntities

primaryKeyAttributeNames
— (NSArray *primaryKeyAttributeNames

Returns an array containing the names of the attributes that make up the receiver’s primary key.

See also: — primaryKeyAttributes

165



primaryKeyAttributes
— (NSArray *primaryKeyAttributes

Returns an array of those attributes that make up the receiver’s primary key.

See also: — primaryKeyAttributeNames

primaryKeyForGloballD:
— (NSDictionary *primaryKeyForGloballD: (EOKeyGloballD *globallD

Returns the primary key for the object identifiedghgballD.

See also: —globallDForRow:

primaryKeyForRow:
— (NSDictionary *primaryKeyForRow: (NSDictionary *aRow

Returns the primary key f@Row or nil if the primary key can’'t be computed. The primary key is
aDictionary whose keys are attribute names and whose values are values for those attributes.

See also: — primaryKeyForGloballD:

primaryKeyRootName:
— (NSString *primaryKeyRootName

Returns the external name (that is, the name as it's understood by the database) of the receiver’s root entity.
If the receiver has no parent entity, returns the receiver’'s external name.

See also: —externalName —name, —parentEntity

qualifierForPrimaryKey:
— (EOQualifier *pualifierForPrimaryKey: (NSDictionary *aRow

Returns a qualifier for the receiver that can be used to fetch an instance of the receiver with the primary key
extracted fromaRow

See also: —isQualifierForPrimaryKey: , —restrictingQualifier

166



Classes: EOEntity

referencesProperty:
— (BOOLYeferencesProperty(id)aProperty

Returns YES if any of the receiver’s attributes or relationships refeathroperty NO otherwise. A

property can be referenced by a flattened attribute or by a relationship. For example, suppose a model has
an Employee entity with @mDepartment relationship. If you flatten the department’s name attribute into

the Employee entity, creatingdepartmentNameattribute, that flattened attribute references the
toDepartment relationship.

If an entity has any outstanding references to a property, you shouldn’t remove the property.

See also: —removeAttribute: , —removeRelationship:

relationshipNamed:
— (EORelationship *elationshipNamed:(NSString *name

Returns the relationship namedme or nil if the receiver has no such relationship.

See also: — anyRelationshipNamed; —attributeNamed:, —relationships

relationships
— (NSArray *yelationships

Returns all of the receiver’s relationshipsnorif the receiver has none.

See also: — attributes

removeAittribute:
— (voidyemoveAttribute: (EOAttribute *name

Removes the attribute namedmeif it exists. You should always useferencesProperty:to check that
an attribute isn’t referenced by another property before removing it.

See also: —addAttribute: , —attributes

removeFetchSpecificationNamed:
— (voidyemoveFetchSpecificationNamedNSString *fetchSpecName

Removes the fetch specification referred tddighSpecName

See also: —addFetchSpecification:withName; —fetchSpecificationNamed; —fetchSpecificationNames

167



168

removeRelationship:
— (voidyemoveRelationship{(EORelationship yame

Removes the relationship nam@ineif it exists. You should always useferencesProperty:to check that
a relationship isn’'t referenced by another property before removing it.

See also: —addRelationship:, —relationships

removeSubEntity:
— (voidyemoveSubEntity:(EOEntity *)child

Removeshild from the receiver’s list of sub-entities.

See also: —addSubEntity:, —subEntities

restrictingQualifier
— (EOQualifier *yestrictingQualifier

Returns the qualifier used to restrict all queries made against the receiver. Restricting qualifiers are useful
when there is not a one-to-one mapping between an entity and a particular database table, or when you
always want to filter the data that's returned for a particular entity.

For example, if you're using the “one table” inheritance model in which parent and child data is contained
in the same table, you'd use a restricting qualifier to fetch objects of the appropriate type. To give a
non-inheritance example, for an Employees table you might create a “Sales” entity that has a restricting
qualifier that only fetches employees who are in the Sales department.

See also: — setRestrictingQualifier:

setAttributesUsedForLocking:
— (BOOL setAttributesUsedForLocking:(NSArray *)attributes

Setsattributesas the attributes used when an EODatabaseChannel locks enterprise objects for updates.
Returns NO and doesn't set the attributes used for locking if any of the attribatibinesresponds NO
toisValidAttributeUsedForLocking: ; returns YES otherwise. See the EODatabase, EODatabaseContext,
and EODatabaseChannel class specifications for information on locking.



Classes: EOEntity

setCachesObjects:
— (void)setCachesObjectgBOOL)flag

Sets according titag whether all of the receiver’s objects are cached the first time the associated table is
queried.

See also: —cachesObjects

setClassName:
— (void)setClassNamgNSString *name

Assignsnameas the name of the class associated with the receiver. This class need not be present in the
run-time system when this message is sent. When an EODatabaseChannel fetches objects for the receiver,
they're created as instances of this class. Your application may have to load the class on demand if it isn’t
present in the run-time system; if it doesn’t load the class, EOGenericRecord will be used.

Note: If you set the class namend, theclassNamemethod returns “EOGenericRecord”.
An enterprise object class other than EOGenericRecord can be mapped to only one entity.

See also: —className

setClassProperties:
— (BOOL)setClassPropertieNSArray *)properties
Sets the receiver’s class properties to the EOAttributes and EORelationghigpeeiniesand returns YES,

unless the receiver responds NGsialidClassProperty: for any of the objects in the array. In this event,
the receiver’s class properties aren't changed and NO is returned.

setExternalName:

— (void)setExternalName(NSString *name
Sets the name of the receiver as understood by the database seavee teor example, though your
application may know the entity as “JobTitle” the database may require a form such as “JOB_TTL". An

adaptor uses the external name to communicate with the database; your application should never need to
use the external name.

169



setExternalQuery:
— (void)setExternalQuery:(NSString *aQuery
AssignsaQueryas the query statement used for selecting rows from the receiver when there is no qualifier.

External queries are useful for hiding records or invoking database-specific features such as stored
procedures when an application attempts to select all records for an entity. You can also use the
EOStoredProcedure class to work with stored procedures; for more information see the EOStoredProcedure
class specification.

An external query is sent unaltered to the database server, and so must contain the external (column) names
instead of the names of EOAttributes. However, to work properly with the adaptor the external query must
use the columns in alphabetical order by their corresponding EOAttributes’ names.

See also: —columnName (EOAttribute), -externalQuery

setlsAbstractEntity:
— (void)setlsAbstractEntity: (BOOL)flag

Sets according tilag whether the receiver is an abstract entity. For more discussion of abstract entities, see
the method description fasAbstractEntity .

setMaxNumberOfinstancesToBatchFetch:
— (void)setMaxNumberOflinstancesToBatchFetchiunsigned ingize

Sets the maximum number of EOFaults from the receiver to trigger at one time. By default, only one object
is fetched from the database when you trigger an EOFault. You can optionally use this method to set to size
the number of EOFaults of the same entity should be fetched from the database along with the first one.
Using this technique helps to optimize performance by taking advantage of round trips to the database.

See also:  —maxNumberOfinstancesToBatchFetch

setName:
— (void)setName(NSString *name

Sets the receiver's namertame Raises an NSinvalidArgumentExceptiom#éimeis already in use by
another entity in the same EOModel on#imeis not a valid entity name.

See also: — beautifyName —validateName:

170



Classes: EOEntity

setPrimaryKeyAttributes:
— (BOOL)setPrimaryKeyAttributes: (NSArray *)keys

If the receiver responds NO i®ValidPrimaryKeyAttribute: for any of the objects ikeys this method
returns NO. Otherwise, this method sets the primary key attributes to the attrilieesaimd returns YES.

You should exercise care in choosing primary key attributes. Floating-point numbers, for example, can’t be
reliably compared for equality, and are thus unsuitable for use in primary keys. Integer and string types are
the safest choice for primary keys. NSDecimalNumbers will work, but they’ll entail more overhead than
integers.

See also: —isValidPrimaryKeyAttribute:

setReadOnly:
— (void)setReadOnly(BOOL)flag

Sets according tthag whether the database rows for the receiver can be modified by the database level
objects.

See also: —isReadOnly

setRestrictingQuialifier:
— (void)setRestrictingQualifier:(EOQualifier *aQualifier

AssignsaQualifieras the qualifier used to restrict all queries made against the receiver. The restricting
qualifier can be used to map an entity to a subset of the rows in a table. For more discussion of this subject,
see the description foestrictingQualifier .

setStoredProcedure:forOperation:

— (void)setStoredProcedure(EOStoredProcedure $foredProcedure
forOperation: (NSString *pperation

SetsstoredProcedurdor operation operationcan be one of the following:

Constant Description

EOFetchAllProcedureOperation Procedure that fetches all records from the database.

EOFetchWithPrimaryKeyProcedureOperation Procedure that performs a fetch with primary key.

EOQInsertProcedureOperation Procedure that performs an insert.

171



Constant Description

EODeleteProcedureOperation Procedure that performs a delete.

EONextPrimaryKeyProcedureOperation Procedure that performs generates a new primary key.

This information is used when changes from the object graph have been transformed into
EODatabaseOperations that are being used to construct EOAdaptorOperations. At this point, Enterprise
Objects Framework checks the entities associated with the changed objects to see if the entities have any
stored procedures defined for the operation being performed.

See also: — storedProcedureForOperation:

setUserlInfo:
— (void)setUserInfo:(NSDictionary *dictionary

Sets thdictionary of auxiliary data, which your application can use for whatever it ndeadmnary can
only contain property list data types—that is, NSString, NSDictionary, NSArray, and NSData.

storedProcedureForOperation:
— (EOStoredProcedurestpredProcedureForOperation{NSString *operation

Returns the stored procedure for the specdjgetation if one has been set. Otherwise, returihs
operationcan be one of the following:

« EOFetchAllProcedureOperation

» EOFetchWithPrimaryKeyProcedureOperation
e EOInsertProcedureOperation

» EODeleteProcedureOperation

« EONextPrimaryKeyProcedureOperation

See also: — setStoredProcedure:forOperation; —parameterDirection (EOAttribute),
— storedProcedure(EOAttribute)

subEntities
— (NSArray *subEntities

Returns a list of those entities which inherit from the receiver.

See also: —addSubEntity:, —parentEntity , —removeSubEntity:

172



Classes: EOEntity

userinfo
— (NSDictionary *userinfo

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: — setUserlnfo:

validateName:
— (NSException ®yalidateName(NSString *name

Validatesnameand returnsil if it is a valid name, or an exception if itisn’t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@", “#”, or “_"; or contains a character other

than a letter, a number, “@", “#”, “ ", or “$”. A name is also invalid if the receiver's model already has an
EOEntity that has the same name or a stored procedure with an argument that has the same name.

setName:uses this method to validate its argument.

173



174



Classes:

Creating an Entity
An EOEntity requires at least the following to be usable:

* Aname

» The name of a table in the database (the external name)
« The name of an enterprise object class

* A set of attributes to be used as the primary key

Note that if an entity has no enterprise object class hame, the database-level objects use EOGenericRecord.
This code excerpt gives an example of creating an EOEntity and adding it to an EOModel:

EOModel *myModel; f* Assume this exists. */
NSArray *keyAttributes; /* Assume this exists. */
EOEntity *employeeEntity;

BOOL result;

employeeEntity = [[[EOEntity alloc] init] autorelease];
[employeeEntity setName:@"employee"];
[employeeEntity setExternalName:@"EMPLOYEE'T];
[employeeEntity setClassName:@"Employee'";

[* Create at least the primary key attributes. */
result = [employeeEntity setPrimaryKeyAttributes:keyAttributes];

* Add the entity to the model. */
[myModel addEntity:employeeEntity];

175



176



Classes: EOEntityClassDescription

EOEntityClassDescription

Inherits From: EOCIlassDescription : NSObject
Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOEntity.h

Class Description

EOEntityClassDescription is the subclass of the control layer's EOClassDescription. The
EOCIlassDescription class provides a mechanism for extending classes by giving them access to metadata
not available in the run-time system. EOEntityClassDescription extends the behavior of enterprise objects
by deriving information about them (such as NULL constraints and referential integrity rules) from an
associated EOModel.

In the typical scenario in which an enterprise object has a corresponding model file, the first time a
particular operation is performed on a class (such as validating a value), an EOClassDescriptionNeeded...
notification (either an EOClassDescriptionNeededForClassNotification or an
EOClassDescriptionNeededForEntityNameNotification) is broadcast. When an EOModel object receives
this notification it registers the metadata (class description) for the EOEntity on which the enterprise object
is based. This class description is used from that point on.

For a more detailed discussion of this subject, see the EOClassDescription class specification.

Instance Methods

entity
— (EOEntity *)entity
Returns the entity associated with the receiver.

See also: — initWithEntity:

InitWithEntity:
—initWithEntity: (EOEntity *)anEntity

Initializes a newly allocated EOEntityClassDescription aitiEntity Returnsself.

177



178



Classes:

EOGenericRecord Additions

Inherits From: NSObiject

Declared In: EOAccess/EOGenericRecord.h

Class Description

The access layer adds one method to the control layer's EOGenericRecord class, for returning a generic
record’s associated EOEntity. Strictly speaking, EOGenericRecord doesn’t rely on the access layer.
However, in applications that access a relational database, the access layer's modeling objects are an
important part of how generic records map to database rows: If an EOModel doesn't have a custom
enterprise object class defined for a particular entity, an EODatabaseChannel using that model creates
EOGenericRecords when fetching objects for that entity from the database server. During this process, an
EODatabaseChannel also sets each generic rectad&Descriptionto an EOEntityClassDescription,

providing the link to the record’s associated modeling objects.

Instance Methods

entity
— (EOEntity *)entity

Returns the receiver's EOEntity.

179



180



Classes: EOJoin

EOJoin

Inherits From: NSObiject

Conforms To: NSObject (NSObject)
Declared In: EOAccess/EOJoin.h

Class Description

An EOJoin describes one source-destination attribute pair for an EORelationship. See the EORelationship
class specification for more information and for examples.

Method Types

Initializing new instances

— initWithSourceAttribute:destinationAttribute:
Querying the join

— destinationAttribute

— isReciprocalToJoin:
— sourceAttribute

Instance Methods

destinationAttribute
— (EOAttribute *destinationAttribute
Returns the destination (“right”) attribute used by the join.

See also: —destinationAttributes (EORelationship)

initWithSourceAttribute:destinationAttribute:
— initWithSourceAttribute: (EOAttribute *)sourcedestinationAttribute: (EOAttribute *)destination

Initializes a newly allocated EOQJoin with the given source and destination attributes. This is the designated
initializer for the EOJoin class. Retursalf.

181



See the EORelationship class specification for an example of creating a relationship using EOJoins.

See also: —addJoin: (EORelationship)

isReciprocalToJoin:
— (BOOL)sReciprocalToJoinEOJoin *ptherJoin

Returns YES if this join’s source attribute is equaltteerJoiris destination attribute aratherJoiris source
attribute is equal to this join’s destination attribute. This is known as a back-referencing join.

See also: —inverseRelationship(EORelationship)

sourceAttribute
— (EOAttribute *sourceAttribute

Returns the source (“left”) attribute used by the join.

See also: — sourceAttributes (EORelationship)

182



Classes: EOLoginPanel

EOLoginPanel
Inherits From: NSObiject
Declared In: EOAccess/EOAdaptor.h

Class Description

EOLoginPanel is an abstract class that defines how users of an Enterprise Objects Framework application
provide database login information. Concrete subclasses of EOLoginPanel override its one method to run
a modal login panel. Unless you are writing a concrete adaptor subclass, you shouldn’t need to interact with
this class. Generally, the Framework automatically creates and runs an instance of a concrete login panel
object when your application needs connection information for the user. If you want to control when or how
the login panel is run, use the EOAdaptor methradtoginPanelAndValidateConnectionDictionary
andrunLoginPanel. When invoked, these methods create a concrete EOLoginPanel and interact with it for
you.

If you are writing a concrete adaptor, you must provide a concrete subclass of EOLoginPanel and a
graphical user interface (usuallyréb file). Enterprise Objects Framework expects these resources to be
provided in a bundle named “LoginPanel” in the adaptor’s framework. See the class specification for
EOAdaptor for more information.

Instance Methods

administrativeConnectionDictionaryForAdaptor:

— (NSDictionary *administrativeConnectionDictionaryForAdaptor: (EOAdaptor *adaptor

Adaptor subclass should implement a subclass that implements this. Rdtifrtiee user cancels the
panel.

runPanelForAdaptor:validate:allowsCreation:

— (NSDictionary *yunPanelForAdaptor: (EOAdaptor *adaptor
validate:(BOOL)flag
allowsCreation:(BOOL)allowsCreation

Implemented by subclasses to run the login panel, allowing a user to enter new connection information.
Returns the new connection informatiomdrif the user cancels the panelflfigis YES, this method runs
the login panel until the user enters valid connection information or cancels the palieekdCreationis

183



184

YES, the panel will have an additional button that allows the user to creat a new database, and will prompt
them for any necessary administrative information. When valid login information is entered in the panel, it
is stored iradaptots connection dictionary and returned. Login information is validated by seaahptpr
anassertConnectionDictionarylsValid message.

If flagis NO, login information entered in the panel isn't validated and is returned without affecting the
adaptor's connection dictionary.

A subclass must override this method without invoking EOAdaptor’s implementation.

See also: — setConnectionDictionary:(EOAdaptor), -assertConnectionDictionarylsValid(EOAdaptor),
—runLoginPanelAndValidateConnectionDictionary (EOAdaptor),
—runLoginPanel (EOAdaptor)



Classes: EOModel

EOModel

Inherits From: NSObiject
Conforms To: NSObject (NSObject)
Declared In: EOAccess/EOModel.h

Class Description

An EOModel represents a mapping between a database schema and a set of classes based on the
entity-relationship model. The model contains a number of EOEntity objects representing the entities
(tables) of the database schema. Each EOEntity object has a number of EOAttribute and EORelationship
objects representing the properties (columns or fields) of the entity in the database schema. For more
information on attributes and relationships, see their respective class specifications.

An EOModel maintains a mapping between each of its EOEntity objects and a corresponding enterprise
object class for use with the database level of the Enterprise Objects Framework. You can determine the
EOEntity for a particular enterprise object with drityForObject: method.

An EOModel is specific to a particular database server, and stores information needed to connect to that
server. This includes the name of an adaptor framework to load so that the Enterprise Objects Framework
can communicate with the database. Models are stored in the file system in a manner similar to adaptor
framework. EOModel objects are usually loaded from model files built with the EOModeler application
rather than built programmatically. If you need to programmatically load a model file, see the discussion in
“Loading a Model File.”

Models can have relationships that reference other models in the same model group. The other models may
map to different databases and types of servers.

Models are organized into model groups; see the EOModelGroup class specification for more information.

Creating an EOModel Programmatically

The EOAdaptorChannel class declares methods for reading basic schema information from a relational
database. You can use this information to build up an EOModel programmatically, and then enhance that
model by defining extra relationships, flattening attributes, and so on. See the class description in the
EOAdaptorChannel class specification for information on reading basic schema information, and see the
other modeling classes’ specifications for information on creating additional attributes and relationships.

185



Method Types

186

Initializing an EOModel instance
— initWithContentsOfFile:
— initWithTableOfContentsPropertyList:path:

Saving a model
— encodeTableOfContentsintoPropertyList:
— writeToFile:

Loading a model’'s objects
— loadAlIModelObjects

Working with entities
— addEntity:
— removeEntity:
— removeEntityAndReferences:
— entityNames
— entityNamed:
— entities

Naming a model’s components
— beautifyNames

Accessing the model's name
— setName:
— name
— path

Checking references
— referencesToProperty:
— externalModelsReferenced

Getting an object’s entity
— entityForObject:

Accessing the adaptor bundle
— adaptorName
— setAdaptorName:

Accessing the connection dictionary
— setConnectionDictionary:
— connectionDictionary

Accessing the user dictionary
— setUserlnfo:
— userinfo



Classes: EOModel

Working with stored procedures
— addStoredProcedure:
— removeStoredProcedure:
— storedProcedureNames
— storedProcedureNamed:
— storedProcedures

Accessing the model’s group
— setModelGroup:
— modelGroup

Instance Methods
adaptorName
— (NSString *pdaptorName

Returns the name of the adaptor for the receiver. This name can be used with EOAdaptor’s
adaptorWithName: class method to create an adaptor.

addEntity:
— (void)addEntity: (EOEntity *)anEntity

AddsanEntityto the receiver. Raises an NSInvalidArgumentException if an error occurs (for example, if
anEntitydoesn't exist, if the entity belongs to another model, or if an entity of the same name is already in
the receiver).

See also: —entities, —removeEntity:, — removeEntityAndReferences:

addStoredProcedure:
— (void)addStoredProcedure(EOStoredProcedure SjoredProcedure

AddsstoredProcedur¢o the receiver. Raises an NSinvalidArgumentException if an error occurs (for
example, if a stored procedure of the same name is already in the receiver).

See also: —removeStoredProcedure; —storedProcedures —storedProcedureNamed;
—storedProcedureNames

187



188

availablePrototypeAttributeNames
— (NSArray *availablePrototypeAttributeNames

Returns a list of available prototype names.

See also: — prototypeAttributeNamed:

beautifyNames
— (void)beautifyNames

Makes all of the receiver's named components conform to a standard convention. Names that conform to
this style are all lower-case except for the initial letter of each embedded word other than the first, which is
upper case. Thus, “NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”.

See also: , —name

connectionDictionary
— (NSDictionary *fonnectionDictionary

Returns a dictionary containing information used to connect to the database server. The connection
dictionary is the place to specify default login information for applications using the model. See the
EOAdaptor class specification for more information.

encodeTableOfContentsintoPropertyList:
— (voidencodeTableOfContentsintoPropertyList{(NSMutableDictionary *propertyList

Encodes the receiver inpmopertyList This method is used to get an ASCII representation of an EOModel
in property list format.

See also: — initWithTableOfContentsPropertyList:path:

entities
— (NSArray *entities

Returns an array containing the receiver’s entities. Note that this method loads every entity, and thus defeats
the benefits of incremental model loading.

See also: —entityNames



Classes: EOModel

entityForObject:
— (EOEntity *)entityForObject: (id)anEO

Returns the entity associated wahEQ whethermnEQis an instance of an enterprise object class, an
instance of EOGenericRecord, or a fault object (see the EOFault class specification for information on
faults). Returnsil if anEOhas no associated entity.

entityNamed:
— (EOEntity *)entityNamed:(NSString *name

Returns the entity nameatme or nil if no such entity exists. Posts an EOEntityLoadedNotification when
the entity is loaded.

See also: —entityNames —entities

entityNames
— (NSArray *entityNames

Returns an array containing the names of the EOModel’s entities.

See also: — entities, —entityNamed:

externalModelsReferenced
— (NSArray *externalModelsReferenced

Returns an array containing those models that are referenced by this model.

See also: —referencesToProperty:

initWithContentsOfFile:
— initWithContentsOfFile: (NSString *path

Initializes a newly-allocated EOModel by reading the contents of the file naaleds a model archive.
The file specified by path can either be an old-stglenfode) or new-style gomodeld model file. Sets
the EOModel's name and pathitWithContentsOfFile: raises an NSInvalidArgumentException if for
any reason it cannot initialize the model from the file specifigublly

See also: —nhame —path

189



initWithTableOfContentsPropertyList:path:
— initWithTableOfContentsPropertyList: (NSDictionary *tableOfContentpath: (NSString *path

UsestableOfContentgwhich is the property list representation of an EOModel) with the file pah¢o
initialize the receiver.

See also: —encodeTableOfContentsintoPropertyList:

loadAlIModelObjects
— (void)oadAllModelObjects

Loads any of the receiver’s entities, stored procedures, attributes, and relationships that have not yet been
loaded.

See also: — attributes (EOEntity), —entities, —relationships (EOEntity), —storedProcedures

modelGroup
— (EOModelGroup *nodelGroup

Returns the model group of which the receiver is a part.

See also: —setModelGroup:

name
— (NSString *hame
Returns the receiver's name.

See also: —path

path
— (NSString *path

Returns the name of the EOModel file used to create the receinirifdne model wasn't initialized from
a file.

See also: —hame

190



Classes: EOModel

prototypeAttributeNamed:
— (EOAttribute *prototypeAttributeNamed: (NSString *jattributeName

Returns the prototype attribute for the giettnibuteNameprototypeAttributeNamed: first looks for the
prototype in E@daptorNamerototypes. If the prototype isn’t found there, it then looks in EOPrototypes.
If the search is still unsuccessful, this method finally looks for the prototype in the list of prototypes
provided by the adaptor itself.

See also: — availablePrototypeAttributeNames

referencesToProperty:
— (NSArray *yeferencesToProperty(id)aProperty

Returns an array of all properties in the receiver that refesdProperty whether derived attributes,
relationships that referene®roperty and so on. Returnsl if aPropertyisn’t referenced by any of the
properties in the model.

See also: — externalModelsReferenced

removeEntity:
— (voidyemoveEntity: (EOEntity *)name
Removes the entity with the giveamewithout performing any referential integrity checking.

See also: —addEntity:, — removeEntityAndReferences:

removeEntityAndReferences:
— (voidyemoveEntityAndReferences(EOEntity *)entity

Removesentityand any attributes or relationships in other entities that reference entity.

See also: —removeEntity:, —addEntity:

removeStoredProcedure:
— (voidyemoveStoredProcedure(EOStoredProcedure shoredProcedure

RemovesaStoredProceduraithout checking to see if an entity uses it.

See also: —addStoredProcedure; — storedProcedures

191



192

setAdaptorName:
— (void)setAdaptorName(NSString *adaptorName

Sets the name of the receiver’s adapt@adaptorName

See also: availableAdaptorNames(EOAdaptor)

setConnectionDictionary:
— (void)setConnectionDictionary(NSDictionary *connectionDictionary

Sets the dictionary containing information used to connect to the datalcas@égationDictionarySee the
EOAdaptor class specification for more information on working with connection dictionaries.

See also: adaptorWithModel: (EOAdaptor)

setModelGroup:
— (void)setModelGroup:(EOModelGroup *yroup

Sets the model group of which the receiver should be a part.

Note: You shouldn’t change an EOModel’'s model group after it has been bound to other models in its
group.

See also: —modelGroup

setName:
— (void)setName(NSString *name

Sets the name of the receiventmme

setUserlInfo:
— (void)setUserInfoi(NSDictionary *dictionary

Sets thalictionary of auxiliary data, which your application can use for whatever it ndedmnary can
only contain property list data types—that is, NSString, NSDictionary, NSArray, and NSData.



Classes: EOModel

storedProcedureNamed:
— (EOStoredProcedurestpredProcedureNamed(NSString *nhame

Returns the stored procedure namathe or nil if the model doesn’t contain a stored procedure with the
given name.

See also: — storedProcedureNames—storedProcedures

storedProcedureNames
— (NSArray *storedProcedureNames

Returns an array containing the names of all of the model’s stored procedures.

See also: —storedProcedureNamed; —storedProcedures

storedProcedures
— (NSArray *storedProcedures

Returns an array containing all of the model’'s stored procedures. Note that this method loads each of the
model’s stored procedures, thus defeating the benefits of incremental model loading.

See also: —storedProcedureNames—storedProcedureNamed:

userinfo
— (NSDictionary *userinfo

Returns a dictionary of user data. You can use this to store any auxiliary information it needs.

See also: — setUserlInfo:

writeToFile:
— (void)writeToFile: (NSString *path

Saves the receiver in the directory specifieghdth If the file specified by path already exists, a backup
copy is first created (using path with a “~” character appended). As a side-effect, this method resets the
current path.

writeToFile: raises an NSInvalidArgumentException on any error which prevents the file from being
written.

See also: —path

193



Notifications
EOModel declares and posts the following notification.
EOEntityLoadedNotification

Posted after an EOEntity is loaded into memory. The notification contains:

Notification Object The entity that was loaded.

Userinfo None

194



Classes:

Loading a Model File

EOModels are usually loaded from model files built with the EOModeler application rather than built
programmatically. EOModel files are typically stored in a project or a framework.

You useinitWithContentsOfFile: to load an EOModel. Note that loading an EOModel doesn’t have the
effect of loading all of its entities. EOModel files can be quite large, so to reduce start-up time, entity
definitions are only loaded as needed. This incremental model loading is possible because an EOModel
actually consists of one index file and two files for each entity. Models hagerandeldfile wrapper

(which is actually a directory), and the individual entity files within the model are in ASCII format. The
index file has the namadex.eomodeld and it contains the connection dictionary, the adaptor name, and

a list of all of the entities in the model. It is this file that gets loaded when yinit\gighContentsOfFile:

. Thereafter, when an entity is loaded, EOModel posts an EOEntityLoadedNotification. The entity files are
a.plist file that describes the entity andspecfile that describes any named fetch specifications for that
entity.

Some of the EOModel methods contain the string “TableOfContents”. An EOModel’s “table of contents”
corresponds to itmdex.eomodeldfile, which is used to access the model’s entiinelex.eomodelds just
the ASCII representation of a model’s table of contents.

195



196



Classes: EOModelGroup

EOModelGroup

Inherits From: NSObiject
Conforms To: NSObject (NSObject)
Declared In: EOAccess/EOModelGroup.h

Class Description

An EOModelGroup represents an aggregation of related models (see the EOModel class specification for
more information on models). When a model in the group needs to resolve a relationship to an entity in
another model, it looks for that model in its group. Model groups allow applications to load entities and
their properties only as they’re needed, by distributing them among separate EOModels.

Thedefault model groupontains all models for an application, as well as any frameworks the application
references. It is automatically created on demand. The entity name space among all of these models is
global; consequently, the same entity name shouldn’t appear in any two of the models. All cross-model
information is represented in the models by entity name only. Binding the entity name to an actual entity is
done at run-time within the EOModelGroup.

In the majority of applications, the automatic creation of the default model group is sufficient. However,
your code can override this automatic creation; see “Setting Up A Model Group Programmatically.”

EOModelGroup Delegates

Your EOModelGroup object should have a delegate which can influence how it finds and loads models. In
addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself can have
a delegate. The class delegate implements a single metlefdwtModelGroup—while the instance

delegate can implement the methods defined in the EOModelGroupDelegation protocol. For more
information on EOModelGroup class delegate and instance delegate methods, see the
EOModelGroupClassDelegation and EOModelGroupDelegation protocol specifications, respectively.Note
that the following delegate methods are set on EOModelGroup, rather than EOEntity, to provide a single
point in the code where you can alter the database-to-objects mapping:

entity:classForObjectWithGloballD:
entity:failedToLookupClassNamed:
entity:relationshipForRow:relationship:
subEntityForEntity:primaryKey:isFinal:

197



Method Types

Accessing the group
— addModel:
— addModelWithFile:
— modelNamed:
— modelNames
— models
— modelWithPath:
— removeModel:

Accessing model groups
+ defaultGroup
+ setDefaultGroup:
+ globalModelGroup

Searching a group
— entityNamed:
— entityForObject:
— fetchSpecificationNamed:entityNamed:
— storedProcedureNamed:

Loading all of a group’s objects
— loadAllIModelObjects

Assigning a delegate
+ classDelegate
— delegate
+ setClassDelegate:
— setDelegate:

Class Methods
classDelegate
+ (id)classDelegate

Returns the EOModelGroup’s class delegate. This delegate optionally implements the
defaultModelGroup method (see the EOModelGroupClassDelegation protocol specification for more
information).

See also:  + setClassDelegate:

198



Classes: EOModelGroup

defaultGroup
+ (EOModelGroup ®lefaultGroup

Returns the default EOModelGroup. Unless you've either specified a default model group with
setDefaultGroup: or implemented thdefaultModelGroup class delegate method to return a ndn-
value, this method is equivalentgtobalModelGroup.

See also: + classDelegate

globalModelGroup
+ (EOModelGroup *ylobalModelGroup

Returns an EOModelGroup composed of all models in the resource directory of the main bundle, as well
as those in all the bundles and frameworks loaded into the application.

See also: + defaultGroup

setClassDelegate:
+ (void)setClassDelegatéid)anObject

AssignsanObjectas the EOModelGroup’s class delegate. The class delegate is optional; it allows you to
determine the default model group (see the EOModelGroupClassDelegation protocol specification for more
information).

See also: + classDelegate—defaultModelGroup

setDefaultGroup:
+ (void)setDefaultGroup:(EOModelGroup *yroup

Sets the default model groupgmup. If you've implemented thdefaultModelGroup class delegate
method to return a nonit value, the delegate’s return value overrigesip as the default model group.

See also:  + defaultGroup,+ setClassDelegate:

199



Instance Methods
addModel:
— (void)addModel:(EOModel *)model

Adds amodelto the receiver, sets tineodels model group to the receiver, posts
EOModelAddedNotification, then returns the newly-created EOModel. Raises if the receiver already
contains an EOModel with the same name as the specitiddl

See also: —models —removeModel:

addModelWithFile:
— (EOModel *rddModelWithFile: (NSString *path

Creates an EOModel object with the contents of the file identifighthy adds the newly-created model
to the receiver, and returns it. Uses the EOModel methoitithContentsOfFile: to initialize the new
model, and adds it to the receiver watiidModel:.

delegate
— (id)delegate

Returns the receiver’s delegate, which is different from the EOModelGroup’s class delegate. Each
EOModelGroup object can have it's own delegate in addition to the delegate that's assigned to the
EOModelGroup class. See the EOModelGroupDelegation protocol specification for more information.

See also: —setDelegate: + classDelegate

entityForObject:
— (EOEntity *)entityForObject: (id)object

Returns the EOEntity associated wathjectfrom any of the models in the receiver that haothiect or
nil if none of the entities in the receiver handibgect

See also: —entityForObject: (EOModel)

200



Classes: EOModelGroup

entityNamed:
— (EOEntity *entityNamed:(NSString *entityName

Searches each of the EOModels in the receiver for the entity specifatitipilameand returns the entity
if found. Returnsiil if it is unable to find the specified entity.

See also: —entityNamed: (EOModel)

fetchSpecificationNamed:entityNamed:

— (EOFetchSpecification f§tchSpecificationNamed{NSString *fetchSpecName
entityNamed:(NSString *entityName

Returns the named fetch specification from the entity specifiedtilyNamen the receiving model group.

loadAlIModelObjects
— (void)oadAllModelObjects

SenddoadAllModelObjects to each of the receiver's EOModels, thereby loading any EOEntities,
EOAttributes, EORelationships, and EOStoredProcedures that haven't yet been loaded from each of the
EOModels in the receiver.

See also: —loadAllIModelObjects (EOModel)

modelNamed:
— (EOModel *modelNamed(NSString *modelName

Returns the EOModel nametbdelNaméf it's part of the receiver, aril if the receiver doesn’t contain an
EOModel with the specified name.

See also: —modelNames—models

modelNames
— (NSArray *modelNames

Returns an array containing the names of all of the EOModels in the receiver, or an empty array if the
receiver contains no EOModels. The order of the model names in the array isn’t defined.

See also: —modelNamed; —models

201



202

models
— (NSArray *models

Returns an array containing the receiver's EOModels, or an empty array if the receiver contains no
EOModels. The order of the models in the array isn’t defined.

See also: —modelNamed; —modelNames —models

modelWithPath:
— (EOModel *modelWithPath: (NSString *path

If the receiver contains an EOModel whose path (as determined by seatlirtg the EOModel object)
is equal tgpath, that EOModel is returned. Otherwise, retunits NSString’sisEqual: method is used to
compare the paths, and each path is standardizedsgwitgByStandardizingPath) before comparison.

See also: —modelNamed:, —path (EOModel)

removeModel:
— (voidyemoveModel:(EOModel *)aModel

RemovesaModelfrom the receiver, and unbinds any connectioravodelfrom other EOModels in the
receiver. Posts EOModellnvalidatedNotification to the default notification center after reraMaongl
from the receiver.

setDelegate:
— (void)setDelegate(id)anObject

Sets the receiver’s delegateattObject See the EOModelGroupDelegation protocol specification for more
information.

See also: — delegate

storedProcedureNamed:
— (EOStoredProcedurestpredProcedureNamed(NSString *aName

Returns the stored procedure in the receiving model group having the given name.



Classes: EOModelGroup

Notifications
EOModelGroup declares and posts the following notifications.
EOModelAddedNotification

Posted by an EOModelGroup when an EOModel is added to the group. This notification is sent, for
instance, inside Interface Builder when the user has saved changes to a model in EOModeler and the objects
in Interface Builder must be brought back in sync. The old model is flushed and receivers of the natification
(like data sources) can invokeodelNamed:to re-fetch their models.

Notification Object The newly added model.

Userinfo None

EOModellnvalidatedNotification

Posted by an EOModelGroup when an EOModel is removed from the group. This natification is sent, for
instance, inside Interface Builder when the user has saved changes to a model in EOModeler and the objects
in Interface Builder must be brought back in sync. The old model is flushed and receivers of the notification
(like data sources) can invokeodelNamed:to re-fetch their models.

Notification Object The invalidated model.

Userinfo None

203



204



Classes:

Setting Up A Model Group Programmatically

In the majority of applications, the automatic creation of the default model group is sufficient. However, if
your particular application requires different model grouping semantics, you can create your own
EOModelGroup instance, add the appropriate models, and then use that instance to replace the default
EOModelGroup. The following code demonstrates the process:

NSString *modelPath; /I Assume this exists
EOModelGroup *group = [EOModelGroup new];

[group addModelWithFile:modelPath];

[EOModelGroup setDefaultGroup:group];
[group release];

205



206



Classes: EOObjectStoreCoordinator Additions

EOODbjectStoreCoordinator Additions

Inherits From: EOODbjectStoreCoordinator : NSObject

Declared In: EOAccess/EOModelGroup.h

Class Description

The EOAccess framework adds two methods to EOControl's EOObjectStoreCoordinator class for
accessing the coordinator's EOModelGroup. An application can have multiple
EOODbjectStoreCoordinators, and each coordinator can have a different EOModelGroup. (For more
discussion of this subject, see the chapter “Application Configurations” Entieeprise Objects
Framework Developer's GuideApplication and framework code needing access to the EOModelGroup
for a given EOEditingContext can get that information by asking the EOEditingContext’s
EOODbjectStoreCoordinator for its EOModelGroup.

The methods are defined in a category of EOObjectStoreCoordinator in EOAccess (instead of in
EOControl's EOObjectStoreCoordinator interface) to preserve the EOControl framework’s independence
of the EOAccess framework.

Instance Methods

modelGroup
— (EOModelGroup *nodelGroup
Returns the receiver's EOModelGroup. By default, this method returns the results of the statement

[EOModelGroup defaultGroup] . If your application is using more than one
EOODbjectStoreCoordinator, each coordinator can have its own EOModelGroup.

setModelGroup:
— (voidsetModelGroup:(EOModelGroup *yroup

Sets tayroupthe EOModelGroup used by the receiver. By default, an EOObjectStore’s EOModelGroup is
the model group returned from the statenje@ModelGroup defaultGroup] . However, you can
override this by usingetModelGroup: to explicitly set a different EOModelGroup for the receiver. Other
parts of Enterprise Objects Framework (such as EODatabaseContext) use the EOModelGroup bound to
their EOODbjectStoreCoordinator.

207



208



Classes:

EOQualifier Additions

Inherits From: NSObiject

Declared In: EOAccess/EOSQLQualifier.h

Class Description

The access layer adds one method to the EOQualifier class, for “rerooting” a qualifier to another entity.
EOQualifiers (except EOSQLQualifier) aren’t based on SQL and they don’t rely upon an EOModel.
Because this method reroots a qualifier in terms of model objects, it is only useful to the classes in the access
layer. It is not used in in-memory searches.

Instance Methods

qualifierMigratedFromEntity:relationshipPath:

— (EOQualifier *gualifierMigratedFromEntity: (EOEntity *)entity
relationshipPath:(NSString *yelationshipPath

Creates a copy of the receiver, translates all the copy’s keys to work with the entity specified in
relationshipPathand returns the copy. The receiver’s keys are all specified in teenstgfFor example,
assume that an Employee entity has a relationship to a Department entity named “department”. You could
migrate a qualifier described in terms of the Employee entity (department.name = ‘Finance’, for example)
to a qualifier described in terms of the Department entity (name = ‘Finance’). To do so, you send a
qualifierMigratedFromEntity:relationshipPath: message with the Employee entity as the entity and
“department” as the relationship path.

209



210



Classes: EORelationship

EORelationship

Inherits From: NSObiject

Conforms To: NSObject (NSObject)
Declared In: EOAccess/EORelationship.h

Class Description

An EORelationship describes an association between two entities, based on attributes of those two entities.
By defining EORelationships in your application’s EOModel, you can cause the relationships defined in the
database to be automatically resolved as enterprise objects are fetched. For example, a Movie entity may
contain itsstudiold as an attribute, but without an EORelationgtigdiold will only appear in a movie
enterprise object as a number. With an EORelationship explicitly connecting the Movie entity to a Studio
entity, a movie enterprise object will automatically be given its studio enterprise object when an
EODatabaseChannel fetches it from the database. The two entities that make up a relationship can be in the
same model or two different models, as long as they are in the same model group.

You usually define relationships in your EOModel with the EOModeler application, which is documented

in WebObjects Tools and TechniquE®Relationships are primarily for use by the Enterprise Objects
Framework; unless you have special needs you shouldn’t need to access them in your application’s code. If
you have such a need, you can create your own EORelationship objects as outlined in “Creating
Relationships.”

A relationship is directional: One entity is considered the source, and the other is considered the destination.
The relationship belongs to the source entity, and may only be traversed from source to destination. To
simulate a two-way relationship you have to create an EORelationship for each direction. Although the
relationship is directional, no inverse is implied (although an inverse relationship may exist).

A relationship maintains an array of joins identifying attributes from the related entities (see the EOJoin
class specification for more information). Most relationships simply relate the objects of one entity to those
of another by comparing attribute values between them. Such a relationship must be defined as to-one or
to-many based on how many objects of the destination match each object of the source. This is called the
cardinality of the relationship. In a to-one relationship, there must be exactly one destination object for each
source object; in a to-many relationship there can be any number of destination objects for each source
object. See “Creating a Simple Relationship” for more information.

A chain of relationships across several entities can be flattened, creating a single relationship that spans

them all. For example, suppose you have a relationship between movies and directors, and a relationship
between directors and talent. You can traverse these relationships to create a flattened relationship going
directly from movies to talent. A flattened relationship is determined to be to-many or to-one based on the

211



relationships it spans; if all are to-one, then the flattened relationship is to-one, but if any of them is to-many
the flattened relationship is to-many. See “Creating a Flattened Relationship” for more information.

Like the other major modeling classes, EORelationship provides a user dictionary that the application can
use to store application-specific information related to the relationship.

Specifying the Join Semantic

The relationship holds the join semantic; you specify this semantisgtilbinSemantic: There are four

types of join semantic, as specified by the EOJoinSemantic type: EOInnerJoin, EOFullOuterJoin,
EOLeftOuterJoin, and EORightOuterJoin. An inner join produces results only for destinations of the join
relationship that have non-NULL values. A full outer join produces results for all source records, regardless
of the values of the relationships. A left outer join preserves rows in the left (source) table, keeping them
even if there’s no corresponding row in the right table, while a right outer join preserves rows in the right
(destination) table.

Note: Not all join semantics are supported by all database servers.

Adopted Protocols

EOPropertyListEncoding
— awakeWithPropertyList
— encodelntoPropertyList:
— initWithPropertyList:owner:

Method Types

212

Accessing the relationship name — beautifyName

— name

— setName:

— validateName:
Using joins

— addJoin:

— joins

— joinSemantic

— removeJoin:

— setJoinSemantic:

Accessing attributes joined on
— destinationAttributes
— sourceAttributes



Classes: EORelationship

Accessing the definition
— componentRelationships
— definition
— setDefinition:

Accessing the entities joined
— anylnverseRelationship
— destinationEntity
— entity
— inverseRelationship
— setEntity:

Checking the relationship type
—isCompound
— isFlattened
— isMandatory
— setlsMandatory:
— validateValue:

Accessing whether the relationship is to-many
— isToMany
— setToMany:

Relationship qualifiers
— qualifierwithSourceRow:

Checking references
— referencesProperty:

Controlling batch fetches
— numberOfToManyFaultsToBatchFetch

— setNumberOfToManyFaultsToBatchFetch:

Taking action upon a change
— deleteRule
— propagatesPrimaryKey
— setDeleteRule:
— setPropagatesPrimaryKey:
— ownsDestination
— setOwnsDestination:

Accessing the user dictionary
— setUserlnfo:
— userinfo

213



Instance Methods

214

addJoin:
— (voidaddJoin:(EOJoin *jJoin
Adds a source-destination attribute pair to the relationship. Raises an NSinvalidArgumentException if the

relationship is flattened, if either the source or destination attributes are flattened, or if eiflogmof
attributes already belongs to another join of the relationship.

See also: —joins, —isFlattened —setDefinition:

anylnverseRelationship
— (EOREelationship *gnylnverseRelationship

Searches the relationship’s destination entity for a user-created, back-pointing relationship joining on the
same keys. If none is found, it looks for a “hidden” inverse relationship that was manufactured by the
Framework. If none is found, the Enterprise Objects Framework creates a “hidden” inverse relationship and
returns that. Hidden relationships are used internally by the Framework.

See also: —inverseRelationship

beautifyName
— (void)oeautifyName

Makes the relationship’s name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME” becomes “name”, and “FIRST_NAME" becomes “firstName”. This method is used in
reverse-engineering a model.

See also: —setName; —validateName;, —beautifyNames(EOModel)

componentRelationships
— (NSArray *xomponentRelationships

Returns an array of base relationships making up a flattened relationshipf thre relationship isn’t
flattened.

See also: —definition



Classes: EORelationship

definition
— (NSString *yefinition

Returns the data path of a flattened relationship; for example “department.facility”. If the relationship isn’t
flattened definition returnsnil .

See also: —componentRelationships

deleteRule
— (EODeleteRulejeleteRule

Returns a rule that describes the action to take when an object is being deleted. The returned rule is one of
the following:

Value Type Description

Delete the department and remove any back pointer the employee has to the

EODeleteRuleNullify int department.

EODeleteRuleCascade int Delete the department and all of the employees it contains.

EODeleteRuleDeny int Refuse the deletion if the department contains employees.

Delete the department, but ignore the department's employees relationship. You
EODeleteRuleNoAction int should use this delete rule with caution since it can leave dangling references in
your object graph.

destinationAttributes
— (NSArray *destinationAttributes

Returns the destination attributes of the relationship. These correspond one-to-one with the attributes
returned bysourceAttributes. Returnanil if the relationship is flattened.

See also: —joins, —destinationAttribute (EOJoin)

215



216

destinationEntity
— (EOEntity *destinationEntity

Returns the relationship’s destination entity, which is determined by the destination entity of its joins for a
simple relationship, and by whatever ends the data path for a flattened relationship. For example, if a
flattened relationship’s definition is “department.facility”, the destination entity is the Facility entity.

See also: —entity

entity
— (EOEntity *)entity
Returns the relationship’s source entity.

See also: —destinationEntity, —addRelationship: (EOEntity)

inverseRelationship
— (EORelationship ihverseRelationship

Searches the relationship’s destination entity for a user-created, back-pointing relationship joining on the
same keys. Returns the inverse relationship if one is fauinatherwise.

See also: —anylnverseRelationship

isCompound
— (BOOL)sCompound

Returns YES if the relationship contains more than one join (that is, if it joins more than one pair of
attributes), NO if it has only one join. See “Creating a Simple Relationship” for information on compound
relationships.

See also: —joins, —joinSemantic

isFlattened
— (BOOL)sFlattened

Returns YES if the relationship traverses more than two entities, NO otherwise. See “Creating a Flattened
Relationship” for an example of a flattened relationship.



Classes: EORelationship

isMandatory
— (BOOL)sMandatory

Returns YES if the target of the relationship is required, NO if it caml be

See also: —setlsMandatory:

iIsToMany
— (BOOL)sToMany

Returns YES if the relationship is to-many, NO if it's to-one.

See also: —setToMany:

joinSemantic
— (EOJoinSemantifinSemantic

Returns the semantic used to create SQL expressions for this relationship. The returned join semantic is one
of the following:

Constant Description

Produces results only for destinations of the join relationship that have non-NULL

EOInnerJoin
values.

EOFullOuterJoin  Produces results for all source records, regardless of the values of the relationships.

Preserves rows in the left (source) table, keeping them even if there’s no

EOLeftOuterJoin corresponding row in the right table.

Preserves rows in the right (destination) table, keeping them even if there’s no

EORightOuterJoin corresponding row in the left table.

See also: —joins

joins
— (NSArray *)oins
Returns all joins used by relationship.

See also: —destinationAttributes, — joinSemantic,— sourceAttributes

217



218

name
— (NSString *hame

Returns the relationship’s name.

numberOfToManyFaultsToBatchFetch
— (unsigned infjumberOfToManyFaultsToBatchFetch

Returns the number of to-many faults that are triggered at one time.

ownsDestination
— (BOOL)ownsDestination

Returns YES if the receiver’s source object owns its destination objects, NO otherwise. See the method
description forsetOwnsDestination:for more discussion of this topic.

See also: — destinationAttributes

propagatesPrimaryKey
— (BOOL)propagatesPrimaryKey

Returns YES if objects should propagate their primary key to related objects through this relationship.
Objects only propagate their primary key values if the corresponding values in the destination object aren’t
already set.

gualifierWithSourceRow:
— (EOQualifier *gualifierWithSourceRow: (NSDictionary *)sourceRow

Returns a qualifier that can be used to fetch the destination of the receiving relationshigngiveRow

referencesProperty:
— (BOOLYeferencesProperty(id)aProperty

Returns YES ifaPropertyis in the relationship’s data path or is an attribute belonging to one of the
relationship’s joins; otherwise, it returns NO. See the class description for information on how relationships
reference properties.

See also: — referencesProperty: (EOEntity)



Classes: EORelationship

removeJoin:
— (voidyemoveJoin(EOJoin *aJoin
DeletesaJoinfrom the relationship. Does nothing if the relationship is flattened.

See also: —addJoin:

setDefinition:
— (void)setDefinition:(NSString *definition

Changes the relationship to a flattened relationship by releasing any joins and attributes (both source and
destination) associated with the relationship and sattfigitionas its data path. “department.facility” is
an example of a definition that could be supplied to this method.

If the relationship’s entity hasn’t been set, this method won't work correctly. See “Creating a Flattened
Relationship” for more information on flattened relationships.

See also: —addJoin:, —setEntity:

setDeleteRule:
— (voidsetDeleteRule(EODeleteRulajeleteRule

Set a rule describing the action to take when object is being deletei®Rulean be one of the following:

» EODeleteRuleNullify
+ EODeleteRuleCascade
» EODeleteRuleDeny
+ EODeleteRuleNoAction

For more discussion of what these rules mean, see the method descripielatiEfRule

setEntity:
— (void)setEntity: (EOEntity *)anEntity

Sets the entity of the relationshipaioEntity If the relationship is currently owned by a different entity, this
method will remove the relationship from that entity. This method doesn’t add the relationship to the new
entity. EOEntity’saddRelationship: method invokes this method.

You only need to use this method when creating a flattened relationship; use EOC&adiedationship:
to associate an existing relationship with an entity.

See also: —setDefinition:

219



220

setlIsMandatory:
— (void)setlsMandatory:(BOOL)flag

Specifies according titag whether the target of the relationship must be supplied or caih. be

setJoinSemantic:
— (void)setJoinSemanticEOJoinSemantigyinSemantic

Sets the semantic used to create SQL expressions for this relatigoisBipmanticshould be one of the
following:

* EOInnerJoin
EOFullOuterJoin
EOLeftOuterJoin
EORIightOuterJoin

See also: —addJoin:, —joinSemantic

setName:
— (void)setName(NSString *name

Sets the relationship’s namertame Raises a verification exceptiomimeis not a valid relationship
name, and NSinvalidArgumentExceptiom&meis already in use by an attribute or another relationship in
the same entity.

This method forces all objects in the model to be loaded into memory.

See also: —beautifyName, —validateName:

setNumberOfToManyFaultsToBatchFetch:
— (void)setNumberOfToManyFaultsToBatchFetch(unsigned inize

Sets the number of “toMany” faults that are fired at one tinsizto

See also: —isToMany, —numberOfToManyFaultsToBatchFetch

setOwnsDestination:
— (void)setOwnsDestination{BOOL)flag

Sets according thhag whether a receiver’s source object owns its destination objects. The default is NO.
When a source object owns its destination objects, it means that the destination objects can'’t exist



Classes: EORelationship

independently. For example, in a personnel database, dependents can't exist without having an associated
employee. Removing a dependent from an employlsgiendentsarray would have the effect of also
deleting the dependent from the database, unless you transferred the dependent to a different employee.

See also: —deleteRule —setDeleteRule; —ownsDestination

setPropagatesPrimaryKey:
— (void)setPropagatesPrimaryKey(BOOL)flag

Specifies according titag whether objects should propagate their primary key to related objects through
this relationship. For example, an Employee object might propagate its primary key to an EmployeePhoto
object. Objects only propagate their primary key values if the corresponding values in the destination object
aren’t already set.

setToMany:
— (void)setToMany:(BOOL)flag

Sets a simple relationship as to-many accordirftagp Raises an NSinvalidArgumentException if the
receiver is flattened. See the class description for considerations in setting this flag.

See also: —isFlattened

setUserlInfo:
— (void)setUserInfo:(NSDictionary *dictionary

Sets thdictionary of auxiliary data, which your application can use for whatever it ndeadmnary can
only contain property list data types (that is, NSDictionary, NSString, NSArray, and NSData).

sourceAttributes
— (NSArray *sourceAttributes

Returns the source attributes of a simple (non-flattened) relationship. These correspond one-to-one with the
attributes returned bgestinationAttributes. Returnail if the relationship is flattened.

See also: —joins, —sourceAttribute (EOJoin)

221



222

userinfo
— (NSDictionary *userinfo

Returns a dictionary of user data. Your application can use this data for whatever it needs.

validateName:
— (NSException ®alidateName(NSString *hame

Validatesnameand returnsiil if its a valid name, or an exception if it isn’t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@", “#”, or “_"; or contains a character other

than a letter, a number, “@", “#”", “ ", or “$". A name is also invalid if the receiver’'s EOEntity already has
an EORelationship with the same name, or if the model has a stored procedure that has an argument with
the same name.

setName:uses this method to validate its argument.

validateValue:
— (NSException *yalidateValue:(id *)valueP

For relationships marked as mandatory, returns a validation exception if the receiver is tox@iaethd
isnil, or if the receiver is to-many aaluePhas a count of 0. A mandatory relationship is one in which the
target of the relationship is required. Retunitgo indicate success.

See also: —isMandatory, —setlsMandatory:



Classes:

Creating Relationships

Creating a Simple Relationship

A simple relationship is defined by the attributes it compares in connecting its source and destination
entities. Each source-destination pair of attributes is encapsulated in an EOJoin object. For example, to
create a relationship from the Movie entity to the Studio entity, a join has to be created fstunlitiid
attribute of the Movie entity to the same attribute of the Studio entity. The values of these two attributes
must be equal for a match to result. Note #adiold is the primary key attribute for the Studio entity, so
there can only be one studio per movie; this relationship is therefore to-one.

This code excerpt creates an EORelationship for the relationship described above and adds it to the
EOEntity for the Movie entity:

EOEntity *movieEntity;  // Assume this exists.
EOEntity *studioEntity;  // Assume this exists.
EOAttribute *studiol DAttribute;

EOAttribute *movieStudiol DAttribute;

EQJoin *toStudioJoin;

EOREelationship *toStudioRelationship;

studiolDAttribute = [studioEntity attributeNamed:@"studiold"];
movieStudiolDAttribute = [movieEntity attributeNamed: @"studiold"];

toStudioJoin = [[[EOJoin alloc]
initWithSourceAttribute:movieStudiol DAttribute
destinationAttribute:studiol DAttribute] autoreleasey];

toStudioRelationship = [[[EORelationship alloc] init] autorelease];
[toStudioRelationship setName:@"studio"];

[movieEntity addRelationship:toStudioRelationship];
[toStudioRelationship addJoin:toStudioJoin];
[toStudioRelationship setToMany:NOJ;

[toStudioRelationship setJoinSemantic:EOInnerJoin];

This code first gets the attributes from the source and destination entities, and then creates an EOJoin with
them. Next, a new EORelationship is created, its name is set, and it's adumddgntity. The EOJoin is

added to the relationship and the relationship is set to be to-one. FinallysetlbmSemantic:line,

EOInnerJoin indicates that only objects that actually have a matching destination object will be included in
the result when the relationship is traversed.

Creating a to-many relationship in the opposite direction merely swaps the source and destination attributes,
and assigns the relationship to the EOERntity for the Studio entity:

223



224

EQJoin *toMoviesJoin;
EOREelationship *toMoviesRelationship;

toMoviesJoin = [[[EOJoin alloc]
initWithSourceAttribute:studiolDAttribute
destinationAttribute:movieStudiol DAttribute] autorelease];

toMoviesRelationship = [[[EORelationship alloc] init] autorelease];
[toMoviesRelationship setName:@"movies'];

[studioEntity addRelationship:toMoviesRelationship];
[toMoviesRelationship addJoin:toMoviesJoin];
[toMoviesRelationship setToMany:YES];

[toMoviesRelationship setJoinSemantic:EOInnerJoin];

Note that this relationship is to-many precisely because the destination attribute isn’t the primary key for its
entity (Movie), and therefore isn’t unique with regard to that entity.

A relationship isn’t restricted to only one EQJoin. It's entirely possible for a relationship to be defined based
on two or more attributes in the source and destination entities. For example, consider an employees
database that contains a picture of each employee identified by first and last name. You'd define the
relationship by joining each of the first and last names in the Employee entity to the same attribute in the
EmpPhoto attribute.

A simple relationship is considered to reference all of the attributes in its joins. You can use the
referencesProperty:method to find out if an EORelationship references a particular attribute.

Creating a Flattened Relationship

A flattened relationship depends on several simple relationships already existing. Assuming that several do
exist, creating a flattened relationship is straightforward. For example, suppose that the Movie entity has a
to-many relationship to the Director entity, calteDirectors. The Director entity in turn has a relationship

to the Talent entity calledTalent. In the Movies database, the Director table acts as an intermediate table
between Movie and Talent. In this situation, it make sense to flatten the relationship Movies has to Director
(toDirectors) to give Movie access to the Talent table through Directofalent relationship. For more
discussion of when to use flattened relationships, see the chapters “Designing Enterprise Objects” and
“Advanced Enterprise Object Modeling” in tBmterprise Objects Framework Developer’'s Guide

This code excerpt creates a flattened relationship from Movie to Talent:

EOEntity *movieEntity; // Assume this exists.
EOREelationship *toDirectorsRelationship;

toDirectorsRelationship = [[[EORelationship alloc] init] autorelease];
[toDirectorsRelationship setName:@"directors'T;
[toDirectorsRelationship setEntity:movieEntity];

[movieEntity addRelationship:toDirectorsRelationship];
[toDirectorsRelationship setDefinition: @"toDirector.toTalent'];



Classes:

All that’s needed to establish the relationship is a data path (also called the definition) naming each
component relationship connected, with the names separated by periods. Note that because the cardinality
of a flattened relationship is determinable from its componentgtioMany: message is required here.

A simple relationship is considered to reference all of the relationships in its definition, plus every attribute
referenced by the component relationships. You can ugefgrencesProperty:method to find out if an
EORelationship references another relationship or attribute.

225



226



Classes: EOSQLEXxpression

EOSQLEXxpression

Inherits From: NSObiject
Conforms To: NSObject (NSObject)
Declared In: EOAccess/EOSQLExpression.h

EOAccess/[EOSchemaGeneration.h

Class Description

EOSQLEXxpression is an abstract superclass that defines how to build SQL statements for adaptor channels.
You don't typically use instances of EOSQLEXxpression; rather, you use EOSQLEXxpression subclasses
written to work with a particular RDBMS and corresponding adaptor. A concrete subclass of
EOSQLEXxpression overrides many of its methods in terms of the query language syntax for its specific
RDBMS. EOSQLEXxpression objects are used internally by the Framework, and unless you're creating a
concrete adaptor, you won't ordinarily need to interact with EOSQLEXxpression objects yourself. You most
commonly create and use an EOSQLExpression object when you want to send an SQL statement directly
to the server. In this case, you simply create an expression with the EOSQLEXxpression class method
expressionForString;, and send the expression object to an adaptor channel using EOAdaptorChannel’s
evaluateExpression'method.

For more information, see “EOSQLExpression”.

Method Types

Creating an EOSQLEXxpression object
+ selectStatementForAttributes:lock:fetchSpecification:entity:
+ insertStatementForRow:entity:
+ updateStatementForRow:qualifier:entity:
+ deleteStatementWithQualifier:entity:
+ expressionForString:
— initWithEntity:

Building SQL Expressions
— prepareSelectExpressionWithAttributes:lock:fetchSpecification:
— preparelnsertExpressionWithRow:
— prepareUpdateExpressionWithRow:qualifier:
— prepareDeleteExpressionForQualifier:
— setStatement:
— statement

227



Generating SQL for attributes and values
+ formatSQLString:format:
+ formatValue:forAttribute:
+ formatStringValue:
— sqlIStringForValue:attributeNamed:
— sqlIStringForAttributeNamed:
— sqlIStringForAttribute:
— sqlStringForAttributePath:

Generating SQL for names of database objects
— sqIStringForSchemaObjectName:
+ setUseQuotedExternalNames:
+ useQuotedExternalNames
— externalNameQuoteCharacter

Generating an attribute list
— addSelectListAttribute:
— addInsertListAttribute:value:
— addUpdateListAttribute:value:
— appenditem:toListString:
— listString

Generating a value list
— addInsertListAttribute:value:
— addUpdateListAttribute:value:
— valueList

Generating a table list
— tableListWithRootEntity:
— aliasesByRelationshipPath

Generating the join clause
— joinExpression
— addJoinClause
— assembleJoinClauseWithLeftName:rightName:joinSemantic:
— joinClauseString

Generating a search pattern
+ sglPatternFromShellPattern:
+ sglPatternFromShellPattern:withEscapeCharacter:

Generating a relational operator
— sqlIStringForSelector:value:

Accessing the where clause
— whereClauseString

228



Classes: EOSQLEXxpression

Generating an order by clause
— addOrderByAttributeOrdering:
— orderByString

Accessing the lock clause
— lockClause

Assembling a statement

— assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder:
selectString:columnList:tableList:whereClause:joinClause:
orderByClause:lockClause:

— assemblelnsertStatementWithRow:tableList:columnList:valueList:

— assembleUpdateStatementWithRow:qualifier:tableList:updateList:
whereClause:

— assembleDeleteStatementWithQualifier:tableList:whereClause:

Generating SQL for qualifiers
— sqlIStringForConjoinedQualifiers:
— sqlStringForDisjoinedQualifiers:
— sqlStringForKeyComparisonQualifier:
— sqlStringForKeyValueQualifier:
— sqlStringForNegatedQualifier:

Managing bind variables
+ setUseBindVariables:
+ useBindVariables
— addBindVariableDictionary:
— bindVariableDictionaries
— bindVariableDictionaryForAttribute:value:
— mustUseBindVariableForAttribute:
— shouldUseBindVariableForAttribute:

Using table aliases
— setUseAliases:
— useAliases

Accessing the entity
entity

Creating a schema generation script
+ schemaCreationStatementsForEntities:options:
— createDatabaseStatementsForConnectionDictionary:
administrativeConnectionDictionary:
— dropDatabaseStatementsForConnectionDictionary:
administrativeConnectionDictionary:

229



Class Methods

230

createDatabaseStatementsForConnectionDictionary:
administrativeConnectionDictionary:
+ (NSArray *createDatabaseStatementsForConnectionDictionary:

(NSDictionary *xonnectionDictionary
administrativeConnectionDictionary:(NSDictionary *adminDictionary

Generates the SQL statements that will create a database (or user, for Oracle) that can be accessed by the
provided connection dictionary and administrative connection dictionary.

See also: + dropDatabaseStatementsForConnectionDictionary:administrativeConnectionDictionary:

deleteStatementWithQualifier:entity:
+ (EOSQLEXxpression teleteStatementWithQualifier(EOQualifier *qualifier entity: (id)entity

Creates and returns an SQL DELETE expression to delete the rows descrijuedifigr. Creates an
instance of EOSQLEXxpression, initializes it wathtity (an EOEntity object), and sends it a
prepareDeleteExpressionForQualifier:message. Raises an NSiInvalidArgumentExceptiqoafifier is
nil.

The expression created with this method does not use table aliases because Enterprise Objects Framework
assumes that all INSERT, UPDATE, and DELETE statements are single-table opesatiamssult, all

keys inqualifier should be simple key nhames; no key paths are allowed. To generate DELETE statements
that do use table aliases, you must ovempigpareDeleteExpressionForQualifier:to send a

setUseAliasesYES message prior to invokirsgipers version.

dropDatabaseStatementsForConnectionDictionary:
administrativeConnectionDictionary:

+ (NSArray *)}dropDatabaseStatementsForConnectionDictionary:
(NSDictionary *xonnectionDictionary
administrativeConnectionDictionary: (NSDictionary *adminDictionary

Generates the SQL statements to drop the database (or user, for Oracle).

See also: + createDatabaseStatementsForConnectionDictionary:
administrativeConnectionDictionary:



Classes: EOSQLEXxpression

expressionForString:
+ (EOSQLEXxpression gxpressionForString(NSString *string

Creates and returns an SQL expressiomstiumg. string should be a valid expression in the target query
language. This method does not perform substitutions or formatting of any kind.

See also: —SetStatement:

formatSQLString:format:
+ (NSString *formatSQLString: (NSString *BqlStringformat: (NSString *format

Appliesformat(an EOAttribute object’s “read” or “write” format) &mIString(a value for the attribute). If
formatis nil, this method returnsglStringunchanged.

See also: — readFormat (EOAttribute),— writeFormat (EOAttribute)

formatStringValue:
+ (NSString *formatStringValue: (NSString *)string
Formatsstring for use as a string constant in a SQL statement. EOSQLEXxpression’s implementation

encloses the string in single quotes, escaping any single quotes already prsagt Raises an
NSinternallnconsistencyExceptionsifring is nil .

formatValue:forAttribute:

+ (NSString *formatValue: (id)valueforAttribute: (EOAttribute *)attribute
Overridden by subclasses to return a string representati@uefsuitable for use in an SQL statement.
EOSQLEXxpression’s implementation retusadueunchanged. A subclass should override this method to

formatvaluedepending omttributes externalType. For example, a subclass might format a date using a
special database-specific syntax or standard form or truncate numatribtbe's precision and scale.

insertStatementForRow:entity:
+ (EOSQLEXxpression MsertStatementForRow(NSDictionary *yow entity: (EOEntity *)entity

Creates and returns an SQL INSERT expression to imserCreates an instance of EOSQLEXxpression,
initializes it withentity and sends preparelnsertExpressionWithRow:. Raises an
NSinvalidArgumentException éntityis nil.

The expression created with this method does not use table aliases because Enterprise Objects Framework
assumes that all INSERT, UPDATE, and DELETE statements are single-table operatiperserate

231



INSERT statements that do use table aliases, you must ovaejukerelnsertExpressionWithRow: to
send assetUseAliasesY ES message prior to invokirsgipers version.

schemaCreationStatementsForEntities:options:
+ (NSArray *)schemaCreationStatementsForEntitiegNSArray *)entities
options:(NSDictionary *pptions

Returns an array of SQLEXxpressions suitable to create the schema for the Entity objgtiesnThe
optionsdictionary specifies the aspects of the schema for which to create SQLEXxpressions:

Dictionary Key @gggﬂﬁ%?%agg;es Default
createTables “YES” or “NO” YES
dropTables “YES” or “NO” YES
createPrimaryKeySupport “YES” or “NO” YES
dropPrimaryKeySupport “YES” or “NO” YES
primaryKeyConstraints “YES” or “NO” YES
foreignKeyConstraints “YES” or “NO” NO
createDatabase “YES” or “NO” NO
dropDatabase “YES” or “NO” NO

If you specify “createDatabase” or “dropDatabase,” the SQL for those statements must be executed by an
administrative user.

EOSQLEXxpression’s implementation uses the following methods:

 createTableStatementsForEntityGroups

« dropTableStatementsForEntityGroups

» primaryKeySupportStatementsForEntityGroups

« dropPrimaryKeySupportStatementsForEntityGroups
» primaryKeyConstraintStatementsForEntityGroups

« foreignKeyConstraintStatementsForRelationship

to generate SQLEXxpressions for the support identifiegiions

232



Classes: EOSQLEXxpression

selectStatementForAttributes:lock:fetchSpecification:entity:

+ (EOSQLEXxpression $electStatementForAttributes(NSArray *)attributes
lock:(BOOL)flag
fetchSpecification(EOFetchSpecification f@tchSpecification
entity: (EOEntity *)entity

Creates and returns an SQL SELECT expression. Creates an instance of EOSQLExpression, initializes it
with entity and sends firepareSelectExpressionWithAttributes:lock:fetchSpecification: The

expression created with this method uses table aliases. Raises an NSinvalidArgumentExatpbareis

is nil or emptyfetchSpecificatiofs nil, or entityis nil.

The expression created with this method uses table ali@sgenerate SELECT statements that don’t use
them, you must overriderepareSelectExpressionWithAttributes:lock:fetchSpecification:to send a
setUseAliases\lO message prior to invokirgypers version.

setUseBindVariables:

+ (void)setUseBindVariablesBOOL)flag
Sets according tilagwhether all instances of EOSQLEXxpression subclasses use bind variables. By default,
instances don't use bind variables; if the value for the global user default named

EOAdaptorUseBindVariables is YES, though, instances do use them. For more information on bind
variables, see the discussion in the class description.

See also: + useBindVariables

setUseQuotedExternalNames:
+ (void)setUseQuotedExternalName¢$BOOL)flag

Sets whether all instances of EOSQLEXxpression subclasses quote external names when they are referenced
in SQL statements. By settifiggto YES, you can access database tables with names such as “%return”,
“lst year”, and “TABLE” that you couldn’t otherwise access. By default, instances don't quote external
names; if the value for the global user default named EOAdaptorQuotesExternalNames is YES, though,
instances do use quotes.

See also: + useQuotedExternalNames—sqlStringForSchemaObjectName;
—externalNameQuoteCharacter

233



234

sqlPatternFromShellPattern:
+ (NSString *pqlPatternFromShellPattern:(NSString *pattern

Translates a “like” qualifier to an SQL “like” expression. Invoked femistringForKeyValueQualifier:
when the qualifier argument is an EOKeyValueQualifier object whose seleislakes .
EOSQLEXxpression’s implementation performs the following substitutions

Character in pattern  Substitution string

* %

?

% [%] (unless the percent character appears in square brackets)

[_] (unless the underscore character appears in square brackets)

See also:  + sqlPatternFromShellPattern:withEscapeCharacter:

sqlPatternFromShellPattern:withEscapeCharacter:

+ (NSString *pglPatternFromShellPattern:(NSString *pattern
withEscapeCharacter{unichargscapeCharacter

Like sqlPatternFromShellPattern: except the argumerscapeCharacteallows you to specify a
character for escaping the wild card characters “%” and “_".

updateStatementForRow:qualifier:entity:

+ (EOSQLEXxpression tipdateStatementForRow(NSDictionary *yow
qualifier: (EOQualifier *gualifier
entity: (EOEntity *)entity

Creates and returns an SQL UPDATE expression to update the row identidjedlifigr with the values

in row. row should only contain entries for values that have actually changed. Creates an instance of
EOSQLExpression, initializes it witntity and sends pirepareUpdateExpressionWithRow:qualifier:

. Raises an NSinvalidArgumentExceptiomaWv is nil or empty,qualifieris nil, or entityis nil.

The expression created with this method does not use table aliases because Enterprise Objects Framework
assumes that all INSERT, UPDATE, and DELETE statements are single-table opefatiamssult, all
keys inqualifier should be simple key names; no key paths are allowed. To generate UPDATE statements



Classes: EOSQLEXxpression

that do use table aliases, you must ovempi@gpareUpdateExpressionWithRow:qualifier: to send a
setUseAliasesYES message prior to invokirsgipers version.

See also: —setUseAliases:

useBindVariables
+ (BOOL)useBindVariables

Returns YES if instances use bind variables, NO otherwise. For more information on bind variables, see the
discussion in the class description.

See also: + setUseBindVariables:

useQuotedExternalNames
+ (BOOL)useQuotedExternalNames
Returns YES if instances use quoted external names, NO otherwise.

See also: + setUseQuotedExternalNames=—sqlStringForSchemaObjectName;
—externalNameQuoteCharacter

Instance Methods

addBindVariableDictionary:
— (void)addBindVariableDictionary: (NSMutableDictionary *pinding

Addsbindingto the receiver’s array of bind variable dictionartdsdingis generally created using the
methodbindVariableDictionaryForAttribute:value: and is added to the receiver’s bind variable
dictionaries irsqlStringForValue:attributeNamed: when the receiver uses a bind variable for the

specified attribute. See the method descriptiotifedVariableDictionaryForAttribute:value: for a

description of the contents of a bind variable dictionary, and for more information on bind variables, see the
discussion in the class description.

See also: — bindVariableDictionaries

235



addInsertListAttribute:value:
— (void)addInsertListAttribute: (EOAttribute *)attributevalue:(NSString *yvalue

Adds the SQL string faattributeto a comma-separated list of attributes ealdeto a comma-separated
list of values. Both lists are constructed for use in an INSERT statement. Use the risttboog and
valueList to access the attributes and value lists.

InvokesappendItem:toListString: to add an SQL string fattributeto the receiver'fistString, and again
to add a formatted SQL string fealueto the receiver'salueList.

See also: —sqlIStringForAttribute: , —sqlStringForValue:attributeNamed:, +formatValue:
forAttribute:

addJoinClause

— (voidaddJoinClauseWithLeftName:(NSString *JeftNamerightName: (NSString *yightName
joinSemantic:(EOJoinSemantisemantic

Creates a new join clause by invokagsembleJoinClauseWithLeftName:rightName:joinSemantic:
and adds it to the receiver’s join clause string. Separates join conditions already in the join clause string with
the word “and”. Invoked fronpinExpression.

See also: joinClauseString

addOrderByAttributeOrdering:
— (voidladdOrderByAttributeOrdering: (EOSortOrdering *3ortOrdering

Adds an attribute-direction pair (“LAST_NAME asc”, for example) to the receiver's ORDER BY string. If
sortOrderings selector isompareCaselnsensitiveAscendingcompareCaselnsensitiveDescendirige
string generated has the format “upper(attribute) direction”. Use the methexdByString to access the
ORDER BY stringaddOrderByAttributeOrdering: invokesappendltem:toListString: to add the
attribute-direction pair.

See also: sqlIStringForAttributeNamed:

addSelectListAttribute:
— (void)addSelectListAttribute: (EOAttribute *jattribute

Adds an SQL string faattributeto a comma-separated list of attribute names for use in a SELECT
statement. The SQL string fattributeis formatted withattributes “read” format. UsdistString to access
the list.addSelectListAttribute: invokesappenditem:toListString: to add the attribute name.

See also: —sqlStringForAttribute: , + formatSQLString:format: , — readFormat (EOAttribute)

236



Classes: EOSQLEXxpression

addUpdateListAttribute:value:

— (voidladdUpdateListAttribute: (EOAttribute *Jattribute value:(NSString *yvalue
Adds a attribute-value assignment (“LAST_NAME = ‘Thomas’, for example) to a comma-separated list
for use in an UPDATE statement. Formeatuewith attributés “write” format. UselistString to access

the list.addUpdateListAttribute:value: invokesappenditem:toListString: to add the attribute-value
assignment.

See also: + formatSQLString:format:

aliasesByRelationshipPath

— (NSMutableDictionary *aliasesByRelationshipPath
Returns a dictionary of table aliases. The keys of the dictionary are relationship paths—“department” and
“department.location”, for example. The values are the table aliases for the corresponding table—"t1” and
“t2”, for example. ThaliasesByRelationshipPathdictionary always has at least one entry: an entry for the
EOSQLEXxpression’s entity. The key of this entry is the empty string (@*”) and the value is “t0”. The

dictionary returned from this method is built up over time with successive calls to
sqlStringForAttributePath: .

See also: —tableListWithRootEntity:

appendltem:toListString:
— (void)appendltem:(NSString *jtemStringtoListString: (NSMutableString *jstString

AddsitemStringto a comma-separated listlifftString already has entries, this method appends a comma
followed byitemString Invoked fromaddSelectListAttribute:, addinsertListAttribute:value: ,
addUpdateListAttribute:value: , andaddOrderByAttributeOrdering:

assembleDeleteStatementWithQualifier:tableList:whereClause:

— (NSString *pssembleDelete StatementWithQualifie(EOQualifier *gualifier
tableList: (NSString *}ableList
whereClause(NSString *whereClause

Invoked fromprepareDeleteExpressionForQualifier:to return an SQL DELETE statement of the form:

DELETE FROMtableList
SQL_WHEREBEwvhereClause

qualifieris the argument tprepareDeleteExpressionForQualifier:from whichwhereClausevas derived.
It is provided for subclasses that need to generate the WHERE clause in a particular way.

237



238

assemblelnsertStatementWithRow:tableList:columnList:valueList:

— (NSString *assemblelnsertStatementWithRow(NSDictionary *yow
tableList: (NSString *}ableList
columnList; (NSString *columnList
valueList:(NSString *alueList

Invoked frompreparelnsertExpressionWithRow: to return an SQL INSERT statement of the form:

INSERT INTO tableList  ( columnList )
VALUES valueList

or, if columnListis nil ;

INSERT INTO tableList
VALUES valueList

row is the argument tpreparelnsertExpressionWithRow: from whichcolumnListandvalueListwere
derived. It is provided for subclasses that need to generate the list of columns and values in a particular way.

assembleJoinClauseWithLeftName:rightName:joinSemantic:

— (NSString *assembleJoinClauseWithLeftNamgNSString *JeftName
rightName: (NSString *yightName
joinSemantic:(EOJoinSemantisemantic

Returns a join clause of the form:
leftName  operator rightName

Where operator is “=" for an inner join, “*=" for a left-outer join, and “=*" for a right-outer join. Invoked
from addJoinClause



Classes: EOSQLEXxpression

assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder:
selectString:columnList:tableList:whereClause:joinClause:
orderByClause:lockClause:

— (NSString *pssembleSelectStatementWithAttributegNSArray *)attributes
lock:(BOOL)lock
qualifier: (EOQualifier *)yualifier
fetchOrder: (NSArray *)fetchOrder
selectString(NSString *selectString
columnList: (NSString *columnList
tableList: (NSString *}ableList
whereClause(NSString *whereClause
joinClause:(NSString *joinClause
orderByClause:(NSString *prderByClause
lockClause(NSString *JockClause

Invoked fromprepareSelectExpressionWithAttributes:lock:fetchSpecification:to return an SQL
SELECT statement of the form:

SELECT columnList

FROMtableList lockClause
WHEREwhereClause AND joinClause
ORDER BY orderByClause

If lockClauseis nil, it is omitted from the statement. SimilarlypiderByClauses nil, the “ORDER BY
orderByClausgis omitted. If eithemwhereClauser joinClauseis nil, the “AND” andnil-valued argument
are omitted. If both areil, the entire WHERE clause is omitted.

attributes lock, qualifier, andfetchOrderare the arguments epareSelectExpressionWithAttributes:
lock:fetchSpecification: from which the otheassembleSelect.arguments were derived. They are
provided for subclasses that need to generate the clauses of the SELECT statement in a particular way.

assembleUpdateStatementWithRow:qualifier:tableList:updateList:whereClause:

— (NSString *assembleUpdateStatementWithRowNSDictionary *yow
qualifier: (EOQualifier *ualifier
tableList: (NSString *}ableList
updateList: (NSString *updateList
whereClause(NSString *whereClause

Invoked fromprepareUpdateExpressionWithRow:qualifier: to return an SQL UPDATE statement of the
form:

UPDATE tableList
SET updateList
WHEREwhereClause

239



240

row andqualifier are the arguments pepareUpdateExpressionWithRow:qualifier: from which
updateListandwhereClausavere derived. They are provided for subclasses that need to generate the
clauses of the UPDATE statement in a particular way.

bindVariableDictionaries
— (NSArray *pindVariableDictionaries

Returns the receiver’s bind variable dictionaries. For more information on bind variables, see the discussion
in the class description.

See also: —addBindVariableDictionary:

bindVariableDictionaryForAttribute:value:

— (NSMutableDictionary #)indVariableDictionaryForAttribute: (EOAttribute *Jattribute value:
(id)value

Implemented by subclasses to create and return the bind variable dictiorettsitfote andvalue The
dictionary returned from this method must contain at least the following key-value pairs:

Key Value

EOBindVariableNameKey the name of the bind variable for attribute

EOBindVariablePlaceHolderKey  the placeholder string used in the SQL statement

EOBindVariableAttributeKey attribute

EOBindVariableValueKey value

An adaptor subclass may define additional entries as required by its RDBMS.

Invoked fromsqlStringForValue:attributeNamed: when the message

mustUseBindVariableForAttribute: attributereturns YES or when the receiver’s class uses bind variables
and the messaghouldUseBindVariableForAttribute: attribute returns YES. For more information on
bind variables, see the discussion in the class description.

A subclass that uses bind variables should implement this method without invoking EOSQLEXxpression’s
implementation. The subclass implementation must return a dictionary with entries for the keys listed above
and may add additional keys.

See also: — bindVariableDictionaryForAttribute:value: , + useBindVariables



Classes: EOSQLEXxpression

entity
— (EOEntity *)entity
Returns the receiver’s entity.

See also:  — initWithEntity:

externalNameQuoteCharacter
— (NSString *externalNameQuoteCharacter

Returns the string \
string (*”) otherwise.

(an escaped quote character) if the receiver uses quoted external names, or the empty

See also: + useQuotedExternalNames—sqlStringForSchemaObjectName:

InitWithEntity:
—initWithEntity: (EOEntity *)entity
Initializes a new instance of EOSQLEXxpression \eitkity.

See also: — entity

joinClauseString
— (NSMutableString pinClauseString

Returns the part of the receiver's WHERE clause that specifies join conditions. Together, the
joinClauseString and thewhereClauseStringmake up a statement’s WHERE clause. If the receiver’s
statement doesn’t contain join conditions, this method returns an empty string.

An EOSQLEXxpression’minClauseString is generally set by invokinginExpression.

See also: —addJoinClause

joinExpression
— (void)joinExpression

Builds up thgoinClauseString for use in a SELECT statement. For each relationship path in the
aliasesByRelationshipPattdictionary, this method invokesldJoinClausefor each of the relationship’s
EQOJoin objects.

241



If the aliasesByRelationshipPattdictionary only has one entry (the entry for the EOSQLEXxpression’s
entity), thejoinClauseString is empty.

You must invoke this methaafter invokingaddSelectListAttribute: for each attribute to be selected and
after sendingqlStringForSQLEXxpression:selfto the qualifier for the SELECT statement. (These methods
build up thealiasesByRelationshipPattdictionary by invokingsqlStringForAttributePath: .)

See also: —whereClauseString — sqlStringForSQLEXxpression: (EOQualifierSQLGeneration protocol)

listString
— (NSMutableString #)stString

Returns a comma-separated list of attributes or “attribute = value” assignlis&siisng is built up with
successive invocations afldinsertListAttribute:value: , addSelectListAttribute:, or
addUpdateListAttribute:value: for INSERT statements, SELECT statements, and UPDATE statements,
respectively. The contents lidtString vary according to the type of statement the receiver is building:

Type of Statement Sample listString Contents

INSERT FIRST_NAME, LAST_NAME, EMPLOYEE_ID

UPDATE FIRST_NAME = “Timothy”, LAST_NAME = “Richardson”
SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.DEPARTMENT_NAME
lockClause

— (NSString *JockClause

Overridden by subclasses to return the SQL string used in a SELECT statement to lock selected rows. A
concrete subclass of EOSQLEXxpression must override this method to return the string used by its adaptor’s
RDBMS.

mustUseBindVariableForAttribute:
— (BOOL)mustUseBindVariableForAttribute: (EOAttribute *)attribute

Returns YES if the receiver must use bind variableattdbute NO otherwise. EOSQLEXxpression’s
implementation returns NO. An SQL expression subclass that uses bind variables should override this
method to return YES if the underlying RDBMS requires that bind variables be used for attributes with
attributes external type.

See also: —shouldUseBindVariableForAttribute: , —bindVariableDictionaryForAttribute:value:

242



Classes: EOSQLEXxpression

orderByString
— (NSMutableString ®rderByString

Returns the comma-separated list of “attribute direction” pairs (“LAST_NAME asc, FIRST_NAME asc”,
for example) for use in a SELECT statement.

See also: —addOrderByAttributeOrdering:

prepareDeleteExpressionForQualifier:
— (void)prepareDeleteExpressionForQualifier(EOQualifier *qualifier

Generates a DELETE statement by performing the following steps:

1. Sends asqlIStringForSQLEXxpression:selfmessage tqualifierto generate the receiver's
whereClauseString

2. InvokestableListWithRootEntity: to get the table name for the FROM clause.
3. InvokesassembleDeleteStatementWithQualifier:tableList:whereClause:

See also:  + deleteStatementWithQualifier:entity:

preparelnsertExpressionWithRow:
— (void)preparelnsertExpressionWithRow:(NSDictionary *yow

Generates an INSERT statement by performing the following steps:

1. InvokesaddInsertListAttribute:value: for each entry imow to prepare the comma-separated list of attributes
and the corresponding list of values.

2. InvokestableListWithRootEntity: to get the table name.
3. InvokesassemblelnsertStatementWithRow:tableList:columnList:valueList:

See also:  + insertStatementForRow:entity:

prepareSelectExpressionWithAttributes:lock:fetchSpecification:

— (void)prepareSelectExpressionWithAttributes{NSArray *)attributes
lock:(BOOL)flag
fetchSpecification(EOFetchSpecification f@tchSpecification

Generates a SELECT statement by performing the following steps:

1. InvokesaddSelectListAttribute: for each entry imttributesto prepare the comma-separated list of attributes.

243



2. Sends anglStringForSQLEXxpression:selfmessage tfetchSpecificatica qualifier to generate the receiver’s
whereClauseString

3. InvokesaddOrderByAttributeOrdering: for each EOAttributeOrdering objectfietchSpecificatiarFirst
conjoins the qualifier ifetchSpecificatiowith the restricting qualifier, if any, of the receiver’s entity.

InvokesjoinExpression to generate the receivej@EnClauseString.
InvokestableListWithRootEntity: to get the comma-separated list of tables for the FROM clause.

If flagis YES, invokedockClauseto get the SQL string to lock selected rows.

N oo o &

InvokesassembleSelectStatementWithAttributes:lock:qualifier:fetchOrder: selectString:columnList:
tableList:whereClause:joinClause: orderByClause:lockClause:

See also: + selectStatementForAttributes:lock:fetchSpecification:entity:

prepareUpdateExpressionWithRow:qualifier:
— (void)prepareUpdateExpressionWithRow{(NSDictionary *yow qualifier: (EOQualifier *yualifier
Generates an UPDATE statement by performing the following steps:

1. InvokesaddUpdateListAttribute:value: for each entry imow to prepare the comma-separated list of
“attribute = value” assignments.

2. Sends asqIStringForSQLExpression:selfmessage tqualifier to generate the receiver’'s
whereClauseString

3. InvokestableListWithRootEntity: to get the table name for the FROM clause.
4. InvokesassembleUpdateStatementWithRow:qualifier:tableList:updateList:whereClause:

See also: + updateStatementForRow:qualifier:entity:

setStatement:
— (voidsetStatement(NSString *)string

Sets the receiver's SQL statemerstiang, which should be a valid expression in the target query language.
Use this method—instead opeepare... method—to directly assign an SQL string to an
EOSQLEXxpression object. This method does not perform substitutions or formatting of any kind.

See also:  + expressionForString; —statement

244



Classes: EOSQLEXxpression

setUseAliases:
— (void)setUseAliasegBOOL)flag

Tells the receiver whether or not to use table aliases.

See also: —useAliases

shouldUseBindVariableForAttribute:
— (BOOL)shouldUseBindVariableForAttribute: (EOAttribute *)attribute

Returns YES if the receiver can provide a bind variable dictionattidoute NO otherwise. Bind

variables aren't used for values associated with this attribute when the classuseBiodVariables

returns NO. EOSQLEXxpression’s implementation returns NO. An SQL expression subclass should override
this method to return YES if the receiver should use bind variables for attributestvilitiies external

type. It should also return YES for any attribute for which the receiver must use bind variables.

See also: —mustUseBindVariableForAttribute:

sqlStringForAttribute:
— (NSString *sqlStringForAttribute: (EOAttribute *)attribute

Returns the SQL string fattribute, complete with a table alias if the receiver uses table aliases. Invoked
from sqlStringForAttributeNamed: when the attribute name is not a path.

See also: —sqlStringForAttributePath:

sqlStringForAttributeNamed:
— (NSString *sqlStringForAttributeNamed: (NSString *name

Returns the SQL string for the attribute namathe complete with a table alias if the receiver uses table
aliases. Generates the return value us@i§tringForAttributePath: if nameis an attribute path
(“department.name”, for example); otherwise, usgStringForAttribute: .

sqlStringForAttributePath:

— (NSString *pqlStringForAttributePath: (NSArray *)path
Returns the SQL string f@ath complete with a table alias if the receiver uses table aliases. Invoked from
sqlStringForAttributeNamed: when the specified attribute name is a path

(“department.location.officeNumber”, for exampleathis an array of any number of EORelationship
objects followed by an EOAttribute object. The EORelationship and EOAttribute objects each correspond

245



246

to a component in path. For example, if the attribute name argunsgiStangForAttributeNamed: is
“department.location.officeNumbedathis an array containing the following objects in the order listed:

» The EOREelationship object in the receiver’s entity named “department”. (Assume the relationship’s
destination entity is named “Department”.)

» The EORelationship object in the Department entity named “location”. (Assume the relationship’s
destination entity is named “Location”.)

» The EOAttribute object in the Location entity named “officeNumber”.

Assuming that the receiver uses aliases and the alias for the Location table is t2, the SQL string for this
sample attribute path is “t2.officeNumber”.

If the receiver uses table aliases, this method has the side effect of adding a “relationship path”-“alias name”
entry to thealiasesByRelationshipdictionary.

See also: —sqlIStringForAttribute: , —aliasesByRelationshipPath

sqlStringForConjoinedQualifiers:
— (NSString *pqlStringForConjoinedQualifiers: (NSArray *)qualifiers

Creates and returns an SQL string that is the result of interposing the word “AND” between the SQL strings
for the qualifiers imualifiers Generates an SQL string for each qualifier by sending
sqlIStringForSQLExpression: messages to the qualifiers wihif as the argument. If the SQL string for a
qualifier contains only white space, it isn’t included in the return value. The return value is enclosed in
parentheses if the SQL strings for two or more qualifiers were ANDed together.

sqlStringForDisjoinedQualifiers:
— (NSString *pqlStringForDisjoinedQualifiers: (NSArray *)qualifiers

Creates and returns an SQL string that is the result of interposing the word “OR” between the SQL strings
for the qualifiers imualifiers Generates an SQL string for each qualifier by sending
sqlStringForSQLExpression: messages to the qualifiers wathlf as the argument. If the SQL string for a
qualifier contains only white space, it isn’t included in the return value. The return value is enclosed in
parentheses if the SQL strings for two or more qualifiers were ORed together.

sqlStringForKeyComparisonQualifier:
— (NSString *pqlStringForKeyComparisonQualifier: (EOKeyComparisonQualifier ualifier
Creates and returns an SQL string that is the result of interposing an operator between the SQL strings for

the right and left keys iqualifier. Determines the SQL operator by invoksaStringForSelector:value:
with qualifiers selector andahil for the value. Generates SQL stringsdaalifiers keys by invoking



Classes: EOSQLEXxpression

sqlStringForAttributeNamed: to get SQL strings. This method also formats the strings for the right and
left keys usindormatSQLString:format: with the corresponding attributes’ “read” formats.

sqlStringForKeyValueQualifier:

— (NSString *»glStringForKeyValueQualifier: (EOKeyValueQualifier *ualifier
Creates and returns an SQL string that is the result of interposing an operator between the SQL strings for
qualifiers key and value. Determines the SQL operator by invoggi§tringForSelector:value: with
qualifiers selector and value. Generates an SQL stringdalifiers key by invoking
sqlStringForAttributeNamed: to get an SQL string arfdrmatSQLString:format: with the
corresponding attribute’s “read” format. Similarly, generates an SQL string for qualifier’s value by invoking
sqlStringForValue:attributeNamed: to get an SQL string arfdrmatValue:forAttribute: to format it.
(First invokessglPatternFromShellPattern: for the value ifqualifiers selector igsLike:.)

sqlStringForNegatedQualifier:
— (NSString *pqlStringForNegatedQualifier:(EOQualifier *)yualifier

Creates and returns an SQL string that is the result of surrounding the SQL stjiragif@rin parentheses
and appending it to the word “not”. For example, if the stringyé@lifier is “FIRST_NAME = ‘John’”,
sqlStringForNegatedQualifier: returns the string “not (FIRST_NAME = ‘John’)".

Generates an SQL string fgualifier by sending asqlStringForSQLExpression:: message tqualifier
with self as the argument. If the SQL string fpralifier contains only white space, this method retunihs

sqlStringForSchemaObjectName:
— (NSString *sqlStringForSchemaObjectName(NSString *hame

Returnsnameenclosed in the external name quote character if the receiver uses quoted external names,
otherwise simply returnsameunaltered.

See also: + useQuotedExternalNames—externalNameQuoteCharacter

247



248

sqlStringForSelector:value:
— (NSString *sqlStringForSelector(SEL)selectorvalue:(id)value

Returns an SQL operator feelectorandvalue The following table summarizes EOSQLEXxpression’s
default mapping:

Selector SQL Operator

isEqualTo: “is” if value is an EONull, “=" otherwise
isNotEqualTo: “is not” if value is an EONull, “<> otherwise
isLessThan: <

isGreaterThan: >

isLessThanOrEqualTo: f<="

isGreaterThanOrEqualTo: “>="

isLike: “like”

Raises an NSinternallnconsistencyException if selector is an unknown operator.

See also: —sqlStringForKeyComparisonQualifier:, —sqlStringForKeyValueQualifier:

sqlStringForValue:attributeNamed:
— (NSString *pqlStringForValue: (id)valueattributeNamed: (NSString *name

Returns a string foralueappropriate for use in an SQL statement. If the receiver uses a bind variable for
the attribute namedame thensglStringForValue:attributeNamed: gets the bind variable dictionary for

the attribute, adds it to the receiver’s array of bind variables dictionaries, and returns the value for the
binding’s EOBindVariablePlaceHolderKey. Otherwise, this method invickesatValue:forAttribute:

and returns the formatted string f@lue

See also: —mustUseBindVariableForAttribute: , —shouldUseBindVariableForAttribute: ,
+ useBindVariables —bindVariableDictionaries, —addBindVariableDictionary:



Classes: EOSQLEXxpression

statement

— (NSString *statement
Returns the complete SQL statement for the receiver. An SQL statement can be assigned to an
EOSQLEXxpression object directly using the class meéxptessionForString: or using the instance

methodsetStatement: Generally, however, an EOSQLEXxpression’s statement is built up using one of the
following methods:

» — prepareSelectExpressionWithAttributes:lock:fetchSpecification:
e — preparelnsertExpressionWithRow:

» — prepareUpdateExpressionWithRow:qualifier:

» — prepareDeleteExpressionForQualifier:

tableListWithRootEntity:
— (NSString *JableListWithRootEntity: (EOEntity *)entity

Returns the comma-separated list of tables for use in a SELECT, UPDATE, or DELETE statement’s FROM
clause. If the receiver doesn’t use table aliases, the table list consists only of the table eatitg-for
“EMPLOYEE", for example. If the receiver does use table aliases (only in SELECT statements by default),
the table list is a comma separated list of table names and their aliases, for example:

EMPLOYEE t0, DEPARTMENT t1

tableListWithRootEntity: creates a string containing the table namefdity and a corresponding table
alias (“EMPLOYEE t0", for example). For each entnaliasesByRelationshipPaththis method appends
a new table name and table alias.

See also: —useAliases—aliasesByRelationshipPath

useAliases
— (BOOL)useAliases

Returns YES if the receiver generates statements with table aliases, NO otherwise. For example, the
following SELECT statement uses table aliases:

SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.NAME
FROM EMPLOYEE t0, DEPARTMENT t1
WHERE t0.DEPARTMENT_ID = t1.DEPARTMENT_ID

The EMPLOYEE table has the alias t0, and the DEPARTMENT table has the alias t1.

249



250

By default, EOSQLEXxpression uses table aliases only in SELECT statements. Enterprise Objects
Framework assumes that INSERT, UPDATE, and DELETE statements are single-table operations. For
more information, see the discussion in the class description.

See also: —setUseAliases:—aliasesByRelationshipPath

valuelList
— (NSMutableString ®jalueList

Returns the comma-separated list of values used in an INSERT statement. For example, the value list for
the following INSERT statement:

INSERT EMPLOYEE (FIRST_NAME, LAST_NAME, EMPLOYEE_ID, DEPARTMENT _ID, SALARY)
VALUES (Shaun', "Hayes, 1319, 23, 4600)

is “Shaun’, ‘Hayes’, 1319, 23, 4600". An EOSQLEXxpressiaalkieList is generated a value at a time with
addInsertListAttribute:value: messages.

whereClauseString
— (NSString *WhereClauseString

Returns the part of the receiver's WHERE clause that qualifies rows. The whereClauseString does not
specify join conditions; thinClauseString does that. Together, tiehereClauseStringand the
joinClauseString make up a statement’s where clause. For example, a qualifier for an Employee entity
specifies that a statement only affects employees who belong to the Finance department and whose monthly
salary is greater than $4500. Assume the corresponding where clause looks like this:

WHERE EMPLOYEE.SALARY > 4500 AND DEPARTMENT.NAME = ‘Finance’
AND EMPLOYEE.DEPARTMENT_ID = DEPARTMENT.DEPARTMENT_ID

EOSQLEXxpression generates botiwleereClauseStringand goinClauseString for this qualifier. The
whereClauseStringqualifies the rows and looks like this:

EMPLOYEE.SALARY > 4500 AND DEPARTMENT.NAME = ‘Finance’

ThejoinClauseString specifies the join conditions between the EMPLOYEE table and the DEPARTMENT
table and looks like this:

EMPLOYEE.DEPARTMENT_ID = DEPARTMENT.DEPARTMENT_ID

An EOSQLExpression'shereClauseStringis generally set by sendingalStringForSQLEXxpression:
message to an EOQuialifier object.

See also: — sqIStringForSQLEXxpression: (EOQualifierSQLGeneration protocol)



Classes: EOSQLEXxpression

EOSQLEXxpression

Building Expressions

The following four methods create EOSQLEXpression objects for the four basic database operations—
select, insert, update, and delete:

» + selectStatementForAttributes:lock:fetchSpecification:entity:
* + insertStatementForRow:entity:

» + updateStatementForRow:qualifier:entity:

« + deleteStatementWithQualifier:entity:

Unless you're implementing an EOSQLEXxpression subclass, these and the class method
expressionForString:are the only EOSQLEXxpression methods you should ever need. If, on the other hand,
you are creating a subclass, you need to understand the mechanics of how EOSQLEXxpression builds SQL
statements. Each of the creation methods above creates an EOSQLEXxpression, initializes the expression
with a specified entity, and sends the new expression object one of the foliwepage... methods:

« — prepareSelectExpressionWithAttributes:lock:fetchSpecification:
» — preparelnsertExpressionWithRow:

» — prepareUpdateExpressionWithRow:qualifier:

» — prepareDeleteExpressionForQualifier:

Theprepare...methods, in turn, invoke a correspondasgemble..method, first generating values for the
assemble..method’s arguments. Thassemble..methods:

« — assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder: selectString:columnList:tableList:
whereClause:joinClause: orderByClause:lockClause:

* —assemblelnsertStatementWithRow:tableList:columnList:valueList:

» — assembleUpdateStatementWithRow:qualifier:tableList:updateList:whereClause:

« — assembleDeleteStatementWithQualifier:tableList:whereClause:

combine their arguments into SQL statements that the database server can understand.

These three sets of methods establish a framework in which SQL statements are generated. The bulk of the
remaining methods generate pieces of an SQL statement.

An individual SQL statement is constructed by combining the SQL strings for any model or value objects
specified in the “build” method in the appropriate form. An SQL string for a modeling or value object is a
string representation of the object that the database understands; for example, the SQL string for an
EOEntity is ultimately its table name. An EOSQLExpression gets the SQL strings for attributes and values
with the methodsqlStringForAttributeNamed: andsglStringForValue:attributeNamed: . If necessary,

it also formats the SQL strings according to an EOAttribute’s “read” or “write” format with the class
methodformatSQLString:format: .

Each of the “build” methods above invokes a number of instance methods. These methods are documented
individually below.

251



252

Using Table Aliases

By default, EOSQLEXxpression uses table aliases in SELECT statements. For example, the following
SELECT statement uses table aliases:

SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.NAME
FROM EMPLOYEE t0, DEPARTMENT t1
WHERE t0.DEPARTMENT_ID = t1.DEPARTMENT_ID

The EMPLOYEE table is aliased t0, and the DEPARTMENT table is aliased t1. Table aliases are necessary
in some SELECT statements—when a table contains a self-referential relationship, for example. Assume
the EMPLOYEE table contains a manager column. Managers are also employees, so to retrieve all the
employees whose manager is Bob Smith, the SELECT statement looks like this:

SELECT t0.FIRST_NAME, t0.LAST_NAME

FROM EMPLOYEE t0, EMPLOYEE t1

WHERE t1.FIRST_NAME ="BOB" AND t1.LAST_NAME ="SMITH" AND
t0.MANAGER_ID =t1.EMPLOYEE_ID

When the Framework maps operations on enterprise objects to operations on database rows, it reduces
insert, update, and delete operations to one or more single-table operations. As a result, EOSQLEXxpression
assumes that INSERT, UPDATE, and DELETE statements are always single-table operations, and does not
use table aliases in the statements of these types.

In addition, if EOSQLEXxpression detects that all the attributes in a SELECT statement’s attribute list are
flattened attributes and they're all flattened from the same table, the expression doesn't use table aliases. For
example, suppose that an EOSQLEXxpression object is created to select a customer’s credit card. In the
application, a customer object has a credit card object as one of its properties, and all operations on credit
cards are described in terms of a customer. As a result, the expression object is initialized with the entity for
the Customer object. Rather than create a statement like the following:

SELECT t1.TYPE, t1.NUMBER, t1.EXPIRATION, t1.CREDIT_LIMIT, t1. CUSTOMER_ID
FROM CUSTOMER t0, CREDIT_CARD t1
WHERE t1.CUSTOMER_ID =t0.CUSTOMER_ID AND t1.CUSTOMER_ID =459

EOSQLEXxpression detects that all the attributes correspond to columns in the CREDIT_CARD table and
creates the following statement:

SELECT TYPE, NUMBER, EXPIRATION, CREDIT_LIMIT, CUSTOMER_ID
FROM CREDIT_CARD
WHERE CUSTOMER_ID =459

Bind Variables

Some RDBMS client libraries use bind variables. A bind variable is a placeholder used in an SQL statement
that is replaced with an actual value after the database server determines an execution plan. If you are
writing an adaptor for a database server that uses bind variables, you must override the following
EOSQLEXxpression variables:



Classes: EOSQLEXxpression

» — bindVariableDictionaryForAttribute:value:
* — mustUseBindVariableForAttribute:
+ — shouldUseBindVariableForAttribute:

If your adaptor doesn’t need to use bind variables, the default implementations of the bind variable methods
are sufficient.

253



254



Classes: EOSQLQualifier

EOSQLQualifier

Inherits From: EOQualifier : NSObject
Conforms To: EOQualifierSQLGeneration, NSObject (NSObject)
Declared In: EOAccess/EOSQLQualifier.h

Class Description

EOSQLQualifier is a subclass of EOQualifier that contains unstructured text that can be transformed into
an SQL expression. EOSQLQualifier is provided for backwards compatibility with pre-2.0 Enterprise
Objects Framework releases and to provide a way to create SQL expressions with any arbitrary SQL.
EOSQLQualifier formats are not parsed, they simply perform substitution for keys and format characters.
The qualifying information is expressed in the database server’s query language (nearly always SQL), and
you're responsible for ensuring that the query language statement is valid for your database server.
EOSQLQualifiers can’t be evaluated against objects in memory. As a result, you should use EOQualifier
whenever possible and only use EOSQLQualifier in cases that absolutely require it.

You create an SQL qualifier usiagioc... andinitWithEntity:qualifierFormat: . This method takes as
arguments the root entity for the qualifier and a format string like that used with the standard creation
methodqualifierWithQualifierFormat: .

Note: Because an SQL qualifier must be rooted to an entity, you camjuatgerWithQualifierFormat:
to create EOSQLQualifier objects.

Adopted Protocols

EOQualifierSQLGeneration
— schemaBasedQualifierWithRootEntity:
— sqlStringForSQLEXxpression:

255



Class Methods

gualifierWithQualifierFormat:
+ (EOQualifier *pualifierwithQualifierFormat: (NSString *format, ...

Raises an exception. An EOSQLQualifier must be created with an entity, and this method does not provide
one. Usallloc... andinitWithEntity:qualifierFormat: to create an EOSQLQualifier.

Instance Methods

initWithEntity:qualifierFormat:

—initWithEntity: (EOEntity *)entity qualifierFormat: (NSString *QjualifierFormat ...
Initializes a newly allocated EOSQLQualifier roote@imtityand built from a format stringualifierFormat
is aprintf() -style format string like that used with EOQualifiggigalifierWithQualifierFormat: method.

This is the designated initializer for the EOSQLQualifier class. Resetfi§ qualifierFormatis
successfully parsedjl otherwise.

256



Classes: EOStoredProcedure

EOStoredProcedure

Inherits From: NSObiject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOStoredProcedure.h

Class Description

An EOStoredProcedure represents a stored procedure defined in a database, and associates a name internal
to the Framework with an external name by which the stored procedure is known to the database. If a stored
procedure has arguments, its EOStoredProcedure object also maintains a group of EOAttributes which
represent the stored procedure’s arguments. See the EOAttribute class specification for more information

You usually define stored procedures in your EOModel with the EOModeler application, which is
documented in thEnterprise Objects Framework Developer's Guil®StoredProcedures are primarily

used by the Enterprise Objects Framework to map operations for an EOEntity to stored procedures (see the
description for EOEntity'setStoredProcedure:forOperation:method). You can assign stored procedures

to an entity for any of the following scenarios:

Fetching all the objects for the entity

» Fetching a single object by its primary key
 Inserting a new object

* Deleting an object

» Generating a new primary key

Your code probably won't use EOStoredProcedures unless you're working at the adaptor level.

Like the other major modeling classes, EOStoredProcedure provides a user dictionary for your application
to store any application-specific information related to the stored procedure.

Method Types
Creating a new EOStoredProcedure
— initWithName:
Accessing the model
— model

257



Accessing the name
— setName:
— beautifyName
— name

Accessing the external name
— setExternalName:
— externalName

Accessing the arguments
— setArguments:
— arguments

Accessing the user dictionary
— setUserlnfo:
— userinfo

Instance Methods
arguments
— (NSArray *arguments

Returns the EOAttribute objects that describe the stored procedure’s argunmeiniStoe stored
procedure has no arguments.

beautifyName
— (void)oeautifyName

Renames the receiver's name and its arguments to conform to the Framework’s naming conventions. For
example, “NAME” is renamed “hame” and “FIRST_NAME” is renamed “firstName”.

See also: — setArguments;, —beautifyNames(EOModel)

externalName
— (NSString *pxternalName

Returns the name of the stored procedure as it is defined in the databésétlor receiver doesn’t have
an external name.

See also: —setExternalName:

258



Classes: EOStoredProcedure

initWithName:
— (EOStoredProcedureifjtWithName: (NSString *hame

The designated initializer for EOStoredProcedure, this method initializes a new EOStoredProcedure object
and sets its name f@ame Returnsself.

See also: —setName; —name

model
— (EOModel *model

Returns the model to which the receiver belongs.

See also: —addStoredProcedure:(EOModel)

name
— (NSString *pame
Returns the name of the receiver.

See also: —setName; —initWithName:

setArguments:
— (voidsetArguments{NSArray *)arguments

Setsargumentsas the array of EOAttributes that describe the receiver's arguments. The EOALttribute objects
in argumentanust be ordered to match the database stored procedure definition.

See also: —arguments

setExternalName:
— (void)setExternalName(NSString *name

Sets the external name of the stored procedurnarte nameshould be the name of the stored procedure
as it is defined in the database.

See also: —externalName

259



setName:
— (void)setName(NSString *name

Sets the name of the receiver.

See also: —name —initWithName:

setUserlInfo:
— (void)setUserInfo:(NSDictionary *dictionary

Sets thdictionary of auxiliary data, which your application can use for whatever it ndadmnary can
only contain property list data types (that is, NSString, NSDictionary, NSArray, and NSData).

See also: —userinfo

userinfo
— (NSDictionary *userinfo

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: —setUserlnfo:

260



Classes: NSString Additions

NSString Additions

Inherits From: NSObiject

Declared In: EOAccess/EOEntity.h

Class Description

The access layer adds two methods to the NSString class, to enable the conversion of modeling object
names to database schema names, and database schema names to modeling object names.

Class Methods

externalNameForinternalName:separatorString:useAllCaps:

+ (NSString *externalNameForinternalName:(NSString *name
separatorString:(NSString *separatorString
useAllCaps(BOOL)useAllCap¥

Used by the Framework to convert modeling object names to database schema names that conform to a
standard convention. A conforming database schema name is upper-case and uses “_" to separate words.
Consequently “name” becomes “NAME” and “firstName” becomes “FIRST_NAME".

separatorStrings a character that is used to separate words. The Framework uses “_” by default as in the
examples aboveiseAllCapsndicates whether to capitalize the name. For example, providing NO converts
“firstName” to “first_name”.

nameForExternalName:separatorString:initialCaps:

+ (NSString *nameForExternalName(NSString *name
separatorString:(NSString *separatorString
initialCaps: (BOOL)initialCaps)

Used by name beautification to convert database schema names to modeling object names that conform to
a standard convention. A conforming attribute, relationship, or stored procedure name is lower-case except
for the initial letter of each embedded word other than the first. Consequently “NAME” becomes “name”
and “FIRST_NAME” becomes “firstName”. A conforming entity is all lower-case except for the initial

letter of each word. Consequently “CUSTOMER_ACCOUNT” becomes “CustomerAccount”.

261



separatorStrings a character that is used to separate words. The Framework uses “_" by default as in the
examples abovénitialCapsindicates whether to capitalize the first letter of the first word. By default, the
Framework uses YES for entities and NO for everything else.

See also: — beautifyNames(EOModel), -beautifyName (EOAttribute, EOEntity, EORelationship,
EOStoredProcedure)

262



Classes: EOAdaptorChannelDelegate

EOAdaptorChannelDelegate

Adopted By: EOAdaptorChannel delegate objects

Declared In: EOAccess/EOAdaptorChannel.h

Protocol Description

EOAdaptorChannel sends messages to its delegate for nearly every operation that would affect data in the
database server. The delegate can use these methods to preempt these operations, modify their results, or
simply track activity.

Instance Methods

adaptorChannelDidChangeResultSet:
— (void)adaptorChannelDidChangeResultSetid)channel

Invoked fromfetchRowWithZone: when a select operation resulted in multiple result sets. This method
tells the delegate that the next invocatiofiedthRowWithZone: will fetch from the next result set. This
method is invoked whefetchRowWithZone: returnsnil andthere are still result sets left to fetch. The
delegate can invokeetAttributesToFetch: to prepare for fetching the new rows.

adaptorChannel:didEvaluateExpression:

— (void)adaptorChannel:(id)channel
didEvaluateExpression(EOSQLEXxpression €xpression

Invoked fromevaluateExpressionto tell the delegate that a query language expression has been evaluated
by the database server.

adaptorChannel:didExecuteStoredProcedure:withValues:

— (void)adaptorChannel:(id)channel
didExecuteStoredProcedure(EOStoredProcedure fijocedure
withValues:(NSDictionary *Values

Invoked fromexecuteStoredProcedure:withValuesafterprocedureis executed successfully.

263



adaptorChannel:didFetchRow:
— (void)adaptorChannel:(id)channeldidFetchRow:(NSMutableDictionary *ow

Invoked fromfetchRowWithZone: after a row is fetched successfully. This method is not invoked if an
exception occurs during the fetch or if the same retuifrisecause there are no more rows in the current
result set. The delegate may modify, which will be returned fronfetchRowWithZone:.

adaptorChannelDidFinishFetching:
— (void)yadaptorChannelDidFinishFetching:(id)channel

Invoked fromfetchRowWithZone: to tell the delegate that fetching is finished for the current select
operation. This method is invoked when a fetch endistanRowWithZone: because there are no more
result sets.

adaptorChannel:didPerformOperations:exception:

— (NSException *adaptorChannel:(id)channel
didPerformOperations:(NSArray *)operations
exception(NSException *gxception

Invoked fromperformAdaptorOperations: . exceptionis nil if no exception was raised whidgperations
were performed. Otherwisexceptioris the raised exception. The delegate can return the same or a
different exception, which is re-raised pgrformAdaptorOperations:, or it can returmil to prevent the
adaptor channel from raising an exception.

adaptorChannel:didSelectAttributes:fetchSpecification:lock:entity:

— (void)adaptorChannel:(id)channel
didSelectAttributes:(NSArray *)attributes
fetchSpecification(EOFetchSpecification fg@tchSpecification
lock:(BOOL)flag
entity: (EOEntity *)entity

Invoked fromselectAttributes:fetchSpecification:lock:entity: to tell the delegate that rows have been
selected in the database server.

264



Classes: EOAdaptorChannelDelegate

adaptorChannelShouldConstructStoredProcedureReturnValues:
— (NSDictionary *adaptorChannelShouldConstructStoredProcedureReturnValuegid)channel

Invoked fromreturnValuesForLastStoredProcedurelnvocationto tell the delegate thahannelis
constructing return values for the last stored procedure evaluated. If the delegate returns a value other than
nil, that value will be returned immediately fragturnValuesForLastStoredProcedurelnvocation

adaptorChannel:shouldEvaluateExpression:

— (BOOL)adaptorChannel:(id)channel
shouldEvaluateExpression(EOSQLEXxpression Bxpression

Invoked fromevaluateExpressionto tell the delegate thaehannels sending an expression to the database
server. The delegate returns YES to permit the adaptor channel texpeessiorio the server. If the

delegate returns NO, the adaptor channel does not send the expression and returns immediately. When the
delegate returns NO, the adaptor channel expects that the implementor of the delegate has done the work
thatevaluateExpressionwould have done. The delegate can create a new EOSQLEXxpression and send the
expression itself before returning NO.

adaptorChannel:shouldExecuteStoredProcedure:withValues:

— (NSDictionary *pdaptorChannel:(id)channel
shouldExecuteStoredProcedurgEOStoredProcedure fijocedure
withValues:(NSDictionary *\values

Invoked fromexecuteStoredProcedure:withValuesto tell the delegate thahannelis executing a stored
procedure. If the delegate returns a value otherrithathat value is used as the arguments to the stored
procedure instead oalues

adaptorChannel:shouldReturnValuesForStoredProcedure:

— (NSDictionary *adaptorChannel:(id)channel
shouldReturnValuesForStoredProcedure(NSDictionary *yeturnValues

Invoked fromreturnValuesForLastStoredProcedurelnvocationto tell the delegate thahannelis
returning values for a stored procedure. If the delegate returns a value othel, the value is returned
from returnValuesForLastStoredProcedurelnvocationinstead ofeturnValues

265



266

adaptorChannel:shouldSelectAttributes:fetchSpecification:lock:entity:

— (BOOL)adaptorChannel:(id)channel
shouldSelectAttributes{NSArray *)attributes
fetchSpecification(EOFetchSpecification fg¢tchSpecification
lock:(BOOL)flag
entity: (EOEntity *)entity

Invoked fromselectAttributes:fetchSpecification:lock:entity: to ask the delegate whether a select
operation should be performed. The delegate should not nfettifSpecificationnstead, if the delegate
wants to perform a different select it should invekkectAttributes:fetchSpecification:lock:entity: itself

with a new fetch specification, and return NO (indicating that the adaptor channel should not perform the
select itself).

adaptorChannelWillFetchRow:
— (void)adaptorChannelWillFetchRow:(id)channel

Invoked fromfetchRowWithZone: to tell the delegate that a single row will be fetched. The delegate can
determine the attributes used by the fetch by seradtrigutesToFetch to channe] and can change the set

of attributes to fetch by sendisgtAttributesToFetch: tochannel The adaptor channel performs the actual
fetch.

adaptorChannel:willPerformOperations:
— (NSArray *yadaptorChannel:(id)channelwillPerformOperations: (NSArray *)operations

Invoked fromperformAdaptorOperations: to tell the delegate thahannelis performing the
EOAdaptorOperations iaperations The delegate may retuoperationsor a different NSArray for the
adaptor channel to perform. If the delegate retnilnshe adaptor channel does not perform the operations
and returns from the method immediately.



Classes: EOAdaptorContextDelegate

EOAdaptorContextDelegate

Adopted By: EOAdaptorContext delegate objects

Declared In: EOAccess/EOAdaptorContext.h

Protocol Description

EOAdaptorContext sends messages to its delegate for any transaction begin, commit, or rollback. The
delegate can use these methods to preempt these operations, modify their results, or simply track activity.

Instance Methods

adaptorContextDidBegin:
— (void)adaptorContextDidBegin:context

Invoked frombeginTransactionto tell the delegate that a transaction has begun.

adaptorContextDidCommit:
— (void)adaptorContextDidCommit: context

Invoked fromcommitTransaction to tell the delegate that a transaction has been committed.

adaptorContextDidRollback:
— (void)yadaptorContextDidRollback: context

Invoked fromrollbackTransaction to tell the delegate that a transaction has been rolled back.

adaptorContextShouldBegin:
— (BOOL)adaptorContextShouldBegincontext

Invoked frombeginTransactionto tell the delegate thabntextis beginning a transaction. If this method
returns NO, the adaptor context does not begin a transaction. Return YES to allow the adaptor context to
begin a transaction.

267



268

adaptorContextShouldCommit:
— (BOOL)adaptorContextShouldCommit:context
Invoked fromcommitTransaction to tell the delegate thabntextis committing a transaction. If this

method returns NO, the adaptor context does not commit the transaction. Return YES to allow the adaptor
context to commit.

Note that if you implement this delegate method to return NO, your delegate must perform the database
COMMIT itself; the rest of the Enterprise Objects Framework assumes that the commit has taken place.
adaptorContextShouldCommit: doesn’t specify whether or not the commit should take place; it only
specifies whether or not the adaptor context should do it for you.

adaptorContextShouldConnect:
— (BOOL)adaptorContextShouldConnectcontext

Invoked before the adaptor attempts to connect. The delegate can return NO if it wants to override the
connect, YES if it wants the adaptor to attempt to connect in the usual way. The delegate should raise an
exception if it fails to connect.

adaptorContextShouldRollback:
— (BOOL)adaptorContextShouldRollback:context
Invoked fromrollbackTransaction to tell the delegate thabntextis rolling back a transaction. If this

method returns NO, the adaptor context does not roll back the transaction. Return YES to allow the adaptor
context to roll back.



Classes: EOAdaptorDelegate

EOAdaptorDelegate
Adopted By: EOAdaptor delegate objects
Declared In: EOAccess/EOAdaptor.h

Protocol Description

The delegate for EOAdaptor can implement the me#itaghtor:fetchedValueForValue:attribute: to
perform a database-specific transformations on a value.

Instance Methods

adaptor:fetchedValueForValue:attribute:

— (id)adaptor: (EOAdaptor *adaptor
fetchedValueForValue{id)value
attribute: (EOAttribute *jattribute

Invoked fromfetchedValueForValue:attribute: to allow the delegate to perform a database-specific
transformation owalue The delegate should return the value that the adaptor’s database server would
ultimately store fowalueif it was inserted or updated in the column describedtiipute.

Ordinarily, fetchedValueForValue:attribute: invokes one of the type-specifetchedValue...methods
depending on the type wélue If you implement this delegate methéetchedValueForValue:attribute:

does not invoke the othéstchedValue...methods. It simply invokes your delegate method and returns the
value returned from it. Therefore, an implementatioad#ptor:fetchedValueForValue:attribute: must
handle values of all types.

269



270



Classes:

EOCustomClassArchiving

(informal protocol)
Category Of: NSObject

Declared In: EOAccess/EOAttribute.h

Category Description

EOCustomClassArchiving defines methods that can be used to write any object that conforms to NSCoding
to the database as binary data, as generated by NSArchiver. Since data in this fomat is neither
human-readable nor readable by non-OpenStep applications, it's usually preferable to supply other custom
archiving methods for your custom value classes. For a comprehensive discussion of working with custom
data types, see the EOAttribute class specification and the chapter “Advanced Enterprise Object Modeling”
in theEnterprise Objects Framework Developer’'s Guide

For more information, see “Archiving Attributes with Custom Types” in “WebObjects Programming
Topics.” Is this cross-reference correct?

Class Methods
objectWithArchiveData:
+ (id)objectWithArchiveData: (NSData *plata

Returns an object created fratata NSObject’'s implementation of this method invokes NSUnarchiver’s
unarchiveObjectWithData: method and returns the result. Your custom value class can therefore take
advantage of this method merely by implementing the NSCoding protocol meithdidhCoder: .

See also: —archiveData

Instance Methods
archiveData
— (NSData *archiveData

Return the receiver’s value as an NSData object whose bytes can be stored in an external repository.
NSObject’s implementation of this method invokes NSArchiachivedDataWithRootObject: method

and returns the result. Your custom value class can therefore take advantage of this method merely by
implementing the NSCoding protocol methexttodeWithCoder-

See also:  + objectWithArchiveData:

271



272



Classes: EODatabaseContextDelegation

EODatabaseContextDelegation

Declared In: EOAccess/EODatabaseContext.h

Protocol Description

An EODatabaseContext shares its delegate with its EODatabaseChannels. These delegate methods are
actually sent from EODatabaseChannel, but they're defined in EODatabaseContext for ease of access:

— databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:

— databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:

— databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globallD:databaseChannel:
— databaseContext:shouldUsePessimisticLockWithFetchSpecification: databaseChannel:

You can use the EODatabaseContext delegate methods to intervene when objects are created and when
they’re fetched from the database. This gives you more fine-grained control over such issues as how an
object’s primary key is generatedafabaseContextNewPrimaryKeyForObjectdatabaseContext:
newPrimaryKeyForObject:entity: ), how and if objects are locked
(databaseContextShouldLockObjectWithGloballDdatabaseContext:
shouldLockObjectWithGloballD:snapshot:), what fetch specification is used to fetch objects
(databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannehow batch

faulting is performeddatabaseContext:shouldFetchArrayFault:anddatabaseContext:
shouldFetchObjectFault), and so on. For more information, see the individual delegate method
descriptions.

Instance Methods

databaseContext:didFetchObjects:fetchSpecification:editingContext:

— (void)databaseContext{EODatabaseContext&pPatabaseContext
didFetchObjects:(NSArray *)objects
fetchSpecification(EOFetchSpecification f@tchSpecificatioeditingContext:
(EOEditingContext *xnEditingContext

Invoked fromobjectsWithFetchSpecification:editingContext:afteraDatabaseContexetchesobjects
using the criteria defined fietchSpecificatiomn behalf ofanEditingContext

See also: — databaseContext:shouldFetchObjectFault:

273



274

databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:

— (voiddatabaseContext(EODatabaseContextgpatabaseContext
didSelectObjectsWithFetchSpecification(EOFetchSpecification f@tchSpecification
databaseChannelfEODatabaseChannelchannel

Invoked from the EODatabaseChannel metteldctObjectsWithFetchSpecification:editingContextto
tell the delegate thahannelselected the objects on behalfadfatabaseContexts specified by
fetchSpecification

See also: — databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:

databaseContext:failedToFetchObject:globallD:

— (BOOL)atabaseContext(EODatabaseContext&patabaseContext
failedToFetchObject:(id)object
globallD: (EOGIoballD *)globallD

Sent when a to-one fault cannot find its data in the databasebjgutis a cleared fault identified by
globallD. If this method returns YE@DatabaseContexssumes that the delegate has handled the
situation to its satisfaction, in whatever way it deemed appropriate (for example, by displaying an alert
panel or initializing a fault object with new values). If it returns NO or if the delegate method is not
implementedaDatabaseContextises an NSObjectNotAvailableException.

databaseContext:newPrimaryKeyForObject:entity:

— (NSDictionary *HatabaseContext(EODatabaseContext&pPatabaseContext
newPrimaryKeyForObiject: (id)object
entity: (EOEntity *)entity
Sent when a newly inserted enterpofgectdoesn’t already have a primary key set. This delegate method
can be used to implement custom primary key generation. If the delegate is not implemented ailreturns

thenaDatabaseContextill send an EOAdaptorChannepamaryKeyForNewRowWithEntity:
message in an attempt to generate the key.

The dictionary you return from this delegate method contains the attribute or attribabgscdiihas a
compound primary key) that make apjects primary key.

databaseContext:shouldFetchArrayFault:
— (BOOL)databaseContext{EODatabaseContextdatabaseContexthouldFetchArrayFault:
(id)fault

Invoked when a fault is fired, this delegate method lets you fine-tune the behavior of batch faulting.
Delegates can fetch the array themselves (for example, by using the EODatabaseContext method



Classes: EODatabaseContextDelegation

batchFetchRelationship:forSourceObjects:editingContexf} and return NO, or return YES to allow the
databaseContexb do the fetch itself. iflatabaseContexterforms the fetch it will batch fault according
to the batch count on the relationship being fetched.

See also: — databaseContext:shouldFetchObjectFault:

databaseContext:shouldFetchObjectFault:

— (BOOL)atabaseContext{EODatabaseContextdatabaseContexthouldFetchObjectFault:
(id)fault

Invoked when a fault is fired, this delegate method lets you fine-tune the behavior of batch faulting.
Delegates can fetch the fault themselves (for example, by using the EODatabaseContext method
objectsWithFetchSpecification:editingContext) and return NO, or return YES to allalatabaseContext

to perform the fetch. ilatabaseContexterforms the fetch, it will batch fault according to the batch count
on the entity being fetched.

See also: — databaseContext:shouldFetchArrayFault:

databaseContext:shouldFetchObjectsWithFetchSpecification:editingContext:

— (NSArray *databaseContext(EODatabaseContext&patabaseContext
shouldFetchObjectsWithFetchSpecification(EOFetchSpecification fg@tchSpecification
editingContext:(EOEditingContext *anEditingContext

Invoked fromobjectsWithFetchSpecification:editingContext:to give the delegate the opportunity to
satisfyanEditingContexs fetch request (using the criteria specifiefeichSpecificationfrom a local
cache. If the delegate retumm$, aDatabaseContexierforms the fetch. Otherwise, the returned array is
returned as the fetch result.

See also: databaseContextDidFetchObjectsdatabaseContext:didFetchObjects:fetchSpecification:
editingContext:

databaseContext:shouldinvalidateObjectWithGloballD:snapshot:

— (BOOL)atabaseContext{EODatabaseContext&patabaseContext
shouldInvalidateObjectWithGloballD: (EOGIloballD *)globalld
snapshot(NSDictionary *snapshot

Invoked frominvalidateObjectsWithGloballDs: . Delegate can caus®atabaseContelstobject as
identified bygloballD to not be invalidated and that objectrgapshoto not be cleared by returning NO.

275



databaseContext:shouldLockObjectWithGloballD:snapshot:

— (BOOL)atabaseContext{EODatabaseContext&patabaseContext
shouldLockObjectWithGloballD: (EOGIoballD *)globallD
snapshot(NSDictionary *snapshot

Invoked fromlockObjectWithGloballD:editingContext: . The delegate should return YES if it wants the
operation to proceed or NO if it doesn't. Values fremapshotire used to create a qualifier from the
attributes used for locking specified for the object’s entity (that is, the object identifigabiayiD).

Delegates can override the locking mechanism by implementing their own locking procedure and returning
NO. Methods that override the locking mechanism should raise an exception on the failure to lock exactly
one object.

databaseContext:shouldRaiseExceptionForLockFailure:

— (BOOL)atabaseContextfEODatabaseContext&PatabaseContext
shouldRaiseExceptionForLockFailure(NSException *gxception

Invoked fromlockObjectWithGloballD:editingContext: . This method allows the delegate to suppress an
exceptiorthat has occurred duriraatabaseContextattempt to lock the object.

databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:

— (BOOL)databaseContext(EODatabaseContext&patabaseContext
shouldSelectObjectsWithFetchSpecificatiofEOFetchSpecification f@tchSpecification
databaseChannellEODatabaseChannelchannel

Invoked from the EODatabaseChannel metbeddctObjectsWithFetchSpecification:editingContextto

tell the delegate tha@hannelwill select objects on behalf aDatabaseContexs specified by
fetchSpecificationThe delegate should not modftchSpecificatida qualifier or fetch order. If the

delegate returns YES the channel will go ahead and select the object; if the delegate returns NO (possibly
after issuing custom SQL against the adaptortkt@anelwill skip the select and return.

databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globallD:
databaseChannel:

— (NSDictionary *flatabaseContext{EODatabaseContext&patabaseContext
shouldUpdateCurrentSnapshot(NSDictionary *currentSnapshot
newSnapshot{NSDictionary *newSnapshot
globallD: (EOGloballD *)ygloballD
databaseChannellEODatabaseChannelchannel

Invoked from the EODatabaseChannel metfadchObject whenaDatabaseContexlready has a
shapshotdurrentSnapshdtior a row fetched from the database. This method is invoked without first

276



Classes: EODatabaseContextDelegation

checking whether the snapshots are equivalent (the check would be too expensive to do in the common
case), so the receiver may be passed equivalent snapshots. The default behavior is to not update an older
snapshot witmewSnapshofhe delegate can override this behavior by returning a dictionary (possibly
newSnapshdthat will be recorded as the updated snapshot. This will resaDatabaseContext

broadcasting an EOObjectsChangedInStoreNaotification, causing the object store hierarchy to invalidate
existing objects (as identified lgyoballD) built from the obsolete snapshot. Returmiiigraises an

exception. You can use this method to achieve the same effect as using an EOFetchSpecification with
setRefreshesRefetchedObjectset to YES—that is, it allows you to overwrite in-memory object values

with values from the database that may have been changed by someone else.

ReturningcurrentSnapshatauses thaDatabaseContexb perform the default behavior (that is, not
updating the older snapshot).

databaseContext:shouldUsePessimisticLockWithFetchSpecification:
databaseChannel:

— (BOOL)databaseContext{EODatabaseContextdatabaseContext
shouldUsePessimisticLockWithFetchSpecificatiogE OFetchSpecification f@tchSpecification
databaseChannellEODatabaseChannelchannel

Invoked from the EODatabaseChannel metbeldctObjectsWithFetchSpecification:editingContext:
regardless of the update strategy specifiedhamnek databaseContexThe delegate should not modify
the qualifier or fetch order contained@tchSpecificationf the delegate returns YES the channel locks the
rows being selected; if the delegate returns NO the channel selects the rows without locking.

databaseContext:willOrderAdaptorOperationsFromDatabaseOperations:

— (NSArray *databaseContext(EODatabaseContext&patabaseContext
willOrderAdaptorOperationsFromDatabaseOperations:(NSArray *)databaseOperations

Sent fromperformChanges If the delegate responds to this message, it must return an array of
EOAdaptorOperations thaDatabaseContextan then submit to an EOAdaptorChannel for execution. The
delegate can fabricate its own array by asking each afafadaseOperation®r its list of
EOAdaptorOperations, and adding them to the array which will eventually be returned by this method. The
delegate is free to optimize, order, or transform the list in whatever way it deems necessary. This method is
useful for applications that need a special ordering of the EOAdaptorOperations so as not to violate any
database referential integrity constraints.

277



278

databaseContext:willPerformAdaptorOperations:adaptorChannel:

— (NSArray *databaseContext(EODatabaseContext&patabaseContext
willPerformAdaptorOperations: (NSArray *JadaptorOperations
adaptorChannel:(EOAdaptorChannel ‘gdaptorChannel

Sent fromperformChanges The delegate can return a nedaptorOperationsrray which
aDatabaseContextill hand toadaptorChannefor execution in place of the old array of
EOAdaptorOperations. This method is useful for applications that need a special ordering of the
EOAdaptorOperations so as not to violate any database referential integrity constraints.

databaseContext:willRunLoginPanelToOpenDatabaseChannel:

— (BOOL)atabaseContext(EODatabaseContext&patabaseContext
willRunLoginPanelToOpenDatabaseChanne(EODatabaseChannelchannel

WhenaDatabaseContexs about to use ehanne] it checks to see if thehannek corresponding
EOAdaptorChannel is open. If it isn't, it attempts to open the EOAdaptorChannel by sending it an
openChannelmessage. If that doesn't succeadatabaseContextill ask the EOAdaptorChannel’s

adaptor to run the login panel and open the chaabeltabaseContexgives the delegate a chance to

intervene in this by invoking this delegate method. The delegate can return NOdaDatapaseContext

from running the login panel. In this case, the delegate is responsible for opening the channel. If the delegate
returns YESaDatabaseContexuns the login panel.



Classes: EOEditingContext Additions

EOEditingContext Additions

(informal protocol)
Category Of: EOEditingContext

Declared In: EOAccess/EOUtilities.h

Class Description

EOEditingContext Additions is a collection of convenience methods intended to make common operations
with EOF easier. EOEditingContext Additions is a category on EOEditingContext provided in EOAccess.

Note: The Objective-C source code for EOUltilities is available as an exa@pMac OS X Server
systems, see /System/Developer/Examples/EnterpriseObjects/Sources/EOULtilitie®n NT, see
$NEXT_ROOTDeveloper\Examples\EnterpriseObjects\Sources\EOUtilities

Method Types

Fetching multiple objects
— objectsForEntityNamed:
— objectsForEntityNamed:qualifierFormat:
— objectsMatchingValue:forKey:entityNamed:
— objectsMatchingValues:entityNamed:
— objectsOfClass:
— objectsWithFetchSpecificationNamed:entityNamed:bindings:

Fetching single objects
— objectForEntityNamed:qualifierFormat:
— objectMatchingValue:forKey:entityNamed:
— objectMatchingValues:entityNamed:
— objectWithFetchSpecificationNamed:entityNamed:bindings:
— objectWithPrimaryKey:entityNamed:
— objectWithPrimaryKeyValue:entityNamed:

Fetching raw rows
— executeStoredProcedureNamed:arguments:
— objectFromRawRow:entityNamed:
— rawRowsForEntityNamed:qualifierFormat:
— rawRowsMatchingValue:forKey:entityNamed:
— rawRowsMatchingValues:entityNamed:
— rawRowsWithSQL:modelNamed:
— rawRowsWithStoredProcedureNamed:arguments:

279



Accessing the EOF stack
— connectWithModelNamed:connectionDictionaryOverrides:
— databaseContextForModelNamed:

Accessing object data
— destinationKeyForSourceObiject:relationshipNamed:
— locallnstanceOfObiject:
— locallnstancesOfObjects:
— primaryKeyForObject:

Accessing model information
— entityForClass:
— entityForObject:
— entityNamed:
— modelGroup

Instance Methods

280

connectWithModelNamed:connectionDictionaryOverrides:
— (void)connectWithModelNamed{NSString *)modelName
connectionDictionaryOverrides:(NSDictionary *pverrides

Connects to the database using the connection information in the specified model and the provided
overrides dictionary. This method facilitates per-session database logins in WebObjects applications.
Typically, you'd put a login name and password in the overrides dictionary and otherwise use the values in
the model’s connection dictionary. Raises an exception if the connection failed.

databaseContextForModelNamed:
— (EODatabaseContextdatabaseContextForModelNamedNSString *entityName

Returns the database context used to service the specified model.

destinationKeyForSourceObject:relationshipNamed:

— (NSDictionary *HestinationKeyForSourceObject(id)object
relationshipNamed:(NSString *entityName

Returns the foreign key for the rows at the destination entity of the specified relationship. As an example,
given entities Department and Employee with a relationship called “department” joining



Classes: EOEditingContext Additions

Department.ID Employee.deptID , invoking this method on a Department object with ID equal to
5 will return a dictionary with a value of 5 for the deptID key.

See also: — primaryKeyForObiject:

entityForClass:
— (EOEntity *entityForClass:(ClasstlassObject

Returns the entity associated with the specified class. Raises an exception if the specified entity can't be
found or if more than one entity is associated with the class.

See also: —entityForObject: , —entityNamed:, —objectsOfClass:

entityForObject:
— (EOEntity *entityForObject: (id)object

Returns the entity associated with the provided enterprise object. Raises an exception if the specified entity
can’t be found.

See also: —entityForClass:, —entityNamed:

entityNamed:
— (EOEntity *entityNamed:(NSString *entityName
Returns the entity with the specified name. Raises an exception if the specified entity can’t be found.

See also: —entityForClass:, —entityForObject:

executeStoredProcedureNamed:arguments:

— (NSDictionary *executeStoredProcedureNamed@NSString *storedProcedureName
arguments(NSDictionary *arguments

Executes the specified stored procedure with the provided arguments. Returns the stored procedure’s return
values (if any). Use only with stored procedures that don’t return results rows.

See also: —rawRowsWithStoredProcedureNamed:arguments:

281



282

locallnstanceOfObiject:
— (id)locallnstanceOfObiject:(id)object

Translates the specified enterprise object from another editing context to the specified one.

See also: —locallnstancesOfObjects:

locallnstancesOfObjects:
— (NSArray *JocallnstancesOfObjects{NSArray *)objects

Translates the specified enterprise objects from another editing context to the specified one.

See also: —locallnstanceOfObject:

modelGroup
— (EOModelGroup *nodelGroup

Returns the model group associated with the editing context’s root object store, an
EOODbjectStoreCoordinator.

objectForEntityNamed:qualifierFormat:
— (id)objectForEntityNamed: (NSString *entityNamegualifierFormat: (NSString *format, ...

Creates a qualifier with the provided format string and arguments, and returns matching enterprise objects.
Raises an EOMoreThanOneException unless exactly one object is retrieved.

See also: — objectsForEntityNamed:qualifierFormat: , —rawRowsForEntityNamed:qualifierFormat:

objectFromRawRow:entityNamed:
— (id)objectFromRawRow:(NSDictionary *yow entityNamed:(NSString *)entityName
Fetches and returns the object corresponding to the specified raw row (using EOEditingContext’s

faultForRawRow:entityNamed:). This method can only be used on raw rows that include the row’s
primary key.



Classes: EOEditingContext Additions

objectMatchingValue:forKey:entityNamed:
— (id)objectMatchingValue:(id)valueforKey: (NSString *keyentityNamed:(NSString *entityName

Creates an EOKeyValueQualifier with the specified key and value and returns matching enterprise objects.
Raises an EOMoreThanOneException unless exactly one object is retrieved.

See also: — ObjectMatchingValues:entityNamed; —objectsMatchingValue:forKey:entityNamed:

objectMatchingValues:entityNamed:
— (id)objectMatchingValues:(NSDictionary *ValuesentityNamed:(NSString *)entityName

Creates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
together into an EOAndQualifier, and returns matching enterprise objects. Raises an
EOMoreThanOneException unless exactly one object is retrieved.

See also: — ObjectMatchingValue:forKey:entityNamed:, —objectsMatchingValues:entityNamed:

objectsForEntityNamed:
— (NSArray *pbjectsForEntityNamed:(NSString *entityName

Fetches and returns the enterprise objects associated with the specified entity.

See also: — objectsForEntityNamed:qualifierFormat: , —objectsMatchingValue:forKey:entityNamed:,
— objectsMatchingValues:entityNamed:

objectsForEntityNamed:qualifierFormat:

— (NSArray *pbjectsForEntityNamed:(NSString *entityName
qualifierFormat: (NSString *format ...

Creates a qualifier with the provided format string and arguments, and returns matching enterprise objects.

See also: — objectForEntityNamed:qualifierFormat: , —objectsForEntityNamed:

283



objectsMatchingValue:forKey:entityNamed:

— (NSArray *pbjectsMatchingValuei(id)value
forKey: (NSString *key
entityNamed:(NSString *entityName

Creates an EOKeyValueQualifier with the specified key and value and returns matching enterprise objects.

See also: — ObjectMatchingValue:forKey:entityNamed:, —objectsForEntityNamed:,
— objectsMatchingValues:entityNamed:

objectsMatchingValues:entityNamed:
— (NSArray *pbjectsMatchingValues(NSDictionary *yvaluesentityNamed:(NSString *entityName

Creates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
together into an EOAndQuialifier, and returns matching enterprise objects.

See also: — ObjectMatchingValues:entityNamed; —objectsForEntityNamed:,
— objectsMatchingValue:forKey:entityNamed:

objectsOfClass:
— (NSArray *pbjectsOfClass(ClassklassObject

Fetches and returns the enterprise objects associated with the specified class. Raises an
EOMoreThanOneException if more than one entity for the class exists.

See also: —entityForClass:

objectsWithFetchSpecificationNamed:entityNamed:bindings:

— (NSArray *pbjectsWithFetchSpecificationNamedNSString *fetchSpecName
entityNamed:(NSString *entityNamebindings:(NSDictionary *hindings

Fetches and returns the enterprise objects retrieved with the specified fetch specification and bindings.

See also: — objectWithFetchSpecificationNamed:entityNamed:bindings:

284



Classes: EOEditingContext Additions

objectWithFetchSpecificationNamed:entityNamed:bindings:

— (id)objectWithFetchSpecificationNamed{NSString *fetchSpecName
entityNamed:(NSString *entityName
bindings:(NSDictionary *pindings

Fetches and returns the enterprise objects retrieved with the specified fetch specification and bindings.
Raises an EOMoreThanOneException unless exactly one object is retrieved.

See also: — ObjectsWithFetchSpecificationNamed:entityNamed:bindings:

objectWithPrimaryKey:entityNamed:
— (id)objectWithPrimaryKey: (NSDictionary *keyDictionaryentityNamed:(NSString *entityName

Fetches and returns the enterprise object identified by the specified primary key dictionary. Raises an
EOMoreThanOneException unless exactly one object is retrieved.

See also: — oObjectMatchingValue:forKey:entityNamed:, —objectWithPrimaryKeyValue:
entityNamed:, —primaryKeyForObject:

objectWithPrimaryKeyValue:entityNamed:
— (id)objectWithPrimaryKeyValue: (id)valueentityNamed:(NSString *entityName

Fetches and returns the enterprise object identified by the specified primary key value. For use only with
enterprise objects that have non-compound primary keys. Raises an EOMoreThanOneException unless
exactly one object is retrieved.

See also: — ObjectsMatchingValues:entityNamed; —objectWithPrimaryKey:entityNamed:

primaryKeyForObiject:
— (NSDictionary *primaryKeyForObiject: (id)object
Returns the primary key dictionary for the specified enterprise object.

See also: — objectWithPrimaryKey:entityNamed: , —objectWithPrimaryKeyValue:entityNamed:

285



rawRowsForEntityNamed:qualifierFormat:

— (NSArray *rawRowsForEntityNamed:(NSString *entityName
qualifierFormat: (NSString *format ...;

Creates a qualifier for the specified entity and with the specified qualifier format and returns matching raw
row dictionaries.

See also: — ObjectsForEntityNamed:qualifierFormat: , —rawRowsWithSQL:modelNamed:

rawRowsMatchingValue:forKey:entityNamed:

— (NSArray *rawRowsMatchingValue:(id)value
forKey: (NSString *key
entityNamed:(NSString *entityName

Creates an EOKeyValueQualifier with the specified key and value and returns matching raw rows.

See also: — ObjectMatchingValue:forKey:entityNamed:, —objectsMatchingValue:forKey:
entityNamed:, —rawRowsMatchingValues:entityNamed:

rawRowsMatchingValues:entityNamed:

— (NSArray *rawRowsMatchingValues{NSDictionary *yvalues
entityNamed:(NSString *entityName

Creates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
together into an EOAndQuialifier, and returns matching raw rows.

See also: — ObjectMatchingValues:entityNamed; —objectsMatchingValues:entityNamed;
—rawRowsMatchingValue:forKey:entityNamed:

rawRowsWithSQL:modelNamed:
— (NSArray *rawRowsWithSQL: (NSString *sqglStringmodelNamed(NSString *modelName

Evaluates the specified SQL and returns the resulting raw rows.

See also: —rawRowsForEntityNamed:qualifierFormat: , —rawRowsWithStoredProcedureNamed:
arguments:

286



Classes: EOEditingContext Additions

rawRowsWithStoredProcedureNamed:arguments:

— (NSArray *rawRowsWithStoredProcedureNamed{NSString *storedProcedureName
arguments:(NSDictionary *arguments

Executes the specified stored procedure with the provided arguments and returns the resulting raw rows.
See also: —rawRowsWithSQL:modelNamed:

287



288



Classes:

EOModelGroupClassDelegation

Inherits From: NSObiject

Declared In: EOAccess/EOModelGroup.h

Protocol Description

An EOModelGroup object should have a delegate which can influence how it finds and loads models. In
addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself can have
a delegate. The class delegate implements a single metiedduitModelGroup.

For more information on EOModelGroup instance delegate methods, see the EOModelGroupDelegation
specifications.

Instance Methods
defaultModelGroup
— (EOModelGroup ®lefaultModelGroup

If implemented by the EOModelGroup class delegate, this method should return the EOModelGroup to be
returned in response to the messagiaultModelGroup. If this delegate method returilg
EOModelGroup uses the default behavior ofde&aultModelGroup class method.

Note: This method is implemented by the delegate assigned to the EOModelGroup class object.

See also: + classDelegatdEOModelGroup class), setClassDelegate(EOModelGroup class)

289



290



Classes:

EOModelGroupDelegation
Inherits From: NSObiject
Declared In: EOAccess/EOModelGroup.h

Protocol Description

An EOModelGroup object should have a delegate which can influence how it finds and loads models. The
EOModelGroup instance delegate can implement the methods below:

* entity:relationshipForRow:relationship:
* subEntityForEntity:primaryKey:isFinal:
« entity:failedToLookupClassNamed:
* entity:classForObjectWithGloballD:

In addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself can
have a delegate. The class delegate implements a single metbfaditModelGroup. For more
information, see the EOModelGroupClassDelegation.

Instance Methods
entity:classForObjectWithGloballD:
— (Classgntity: (EOEntity *)entity classForObjectWithGloballD: (EOGloballD *)globallD

Used to fine-tune inheritance. The delegate caglosallD to determine a subclass to be used in place of
the one specified iantity.

entity:failedToLookupClassNamed:
— (Classgntity: (EOEntity *)entityfailedToLookupClassNamed(NSString *className

Invoked when the class name specifiecefaity cannot be found at run-time. The delegate can take action
(such as loading a bundle) to provitditywith a class correspondingdtassNamelf the delegate cannot
provide anything, or if there is no delegate, EOGenericRecord is used.

201



292

entity:relationshipForRow:relationship:

— (EOREelationship ®ntity: (EOEntity *)entityrelationshipForRow: (NSDictionary *yYow
relationship: (EORelationship *elationship

Invoked when relationships are instantiated for a newly fetched object. The delegate can use the information
in row to determine which entity the target enterprise object should be associated with, and replace the
relationship appropriately.

modelGroup:entityNamed:
— (EOModel *modelGroup:(EOModelGroup *yroupentityNamed:(NSString *hame

If implemented by the delegate, this method should seargidbpfor the entity namedameand return
the entity’s EOModel. Retumil if nameis not an entity igroup

relationship:failedToLookupDestinationNamed:

— (EOEntity *yelationship: (EORelationship *elationshipfailedToLookupDestinationNamed:
(NSString *entityName

Invoked when loadingelationshipand the destinatioentityNamespecified in the model file cannot be

found in the model group. This most often occurs when a model references entities in another model file
that can’t be found. If the delegate doesn’t implement this method, an exception is raised. If the delegate
does implement this method, the method'’s return value is set as the destination entity. if the delegate returns
nil, the destination entity is setid.

subEntityForEntity:primaryKey:isFinal:
— (EOEntity *subEntityForEntity: (EOEntity *)entity
primaryKey: (NSDictionary *primaryKey
isFinal:(BOOL *)flag

Allows the delegate to fine-tune inheritance by indicating from which sub-entity an object should be fetched
based on itprimaryKey The entity returned must be a sub-entitewfity If the delegate knows that the
object should be fetched from the returned entity and not one of its sub-entities, it shbfaldteMES.



Classes:

EOPropertyListEncoding

Implemented By: EOAttribute
EOEntity
EORelationship
EOStoredProcedure

Interface Description

The EOPropertyListEncoding protocol declares methods that read and write obpzofsetty lists—a
dictionary containing only property list data types (that is, NSDictionary objects, NStrings, NSArray
objects, and NSData objects).

Classes that implement this protocol must also initialize their instancemititthPropertyList:
owner:.

Objects initialized withnitWithPropertyList:owner: are initialized fronpropertyList Theowner

argument is optional and should be used only by objects requiring a reference to their owner. The newly
created object isn't considered fully functional until it receiveawmakeWithPropertyList message,

which finishes initializing the object. TlavakeWithPropertyList invocation should be deferred until

after all of the objects identified propertyListhave been created.

The methoancodelntoPropertyList: is responsible for encoding the receiver into a property list for later
restoration.

This interface is used to read and write modeling objects (EOModel, EOEntity, EOAttribute, and so on) to
a model file.

Methods

awakeWithPropertyList

— (voidawakeWithPropertyList: (NSDictionary *propertyList
Finishes initializing the receiver fropropertyList which must have been initialized with
initWithPropertyList:owner: .

awakeWithPropertyList is responsible for restoring references to other objects. Consequently, it should
not be invoked until all other objects that the receiver might reference have been initialized from
propertyList

293



encodelntoPropertyList:
— (void)encodelntoPropertyList:(NSMutableDictionary *propertyList

Returns the receiver as a property list.

initWithPropertyList:owner:

— initwWithPropertyList: (NSDictionary *propertyListowner:(id)owner
Intializes a newly-allocated object from a property list. owner is optional, and should be used by objects
requiring a back pointer to their owner. This method must be followed by a@athk@WithPropertyL.ist

in order to create a fully-functional object. The calhteakeWithPropertyList should be deferred until
after all other objects have been seiit messages.

294



Classes:

EOQualifierSQLGeneration

Adopted By: EOAnNdQualifier, EOKeyComparisonQualifier, EOKeyValueQualifier,
EONotQualifier, EOOrQualifier, EOSQLQualifier

Declared In: EOAccess/EOSQLQualifier.h

Protocol Description

The EOQualifierSQLGeneration protocol declares two methods that are adopted by qualifier classes to
qualify fetches from a database. One of the mettamtiemaBasedQualifierWithRootEntity:, is used to
provide a qualifier suitable for evaluation by a database from a qualifier suitable for in-memory evaluation.
The other methoaqlStringForSQLEXpression:, is used by concrete subclasses of EOSQLEXxpression to
generate WHERE clauses for SQL statements.

Instance Methods
sqlStringForSQLEXxpression:
— (NSString *pqlStringForSQLExpression(EOSQLEXxpression ¥glIExpression

Returns a SQL statement suitable for inclusion in a WHERE clause. Invoked from a concrete subclass of
EOSQLEXxpression while it's preparing a SELECT, UPDATE, or DELETE statement.

See also: —whereClauseString(EOSQLEXxpression)

schemaBasedQualifierWithRootEntity:
— (EOQualifier *schemaBasedQualifierWithRootEntity(EOEntity *)entity

Returns a qualifier suitable for evaluation by a database (as opposed to in-memory evaluation). Invoked by
an EODatabaseChannel object before it uses its EOAdaptorChannel to perform a database operation.

Whereas in-memory qualifier evaluation uses pointers to resolve relationships, a database qualifier must use
foreign keys. For example, consider the qualifier below that is used to fetch all employees who work in a
specified department:

Department *dept; // Assume this exists.
EOQualifier *qualifer;

qualifier = [EOQuialifier qualifierwWithQualifierFormat: @"department = %@", dept];

295



296

For an in-memory search, the Framework queries employee objects for their department object and includes
an employee in the result list if its department object is equidb (See the EOQualifierEvaluation
protocol description for more information on in-memory searching.)

For a database search, the Framework needs to qualify the fetch by specifying a foreign keydegbtie for
The Framework sendpialifier aschemaBasedQualifierWithRootEntity: message that creates and
returns a new qualifier. Assume that the entity for employee objects has an attributelepanedent|D
and that the primary key value fdept is 459, the resulting qualifier specifies the search conditions as:

department.departmentID = 459
See also: — selectObjectsWithFetchSpecification:editingContext(EODatabaseChannel)



	The EOAccess Framework
	Framework: /System/Library/Frameworks/EOAccess.framework
	Introduction
	EOAccess Framework Class Hierarchy
	Figure 1 The EOAccess Framework class hierarchy

	The Database Level
	The Adaptor Level
	The Modeling Classes
	Faulting
	Additions to Other Frameworks
	Miscellaneous Classes
	Delegates
	Miscellaneous Protocols

	EOAccessArrayFaultHandler
	Class Description
	Instance Methods
	completeInitializationOfObject
	databaseContext
	editingContext
	initWithSourceGlobalID:relationshipName:databaseContext:editingContext:
	relationshipName
	sourceGlobalID


	EOAccessFaultHandler
	Class Description
	Instance Methods
	completeInitializationOfObject
	databaseContext
	editingContext
	globalID
	initWithglobalID:relationshipName:databaseContext:editingContext:


	EOAccessGenericFaultHandler
	Class Description
	Instance Methods
	generation
	linkAfter:usingGeneration:
	next
	previous


	EOAdaptor
	Class Description
	Method Types
	Class Methods
	adaptorWithModel:
	adaptorWithName:
	assignExternalInfoForAttribute:
	assignExternalInfoForEntireModel:
	assignExternalInfoForEntity:
	assignExternalTypeForAttribute:
	availableAdaptorNames
	externalTypesWithModel:
	internalTypeForExternalType:model:
	setExpressionClassName:adaptorClassName:

	Instance Methods
	assertConnectionDictionaryIsValid
	canServiceModel:
	connectionDictionary
	contexts
	createAdaptorContext
	createDatabaseWithAdministrativeConnectionDictionary:
	databaseEncoding
	defaultExpressionClass
	delegate
	dropDatabaseWithAdministrativeConnectionDictionary:
	expressionClass
	fetchedValueForDataValue:attribute:
	fetchedValueForDateValue:attribute:
	fetchedValueForNumberValue:attribute:
	fetchedValueForStringValue:attribute:
	fetchedValueForValue:attribute:
	hasOpenChannels
	initWithName:
	isValidQualifierTypeIn:model:
	name
	prototypeAttributes
	runLoginPanel
	runLoginPanelAndValidateConnectionDictionary
	setConnectionDictionary:
	setDelegate:
	sharedLoginPanelInstance
	Creating an EOAdaptor Subclass



	EOAdaptorChannel
	Class Description
	Notifying the Adaptor Channel’s Delegate

	Method Types
	Instance Methods
	adaptorContext
	addStoredProceduresNamed:toModel:
	attributesToFetch
	cancelFetch
	closeChannel
	delegate
	deleteRowDescribedByQualifier:entity:
	deleteRowsDescribedByQualifier:entity:
	describeModelWithTableNames:
	describeResults
	describeStoredProcedureNames
	describeTableNames
	dictionaryWithObjects:forAttributes:zone:
	evaluateExpression:
	executeStoredProcedure:withValues:
	fetchRowWithZone:
	initWithAdaptorContext:
	insertRow:forEntity:
	isDebugEnabled
	isFetchInProgress
	isOpen
	lockRowComparingAttributes:entity:qualifier:snapshot:
	openChannel
	performAdaptorOperation:
	performAdaptorOperations:
	primaryKeyForNewRowWithEntity:
	returnValuesForLastStoredProcedureInvocation
	selectAttributes:fetchSpecification:lock:entity:
	setAttributesToFetch:
	setDebugEnabled:
	setDelegate:
	updateValues:inRowDescribedByQualifier:entity:
	updateValues:inRowsDescribedByQualifier:entity:
	Creating an EOAdaptorChannel Subclass



	EOAdaptorContext
	Class Description
	Method Types
	Class Methods
	debugEnabledDefault
	setDebugEnabledDefault:

	Instance Methods
	adaptor
	beginTransaction
	canNestTransactions
	channels
	commitTransaction
	createAdaptorChannel
	delegate
	hasBusyChannels
	hasOpenChannels
	initWithAdaptor:
	isDebugEnabled
	rollbackTransaction
	setDebugEnabled:
	setDelegate:
	transactionDidBegin
	transactionDidCommit
	transactionDidRollback
	transactionNestingLevel

	Notifications
	EOAdaptorContextBeginTransactionNotification
	EOAdaptorContextCommitTransactionNotification
	EOAdaptorContextRollbackTransactionNotification


	EOAdaptorContext
	Controlling Transactions
	The Adaptor Context’s Delegate and Notifications
	Creating an EOAdaptorContext Subclass

	EOAdaptorOperation
	Class Description
	Method Types
	Instance Methods
	adaptorOperator
	attributes
	changedValues
	compareAdaptorOperation:
	entity
	exception
	qualifier
	initWithEntity:
	setAdaptorOperator:
	setAttributes:
	setChangedValues:
	setException:
	setQualifier:
	setStoredProcedure:
	storedProcedure


	EOAttribute
	Class Description
	Adopted Protocols
	Method Types
	Instance Methods
	adaptorValueByConvertingAttributeValue:
	adaptorValueConversionMethod
	adaptorValueConversionMethodName
	adaptorValueType
	allowsNull
	beautifyName
	columnName
	definition
	entity
	externalType
	factoryMethodArgumentType
	isDerived
	isFlattened
	isReadOnly
	name
	newDateForYear:month:day:hour:minute:second:millisecond:timezone:zone:
	newValueForBytes:length:
	newValueForBytes:length:encoding:
	overridesPrototypeDefinitionForKey:
	parameterDirection
	parent
	precision
	prototype
	prototypeName
	readFormat
	scale
	serverTimeZone
	setAdaptorValueConversionMethodName:
	setAllowsNull:
	setColumnName:
	setDefinition:
	setExternalType:
	setFactoryMethodArgumentType:
	setName:
	setParameterDirection:
	setPrecision:
	setPrototype:
	setReadFormat:
	setReadOnly:
	setScale:
	setServerTimeZone:
	setUserInfo:
	setValueClassName:
	setValueFactoryMethodName:
	setValueType:
	setWidth:
	setWriteFormat:
	storedProcedure
	userInfo
	validateName:
	validateValue:
	valueClassName
	valueFactoryMethod
	valueFactoryMethodName
	valueType
	width
	writeFormat

	Creating Attributes
	Creating a Simple Attribute
	Creating a Derived Attribute
	Creating a Flattened Attribute

	Mapping Attributes
	Mapping from Database to Objects
	Working with Custom Data Types
	Fetching Custom Values
	Converting Custom Values


	SQL Statement Formats

	EODatabase
	Class Description
	Method Types
	Instance Methods
	adaptor
	addModel:
	addModelIfCompatible:
	entityForObject:
	entityNamed:
	forgetAllSnapshots
	forgetSnapshotForGlobalID:
	forgetSnapshotsForGlobalIDs:
	initWithAdaptor:
	initWithModel:
	invalidateResultCache
	invalidateResultCacheForEntityNamed:
	models
	recordSnapshot:forGlobalID:
	recordSnapshot:forSourceGlobalID:relationshipName:
	recordSnapshots:
	recordToManySnapshots:
	registerContext:
	registeredContexts
	removeModel:
	resultCacheForEntityNamed:
	setResultCache:forEntityNamed:
	snapshotForGlobalID:
	snapshotForSourceGlobalID:relationshipName:
	snapshots
	unregisterContext:


	EODatabase
	Figure 2 The Access Layer
	Figure 3 The EODatabase Level as an Intermediary Between the Adaptor Level and the Control Layer
	Snapshots
	Result Cache

	EODatabaseChannel
	Class Description
	Method Types
	Instance Methods
	adaptorChannel
	cancelFetch
	databaseContext
	delegate
	fetchObject
	initWithDatabaseContext:
	isFetchInProgress
	isLocking
	isRefreshingObjects
	selectObjectsWithFetchSpecification:editingContext:
	setCurrentEditingContext:
	setCurrentEntity:
	setDelegate:
	setIsLocking:
	setIsRefreshingObjects:


	EODatabaseContext
	Class Description
	Method Types
	Class Methods
	contextClassToRegister
	forceConnectionWithModel:connectionDictionaryOverrides:editingContext:
	registeredDatabaseContextForModel:editingContext:
	setContextClassToRegister:

	Instance Methods
	adaptorContext
	arrayFaultWithSourceGlobalID:relationshipName:editingContext:
	availableChannel
	batchFetchRelationship:forSourceObjects:editingContext:
	commitChanges
	coordinator
	database
	delegate
	faultForGlobalID:editingContext:
	faultForRawRow:entityNamed:editingContext:
	forgetAllLocks
	forgetLocksForObjectsWithGlobalIDs:
	forgetSnapshotForGlobalID:
	forgetSnapshotsForGlobalIDs:
	handlesFetchSpecification:
	hasBusyChannels
	initializeObject:withGlobalID:editingContext:
	initWithDatabase:
	invalidateAllObjects
	invalidateObjectsWithGlobalIDs:
	isObjectLockedWithGlobalID:
	isObjectLockedWithGlobalID:editingContext:
	localSnapshotForGlobalID:
	localSnapshotForSourceGlobalID:relationshipName:
	lock
	lockObjectWithGlobalID:editingContext:
	objectsForSourceGlobalID:relationshipName:editingContext:
	objectsWithFetchSpecification:editingContext:
	ownsGlobalID:
	ownsObject:
	performChanges
	prepareForSaveWithCoordinator:editingContext:
	recordChangesInEditingContext
	recordSnapshot:forGlobalID:
	recordSnapshot:forSourceGlobalID:relationshipName:
	recordSnapshots:
	recordToManySnapshots:
	recordUpdateForObject:changes:
	refaultObject:withGlobalID:editingContext:
	registerChannel:
	registeredChannels
	registerLockedObjectWithGlobalID:
	rollbackChanges
	saveChangesInEditingContext:
	setDelegate:
	setUpdateStrategy:
	snapshotForGlobalID:
	snapshotForSourceGlobalID:relationshipName:
	unlock
	unregisterChannel:
	updateStrategy
	valuesForKeys:object:

	Notifications
	EODatabaseChannelNeededNotification


	EODatabaseContext
	Creating and Using an EODatabaseContext
	Fetching and Saving Objects
	Setting a Fetch Limit
	Using a Custom Query
	Faulting
	Batch Faulting
	Prefetching Relationships

	Delegate Methods
	Snapshots
	Updating And Locking Strategies

	EODatabaseDataSource
	Class Description
	Method Types
	Instance Methods
	auxiliaryQualifier
	databaseContext
	entity
	fetchSpecification
	fetchSpecificationForFetch
	fetchSpecificationName
	initWithEditingContext:entityName:
	initWithEditingContext:entityName:fetchSpecificationName:
	isFetchEnabled
	qualifierBindingKeys
	qualifierBindings
	setAuxiliaryQualifier:
	setFetchEnabled:
	setFetchSpecification:
	setFetchSpecificationByName:
	setQualifierBindings:


	EODatabaseOperation
	Class Description
	Method Types
	Instance Methods
	adaptorOperations
	addAdaptorOperation:
	databaseOperator
	dbSnapshot
	entity
	globalID
	initWithGlobalID:object:entity:
	newRow
	object
	primaryKeyDiffs
	recordToManySnapshot:relationshipName:
	removeAdaptorOperation:
	rowDiffs
	rowDiffsForAttributes:
	setDatabaseOperator:
	setDBSnapshot:
	setNewRow:
	toManySnapshots


	EOEntity
	Class Description
	Adopted Protocols
	Method Types
	Instance Methods
	addAttribute:
	addFetchSpecification:withName:
	addRelationship:
	addSubEntity:
	anyAttributeNamed:
	anyRelationshipNamed:
	attributeNamed:
	attributes
	attributesToFetch
	1. Attributes that are class properties, “used for locking,” or primary keys.
	2. Source attributes of any to-many relationship (flattened or non-flattened) that is a class pro...
	3. Source attributes of any non-flattened, to-one relationship that is a class property or that i...
	4. The foreign key attributes of any flattened, to-one relationship that is a class property or t...

	attributesUsedForLocking
	beautifyName
	cachesObjects
	classDescriptionForInstances
	className
	classProperties
	classPropertyNames
	externalModelsReferenced
	externalName
	externalQuery
	fetchSpecificationNamed:
	fetchSpecificationNames
	globalIDForRow:
	isAbstractEntity
	isPrimaryKeyValidInObject:
	isQualifierForPrimaryKey:
	isReadOnly
	isValidAttributeUsedForLocking:
	isValidClassProperty:
	isValidPrimaryKeyAttribute:
	maxNumberOfInstancesToBatchFetch
	model
	name
	parentEntity
	primaryKeyAttributeNames
	primaryKeyAttributes
	primaryKeyForGlobalID:
	primaryKeyForRow:
	primaryKeyRootName:
	qualifierForPrimaryKey:
	referencesProperty:
	relationshipNamed:
	relationships
	removeAttribute:
	removeFetchSpecificationNamed:
	removeRelationship:
	removeSubEntity:
	restrictingQualifier
	setAttributesUsedForLocking:
	setCachesObjects:
	setClassName:
	setClassProperties:
	setExternalName:
	setExternalQuery:
	setIsAbstractEntity:
	setMaxNumberOfInstancesToBatchFetch:
	setName:
	setPrimaryKeyAttributes:
	setReadOnly:
	setRestrictingQualifier:
	setStoredProcedure:forOperation:
	setUserInfo:
	storedProcedureForOperation:
	subEntities
	userInfo
	validateName:

	Creating an Entity

	EOEntityClassDescription
	Class Description
	Instance Methods
	entity
	initWithEntity:

	EOGenericRecord Additions
	Class Description
	Instance Methods
	entity



	EOJoin
	Class Description
	Method Types
	Instance Methods
	destinationAttribute
	initWithSourceAttribute:destinationAttribute:
	isReciprocalToJoin:
	sourceAttribute


	EOLoginPanel
	Class Description
	Instance Methods
	administrativeConnectionDictionaryForAdaptor:
	runPanelForAdaptor:validate:allowsCreation:


	EOModel
	Class Description
	Creating an EOModel Programmatically

	Method Types
	Instance Methods
	adaptorName
	addEntity:
	addStoredProcedure:
	availablePrototypeAttributeNames
	beautifyNames
	connectionDictionary
	encodeTableOfContentsIntoPropertyList:
	entities
	entityForObject:
	entityNamed:
	entityNames
	externalModelsReferenced
	initWithContentsOfFile:
	initWithTableOfContentsPropertyList:path:
	loadAllModelObjects
	modelGroup
	name
	path
	prototypeAttributeNamed:
	referencesToProperty:
	removeEntity:
	removeEntityAndReferences:
	removeStoredProcedure:
	setAdaptorName:
	setConnectionDictionary:
	setModelGroup:
	setName:
	setUserInfo:
	storedProcedureNamed:
	storedProcedureNames
	storedProcedures
	userInfo
	writeToFile:

	Notifications
	EOEntityLoadedNotification

	Loading a Model File

	EOModelGroup
	Class Description
	EOModelGroup Delegates

	Method Types
	Class Methods
	classDelegate
	defaultGroup
	globalModelGroup
	setClassDelegate:
	setDefaultGroup:

	Instance Methods
	addModel:
	addModelWithFile:
	delegate
	entityForObject:
	entityNamed:
	fetchSpecificationNamed:entityNamed:
	loadAllModelObjects
	modelNamed:
	modelNames
	models
	modelWithPath:
	removeModel:
	setDelegate:
	storedProcedureNamed:

	Notifications
	EOModelAddedNotification
	EOModelInvalidatedNotification

	Setting Up A Model Group Programmatically

	EOObjectStoreCoordinator Additions
	Class Description
	Instance Methods
	modelGroup
	setModelGroup:

	EOQualifier Additions
	Class Description
	Instance Methods
	qualifierMigratedFromEntity:relationshipPath:



	EORelationship
	Class Description
	Specifying the Join Semantic

	Adopted Protocols
	Method Types
	Instance Methods
	addJoin:
	anyInverseRelationship
	beautifyName
	componentRelationships
	definition
	deleteRule
	destinationAttributes
	destinationEntity
	entity
	inverseRelationship
	isCompound
	isFlattened
	isMandatory
	isToMany
	joinSemantic
	joins
	name
	numberOfToManyFaultsToBatchFetch
	ownsDestination
	propagatesPrimaryKey
	qualifierWithSourceRow:
	referencesProperty:
	removeJoin:
	setDefinition:
	setDeleteRule:
	setEntity:
	setIsMandatory:
	setJoinSemantic:
	setName:
	setNumberOfToManyFaultsToBatchFetch:
	setOwnsDestination:
	setPropagatesPrimaryKey:
	setToMany:
	setUserInfo:
	sourceAttributes
	userInfo
	validateName:
	validateValue:

	Creating Relationships
	Creating a Simple Relationship
	Creating a Flattened Relationship


	EOSQLExpression
	Class Description
	Method Types
	Class Methods
	createDatabaseStatementsForConnectionDictionary: administrativeConnectionDictionary:
	deleteStatementWithQualifier:entity:
	dropDatabaseStatementsForConnectionDictionary: administrativeConnectionDictionary:
	expressionForString:
	formatSQLString:format:
	formatStringValue:
	formatValue:forAttribute:
	insertStatementForRow:entity:
	schemaCreationStatementsForEntities:options:
	selectStatementForAttributes:lock:fetchSpecification:entity:
	setUseBindVariables:
	setUseQuotedExternalNames:
	sqlPatternFromShellPattern:
	sqlPatternFromShellPattern:withEscapeCharacter:
	updateStatementForRow:qualifier:entity:
	useBindVariables
	useQuotedExternalNames

	Instance Methods
	addBindVariableDictionary:
	addInsertListAttribute:value:
	addJoinClause
	addOrderByAttributeOrdering:
	addSelectListAttribute:
	addUpdateListAttribute:value:
	aliasesByRelationshipPath
	appendItem:toListString:
	assembleDeleteStatementWithQualifier:tableList:whereClause:
	assembleInsertStatementWithRow:tableList:columnList:valueList:
	assembleJoinClauseWithLeftName:rightName:joinSemantic:
	assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder: selectString:columnList:tableLis...
	assembleUpdateStatementWithRow:qualifier:tableList:updateList:whereClause:
	bindVariableDictionaries
	bindVariableDictionaryForAttribute:value:
	entity
	externalNameQuoteCharacter
	initWithEntity:
	joinClauseString
	joinExpression
	listString
	lockClause
	mustUseBindVariableForAttribute:
	orderByString
	prepareDeleteExpressionForQualifier:
	1. Sends an sqlStringForSQLExpression:self message to qualifier to generate the receiver’s whereC...
	2. Invokes tableListWithRootEntity: to get the table name for the FROM clause.
	3. Invokes assembleDeleteStatementWithQualifier:tableList:whereClause:.

	prepareInsertExpressionWithRow:
	1. Invokes addInsertListAttribute:value: for each entry in row to prepare the comma-separated lis...
	2. Invokes tableListWithRootEntity: to get the table name.
	3. Invokes assembleInsertStatementWithRow:tableList:columnList:valueList:.

	prepareSelectExpressionWithAttributes:lock:fetchSpecification:
	1. Invokes addSelectListAttribute: for each entry in attributes to prepare the comma-separated li...
	2. Sends an sqlStringForSQLExpression:self message to fetchSpecification’s qualifier to generate ...
	3. Invokes addOrderByAttributeOrdering: for each EOAttributeOrdering object in fetchSpecification...
	4. Invokes joinExpression to generate the receiver’s joinClauseString.
	5. Invokes tableListWithRootEntity: to get the comma-separated list of tables for the FROM clause.
	6. If flag is YES, invokes lockClause to get the SQL string to lock selected rows.
	7. Invokes assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder: selectString:columnLi...

	prepareUpdateExpressionWithRow:qualifier:
	1. Invokes addUpdateListAttribute:value: for each entry in row to prepare the comma-separated lis...
	2. Sends an sqlStringForSQLExpression:self message to qualifier to generate the receiver’s whereC...
	3. Invokes tableListWithRootEntity: to get the table name for the FROM clause.
	4. Invokes assembleUpdateStatementWithRow:qualifier:tableList:updateList:whereClause:.

	setStatement:
	setUseAliases:
	shouldUseBindVariableForAttribute:
	sqlStringForAttribute:
	sqlStringForAttributeNamed:
	sqlStringForAttributePath:
	sqlStringForConjoinedQualifiers:
	sqlStringForDisjoinedQualifiers:
	sqlStringForKeyComparisonQualifier:
	sqlStringForKeyValueQualifier:
	sqlStringForNegatedQualifier:
	sqlStringForSchemaObjectName:
	sqlStringForSelector:value:
	sqlStringForValue:attributeNamed:
	statement
	tableListWithRootEntity:
	useAliases
	valueList
	whereClauseString


	EOSQLExpression
	Building Expressions
	Using Table Aliases
	Bind Variables

	EOSQLQualifier
	Class Description
	Adopted Protocols
	Class Methods
	qualifierWithQualifierFormat:

	Instance Methods
	initWithEntity:qualifierFormat:


	EOStoredProcedure
	Class Description
	Method Types
	Instance Methods
	arguments
	beautifyName
	externalName
	initWithName:
	model
	name
	setArguments:
	setExternalName:
	setName:
	setUserInfo:
	userInfo


	NSString Additions
	Class Description
	Class Methods
	externalNameForInternalName:separatorString:useAllCaps:
	nameForExternalName:separatorString:initialCaps:


	EOAdaptorChannelDelegate
	Protocol Description
	Instance Methods
	adaptorChannelDidChangeResultSet:
	adaptorChannel:didEvaluateExpression:
	adaptorChannel:didExecuteStoredProcedure:withValues:
	adaptorChannel:didFetchRow:
	adaptorChannelDidFinishFetching:
	adaptorChannel:didPerformOperations:exception:
	adaptorChannel:didSelectAttributes:fetchSpecification:lock:entity:
	adaptorChannelShouldConstructStoredProcedureReturnValues:
	adaptorChannel:shouldEvaluateExpression:
	adaptorChannel:shouldExecuteStoredProcedure:withValues:
	adaptorChannel:shouldReturnValuesForStoredProcedure:
	adaptorChannel:shouldSelectAttributes:fetchSpecification:lock:entity:
	adaptorChannelWillFetchRow:
	adaptorChannel:willPerformOperations:


	EOAdaptorContextDelegate
	Protocol Description
	Instance Methods
	adaptorContextDidBegin:
	adaptorContextDidCommit:
	adaptorContextDidRollback:
	adaptorContextShouldBegin:
	adaptorContextShouldCommit:
	adaptorContextShouldConnect:
	adaptorContextShouldRollback:


	EOAdaptorDelegate
	Protocol Description
	Instance Methods
	adaptor:fetchedValueForValue:attribute:

	EOCustomClassArchiving
	(informal protocol)
	Category Description
	Class Methods
	objectWithArchiveData:

	Instance Methods
	archiveData



	EODatabaseContextDelegation
	Protocol Description
	Instance Methods
	databaseContext:didFetchObjects:fetchSpecification:editingContext:
	databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:
	databaseContext:failedToFetchObject:globalID:
	databaseContext:newPrimaryKeyForObject:entity:
	databaseContext:shouldFetchArrayFault:
	databaseContext:shouldFetchObjectFault:
	databaseContext:shouldFetchObjectsWithFetchSpecification:editingContext:
	databaseContext:shouldInvalidateObjectWithGlobalID:snapshot:
	databaseContext:shouldLockObjectWithGlobalID:snapshot:
	databaseContext:shouldRaiseExceptionForLockFailure:
	databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:
	databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globalID: databaseChannel:
	databaseContext:shouldUsePessimisticLockWithFetchSpecification: databaseChannel:
	databaseContext:willOrderAdaptorOperationsFromDatabaseOperations:
	databaseContext:willPerformAdaptorOperations:adaptorChannel:
	databaseContext:willRunLoginPanelToOpenDatabaseChannel:


	EOEditingContext Additions
	(informal protocol)
	Class Description
	Method Types
	Instance Methods
	connectWithModelNamed:connectionDictionaryOverrides:
	databaseContextForModelNamed:
	destinationKeyForSourceObject:relationshipNamed:
	entityForClass:
	entityForObject:
	entityNamed:
	executeStoredProcedureNamed:arguments:
	localInstanceOfObject:
	localInstancesOfObjects:
	modelGroup
	objectForEntityNamed:qualifierFormat:
	objectFromRawRow:entityNamed:
	objectMatchingValue:forKey:entityNamed:
	objectMatchingValues:entityNamed:
	objectsForEntityNamed:
	objectsForEntityNamed:qualifierFormat:
	objectsMatchingValue:forKey:entityNamed:
	objectsMatchingValues:entityNamed:
	objectsOfClass:
	objectsWithFetchSpecificationNamed:entityNamed:bindings:
	objectWithFetchSpecificationNamed:entityNamed:bindings:
	objectWithPrimaryKey:entityNamed:
	objectWithPrimaryKeyValue:entityNamed:
	primaryKeyForObject:
	rawRowsForEntityNamed:qualifierFormat:
	rawRowsMatchingValue:forKey:entityNamed:
	rawRowsMatchingValues:entityNamed:
	rawRowsWithSQL:modelNamed:
	rawRowsWithStoredProcedureNamed:arguments:

	EOModelGroupClassDelegation
	Protocol Description
	Instance Methods
	defaultModelGroup


	EOModelGroupDelegation
	Protocol Description
	Instance Methods
	entity:classForObjectWithGlobalID:
	entity:failedToLookupClassNamed:
	entity:relationshipForRow:relationship:
	modelGroup:entityNamed:
	relationship:failedToLookupDestinationNamed:
	subEntityForEntity:primaryKey:isFinal:



	EOPropertyListEncoding
	Interface Description
	Methods
	awakeWithPropertyList
	encodeIntoPropertyList:
	initWithPropertyList:owner:

	EOQualifierSQLGeneration
	Protocol Description
	Instance Methods
	sqlStringForSQLExpression:
	schemaBasedQualifierWithRootEntity:




