

T
he EOAccess Framework
e
Framework: /System/Library/Frameworks/EOAccess.framework

Header File Directories: /System/Library/Frameworks/EOAccess.framework/Headers

Introduction

The EOAccess framework is one of a group of frameworks known collectively as the Enterprise Objects
Framework. The classes and protocols that make up the EOAccess framework allow your applications to
interact with database servers at a high level of abstraction. These classes make up what is known as th
access layer. The access layer is divided into two main parts:

• The database level, which allows applications to treat records as full-fledged enterprise objects.

• The adaptor level, which provides server-independent database access.

Working with the access layer allows you to have a finer level of control over database operations.

EOAccess Framework Class Hierarchy

The EOAccess class hierarchy is rooted in the Foundation Framework’s NSObject class (see Figure 1). The
remainder of the EOAccess Framework consists of several related groups of classes, a few miscellaneous
classes, and a number of protocols.

Figure 1 The EOAccess Framework class hierarchy

The Database Level

The database level is where enterprise objects are created from the dictionaries retreived by the adaptor
level. It’s also where snapshotting is performed. The database level is primarily made up of the following
classes:

• EODatabase is a class that represents a single database server.

• EODatabaseChannel is a class that represents an independent communication channel to the database
server.
2

 Classes:

.

l

k

on

• EODatabaseContext is subclass of EOObjectStore for accessing relational databases, creating and
saving objects based on EOEntity definitions in an EOModel.

• EODatabaseOperation is a class that represents an operation—insert, update, or delete—to perform on
an enterprise object and all the necessary information required to perform the operation.

The Adaptor Level

The adaptor level deals with database rows packaged as dictionaries. The adaptor level is primarily made
up of the following classes:

• EOAdaptor is an abstract class that provides concrete subclasses with a structure for connecting to a
database.

• EOAdaptorChannel is an abstract class that provides its concrete subclasses with a structure for
performing database operations.

• EOAdaptorContext is an abstract class that defines transaction handling in Enterprise Objects
Framework applications.

• EOAdaptorOperation is a class that represents a primitive operation in a database server and all the
necessary information required by the operation.

The Modeling Classes

A model defines, in entity-relationship terms, the mapping between enterprise object classes and a database
The following are the principal modeling classes in the EOAccess framework:

• EOAttribute is a class that represents a column, field or property in a database, and associates an interna
name with an external name or expression by which the property is known to the database.

• EOEntity is a class that describes a table in a database and associates a name internal to the Framewor
with an external name by which the table is known to the database.

• EOJoin is a class that describes one source-destination attribute pair for an EORelationship.

• EOModel is a class that represents a mapping between a database schema and a set of classes based
the entity-relationship model.

• EOModelGroup is a class that represents an aggregation of related models.

• EORelationship is a class that describes an association between two entities, based on attributes of those
two entities.

Faulting

These classes implement or are used to implement object faulting:
3

a
EOAccessArrayFaultHandler is a subclass of EOAccessGenericFaultHandler that implements a fault for
an array of enterprise objects.

EOAccessFaultHandler is a subclass of EOAccessGenericFaultHandler that implements an object fault
for enterprise objects.

EOAccessGenericFaultHandler is an abstract class that helps an EOAccessFault to fire by fetching data
using an EODatabaseContext.

Additions to Other Frameworks

The EOAccess framework adds methods to a number of classes in different frameworks:

EOGenericRecord Additions adds one method to the control layer’s class, for returning a generic record’s
associated EOEntity.

EOObjectStoreCoordinator Additions adds two methods to the EOControl class for accessing the
coordinator’s EOModelGroup.

EOQualifier Additions adds one method to the class, for “rerooting” a qualifier to another entity.

NSString Additions adds two methods to the class, to convert modeling object names to database schema
names, and database schema names to modeling object names

Miscellaneous Classes

The EOAccess framework also has a number of other useful classes, including:

• EODatabaseDataSource is a concrete subclass of EODataSource that fetches objects based on an
EOModel, using an EODatabaseContext that services the data source’s EOEditingContext.

• EOEntityClassDescription is a subclass of the control layer’s EOClassDescription and extends the
behavior of enterprise objects by deriving information about them from an associated EOModel.

• EOLoginPanel is an abstract class that defines how users provide database login information.

• EOSQLExpression is an abstract superclass that defines how to build SQL statements for adaptor
channels.

• EOSQLQualifier is a subclass of EOQualifier that contains unstructured text that can be transformed
into an SQL expression.

• EOStoredProcedure is a class that represents a stored procedure defined in a database, and associates
name internal to EOF with an external name known to the database.
4

 Classes:

Delegates

A number of EOAccess classes delegate behavior. The delegate methods are defined in these Objective-C
protocols:

• An EOAdaptorChannel delegate receives messages for nearly every operation that would affect data in
the database server, and it can preempt, modify, or track these operations.

• A EOAdaptorContext delegate receives messages for any transaction begin, commit, or rollback, and it
can preempt, modify, or track these operations.

• An EOAdaptor delegate implements a method that can perform a database-specific transformations on
a value.

• An EODatabaseContext delegate can intervene when objects are created and when they’re fetched from
the database.

• An EOModelGroupClass delegate implements a method that returns the default model group.

• An EOModelGroup delegate influences how the model group finds and loads models.

Miscellaneous Protocols

• EOCustomClassArchiving is an informal protocol that defines methods that can write any object that
conforms to NSCoding to the database as binary data, as generated by NSArchiver.

• EOEditingContext Additions is a collection of convenience methods intended to make common
operations with EOF easier.

• EOPropertyListEncoding declares methods that read and write objects to property lists.

• EOQualifierSQLGeneration declares two methods that are adopted by qualifier classes to qualify
fetches from a database.
5

6

 Classes: EOAccessArrayFaultHandler

EOAccessArrayFaultHandler

Inherits From: EOAccessGenericFaultHandler :EOFaultHandler (EOControl) : NSObject

Declared In: EOAccess/EOAccessFault.h

Class Description

EOAccessArrayFaultHandler is a subclass of EOAccessGenericFaultHandler that implements a fault for an
array of enterprise objects.

Instance Methods

completeInitializationOfObject
– (void)completeInitializationOfObject:(id)object;

Asks the receiver’s database context to fetch the object if it is not already in memory. This method is called
when the fault is fired and uses the EOObjectStore protocol to get the information from the reciever’s
editing context

databaseContext
– (EODatabaseContext *)databaseContext

Returns the receiver’s database context.

editingContext
– (EOEditingContext *)editingContext

Returns the receiver’s editing context.
7

initWithSourceGlobalID:relationshipName:databaseContext:editingContext:
– initWithSourceGlobalID: (EOKeyGlobalID *)sourceGID

relationshipName:(NSString *)relationshipName
databaseContext:(EODatabaseContext *)databaseContext
editingContext:(EOEditingContext *)editingContext

Initializes the handler with all of the information necessary to fetch the appropriate objects when the fault
is fired. When the fault is fired, the database context asks the editing context for the required objects using
the EOObjectStore protocol.

relationshipName
– (NSString *)relationshipName

Returns the receiver’s relationship name.

sourceGlobalID
– (EOKeyGlobalID *)sourceGlobalID

Returns the receiver’s source global ID.
8

 Classes: EOAccessFaultHandler

EOAccessFaultHandler

Inherits From: EOAccessGenericFaultHandler :EOFaultHandler (EOControl) : NSObject

Declared In: EOAccess/EOAccessFault.h

Class Description

EOAccessFaultHandler is a subclass of EOAccessGenericFaultHandler that implements an object fault for
enterprise objects.

Instance Methods

completeInitializationOfObject
– (void)completeInitializationOfObject: (id)anObject;

Asks the receiver’s database context to fetch anObject if it is not already in memory. This method is called
called when the fault is fired and uses the EOObjectStore protocol to get the information from the receiver’s
editing context.

databaseContext
– (EODatabaseContext *)databaseContext

Returns the receiver’s database context.

editingContext
– (EOEditingContext *)editingContext

Returns the receiver’s editing context.

globalID
– (EOKeyGlobalID *)globalID

Returns the receiver’s global ID.
9

initWithglobalID:relationshipName:databaseContext:editingContext:
– initWithGlobalID: (EOKeyGlobalID *)globalID

databaseContext:(EODatabaseContext *)databaseContext
editingContext:(EOEditingContext *)editingContext

Initializes the handler with all of the information necessary to fetch the object when the fault is fired. When
the fault is fired, this object calls completeInitializationOfObject on the object.
10

 Classes: EOAccessGenericFaultHandler

EOAccessGenericFaultHandler

Inherits From: EOFaultHandler (EOControl) : NSObject

Declared In: EOAccess/EOAccessFault.h

Class Description

EOAccessGenericFaultHandler is an abstract class that helps an EOAccessFault to fire by fetching data
using an EODatabaseContext. Don’t use EOAcceessGenericFaultHandler directly; instead, use its
subclasses EOAccessFaultHandler and EOAccessArrayFaultHandler.

EOAccessGenericFaultHandler lets you chain together all the fault handlers in the access layer, so the batch
faulting mechanism can find other faults related to the one that triggered the batch. Use linkAfter:
usingGeneration: to link one fault after another. Use next and previous to traverse the chain.

Instance Methods

generation
- (unsigned int)generation

Returns the the receiver’s generation, a number that represents when the fault handler was built.

linkAfter:usingGeneration:
- (void)linkAfter: (EOAccessGenericFaultHandler *)faultHandler

usingGeneration:(unsigned int)generation

Adds the receiver to a chain of fault handlers, after faultHandler. generation is a number that represents
when the handler was built. All faults in an access layer can be chained together, so the batch faulting
mechanism can find other faults related to the one that triggered the batch.

See also: – next, – previous

next
- (EOAccessGenericFaultHandler *)next

Returns the next fault in the chain.
11

previous
public EOAccessGenericFaultHandler previous()
- (EOAccessGenericFaultHandler *)previous

Returns the previous fault in the chain.
12

 Classes: EOAdaptor

e

.

EOAdaptor

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOAdaptor.h

Class Description

EOAdaptor is an abstract class that provides concrete subclasses with a structure for connecting to a
database. A concrete subclass of EOAdaptor provides database-specific method implementations and
represents a single database server. You never interact with instances of the EOAdaptor class, but you us
its class methods, adaptorWithName: and adaptorWithModel: , to create instances of a concrete
subclass. The EOAdaptor class defines the methods that find and load the concrete adaptors from bundles
However, you rarely interact with a concrete adaptor either. Generally, adaptors are automatically created
and used by other classes in the Enterprise Objects Framework.

The EOAdaptor class has the following principal attributes:

• Dictionary of connection information
• Login panel
• Array of adaptor contexts
• Expression class

Other framework classes create EOAdaptor objects. adaptorWithModel: creates a new adaptor with the
adaptor name in the specified model. adaptorWithName: creates a new adaptor with the specified name.

The following table lists the most commonly-used methods in the EOAdaptor class:

assertConnectionDictionaryIsValid Verifies that the adaptor can connect with its connection information.

setConnectionDictionary: Sets the connection dictionary.

– assertConnectionDictionaryIsValid Verifies that the adaptor can connect with its connection information.

– runLoginPanel Runs the login panel without affecting the connection dictionary.

– runLoginPanelAndValidateConnectionDictionary
Runs the login panel until the user enters valid connection
information or cancels the panel.

– setConnectionDictionary: Sets the connection dictionary.
13

For information on subclassing an EOAdaptor, see “Creating an EOAdaptor Subclass”.

Method Types

Creating an EOAdaptor
+ adaptorWithName:
+ adaptorWithModel:
– initWithName:

Accessing an adaptor’s name
– name

Accessing the names of all available adaptors
+ availableAdaptorNames

Accessing connection information
– assertConnectionDictionaryIsValid
– connectionDictionary
– setConnectionDictionary:
– runLoginPanelAndValidateConnectionDictionary
– runLoginPanel
– databaseEncoding

Performing database-specific transformations on values
– fetchedValueForValue:attribute:
– fetchedValueForDataValue:attribute:
– fetchedValueForDateValue:attribute:
– fetchedValueForNumberValue:attribute:
– fetchedValueForStringValue:attribute:

Servicing models
– canServiceModel:
+ internalTypeForExternalType:model:
+ externalTypesWithModel:
+ assignExternalInfoForEntireModel:
+ assignExternalInfoForEntity:
+ assignExternalInfoForAttribute:
– isValidQualifierTypeIn:model:

Creating adaptor contexts
– createAdaptorContext
– contexts

Checking connection status
– hasOpenChannels
14

 Classes: EOAdaptor

Accessing a default expression class
+ setExpressionClassName:adaptorClassName:
– expressionClass
– defaultExpressionClass

Accessing an adaptor’s login panel
+ sharedLoginPanelInstance
– runLoginPanelAndValidateConnectionDictionary
– runLoginPanel

Accessing the delegate
– delegate
– setDelegate:

Other
– createDatabaseWithAdministrativeConnectionDictionary:
– dropDatabaseWithAdministrativeConnectionDictionary:
– prototypeAttributes

Class Methods

adaptorWithModel:
+(id)adaptorWithModel: (EOModel *)model

Creates and returns a new adaptor by extracting the adaptor name from model, invoking
adaptorWithName:, and assigning model’s connection dictionary to the new adaptor. Raises an
NSInvalidArgumentException if model is nil, if model’s adaptor name is nil , or if the adaptor named in
model can’t be loaded.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: – adaptorName (EOModel), – setConnectionDictionary:

adaptorWithName:
+ (id)adaptorWithName:(NSString *)name

Creates and returns a new adaptor, loading it from the framework named name if necessary and sending it
an initWithName: message. For example, this code excerpt creates an adaptor from a framework named
AcmeEOAdaptor.framework:

EOAdaptor *myAdaptor = [EOAdaptor adaptorWithName:@"Acme"];
15

This method searches the application’s main bundle, ~/Library/Frameworks ,
Network/Library/Frameworks , and System/Library/Frameworks for the first framework whose base
filename (that is, the filename without the “.framework” extension) corresponds to name. However, note
that dynamic loading isn’t available on PDO platforms. Consequently, you must statically link your adaptor
into applications for PDO: In this case, adaptorWithName: simply looks in the runtime for an adaptor
class corresponding with the specified name. Raises an NSInvalidArgumentException if name is nil or if an
adaptor class corresponding with name can’t be found.

Usually you’d use adaptorWithModel: to create a new adaptor, but you can use this method when you
don’t have a model. In fact, this method is typically used when you’re creating an adaptor for the purpose
of creating a model from an existing database.

assignExternalInfoForAttribute:
+ (void)assignExternalInfoForAttribute: (EOAttribute *)attribute

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

Overridden by adaptor subclasses to assign database-specific characteristics to attribute. EOAdaptor’s
implementation invokes assignExternalTypeForAttribute: to assign an external type and then assigns a
column name based on the attribute name. For example, assignExternalInfoForAttribute: assigns the
column name “FIRST_NAME” to an attribute named “firstName”. The method makes no changes to
attribute’s column name if attribute is derived.

assignExternalInfoForEntireModel:
+ (void)assignExternalInfoForEntireModel: (EOModel *)model

Assigns database-specific characteristics to model. Used in EOModeler to switch a model’s adaptor. This
method examines each entity in model. If an entity’s external name is not set and all of the entity’s attribute’s
external names are not set, then this method uses assignExternalInfoForEntity: and
assignExternalInfoForAttribute: to assign external names. If the entity’s external name is set or if any of
the entity’s attributes’ external names are set, then the method doesn’t assign external names to the entity
or any of its attributes. Regardless, this method invokes assignExternalTypeForAttribute: for each
attribute in the model to assign external types.

A subclass of EOAdaptor doesn’t need to override this method.
16

 Classes: EOAdaptor

.

le

assignExternalInfoForEntity:
+ (void)assignExternalInfoForEntity: (EOEntity *)entity

Overridden by adaptor subclasses to assign database-specific characteristics to entity. EOAdaptor’s
implementation assigns an external name to entity based on entity’s name. For example,
assignExternalInfoForEntity: assigns the external name “MOVIE” to an entity named “Movie”. An
adaptor subclass should override this method to assign additional database-specific characteristics, if any

See also: + assignExternalInfoForEntireModel:

assignExternalTypeForAttribute:
+ (void)assignExternalTypeForAttribute: (EOAttribute *)attribute

Overridden by adaptor subclasses to assign the external type to attribute. EOAdaptor’s implementation does
nothing. A subclass of EOAdaptor should override this method to assign an external type using attribute’s
internal type, precision, and length information.

See also: + assignExternalInfoForEntireModel:

availableAdaptorNames
+ (NSArray *)availableAdaptorNames

Returns an array containing the names of all available adaptors, as found by searching the paths returned
by NSStandardLibraryPaths(). If no adaptors are found, this method returns an empty array.

See also: + assignExternalInfoForEntireModel:

externalTypesWithModel:
+ (NSArray *)externalTypesWithModel:(EOModel *)model

Implemented by subclasses to return the names of the database types (such as Sybase “varchar” or Orac
“NUMBER”) for use with the adaptor. model is an optional argument that can be used to supplement the
adaptor’s set of database types with additional, user-defined database types. See your adaptor’s
documentation for information on if and how it uses model.

internalTypeForExternalType:model:
+ (NSString *)internalTypeForExternalType: (NSString *)extType model:(EOModel *)model

Implemented by subclasses to return the name of the Objective-C class used to represent values stored in
the database as extType. model is an optional argument that can be used to supplement the adaptor’s set of
17

n
type mappings with additional mappings for user-defined database types. See your adaptor’s documentation
for information on if and how it uses model. Returns nil if no mapping for extType is found.

An adaptor subclass should override this method without invoking EOAdaptor’s implementation.

setExpressionClassName:adaptorClassName:
+ (void)setExpressionClassName:(NSString *)sqlExpressionClassName adaptorClassName:

(NSString *)adaptorClassName

Sets the expression class for instances of the class named adaptorClassName to sqlExpressionClassName.
If sqlExpressionClassName is nil , restores the expression class to the default. Raises an
NSInvalidArgumentException if adaptorClassName is nil or the empty string.

Use this method to substitute a subclass of EOSQLExpression for the expression class provided by the
adaptor. For example, the default expression class for the Oracle adaptor is OracleSQLExpression. The
following statement substitutes the class named MySQLExpression:

[EOAdaptor setExpressionClassName:@"MySQLExpression" adaptorClassName:

@"OracleAdaptor"];

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: – defaultExpressionClass

Instance Methods

assertConnectionDictionaryIsValid
– (void)assertConnectionDictionaryIsValid

Implemented by subclasses to verify that the adaptor can connect to the database server with its connectio
dictionary. Briefly forms a connection to the server to validate the connection dictionary and then closes the
connection. Raises an EOGeneralAdaptorException if the connection dictionary contains invalid
information.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: – setConnectionDictionary:, – runLoginPanel,
– runLoginPanelAndValidateConnectionDictionary
18

 Classes: EOAdaptor

er.
canServiceModel:
– (BOOL)canServiceModel:(EOModel *)model

Returns YES if the receiver can service model, NO otherwise. EOAdaptor’s implementation returns YES if
the receiver’s connection dictionary is equal to model’s connection dictionary as determined by
NSDictionary’s isEqual: method.

A subclass of EOAdaptor doesn’t need to override this method.

connectionDictionary
– (NSDictionary *)connectionDictionary

Returns the receiver’s connection dictionary, or nil if the adaptor doesn’t have one. The connection
dictionary contains the values, such as user name and password, needed to connect to the database serv
The dictionary’s keys identify the information the server expects, and its values are the values that the
adaptor will try when connecting. Each adaptor uses different keys; see your adaptor’s documentation for
keys it uses.

A subclass of EOAdaptor doesn’t need to override this method.

See also: setConnectionDictionary:

contexts
– (NSArray *)contexts

Returns the adaptor contexts created by the receiver, or nil if no adaptor contexts have been created. A
subclass of EOAdaptor doesn’t need to override this method.

See also: – createAdaptorContext

createAdaptorContext
– (EOAdaptorContext *)createAdaptorContext

Implemented by subclasses to create and return a new EOAdaptorContext, or nil if a new context can’t be
created.The new context retains the receiver. A newly created EOAdaptor has no contexts.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: – contexts, – initWithAdaptor: (EOAdaptorContext)
19

 is

r
e

ss
createDatabaseWithAdministrativeConnectionDictionary:
– (void)createDatabaseWithAdministrativeConnectionDictionary:

(NSDictionary *)connectionDictionary

Uses the administrative login information to create the database (or user for Oracle) defined by the
connectionDictionary.

See also: – dropDatabaseWithAdministrativeConnectionDictionary:, EOLoginPanel class

databaseEncoding
– (NSStringEncoding)databaseEncoding

Returns the string encoding used to encode and decode database strings. An adaptor’s database encoding
stored in the connection dictionary with the key “databaseEncoding”. If the connection dictionary doesn’t
have an entry for the database encoding, the default C string encoding is used. This method raises an
NSInvalidArgumentException if the receiver’s database encoding isn’t valid.

A database system stores strings in a particular character set. The Framework needs to know what characte
set the database system uses so it can encode and decode strings coming from and going to the databas
server. The string encoding returned from this method specifies the character set the Framework uses.

A subclass of EOAdaptor doesn’t need to override this method.

See also: – availableStringEncodings (NSString), – defaultCStringEncoding (NSString)

defaultExpressionClass
– (Class)defaultExpressionClass

Implemented by subclasses to return the subclass of EOSQLExpression used as the default expression cla
for the adaptor. You wouldn’t ordinarily invoke this method directly. It’s invoked automatically to determine
which class should be used to represent query language expressions.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: + setExpressionClassName:adaptorClassName:

delegate
– (id)delegate

Returns the receiver’s delegate or nil if a delegate has not been assigned. A subclass of EOAdaptor doesn’t
need to override this method.

See also: – setDelegate:
20

 Classes: EOAdaptor

dropDatabaseWithAdministrativeConnectionDictionary:
– (void)dropDatabaseWithAdministrativeConnectionDictionary:

(NSDictionary *)connectionDictionary

Uses the administrative login information to drop the database (or user for Oracle) defined by the
connectionDictionary.

See also: – createDatabaseWithAdministrativeConnectionDictionary:, EOLoginPanel class

expressionClass
– (Class)expressionClass

Returns the subclass of EOSQLExpression used by the receiver for query language expressions. Returns
the expression class assigned using the class method + setExpressionClassName:adaptorClassName:. If
no class has been set for the receiver’s class, this method determines the expression class by sending
defaultExpressionClass to self.

You wouldn’t ordinarily invoke this method directly. It’s invoked automatically to determine which class
should be used to represent query language expressions.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

fetchedValueForDataValue:attribute:
– (NSData *)fetchedValueForDataValue:(NSData *)value attribute: (EOAttribute *)attribute

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. This method is invoked from
fetchedValueForValue:attribute: when the value argument is an NSData.

EOAdaptor’s implementation returns value unchanged. An adaptor subclass should override this method if
the adaptor’s database performs transformations on binary types, such as BLOBs.

fetchedValueForDateValue:attribute:
– (NSCalendarDate *)fetchedValueForDateValue:(NSCalendarDate *)value

attribute: (EOAttribute *)attribute

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. This method is invoked from
fetchedValueForValue:attribute: when the value argument is a date.
21

.

ce

EOAdaptor’s implementation returns value unchanged. An adaptor subclass should override this method to
convert or format date values. For example, a concrete adaptor subclass could set value’s millisecond value
to 0.

fetchedValueForNumberValue:attribute:
– (NSNumber *)fetchedValueForNumberValue:(NSNumber *)value

attribute: (EOAttribute *)attribute

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. This method is invoked from
fetchedValueForValue:attribute: when the value argument is a number.

EOAdaptor’s implementation returns value unchanged. An adaptor subclass should override this method to
convert or format numeric values. For example, a concrete adaptor subclass should probably round value
according to the precision and scale attribute.

fetchedValueForStringValue:attribute:
– (NSString*)fetchedValueForStringValue:(NSString *)value attribute: (EOAttribute *)attribute

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. This method is invoked from
fetchedValueForValue:attribute: when the value argument is a string.

EOAdaptor’s implementation trims trailing spaces and returns nullnil for zero-length strings. An adaptor
subclass should override this method to perform any additional conversion or formatting on string values.
For example, a concrete adaptor subclass could trim trailing spaces.

fetchedValueForValue:attribute:
– (id)fetchedValueForValue:(id)value attribute: (EOAttribute *)attribute

Returns the value that the receiver’s database server would ultimately store for value if it was inserted or
updated in the column described by attribute. The Framework uses this method to keep enterprise object
snapshots in sync with database values. For example, assume that a product’s price is marked down 15%
If the product’s original price is 5.25, the sale price is 5.25*.85, or 4.4625. When the Framework updates
the product’s price, the database server truncates the price to 4.46 (assuming the scale of the database’s pri
column is 2). Before performing the update, the Framework sends the adaptor a fetchedValueForValue:
attribute: message with the value 4.4625. The adaptor performs the database-specific transformation and
returns 4.46. The Framework assigns the truncated value to the product object and to the product object’s
snapshot and then proceeds with the update.
22

 Classes: EOAdaptor

An adaptor subclass can override this method or one of the data type-specific fetchedValue... methods.
EOAdaptor’s implementation of fetchedValueForValue:attribute: invokes one of the data type-specific
methods depending on value’s class. If value is not a string, number, date, or data object (that is, an instance
of NSString, NSNumber, NSDate, NSData, or any of their subclasses), fetchedValueForValue:attribute:
returns value unchanged.

This method invokes the delegate method adaptor:fetchedValueForValue:attribute: which can override
the adaptor’s default behavior.

See also: – fetchedValueForDataValue:attribute:, – fetchedValueForDateValue:attribute:,
– fetchedValueForNumberValue:attribute:, – fetchedValueForStringValue:attribute: ,
– valueFactoryMethod (EOAttribute)

hasOpenChannels
– (BOOL)hasOpenChannels

Returns YES if any of the receiver’s contexts have open channels, NO otherwise. A subclass of EOAdaptor
doesn’t need to override this method.

See also: – hasOpenChannels (EOAdaptorContext)

initWithName:
– (id)initWithName: (NSString *)name

The designated initializer for the EOAdaptor class, this method is overridden by adaptor subclasses to
initialize a newly allocated EOAdaptor subclass with name. name is usually derived from the base filename
(that is, the filename without the “.framework” extension) of the framework from which the adaptor is
loaded. For example, an adaptor named “Acme” is loaded from the framework
AcmeEOAdaptor.framework. Returns self.

Never invoke this method directly. It is invoked automatically from adaptorWithName: and
adaptorWithModel: —EOAdaptor class methods you use to create a new adaptor.

A subclass of EOAdaptor doesn’t need to override this method, but may override it to perform additional
initialization. A subclass that does override this method must incorporate the superclass’s version through
a message to super.

isValidQualifierTypeIn:model:
– (BOOL)isValidQualifierType: (NSString *)typeName model:(EOModel *)model

Implemented by subclasses to return YES if an attribute of type typeName can be used in a qualifier (a SQL
WHERE clause) sent to the database server, or NO otherwise. typeName is the name of a type as required
23

t

by the database server, such as Sybase “varchar” or Oracle “NUMBER”. model is an optional argument that
can be used to supplement the adaptor’s set of type mappings with additional mappings for user-defined
database types. See your adaptor’s documentation for information on if and how it uses model.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

name
– (NSString *)name

Returns the adaptor’s name; this is usually the base filename of the framework from which the adaptor was
loaded. For example, if an adaptor was loaded from a framework named AcmeEOAdaptor.framework, this
method returns “Acme”.

A subclass of EOAdaptor doesn’t need to override this method.

See also: + adaptorWithName:, – initWithName:

prototypeAttributes
– (NSArray *)prototypeAttributes

Returns an array of prototype attributes specific to the adaptor class. Adaptor implementers should note tha
this method looks for an EOModel named EOadaptorNamePrototypes in the resources directory of the
adaptor.

runLoginPanel
– (NSDictionary *)runLoginPanel

Runs the adaptor’s login panel by sending a runPanelForAdaptor:validate: message to the adaptor’s
login panel object with the validate flag NO. Returns connection information entered in the panel without
affecting the adaptor’s connection dictionary. The connection dictionary returned isn’t validated by this
method.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: – runLoginPanelAndValidateConnectionDictionary, – setConnectionDictionary:,
– assertConnectionDictionaryIsValid, + sharedLoginPanelInstance
24

 Classes: EOAdaptor

l
runLoginPanelAndValidateConnectionDictionary
– (BOOL)runLoginPanelAndValidateConnectionDictionary

Runs the adaptor’s login panel by sending a runPanelForAdaptor:validate: message to the adaptor’s
login panel object with the validate flag YES. Returns YES if the user enters valid connection information,
or NO if the user cancels the panel.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: – runLoginPanel, – setConnectionDictionary:, – assertConnectionDictionaryIsValid,
+ sharedLoginPanelInstance

setConnectionDictionary:
– (void)setConnectionDictionary:(NSDictionary *)dictionary

Sets the adaptor’s connection dictionary to dictionary, which must only contain NSString,
NSData,NSDictionary, and NSArray objects. Raises an NSInvalidArgumentException if there are any open
channels—you can’t change connection information while the adaptor is connected.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: – connectionDictionary, – hasOpenChannels, – assertConnectionDictionaryIsValid,
– runLoginPanelAndValidateConnectionDictionary, – runPanelForAdaptor:validate:
 (EOLoginPanel)

setDelegate:
– (void)setDelegate:(id)delegate

Sets the receiver’s delegate to delegate, or removes its delegate if delegate is nil . The receiver does not retain
delegate. A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this
method must incorporate the superclass’s version through a message to super.

See also: – delegate

sharedLoginPanelInstance
+ (EOLoginPanel *)sharedLoginPanelInstance

Returns the receiver’s login panel in applications that have a graphical user interface. Returns nil if the
application doesn’t have an NSApplication object. Otherwise, looks for the bundle named “LoginPanel” in
the resources for the adaptor framework, loads the bundle, and returns an instance of the bundle’s principa
25

class (see the NSBundle class specification for information on loading bundles). The returned object is used
to implement runLoginPanelAndValidateConnectionDictionary and runLoginPanel.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.
26

 Classes:

Creating an EOAdaptor Subclass

Enterprise Objects Framework provides concrete adaptors for three standard relational database
management systems—Informix, Oracle, and Sybase—as well as a concrete adaptor for ODBC-compliant
databases. You may want to create a subclass of one of these adaptors to extend its behavior, or you may
want to create a concrete EOAdaptor subclass for a different database or persistent storage system.
EOAdaptor provides many default method implementations that are sufficient for concrete subclasses:

• + assignExternalInfoForEntireModel:
• – connectionDictionary
• – contexts
• – databaseEncoding
• – delegate
• – hasOpenChannels
• – name

The following methods establish structure and conventions that other Enterprise Objects Framework classes
depend on and should be overridden with caution:

• + adaptorWithModel:
• + adaptorWithName:
• + setExpressionClassName:adaptorClassName:
• + sharedLoginPanelInstance
• – initWithName:
• – expressionClass
• – runLoginPanel
• – runLoginPanelAndValidateConnectionDictionary
• – setConnectionDictionary:
• – setDelegate:

If you override any of the above methods, your implementations should incorporate the superclass’s
implementation through a message to super.

The remaining EOAdaptor methods must be overridden by concrete adaptor subclasses in terms of the
persistent storage system with which it interacts:

• + assignExternalInfoForAttribute:
• + assignExternalInfoForEntity:
• + externalTypesWithModel:
• + internalTypeForExternalType:model:
• – assertConnectionDictionaryIsValid
• – createAdaptorContext
• – defaultExpressionClass
• – fetchedValueForDataValue:attribute:
• – fetchedValueForDateValue:attribute:
• – fetchedValueForNumberValue:attribute:
27

• – fetchedValueForStringValue:attribute:
• – fetchedValueForValue:attribute:
• – isValidQualifierTypeIn:model:
28

 Classes: EOAdaptorChannel

s

l

ly
or

EOAdaptorChannel

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOAdaptorChannel.h

Class Description

EOAdaptorChannel is an abstract class that provides its concrete subclasses with a structure for performing
database operations. It’s associated with EOAdaptor and EOAdaptorContext, which, together with
EOAdaptorChannel, form the adaptor level of Enterprise Objects Framework’s access layer. See the
EOAdaptor class specification for more information about accessing, creating, and using adaptor level
objects.

A concrete subclass of EOAdaptorChannel provides database-specific method implementations and
represents an independent communication channel to the database server to which its EOAdaptor object i
connected. You never interact with instances of the EOAdaptorChannel class, rather your Enterprise Objects
Framework applications use instances of concrete subclasses that are written to interact with a specific
database or other persistent storage system. To create an instance of a concrete EOAdaptorChannel
subclass, you send a createAdaptorChannel message to an instance of the corresponding
EOAdaptorContext subclass. You rarely create adaptor channels yourself. They are generally created
automatically by other framework objects.

You use an adaptor channel to manipulate rows (records) by selecting, fetching, inserting, deleting, and
updating them. An adaptor channel also gives you access to some of the metadata on the server, such as
what stored procedures exist, what tables exist, and what their basic attributes and relationships are.

All of an adaptor channel’s operations take place within the context of transactions controlled or tracked by
its EOAdaptorContext. An adaptor context may manage several channels (though not all can), but a channe
is associated with only one context.

Notifying the Adaptor Channel’s Delegate

You can assign a delegate to an adaptor channel. The EOAdaptorChannel sends certain messages direct
to the delegate, and the delegate responds to these messages on the channel’s behalf. Many of the adapt
channel methods notify the channel’s delegate before and after an operation is performed. Some delegate
methods, such as adaptorChannel:shouldEvaluateExpression:, let the delegate determine whether the
channel should perform an operation. Others, such as adaptorChannel:didEvaluateExpression:, are
simply notifications that an operation has occurred. The delegate has an opportunity to respond by
implementing the delegate methods. If the delegate wants to intervene, it implements adaptorChannel:
29

shouldEvaluateExpression:. If it simply wants notification when a transaction has begun, it implements
adaptorChannel:didEvaluateExpression:.

The principal attributes of the EOAdaptorChannel class are:

• Adaptor context
• Delegate

Other framework classes create EOAdaptorChannel objects, using EOAdaptorContext’s
createAdaptorChannel method, which both creates an adaptor channel and assigns its context.

The following table lists EOAdaptorChannel’s more commonly-used methods:

openChannel Opens the channel so it can perform database operations.

closeChannel Close the channel.

selectAttributes:fetchSpecification:lock:entity: Selects rows matching the specified qualifier.

fetchRowWithZone:

Fetches a row resulting from the last selectAttributes:
fetchSpecification:lock:entity: ,
executeStoredProcedure:withValues: , or
evaluateExpression: .

insertRow:forEntity: Inserts the specified row.

updateValues:inRowsDescribedByQualifier:entity: Updates the row described by the specified qualifier.

deleteRowDescribedByQualifier:entity: Deletes the row described by the specified qualifier.

executeStoredProcedure:withValues: Performs the specified stored procedure.

evaluateExpression: Sends the specified expression to the database.

– openChannel Opens the channel so it can perform database operations.

– closeChannel Close the channel.

– selectAttributes:fetchSpecification:lock:entity: Selects rows matching the specified qualifier.

– fetchRowWithZone:
Fetches a row resulting from the last select... ,
executeStoredProcedure... , or evaluateExpression: .

– insertRow:forEntity: Inserts the specified row.

– updateValues:inRowDescribedByQualifier:entity: Updates the row described by the specified qualifier.
30

 Classes: EOAdaptorChannel
For more information on subclassing EOAdaptorChannel, see “Creating an EOAdaptorChannel Subclass”.

Method Types

Accessing the adaptor context
– adaptorContext

Opening and closing a channel
– openChannel
– closeChannel
– isOpen

Creating an EOAdaptorChannel
– initWithAdaptorContext:

Modifying rows
– insertRow:forEntity:
– updateValues:inRowDescribedByQualifier:entity:
– updateValues:inRowsDescribedByQualifier:entity:
– deleteRowDescribedByQualifier:entity:
– deleteRowsDescribedByQualifier:entity:

Fetching rows
– selectAttributes:fetchSpecification:lock:entity:
– describeResults
– setAttributesToFetch:
– attributesToFetch
– fetchRowWithZone:
– dictionaryWithObjects:forAttributes:zone:
– cancelFetch
– isFetchInProgress

Invoking stored procedures
– executeStoredProcedure:withValues:
– returnValuesForLastStoredProcedureInvocation

– deleteRowDescribedByQualifier:entity: Deletes the row described by the specified qualifier.

– executeStoredProcedure:withValues: Performs the specified stored procedure.

– evaluateExpression: Sends the specified expression to the database.

– performAdaptorOperation:
Performs an adaptor operation by invoking the
EOAdaptorChannel method appropriate for performing the
specified operation.
31

Assigning primary keys
– primaryKeyForNewRowWithEntity:

Sending SQL to the server
– evaluateExpression:

Batch processing operations
– performAdaptorOperation:
– performAdaptorOperations:

Accessing schema information
– describeTableNames
– describeStoredProcedureNames
– addStoredProceduresNamed:toModel:
– describeModelWithTableNames:

Debugging
– setDebugEnabled:
– isDebugEnabled

Accessing the delegate
– delegate
– setDelegate:

Instance Methods

adaptorContext
– (EOAdaptorContext *)adaptorContext

Returns the receiver’s EOAdaptorContext. A subclass of EOAdaptorChannel doesn’t need to override this
method.

See also: – initWithAdaptorContext:

addStoredProceduresNamed:toModel:
– (void)addStoredProceduresNamed:(NSArray *)storedProcedureNames

toModel:(EOModel *)model

Overridden by subclasses to create EOStoredProcedure objects for the stored procedures named in
storedProcedureNames and then to add them to model. This method is used in conjunction with
describeStoredProcedureNames to build a default model in EOModeler. Raises an exception if an error
occurs.
32

 Classes: EOAdaptorChannel

attributesToFetch
– (NSArray *)attributesToFetch

Implemented by subclasses to return the set of attributes to retrieve when fetchRowWithZone: is next
invoked. An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: setAttributesToFetch:

cancelFetch
– (void)cancelFetch

Implemented by subclasses to clear all result sets established by the last selectAttributes:
fetchSpecification:lock:entity:, executeStoredProcedure:withValues:, or evaluateExpression: message
and terminate the current fetch, so that isFetchInProgress returns NO.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

closeChannel
– (void)closeChannel

Implemented by subclasses to close the EOAdaptorChannel so that it can’t perform operations with the
server. Any fetch in progress is canceled. If the receiver is the last open channel in an adaptor context and
if the channel’s adaptor context has outstanding transactions, closing the channel has server-dependent
results: some database servers roll back all outstanding transactions but others do nothing. Regardless of
whether outstanding transactions are rolled back, this method has the side effect of closing the receiver’s
adaptor context’s connection with the database if the receiver is its adaptor context’s last open channel.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – cancelFetch, – transactionNestingLevel (EOAdaptorContext)

delegate
– (id)delegate

Returns the receiver’s delegate, or nil if the receiver doesn’t have a delegate. A subclass of
EOAdaptorChannel doesn’t need to override this method.

See also: setDelegate:
33

deleteRowDescribedByQualifier:entity:
– (void)deleteRowDescribedByQualifier:(EOQualifier *)qualifier entity: (EOEntity *)entity

Deletes the row described by qualifier from the database table corresponding to entity. Invokes
deleteRowsDescribedByQualifier:entity: and raises an exception unless exactly one row is deleted. A
subclass of EOAdaptorChannel doesn’t need to override this method.

deleteRowsDescribedByQualifier:entity:
– (unsigned int)deleteRowsDescribedByQualifier:(EOQualifier *)qualifier entity: (EOEntity *)entity

Implemented by subclasses to delete the rows described by qualifier from the database table corresponding
to entity. Returns the number of rows deleted. Raises an exception on failure. Some possible reasons for
failure are:

• The adaptor channel isn’t open
• The adaptor channel is in an invalid state (for example, it’s fetching).
• An error occurs in the database server

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – deleteRowDescribedByQualifier:entity:, – isOpen, – isFetchInProgress,
 – transactionNestingLevel (EOAdaptorContext)

describeModelWithTableNames:
– (EOModel *)describeModelWithTableNames:(NSArray *)tableNames

Overridden by subclasses to create and return a default model containing entities for the tables specified in
tableNames. Assigns the adaptor name and connection dictionary to the new model. This method is
typically used in conjunction with describeTableNames and describeStoredProcedureNames.

EOAdaptorChannel’s implementation does nothing. An adaptor channel subclass should override this
method to create a default model from the database’s metadata.

describeResults
– (NSArray *)describeResults

Implemented by subclasses to return an array of EOAttributes describing the properties available in the
current result set, as determined by selectAttributes:describedByQualifier:fetchOrder:lock:,
executeStoredProcedure:withValues:, or a statement evaluated by evaluateExpression:. Only invoke this
method if a fetch is in progress as determined by isFetchInProgress.
34

 Classes: EOAdaptorChannel

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

describeStoredProcedureNames
– (NSArray *)describeStoredProcedureNames

Overridden by subclasses to read and return an array of stored procedure names from the database. This
method is used in conjunction with addStoredProceduresNamed:toModel: to build a default model in
EOModeler. Raises an exception if an error occurs.

describeTableNames
– (NSArray *)describeTableNames

Overridden by subclasses to read and return an array of table names from the database. This method in
conjunction with describeModelWithTableNames: is used to build a default model.

EOAdaptorChannel’s implementation simply returns nil . An adaptor channel subclass should override this
method to construct an array of table names from database metadata.

dictionaryWithObjects:forAttributes:zone:
– (NSMutableDictionary *)dictionaryWithObjects: (id *)objects

forAttributes: (NSArray *)attributes
zone:(NSZone *)zone

Used by EOAdaptorChannel subclasses to create dictionaries that can be returned from
fetchRowWithZone:. You don’t ordinarily invoke this method unless you are writing your own concrete
adaptor. If you are writing a concrete adaptor, use of this method is optional but strongly recommended
because it enables performance optimizations. The objects in objects are the values for the row that
correspond to the EOAttribute objects in attributes. The dictionary representation of the row is created from
zone.

A subclass of EOAdaptorChannel shouldn’t override this method.

evaluateExpression:
– (void)evaluateExpression:(EOSQLExpression *)expression

Implemented by subclasses to send expression to the database server for evaluation, beginning a transaction
first and committing it after evaluation if a transaction isn’t already in progress. Raises an exception if an
error occurs. An EOAdaptorChannel uses this method to send SQL expressions to the database.
35

If expression results in a select operation being performed, you can fetch the results as you would if you
had sent a selectAttributes:fetchSpecification:lock:entity:. You must use the method
setAttributesToFetch: before you begin fetching. Also, if expression evaluates to multiple result sets, you
must invoke setAttributesToFetch: before you begin fetching each subsequent set.

evaluateExpression: invokes the delegate methods adaptorChannel:shouldEvaluateExpression: and
adaptorChannel:didEvaluateExpression:.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation. Note, however, that the upper layers of the Framework never invoke evaluateExpression:
directly. Thus, adaptors for data stores that don’t naturally support an expression language (for example, flat
file adaptors) don’t need to implement this method to work with the Framework.

See also: – fetchRowWithZone:

executeStoredProcedure:withValues:
– (void)executeStoredProcedure:(EOStoredProcedure *)storedProcedure

withValues:(NSDictionary *)values

Implemented by subclasses to execute storedProcedure. Any arguments to the stored procedure are in
values, a dictionary whose keys are the argument names. Use fetchRowWithZone: to get result rows and
returnValuesForLastStoredProcedureInvocation to get return arguments and result status, if any. Raises
an exception if an error occurs.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation. Note, however, that the upper layers of the Framework never invoke
executeStoredProcedure:withValues: directly. Thus, adaptors for data stores that don’t support stored
procedures (for example, flat file adaptors) don’t need to implement this method to work with the
Framework

fetchRowWithZone:
– (NSMutableDictionary *)fetchRowWithZone:(NSZone *)zone

Implemented by subclasses to fetch the next row from the result set of the last selectAttributes:
fetchSpecification:lock:entity:, executeStoredProcedure:withValues:, or evaluateExpression:
message sent to the receiver. Returns values for the receiver’s attributesToFetch in a dictionary whose keys
are the attribute names. When there are no more rows in the current result set, this method returns nil , and
invokes the delegate method adaptorChannelDidChangeResultSet: if there are more results sets. When
there are no more rows or result sets, this method returns nil , ends the fetch, and invokes
adaptorChannelDidFinishFetching:. isFetchInProgress returns YES until the fetch is canceled or until
this method exhausts all result sets and returns nil . This method also invoke the delegate methods
adaptorChannelWillFetchRow: and adaptorChannel:didFetchRow:. Raises an exception if an error
occurs.
36

 Classes: EOAdaptorChannel

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – setAttributesToFetch:

initWithAdaptorContext:
– initWithAdaptorContext: (EOAdaptorContext *)adaptorContext

The designated initializer for the EOAdaptorChannel class, this method is overridden by subclasses to
initialize a newly allocated EOAdaptorChannel subclass and retain adaptorContext. Returns self.

You never invoke this method directly unless you are implementing a concrete adaptor context. It is invoked
automatically from createAdaptorChannel—the EOAdaptorContext method you use to create a new
adaptor channel.

A subclass of EOAdaptorChannel doesn’t need to override this method, but may override it to perform
additional initialization. A subclass that does override this method must incorporate the superclass’s version
through a message to super.

See also: – adaptorContext

insertRow:forEntity:
– (void)insertRow:(NSDictionary *)row forEntity: (EOEntity *)entity

Implemented by subclasses to insert the values of row into the table in the database that corresponds to
entity. row is a dictionary whose keys are attribute names and whose values are the values to insert. Raises
an exception on failure. Some possible reasons for failure are:

• The user logged in to the database doesn’t have permission to insert a new row.
• The adaptor channel is in an invalid state (for example, fetching).
• The row fails to satisfy a constraint defined in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

isDebugEnabled
– (BOOL)isDebugEnabled

Returns YES if the adaptor channel logs evaluated SQL and other useful information to the console (or to
the standard error stream), NO if not. A subclass of EOAdaptorChannel doesn’t need to override this
method.

See also: – setDebugEnabled:, – setDebugEnabled: (EOAdaptorContext)
37

isFetchInProgress
– (BOOL)isFetchInProgress

Implemented by subclasses to return YES if the receiver is fetching, NO otherwise. An adaptor channel is
fetching if:

• It’s been sent a successful selectAttributes:describedByQualifier:fetchOrder:lock: message.
• A stored procedure that returns rows has been successfully executed using executeStoredProcedure:

withValues:.
• An expression sent through evaluateExpression: resulted in a select operation being performed.

An adaptor channel stops fetching when there are no more records to fetch or when it’s sent a cancelFetch
message.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – fetchRowWithZone:

isOpen
– (BOOL)isOpen

Implemented by subclasses to return YES if the channel has been opened with openChannel, NO if not.
An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – closeChannel

lockRowComparingAttributes:entity:qualifier:snapshot:
– (void)lockRowComparingAttributes: (NSArray *)attributes

entity:(EOEntity *)entity
qualifier: (EOQualifier *)qualifier
snapshot:(NSDictionary *)snapshot

Attempts to lock a row in the database by selecting it with locking on. The lock operation succeeds if a
select statement generated with qualifier retrieves exactly one row and the values in the row match the
values in snapshot, a dictionary whose keys are attribute names and whose values are the values that were
last fetched from the database.

lockRowComparingAttributes:entity:qualifier:snapshot: invokes selectAttributes:fetchSpecification:
lock:entity: with attributes as the attributes to select, a fetch specification built from qualifier, locking on,
and entity as the entity. If the select returns no rows or more than one row, the method raises an
EOGeneralAdaptorException. It also raises an EOGeneralAdaptorException if the values in the returned
row don’t match the corresponding values in snapshot.
38

 Classes: EOAdaptorChannel

e
s
The Framework uses this method whenever it needs to lock a row. When the Framework invokes it, qualifier
specifies the primary key of the row to be locked and attributes used for locking to be compared in the
database server. If any of the values specified in qualifier are different from the values in the database row,
the select operation will not retrieve or lock the row. When this happens, the row to be locked has been
updated in the database since it was last retrieved, and it isn’t safe to update it.

Some attributes (such as BLOB types) can’t be compared in the database. attributes should specify any such
attributes. (If the row doesn’t contain any such attributes, attributes can be nil .) If qualifier generates a select
statement that returns and locks a single row, this method performs an in-memory comparison between the
value in the retrieved row and the value in snapshot for each attribute in attributes. Therefore, snapshot must
contain an entry for each attribute in attributes. In addition, it must contain an entry for the row’s primary
key.

A subclass of EOAdaptorChannel doesnt need to override this method.

openChannel
– (void)openChannel

Implemented by subclasses to put the channel and both its context and adaptor into a state where they ar
ready to perform database operations. Raises an exception if an error occurs. An adaptor channel subclas
should override this method without invoking EOAdaptorChannel’s implementation.

See also: – isOpen, – closeChannel

performAdaptorOperation:
– (void)performAdaptorOperation: (EOAdaptorOperation *)adaptorOperation

Performs adaptorOperation by invoking the adaptor channel method appropriate for performing the
specified operation. For example, if the adaptor operator for adaptorOperation is
EOAdaptorInsertOperator, this method invokes insertRow:forEntity: using information in
adaptorOperation to supply the arguments. Raises an exception if an error occurs.

A subclass of EOAdaptorChannel doesn’t need to override this method.

See also: – performAdaptorOperations:

performAdaptorOperations:
– (void)performAdaptorOperations: (NSArray *)adaptorOperations

Performs adaptor operations by invoking performAdaptorOperation: with each EOAdaptorOperation
object in the array adaptorOperations. An adaptor channel subclass may be able to override this method to
39

:

take advantage of database-specific batch processing capabilities. Invokes the delegate methods
adaptorChannel:willPerformOperations: and adaptorChannel:didPerformOperations:exception:.

This method raises an exception if an error occurs. The exception’s userInfo dictionary contains these keys

• EOAdaptorOperationsKey

Corresponds to the array of adaptor operations that’s being executed.

• EOFailedAdaptorOperationKey

Corresponds to the particular adaptor operation that failed.

• EOAdaptorFailureKey

If present, offers additional information on the type of error that occurred. Currently, the only
possible value for this key is EOAdaptorOptimisticLockingFailure, which indicates that an update
or lock operation failed because the row found in the database did not match the snapshot taken when
the row was last fetched into the application.

A subclass of EOAdaptorChannel doesn’t need to override the performAdaptorOperations: method.

primaryKeyForNewRowWithEntity:
– (NSDictionary *)primaryKeyForNewRowWithEntity: (EOEntity *)entity

Overridden by subclasses to return a primary key for a new row in the database table that corresponds to
entity. The primary key returned from this method is a dictionary whose keys are the primary key attribute
names. For example, suppose you’ve got a table MOVIE with primary key MOVIE_ID, and the
corresponding Movie Entity’s primary key attribute is movieID. In this scenario, the dictionary returned
from primaryKeyForNewRowWithEntity: has one entry whose key is movieID and whose value is the
unique value to assign. If the primary key is compound (made up of more than one attribute), the dictionary
should contain an entry for each primary key attribute. Note, however, that the Enterprise Objects
Frameworks adaptors don’t handle compound primary keys; they return nil from
primaryKeyForNewRowWithEntity: if the primary key is compound.

If information in entity specifies an adaptor-specific means to assign a new primary key (for example, a
sequence name or stored procedure), then this method returns a new primary key. Otherwise, if the key is a
simple integer, the method tries to fetch a new primary key from the database using an adaptor-specific
scheme. Otherwise, the method returns nil .

EOAdaptorChannel’s implementation simply returns nil . See your adaptor channel’s documentation for
information on how it generates primary keys.

A subclass of EOAdaptorChannel must override this method. For example, to return a value generated by
a sequence, you’d create the proper SQL statement (using EOSQLExpression’s expressionForString:
method) and evaluate it (using the evaluateExpression: method).
40

 Classes: EOAdaptorChannel

so

g
returnValuesForLastStoredProcedureInvocation
– (NSDictionary *)returnValuesForLastStoredProcedureInvocation

Implemented by subclasses to return stored procedure parameter and return values. Used in conjunction
with executeStoredProcedure:withValues:. The dictionary returned by this method has entries whose
keys are stored procedure parameter names and whose values are the parameter values. The dictionary al
contains a special entry for the stored procedures return value with the key “returnValue”. Returns an empty
dictionary for stored procedures that have void return types. Returns nil if the stored procedure has results
to fetch. In this case, you must use fetchRowWithZone: until there are no more results to fetch before the
return value will be available.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

selectAttributes:fetchSpecification:lock:entity:
– (void)selectAttributes:(NSArray *)attributes

fetchSpecification:(EOFetchSpecification *)fetchSpecification
lock:(BOOL)flag
entity: (EOEntity *)entity

Implemented by subclasses to select attributes in rows matching the qualifier in fetchSpecification and set
the receiver’s attributes to fetch. The selected rows compose one or more result sets, each row of which will
be returned by subsequent fetchRowWithZone: messages according to fetchSpecification’s sort orderings.
If flag is YES, the rows are locked if possible so that no other user can modify them (the lock specification
in fetchSpecification is ignored). Raises an exception if an error occurs. Some possible reasons for failure
are:

• The adaptor channel is in an invalid state (for example, fetching).
• The database failed to lock the specified rows.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – setAttributesToFetch:

setAttributesToFetch:
– (void)setAttributesToFetch:(NSArray *)attributes

Implemented by subclasses to specify the set of attributes used to describe fetch data from a correspondin
select. attributes is an array of the attributes to fetch. This method is invoked after evaluateExpression: but
before the first call to fetchRowWithZone:. For more information on using this method, see “Sending SQL
Statements Directly to the Server” in the “WebObjects Programming Topics.” Is that a good
cross-reference? This method raises if invoked when there is no fetch in progress.
41

l

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – attributesToFetch, – selectAttributes:fetchSpecification:lock:entity:

setDebugEnabled:
– (void)setDebugEnabled:(BOOL)flag

Enables debugging in the receiver and all its channels. If flag is YES, enables debugging; otherwise,
disables debugging. When debugging is enabled, the adaptor channel logs evaluated SQL and other usefu
debugging information to the console (or to the standard error stream). The information provided may vary
from adaptor to adaptor and may change from release to release.

A subclass of EOAdaptorChannel doesn’t need to override this method. A subclass that does override it
must incorporate the superclass’s version through a message to super.

See also: – isDebugEnabled, – setDebugEnabled: (EOAdaptorContext)

setDelegate:
– (void)setDelegate:(id)delegate

Sets the receiver’s delegate to delegate, or removes its delegate if delegate is nil . The receiver does not retain
its delegate. A subclass of EOAdaptorChannel doesn’t need to override this method. A subclass that does
override it must incorporate the superclass’s version through a message to super.

See also: – delegate

updateValues:inRowDescribedByQualifier:entity:
– (void)updateValues:(NSDictionary *)values

inRowDescribedByQualifier:(EOQualifier *)qualifier
entity: (EOEntity *)entity

Updates the row described by qualifier. Invokes updateValues:inRowsDescribedByQualifier:entity: and
raises an exception unless exactly one row is updated.

A subclass of EOAdaptorChannel doesn’t need to override this method.
42

 Classes: EOAdaptorChannel

updateValues:inRowsDescribedByQualifier:entity:
– (unsigned int)updateValues:(NSDictionary *)values

inRowsDescribedByQualifier:(EOQualifier *)qualifier
entity: (EOEntity *)entity

Implemented by subclasses to update the rows described by qualifier with the values in values. values is a
dictionary whose keys are attribute names and whose values are the new values for those attributes (the
dictionary need only contain entries for the attributes being changed). Returns the number of updated rows.
Raises an exception if an error occurs. Some possible reasons for failure are:

• The user logged in to the database doesn’t have permission to update.
• The adaptor channel is in an invalid state (for example, fetching).
• The new values fail to satisfy a constraint defined in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – updateValues:inRowDescribedByQualifier:entity:
43

44

 Classes:

Creating an EOAdaptorChannel Subclass

EOAdaptorChannel provides many default method implementations that are sufficient for concrete
subclasses:

• – adaptorContext
• – delegate
• – deleteRowDescribedByQualifier:entity:
• – isDebugEnabled
• – lockRowComparingAttributes:entity:qualifier:snapshot:
• – performAdaptorOperation:
• – performAdaptorOperations:
• – updateValues:inRowDescribedByQualifier:entity:

The following methods establish structure and conventions that other Enterprise Objects Framework classes
depend on and should be overridden with caution:

• – dictionaryWithObjects:forAttributes:zone:
• – initWithAdaptorContext:
• – setDebugEnabled:
• – setDelegate:

If you override any of the above methods, your implementations should incorporate the superclass’s
implementation through a message to super.

The remaining EOAdaptorChannel methods must be overridden by concrete subclasses in terms of the
persistent storage system with which it interacts:

• – attributesToFetch
• – cancelFetch
• – closeChannel
• – deleteRowsDescribedByQualifier:entity:
• – describeModelWithTableNames:
• – describeResults
• – describeStoredProcedureNames
• – describeTableNames
• – evaluateExpression:
• – executeStoredProcedure:withValues:
• – fetchRowWithZone:
• – insertRow:forEntity:
• – isFetchInProgress
• – isOpen
• – openChannel
• – primaryKeyForNewRowWithEntity:
• – returnValuesForLastStoredProcedureInvocation
• – selectAttributes:fetchSpecification:lock:entity:
45

• – setAttributesToFetch:
• – updateValues:inRowsDescribedByQualifier:entity:
46

 Classes: EOAdaptorContext

EOAdaptorContext

Inherits From: NSObject

Declared In: EOAccess/EOAdaptorContext.h

Class Description

EOAdaptorContext is an abstract class that defines transaction handling in Enterprise Objects Framework
applications. You typically don’t interact with EOAdaptorContext API directly; rather, a concrete adaptor
context subclass inherits from EOAdaptorContext and overrides many of its methods, which are invoked
automatically by the Enterprise Objects Framework. If you’re not creating a concrete adaptor context
subclass, there aren’t very many methods you need to use, and you’ll rarely invoke them directly.

The EOAdaptorContext class has the following principal attributes:

• Array of adaptor channels
• Delegate
• Adaptor

Other framework classes create EOAdaptorContext objects automatically. This is typically done with
EOAdaptor’s – createAdaptorContext method, which creates an adaptor context and assigns its adaptor.

The following table lists the most commonly-used EOAdaptorContext methods:

For more information, see “EOAdaptorContext”.

Method Types

Creating an EOAdaptorContext
– initWithAdaptor:

– beginTransaction Begins a transaction in the database server.

– commitTransaction Commits the last transaction begun.

– rollbackTransaction Rolls back the last transaction begun.

– setDebugEnabled: Enables debugging in all the adaptor context’s channels.
47

Accessing the adaptor
– adaptor

Creating adaptor channels
– createAdaptorChannel
– channels

Checking connection status
– hasOpenChannels
– hasBusyChannels

Controlling transactions
– beginTransaction
– commitTransaction
– rollbackTransaction
– transactionDidBegin
– transactionDidCommit
– transactionDidRollback
– canNestTransactions
– transactionNestingLevel

Debugging
+ setDebugEnabledDefault:
+ debugEnabledDefault
– setDebugEnabled:
– isDebugEnabled

Accessing the delegate
– delegate
– setDelegate:

Class Methods

debugEnabledDefault
+ (BOOL)debugEnabledDefault

Returns YES if new adaptor context instances have debugging enabled by default, NO otherwise. By
default, adaptor contexts have debugging enabled if the user default EOAdaptorDebugEnabled is YES. (For
more information on user defaults, see the NSUserDefaults class specification in the Foundation
Framework Reference.) You can override the user default using the class method setDebugEnabledDefault:
, or you can set debugging behavior for a specific instance with the instance method setDebugEnabled:.
48

 Classes: EOAdaptorContext

setDebugEnabledDefault:
+ (void)setDebugEnabledDefault:(BOOL)flag

Sets default debugging behavior for new instances of EOAdaptorContext. If flag is YES, debugging is
enabled for new instances. If flag is NO, debugging is disabled. Use the instance method setDebugEnabled:
to enable debugging for a specific adaptor context.

See also: + debugEnabledDefault, – isDebugEnabled

Instance Methods

adaptor
– (EOAdaptor *)adaptor

Returns the receiver’s EOAdaptor.

See also: – initWithAdaptor:

beginTransaction
– (void)beginTransaction

Implemented by subclasses to attempt to begin a new transaction, nested within the current one if nested
transactions are supported. Each successful invocation of beginTransaction must be paired with an
invocation of either commitTransaction or rollbackTransaction to end the transaction.

The Enterprise Objects Framework automatically wraps database operations in transactions, so you don’t
have to begin and end transactions explicitly. In fact, letting the framework manage transactions is
sometimes more efficient. You typically use beginTransaction only to execute more than one database
operation in the same transaction scope.

This method invokes the delegate method adaptorContextShouldBegin: before beginning the transaction.
If the transaction is begun successfully, sends self a transactionDidBegin message and invokes the delegate
method adaptorContextDidBegin:. Raises if the attempt is unsuccessful. Some possible reasons for failure
are:

• A connection to the database hasn’t been established.
• Nested transactions aren’t supported, and a transaction is already in progress.
• A fetch is in progress.
• The delegate refuses.
• The database server fails to begin a transaction.
49

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: – commitTransaction, – rollbackTransaction, – canNestTransactions,
– transactionNestingLevel

canNestTransactions
– (BOOL)canNestTransactions

Implemented by subclasses to return YES if the database server and the adaptor context can nest
transactions, NO otherwise. An adaptor context subclass should override this method without invoking
EOAdaptorContext’s implementation.

See also: – transactionNestingLevel

channels
– (NSArray *)channels

Returns an array of channels created by this context.

See also: createAdaptorChannel

commitTransaction
– (void)commitTransaction

Implemented by subclasses to attempt to commit the last transaction begun. Invokes the delegate method
adaptorContextShouldCommit: before committing the transaction. If the transaction is committed
successfully, sends self a transactionDidCommit message and invokes the delegate method
adaptorContextDidCommit: . Raises if the attempt is unsuccessful. Some possible reasons for failure are:

• A transaction is not in progress.
• Fetches are in progress.
• The delegate refuses.
• The database server fails to commit.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: – beginTransaction, – createAdaptorChannel, – transactionDidCommit, – hasBusyChannels
50

 Classes: EOAdaptorContext

,
createAdaptorChannel
– (EOAdaptorChannel *)createAdaptorChannel

Implemented by subclasses to create and return a new AdaptorChannel, or nil if a new channel cannot be
created. Initializes the new channel by sending it initWithAdaptorContext:self . The newly created channel
retains its context. A newly created adaptor context has no channels. Specific adaptors have different limits
on the maximum number of channels a context can have, and createAdaptorChannel fails if a newly
created channel would exceed the limits.

See also: – channels

delegate
– delegate

Returns the receiver’s delegate, or nil if the receiver doesn’t have a delegate.

See also: – setDelegate:

hasBusyChannels
– (BOOL)hasBusyChannels

Returns YES if any of the receiver’s channels have outstanding operations (that is, have a fetch in progress)
NO otherwise.

See also: – isFetchInProgress (EOAdaptorChannel)

hasOpenChannels
– (BOOL)hasOpenChannels

Returns YES if any of the receiver’s channels are open, NO otherwise.

See also: – openChannel (EOAdaptorChannel), – isOpen (EOAdaptorChannel)

initWithAdaptor:
– initWithAdaptor: (EOAdaptor *)adaptor

The designated initializer for the EOAdaptorContext class, this method is overridden by subclasses to
initialize a newly allocated EOAdaptorContext subclass and retain adaptor. Returns self.
51

You never invoke this method directly. You must use the EOAdaptor method createAdaptorContext to
create a new adaptor context.

See also: – adaptor

isDebugEnabled
– (BOOL)isDebugEnabled

Returns YES if debugging is enabled in the receiver, NO otherwise.

See also: – setDebugEnabled:, + debugEnabledDefault, + setDebugEnabledDefault:

rollbackTransaction
– (void)rollbackTransaction

Implemented by subclasses to attempt to roll back the last transaction begun. Invokes the delegate method
adaptorContextShouldRollback: before rolling back the transaction. If the transaction is begun
successfully, sends self a transactionDidRollback message and invokes the delegate method
adaptorContextDidRollback:. Raises if the attempt is unsuccessful. Some possible reasons for failure are:

• A transaction is not in progress.
• Fetches are in progress.
• The delegate refuses.
• The database server fails to rollback.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: – beginTransaction, – commitTransaction

setDebugEnabled:
– (void)setDebugEnabled:(BOOL)flag

Enables debugging in the receiver and all its channels. If flag is YES, enables debugging; otherwise,
disables debugging.

See also: – setDebugEnabled: (EOAdaptorChannel), – isDebugEnabled, + setDebugEnabledDefault:,
– channels
52

 Classes: EOAdaptorContext

te

setDelegate:
– (void)setDelegate:delegate

Sets the receiver’s delegate and the delegate of all the receiver’s channels to delegate, or removes their
delegates if delegate is nil . The receiver does not retain delegate.

See also: – delegate, – channels

transactionDidBegin
– (void)transactionDidBegin

Informs the adaptor context that a transaction has begun in the database server, so the receiver can upda
its state to reflect this fact and send an EOAdaptorContextBeginTransactionNotification. This method is
invoked from beginTransaction after a transaction has successfully been started. It is also invoked when
the Enterprise Objects Framework implicitly begins a transaction.

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’s implementation of
beginTransaction method and anywhere else it begins a transaction—either implicitly or explicitly. For
example, an adaptor channel’s implementation of evaluateExpression: should check to see if a transaction
is in progress. If no transaction is in progress, it can start one explicitly by invoking beginTransaction.
Alternatively, it can start an implicit transaction by invoking transactionDidBegin.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a message to super.

See also: – transactionDidCommit, – transactionDidRollback

transactionDidCommit
– (void)transactionDidCommit

Informs the adaptor context that a transaction has committed in the database server, so the receiver can
update its state to reflect this fact and send an EOAdaptorContextCommitTransactionNotification. This
method is invoked from commitTransaction after a transaction has successfully committed.

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’s implementation of
commitTransaction method and anywhere else it commits a transaction—either implicitly or explicitly.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a message to super.

See also: – transactionDidBegin, – transactionDidRollback
53

transactionDidRollback
– (void)transactionDidRollback

Informs the receiver that a transaction has rolled back in the database server, so the adaptor context can
update its state to reflect this fact and send an EOAdaptorContextRollbackTransactionNotification. This
method is invoked from rollbackTransaction after a transaction has successfully been rolled back.

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’s implementation of
rollbackTransaction method and anywhere else it rolls back a transaction—either implicitly or explicitly.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a message to super.

See also: – transactionDidBegin, – transactionDidCommit

transactionNestingLevel
– (unsigned)transactionNestingLevel

Returns the number of transactions in progress. If the database server and the adaptor support nested
transactions, this number may be greater than 1.

See also: – canNestTransactions

Notifications

EOAdaptorContextBeginTransactionNotification

Sent from transactionDidBegin to tell observers that a transaction has begun. The notification contains:

EOAdaptorContextCommitTransactionNotification

Sent from transactionDidCommit to tell observers that a transaction has been committed. The notification
contains:

Notification Object The notifying EOAdaptorContext object

Userinfo None

Notification Object The notifying EOAdaptorContext object
54

 Classes: EOAdaptorContext
EOAdaptorContextRollbackTransactionNotification

Sent from transactionDidRollback to tell observers that a transaction has been rolled back. The
notification contains:

Userinfo None

Notification Object The notifying EOAdaptorContext object

Userinfo None
55

56

 Classes: EOAdaptorContext

s

s,

n

d

f

,

r

he
EOAdaptorContext
EOAdaptorContext is an abstract class that provides its concrete subclasses with a structure for handling
database transactions. It’s associated with EOAdaptor and EOAdaptorChannel, which, together with
EOAdaptorContext, form the adaptor level of Enterprise Objects Framework’s access layer. See the
EOAdaptor class specification for more information about accessing, creating, and using adaptor level
objects.

A concrete subclass of EOAdaptorContext provides database-specific method implementations and
represents a single transaction scope (logical user) on the database server to which its EOAdaptor object i
connected. You never interact with instances of the EOAdaptorContext class, rather your Enterprise Objects
Framework applications use instances of concrete subclasses that are written to work with a specific
database or other persistent storage system. To create an instance of a concrete EOAdaptorContext subclas
you send a createAdaptorContext message to an instance of the corresponding EOAdaptor subclass. You
rarely create adaptor contexts yourself. They are generally created automatically by other framework
objects.

If a database server supports multiple concurrent transaction sessions, an adaptor context’s EOAdaptor ca
have several contexts. When you use multiple EOAdaptorContexts for a single EOAdaptor, you can have
several database server transactions in progress simultaneously. You should be aware of the issues involve
in concurrent access if you do this.

An EOAdaptorContext has an EOAdaptorChannel, which handles actual access to the data on the server. I
the database server supports it, a context can have multiple channels. See your adaptor context’s
documentation to find out if your adaptor supports multiple channels. An EOAdaptorContext by default has
no EOAdaptorChannels; to create a new channel send your EOAdaptorContext a createAdaptorChannel
message.

Controlling Transactions

EOAdaptorContext defines a simple set of methods for explicitly controlling transactions:
beginTransaction, commitTransaction, and rollbackTransaction. Each of these messages confirms the
requested action with the adaptor context’s delegate, then performs the action if possible.

There’s also a set of methods for notifying an adaptor context that a transaction has been started, committed
or rolled back without using the beginTransaction, commitTransaction, or rollbackTransaction
methods. For example, if you invoke a stored procedure in the server that begins a transaction, you need to
notify the adaptor context that a transaction has been started. Use the following methods to keep an adapto
context synchronized with the state of the database server: transactionDidBegin,
transactionDidCommit, and transactionDidRollback. These methods post notifications.

The Adaptor Context’s Delegate and Notifications

You can assign a delegate to an adaptor context. The delegate responds to certain messages on behalf of t
context. An EOAdaptorContext sends these messages directly to its delegate. The transaction-controlling
57

s

e

r

methods—beginTransaction, commitTransaction, and rollbackTransaction—notify the adaptor
context’s delegate before and after a transaction operation is performed. Some delegate methods, such a
adaptorContextShouldBegin:, let the delegate determine whether the context should perform an
operation. Others, such as adaptorContextDidBegin:, are simply notifications that an operation has
occurred. The delegate has an opportunity to respond by implementing the delegate methods. If the delegat
wants to intervene, it implements adaptorContextShouldBegin:. If it simply wants notification when a
transaction has begun, it implements adaptorContextDidBegin:.

EOAdaptorContext also posts notifications to the application’s default notification center. Any object may
register to receive one or more of the notifications posted by an adaptor context by sending the message
addObserver:selector:name:object: to the default notification center (an instance of the
NSNotificationCenter class). For more information on notifications, see the NSNotificationCenter class
specification in the Foundation Framework Reference.

Creating an EOAdaptorContext Subclass

EOAdaptorContext provides many default method implementations that are sufficient for concrete
subclasses. The following methods establish structure and conventions that other Enterprise Objects
Framework classes depend on and should never be overridden:

• + setDebugEnabledDefault:
• – transactionDidBegin
• – transactionDidCommit
• – transactionDidRollback
• – transactionNestingLevel

Other methods require database-specific implementations that can be provided only by a concrete adapto
context subclass. A subclass must override the following methods in terms of the persistent storage system
to which it interacts:

• – beginTransaction
• – canNestTransactions
• – commitTransaction
• – createAdaptorChannel
• – rollbackTransaction
58

 Classes: EOAdaptorOperation

.

EOAdaptorOperation

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabaseOperation.h

Class Description

An EOAdaptorOperation object represents a primitive operation in a database server—lock, insert, update,
or delete a row; or execute a stored procedure—and all the necessary information required by the operation
An EOAdaptorOperation is processed by an EOAdaptorChannel object in the method
performAdaptorOperation: . You don’t ordinarily create instances of EOAdaptorOperation; rather, the
Framework automatically creates an EOAdaptorOperation object and sends it to an adaptor channel when
your application needs the database server to perform an operation. You generally interact with
EOAdaptorOperation objects only if you need to specify the order in which a set of operations are carried
out (see the description for the EODatabaseContext delegate method databaseContext:
willOrderAdaptorOperationsFromDatabaseOperations:).

An EOAdaptorOperation has an entity and an operator (the type of operation the object represents). An
adaptor operation’s operator (EOAdaptorLockOperator, EOAdaptorInsertOperator,
EOAdaptorUpdateOperator, EOAdaptorDeleteOperator, or EOAdaptorStoredProcedureOperator)
determines additional, operator-dependent information used by the EOAdaptorOperation object. For
example, only a stored procedure operation has an EOStoredProcedure object. The operator-dependent
information is accessible using the methods described below.

Method Types

Creating a new EOAdaptorOperation
– initWithEntity:

Accessing the entity
– entity

Accessing the operator
– setAdaptorOperator:
– adaptorOperator

Accessing the qualifier
– setStoredProcedure:
– qualifier
59

Accessing locking attributes
– setAttributes:
– attributes

Accessing operation values
– setChangedValues:
– changedValues

Accessing a stored procedure
– setStoredProcedure:
– storedProcedure

Handling errors during the operation
– setException:
– exception

Comparing operations
– compareAdaptorOperation:

Instance Methods

adaptorOperator
– (EOAdaptorOperator)adaptorOperator

Returns the receiver’s adaptor operator. The operator indicates which of the other adaptor operation
attributes are valid. For example, an adaptor operation whose operator is EOAdaptorInsertOperator uses
changedValues, but not attributes, qualifier , or storedProcedure.

See also: setAdaptorOperator:

attributes
– (NSArray *)attributes

Returns the array of attributes to select when locking the row. If attributes have not been assigned to the
receiver, the primary key attributes are selected. Only valid for adaptor operations with the
EOAdaptorLockOperator.

See also: – setAttributes:
60

 Classes: EOAdaptorOperation

s
changedValues
– (NSDictionary *)changedValues

Returns the dictionary of values that need to be updated, inserted, or compared for locking purposes.

See also: – setChangedValues:

compareAdaptorOperation:
– (NSComparisonResult)compareAdaptorOperation:(EOAdaptorOperation *)operation

Orders adaptor operations alphabetically by entity name and by adaptor operator within the same entity. The
adaptor operators are ordered as follows:

• EOAdaptorLockOperator
• EOAdaptorInsertOperator
• EOAdaptorUpdateOperator
• EOAdaptorDeleteOperator
• EOAdaptorStoredProcedureOperator

EOAdaptorLockOperator precedes EOAdaptorInsertOperator, EOAdaptorInsertOperator precedes
EOAdaptorUpdateOperator, and so on.

An EODatabaseContext uses compareAdaptorOperation: to order adaptor operations before invoking
EOAdaptorChannel’s performAdaptorOperations: method.

entity
– (EOEntity *)entity

Returns the entity to which the operation will be applied.

See also: – initWithEntity:

exception
– (NSException *)exception

Returns the exception that was raised when an adaptor channel attempted to process the receiver. Return
nil if no exception was raised or if the receiver hasn’t been processed yet.

See also: – setException:
61

qualifier
– (EOQualifier *)qualifier

Returns the qualifier that identifies the specific row to which the operation applies. Not valid with adaptor
operations with the operators EOAdaptorInsertOperator and EOAdaptorStoredProcedureOperator.

initWithEntity:
– initWithEntity: (EOEntity *)entity

The designated initializer, initializes a new EOAdaptorOperation instance, and sets the entity to which the
operation will be applied. Returns self.

See also: – entity

setAdaptorOperator:
– (void)setAdaptorOperator:(EOAdaptorOperator)adaptorOperator

Sets the receiver’s operator to adaptorOperator, which is one of the following:

• EOAdaptorLockOperator
• EOAdaptorInsertOperator
• EOAdaptorUpdateOperator
• EOAdaptorDeleteOperator
• EOAdaptorStoredProcedureOperator

For more information, see the discussion on adaptor operators in the class description above.

See also: – adaptorOperator

setAttributes:
– (void)setAttributes:(NSArray *)attributes

Sets the array of attributes to select when locking the row. The selected values are compared in memory to
the corresponding snapshot values to determine if a row has changed since the application last fetched it.
attributes is an array of EOAttribute objects that can’t be compared in a qualifier (generally BLOB types);
it should not be nil or empty. Generally, an adaptor operation’s qualifier contains all the comparisons needed
to verify that a row hasn’t changed since the application last fetched, inserted, or updated it. In this case (if
there aren’t any attributes that can’t be compared in a qualifier), attributes should contain primary key
attributes. This method is only valid for adaptor operations with the EOAdaptorLockOperator.

See also: – attributes, – entity
62

 Classes: EOAdaptorOperation
setChangedValues:
– (void)setChangedValues:(NSDictionary *)changedValues

Sets the dictionary of values that need to be updated, inserted, or compared for locking purposes.
changedValues is a dictionary object whose keys are attribute names and whose values are the values for
those attributes. As summarized in the following table, the contents of changedValues depends on the
receiver’s operator:

See also: – changedValues

setException:
– (void)setException:(NSException *)exception

Sets the receiver’s exception to exception. This method is typically invoked from EOAdaptorChannel’s
performAdaptorOperations: method. If a database error occurs while processing an adaptor operation,
the adaptor channel creates an exception and assigns it to the adaptor operation.

See also: – exception

setQualifier:
– (void)setQualifier:(EOQualifier *)qualifier

Sets the qualifier that identifies the row to which the adaptor operation is to be applied to qualifier.

See also: – qualifier

Operator Contents of changedValues Dictionary

EOAdaptorLockOperator
snapshot values used to verify that the database row hasn’t
changed since this application last fetched it

EOAdaptorInsertOperator the values to insert

EOAdaptorUpdateOperator the new values for the columns to update

EOAdaptorDeleteOperator
snapshot values (changedValues is only valid for
AdaptorDeleteOperation if the receiver’s entity uses a stored
procedure to perform delete operations.)

EOAdaptorStoredProcedureOperator snapshot values
63

setStoredProcedure:
– (void)setStoredProcedure:(EOStoredProcedure *)storedProcedure

Sets the receiver’s stored procedure to storedProcedure.

See also: – storedProcedure

storedProcedure
– (EOStoredProcedure *)storedProcedure

Returns the receiver’s stored procedure. Only valid with adaptor operations with the
EOAdaptorStoredProcedureOperation.

See also: – setStoredProcedure:
64

 Classes: EOAttribute

,

EOAttribute

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOAttribute.h

Class Description

An EOAttribute represents a column, field or property in a database, and associates an internal name with
an external name or expression by which the property is known to the database. The property an
EOAttribute represents may be a meaningful value, such as a salary or a name, or it may be an arbitrary
value used for identification but with no real-world applicability (ID numbers and foreign keys for
relationships fall into this category). An EOAttribute also maintains type information for binding values to
the instance variables of objects.

EOAttributes are also used to represent arguments for EOStoredProcedures.

You usually define attributes in your EOModel with the EOModeler application, which is documented in
WebObjects Tools and Techniques. Your code probably won’t need to programmatically interact with
EOAttribute unless you’re working at the adaptor level. See “Creating Attributes” for information on
creating your own attribute objects.

Fore detailed discussion of using attribute objects to map database data types to JavaObjective-C objects
see “Mapping Attributes.” EOAttributes can also alter the way values are selected, inserted, and updated in
the database by defining special format strings; see “SQL Statement Formats” for more information.

Adopted Protocols

EOPropertyListEncoding
– awakeWithPropertyList
– encodeIntoPropertyList:
– initWithPropertyList:owner:
65

Method Types

Accessing the entity
– entity
– parent

Accessing the name
– setName:
– name
– validateName:
– beautifyName

Accessing date information
– serverTimeZone
– setServerTimeZone:

Accessing external definitions
– setColumnName:
– columnName
– setDefinition:
– definition
– setExternalType:
– externalType

Accessing value type information
– setValueClassName:
– valueClassName
– setValueType:
– valueType
– setAllowsNull:
– allowsNull
– setPrecision:
– precision
– setScale:
– scale
– setWidth:
– width
– validateValue:

Converting to adaptor value types
– adaptorValueByConvertingAttributeValue:
– adaptorValueType
66

 Classes: EOAttribute
Working with custom value types
– setValueFactoryMethodName:
– valueFactoryMethod
– valueFactoryMethodName
– setFactoryMethodArgumentType:
– factoryMethodArgumentType
– setAdaptorValueConversionMethodName:
– adaptorValueConversionMethod
– adaptorValueConversionMethodName

Accessing attribute characteristics
– setReadOnly:
– isReadOnly
– isDerived
– isFlattened

Accessing SQL statement formats
– setReadFormat:
– readFormat
– setWriteFormat:
– writeFormat

Accessing the user dictionary
– setUserInfo:
– userInfo

Methods used by the adaptor
– newDateForYear:month:day:hour:minute:second:millisecond:

timezone:zone:
– newValueForBytes:length:
– newValueForBytes:length:encoding:

Working with stored procedures
– setParameterDirection:
– parameterDirection
– storedProcedure

Working with prototypes
– overridesPrototypeDefinitionForKey:
– prototype
– prototypeName
– setPrototype:

<<Need to add more info to this on the implications to custom value classes.>>
67

Instance Methods

adaptorValueByConvertingAttributeValue:
– (id)adaptorValueByConvertingAttributeValue: (id)value

Ensures that value is eitheran NSString, NSNumber, NSData, or NSDate, converting it if necessary. If value
needs to be converted, adaptorValueByConvertingAttributeValue: uses the adaptor conversion method
to convert value to one of these four primitive types. If the attribute hasn’t a specific adaptor conversion
method, and the type to be fetched from the database is EOAdaptorBytesType, “archiveData” will be
invoked to convert the attribute value.

See also: – adaptorValueConversionMethod, – adaptorValueType

adaptorValueConversionMethod
– (SEL)adaptorValueConversionMethod

Returns the method used to convert a custom class into one of the primitive types that the adaptor knows
how to manipulate: NSString, NSNumber, NSData, or NSDate. The return value of this method is derived
from the attribute’s adaptor value conversion method name. If that name doesn’t map to a valid selector in
the Objective-C run-time, nil is returned.

See also: – adaptorValueByConvertingAttributeValue: , – adaptorValueConversionMethodName

adaptorValueConversionMethodName
– (NSString *)adaptorValueConversionMethodName

Returns the name of the method used to convert a custom class into one of the primitive types that the
adaptor knows how to manipulate: NSString, NSNumber, NSData, or NSDate.

See also: – adaptorValueByConvertingAttributeValue:
68

 Classes: EOAttribute

adaptorValueType
– (EOAdaptorValueType)adaptorValueType

Returns an EOAdaptorValueType that indicates the data type that will be fetched from the database.
Currently, this method returns one of the following values:

See also: – factoryMethodArgumentType

allowsNull
– (BOOL)allowsNull

Returns YES to indicate that the attribute can have a nil value, NO otherwise. If the attribute maps directly
to a column in the database, it also is used to determine whether the database column can have a NULL
value.

See also: – setAllowsNull:

beautifyName
– (void)beautifyName

Makes the attribute name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”. This method is used in
reverse-engineering an EOModel.

See also: – validateName:, – beautifyNames (EOModel)

Constant Description

EOAdaptorNumberType A number value

EOAdaptorCharactersType A string of characters

EOAdaptorBytesType Raw bytes

EOAdaptorDateType A date
69

columnName
– (NSString *)columnName

Returns the name of the column in the database that corresponds to this attribute, or nil if the attribute isn’t
simple (that is, if it’s derived or flattened). An adaptor uses this name to identify the column corresponding
to the attribute. Your application should never need to use this name. Note that columnName and definition
are mutually exclusive; if one returns a value, the other returns nil .

See also: , – externalType

definition
– (NSString *)definition

Returns a derived or flattened attribute’s definition, or nil if the attribute is simple. An attribute’s definition
is either a value expression defining a derived attribute, such as “salary * 12”, or a data path for a flattened
attribute, such as “toAuthor.name”. Note that columnName and definition are mutually exclusive; if one
returns a value, the other returns nil .

See also: – externalType, – setDefinition:

entity
– (EOEntity *)entity

Returns the entity that owns the attribute, or nil if this attribute is acting as an argument for a stored
procedure.

See also: – storedProcedure

externalType
– (NSString *)externalType

Returns the attribute’s type as understood by the database; for example, a Sybase “varchar” or an Oracle
“NUMBER”.

See also: – columnName, – setExternalType:
70

 Classes: EOAttribute
factoryMethodArgumentType
– (EOFactoryMethodArgumentType)factoryMethodArgumentType

Returns the type of argument that should be passed to the “factory method”—which is invoked by the
attribute to create an attribute value for a custom class. This method returns one of the following values:

See also: – valueFactoryMethod, – setFactoryMethodArgumentType:

isDerived
– (BOOL)isDerived

Returns NO if the attribute corresponds exactly to one column in the table associated with its entity, and
YES if it doesn’t. For example, an attribute with a definition of “otherAttributeName + 1” is derived.

Note that flattened attributes are also considered as derived attributes.

See also: – isFlattened, – definition

isFlattened
– (BOOL)isFlattened

Returns YES if the attribute is flattened, NO otherwise. A flattened attribute is one that’s accessed through
an entity’s relationships but belongs to another entity.

Note that flattened attributes are also considered to be derived attributes.

See also: – isDerived, – definition

isReadOnly
– (BOOL)isReadOnly

Returns YES if the value of the attribute can’t be modified, NO if it can.

See also: – setReadOnly:

Constant Argument Type

EOFactoryMethodArgumentIsNSData NSData

EOFactoryMethodArgumentIsNSString NSString

EOFactoryMethodArgumentIsBytes raw bytes
71

y

name
– (NSString *)name

Returns the attribute’s name.

See also: – columnName, – definition, – setName:

newDateForYear:month:day:hour:minute:second:millisecond:timezone:zone:
– (NSCalendarDate *)newDateForYear:(int)year month:(unsigned)month day:(unsigned)day hour:

(unsigned)hour minute:(unsigned)minute second:(unsigned)second millisecond:
(unsigned)millisecond timezone:(NSTimeZone *)timezone zone:(NSZone *)zone

Returns an NSCalendarDate given discrete values for year, month, day, and so on. This method is used b
EOAdaptorChannel subclasses to create a calendar date object to return in an adaptor row. For efficiency
reasons, the caller is responsible for releasing the return value.

newValueForBytes:length:
– (id)newValueForBytes:(const void *)bytes length:(int)length

Generates an NSString or custom class value object from a supplied set of bytes. This method is called by
the adaptor during value creation while fetching from the database. For efficiency reasons, the caller is
responsible for releasing the return value.

newValueForBytes:length:encoding:
– (id)newValueForBytes:(const void *)bytes length:(int)length encoding:

(NSStringEncoding)encoding

Generates an NSData or custom class value object from a supplied set of bytes with a given
NSStringEncoding. This method is called by the adaptor during value creation while fetching from the
database. For efficiency reasons, the caller is responsible for releasing the return value.

overridesPrototypeDefinitionForKey:
– (BOOL)overridesPrototypeDefinitionForKey:(NSString *)key

Returns NO if the requested key gets its value from the prototype attribute. If the attribute has an override,
then this method returns YES. Valid values for key include @“columnName,” @“valueClass,” and so on.

See also: – prototype
72

 Classes: EOAttribute

s

parameterDirection
– (EOParameterDirection)parameterDirection

Returns the parameter direction for attributes that are arguments to a stored procedure. This method return
one of the following values:

See also: – storedProcedure, – storedProcedureForOperation: (EOEntity), – setParameterDirection:

parent
– (id)parent

Returns the attribute’s parent, which is either an EOEntity or an EOStoredProcedure. Use this method when
you need to find the model for an attribute:

EOModel *myModel = [[anAttribute parent] model];

precision
– (unsigned)precision

Returns the precision of the database representation for attributes with a value class of NSNumber or
NSDecimalNumber.

See also: – scale

prototype
– (EOAttribute *)prototype

Returns the prototype attribute that is used to define default settings for the receiver.

See also: – overridesPrototypeDefinitionForKey:

Constant Description

EOVoid No parameters

EOInParameter Input only parameters

EOOutParameter Output only parameters

EOInOutParameter Bidirectional parameters (input and output)
73

n
e
prototypeName
– (NSString *)prototypeName

Returns the name of the prototype attribute of the receiver.

See also: – prototype

readFormat
– (NSString *)readFormat

Returns a format string of the appropriate type that can be used when building an expression that contains
the value of the attribute.

See also: – setReadFormat:, – writeFormat

scale
– (int)scale

Returns the scale of the database representation for attributes with a value class of NSNumber or
NSDecimalNumber. The returned value can be negative.

See also: – precision, – setScale:

serverTimeZone
– (NSTimeZone *)serverTimeZone

Returns the time zone assumed for NSDates in the database server, or the local time zone if one hasn’t bee
set. An EOAdaptorChannel automatically converts dates between the time zones used by the server and th
client when fetching and saving values. Applies only to attributes that represent dates.

See also: + localTimeZone (NSTimeZone), – setServerTimeZone:

setAdaptorValueConversionMethodName:
– (void)setAdaptorValueConversionMethodName:(NSString *)conversionMethodName

Sets to conversionMethodName the name of the method used to convert a custom class into one of the
primitive types that the adaptor knows how to manipulate: NSString, NSNumber, NSData, or NSDate. Note
that your adaptor value conversion method should return an autoreleased object.

See also: – adaptorValueConversionMethodName
74

 Classes: EOAttribute
setAllowsNull:
– (void)setAllowsNull:(BOOL)allowsNull

Sets according to allowsNull whether or not the attribute can have a nil value. If the attribute maps directly
to a column in the database, it also controls whether the database column can have a NULL value.

See also: – allowsNull

setColumnName:
– (void)setColumnName:(NSString *)columnName

Sets to columnName the name of the attribute used in communication with the database server. An adaptor
uses this name to identify the column corresponding to the attribute; this name must match the name of a
column in the database table corresponding to the attribute’s entity.

This method makes a derived or flattened attribute simple; the definition is released and the column name
takes its place for use with the server.

Note: setColumnName: and setDefinition: are closely related. Only one can be set at any given time.
Invoking either of these methods causes the other value to be set to nil .

See also: – columnName

setDefinition:
– (void)setDefinition:(NSString *)definition

Sets to definition the attribute’s definition as recognized by the database server. definition should be either a
value expression defining a derived attribute, such as “salary * 12”, or a data path for a flattened attribute,
such as “toAuthor.name”.

Prior to invoking this method, the attribute’s entity must have been set by adding the attribute to an entity.
This method will not function correctly if the attribute’s entity has not been set.

This method converts a simple attribute into a derived or flattened attribute; the columnName is released
and the definition takes its place for use with the server.

Note: setColumnName: and setDefinition: are closely related. Only one can be set at any given time.
Invoking either of these methods causes the other value to be set to nil .

See also: – definition
75

r.

y
setExternalType:
– (void)setExternalType:(NSString *)typeName

Sets to typeName the type used for the attribute in the database adaptor; for example, a Sybase “varchar” or
an Oracle7 “NUMBER”. Each adaptor defines the set of types that can be supplied to setExternalType:.
The external type you specify for a given attribute must correspond to the type used in the database serve

See also: – setDefinition:, – externalType

setFactoryMethodArgumentType:
– (void)setFactoryMethodArgumentType:(EOFactoryMethodArgumentType)argumentType

Sets the type of argument that should be passed to the “factory method”—which is invoked by the receiver
to create a value for a custom class. Factory methods can accept NSStrings, NSDatas, or raw bytes; specif
an argumentType as EOFactoryMethodArgumentIsNSString, EOFactoryMethodArgumentIsNSData, or
EOFactoryMethodArgumentIsBytes as appropriate.

See also: – setValueFactoryMethodName:, – factoryMethodArgumentType

setName:
– (void)setName:(NSString *)name

Sets the attribute’s name to name. Raises an NSInvalidArgumentException if name is already in use by
another attribute or relationship of the same entity, or if name is not a valid attribute name.

See also: – validateName:, – name

setParameterDirection:
– (void)setParameterDirection:(EOParameterDirection)parameterDirection

Sets the parameter direction for attributes that are arguments to a stored procedure. parameterDirection
should be one of the following values:

• EOVoid
• EOInParameter
• EOOutParameter
• EOInOutParameter

See also: – setStoredProcedure:forOperation: (EOEntity), – parameterDirection
76

 Classes: EOAttribute
setPrecision:
– (void)setPrecision:(unsigned)precision

Sets to precision the precision of the database representation for attributes with a value class of NSNumber
or NSDecimalNumber.

See also: – setScale:, – precision

setPrototype:
– (void)setPrototype:(EOAttribute *)prototype

Sets the prototype attribute. This overrides any existing settings in the attribute.

See also: – prototype

setReadFormat:
– (void)setReadFormat:(NSString *)aString

Sets the format string that’s used to format the attribute’s value for SELECT statements. In aString, %P is
replaced by the attribute’s external name. For example:

[myAttribute setReadFormat:@"TO_UPPER(%P)"];

The read format string is used whenever the attribute is referenced in a select list or qualifier.

See also: – setWriteFormat:, – readFormat

setReadOnly:
– (void)setReadOnly:(BOOL)flag

Sets whether the value of the attribute can be modified according to flag. Raises an
NSInvalidArgumentException if flag is NO and the argument is derived but not flattened.

See also: – isDerived, – isFlattened, – isReadOnly

setScale:
– (void)setScale:(int)scale

Sets to scale the scale of the database representation for attributes with a value class of NSNumber or
NSDecimalNumber. scale can be negative.

See also: – setPrecision:, – scale
77

r
setServerTimeZone:
– (void)setServerTimeZone:(NSTimeZone *)aTimeZone

Sets to aTimeZone the time zone used for NSDates in the database server. If aTimeZone is nil then the local
time zone is used. An EOAdaptorChannel automatically converts dates between the time zones used by the
server and the client when fetching and saving values. Applies only to attributes that represent dates.

See also: – serverTimeZone

setUserInfo:
– (void)setUserInfo:(NSDictionary *)dictionary

Sets to dictionary the dictionary of auxiliary data, which your application can use for whatever it needs.
dictionary can only contain property list data types (that is, NSDictionary, NSArray, NSData, and
NSString).

See also: – userInfo

setValueClassName:
– (void)setValueClassName:(NSString *)name

Sets the class name for values of this attribute to name. When an EOAdaptorChannel fetches data for the
attribute, it’s presented to the application as an instance of this class.

The class need not exist in the run-time system when this message is sent, but it must exist when an adapto
channel performs a fetch; if the class isn’t present the result depends on the adaptor. See your adaptor’s
documentation for information on how absent value classes are handled.

 As an example, if your attribute’s values are instances of NSImage, send the following:

[myAttribute setValueClassName:@"NSImage"];

See also: – setValueType:, – valueClassName

setValueFactoryMethodName:
– (void)setValueFactoryMethodName:(NSString *)factoryMethodName

Sets the “factory method”—which is invoked by the attribute to create an attribute value for a custom
class—to factoryMethodName. The factory method should be a class method returning an autoreleased
object of your custom value class. Use setFactoryMethodArgumentType:to specify the type of argument
that is to be passed to your factory method.

See also: – valueFactoryMethodName
78

 Classes: EOAttribute
setValueType:
– (void)setValueType:(NSString *)typeName

Sets to typeName the conversion character (such as “i” or “d”) for the data type an NSNumber attribute is
converted to and from in your application. Value types are scalars such as int , float, and double. Each
adaptor supports a different set of conversion characters for numeric types. However, in most (if not all)
cases it’s safe to supply a value of “i” (int) or “d” (double).

See also: – setValueClassName:, – valueType

setWidth:
– (void)setWidth:(unsigned)length

Sets to length the maximum amount of bytes the attribute’s value may contain. Adaptors may use this
information to allocate space for fetch buffers.

See also: – width

setWriteFormat:
– (void)setWriteFormat: (NSString *)string

Sets the format string that’s used to format the attribute’s value for INSERT or UPDATE expressions. In
string, %P is replaced by the attribute’s value. For example:

[myAttribute setWriteFormat:@"TO_LOWER(%P)"];

See also: – setReadFormat:, – writeFormat

storedProcedure
– (EOStoredProcedure *)storedProcedure

Returns the stored procedure for which this attribute is an argument. If this attribute isn’t an argument to a
stored procedure but instead is owned by an entity, this method returns nil .

See also: – entity

userInfo
– (NSDictionary *)userInfo

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: – setUserInfo:
79

y

;

validateName:
– (NSException *)validateName:(NSString *)name

Validates name and returns nil if it is a valid name, or an exception if it isn’t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@”, “#”, or “_”; or contains a character other
than a letter, a number, “@”, “#”, “_”, or “$”. A name is also invalid if the receiver’s EOEntity already has
an EOAttribute with the same name, or if the model has a stored procedure that has an argument with the
same name.

setName: uses this method to validate its argument.

validateValue:
– (NSException *)validateValue:(id *)valueP

Validates the argument by converting it to the attribute’s value type and by testing other attribute validation
constraints (such as allowsNull, width , and so on). Returns nil if *valueP is deemed to be a legal value for
this attribute. Returns a validation exception otherwise. If, during the validation process, any coercion was
performed, the converted value is assigned to *valueP.

See also: – adaptorValueByConvertingAttributeValue: , – allowsNull, – valueType, – valueClassName,
– width

valueClassName
– (NSString *)valueClassName

Returns the name of the class for custom value types. When data is fetched for the attribute, it’s presented
to the application as an instance of this class. For example, if a column from the database is represented b
instances of NSImage, this method returns “NSImage”.

This class must be present in the run-time system when an EOAdaptorChannel fetches data for the attribute
if the class isn’t present the result depends on the adaptor. See your adaptor’s documentation for information
on how absent value classes are handled.

See also: – valueType, – setValueClassName:

valueFactoryMethod
– (SEL)valueFactoryMethod

Returns the factory method that’s invoked by the attribute when creating an attribute value that’s of a custom
class. The value returned from this method is derived from the attribute’s valueFactoryMethodName. If
that name doesn’t map to a valid selector in the Objective-C run-time, this method returns nil .
80

 Classes: EOAttribute

valueFactoryMethodName
– (NSString *)valueFactoryMethodName

Returns the name of the factory method that’s used for creating a custom class value.

See also: – valueFactoryMethod, – setValueFactoryMethodName:

valueType
– (NSString *)valueType

Returns the conversion character (such as “i” or “d”) for the data type an NSNumber attribute is converted
to and from in your application. Value types are scalars such as int , float, and double.

See also: – valueClassName, – setValueType:

width
– (unsigned)width

Returns the maximum length (in bytes) for values that are mapped to this attribute. Returns zero for numeric
and date types.

See also: – setWidth:

writeFormat
– (NSString *)writeFormat

Returns the format string that’s used to format the attribute’s value for INSERT or UPDATE expressions.
In the returned string, %P is replaced by the attribute’s value.

See also: – readFormat, – setWriteFormat:
81

82

 Classes: EOAttribute
83

84

 Classes: EOAttribute
85

86

 Classes: EOAttribute
87

88

 Classes: EOAttribute
89

90

 Classes:

,

t

Creating Attributes

An attribute may be simple, derived, or flattened. A simple attribute typically corresponds to a single
column in the database, and may be read or updated directly from or to the database. A simple EOAttribute
may also be set as read-only with its setReadOnly: method. Read-only attributes of enterprise objects are
never updated.

A derived attribute doesn’t necessarily correspond to a single database column in its entity’s database table
and is usually based on some other attribute, which is modified in some way. For example, if an Employee
entity has a simple monthly salary attribute, you can define a derived annualSalary attribute as “salary *
12”. Derived attributes, since they don’t correspond to actual values in the database, are effectively
read-only; it makes no sense to write a derived value.

A flattened attribute of an entity is actually an attribute of some other entity that’s fetched through a
relationship with a database join. A flattened attribute’s external definition is a data path ending in an
attribute name. For example, if the Employee entity has the relationship toAddress and the Address entity
has the attribute street, you can define streetName as an attribute of your Employee EOEntity by creating
an EOAttribute for it with a definition of “toAddress.street”.

Creating a Simple Attribute

A simple attribute needs at least the following characteristics:

• A name unique within its EOEntity

• The name of a column in the database table for its entity (the EOAttribute’s external name)

• A declaration of the type of that column as defined by the database and adaptor (the EOAttribute’s
external type)

• A declaration of the Objective-C class used to represent values outside the context of an enterprise objec

• For Objective-C value classes that require it, a subtype for such distinctions as between numeric types

You also have to set whether the attribute is part of its entity’s primary key, is a class property, or is used for
locking. See the EOEntity class description for more information on these three groups of attributes. This
code excerpt gives an example of creating a simple EOAttribute and adding it to an EOEntity:

EOEntity *employeeEntity; /* Assume this exists. */

EOAttribute *salaryAttribute;

NSArray *empClassProps;

NSArray *empLockAttributes;

BOOL result;

salaryAttribute = [[EOAttribute alloc] init];

[salaryAttribute setName:@"salary"];

[salaryAttribute setColumnName:@"SALARY"];

[salaryAttribute setExternalType:@"money"];

[salaryAttribute setValueClassName:"NSDecimalNumber"];
91

g
[employeeEntity addAttribute:salaryAttribute];

[salaryAttribute release];

empClassProps = [[employeeEntity classProperties] mutableCopy];

[empClassProps addObject:salaryAttribute];

[employeeEntity setClassProperties:empClassProps];

[empClassProps release];

empLockAttributes = [[employeeEntity attributesUsedForLocking]

 mutableCopy];

[empLockAttributes addObject:salaryAttribute];

result = [employeeEntity setAttributesUsedForLocking:empLockAttributes];

[empLockAttributes release];

Creating a Derived Attribute

A derived attribute depends on another attribute, so you base it on a definition including that attribute’s
name rather than on an external name. Because a derived attribute isn’t mapped directly to anything in the
database, you shouldn’t include it in the entity’s set of primary key attributes or attributes used for locking:

EOEntity *employeeEntity; /* Assume this exists. */

EOAttribute *bonusAttribute;

NSArray *empClassProps;

BOOL result;

bonusAttribute = [[EOAttribute alloc] init];

[bonusAttribute setName:@"bonus"];

[bonusAttribute setDefinition:@"salary * 0.5"];

[bonusAttribute setValueClassName:@"NSDecimalNumber"];

[employeeEntity addAttribute:bonusAttribute];

[bonusAttribute release];

empClassProps = [[employeeEntity classProperties] mutableCopy];

[empClassProps addObject:bonusAttribute];

result = [employeeEntity setClassProperties:empClassProps];

[empClassProps release];

Creating a Flattened Attribute

A flattened attribute depends on a relationship, so you base it on a definition including that relationship’s
name rather than on an external name. Because a flattened attribute doesn’t correspond directly to anythin
in its entity’s table, you don’t have to specify an external name, and shouldn’t include it in the entity’s set
of primary key attributes or attributes used for locking:

EOEntity *employeeEntity; /* Assume this exists. */

EOAttribute *deptNameAttribute;
92

 Classes:

NSArray *empClassProps;

BOOL result;

deptNameAttribute = [[EOAttribute alloc] init];

[deptNameAttribute setName:@"departmentName"];

[deptNameAttribute setValueClassName:"NSString"];

[deptNameAttribute setExternalType:@"varchar"];

[employeeEntity addAttribute:deptNameAttribute];

[deptNameAttribute setDefinition:@"toDepartment.name"];

[deptNameAttribute release];

empClassProps = [[employeeEntity classProperties] mutableCopy];

[empClassProps addObject:deptNameAttribute];

result = [employeeEntity setClassProperties:empClassProps];

[empClassProps release];

Instead of flattening attributes in your model, a better approach is often to directly traverse the object graph
through relationships. See the chapter “Using EOModeler” in the Enterprise Objects Framework
Developer’s Guide for a discussion on when to use flattened attributes.
93

94

 Classes:

,

g

Mapping Attributes

Mapping from Database to Objects

Every EOAttribute has an external type, which is the type used by the database to store its associated data
and an Objective-C class used as the type for that data in the client application. The type used by the
database is accessed with the setExternalType: and externalType methods. The class type used by the
application is accessed with the valueClassName method. You can map database types to a set of standard
value classes, which includes:

• NSString
• NSNumber
• NSDecimalNumber
• NSData
• NSDate

Database-specific adaptors automatically handle value conversions for these classes. You can also create
your own custom value class, so long as you define a format that it uses to interpret data. Your value class
must also implement the EOCustomClassArchiving protocol to work as a customvalue; see that protocol
specification for more information. For more information on using EOAttribute methods to work with
custom data types, see the next section, “Working with Custom Data Types.”

The handling of dates assumes by default that both the database server and the client application are runnin
in the same, local, time zone. You can alter the server time zone with the setServerTimeZone: method. If
you alter the server time zone, the adaptor automatically converts dates as they pass into and out of the
server.

Working with Custom Data Types

When you create a new model, EOModeler maps each attribute in your model to one of the primitive data
types the adaptor knows how to manipulate: NSString, NSNumber, NSDecimalNumber, NSData, and
NSDate. For example, suppose you have a photo attribute that’s stored in the database as a LONG RAW.
When you create a new model, this attribute is mapped to NSData. However, NSData is just an object
wrapper for binary data—for instance, it doesn’t have any methods for operating on images, which would
limit what you’d be able to do with the image in your application. This is a case in which you’d probably
choose to use a custom data type, such as NSImage.

For a custom data type to be usable in Enterprise Objects Framework, it must supply methods for importing
and exporting itself as one of the primitive types so that it can be read from and written to the database.
Specifically, to use a custom data type you need to do the following:

• Set the attribute’s value class using the method setValueClassName:.

• Set the factory method that will be used to create instances of your class from raw data using the method
setValueFactoryMethodName:.
95

s
e
• Set the type of the argument that should be passed to the factory method using the method
setFactoryMethodArgumentType:.

• Set the conversion method that is used to convert your data back into one of the primitive data types the
adaptor can work with using the method setAdaptorValueConversionMethodName:; this enables the
data to be stored in the database.

If an EOAttribute represents a binary column in the database, the factory method argument type can be
either EOFactoryMethodArgumentIsNSData or EOFactoryMethodArgumentIsBytes, indicating that the
method takes an NSData object or raw bytes as an argument. If the EOAttribute represents a string or
character column, the factory method argument type can be either EOFactoryMethodArgumentIsNSString
or EOFactoryMethodArgumentIsBytes, indicating that the method takes an NSString object or raw bytes
as an argument. These types apply when fetching custom values, as described below.

The following code excerpt demonstrates how these methods work together. The example shows two
custom data types: an image that’s initialized with an NSData, and a custom zip code that’s initialized with
a string.

[imageAttribute setValueClassName:@"NSImage"];

[imageAttribute setFactoryMethodArgumentType:EOFactoryMethodArgumentIsNSData];

[imageAttribute setValueFactoryMethodName:@"imageWithData:"];

[imageAttribute setAdaptorValueConversionMethodName:@"TIFFRepresentation"];

[zipCodeAttribute setValueClassName:@"MyZipCodeClass"];

[zipCodeAttribute setFactoryMethodArgumentType:EOFactoryMethodArgumentIsBytes];

[zipCodeAttribute setValueFactoryMethodName:@"zipCodeWithBytes:length:"];

[zipCodeAttribute setAdaptorValueConversionMethodName:@"zipCodeString"];

Instead of setting the class information programmatically, you can use the Attributes Inspector in
EOModeler, which is more common. For more information, see the chapter “Advanced Modeling
Techniques” in the Enterprise Objects Framework Developer’s Guide.

Fetching Custom Values

Custom values are created during fetching in EOAdaptorChannel’s fetchRowWithZone: method. This
method fetches data in the external (server) type and converts it to a value object. For scalar database type
such as numbers and dates, the EOAdaptorChannel converts the value itself. For binary and string databas
types, it calls upon the EOAttribute being fetched to perform the conversion, into either a standard or
custom value class. EOAttribute’s methods for performing this conversion are newValueForBytes:length:
for binary data and newValueForBytes:length:encoding: for strings. These methods either convert the raw
data directly into an NSData or NSString, or apply the custom value factory method to convert it into the
custom class. Once the value is converted, the EOAdaptorChannel puts it into the dictionary for the row
being fetched.

newValueForBytes:length: can handle NSData and raw bytes (void *). It converts the raw bytes into an
NSData if the custom value argument type is EOFactoryMethodArgumentIsNSData, then invokes the
96

 Classes:

,
custom value factory method with the NSData or bytes. If the EOAttribute has no custom value factory
method, this method simply returns an NSData object containing the bytes.

newValueForBytes:length:encoding: can handle NSString and raw bytes. It converts the raw bytes into
an NSString if the custom value argument type is EOFactoryMethodArgumentIsNSString, then it invokes
the custom value factory method with the string or bytes. If the EOAttribute has no custom value factory
method, this method simply returns an NSString object created from the bytes.

Converting Custom Values

Custom values are converted back to binary or character data in EOAdaptorChannel’s evaluateExpression:
method. For each value in the EOSQLExpression to be evaluated, the EOAdaptorChannel sends the
appropriate EOAttribute an adaptorValueByConvertingAttributeValue: message to convert it. If the
value is any of the standard value classes, it’s returned unchanged. If the value is of a custom class, though
it’s converted by applying the conversion method (adaptorValueConversionMethod) specified in the
EOAttribute.
97

98

 Classes:

SQL Statement Formats

In addition to mapping database values to object values, an EOAttribute can alter the way values are
selected, inserted, and updated in the database by defining special format strings. These format strings allow
a client application to extend its reach right down to the server for certain operations. For example, you
might want to view an employee’s salary on a yearly basis, without defining a derived attribute as in a
previous example. In this case, you could set the salary attribute’s SELECT statement format to
“salary * 12” (with setReadFormat:) and the INSERT and UPDATE statement formats to “salary / 12”
(setWriteFormat:). Thus, whenever your application retrieves values for the salary attribute they’re
multiplied by 12, and when it writes values back to the database they’re divided by 12.

Your application can use any legal SQL value expression in a format string, and can even access
server-specific features such as functions and stored procedures (see EOEntity’s setStoredProcedure:
forOperation: method description for more information). Accessing server-specific features can offer your
application great flexibility in dealing with its server, but does limit its portability. You’re responsible for
ensuring that your SQL is well-formed and will be understood by the database server.

Format strings for the setReadFormat: and setWriteFormat: methods should use “%P” as the substitution
character for the value that is being formatted. “%@” will not work. For example:

[myAttribute setReadFormat:@"TO_UPPER(%P)"];

[myAttribute setWriteFormat:@"TO_LOWER(%P)"];

Instead of setting the read and write formats programmatically, you can set them in EOModeler, which is
more common. For more information, see the chapter “Using EOModeler” in WebObjects Tools and
Techniques.
99

100

 Classes: EODatabase

ll
EODatabase

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabase.h

Class Description

An EODatabase object represents a single database server. It contains an EOAdaptor which is capable of
communicating with the server, a list of EOModels that describe the server’s schema, a list of
EODatabaseContexts that are connected to the server, and a set of snapshots representing the state of a
objects stored in the server.

For more information, see “EODatabase”.

Method Types

Creating instances – initWithModel:
– initWithAdaptor:

Adding and removing models
– addModel:
– addModelIfCompatible:
– removeModel:
– models

Accessing entities
– entityForObject:
– entityNamed:
101

Recording snapshots
– recordSnapshot:forGlobalID:
– forgetSnapshotForGlobalID:
– forgetSnapshotsForGlobalIDs:
– recordSnapshots:
– forgetAllSnapshots
– snapshotForGlobalID:
– snapshots
– recordSnapshot:forSourceGlobalID:relationshipName:
– recordToManySnapshots:
– snapshotForSourceGlobalID:relationshipName:

Registering database contexts
– registerContext:
– unregisterContext:
– registeredContexts

Accessing the adaptor
– adaptor

Managing the result cache
– invalidateResultCache
– invalidateResultCacheForEntityNamed:
– resultCacheForEntityNamed:
– setResultCache:forEntityNamed:

Instance Methods

adaptor
– (EOAdaptor *)adaptor

Returns the EOAdaptor used by the receiver for communication with the database server. Your application
can interact directly with the EOAdaptor, but should avoid altering its state (for example, by starting a
transaction with one of its adaptor contexts).

addModel:
– (void)addModel:(EOModel *)aModel

Adds aModel to the receiver’s list of EOModels. This allows EODatabases to load entities and their
properties only as they’re needed, by dividing them among separate EOModels. aModel must use the same
EOAdaptor as the receiver and use the same connection dictionary as the receiver’s other EOModels.

See also: – addModelIfCompatible: , – models, – removeModel:
102

 Classes: EODatabase
addModelIfCompatible:
– (BOOL)addModelIfCompatible:(EOModel *)aModel

Adds aModel to the receiver’s list of EOModels, checking first to see whether it’s compatible with those
other EOModels. Returns YES if aModel is already in the list or if it’s successfully added. Returns NO if
aModel’s adaptor name differs from that of the receivers or if the receiver’s adaptor returns NO to a
canServiceModel: message.

See also: – addModel:, – models, – removeModel:

entityForObject:
– (EOEntity *)entityForObject: (id)anObject

Returns the EOEntity from one of the receiver’s Models that’s mapped to anObject, or nil if there is no such
EOEntity. This method works by sending entityForObject: messages to each of the receiver’s EOModels
and returning the first one found.

See also: – entityNamed:

entityNamed:
– (EOEntity *)entityNamed:(NSString *)entityName

Returns the EOEntity from one of the receiver’s Models that’s named entityName, or nil if there is no such
EOEntity. This method works by sending entityNamed: messages to each of the receiver’s EOModels and
returning the first one found.

See also: – entityForObject:

forgetAllSnapshots
– (void)forgetAllSnapshots

Clears all of the receiver’s snapshots and posts an EOObjectsChangedInStoreNotification (defined in the
EOControl framework’s EOObjectStore class) describing the invalidated object. For a description of
snapshots and their role in an application, see the class description.

See also: – forgetSnapshotForGlobalID:, – forgetSnapshotsForGlobalIDs:, – recordSnapshot:
forGlobalID: , – recordSnapshots:, – recordSnapshot:forSourceGlobalID:relationshipName:
, – recordToManySnapshots:
103

forgetSnapshotForGlobalID:
– (void)forgetSnapshotForGlobalID:(EOGlobalID *)globalID

Clears the snapshot made for the enterprise object identified by globalID and posts an
EOObjectsChangedInStoreNotification (defined in the EOControl framework’s EOObjectStore class)
describing the invalidated object. For a description of snapshots and their role in an application, see the class
description.

See also: – forgetSnapshotsForGlobalIDs:, – forgetAllSnapshots, – recordSnapshot:forGlobalID:

forgetSnapshotsForGlobalIDs:
– (void)forgetSnapshotsForGlobalIDs:(NSArray *)globalIDs

Clears the snapshots made for the enterprise objects identified by each of the EOGlobalIDs in globalIDs
and posts an EOObjectsChangedInStoreNotification (defined in the EOControl framework’s
EOObjectStore class) describing the invalidated objects. For a description of snapshots and their role in an
application, see the class description.

See also: – forgetSnapshotForGlobalID:, – forgetAllSnapshots, – recordSnapshots:

initWithAdaptor:
– initWithAdaptor: (EOAdaptor *)anAdaptor

The designated initializer, this method initializes a newly allocated EODatabase with anAdaptor as its
adaptor and returns self.

Typically, you don’t need to programmatically create EODatabase objects. Rather, they are created
automatically by the control layer. See the class description for more information. If you do need to create
an EODatabase programmatically, you should never associate more than one EODatabase with a given
EOAdaptor. In general, use initWithModel: , which automatically selects the adaptor.

initWithModel:
– initWithModel: (EOModel *)aModel

Initializes a newly allocated EODatabase by creating an instance of EOAdaptor named in aModel and
invoking initWithAdaptor: . Returns self. Typically, you don’t need to programmatically create
EODatabase objects. Rather, they are created automatically by the control layer. See the class description
for more information.

See also: + adaptorWithModel: (EOAdaptor), – adaptorName (EOModel)
104

 Classes: EODatabase
invalidateResultCache
– (void)invalidateResultCache

Invalidates the receiver’s result cache. See the class description for more discussion of this topic.

See also: – invalidateResultCacheForEntityNamed:, – resultCacheForEntityNamed:

invalidateResultCacheForEntityNamed:
– (void)invalidateResultCacheForEntityNamed:(NSString *)entityName

Invalidates the result cache containing an array of globalIDs for the objects associated with the entity
entityName. See the class description for more discussion of this topic.

See also: – invalidateResultCache, – resultCacheForEntityNamed:

models
– (NSArray *)models

Returns the receiver’s EOModels.

See also: – initWithModel: , – addModel:, – addModelIfCompatible: , – removeModel:

recordSnapshot:forGlobalID:
– (void)recordSnapshot:(NSDictionary *)aSnapshot forGlobalID: (EOGlobalID *)globalID

Records aSnapshot under globalID. For a description of snapshots and their role in an application, see the
class description.

See also: – globalIDForRow: (EOEntity), – recordSnapshots:, – forgetSnapshotForGlobalID:

recordSnapshot:forSourceGlobalID:relationshipName:
– (void)recordSnapshot:(NSArray *)globalIDs

forSourceGlobalID:(EOGlobalID *)globalID
relationshipName:(NSString *)name

For the object identified by globalID, records an NSArray of globalIDs for the to-many relationship named
name. These globalIDs identify the objects at the destination of the relationship. For a description of
snapshots and their role in an application, see the class description.

See also: – recordSnapshot:forGlobalID:, – recordSnapshots:, – recordSnapshot:forGlobalID:,
– snapshotForSourceGlobalID:relationshipName:
105

,

e
recordSnapshots:
– (void)recordSnapshots:(NSDictionary *)snapshots

Records the snapshots in snapshots. snapshots is a dictionary whose keys are EOGlobalIDs and whose
values are the snapshots for those global IDs. For a description of snapshots and their role in an application
see the class description.

See also: – recordSnapshot:forGlobalID:, – forgetSnapshotsForGlobalIDs:

recordToManySnapshots:
– (void)recordToManySnapshots:(NSDictionary *)snapshots

Records the objects in snapshots. snapshots should be an NSDictionary of NSDictionaries, in which the
top-level dictionary has as its key the globaID of the enterprise object for which to-many relationships are
being recorded. The key’s value is a dictionary whose keys are the names of the enterprise object’s to-many
relationships. Each of these keys in turn has as its value an array of globalIDs that identify the objects at the
destination of the relationship. For a description of snapshots and their role in an application, see the class
description.

See also: – recordSnapshot:forSourceGlobalID:relationshipName:, – recordSnapshot:forGlobalID:,
– snapshotForSourceGlobalID:relationshipName:

registerContext:
– (void)registerContext:(EODatabaseContext *)aContext

Records aContext as one of the receiver’s EODatabaseContexts, without retaining it. . aContext must have
been created with the receiver using EODatabaseContext’s initWithDatabase: method, which invokes this
method automatically. You should never need to invoke this method directly.

See also: – unregisterContext:, – registeredContexts

registeredContexts
– (NSArray *)registeredContexts

Returns all the EODatabaseContexts that have been registered with the receiver, generally all the databas
contexts that were created with the receiver as their EODatabase object.

See also: – registerContext:, – unregisterContext:
106

 Classes: EODatabase
removeModel:
– (void)removeModel:(EOModel *)aModel

Removes aModel from the receiver’s list of EOModels. Raises an exception if aModel isn’t one of the
receiver’s models.

See also: – addModel:, – addModelIfCompatible: , – models

resultCacheForEntityNamed:
– (NSArray *)resultCacheForEntityNamed:(NSString *)entityName

Returns an array containing the globalIDs of the objects associated with entityName. See the class
description for more discussion of this topic.

See also: – invalidateResultCache, – invalidateResultCacheForEntityNamed:

setResultCache:forEntityNamed:
– (void)setResultCache:(NSArray *)cache forEntityNamed: (NSString *)entityName

Updates the receiver’s cache for entityName with cache, an array of EOGlobalID objects, for all the
enterprise objects associated with the EOEntity named entityName. This method is invoked automatically,
and you should never need to invoke it directly. For more information on this topic, see the class description.

See also: – invalidateResultCache, – invalidateResultCacheForEntityNamed:,
– resultCacheForEntityNamed:

snapshotForGlobalID:
– (NSDictionary *)snapshotForGlobalID:(EOGlobalID *)globalID

Returns the snapshot associated with globalID if there is one; otherwise returns nil . For a description of
snapshots and their role in an application, see the class description.

See also: – recordSnapshot:forGlobalID:, – forgetSnapshotForGlobalID:

snapshotForSourceGlobalID:relationshipName:
– (NSArray *)snapshotForSourceGlobalID:(EOGlobalID *)globalID

relationshipName:(NSString *)name

Returns a snapshot that consists of an array of globalIDs. These globalIDs identify the objects at the
destination of the to-many relationship named name, which is a property of the object identified by
107

globalID. If there is no snapshot, returns nil . For a description of snapshots and their role in an application,
see the class description.

snapshots
– (NSDictionary *)snapshots

Returns all of the receiver’s snapshots, stored in a dictionary under their EOGlobalIDs.

See also: – recordSnapshot:forSourceGlobalID:relationshipName:, – recordToManySnapshots:

unregisterContext:
– (void)unregisterContext:(EODatabaseContext *)aContext

Removes aContext as one of the receiver’s EODatabaseContexts, without releasing it. An
EODatabaseContext automatically invokes this method when deallocated; you should never need to invoke
it directly.

See also: – registerContext:, – registeredContexts
108

 Classes: EODatabase

el
y
d

.

e
EODatabase
Each of an EODatabase’s EODatabaseContexts forms a separate transaction scope, and is in effect a
separate logical user to the server. An EODatabaseContext uses one or more pairs of EODatabaseChann
and EOAdaptorChannel objects to manage data operations (insert, update, delete, and fetch). Adaptors ma
support a limited number of contexts per database or channels per context, but an application is guarantee
at least one of each.

The EODatabase, EODatabaseContext, and EODatabaseChannel classes form the database level of the
Enterprise Objects Framework. The database level is a client of the adaptor level, which is defined by the
adaptor classes: EOAdaptor, EOAdaptorContext, and EOAdaptorChannel. Together, the database and
adaptor levels make up the access layer of the Enterprise Objects Framework.

Figure 2 The Access Layer

The database level acts as an intermediary between the adaptor level and the control layer, which includes
an EOObjectStoreCoordinator and an EOEditingContext (Figure 3). The control layer operates in terms of
enterprise objects, while the adaptor level operates in terms of database rows packaged as NSDictionaries
It’s the job of the database level to perform the necessary object-to-relational translation between the two.

There’s little need for your code to interact directly with an EODatabase object. An EOEditingContext
creates its own database level objects, which create their own corresponding adaptor level objects. Once th
network of objects is in place, your code might interact with an EODatabase to access its corresponding
EOAdaptor object, but additional programmatic interaction is usually unnecessary.
109

n

ck
ed

y

Figure 3 The EODatabase Level as an Intermediary Between the Adaptor Level and the Control Layer

Snapshots

EODatabase’s most significant responsibility is to record snapshots for its EODatabaseContexts. A
snapshot is a dictionary whose keys are attribute names and whose values are the corresponding, last-know
database values. Enterprise Objects Framework records snapshots as it successfully fetches, inserts and
updates enterprise objects. Snapshot information is used when changes to enterprise objects are saved ba
out to the database to ensure that row data has not been changed by someone else since it was last record
by the application.

A snapshot contains entries for a row’s primary key, class properties, foreign keys for class property
relationships, and attributes used for locking. They are recorded under the globalIDs of their enterprise
objects. (EOGlobalIDs are based on an object’s primary key and its associated entity; see the class
specification for EOGlobalID in the EOControl framework for more information.)

EODatabase also records snapshots for to-many relationships. These snapshots consist of an NSDictionar
of NSDictionaries, in which the top-level dictionary has as its key the globaID of the enterprise object for
which to-many relationships are being recorded. The key’s value is a dictionary whose keys are the names
of the enterprise object’s to-many relationships. Each of these keys in turn has as its value an array of
globalIDs that identify the objects at the destination of the relationship.
110

 Classes: EODatabase

s

The snapshots made by an EODatabase form the global view of data for nearly every other part of the
application, representing the current view of data in the server as far as the application is concerned (though
other applications may have made changes). This global view is temporarily overridden locally by
EODatabaseContexts, which form their own snapshots as they make changes during a transaction. When
an EODatabaseContext commits its top-level transaction, it reconciles all changed snapshots with the
global view of the database object, so that other database contexts (except those with open transactions)
immediately use the new snapshots as well. EODatabaseContexts automatically use their EODatabase to
record snapshots, so there’s no need for your application to intervene in an EODatabase’s snapshotting
mechanism.

For more information on snapshots and how they relate to an application’s update strategy, see the
EODatabaseContext class specification.

Result Cache

An EODatabase object also performs the function of caching enterprise objects for entities that cache their
objects (see the EOEntity class specification). An EODatabase’s result cache stores the globalIDs of
enterprise objects for entities that cache their objects. The first time you perform a fetch against such an
entity, all of its objects are fetched, regardless of the fetch specification used. The globalIDs of the resulting
objects are stored in the EODatabase’s result cache by entity name. Whenever possible, subsequent fetche
are performed against the cache (in memory) rather than against the database. With a globalID, Enterprise
Objects Framework can look up the values for the corresponding object in its snapshot using EODatabase’s
or EODatabaseContext’s snapshotForGlobalID: method.

As an example, suppose that you have an entity named Rating that contains all the valid ratings for Movies
(G, PG, R, and so on). Rather than store a Movie’s rating directly in the Movie as an attribute, Movie
maintains a relationship to a Rating. To specify a rating for a movie, users select the rating from a pop-up
list of the possible values. This Rating entity should cache its objects. The values that populate the rating
pop-up list are only fetched once, and there’s no need to fetch them again; the relationships between Movies
and Ratings can be maintained without subsequent fetches.

The result cache is managed automatically; you shouldn’t have to manipulate it explicitly. However, if you
need to access or alter the cache, EODatabase provides several methods for interacting with it.
111

112

 Classes: EODatabaseChannel

l,

ise
n

EODatabaseChannel

Inherits From: NSObject

Declared In: EOAccess/EODatabaseChannel.h

Class Description

An EODatabaseChannel represents an independent communication channel to the database server. It’s
associated with an EODatabaseContext and an EODatabase, which, together with the EODatabaseChanne
form the database level of Enterprise Objects Framework’s access layer. See the EODatabase class
specification for more information.

An EODatabaseChannel has an EOAdaptorChannel that it uses to connect to the database server its
EODatabase object represents. An EODatabaseChannel fetches database records as instances of enterpr
object classes that are specified in its EODatabase’s EOModel objects. An EODatabaseChannel also has a
EODatabaseContext, which uses the channel to perform fetches and to lock rows in the database. All of the
database level objects are used automatically by EOEditingContexts and other components of Enterprise
Objects Framework. You rarely need to interact with them directly. In particular, you wouldn’t ordinarily
use an EODatabaseChannel to fetch objects. Rather, you’d use an EOEditingContext.

Method Types

Creating instances – initWithDatabaseContext:

Accessing cooperating objects – adaptorChannel
– databaseContext

Fetching objects – selectObjectsWithFetchSpecification:editingContext:
– isFetchInProgress
– fetchObject
– cancelFetch

Accessing internal fetch state – setCurrentEntity:
– setCurrentEditingContext:
– setIsLocking:
– isLocking
– setIsRefreshingObjects:
– isRefreshingObjects

Accessing the delegate – setDelegate:
– delegate
113

ee

Instance Methods

adaptorChannel
– (EOAdaptorChannel *)adaptorChannel

Returns the EOAdaptorChannel used by the receiver for communication with the database server.

cancelFetch
– (void)cancelFetch

Cancels any fetch in progress.

See also: – isFetchInProgress, – selectObjectsWithFetchSpecification:editingContext:, – fetchObject

databaseContext
– (EODatabaseContext *)databaseContext

Returns the EODatabaseContext that controls transactions for the receiver.

delegate
– (id)delegate

Returns the receiver’s delegate. An EODatabaseChannel shares the delegate of its EODatabaseContext. S
the EODatabaseContext class specification for the delegate methods you can implement.

See also: – setDelegate:

fetchObject
– (id)fetchObject

Fetches and returns the next object in the result set produced by a selectObjectsWithFetchSpecification:
editingContext: message; returns nil if there are no more objects in the current result set or if an error
occurs. This method uses the receiver’s EOAdaptorChannel to fetch a row, records a snapshot with the
EODatabaseContext if necessary, and creates an enterprise object from the row if a corresponding object
doesn’t already exist. The new object is sent an awakeFromFetchInEditingContext: message to allow it
to finish setting up its state.

If no snapshot exists for the fetched object, the receiver sends its EODatabase a recordSnapshot:
forGlobalID: message to record one. If a snapshot already exists (because the object was previously
fetched), the receiver checks whether it should overwrite the old snapshot with the new one. It does so by
114

 Classes: EODatabaseChannel

asking the delegate with a databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globalID:
databaseChannel: method. If the delegate doesn’t respond to this method, the EODatabaseChannel
overwrites the snapshot if it’s locking or refreshing fetched objects. Further, if the EODatabaseChannel is
refreshing fetched objects, it posts an EOObjectsChangedInStoreNotification on behalf of its
EODatabaseContext (which causes any EOEditingContext using that EODatabaseContext to update its
enterprise object with the values recorded in the new snapshot).

For information on locking and update strategies, see the EODatabaseContext class specification. For
information on refreshing fetched objects, see the EOFetchSpecification class specification.

Ordinarily, you don’t directly use an EODatabaseChannel to fetch objects. Rather, you use an
EOEditingContext, which uses an underlying EODatabaseChannel to do its work.

See also: – cancelFetch, – isFetchInProgress, – isLocking, – isRefreshingObjects

initWithDatabaseContext:
– initWithDatabaseContext:(EODatabaseContext *)aDatabaseContext

The designated initializer, this method initializes a newly allocated EODatabaseChannel with
aDatabaseContext as the EODatabaseContext in which it works. The new EODatabaseChannel retains
aDatabaseContext, and creates an EOAdaptorChannel to communicate with the database server. Returns
self. Raises if the underlying adaptor context can’t create a corresponding adaptor channel.

Typically, you don’t need to programmatically create EODatabaseChannel objects. Rather, they are created
automatically by the control layer. See the EODatabase class description for more information.

isFetchInProgress
– (BOOL)isFetchInProgress

Returns YES if the receiver is fetching, NO otherwise. An EODatabaseChannel is fetching if it’s been sent
a successful selectObjectsWithFetchSpecification:editingContext: message. An EODatabaseChannel
stops fetching when there are no more objects to fetch or when it is sent a cancelFetch message.

isLocking
– (BOOL)isLocking

Returns YES if the receiver is locking the objects selected, as determined by its EODatabaseContext’s
update strategy or the EOFetchSpecification used to perform the select. Returns NO otherwise. This method
always returns NO when no fetch is in progress.

See also: – locksObjects (EOFetchSpecification), – setIsLocking:
115

isRefreshingObjects
– (BOOL)isRefreshingObjects

Returns YES if the receiver overwrites existing snapshots with fetched values and causes the current
EOEditingContext to overwrite existing enterprise objects with those values as well. Returns NO otherwise.
This behavior is controlled by the EOFetchSpecification used in a selectObjectsWithFetchSpecification:
editingContext: message.

See also: – refreshesRefetchedObjects (EOFetchSpecification), – fetchObject,
– setIsRefreshingObjects:

selectObjectsWithFetchSpecification:editingContext:
– (void)selectObjectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification

editingContext:(EOEditingContext *)anEditingContext

Selects objects described by fetchSpecification so that they’ll be fetched into anEditingContext. The selected
objects compose one or more result sets, each object of which will be returned by subsequent fetchObject
messages in the order prescribed by fetchSpecification’s EOSortOrderings.

Raises an exception if an error occurs; the particular exception depends on the specific error, and is
indicated in the exception’s description. Some possible reasons for failure are:

• fetchSpecification is invalid.
• The receiver’s EODatabaseContext has no transaction in progress.
• The delegate disallows the select operation.
• The receiver’s EOAdaptorChannel fails to perform the select operation.

This method invokes the delegate methods databaseContext:
shouldSelectObjectsWithFetchSpecification:databaseChannel:, databaseContext:
shouldUsePessimisticLockWithFetchSpecification: databaseChannel:, and databaseContext:
didSelectObjectsWithFetchSpecification:databaseChannel:. See their descriptions in the
EODatabaseContext class specification for more information.

You wouldn’t ordinarily invoke this method directly; rather, you’d use an EOEditingContext to select and
fetch enterprise objects.

See also: – fetchObject
116

 Classes: EODatabaseChannel
setCurrentEditingContext:
– (void)setCurrentEditingContext:(EOEditingContext *)anEditingContext

Sets the EOEditingContext that’s made the owner of fetched objects to anEditingContext. This method is
automatically invoked by selectObjectsWithFetchSpecification:editingContext:. You should never
invoke it directly.

See also: – setCurrentEntity:

setCurrentEntity:
– (void)setCurrentEntity: (EOEntity *)anEntity

Sets the EOEntity used when fetching enterprise objects to anEntity. Subsequent fetchObject messages
during a fetch operation create an object of the class associated with anEntity. This method is invoked
automatically by selectObjectsWithFetchSpecification:editingContext:.You should never need to invoke
it directly.

See also: – setCurrentEditingContext:

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject. An EODatabaseChannel shares the delegate of its
EODatabaseContext; you should never invoke this method directly. See the EODatabaseContext class
specification for the delegate methods you can implement.

See also: delegate

setIsLocking:
– (void)setIsLocking:(BOOL)flag

Records whether the receiver locks the records it selects. A EODatabaseChannel modifies its interaction
with the database server and its snapshotting behavior based on this setting. If flag is YES the
EODatabaseChannel modifies its fetching behavior to lock objects; if flag is NO it simply fetches them.

An EODatabaseChannel automatically sets this flag according to the fetch specification used in a
selectObjectsWithFetchSpecification:editingContext: message. You might invoke this method directly
if evaluating SQL directly with EOAdaptorChannel’s method.

See also: – locksObjects (EOFetchSpecification), – setIsLocking:
117

ts
setIsRefreshingObjects:
– (void)setIsRefreshingObjects:(BOOL)flag

Records whether the receiver causes existing snapshots and enterprise objects to be overwritten with
fetched values. If flag is YES the receiver overwrites existing snapshots with fetched values and posts an
EOObjectsChangedInStoreNotification on behalf of its EODatabaseContext (which typically causes the an
existing object’s EOEditingContext to replace its values with the new ones). If flag is NO, the receiver relies
on the delegate to determine whether snapshots should be overwritten, and doesn’t cause enterprise objec
to be overwritten.

An EODatabaseChannel automatically sets this flag according to the fetch specification used in a
selectObjectsWithFetchSpecification:editingContext: message. You might invoke this method directly
if evaluating SQL directly with EOAdaptorChannel’s evaluateExpression: method.

See also: – refreshesRefetchedObjects (EOFetchSpecification)
118

 Classes: EODatabaseContext

g

g
g
EODatabaseContext

Inherits From: EOCooperatingObjectStore : EOObjectStore : NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabaseContext.h

Class Description

An EODatabaseContext object is an EOObjectStore for accessing relational databases, creating and savin
objects based on EOEntity definitions in an EOModel.

An EODatabaseContext represents a single connection to a database server, and it determines the updatin
and locking strategy used by its EODatabaseChannel objects. An EODatabaseContext has a correspondin
EODatabase object. If the server supports multiple concurrent transactions, the EODatabase object may
have several database contexts. If the server and adaptor support it, a database context may in turn have
several database channels, which handle access to the data on the server.

For a more information, see “EODatabaseContext”.

Method Types

Initializing instances
– initWithDatabase:

Fetching objects
– objectsWithFetchSpecification:editingContext:
– objectsForSourceGlobalID:relationshipName:editingContext:
– arrayFaultWithSourceGlobalID:relationshipName:editingContext:
– batchFetchRelationship:forSourceObjects:editingContext:

Accessing the adaptor context
– adaptorContext

Accessing the database object
– database

Accessing the coordinator
– coordinator
119

Managing channels
– availableChannel
– registerChannel:
– registeredChannels
– unregisterChannel:

Accessing the delegate
– setDelegate:
– delegate

Committing or discarding changes
– invalidateAllObjects
– invalidateObjectsWithGlobalIDs:
– rollbackChanges
– saveChangesInEditingContext:
– commitChanges
– performChanges
– prepareForSaveWithCoordinator:editingContext:
– recordUpdateForObject:changes:
– recordChangesInEditingContext
– refaultObject:withGlobalID:editingContext:

Determining if the EODatabaseContext is responsible for a particular operation
– ownsObject:
– ownsGlobalID:
– handlesFetchSpecification:

Managing Snapshots
– forgetSnapshotForGlobalID:
– forgetSnapshotsForGlobalIDs:
– localSnapshotForGlobalID:
– recordSnapshot:forGlobalID:
– recordSnapshots:
– snapshotForGlobalID:
– recordSnapshot:forSourceGlobalID:relationshipName:
– snapshotForSourceGlobalID:relationshipName:
– localSnapshotForSourceGlobalID:relationshipName:
– recordToManySnapshots:

Initializing objects
– initializeObject:withGlobalID:editingContext:

Obtaining an EODatabaseContext
+ registeredDatabaseContextForModel:editingContext:
120

 Classes: EODatabaseContext

Locking objects
– setUpdateStrategy:
– updateStrategy
– registerLockedObjectWithGlobalID:
– isObjectLockedWithGlobalID:
– isObjectLockedWithGlobalID:editingContext:
– forgetAllLocks
– forgetLocksForObjectsWithGlobalIDs:
– lockObjectWithGlobalID:editingContext:

Returning information about objects
– valuesForKeys:object:

Setting the context class
+ contextClassToRegister
+ setContextClassToRegister:

Checking connection status
– hasBusyChannels

Other
+ forceConnectionWithModel:connectionDictionaryOverrides:

editingContext:
– lock
– unlock

Class Methods

contextClassToRegister
+ (Class)contextClassToRegister

Returns the class that is registered with an EOObjectStoreCoordinator when the coordinator broadcasts an
EOCooperatingObjectStoreNeeded notification. By default this is EODatabaseContext, but you can
use setContextClassToRegister: to specify your own subclass of EODatabaseContext.

When an EOObjectStoreCoordinator sends an EOCooperatingObjectStoreNeeded notification for an
EOEntity in the default model group, if contextClassToRegister is non-nil (and it should be—it makes no
sense to set contextClassToRegister to nil), an instance of the that class is created, the EOModel for the
EOEntity is registered, and the context class is registered with the requesting EOObjectStoreCoordinator.
121

or
forceConnectionWithModel:connectionDictionaryOverrides:editingContext:
+ (EODatabaseContext *)forceConnectionWithModel:(EOModel *)amodel

connectionDictionaryOverrides:(NSDictionary *)overrides
editingContext:(EOEditingContext *)anEditingContext

Forces the stack of objects in the EOAccess layer to be instantiated, if necessary, and then makes a
connection to the database. If there is an existing connection for amodel, it is first closed and then
reconnected. The new connection dictionary is effectively made up of the model’s connection dictionary,
overlaid with overrides. All compatible models in the model’s group also are associated with the new
connection (so they share the same adaptor). Returns the EODatabaseContext associated with the model f
anEditingContext.

registeredDatabaseContextForModel:editingContext:
+ (EODatabaseContext *)registeredDatabaseContextForModel:(EOModel *)aModel

editingContext:(EOEditingContext *)anEditingContext

Finds the EOObjectStoreCoordinator for anEditingContext and checks to see if it already contains an
EODatabaseContext cooperating store for aModel. If it does, it returns that EODatabaseContext. Otherwise
it instantiates a new EODatabaseContext, adds it to the EOObjectStoreCoordinator, and returns the
EODatabaseContext.

setContextClassToRegister:
+ (void)setContextClassToRegister:(Class)contextClass

Sets to contextClass the “contextClassToRegister.” For more discussion of this topic, see the method
description for contextClassToRegister.

Instance Methods

adaptorContext
– (EOAdaptorContext *)adaptorContext

Returns the EOAdaptorContext used by the EODatabaseContext for communication with the database
server.
122

 Classes: EODatabaseContext

t

,

arrayFaultWithSourceGlobalID:relationshipName:editingContext:
– (NSArray *)arrayFaultWithSourceGlobalID: (EOGlobalID *)globalID

relationshipName:(NSString *)name
editingContext:(EOEditingContext *)anEditingContext

Overrides the inherited implementation to create a to-many fault for anEditingContext. name must
correspond to an EORelationship in the EOEntity for the specified globalID.

See also: – faultForGlobalID:editingContext:

availableChannel
– (EODatabaseChannel *)availableChannel

Returns an EODatabaseChannel that’s registered with the receiver and that isn’t busy. If the method can’t
find a channel that meets these criteria, it posts an EODatabaseChannelNeededNotification in the hopes tha
someone will provide a new channel. After posting the notification, the receiver checks its list of channels
again. If there are still no available channels, the receiver creates an EODatabaseChannel itself. However
if the list is not empty and there are no available channels, the method returns nil .

See also: – registerChannel:, – registeredChannels, – unregisterChannel:

batchFetchRelationship:forSourceObjects:editingContext:
– (void)batchFetchRelationship:(EORelationship *)relationship

forSourceObjects:(NSArray *)objects
editingContext:(EOEditingContext *)anEditingContext

Clear all the faults for the relationship of anEditingContext’s objects and performs a single, efficient, fetch
(at most two fetches, if the relationship is many-to-many). This method provides a way to fetch the same
relationship for multiple objects. For example, given an array of Employee objects, this method can fetch
all of their departments with one round trip to the server, rather than asking the server for each of the
employee’s departments individually.

commitChanges
– (void)commitChanges

Overrides the inherited implementation to instruct the adaptor to commit the transaction. If the commit is
successful, any primary and foreign key changes are written back to the saved objects, database locks are
released, and an EOObjectsChangedInStoreNotification (defined in EOObjectStore) is posted describing
123

the committed changes. Raises an exception if the adaptor is unable to commit the transaction; the error
message indicates the nature of the problem. You should never need to invoke this method directly.

See also: – performChanges, – rollbackChanges

coordinator
– (EOObjectStoreCoordinator *)coordinator

Returns the receiver’s EOObjectStoreCoordinator or nil if there is none. This method is only valid during
a save operation.

database
– (EODatabase *)database

Returns the receiver’s EODatabase.

See also: – initWithDatabase:

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

faultForGlobalID:editingContext:
– (id)faultForGlobalID: (EOGlobalID *)globalID editingContext:

(EOEditingContext *)anEditingContext

Overrides the inherited implementation to create a to-one fault for the object identified by globalID and
register it in anEditingContext.

See also: – arrayFaultWithSourceGlobalID:relationshipName:editingContext:
124

 Classes: EODatabaseContext

r
faultForRawRow:entityNamed:editingContext:
– (id <EOEnterpriseObject>)faultForRawRow: (id)row entityNamed:(NSString *)entityName

editingContext:(EOEditingContext *)context

Returns a fault for a raw row. row is the raw data, typically in the form of an NSDictionary. entityName is
the name of the appropriate entity for the EO you want to create (as a fault). editingContext is the
EOEditingContext in which to create the fault

forgetAllLocks
– (void)forgetAllLocks

Clears all of the receiver’s locks. Doesn’t cause the locks to be forgotten in the server, only in the receiver.
This method is useful when something has happened to cause the server to forget the locks and the receive
needs to be synced up. This method is invoked whenever a transaction is committed or rolled back.

See also: – registerLockedObjectWithGlobalID: , – isObjectLockedWithGlobalID: ,
– isObjectLockedWithGlobalID:editingContext: , – forgetLocksForObjectsWithGlobalIDs: ,
– lockObjectWithGlobalID:editingContext: , – lockObject: (EOEditingContext)

forgetLocksForObjectsWithGlobalIDs:
– (void)forgetLocksForObjectsWithGlobalIDs:(NSArray *)globalIDs

Clears the locks made for the enterprise objects identified by each of the EOGlobalIDs in globalIDs.
Doesn’t cause the locks to be forgotten in the server, only in the receiver.

See also: – registerLockedObjectWithGlobalID: , – isObjectLockedWithGlobalID: ,
– isObjectLockedWithGlobalID:editingContext: , – forgetAllLocks ,
– lockObjectWithGlobalID:editingContext: , – lockObject: (EOEditingContext)

forgetSnapshotForGlobalID:
– (void)forgetSnapshotForGlobalID:(EOGlobalID *)globalID

Deletes the snapshot made for the enterprise object identified by globalID.

See also: – recordSnapshot:forGlobalID:, – localSnapshotForGlobalID:, – recordSnapshots:,
– snapshotForGlobalID:, – forgetSnapshotsForGlobalIDs:
125

forgetSnapshotsForGlobalIDs:
– (void)forgetSnapshotsForGlobalIDs:(NSArray *)globalIDs

Deletes the snapshots made for the enterprise objects identified by globalIDs, an array of EOGlobalID
objects.

See also: – recordSnapshot:forGlobalID:, – localSnapshotForGlobalID:, – recordSnapshots:,
– snapshotForGlobalID:

handlesFetchSpecification:
– (BOOL)handlesFetchSpecification:(EOFetchSpecification *)fetchSpecification

Overrides the inherited implementation to return YES if the receiver is responsible for fetching the objects
described by the entity name in fetchSpecification.

See also: – ownsObject:, – ownsGlobalID:

hasBusyChannels
– (BOOL)hasBusyChannels

Returns YES if the receiver’s EOAdaptorContext has channels that have outstanding operations (that is,
have a fetch in progress), NO otherwise.

initializeObject:withGlobalID:editingContext:
– (void)initializeObject: (id)object

withGlobalID: (EOGlobalID *)globalID
editingContext:(EOEditingContext *)anEditingContext

Overrides the inherited implementation initialize object for anEditingContext by filling it with properties
based on row data fetched from the adaptor. The snapshot for globalID is looked up and those attributes in
the snapshot that are marked as class properties in the EOEntity are assigned to object. For relationship class
properties, faults are constructed and assigned to the object.

initWithDatabase:
– initWithDatabase:(EODatabase *)aDatabase

Initializes a newly allocated EODatabaseContext with aDatabase as the EODatabase object it works with.
The new EODatabaseContext retains aDatabase. Returns self, or nil if unable to create another
EOAdaptorContext for the EOAdaptor of aDatabase. This is the designated initializer for the
EODatabaseContext class.
126

 Classes: EODatabaseContext
invalidateAllObjects
– (void)invalidateAllObjects

Overrides the inherited implementation to discard all snapshots in the receiver’s EODatabase, forget all
locks, and post an EOInvalidatedAllObjectsInStoreNotification, as well as an
EOObjectsChangedInStoreNotification with the invalidated global IDs in the userInfo dictionary. Both of
these notifications are defined in EOObjectStore. This method works by invoking
– invalidateObjectsWithGlobalIDs: for all of the snapshots in the receiver’s EODatabase.

invalidateObjectsWithGlobalIDs:
– (void)invalidateObjectsWithGlobalIDs:(NSArray *)globalIDs

Overrides the inherited implementation to discard the snapshots for the objects identified by the
EOGlobalIDs in globalIDs and broadcasts an EOObjectsChangedInStoreNotification (defined in
EOObjectStore), which causes the EOEditingContext containing objects fetched from the receiver to refault
those objects. The result is that these objects will be refetched from the database the next time they’re
accessed.

isObjectLockedWithGlobalID:
– (BOOL)isObjectLockedWithGlobalID: (EOGlobalID *)globalID

Returns YES if the enterprise object identified by globalID is locked, NO otherwise.

See also: – registerLockedObjectWithGlobalID: , – forgetAllLocks , – isObjectLockedWithGlobalID:
editingContext:, – forgetLocksForObjectsWithGlobalIDs: , – lockObjectWithGlobalID:
editingContext:, – lockObject: (EOEditingContext)

isObjectLockedWithGlobalID:editingContext:
– (BOOL)isObjectLockedWithGlobalID: (EOGlobalID *)globalID editingContext:

(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method isObjectLockedWithGlobalID:editingContext: to return YES if the
database row corresponding to globalID has been locked in an open transaction held by the receiver.

See also: – registerLockedObjectWithGlobalID: , – isObjectLockedWithGlobalID: , – forgetAllLocks ,
– forgetLocksForObjectsWithGlobalIDs: , – lockObjectWithGlobalID:editingContext: ,
– lockObject: (EOEditingContext)
127

localSnapshotForGlobalID:
– (NSDictionary *)localSnapshotForGlobalID:(EOGlobalID *)globalID

Returns the snapshot for the object identified by globalID, if there is one; else returns nil . Only searches
locally (in the transaction scope), not in the EODatabase.

See also: – recordSnapshot:forGlobalID:, – forgetSnapshotForGlobalID:, – recordSnapshots:,
– snapshotForGlobalID:

localSnapshotForSourceGlobalID:relationshipName:
– (NSArray *)localSnapshotForSourceGlobalID:(EOGlobalID *)globalID relationshipName:

(NSString *)name

Returns an array that is the snapshot for the objects at the destination of the to-many relationship named
name, which is a property of the object identified by globalID. The returned array contains the globalIDs
of the destination objects. If there is no snapshot, returns nil . Only searches locally (in the transaction
scope), not in the EODatabase.

See also: – recordSnapshot:forSourceGlobalID:relationshipName:, – snapshotForSourceGlobalID:
relationshipName:

lock
– (void)lock

Used internally to protect access to the receiver in a multi-threaded environment. Do not confuse this with
any methods which work with the database locking mechanism.

See also: – unlock

lockObjectWithGlobalID:editingContext:
– (void)lockObjectWithGlobalID: (EOGlobalID *)globalID

editingContext:(EOEditingContext *)anEditingContext

Overrides the inherited implementation to attempt to lock the database row corresponding to globalID in
the underlying database server, on behalf of anEditingContext. If a transaction is not already open at the
time of the lock request, the transaction is begun and is held open until either commitChanges or
invalidateAllObjects is invoked. At that point all locks are released. Raises an
NSInternalInconsistencyException if unable to obtain the lock.

See also: – registerLockedObjectWithGlobalID: , – isObjectLockedWithGlobalID: , – forgetAllLocks ,
– forgetLocksForObjectsWithGlobalIDs: , – lockObject: (EOEditingContext)
128

 Classes: EODatabaseContext
objectsForSourceGlobalID:relationshipName:editingContext:
– (NSArray *)objectsForSourceGlobalID:(EOGlobalID *)globalID

relationshipName:(NSString *)name
editingContext:(EOEditingContext *)anEditingContext

Overrides the inherited implementation to service a to-many fault. The snapshot for the source object
identified by globalID is located and the EORelationship named name is used to construct a qualifier from
that snapshot. This qualifier is then used to fetch the requested objects into anEditingContext using the
method objectsWithFetchSpecification:editingContext:.

objectsWithFetchSpecification:editingContext:
– (NSArray *)objectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification

editingContext:(EOEditingContext *)anEditingContext

Overrides the inherited implementation to fetch objects from an external store into anEditingContext. The
receiver obtains an available EODatabaseChannel and issues a fetch with fetchSpecification. If one of these
objects is already present in memory, by default this method doesn’t overwrite its values with the new
values from the database (you can change this behavior; see the setRefreshesRefetchedObjects: method
in the EOFetchSpecification class specification).

You can fine-tune the fetching behavior by adding hints to fetchSpecification’s hints dictionary. For this
purpose, Enterprise Objects Framework defines the following keys (NSStrings):

The class description contains additional information on using these hints. See “Using a Custom Query.”

You can also use this method to implement “on-demand” locking by using a fetchSpecification that includes
locking. For more discussion of this subject, see “Updating And Locking Strategies” in the class
description.

Constant Corresponding value in the hints dictionary

EOCustomQueryExpressionHintKey
An NSString specifying raw SQL with which to perform the fetch. There is no
way to pass down parameters with this hint.

EOStoredProcedureNameHintKey

An NSString specifying a name for a stored procedure in the model that should
be used rather than building the SQL statement. The stored procedure must
query the the exact same attributes in the same order as EOF would query if
generating the SELECT expression dynamically. If this key is supplied, other
aspects of the EOFetchSpecification such as isDeep , qualifier , and
sortOrderings are ignored (in that sense, this key is more of a directive than a
hint). There is no way to pass down parameters with this hint.
129

e

Raises an exception if an error occurs; the error message indicates the nature of the problem.

See also: – objectsWithFetchSpecification: (EOEditingContext)

ownsGlobalID :

– (BOOL)ownsGlobalID:(EOGlobalID *)globalID

Overrides the inherited implementation to return YES if the receiver is responsible for fetching and saving
the object identified by globalID, NO otherwise. The receiver is determined to be responsible if globalID
is a subclass of EOKeyGlobalID and globalID has an entity from one of the receiver’s EODatabase’s
EOModels.

See also: – handlesFetchSpecification:, – ownsObject:

ownsObject:
– (BOOL)ownsObject:(id)object

Overrides the inherited implementation to return YES if the receiver is responsible for fetching and saving
object, NO otherwise. The receiver is determined to be responsible if the entity corresponding to object is
in one of the receiver’s EODatabase’s EOModels.

See also: – ownsGlobalID:, – handlesFetchSpecification:

performChanges
– (void)performChanges

Overrides the inherited implementation to construct EOAdaptorOperations from the
EODatabaseOperations produced during recordChangesInEditingContext and
recordUpdateForObject:changes:. Invokes the delegate method databaseContext:
willOrderAdaptorOperationsFromDatabaseOperations: to give the delegate an opportunity to
construct alternative EOAdaptorOperations from the EODatabaseOperations. Then invokes the delegate
method databaseContext:willPerformAdaptorOperations:adaptorChannel: to let the delegate
substitute its own array of EOAdaptorOperations. Gives the EOAdaptorOperations to an available
EOAdaptorChannel for execution. If the save succeeds, updates the snapshots in the receiver to reflect th
new state of the server. You should never need to invoke this method directly.

This method raises an exception if the adaptor is unable to perform the operations. The exception’s userInfo
dictionary contains these keys:

• EODatabaseContextKey

The EODatabaseContext object that was trying to save to its underlying repository when the
exception was raised.
130

 Classes: EODatabaseContext

,

r
• EODatabaseOperationsKey

The list of database operations the EODatabaseContext was trying to perform when the failure
occurred.

• EOFailedDatabaseOperationKey

The database operation the EODatabaseContext failed to perform.

The userInfo dictionary may also contain some of the keys listed in the method description for the
EOAdaptorChannel method performAdaptorOperation: . For more information, see the
EOAdaptorChannel class specification.

See also: – commitChanges, – rollbackChanges

prepareForSaveWithCoordinator:editingContext:
– (void)prepareForSaveWithCoordinator:(EOObjectStoreCoordinator *)coordinator

editingContext:(EOEditingContext *)anEditingContext

Overrides the inherited implementation to do whatever is necessary to prepare to save changes. If needed
generates primary keys for any new objects in anEditingContext that are owned by the receiver. This method
is invoked before the object graph is analyzed and foreign key assignments are performed. You should neve
need to invoke this method directly.

recordChangesInEditingContext
– (void)recordChangesInEditingContext

Overrides the inherited implementation to construct a list of EODatabaseOperations for all changes to
objects in the EOEditingContext that are owned by the receiver. Forwards any relationship changes
discovered but not owned by the receiver to the EOObjectStoreCoordinator. This method is typically
invoked in the course of an EOObjectStoreCoordinator saving changes through its
saveChangesInEditingContext: method. It’s invoked after prepareForSaveWithCoordinator:
editingContext: and before performChanges. You should never need to invoke this method directly.

recordSnapshot:forGlobalID:
– (void)recordSnapshot:(NSDictionary *)snapshot forGlobalID: (EOGlobalID *)globalID

Records aSnapshot under globalID. This method only records snapshots locally (in the transaction scope).
If you want to record snapshots globally, use the corresponding EODatabase method.

See also: – forgetSnapshotForGlobalID:, – localSnapshotForGlobalID:, – recordSnapshots:,
– snapshotForGlobalID:
131

recordSnapshot:forSourceGlobalID:relationshipName:
– (void)recordSnapshot:(NSArray *)globalIDs forSourceGlobalID:(EOGlobalID *)globalID

relationshipName:(NSString *)name

For the object identified by globalID, records an NSArray of globalIDs for the to-many relationship named
name. These globalIDs identify the objects at the destination of the relationship. This method only records
snapshots locally (in the transaction scope). If you want to record snapshots globally, use the corresponding
EODatabase method.

See also: – snapshotForSourceGlobalID:relationshipName:, – localSnapshotForSourceGlobalID:
relationshipName:, – recordToManySnapshots:

recordSnapshots:
– (void)recordSnapshots:(NSDictionary *)snapshots

Records the objects in snapshots, a dictionary of snapshots. The snapshots; keys are GlobalIDs and its values
are the corresponding snapshots represented as NSDicationaries. This method only records snapshots
locally (in the transaction scope). If you want to record snapshots globally, use the corresponding
EODatabase method.

See also: – recordSnapshot:forGlobalID:, – localSnapshotForGlobalID:,
– forgetSnapshotForGlobalID:, – snapshotForGlobalID:

recordToManySnapshots:
– (void)recordToManySnapshots:(NSDictionary *)snapshots

Records the objects in snapshots. snapshots should be an NSDictionary of NSDictionaries, in which the
top-level dictionary has as its key the globaID of the enterprise object for which to-many relationships are
being recorded. The key’s value is a dictionary whose keys are the names of the Enterprise Object’s to-many
relationships. Each of these keys in turn has as its value an array of globalIDs that identify the objects at the
destination of the relationship.

This method only records snapshots locally (in the transaction scope). If you want to record snapshots
globally, use the corresponding EODatabase method.

See also: – recordSnapshot:forSourceGlobalID:relationshipName:, – snapshotForSourceGlobalID:
relationshipName:, – localSnapshotForSourceGlobalID:relationshipName:
132

 Classes: EODatabaseContext

recordUpdateForObject:changes:
– (void)recordUpdateForObject:(id)object changes:(NSDictionary *)changes

Overrides the inherited implementation to communicate to the receiver that changes from another
EOCooperatingObjectStore (through the EOObjectStoreCoordinator) need to be made to an object in the
receiver. For example, an insert of an object in a relationship property might require changing a foreign key
property in an object owned by another cooperating store. This method can be invoked any time after
prepareForSaveWithCoordinator:editingContext: and before performChanges.

refaultObject:withGlobalID:editingContext:
– (void)refaultObject: (id)anObject

withGlobalID: (EOGlobalID *)globalID
editingContext:(EOEditingContext *)anEditingContext

Overrides the inherited implementation to refault the enterprise object object identified by globalID in
anEditingContext. Newly-inserted objects should not be refaulted, since they can’t be refetched from the
external store. If you attempt to do this, an exception will be raised. Don’t refault to-many relationship
arrays, just recreate them.

This method should be used with caution since refaulting an object doesn’t remove the object snapshot from
the undo stack, after which the object snapshot may not refer to the proper object..

registerChannel:
– (void)registerChannel:(EODatabaseChannel *)channel

Registers channel, which means that it adds it to the pool of available channels used to service fetch and
fault requests. Registered channels are retained by the receiver. You use this method if you need to perform
more than one fetch simultaneously.

See also: – availableChannel, – registeredChannels, – unregisterChannel:

registeredChannels
– (NSArray *)registeredChannels

Returns all of the EODatabaseChannels that have been registered for use with the receiver.

See also: – registerChannel:, – availableChannel, – unregisterChannel:
133

registerLockedObjectWithGlobalID:
– (void)registerLockedObjectWithGlobalID: (EOGlobalID *)globalID

Registers as a locked object the enterprise object identified by globalID. This method is used internally to
keep track of objects corresponding to rows that are locked in the database.

See also: – forgetAllLocks , – isObjectLockedWithGlobalID: ,
– forgetLocksForObjectsWithGlobalIDs: , – lockObjectWithGlobalID:editingContext: ,
– lockObject: (EOEditingContext)

rollbackChanges
– (void)rollbackChanges

Overrides the inherited implementation to instruct the adaptor to roll back the transaction. Rolls back any
changed snapshots, and releases all locks.

See also: – performChanges, – commitChanges

saveChangesInEditingContext:
– (void)saveChangesInEditingContext:(EOEditingContext *)anEditingContext

Overrides the inherited implementation to save the changes made in anEditingContext. This message is sent
by an EOEditingContext to its EOObjectStore to commit changes. Normally an editing context doesn’t send
this message to an EODatabaseContext, but to an EOObjectStoreCoordinator. Raises an exception if an
error occurs; the error message indicates the nature of the problem.

setDelegate:
– (void)setDelegate:(id)delegate

Sets the receiver’s delegate to delegate, and propagates the delegate to all of the receiver’s
EODatabaseChannels. EODatabaseChannels share the delegate of their EODatabaseContext.

See also: – delegate

setUpdateStrategy:
– (void)setUpdateStrategy:(EOUpdateStrategy)strategy

Sets the update strategy used by the EODatabaseContext to strategy. See “Updating And Locking
Strategies” in the class description for information on the update strategies:

• EOUpdateWithOptimisticLocking
134

 Classes: EODatabaseContext
• EOUpdateWithPessimisticLocking

Raises an NSInvalidArgumentException if the receiver has any transactions in progress or if you try to set
strategy to EOUpdateWithPessimisticLocking and the receiver’s EODatabase already has snapshots.

See also: – updateStrategy

snapshotForGlobalID:
– (NSDictionary *)snapshotForGlobalID:(EOGlobalID *)globalID

Returns the snapshot for the object identified by globalID, if there is one; else returns nil . Searches first
locally (in the transaction scope) and then in the EODatabase.

See also: – recordSnapshot:forGlobalID:, – localSnapshotForGlobalID:,
– forgetSnapshotForGlobalID:, – recordSnapshots:

snapshotForSourceGlobalID:relationshipName:
– (NSArray *)snapshotForSourceGlobalID:(EOGlobalID *)globalID

relationshipName:(NSString *)name

Returns a snapshot that consists of an array of global IDs. These global IDs identify the objects at the
destination of the to-many relationship named name, which is a property of the object identified by
globalID. If there is no snapshot, returns nil .

See also: – recordSnapshot:forSourceGlobalID:relationshipName:,
– localSnapshotForSourceGlobalID:relationshipName:, – recordToManySnapshots:

unlock
– (void)unlock

Used internally to release the lock that protects access to the receiver in a multi-threaded environment.

See also: – lock

unregisterChannel:
– (void)unregisterChannel:(EODatabaseChannel *)channel

Unregisters the EODatabaseChannel channel, which means that it removes it from the pool of available
channels used for database communication (for example, to service fetch and fault requests).

See also: – registerChannel:, – registeredChannels, – availableChannel
135

d
updateStrategy
– (EOUpdateStrategy)updateStrategy

Returns the update strategy used by the receiver, one of:

• EOUpdateWithOptimisticLocking
• EOUpdateWithPessimisticLocking

The default strategy is EOUpdateWithOptimisticLocking. See the class description for information on
update strategies.

See also: – setUpdateStrategy:

valuesForKeys:object:
– (NSDictionary *)valuesForKeys:(NSArray *)keys object:(id)object

Overrides the inherited implementation to return values for the specified keys from the snapshot of object.
The returned values are used primarily by another EODatabaseContext to extract foreign key properties for
objects owned by the receiver.

Notifications

EODatabaseChannelNeededNotification

This notification is broadcast whenever an EODatabaseContext is asked to perform an object store
operation and it doesn’t have an available EODatabaseChannel. Subscribers can create a new channel an
add it to the EODatabaseContext at this time.

Notification Object The EODatabaseContext.

userInfo Dictionary None.
136

 Classes: EODatabaseContext
EODatabaseContext
The relationship between EODatabaseContext and other classes in the control and access layers is
illustrated in the following diagram.

As a subclass of EOCooperatingObjectStore, EODatabaseContext acts as one of possibly several
EOCooperatingObjectStores for an EOObjectStoreCoordinator, which mediates between
EOEditingContexts and EOCooperatingObjectStores.

An EODatabaseContext creates an EOAdaptorContext when initialized, and uses this object to
communicate with the database server.

Creating and Using an EODatabaseContext

Though you can create an EODatabaseContext explicitly by using the class method
registeredDatabaseContextForModel:editingContext:, you should rarely need to do so. If you’re using
the “higher-level” objects EOEditingContexts and EODatabaseDataSources, the database contexts those
137

e

al

objects need are created automatically, on demand. When you create database data source (typically for us
with a display group—one ofEODisplayGroup, EODisplayGroup, or WODisplayGroup), it registers a
database context that’s capable of fetching objects for the data source’s entities. If objects fetched into an
editing context (described more in the following section) have references to objects from EOModels that
are based on another database, an EODatabaseContext is creates and registered for each of the addition
databases.

EODatabaseContexts are created on demand when an EOObjectStoreCoordinator posts an
EOCooperatingObjectStoreNeeded notification. The EODatabaseContext class registers for the
notification, and it provides the coordinator with a new EODatabaseContext instance that can handle the
request. For more discussion of this topic, see the chapter “Application Configurations” in the Enterprise
Objects Framework Developer’s Guide.

For the most part, you don’t need to programmatically interact with an EODatabaseContext. However, some
of the reasons you might want to are as follows:

• To implement your own locking strategy, either application-wide, or on a per-fetch basis. This is
described in the section “Updating And Locking Strategies.”

• To do performance tuning, which is described in the section “Faulting.”

• To intervene when objects are created and fetched to provide custom behavior. This is described in the
section “Delegate Methods,” and in the individual delegate method descriptions in the section “Instance
Methods.”

Fetching and Saving Objects

Conceptually, an EODatabaseContext fetches and saves objects on behalf of an EOEditingContext.
However, the two objects don’t interact with each other directly—an EOObjectStoreCoordinator acts as a
mediator between them. The relationship between EOEditingContext, EOObjectStoreCoordinator, and
EODatabaseContext is illustrated in the following figure. This configuration includes one
EOObjectStoreCoordinator, and can include one or more EOEditingContexts, and one or more
EODatabaseContexts.
138

 Classes: EODatabaseContext

t

n
rs

e

When an editing context fetches objects, the request is passed through the coordinator, which forwards it to
the appropriate database context based on the fetch specification or global ID. When the database contex
receives a request to fetch or write information to the database, it tries to use one of its
EODatabaseChannels. If all of its channels are busy, it broadcasts an
EODatabaseChannelNeededNotification in the hopes that an observer can provide a new channel or that a
existing channel can be freed up. This observer could be a manager that decides how many database curso
can be opened by a particular client.

EODatabaseContext knows how to interact with other EOCooperatingObjectStores to save changes made
to an object graph in more than one database server. For a more detailed discussion of this subject, see th
class specifications for EOObjectStoreCoordinator and EOCooperatingObjectStore.

Setting a Fetch Limit

EODatabaseContext defines a hint for use with an EOFetchSpecification in the
objectsWithFetchSpecification:editingContext: method. Named by the key EOFetchLimitHintKey, the
hint’s value is an NSNumber containing an unsigned integer value indicating the maximum number of
objects to fetch. Depending on the value of the EOPromptAfterFetchLimitHintKey (NO or YES), the
EODatabaseContext will either stop fetching objects when this limit is reached or it will ask the
EOEditingContext’s message handler to ask the user whether it should continue fetching. For more
information on hint keys, see the method description for objectsWithFetchSpecification:editingContext:.

Using a Custom Query

EODatabaseContext defines a hint for use with an EOFetchSpecification in the
objectsWithFetchSpecification:editingContext: method. Named by the key
EOCustomQueryExpressionHintKey, the hint’s value is a SQL string for performing the fetch. The
expression must query the same attributes in the same order that Enterprise Objects Framework would if it
were generating the SELECT expression dynamically. If this key is supplied, other characteristics of the
139

t

EOFetchSpecification such as isDeep, qualifier, and sortOrderings are ignored—in that sense this key is
more of a directive than a hint. For more information on hint keys, see the method description for
objectsWithFetchSpecification:editingContext:.

Faulting

When an EODatabaseContext fetches an object, it examines the relationships defined in the model and
creates objects representing the destinations of the fetched object’s relationships. For example, if you fetch
an employee object, you can ask for its manager and immediately receive an object; you don’t have to get
the manager’s employee ID from the object you just fetched and fetch the manager yourself.

However, EODatabaseContext doesn’t immediately fetch data for the destination objects of relationships
since fetching is fairly expensive. To avoid this waste of time and resources, the destination objects are
created as EOFault objects which act as placeholders. EOFaults (or faults) come in two varieties: single
object faults for to-one relationships, and array faults for to-many relationships.

When an EOFault is accessed (sent a message), it triggers its EODatabaseContext to fetch its data and
transform it into an instance of the appropriate object class. This preserves both the object’s id and its
EOGlobalID.

You can fine-tune faulting behavior for additional performance gains by using two different mechanisms:
batch faulting, and prefetching relationships.

Batch Faulting

When you access a fault, its data is fetched from the database. However, triggering one fault has no effec
on other faults—it just fetches the object or array of objects for the one fault. You can take advantage of this
expensive round trip to the database server by batching faults together. EODatabaseContext provides the
batchFetchRelationship:forSourceObjects:editingContext: method for doing this. For example, given
an array of Employee objects, this method can fetch all of their departments with one round trip to the
server, rather than asking the server for each of the employee’s departments individually. You can use the
delegate methods databaseContext:shouldFetchArrayFault: and databaseContext:
shouldFetchObjectFault: to fine-tune batch faulting behavior.

You can also set batch faulting in an EOModel. In that approach, you specify the number of faults that
should be triggered along with the first fault; you don’t actually control which faults are triggered the way
you do with batchFetchRelationship:forSourceObjects:editingContext:. For more information on
setting batch faulting in an EOModel, see the chapter “Using EOModeler” in the Enterprise Objects
Framework Developer’s Guide.

Prefetching Relationships

EODatabaseContext defines a hint for use with an EOFetchSpecification in the
objectsWithFetchSpecification:editingContext: method. Named by the key
EOPrefetchingRelationshipHintKey, the hint’s value specifies relationships whose destinations should be
140

 Classes: EODatabaseContext

fetched along with the objects matching the fetch specification. Although prefetching increases the initial
fetch cost, it can improve overall performance by reducing the number of round trips made to the database
server. For more information on this and other hint keys, see the method description for
objectsWithFetchSpecification:editingContext:.

Using this key also has an effect on how an EOFetchSpecification refreshes. “Refreshing” refers to existing
objects being overwritten with fetched values—this allows your application to see changes to the database
that have been made by someone else. Normally, when you set an EOFetchSpecification to refresh using
setRefreshesRefetchedObjects:, it only refreshes the objects you’re fetching. For example, if you fetch
employees, you don’t also fetch the employees’ departments. However, if you have the
EOPrefetchingRelationshipHintKey set, the refetch is propagated for all of the relationships specified for
the hint.

Delegate Methods

An EODatabaseContext shares its delegate with its EODatabaseChannels. These delegate methods are
actually sent from EODatabaseChannel, but they’re defined in EODatabaseContext for ease of access:

• databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:
• databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:
• databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globalID:databaseChannel:
• databaseContext:shouldUsePessimisticLockWithFetchSpecification: databaseChannel:

– databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:

– databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:

– databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globalID:databaseChannel:

– databaseContext:shouldUsePessimisticLockWithFetchSpecification: databaseChannel:

You can use the EODatabaseContext delegate methods to intervene when objects are created and when
they’re fetched from the database. This gives you more fine-grained control over such issues as how an
object’s primary key is generated (databaseContextNewPrimaryKeyForObjectdatabaseContext:
newPrimaryKeyForObject:entity:), how and if objects are locked
(databaseContextShouldLockObjectWithGlobalIDdatabaseContext:
shouldLockObjectWithGlobalID:snapshot:), what fetch specification is used to fetch objects
(databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:), how batch
faulting is performed (databaseContext:shouldFetchArrayFault: and databaseContext:
shouldFetchObjectFault:), and so on. For more information, see the individual delegate method
descriptions in the section “Instance Methods.”

Snapshots

An EODatabase records snapshots for its EODatabaseContexts. These snapshots form the application’s
view of the current state of the database server. This global view is overridden locally by database contexts,
141

which form their own snapshots as they make changes during a transaction. When a database context
commits its top-level transaction, it reconciles all changed snapshots with the global view of the database
object, so that other database contexts (except those with open transactions) immediately use the new
snapshots as well.

Updating And Locking Strategies

EODatabaseContext supports two updating strategies defined by the EOUpdateStrategy type as integer
values:

EODatabaseContext also supports “on-demand” locking, in which specific optimistic locks can be
promoted to database locks during the course of program execution. You can either use
lockObjectWithGlobalID:editingContext: to lock a database row for a particular object, or
objectsWithFetchSpecification:editingContext: to fetch objects with a fetch specification that includes
locking.

For more discussion of locking strategies, see the chapter “Behind the Scenes” in the Enterprise Objects
Framework Developer’s Guide.

Type Description

EOUpdateWithOptimisticLocking

The default update strategy. Under optimistic locking, objects aren’t locked
immediately on being fetched from the server. Instead, whenever you attempt
to save updates to an object in the database, the object’s snapshot is used to
ensure that the values in the corresponding database row haven’t changed
since the object was fetched. As long as the snapshot matches the values in
the database, the update is allowed to proceed.

EOUpdateWithPessimisticLocking

Causes objects to be locked in the database when they’re selected. This
ensures that no one else can modify the objects until the transaction ends.
However, this doesn’t necessarily mean that either the select or the update
operation will succeed.
142

 Classes: EODatabaseDataSource

er

EODatabaseDataSource

Inherits From: EODataSource : NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabaseDataSource.h

Class Description

EODatabaseDataSource is a concrete subclass of EODataSource (defined in EOControl) that fetches
objects based on an EOModel, using an EODatabaseContext that services the data source’s
EOEditingContext (defined in EOControl). An EODatabaseDataSource can be set up to fetch all objects for
its root entity, to fetch objects matching a particular EOFetchSpecification, and to further filter its fetching
with an auxiliary qualifier.

EODatabaseDataSource implements all the functionality defined by EODataSource: In addition to fetching
objects, it can insert and delete them (provided the entity isn’t read-only). See the EODataSource class
specification for more information on these topics.

As with other data sources, EODatabaseDataSource can also provide a detail data source. The most
significant consequence of using an master-detail configuration is that the detail operates directly on the
master’s object graph. The EODetailDataSource has a master object and a detail key through which the
detail data source accesses the its objects. The master object is simply the object that’s selected in the mast
display group, and the detail key is the name of a relationship property in the master object. When the detail
display group asks its data source to fetch, the EODetailDataSource simply gets the value for the
relationship property named detail key from its master object and returns it. When you add and remove
objects from the detail, you’re directly modifying the master’s relationship array. In fact, you can think of
EODetailDataSource as an interface to its master object’s relationship property.

Method Types

Creating instances
– initWithEditingContext:entityName:fetchSpecificationName:
– initWithEditingContext:entityName:fetchSpecificationName:
143

ot
Accessing selection criteria
– auxiliaryQualifier
– fetchSpecification
– fetchSpecificationForFetch
– fetchSpecificationName
– setAuxiliaryQualifier:
– setFetchSpecification:
– setFetchSpecificationByName:

Accessing objects used for fetching
– entity
– databaseContext

Enabling fetching
– setFetchEnabled:
– isFetchEnabled

Accessing qualifier bindings
– qualifierBindingKeys
– qualifierBindings
– setQualifierBindings:

Instance Methods

auxiliaryQualifier
– (EOQualifier *)auxiliaryQualifier

Returns the EOQualifier used to further filter the objects fetched by the receiver’s EOFetchSpecification (in
EOControl).

See also: – setAuxiliaryQualifier: , – fetchSpecificationForFetch, – fetchSpecification

databaseContext
– (EODatabaseContext *)databaseContext

Returns the EODatabaseContext that the receiver uses to access the external database. This is either the ro
EOObjectStore for the receiver’s EOEditingContext, or if the root is an EOCooperatingObjectStore, it’s the
EODatabaseContext under that EOCooperatingObjectStore that services the EOModel containing the
EOEntity for the receiver. (EOObjectStore, EOEditingContext, and EOCooperatingObjectStore are all
defined in EOControl.)

Deletes anObject from the data source. This method raises an exception on failure. If the receiver registers
undos for the deletion, the receiver may receive a possibly redundant insertObject call.
144

 Classes: EODatabaseDataSource

entity
– (EOEntity *)entity

Returns the EOEntity from which the receiver fetches objects.

fetchSpecification
– (EOFetchSpecification *)fetchSpecification

Returns the receiver’s basic EOFetchSpecification. Its EOQualifier is conjoined with the receiver’s
auxiliary EOQualifier when the receiver fetches objects. The sender of this message can alter the
EOFetchSpecification directly, or replace it using setFetchSpecification:.

See also: fetchSpecificationForFetch, auxiliaryQualifier

fetchSpecificationForFetch
– (EOFetchSpecification *)fetchSpecificationForFetch

Returns a copy of the EOFetchSpecification that the receiver uses to fetch. This is constructed by conjoining
the EOQualifier of the receiver’s EOFetchSpecification with its auxiliary EOQualifier. Modifying the
returned EOFetchSpecification doesn’t affect the receiver’s fetching behavior; use setFetchSpecification:
and setAuxiliaryQualifier: for that purpose.

See also: – fetchSpecification, – auxiliaryQualifier

fetchSpecificationName
– (NSString *)fetchSpecificationName

Returns the name of the fetch specification (or nil if there is no name).

See also: – setFetchSpecificationByName:

initWithEditingContext:entityName:
– (id)initWithEditingContext: (EOEditingContext *)anEditingContext entityName:

(NSString *)anEntityName

Initializes a newly allocated EODatabaseDataSource to fetch objects into anEditingContext for the
EOEntity named by anEntityName. This method checks anEditingContext’s EOObjectStoreCoordinator for
an EODatabaseChannel that services the EOModel containing the named EOEntity. If none exists, this
method creates one. This method works by calling initWithEditingContext:entityName:
fetchSpecificationName: and specifying nil for the fetchSpecificationName.
145

initWithEditingContext:entityName:fetchSpecificationName:
– (id)initWithEditingContext: (EOEditingContext *)anEditingContext

entityName:(NSString *)anEntityName
fetchSpecificationName:(NSString *)fetchSpecificationName

Initializes a newly allocated EODatabaseDataSource to fetch objects into anEditingContext for the
EOEntity named by anEntityName. This method checks anEditingContext’s EOObjectStoreCoordinator for
an EODatabaseChannel that services the EOModel containing the named EOEntity. If none exists, this
method creates one. The fetchSpecificationName argument is used to find the named fetch specification in
the entity. If the fetchSpecificationName is nil , a new fetch specification will be instantiated that will fetch
all objects of the entity. This is the primitive initializer. Returns self.

Inserts object into the data source.

isFetchEnabled
– (BOOL)isFetchEnabled

Returns YES if the receiver’s fetchObjects method actually fetches objects, NO if it returns an empty array
without fetching. Fetching is typically disabled in a master-peer configuration when no object is selected in
the master.

See also: – setFetchEnabled:

qualifierBindingKeys
– (NSArray *)qualifierBindingKeys

Returns an array of strings which is a union of the binding keys from the fetch specification’s qualifier and
the data source’s auxiliary qualifier.

See also: – setQualifierBindings:

qualifierBindings
– (NSDictionary *)qualifierBindings

Returns a set of bindings that will be used for variable replacement on the fetch specification’s qualifier and
the auxiliary qualifier before the fetch is executed.

See also: – setQualifierBindings:
146

 Classes: EODatabaseDataSource
setAuxiliaryQualifier:
– (void)setAuxiliaryQualifier: (EOQualifier *)aQualifier

Sets the receiver’s auxiliary qualifier to aQualifier. The auxiliary qualifier usually adds conditions to the
primary qualifier and is useful for narrowing the scope of a data source without altering its primary qualifier.
This is especially useful for setting a qualifier on a qualified peer data source, since a peer’s primary
qualifiers specifies the matching criteria for the relationship it fetches for. For more information on auxiliary
qualifiers, see “Creating a Master-Peer Configuration” in the “WebObjects Programming Topics.”

See also: – fetchSpecificationForFetch, – fetchSpecification, – auxiliaryQualifier

setFetchEnabled:
– (void)setFetchEnabled:(BOOL)flag

Controls whether the receiver can fetch. If flag is YES the receiver’s fetchObjects method actually fetches
objects, if NO it returns an empty array without fetching. Fetching is typically disabled in a master-peer
configuration when no object is selected in the master. For example, EODatabaseDataSource’s
implementation of qualifyWithRelationshipKey:ofObject: invokes this method to enable or disable
fetching based on whether a master object is provided.

See also: – isFetchEnabled

setFetchSpecification:
– (void)setFetchSpecification:(EOFetchSpecification *)aFetchSpecification

Sets the receiver’s basic EOFetchSpecification to aFetchSpecification. Its EOQualifier is conjoined with the
receiver’s auxiliary EOQualifier when the receiver fetches objects. This method also sets the name of the
fetch specification to nil.

See also: – setAuxiliaryQualifier: , – fetchSpecificationForFetch, – fetchSpecification,
– setFetchSpecificationByName:

setFetchSpecificationByName:
– (void)setFetchSpecificationByName:(NSString *)fetchSpecificationName

Sets the fetchSpecificationName as given, and sets the fetch specification (used when supplying objects) to
the named fetch specification of the entity that was used to initialize the data source. This method is an
alternative to setFetchSpecification:.

See also: – fetchSpecificationName
147

setQualifierBindings:
– (NSDictionary *)setQualifierBindings:(NSDictionary *)bindings

Sets a set of bindings that will be used for variable replacement on the fetch specification’s qualifier and the
auxiliary qualifier before the fetch is executed.

See also: – qualifierBindingKeys, – qualifierBindings
148

 Classes: EODatabaseOperation

re

s
EODatabaseOperation

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabaseOperation.h

Class Description

An EODatabaseOperation object represents an operation—insert, update, or delete—to perform on an
enterprise object and all the necessary information required to perform the operation. You don’t ordinarily
create instances of EODatabaseOperation; rather, the Framework automatically creates an
EODatabaseOperation object for each new, updated, or deleted object in an EOEditingContext. An
EODatabaseContext object analyzes a set of database operations and maps each operation to one or mo
adaptor operations. The adaptor operations are then performed by an EOAdaptorChannel object. You
generally interact with EODatabaseOperation objects only if you need to specify the order in which a set
of operations are carried out (see the description for the EODatabaseContext delegate method
databaseContextWillOrderAdaptorOperationsFromDatabaseOperationsdatabaseContext:
willOrderAdaptorOperationsFromDatabaseOperations:).

An EODatabaseOperation specifies an enterprise object (called “object”) on which the operation is
performed, the EOGlobalID for the object, and the object’s entity. In addition, the database operation has a
snapshot containing the last known database values for the object and a newRow dictionary of new or
updated values to save in the database. Finally, a database operation specifies one of the following operator
(the type of operation represented by the database operation).

• EODatabaseNothingOperator
• EODatabaseInsertOperator
• EODatabaseUpdateOperator
• EODatabaseDeleteOperator

Method Types

Creating a new EODatabaseOperation
– initWithGlobalID:object:entity:

Accessing the global ID object
– globalID

Accessing the object
– object
149

Accessing the entity
– entity

Accessing the operator
– setDatabaseOperator:
– databaseOperator

Accessing the database snapshot
– setDBSnapshot:
– dbSnapshot

Accessing the row
– setNewRow:
– newRow

Accessing the adaptor operations
– addAdaptorOperation:
– removeAdaptorOperation:
– adaptorOperations

Comparing new row and snapshot values
– rowDiffs
– rowDiffsForAttributes:

Working with to-many snapshots
– recordToManySnapshot:relationshipName:
– toManySnapshots

Instance Methods

adaptorOperations
– (NSArray *)adaptorOperations

Returns the EOAdaptorOperation objects that need to be performed to carry out the operation represented
by the receiver.

See also: – addAdaptorOperation: , – removeAdaptorOperation:

addAdaptorOperation:
– (void)addAdaptorOperation: (EOAdaptorOperation *)adaptorOperation

Adds adaptorOperation to the receiver’s list of adaptor operations. Raises an exception if
adaptorOperation is nil .

See also: – adaptorOperations, – removeAdaptorOperation:
150

 Classes: EODatabaseOperation

t

databaseOperator
– (EODatabaseOperator)databaseOperator

Returns the receiver’s database operator.

See also: setDatabaseOperator:

dbSnapshot
– (NSDictionary *)dbSnapshot

Returns the database snapshot for the receiver’s enterprise object. The snapshot contains the last known
database values for the enterprise object. The dictionary returned from this method will be empty if the
receiver’s object has just been inserted into an EOEditingContext and has not yet been saved in persisten
storage. For more information on EOEditingContexts, see the EOEditingContext class specification in the
EOControl framework.

See also: – setDBSnapshot:, – setDatabaseOperator:

entity
– (EOEntity *)entity

Returns the entity that corresponds to the receiver’s enterprise object.

See also: – initWithGlobalID:object:entity:

globalID
– (EOGlobalID *)globalID

Returns the EOGlobalID object that corresponds to the receiver’s enterprise object.

initWithGlobalID:object:entity:
– initWithGlobalID: (EOGlobalID *)globalID object:(id)object entity: (EOEntity *)entity

The designated initializer, this method initializes a new EODatabaseOperation instance. Sets the enterprise
object to which the operation will be applied, the object’s global ID, and the object’s entity. Returns self.

See also: – object, – entity
151

s
newRow
– (NSMutableDictionary *)newRow

Returns a dictionary representation of the receiver’s enterprise object. In addition to all the properties of the
enterprise object that are stored in the database, the dictionary contains values for the non-derived attribute’
of the enterprise object’s entity that aren’t visible in the enterprise object. For example, primary and foreign
keys aren’t ordinarily properties of an enterprise object but are attributes of the object’s entity.

The newRow dictionary is initialized with the values in the receiver’s snapshot. New or updated values are
added to the newRow dictionary (replacing out-of-date values) as the Framework maps changes in the
object to an operation.

See also: – setNewRow:

object
– (id)object

Returns the receiver’s enterprise object.

primaryKeyDiffs
– (NSDictionary *)primaryKeyDiffs

See also: Returns a dictionary that contains any primary key values in newRow that are different from
those in the dbSnapshot. Returns nil if the receiver doesn’t have EODatabaseUpdateOperator
set as its database operator.– setDatabaseOperator:, – newRow

recordToManySnapshot:relationshipName:
– (void)recordToManySnapshot:(NSArray *)globalIDs relationshipName:(NSString *)name

Records the objects in globalIDs. globalIDs is an array of the globalIDs that identify the objects at the
destination of the to-many relationship named name; name is a property of the receiver’s enterprise object.

See also: – toManySnapshots

removeAdaptorOperation:
– (void)removeAdaptorOperation:(EOAdaptorOperation *)adaptorOperation

Removes adaptorOperation from the receiver’s list of adaptor operations.

See also: – adaptorOperations, – addAdaptorOperation:
152

 Classes: EODatabaseOperation
rowDiffs
– (NSDictionary *)rowDiffs

Returns values in the receiver’s newRow dictionary that are different than the corresponding values in its
dbSnapshot. The dictionary returned from this method contains the new values from the enterprise object.

See also: – primaryKeyDiffs

rowDiffsForAttributes:
– (NSDictionary *)rowDiffsForAttributes: (NSArray *)attributes

For the EOAttribute objects in attributes, this method returns values in the receiver’s newRow dictionary
that are different than the corresponding values in its dbSnapshot. The dictionary returned contains the new
values from the enterprise object.

setDatabaseOperator:
– (void)setDatabaseOperator:(EODatabaseOperator)databaseOperator

Sets the receiver’s database operator. databaseOperator can be one of the following:

• EODatabaseNothingOperator
• EODatabaseInsertOperator
• EODatabaseUpdateOperator
• EODatabaseDeleteOperator

See also: – databaseOperator

setDBSnapshot:
– (void)setDBSnapshot:(NSDictionary *)dbSnapshot

Sets the snapshot for the receiver’s enterprise object. If the object has just been inserted into an an
EOEditingContext, it won’t have a snapshot. In this case, dbSnapshot should be an empty dictionary.

See also: – dbSnapshot
153

setNewRow:
– (void)setNewRow:(NSMutableDictionary *)newRow

Sets the dictionary representation of the receiver’s enterprise object. newRow should contain values for all
the properties of the enterprise object that are stored in the database and for the non-derived attribute’s of
the enterprise object’s entity that aren’t visible in the enterprise object.

See also: – newRow, – databaseOperator

toManySnapshots
– (NSDictionary *)toManySnapshots

Returns the NSDictionary containing the snapshots for the to-many relationships of the receiver’s enterprise
object.

See also: – recordToManySnapshot:relationshipName:
154

 Classes: EOEntity

ries
EOEntity

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOEntity.h

Class Description

An EOEntity describes a table, file, or collection in a database and associates a name internal to the
Framework with an external name by which the table is known to the database. An EOEntity maintains a
group of attributes and relationships, which are collectively called properties. These are represented by the
EOAttribute and EORelationship classes, respectively; see their specifications for more information.

You usually define entities in a model with the EOModeler application, which is documented in WebObjects
Tools and Techniques. EOEntity objects are primarily used by the Enterprise Objects Framework for
mapping tables in the database to enterprise objects; your code will probably make limited use of them
unless you’re specifically working with models.

An EOEntity is associated with a specific class whose instances are used to represent records (rows) from
the database in applications using layers at or above the database layer of the Enterprise Objects
Framework. If an EOEntity doesn’t have a specific class associated with it, instances of EOGenericRecord
(defined in EOControl) are created.

An EOEntity may be marked as read-only, in which case any changes to rows or objects for that entity made
by the database level objects are denied.

You can define an external query for an EOEntity to be used when a selection is attempted with an
unrestricted qualifier (one that would select all rows in the entity’s table). An external query is sent unaltered
to the database server and so can use database-specific features such as stored procedures; external que
are thus useful for hiding records or invoking database-specific features. You can also assign stored
procedures to be invoked upon particular database operations through the use of EOEntity’s
setStoredProcedure:forOperation: method.

Like the other major modeling classes, EOEntity provides a user dictionary for your application to store any
application-specific information related to the entity.

For more information on programmatically creating EOEntity objects, see “Creating an Entity.”
155

Adopted Protocols

EOPropertyListEncoding
– awakeWithPropertyList
– encodeIntoPropertyList:
– initWithPropertyList:owner:

Method Types

Accessing the name
– setName:
– name
– validateName:
– beautifyName

Accessing the model
– model

Specifying fetching behavior for the entity
– setExternalQuery:
– externalQuery
– setRestrictingQualifier:
– restrictingQualifier

Accessing primary key qualifiers
– qualifierForPrimaryKey:
– isQualifierForPrimaryKey:

Accessing attributes
– addAttribute:
– anyAttributeNamed:
– attributeNamed:
– attributes
– removeAttribute:
– attributesToFetch

Accessing relationships
– addRelationship:
– anyRelationshipNamed:
– relationships
– relationshipNamed:
– removeRelationship:

Checking referential integrity
– externalModelsReferenced
– referencesProperty:
156

 Classes: EOEntity
Accessing primary keys
– globalIDForRow:
– isPrimaryKeyValidInObject:
– primaryKeyForGlobalID:
– primaryKeyForRow:

Accessing primary key attributes
– setPrimaryKeyAttributes:
– primaryKeyAttributes
– primaryKeyAttributeNames
– primaryKeyRootName:
– isValidPrimaryKeyAttribute:

Accessing class properties
– setClassProperties:
– classProperties
– classPropertyNames
– isValidClassProperty:

Accessing the enterprise object class
– classDescriptionForInstances
– setClassName:
– className

Accessing locking attributes
– setAttributesUsedForLocking:
– attributesUsedForLocking
– isValidAttributeUsedForLocking:

Accessing external name
– setExternalName:
– externalName

Accessing whether an entity is read only
– setReadOnly:
– isReadOnly

Accessing the user dictionary
– setUserInfo:
– userInfo

Working with stored procedures
– setStoredProcedure:forOperation:
– storedProcedureForOperation:
157

Working with fetch specifications
– addFetchSpecification:withName:
– fetchSpecificationNamed:
– fetchSpecificationNames
– removeFetchSpecificationNamed:

Working with entity inheritance hierarchies
– parentEntity
– subEntities
– addSubEntity:
– removeSubEntity:
– setIsAbstractEntity:
– isAbstractEntity

Specifying fault behavior
– setMaxNumberOfInstancesToBatchFetch:
– maxNumberOfInstancesToBatchFetch

Caching objects
– setCachesObjects:
– cachesObjects

Instance Methods

addAttribute:
– (void)addAttribute: (EOAttribute *)anAttribute

Adds anAttribute to the receiver. Raises an NSInvalidArgumentException if anAttribute’s name is already
in use by another attribute or relationship. Sets anAttribute’s entity to self.

See also: – removeAttribute: , – attributes, – attributeNamed:

addFetchSpecification:withName:
– (void)addFetchSpecification:(EOFetchSpecification *)fetchSpec

withName:(NSString *)fetchSpecName

Adds the fetch specification and associates fetchSpecName with it.

See also: – fetchSpecificationNamed:, – fetchSpecificationNames, – removeFetchSpecificationNamed:
158

 Classes: EOEntity

addRelationship:
– (void)addRelationship:(EORelationship *)aRelationship

Adds aRelationship to the receiver. Raises an NSInvalidArgumentException if aRelationship’s name is
already in use by another attribute or relationship. Sets aRelationship’s entity to self.

See also: – removeRelationship:, – relationships, – relationshipNamed:

addSubEntity:
– (void)addSubEntity:(EOEntity *)child

Causes the child entity child to “inherit” from the receiver. This is the first step in setting up an inheritance
hierarchy between entities.

See also: – subEntities , – removeSubEntity:

anyAttributeNamed:
– (EOAttribute *)anyAttributeNamed:(NSString *)attributeName

Returns the user-created attribute identified by attributeName. If no such attribute exists, this method looks
through the “hidden” attributes created by the Enterprise Objects Framework for one with the given name.
Hidden attributes are used for such things as primary keys on target entities of flattened attributes. If none
is found, nil is returned.

See also: – attributeNamed:, – attributes

anyRelationshipNamed:
– (EORelationship *)anyRelationshipNamed:(NSString *)relationshipName

Returns the user-created relationship identified by relationshipName. If none exists, this method looks
through the “hidden” relationships created by the Enterprise Objects Framework for one with the given
name. If none is found, nil is returned.

See also: – relationshipNamed:, – relationships

attributeNamed:
– (EOAttribute *)attributeNamed:(NSString *)attributeName

Returns the attribute named attributeName, or nil if no such attribute exists.

See also: – anyAttributeNamed: , – attributes, – relationshipNamed:
159

d.

n
 a

attributes
– (NSArray *)attributes

Returns all of the receiver’s attributes, or nil if the receiver has none.

See also: – anyAttributeNamed: , – attributeNamed:

attributesToFetch
– (NSArray *)attributesToFetch

Returns an array of the EOAttributes that need to be fetched so that they can be included in the row
snapshot. The set of attributes includes:

1. Attributes that are class properties, “used for locking,” or primary keys.

2. Source attributes of any to-many relationship (flattened or non-flattened) that is a class property.

3. Source attributes of any non-flattened, to-one relationship that is a class property or that is used by a flattened
attribute that is a class property.

4. The foreign key attributes of any flattened, to-one relationship that is a class property or that is used by a class
property.

attributesUsedForLocking
– (NSArray *)attributesUsedForLocking

Returns an array containing those properties whose values must match a snapshot any time a row is update

Attributes used for locking are those whose values are compared when a database-level object performs a
update. When the database-level classes fetch an enterprise object, they cache these attributes’ values in
snapshot. Later, when the enterprise object is updated, the values of these attributes in the object are
checked with those in the snapshot—if they differ, the update fails. See the EODatabaseContext class
specification for more information.

beautifyName
– (void)beautifyName

Makes the receiver’s name conform to a standard convention. EOEntity names that conform to this style are
all lower-case except for the initial letter of each word, which is upper case. Thus, “MOVIE” becomes
“Movie”, and “MOVIE_ROLE” becomes “MovieRole”.

See also: – setName:, – validateName:, – beautifyNames (EOModel)
160

 Classes: EOEntity

t

s
cachesObjects
– (BOOL)cachesObjects

Returns YES if all of the objects from the receiver are to be cached in memory and queries are to be
evaluated in-memory using this cache rather than in the database. This method should only be used for fairly
small tables of read-only objects, since the first access to the receiver will trigger fetching the entire table.
You should generally restrict this method to read-only entities to avoid cached data getting out of sync with
database data. Also, you shouldn’t use this method if your application will be making queries against the
entity that can’t be evaluated in memory.

See also: – setCachesObjects:

classDescriptionForInstances
– (EOClassDescription *)classDescriptionForInstances

Returns the EOClassDescription associated with the receiver. The EOClassDescription class provides a
mechanism for extending classes by giving them access to the metadata contained in an EOModel (or
another external source of information). In an application, EOClassDescriptions are registered on demand
for the EOEntity on which an enterprise object is based. For more information, see the class specifications
for EOClassDescription (in EOControl) and EOEntityClassDescription.

className
– (NSString *)className

Returns the name of the enterprise object class associated with the receiver. When a row is fetched for the
receiver by a database-level object, it’s returned as an instance of this class. This class might not be presen
in the run-time system, and in fact your application may have to load it on demand. If your application
doesn’t load a class, EOGenericRecord is used.

An enterprise object class other than EOGenericRecord can be mapped to only one entity.

classProperties
– (NSArray *)classProperties

Returns an array containing the properties that are bound to the receiver’s class (so that instances of the clas
will be passed values corresponding to those properties). This is a subset of the receiver’s attributes and
relationships.

See also: – classPropertyNames
161

classPropertyNames
– (NSArray *)classPropertyNames

Returns an array containing the names of those properties that are bound to the receiver’s class (so that
instances of the class will be passed values corresponding to those properties). This is a subset of the
receiver’s attributes and relationships.

See also: – classProperties

externalModelsReferenced
– (NSArray *)externalModelsReferenced

Examines each of the receiver’s relationships and returns a list of all external models referenced by the
receiver.

See also: – referencesProperty:

externalName
– (NSString *)externalName

Returns the name of the receiver as understood by the database server.

externalQuery
– (NSString *)externalQuery

Returns a query statement that’s used by an EOAdaptorChannel to select rows for the receiver when a
qualifier is empty, or nil if the receiver has no external query. An empty qualifier is one that specifies only
the entity, and would thus fetch all enterprise objects for that entity.

External queries are useful for hiding records or invoking database-specific features such as stored
procedures when an application attempts to select all records for an entity. You can also use the
EOStoredProcedure class to work with stored procedures; for more information see the EOStoredProcedure
class specification.

See also: – setExternalQuery:
162

 Classes: EOEntity

d

fetchSpecificationNamed:
– (EOFetchSpecification *)fetchSpecificationNamed:(NSString *)fetchSpecName

Returns the fetch specification associated with fetchSpecName.

See also: – addFetchSpecification:withName:, – fetchSpecificationNames,
– removeFetchSpecificationNamed:

fetchSpecificationNames
– (NSArray *)fetchSpecificationNames

Returns an alphabetically sorted array of names of the entity’s fetch specifications.

See also: – addFetchSpecification:withName:, – fetchSpecificationNamed:,
– removeFetchSpecificationNamed:

globalIDForRow:
– (EOGlobalID *)globalIDForRow: (NSDictionary *)aRow

Constructs a global identifier from the specified row for the receiver.

See also: – primaryKeyForGlobalID:

isAbstractEntity
– (BOOL)isAbstractEntity

Returns YES to indicate that the receiver is abstract, NO otherwise. An abstract entity is one that has no
corresponding enterprise objects in your application. Abstract entities are used to model inheritance
relationships. For example, you might have a Person abstract entity that acts as the parent of Customer an
Employee entities. Customer and Employee would inherit certain characteristics from Person (such as name
and address attributes). However, though your application might have Customer and Employee objects, it
would never have a Person object.

See also: – setIsAbstractEntity:
163

isPrimaryKeyValidInObject:
– (BOOL)isPrimaryKeyValidInObject: (id)anObject

Returns YES if every key attribute is present in anObject and has a value that is not nil . Returns NO
otherwise. This method uses the key-value coding protocol so a dictionary may be provided instead of an
enterprise object.

See also: – primaryKeyForRow:

isQualifierForPrimaryKey:
– (BOOL)isQualifierForPrimaryKey: (EOQualifier *)aQualifier

Returns YES if aQualifier describes the primary key and nothing but the primary key, NO otherwise.

isReadOnly
– (BOOL)isReadOnly

Returns YES if the receiver can’t be modified, NO if it can. If an entity can’t be modified, then enterprise
objects fetched for that entity also can’t be modified (that is, inserted, deleted, or updated).

isValidAttributeUsedForLocking:
– (BOOL)isValidAttributeUsedForLocking: (EOAttribute *)anAttribute

Returns NO if anAttribute isn’t an EOAttribute, if the EOAttribute doesn’t belong to the receiver, or if
anAttribute is derived. Otherwise returns YES. An attribute that isn’t valid for locking will cause
setAttributesUsedForLocking: to fail.

See also: – attributesUsedForLocking

isValidClassProperty:
– (BOOL)isValidClassProperty:(id)aProperty

Returns NO if either aProperty isn’t an EOAttribute or EORelationship, or if aProperty doesn’t belong to
the receiver. Otherwise returns YES. Note that this method doesn’t tell you whether aProperty is a member
of the array returned by classProperties. In other words, unlike classProperties, classPropertyNames,
and setClassProperties:, this method doesn’t interact with the properties bound to the entity’s enterprise
object class.
164

 Classes: EOEntity
isValidPrimaryKeyAttribute:
– (BOOL)isValidPrimaryKeyAttribute: (EOAttribute *)anAttribute

Returns NO if anAttribute isn’t an EOAttribute, doesn’t belong to the receiver, or is derived. Otherwise
returns YES.

See also: – setPrimaryKeyAttributes:

maxNumberOfInstancesToBatchFetch
– (unsigned int)maxNumberOfInstancesToBatchFetch

Returns the maximum number of to-one EOFaults from the receiver to fire at one time. See the method
description for setMaxNumberOfInstancesToBatchFetch: for more explanation of what this means.

model
– (EOModel *)model

Returns the model that contains the receiver.

See also: – addEntity: (EOModel)

name
– (NSString *)name

Returns the receiver’s name.

parentEntity
– (EOEntity *)parentEntity

Returns the entity from which the receiver inherits.

See also: – subEntities

primaryKeyAttributeNames
– (NSArray *)primaryKeyAttributeNames

Returns an array containing the names of the attributes that make up the receiver’s primary key.

See also: – primaryKeyAttributes
165

.

primaryKeyAttributes
– (NSArray *)primaryKeyAttributes

Returns an array of those attributes that make up the receiver’s primary key.

See also: – primaryKeyAttributeNames

primaryKeyForGlobalID:
– (NSDictionary *)primaryKeyForGlobalID: (EOKeyGlobalID *)globalID

Returns the primary key for the object identified by globalID.

See also: – globalIDForRow:

primaryKeyForRow:
– (NSDictionary *)primaryKeyForRow: (NSDictionary *)aRow

Returns the primary key for aRow, or nil if the primary key can’t be computed. The primary key is
aDictionary whose keys are attribute names and whose values are values for those attributes.

See also: – primaryKeyForGlobalID:

primaryKeyRootName:
– (NSString *)primaryKeyRootName

Returns the external name (that is, the name as it’s understood by the database) of the receiver’s root entity
If the receiver has no parent entity, returns the receiver’s external name.

See also: – externalName, – name, – parentEntity

qualifierForPrimaryKey:
– (EOQualifier *)qualifierForPrimaryKey: (NSDictionary *)aRow

Returns a qualifier for the receiver that can be used to fetch an instance of the receiver with the primary key
extracted from aRow.

See also: – isQualifierForPrimaryKey: , – restrictingQualifier
166

 Classes: EOEntity

s
referencesProperty:
– (BOOL)referencesProperty:(id)aProperty

Returns YES if any of the receiver’s attributes or relationships reference aProperty, NO otherwise. A
property can be referenced by a flattened attribute or by a relationship. For example, suppose a model ha
an Employee entity with a toDepartment relationship. If you flatten the department’s name attribute into
the Employee entity, creating a departmentName attribute, that flattened attribute references the
toDepartment relationship.

If an entity has any outstanding references to a property, you shouldn’t remove the property.

See also: – removeAttribute: , – removeRelationship:

relationshipNamed:
– (EORelationship *)relationshipNamed:(NSString *)name

Returns the relationship named name, or nil if the receiver has no such relationship.

See also: – anyRelationshipNamed:, – attributeNamed:, – relationships

relationships
– (NSArray *)relationships

Returns all of the receiver’s relationships, or nil if the receiver has none.

See also: – attributes

removeAttribute:
– (void)removeAttribute: (EOAttribute *)name

Removes the attribute named name if it exists. You should always use referencesProperty: to check that
an attribute isn’t referenced by another property before removing it.

See also: – addAttribute: , – attributes

removeFetchSpecificationNamed:
– (void)removeFetchSpecificationNamed:(NSString *)fetchSpecName

Removes the fetch specification referred to by fetchSpecName.

See also: – addFetchSpecification:withName:, – fetchSpecificationNamed:, – fetchSpecificationNames
167

removeRelationship:
– (void)removeRelationship:(EORelationship *)name

Removes the relationship named name if it exists. You should always use referencesProperty: to check that
a relationship isn’t referenced by another property before removing it.

See also: – addRelationship:, – relationships

removeSubEntity:
– (void)removeSubEntity:(EOEntity *)child

Removes child from the receiver’s list of sub-entities.

See also: – addSubEntity:, – subEntities

restrictingQualifier
– (EOQualifier *)restrictingQualifier

Returns the qualifier used to restrict all queries made against the receiver. Restricting qualifiers are useful
when there is not a one-to-one mapping between an entity and a particular database table, or when you
always want to filter the data that’s returned for a particular entity.

For example, if you’re using the “one table” inheritance model in which parent and child data is contained
in the same table, you’d use a restricting qualifier to fetch objects of the appropriate type. To give a
non-inheritance example, for an Employees table you might create a “Sales” entity that has a restricting
qualifier that only fetches employees who are in the Sales department.

See also: – setRestrictingQualifier:

setAttributesUsedForLocking:
– (BOOL)setAttributesUsedForLocking:(NSArray *)attributes

Sets attributes as the attributes used when an EODatabaseChannel locks enterprise objects for updates.
Returns NO and doesn’t set the attributes used for locking if any of the attributes in attributes responds NO
to isValidAttributeUsedForLocking: ; returns YES otherwise. See the EODatabase, EODatabaseContext,
and EODatabaseChannel class specifications for information on locking.
168

 Classes: EOEntity

r,

setCachesObjects:
– (void)setCachesObjects:(BOOL)flag

Sets according to flag whether all of the receiver’s objects are cached the first time the associated table is
queried.

See also: – cachesObjects

setClassName:
– (void)setClassName:(NSString *)name

Assigns name as the name of the class associated with the receiver. This class need not be present in the
run-time system when this message is sent. When an EODatabaseChannel fetches objects for the receive
they’re created as instances of this class. Your application may have to load the class on demand if it isn’t
present in the run-time system; if it doesn’t load the class, EOGenericRecord will be used.

Note: If you set the class name to nil , the className method returns “EOGenericRecord”.

An enterprise object class other than EOGenericRecord can be mapped to only one entity.

See also: – className

setClassProperties:
– (BOOL)setClassProperties:(NSArray *)properties

Sets the receiver’s class properties to the EOAttributes and EORelationships in properties and returns YES,
unless the receiver responds NO to isValidClassProperty: for any of the objects in the array. In this event,
the receiver’s class properties aren’t changed and NO is returned.

setExternalName:
– (void)setExternalName:(NSString *)name

Sets the name of the receiver as understood by the database server to name. For example, though your
application may know the entity as “JobTitle” the database may require a form such as “JOB_TTL”. An
adaptor uses the external name to communicate with the database; your application should never need to
use the external name.
169

s

setExternalQuery:
– (void)setExternalQuery:(NSString *)aQuery

Assigns aQuery as the query statement used for selecting rows from the receiver when there is no qualifier.

External queries are useful for hiding records or invoking database-specific features such as stored
procedures when an application attempts to select all records for an entity. You can also use the
EOStoredProcedure class to work with stored procedures; for more information see the EOStoredProcedure
class specification.

An external query is sent unaltered to the database server, and so must contain the external (column) name
instead of the names of EOAttributes. However, to work properly with the adaptor the external query must
use the columns in alphabetical order by their corresponding EOAttributes’ names.

See also: – columnName (EOAttribute), – externalQuery

setIsAbstractEntity:
– (void)setIsAbstractEntity: (BOOL)flag

Sets according to flag whether the receiver is an abstract entity. For more discussion of abstract entities, see
the method description for isAbstractEntity .

setMaxNumberOfInstancesToBatchFetch:
– (void)setMaxNumberOfInstancesToBatchFetch:(unsigned int)size

Sets the maximum number of EOFaults from the receiver to trigger at one time. By default, only one object
is fetched from the database when you trigger an EOFault. You can optionally use this method to set to size
the number of EOFaults of the same entity should be fetched from the database along with the first one.
Using this technique helps to optimize performance by taking advantage of round trips to the database.

See also: – maxNumberOfInstancesToBatchFetch

setName:
– (void)setName:(NSString *)name

Sets the receiver’s name to name. Raises an NSInvalidArgumentException if name is already in use by
another entity in the same EOModel or if name is not a valid entity name.

See also: – beautifyName, – validateName:
170

 Classes: EOEntity

,
setPrimaryKeyAttributes:
– (BOOL)setPrimaryKeyAttributes: (NSArray *)keys

If the receiver responds NO to isValidPrimaryKeyAttribute: for any of the objects in keys, this method
returns NO. Otherwise, this method sets the primary key attributes to the attributes in keys and returns YES.

You should exercise care in choosing primary key attributes. Floating-point numbers, for example, can’t be
reliably compared for equality, and are thus unsuitable for use in primary keys. Integer and string types are
the safest choice for primary keys. NSDecimalNumbers will work, but they’ll entail more overhead than
integers.

See also: – isValidPrimaryKeyAttribute:

setReadOnly:
– (void)setReadOnly:(BOOL)flag

Sets according to flag whether the database rows for the receiver can be modified by the database level
objects.

See also: – isReadOnly

setRestrictingQualifier:
– (void)setRestrictingQualifier:(EOQualifier *)aQualifier

Assigns aQualifier as the qualifier used to restrict all queries made against the receiver. The restricting
qualifier can be used to map an entity to a subset of the rows in a table. For more discussion of this subject
see the description for restrictingQualifier .

setStoredProcedure:forOperation:
– (void)setStoredProcedure:(EOStoredProcedure *)storedProcedure

forOperation: (NSString *)operation

Sets storedProcedure for operation. operation can be one of the following:

Constant Description

EOFetchAllProcedureOperation Procedure that fetches all records from the database.

EOFetchWithPrimaryKeyProcedureOperation Procedure that performs a fetch with primary key.

EOInsertProcedureOperation Procedure that performs an insert.
171

This information is used when changes from the object graph have been transformed into
EODatabaseOperations that are being used to construct EOAdaptorOperations. At this point, Enterprise
Objects Framework checks the entities associated with the changed objects to see if the entities have any
stored procedures defined for the operation being performed.

See also: – storedProcedureForOperation:

setUserInfo:
– (void)setUserInfo:(NSDictionary *)dictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types—that is, NSString, NSDictionary, NSArray, and NSData.

storedProcedureForOperation:
– (EOStoredProcedure *)storedProcedureForOperation:(NSString *)operation

Returns the stored procedure for the specified operation, if one has been set. Otherwise, returns nil .
operation can be one of the following:

• EOFetchAllProcedureOperation
• EOFetchWithPrimaryKeyProcedureOperation
• EOInsertProcedureOperation
• EODeleteProcedureOperation
• EONextPrimaryKeyProcedureOperation

See also: – setStoredProcedure:forOperation:, – parameterDirection (EOAttribute),
– storedProcedure (EOAttribute)

subEntities
– (NSArray *)subEntities

Returns a list of those entities which inherit from the receiver.

See also: – addSubEntity:, – parentEntity , – removeSubEntity:

EODeleteProcedureOperation Procedure that performs a delete.

EONextPrimaryKeyProcedureOperation Procedure that performs generates a new primary key.

Constant Description
172

 Classes: EOEntity
userInfo
– (NSDictionary *)userInfo

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: – setUserInfo:

validateName:
– (NSException *)validateName:(NSString *)name

Validates name and returns nil if it is a valid name, or an exception if it isn’t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@”, “#”, or “_”; or contains a character other
than a letter, a number, “@”, “#”, “_”, or “$”. A name is also invalid if the receiver's model already has an
EOEntity that has the same name or a stored procedure with an argument that has the same name.

setName: uses this method to validate its argument.
173

174

 Classes:

.
Creating an Entity

An EOEntity requires at least the following to be usable:

• A name
• The name of a table in the database (the external name)
• The name of an enterprise object class
• A set of attributes to be used as the primary key

Note that if an entity has no enterprise object class name, the database-level objects use EOGenericRecord
This code excerpt gives an example of creating an EOEntity and adding it to an EOModel:

EOModel *myModel; /* Assume this exists. */

NSArray *keyAttributes; /* Assume this exists. */

EOEntity *employeeEntity;

BOOL result;

employeeEntity = [[[EOEntity alloc] init] autorelease];

[employeeEntity setName:@"employee"];

[employeeEntity setExternalName:@"EMPLOYEE"];

[employeeEntity setClassName:@"Employee"];

/* Create at least the primary key attributes. */

result = [employeeEntity setPrimaryKeyAttributes:keyAttributes];

/* Add the entity to the model. */

[myModel addEntity:employeeEntity];
175

176

 Classes: EOEntityClassDescription

a

.
EOEntityClassDescription

Inherits From: EOClassDescription : NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOEntity.h

Class Description

EOEntityClassDescription is the subclass of the control layer’s EOClassDescription. The
EOClassDescription class provides a mechanism for extending classes by giving them access to metadat
not available in the run-time system. EOEntityClassDescription extends the behavior of enterprise objects
by deriving information about them (such as NULL constraints and referential integrity rules) from an
associated EOModel.

In the typical scenario in which an enterprise object has a corresponding model file, the first time a
particular operation is performed on a class (such as validating a value), an EOClassDescriptionNeeded..
notification (either an EOClassDescriptionNeededForClassNotification or an
EOClassDescriptionNeededForEntityNameNotification) is broadcast. When an EOModel object receives
this notification it registers the metadata (class description) for the EOEntity on which the enterprise object
is based. This class description is used from that point on.

For a more detailed discussion of this subject, see the EOClassDescription class specification.

Instance Methods

entity
– (EOEntity *)entity

Returns the entity associated with the receiver.

See also: – initWithEntity:

initWithEntity:
– initWithEntity: (EOEntity *)anEntity

Initializes a newly allocated EOEntityClassDescription with anEntity. Returns self.
177

178

 Classes:

EOGenericRecord Additions

Inherits From: NSObject

Declared In: EOAccess/EOGenericRecord.h

Class Description

The access layer adds one method to the control layer’s EOGenericRecord class, for returning a generic
record’s associated EOEntity. Strictly speaking, EOGenericRecord doesn’t rely on the access layer.
However, in applications that access a relational database, the access layer’s modeling objects are an
important part of how generic records map to database rows: If an EOModel doesn't have a custom
enterprise object class defined for a particular entity, an EODatabaseChannel using that model creates
EOGenericRecords when fetching objects for that entity from the database server. During this process, an
EODatabaseChannel also sets each generic record’s classDescription to an EOEntityClassDescription,
providing the link to the record’s associated modeling objects.

Instance Methods

entity
– (EOEntity *)entity

Returns the receiver's EOEntity.
179

180

 Classes: EOJoin

EOJoin

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOJoin.h

Class Description

An EOJoin describes one source-destination attribute pair for an EORelationship. See the EORelationship
class specification for more information and for examples.

Method Types

Initializing new instances
– initWithSourceAttribute:destinationAttribute:

Querying the join
– destinationAttribute
– isReciprocalToJoin:
– sourceAttribute

Instance Methods

destinationAttribute
– (EOAttribute *)destinationAttribute

Returns the destination (“right”) attribute used by the join.

See also: – destinationAttributes (EORelationship)

initWithSourceAttribute:destinationAttribute:
– initWithSourceAttribute: (EOAttribute *)source destinationAttribute: (EOAttribute *)destination

Initializes a newly allocated EOJoin with the given source and destination attributes. This is the designated
initializer for the EOJoin class. Returns self.
181

See the EORelationship class specification for an example of creating a relationship using EOJoins.

See also: – addJoin: (EORelationship)

isReciprocalToJoin:
– (BOOL)isReciprocalToJoin:(EOJoin *)otherJoin

Returns YES if this join’s source attribute is equal to otherJoin’s destination attribute and otherJoin’s source
attribute is equal to this join’s destination attribute. This is known as a back-referencing join.

See also: – inverseRelationship (EORelationship)

sourceAttribute
– (EOAttribute *)sourceAttribute

Returns the source (“left”) attribute used by the join.

See also: – sourceAttributes (EORelationship)
182

 Classes: EOLoginPanel

EOLoginPanel

Inherits From: NSObject

Declared In: EOAccess/EOAdaptor.h

Class Description

EOLoginPanel is an abstract class that defines how users of an Enterprise Objects Framework application
provide database login information. Concrete subclasses of EOLoginPanel override its one method to run
a modal login panel. Unless you are writing a concrete adaptor subclass, you shouldn’t need to interact with
this class. Generally, the Framework automatically creates and runs an instance of a concrete login panel
object when your application needs connection information for the user. If you want to control when or how
the login panel is run, use the EOAdaptor methods runLoginPanelAndValidateConnectionDictionary
and runLoginPanel. When invoked, these methods create a concrete EOLoginPanel and interact with it for
you.

If you are writing a concrete adaptor, you must provide a concrete subclass of EOLoginPanel and a
graphical user interface (usually a .nib file). Enterprise Objects Framework expects these resources to be
provided in a bundle named “LoginPanel” in the adaptor’s framework. See the class specification for
EOAdaptor for more information.

Instance Methods

administrativeConnectionDictionaryForAdaptor:

– (NSDictionary *)administrativeConnectionDictionaryForAdaptor: (EOAdaptor *)adaptor

Adaptor subclass should implement a subclass that implements this. Returns nil if the user cancels the
panel.

runPanelForAdaptor:validate:allowsCreation:
– (NSDictionary *)runPanelForAdaptor: (EOAdaptor *)adaptor

validate:(BOOL)flag
allowsCreation:(BOOL)allowsCreation

Implemented by subclasses to run the login panel, allowing a user to enter new connection information.
Returns the new connection information or nil if the user cancels the panel. If flag is YES, this method runs
the login panel until the user enters valid connection information or cancels the panel. If allowsCreation is
183

YES, the panel will have an additional button that allows the user to creat a new database, and will prompt
them for any necessary administrative information. When valid login information is entered in the panel, it
is stored in adaptor's connection dictionary and returned. Login information is validated by sending adaptor
an assertConnectionDictionaryIsValid message.

If flag is NO, login information entered in the panel isn’t validated and is returned without affecting the
adaptor's connection dictionary.

A subclass must override this method without invoking EOAdaptor’s implementation.

See also: – setConnectionDictionary: (EOAdaptor), – assertConnectionDictionaryIsValid (EOAdaptor),
– runLoginPanelAndValidateConnectionDictionary (EOAdaptor),
– runLoginPanel (EOAdaptor)
184

 Classes: EOModel

y
EOModel

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOModel.h

Class Description

An EOModel represents a mapping between a database schema and a set of classes based on the
entity-relationship model. The model contains a number of EOEntity objects representing the entities
(tables) of the database schema. Each EOEntity object has a number of EOAttribute and EORelationship
objects representing the properties (columns or fields) of the entity in the database schema. For more
information on attributes and relationships, see their respective class specifications.

An EOModel maintains a mapping between each of its EOEntity objects and a corresponding enterprise
object class for use with the database level of the Enterprise Objects Framework. You can determine the
EOEntity for a particular enterprise object with the entityForObject: method.

An EOModel is specific to a particular database server, and stores information needed to connect to that
server. This includes the name of an adaptor framework to load so that the Enterprise Objects Framework
can communicate with the database. Models are stored in the file system in a manner similar to adaptor
framework. EOModel objects are usually loaded from model files built with the EOModeler application
rather than built programmatically. If you need to programmatically load a model file, see the discussion in
“Loading a Model File.”

Models can have relationships that reference other models in the same model group. The other models ma
map to different databases and types of servers.

Models are organized into model groups; see the EOModelGroup class specification for more information.

Creating an EOModel Programmatically

The EOAdaptorChannel class declares methods for reading basic schema information from a relational
database. You can use this information to build up an EOModel programmatically, and then enhance that
model by defining extra relationships, flattening attributes, and so on. See the class description in the
EOAdaptorChannel class specification for information on reading basic schema information, and see the
other modeling classes’ specifications for information on creating additional attributes and relationships.
185

Method Types

Initializing an EOModel instance
– initWithContentsOfFile:
– initWithTableOfContentsPropertyList:path:

Saving a model
– encodeTableOfContentsIntoPropertyList:
– writeToFile:

Loading a model’s objects
– loadAllModelObjects

Working with entities
– addEntity:
– removeEntity:
– removeEntityAndReferences:
– entityNames
– entityNamed:
– entities

Naming a model’s components
– beautifyNames

Accessing the model’s name
– setName:
– name
– path

Checking references
– referencesToProperty:
– externalModelsReferenced

Getting an object’s entity
– entityForObject:

Accessing the adaptor bundle
– adaptorName
– setAdaptorName:

Accessing the connection dictionary
– setConnectionDictionary:
– connectionDictionary

Accessing the user dictionary
– setUserInfo:
– userInfo
186

 Classes: EOModel
Working with stored procedures
– addStoredProcedure:
– removeStoredProcedure:
– storedProcedureNames
– storedProcedureNamed:
– storedProcedures

Accessing the model’s group
– setModelGroup:
– modelGroup

Instance Methods

adaptorName
– (NSString *)adaptorName

Returns the name of the adaptor for the receiver. This name can be used with EOAdaptor’s
adaptorWithName: class method to create an adaptor.

addEntity:
– (void)addEntity: (EOEntity *)anEntity

Adds anEntity to the receiver. Raises an NSInvalidArgumentException if an error occurs (for example, if
anEntity doesn’t exist, if the entity belongs to another model, or if an entity of the same name is already in
the receiver).

See also: – entities, – removeEntity:, – removeEntityAndReferences:

addStoredProcedure:
– (void)addStoredProcedure:(EOStoredProcedure *)storedProcedure

Adds storedProcedure to the receiver. Raises an NSInvalidArgumentException if an error occurs (for
example, if a stored procedure of the same name is already in the receiver).

See also: – removeStoredProcedure:, – storedProcedures, – storedProcedureNamed:,
– storedProcedureNames
187

availablePrototypeAttributeNames
– (NSArray *)availablePrototypeAttributeNames

Returns a list of available prototype names.

See also: – prototypeAttributeNamed:

beautifyNames
– (void)beautifyNames

Makes all of the receiver’s named components conform to a standard convention. Names that conform to
this style are all lower-case except for the initial letter of each embedded word other than the first, which is
upper case. Thus, “NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”.

See also: , – name

connectionDictionary
– (NSDictionary *)connectionDictionary

Returns a dictionary containing information used to connect to the database server. The connection
dictionary is the place to specify default login information for applications using the model. See the
EOAdaptor class specification for more information.

encodeTableOfContentsIntoPropertyList:
– (void)encodeTableOfContentsIntoPropertyList:(NSMutableDictionary *)propertyList

Encodes the receiver into propertyList. This method is used to get an ASCII representation of an EOModel
in property list format.

See also: – initWithTableOfContentsPropertyList:path:

entities
– (NSArray *)entities

Returns an array containing the receiver’s entities. Note that this method loads every entity, and thus defeats
the benefits of incremental model loading.

See also: – entityNames
188

 Classes: EOModel
entityForObject:
– (EOEntity *)entityForObject: (id)anEO

Returns the entity associated with anEO, whether anEO is an instance of an enterprise object class, an
instance of EOGenericRecord, or a fault object (see the EOFault class specification for information on
faults). Returns nil if anEO has no associated entity.

entityNamed:
– (EOEntity *)entityNamed:(NSString *)name

Returns the entity named name, or nil if no such entity exists. Posts an EOEntityLoadedNotification when
the entity is loaded.

See also: – entityNames, – entities

entityNames
– (NSArray *)entityNames

Returns an array containing the names of the EOModel’s entities.

See also: – entities, – entityNamed:

externalModelsReferenced
– (NSArray *)externalModelsReferenced

Returns an array containing those models that are referenced by this model.

See also: – referencesToProperty:

initWithContentsOfFile:
– initWithContentsOfFile: (NSString *)path

Initializes a newly-allocated EOModel by reading the contents of the file named path as a model archive.
The file specified by path can either be an old-style (.eomodel) or new-style (.eomodeld) model file. Sets
the EOModel’s name and path. initWithContentsOfFile: raises an NSInvalidArgumentException if for
any reason it cannot initialize the model from the file specified by path.

See also: – name, – path
189

initWithTableOfContentsPropertyList:path:
– initWithTableOfContentsPropertyList: (NSDictionary *)tableOfContents path:(NSString *)path

Uses tableOfContents (which is the property list representation of an EOModel) with the file name path to
initialize the receiver.

See also: – encodeTableOfContentsIntoPropertyList:

loadAllModelObjects
– (void)loadAllModelObjects

Loads any of the receiver’s entities, stored procedures, attributes, and relationships that have not yet been
loaded.

See also: – attributes (EOEntity), – entities, – relationships (EOEntity), – storedProcedures

modelGroup
– (EOModelGroup *)modelGroup

Returns the model group of which the receiver is a part.

See also: – setModelGroup:

name
– (NSString *)name

Returns the receiver’s name.

See also: – path

path
– (NSString *)path

Returns the name of the EOModel file used to create the receiver, or nil if the model wasn’t initialized from
a file.

See also: – name
190

 Classes: EOModel
prototypeAttributeNamed:
– (EOAttribute *)prototypeAttributeNamed: (NSString *)attributeName

Returns the prototype attribute for the given attributeName. prototypeAttributeNamed: first looks for the
prototype in EOadaptorNamePrototypes. If the prototype isn’t found there, it then looks in EOPrototypes.
If the search is still unsuccessful, this method finally looks for the prototype in the list of prototypes
provided by the adaptor itself.

See also: – availablePrototypeAttributeNames

referencesToProperty:
– (NSArray *)referencesToProperty:(id)aProperty

Returns an array of all properties in the receiver that reference aProperty, whether derived attributes,
relationships that reference aProperty, and so on. Returns nil if aProperty isn’t referenced by any of the
properties in the model.

See also: – externalModelsReferenced

removeEntity:
– (void)removeEntity:(EOEntity *)name

Removes the entity with the given name without performing any referential integrity checking.

See also: – addEntity:, – removeEntityAndReferences:

removeEntityAndReferences:
– (void)removeEntityAndReferences:(EOEntity *)entity

Removes entity and any attributes or relationships in other entities that reference entity.

See also: – removeEntity:, – addEntity:

removeStoredProcedure:
– (void)removeStoredProcedure:(EOStoredProcedure *)storedProcedure

Removes aStoredProcedure without checking to see if an entity uses it.

See also: – addStoredProcedure:, – storedProcedures
191

setAdaptorName:
– (void)setAdaptorName:(NSString *)adaptorName

Sets the name of the receiver’s adaptor to adaptorName.

See also: availableAdaptorNames (EOAdaptor)

setConnectionDictionary:
– (void)setConnectionDictionary:(NSDictionary *)connectionDictionary

Sets the dictionary containing information used to connect to the database to connectionDictionary. See the
EOAdaptor class specification for more information on working with connection dictionaries.

See also: adaptorWithModel: (EOAdaptor)

setModelGroup:
– (void)setModelGroup:(EOModelGroup *)group

Sets the model group of which the receiver should be a part.

Note: You shouldn’t change an EOModel’s model group after it has been bound to other models in its
group.

See also: – modelGroup

setName:
– (void)setName:(NSString *)name

Sets the name of the receiver to name.

setUserInfo:
– (void)setUserInfo:(NSDictionary *)dictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types—that is, NSString, NSDictionary, NSArray, and NSData.
192

 Classes: EOModel
storedProcedureNamed:
– (EOStoredProcedure *)storedProcedureNamed:(NSString *)name

Returns the stored procedure named name, or nil if the model doesn’t contain a stored procedure with the
given name.

See also: – storedProcedureNames, – storedProcedures

storedProcedureNames
– (NSArray *)storedProcedureNames

Returns an array containing the names of all of the model’s stored procedures.

See also: – storedProcedureNamed:, – storedProcedures

storedProcedures
– (NSArray *)storedProcedures

Returns an array containing all of the model’s stored procedures. Note that this method loads each of the
model’s stored procedures, thus defeating the benefits of incremental model loading.

See also: – storedProcedureNames, – storedProcedureNamed:

userInfo
– (NSDictionary *)userInfo

Returns a dictionary of user data. You can use this to store any auxiliary information it needs.

See also: – setUserInfo:

writeToFile:
– (void)writeToFile: (NSString *)path

Saves the receiver in the directory specified by path. If the file specified by path already exists, a backup
copy is first created (using path with a “~” character appended). As a side-effect, this method resets the
current path.

writeToFile: raises an NSInvalidArgumentException on any error which prevents the file from being
written.

See also: – path
193

Notifications

EOModel declares and posts the following notification.

EOEntityLoadedNotification

Posted after an EOEntity is loaded into memory. The notification contains:

Notification Object The entity that was loaded.

Userinfo None
194

 Classes:
Loading a Model File

EOModels are usually loaded from model files built with the EOModeler application rather than built
programmatically. EOModel files are typically stored in a project or a framework.

You use initWithContentsOfFile: to load an EOModel. Note that loading an EOModel doesn’t have the
effect of loading all of its entities. EOModel files can be quite large, so to reduce start-up time, entity
definitions are only loaded as needed. This incremental model loading is possible because an EOModel
actually consists of one index file and two files for each entity. Models have an .eomodeld file wrapper
(which is actually a directory), and the individual entity files within the model are in ASCII format. The
index file has the name index.eomodeld, and it contains the connection dictionary, the adaptor name, and
a list of all of the entities in the model. It is this file that gets loaded when you use initWithContentsOfFile:
. Thereafter, when an entity is loaded, EOModel posts an EOEntityLoadedNotification. The entity files are
a .plist file that describes the entity and a .fspec file that describes any named fetch specifications for that
entity.

Some of the EOModel methods contain the string “TableOfContents”. An EOModel’s “table of contents”
corresponds to its index.eomodeld file, which is used to access the model’s entities. index.eomodeld is just
the ASCII representation of a model’s table of contents.
195

196

 Classes: EOModelGroup

EOModelGroup

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOModelGroup.h

Class Description

An EOModelGroup represents an aggregation of related models (see the EOModel class specification for
more information on models). When a model in the group needs to resolve a relationship to an entity in
another model, it looks for that model in its group. Model groups allow applications to load entities and
their properties only as they’re needed, by distributing them among separate EOModels.

The default model group contains all models for an application, as well as any frameworks the application
references. It is automatically created on demand. The entity name space among all of these models is
global; consequently, the same entity name shouldn’t appear in any two of the models. All cross-model
information is represented in the models by entity name only. Binding the entity name to an actual entity is
done at run-time within the EOModelGroup.

In the majority of applications, the automatic creation of the default model group is sufficient. However,
your code can override this automatic creation; see “Setting Up A Model Group Programmatically.”

EOModelGroup Delegates

Your EOModelGroup object should have a delegate which can influence how it finds and loads models. In
addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself can have
a delegate. The class delegate implements a single method—defaultModelGroup—while the instance
delegate can implement the methods defined in the EOModelGroupDelegation protocol. For more
information on EOModelGroup class delegate and instance delegate methods, see the
EOModelGroupClassDelegation and EOModelGroupDelegation protocol specifications, respectively.Note
that the following delegate methods are set on EOModelGroup, rather than EOEntity, to provide a single
point in the code where you can alter the database-to-objects mapping:

• entity:classForObjectWithGlobalID:
• entity:failedToLookupClassNamed:
• entity:relationshipForRow:relationship:
• subEntityForEntity:primaryKey:isFinal:
197

Method Types

Accessing the group
– addModel:
– addModelWithFile:
– modelNamed:
– modelNames
– models
– modelWithPath:
– removeModel:

Accessing model groups
+ defaultGroup
+ setDefaultGroup:
+ globalModelGroup

Searching a group
– entityNamed:
– entityForObject:
– fetchSpecificationNamed:entityNamed:
– storedProcedureNamed:

Loading all of a group’s objects
– loadAllModelObjects

Assigning a delegate
+ classDelegate
– delegate
+ setClassDelegate:
– setDelegate:

Class Methods

classDelegate
+ (id)classDelegate

Returns the EOModelGroup’s class delegate. This delegate optionally implements the
defaultModelGroup method (see the EOModelGroupClassDelegation protocol specification for more
information).

See also: + setClassDelegate:
198

 Classes: EOModelGroup
defaultGroup
+ (EOModelGroup *)defaultGroup

Returns the default EOModelGroup. Unless you’ve either specified a default model group with
setDefaultGroup: or implemented the defaultModelGroup class delegate method to return a non-nil
value, this method is equivalent to globalModelGroup.

See also: + classDelegate

globalModelGroup
+ (EOModelGroup *)globalModelGroup

Returns an EOModelGroup composed of all models in the resource directory of the main bundle, as well
as those in all the bundles and frameworks loaded into the application.

See also: + defaultGroup

setClassDelegate:
+ (void)setClassDelegate:(id)anObject

Assigns anObject as the EOModelGroup’s class delegate. The class delegate is optional; it allows you to
determine the default model group (see the EOModelGroupClassDelegation protocol specification for more
information).

See also: + classDelegate, – defaultModelGroup

setDefaultGroup:
+ (void)setDefaultGroup:(EOModelGroup *)group

Sets the default model group to group. If you’ve implemented the defaultModelGroup class delegate
method to return a non-nil value, the delegate’s return value overrides group as the default model group.

See also: + defaultGroup,+ setClassDelegate:
199

Instance Methods

addModel:
– (void)addModel:(EOModel *)model

Adds a model to the receiver, sets the model’s model group to the receiver, posts
EOModelAddedNotification, then returns the newly-created EOModel. Raises if the receiver already
contains an EOModel with the same name as the specified model.

See also: – models, – removeModel:

addModelWithFile:
– (EOModel *)addModelWithFile: (NSString *)path

Creates an EOModel object with the contents of the file identified by path, adds the newly-created model
to the receiver, and returns it. Uses the EOModel method – initWithContentsOfFile: to initialize the new
model, and adds it to the receiver with addModel:.

delegate
– (id)delegate

Returns the receiver’s delegate, which is different from the EOModelGroup’s class delegate. Each
EOModelGroup object can have it’s own delegate in addition to the delegate that’s assigned to the
EOModelGroup class. See the EOModelGroupDelegation protocol specification for more information.

See also: – setDelegate:, + classDelegate

entityForObject:
– (EOEntity *)entityForObject: (id)object

Returns the EOEntity associated with object from any of the models in the receiver that handle object, or
nil if none of the entities in the receiver handles object.

See also: – entityForObject: (EOModel)
200

 Classes: EOModelGroup
entityNamed:
– (EOEntity *)entityNamed:(NSString *)entityName

Searches each of the EOModels in the receiver for the entity specified by entityName, and returns the entity
if found. Returns nil if it is unable to find the specified entity.

See also: – entityNamed: (EOModel)

fetchSpecificationNamed:entityNamed:
– (EOFetchSpecification *)fetchSpecificationNamed:(NSString *)fetchSpecName

entityNamed:(NSString *)entityName

Returns the named fetch specification from the entity specified by entityName in the receiving model group.

loadAllModelObjects
– (void)loadAllModelObjects

Sends loadAllModelObjects to each of the receiver’s EOModels, thereby loading any EOEntities,
EOAttributes, EORelationships, and EOStoredProcedures that haven’t yet been loaded from each of the
EOModels in the receiver.

See also: – loadAllModelObjects (EOModel)

modelNamed:
– (EOModel *)modelNamed:(NSString *)modelName

Returns the EOModel named modelName if it’s part of the receiver, or nil if the receiver doesn’t contain an
EOModel with the specified name.

See also: – modelNames, – models

modelNames
– (NSArray *)modelNames

Returns an array containing the names of all of the EOModels in the receiver, or an empty array if the
receiver contains no EOModels. The order of the model names in the array isn’t defined.

See also: – modelNamed:, – models
201

models
– (NSArray *)models

Returns an array containing the receiver’s EOModels, or an empty array if the receiver contains no
EOModels. The order of the models in the array isn’t defined.

See also: – modelNamed:, – modelNames, – models

modelWithPath:
– (EOModel *)modelWithPath:(NSString *)path

If the receiver contains an EOModel whose path (as determined by sending path to the EOModel object)
is equal to path, that EOModel is returned. Otherwise, returns nil . NSString’s isEqual: method is used to
compare the paths, and each path is standardized (with stringByStandardizingPath) before comparison.

See also: – modelNamed::, – path (EOModel)

removeModel:
– (void)removeModel:(EOModel *)aModel

Removes aModel from the receiver, and unbinds any connections to aModel from other EOModels in the
receiver. Posts EOModelInvalidatedNotification to the default notification center after removing aModel
from the receiver.

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject. See the EOModelGroupDelegation protocol specification for more
information.

See also: – delegate

storedProcedureNamed:
– (EOStoredProcedure *)storedProcedureNamed:(NSString *)aName

Returns the stored procedure in the receiving model group having the given name.
202

 Classes: EOModelGroup

s

s
Notifications

EOModelGroup declares and posts the following notifications.

EOModelAddedNotification

Posted by an EOModelGroup when an EOModel is added to the group. This notification is sent, for
instance, inside Interface Builder when the user has saved changes to a model in EOModeler and the object
in Interface Builder must be brought back in sync. The old model is flushed and receivers of the notification
(like data sources) can invoke modelNamed: to re-fetch their models.

EOModelInvalidatedNotification

Posted by an EOModelGroup when an EOModel is removed from the group. This notification is sent, for
instance, inside Interface Builder when the user has saved changes to a model in EOModeler and the object
in Interface Builder must be brought back in sync. The old model is flushed and receivers of the notification
(like data sources) can invoke modelNamed: to re-fetch their models.

Notification Object The newly added model.

Userinfo None

Notification Object The invalidated model.

Userinfo None
203

204

 Classes:
Setting Up A Model Group Programmatically

In the majority of applications, the automatic creation of the default model group is sufficient. However, if
your particular application requires different model grouping semantics, you can create your own
EOModelGroup instance, add the appropriate models, and then use that instance to replace the default
EOModelGroup. The following code demonstrates the process:

NSString *modelPath; // Assume this exists

EOModelGroup *group = [EOModelGroup new];

[group addModelWithFile:modelPath];

[EOModelGroup setDefaultGroup:group];

[group release];
205

206

 Classes: EOObjectStoreCoordinator Additions
EOObjectStoreCoordinator Additions

Inherits From: EOObjectStoreCoordinator : NSObject

Declared In: EOAccess/EOModelGroup.h

Class Description

The EOAccess framework adds two methods to EOControl’s EOObjectStoreCoordinator class for
accessing the coordinator’s EOModelGroup. An application can have multiple
EOObjectStoreCoordinators, and each coordinator can have a different EOModelGroup. (For more
discussion of this subject, see the chapter “Application Configurations” in the Enterprise Objects
Framework Developer’s Guide.) Application and framework code needing access to the EOModelGroup
for a given EOEditingContext can get that information by asking the EOEditingContext’s
EOObjectStoreCoordinator for its EOModelGroup.

The methods are defined in a category of EOObjectStoreCoordinator in EOAccess (instead of in
EOControl’s EOObjectStoreCoordinator interface) to preserve the EOControl framework’s independence
of the EOAccess framework.

Instance Methods

modelGroup
– (EOModelGroup *)modelGroup

Returns the receiver’s EOModelGroup. By default, this method returns the results of the statement
[EOModelGroup defaultGroup] . If your application is using more than one
EOObjectStoreCoordinator, each coordinator can have its own EOModelGroup.

setModelGroup:
– (void)setModelGroup:(EOModelGroup *)group

Sets to group the EOModelGroup used by the receiver. By default, an EOObjectStore’s EOModelGroup is
the model group returned from the statement [EOModelGroup defaultGroup] . However, you can
override this by using setModelGroup: to explicitly set a different EOModelGroup for the receiver. Other
parts of Enterprise Objects Framework (such as EODatabaseContext) use the EOModelGroup bound to
their EOObjectStoreCoordinator.
207

208

 Classes:

s

EOQualifier Additions

Inherits From: NSObject

Declared In: EOAccess/EOSQLQualifier.h

Class Description

The access layer adds one method to the EOQualifier class, for “rerooting” a qualifier to another entity.
EOQualifiers (except EOSQLQualifier) aren’t based on SQL and they don’t rely upon an EOModel.
Because this method reroots a qualifier in terms of model objects, it is only useful to the classes in the acces
layer. It is not used in in-memory searches.

Instance Methods

qualifierMigratedFromEntity:relationshipPath:
– (EOQualifier *)qualifierMigratedFromEntity: (EOEntity *)entity

relationshipPath:(NSString *)relationshipPath

Creates a copy of the receiver, translates all the copy’s keys to work with the entity specified in
relationshipPath, and returns the copy. The receiver’s keys are all specified in terms of entity. For example,
assume that an Employee entity has a relationship to a Department entity named “department”. You could
migrate a qualifier described in terms of the Employee entity (department.name = ‘Finance’, for example)
to a qualifier described in terms of the Department entity (name = ‘Finance’). To do so, you send a
qualifierMigratedFromEntity:relationshipPath: message with the Employee entity as the entity and
“department” as the relationship path.
209

210

 Classes: EORelationship

.

e

EORelationship

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EORelationship.h

Class Description

An EORelationship describes an association between two entities, based on attributes of those two entities
By defining EORelationships in your application’s EOModel, you can cause the relationships defined in the
database to be automatically resolved as enterprise objects are fetched. For example, a Movie entity may
contain its studioId as an attribute, but without an EORelationship studioId will only appear in a movie
enterprise object as a number. With an EORelationship explicitly connecting the Movie entity to a Studio
entity, a movie enterprise object will automatically be given its studio enterprise object when an
EODatabaseChannel fetches it from the database. The two entities that make up a relationship can be in th
same model or two different models, as long as they are in the same model group.

You usually define relationships in your EOModel with the EOModeler application, which is documented
in WebObjects Tools and Techniques. EORelationships are primarily for use by the Enterprise Objects
Framework; unless you have special needs you shouldn’t need to access them in your application’s code. If
you have such a need, you can create your own EORelationship objects as outlined in “Creating
Relationships.”

A relationship is directional: One entity is considered the source, and the other is considered the destination.
The relationship belongs to the source entity, and may only be traversed from source to destination. To
simulate a two-way relationship you have to create an EORelationship for each direction. Although the
relationship is directional, no inverse is implied (although an inverse relationship may exist).

A relationship maintains an array of joins identifying attributes from the related entities (see the EOJoin
class specification for more information). Most relationships simply relate the objects of one entity to those
of another by comparing attribute values between them. Such a relationship must be defined as to-one or
to-many based on how many objects of the destination match each object of the source. This is called the
cardinality of the relationship. In a to-one relationship, there must be exactly one destination object for each
source object; in a to-many relationship there can be any number of destination objects for each source
object. See “Creating a Simple Relationship” for more information.

A chain of relationships across several entities can be flattened, creating a single relationship that spans
them all. For example, suppose you have a relationship between movies and directors, and a relationship
between directors and talent. You can traverse these relationships to create a flattened relationship going
directly from movies to talent. A flattened relationship is determined to be to-many or to-one based on the
211

relationships it spans; if all are to-one, then the flattened relationship is to-one, but if any of them is to-many
the flattened relationship is to-many. See “Creating a Flattened Relationship” for more information.

Like the other major modeling classes, EORelationship provides a user dictionary that the application can
use to store application-specific information related to the relationship.

Specifying the Join Semantic

The relationship holds the join semantic; you specify this semantic with setJoinSemantic:. There are four
types of join semantic, as specified by the EOJoinSemantic type: EOInnerJoin, EOFullOuterJoin,
EOLeftOuterJoin, and EORightOuterJoin. An inner join produces results only for destinations of the join
relationship that have non-NULL values. A full outer join produces results for all source records, regardless
of the values of the relationships. A left outer join preserves rows in the left (source) table, keeping them
even if there’s no corresponding row in the right table, while a right outer join preserves rows in the right
(destination) table.

Note: Not all join semantics are supported by all database servers.

Adopted Protocols

EOPropertyListEncoding
– awakeWithPropertyList
– encodeIntoPropertyList:
– initWithPropertyList:owner:

Method Types

Accessing the relationship name – beautifyName
– name
– setName:
– validateName:

Using joins
– addJoin:
– joins
– joinSemantic
– removeJoin:
– setJoinSemantic:

Accessing attributes joined on
– destinationAttributes
– sourceAttributes
212

 Classes: EORelationship
Accessing the definition
– componentRelationships
– definition
– setDefinition:

Accessing the entities joined
– anyInverseRelationship
– destinationEntity
– entity
– inverseRelationship
– setEntity:

Checking the relationship type
– isCompound
– isFlattened
– isMandatory
– setIsMandatory:
– validateValue:

Accessing whether the relationship is to-many
– isToMany
– setToMany:

Relationship qualifiers
– qualifierWithSourceRow:

Checking references
– referencesProperty:

Controlling batch fetches
– numberOfToManyFaultsToBatchFetch
– setNumberOfToManyFaultsToBatchFetch:

Taking action upon a change
– deleteRule
– propagatesPrimaryKey
– setDeleteRule:
– setPropagatesPrimaryKey:
– ownsDestination
– setOwnsDestination:

Accessing the user dictionary
– setUserInfo:
– userInfo
213

Instance Methods

addJoin:
– (void)addJoin:(EOJoin *)aJoin

Adds a source-destination attribute pair to the relationship. Raises an NSInvalidArgumentException if the
relationship is flattened, if either the source or destination attributes are flattened, or if either of aJoin’s
attributes already belongs to another join of the relationship.

See also: – joins, – isFlattened, – setDefinition:

anyInverseRelationship
– (EORelationship *)anyInverseRelationship

Searches the relationship’s destination entity for a user-created, back-pointing relationship joining on the
same keys. If none is found, it looks for a “hidden” inverse relationship that was manufactured by the
Framework. If none is found, the Enterprise Objects Framework creates a “hidden” inverse relationship and
returns that. Hidden relationships are used internally by the Framework.

See also: – inverseRelationship

beautifyName
– (void)beautifyName

Makes the relationship’s name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”. This method is used in
reverse-engineering a model.

See also: – setName:, – validateName:, – beautifyNames (EOModel)

componentRelationships
– (NSArray *)componentRelationships

Returns an array of base relationships making up a flattened relationship, or nil if the relationship isn’t
flattened.

See also: – definition
214

 Classes: EORelationship

f
definition
– (NSString *)definition

Returns the data path of a flattened relationship; for example “department.facility”. If the relationship isn’t
flattened, definition returns nil .

See also: – componentRelationships

deleteRule
– (EODeleteRule)deleteRule

Returns a rule that describes the action to take when an object is being deleted. The returned rule is one o
the following:

destinationAttributes
– (NSArray *)destinationAttributes

Returns the destination attributes of the relationship. These correspond one-to-one with the attributes
returned by sourceAttributes. Returns nil if the relationship is flattened.

See also: – joins, – destinationAttribute (EOJoin)

Value Type Description

EODeleteRuleNullify int
Delete the department and remove any back pointer the employee has to the
department.

EODeleteRuleCascade int Delete the department and all of the employees it contains.

EODeleteRuleDeny int Refuse the deletion if the department contains employees.

EODeleteRuleNoAction int
Delete the department, but ignore the department’s employees relationship. You
should use this delete rule with caution since it can leave dangling references in
your object graph.
215

destinationEntity
– (EOEntity *)destinationEntity

Returns the relationship’s destination entity, which is determined by the destination entity of its joins for a
simple relationship, and by whatever ends the data path for a flattened relationship. For example, if a
flattened relationship’s definition is “department.facility”, the destination entity is the Facility entity.

See also: – entity

entity
– (EOEntity *)entity

Returns the relationship’s source entity.

See also: – destinationEntity, – addRelationship: (EOEntity)

inverseRelationship
– (EORelationship *)inverseRelationship

Searches the relationship’s destination entity for a user-created, back-pointing relationship joining on the
same keys. Returns the inverse relationship if one is found, nil otherwise.

See also: – anyInverseRelationship

isCompound
– (BOOL)isCompound

Returns YES if the relationship contains more than one join (that is, if it joins more than one pair of
attributes), NO if it has only one join. See “Creating a Simple Relationship” for information on compound
relationships.

See also: – joins, – joinSemantic

isFlattened
– (BOOL)isFlattened

Returns YES if the relationship traverses more than two entities, NO otherwise. See “Creating a Flattened
Relationship” for an example of a flattened relationship.
216

 Classes: EORelationship

isMandatory
– (BOOL)isMandatory

Returns YES if the target of the relationship is required, NO if it can be nil .

See also: – setIsMandatory:

isToMany
– (BOOL)isToMany

Returns YES if the relationship is to-many, NO if it’s to-one.

See also: – setToMany:

joinSemantic
– (EOJoinSemantic)joinSemantic

Returns the semantic used to create SQL expressions for this relationship. The returned join semantic is one
of the following:

See also: – joins

joins
– (NSArray *)joins

Returns all joins used by relationship.

See also: – destinationAttributes, – joinSemantic, – sourceAttributes

Constant Description

EOInnerJoin
Produces results only for destinations of the join relationship that have non-NULL
values.

EOFullOuterJoin Produces results for all source records, regardless of the values of the relationships.

EOLeftOuterJoin
Preserves rows in the left (source) table, keeping them even if there’s no
corresponding row in the right table.

EORightOuterJoin
Preserves rows in the right (destination) table, keeping them even if there’s no
corresponding row in the left table.
217

name
– (NSString *)name

Returns the relationship’s name.

numberOfToManyFaultsToBatchFetch
– (unsigned int)numberOfToManyFaultsToBatchFetch

Returns the number of to-many faults that are triggered at one time.

ownsDestination
– (BOOL)ownsDestination

Returns YES if the receiver’s source object owns its destination objects, NO otherwise. See the method
description for setOwnsDestination: for more discussion of this topic.

See also: – destinationAttributes

propagatesPrimaryKey
– (BOOL)propagatesPrimaryKey

Returns YES if objects should propagate their primary key to related objects through this relationship.
Objects only propagate their primary key values if the corresponding values in the destination object aren’t
already set.

qualifierWithSourceRow:
– (EOQualifier *)qualifierWithSourceRow:(NSDictionary *)sourceRow

Returns a qualifier that can be used to fetch the destination of the receiving relationship, given sourceRow.

referencesProperty:
– (BOOL)referencesProperty:(id)aProperty

Returns YES if aProperty is in the relationship’s data path or is an attribute belonging to one of the
relationship’s joins; otherwise, it returns NO. See the class description for information on how relationships
reference properties.

See also: – referencesProperty: (EOEntity)
218

 Classes: EORelationship

removeJoin:
– (void)removeJoin:(EOJoin *)aJoin

Deletes aJoin from the relationship. Does nothing if the relationship is flattened.

See also: – addJoin:

setDefinition:
– (void)setDefinition:(NSString *)definition

Changes the relationship to a flattened relationship by releasing any joins and attributes (both source and
destination) associated with the relationship and setting definition as its data path. “department.facility” is
an example of a definition that could be supplied to this method.

If the relationship’s entity hasn’t been set, this method won’t work correctly. See “Creating a Flattened
Relationship” for more information on flattened relationships.

See also: – addJoin:, – setEntity:

setDeleteRule:
– (void)setDeleteRule:(EODeleteRule)deleteRule

Set a rule describing the action to take when object is being deleted. deleteRule can be one of the following:

• EODeleteRuleNullify
• EODeleteRuleCascade
• EODeleteRuleDeny
• EODeleteRuleNoAction

For more discussion of what these rules mean, see the method description for deleteRule.

setEntity:
– (void)setEntity:(EOEntity *)anEntity

Sets the entity of the relationship to anEntity. If the relationship is currently owned by a different entity, this
method will remove the relationship from that entity. This method doesn’t add the relationship to the new
entity. EOEntity’s addRelationship: method invokes this method.

You only need to use this method when creating a flattened relationship; use EOEntity’s addRelationship:
to associate an existing relationship with an entity.

See also: – setDefinition:
219

setIsMandatory:
– (void)setIsMandatory:(BOOL)flag

Specifies according to flag whether the target of the relationship must be supplied or can be nil .

setJoinSemantic:
– (void)setJoinSemantic:(EOJoinSemantic)joinSemantic

Sets the semantic used to create SQL expressions for this relationship. joinSemantic should be one of the
following:

• EOInnerJoin
• EOFullOuterJoin
• EOLeftOuterJoin
• EORightOuterJoin

See also: – addJoin:, – joinSemantic

setName:
– (void)setName:(NSString *)name

Sets the relationship’s name to name. Raises a verification exception if name is not a valid relationship
name, and NSInvalidArgumentException if name is already in use by an attribute or another relationship in
the same entity.

This method forces all objects in the model to be loaded into memory.

See also: – beautifyName, – validateName:

setNumberOfToManyFaultsToBatchFetch:
– (void)setNumberOfToManyFaultsToBatchFetch:(unsigned int)size

Sets the number of “toMany” faults that are fired at one time to size.

See also: – isToMany, – numberOfToManyFaultsToBatchFetch

setOwnsDestination:
– (void)setOwnsDestination:(BOOL)flag

Sets according to flag whether a receiver’s source object owns its destination objects. The default is NO.
When a source object owns its destination objects, it means that the destination objects can’t exist
220

 Classes: EORelationship

d

independently. For example, in a personnel database, dependents can’t exist without having an associate
employee. Removing a dependent from an employee’s dependents array would have the effect of also
deleting the dependent from the database, unless you transferred the dependent to a different employee.

See also: – deleteRule, – setDeleteRule:, – ownsDestination

setPropagatesPrimaryKey:
– (void)setPropagatesPrimaryKey:(BOOL)flag

Specifies according to flag whether objects should propagate their primary key to related objects through
this relationship. For example, an Employee object might propagate its primary key to an EmployeePhoto
object. Objects only propagate their primary key values if the corresponding values in the destination object
aren’t already set.

setToMany:
– (void)setToMany:(BOOL)flag

Sets a simple relationship as to-many according to flag. Raises an NSInvalidArgumentException if the
receiver is flattened. See the class description for considerations in setting this flag.

See also: – isFlattened

setUserInfo:
– (void)setUserInfo:(NSDictionary *)dictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types (that is, NSDictionary, NSString, NSArray, and NSData).

sourceAttributes
– (NSArray *)sourceAttributes

Returns the source attributes of a simple (non-flattened) relationship. These correspond one-to-one with the
attributes returned by destinationAttributes. Returns nil if the relationship is flattened.

See also: – joins, – sourceAttribute (EOJoin)
221

userInfo
– (NSDictionary *)userInfo

Returns a dictionary of user data. Your application can use this data for whatever it needs.

validateName:
– (NSException *)validateName:(NSString *)name

Validates name and returns nil if its a valid name, or an exception if it isn’t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@”, “#”, or “_”; or contains a character other
than a letter, a number, “@”, “#”, “_”, or “$”. A name is also invalid if the receiver’s EOEntity already has
an EORelationship with the same name, or if the model has a stored procedure that has an argument with
the same name.

setName: uses this method to validate its argument.

validateValue:
– (NSException *)validateValue:(id *)valueP

For relationships marked as mandatory, returns a validation exception if the receiver is to-one and valueP
is nil , or if the receiver is to-many an valueP has a count of 0. A mandatory relationship is one in which the
target of the relationship is required. Returns nil to indicate success.

See also: – isMandatory, – setIsMandatory:
222

 Classes:

,
Creating Relationships

Creating a Simple Relationship

A simple relationship is defined by the attributes it compares in connecting its source and destination
entities. Each source-destination pair of attributes is encapsulated in an EOJoin object. For example, to
create a relationship from the Movie entity to the Studio entity, a join has to be created from the studioId
attribute of the Movie entity to the same attribute of the Studio entity. The values of these two attributes
must be equal for a match to result. Note that studioId is the primary key attribute for the Studio entity, so
there can only be one studio per movie; this relationship is therefore to-one.

This code excerpt creates an EORelationship for the relationship described above and adds it to the
EOEntity for the Movie entity:

EOEntity *movieEntity; // Assume this exists.

EOEntity *studioEntity; // Assume this exists.

EOAttribute *studioIDAttribute;

EOAttribute *movieStudioIDAttribute;

EOJoin *toStudioJoin;

EORelationship *toStudioRelationship;

studioIDAttribute = [studioEntity attributeNamed:@"studioId"];

movieStudioIDAttribute = [movieEntity attributeNamed:@"studioId"];

toStudioJoin = [[[EOJoin alloc]

initWithSourceAttribute:movieStudioIDAttribute

destinationAttribute:studioIDAttribute] autorelease];

toStudioRelationship = [[[EORelationship alloc] init] autorelease];

[toStudioRelationship setName:@"studio"];

[movieEntity addRelationship:toStudioRelationship];

[toStudioRelationship addJoin:toStudioJoin];

[toStudioRelationship setToMany:NO];

[toStudioRelationship setJoinSemantic:EOInnerJoin];

This code first gets the attributes from the source and destination entities, and then creates an EOJoin with
them. Next, a new EORelationship is created, its name is set, and it’s added to movieEntity. The EOJoin is
added to the relationship and the relationship is set to be to-one. Finally, in the setJoinSemantic: line,
EOInnerJoin indicates that only objects that actually have a matching destination object will be included in
the result when the relationship is traversed.

Creating a to-many relationship in the opposite direction merely swaps the source and destination attributes
and assigns the relationship to the EOEntity for the Studio entity:
223

EOJoin *toMoviesJoin;

EORelationship *toMoviesRelationship;

toMoviesJoin = [[[EOJoin alloc]

initWithSourceAttribute:studioIDAttribute

destinationAttribute:movieStudioIDAttribute] autorelease];

toMoviesRelationship = [[[EORelationship alloc] init] autorelease];

[toMoviesRelationship setName:@"movies"];

[studioEntity addRelationship:toMoviesRelationship];

[toMoviesRelationship addJoin:toMoviesJoin];

[toMoviesRelationship setToMany:YES];

[toMoviesRelationship setJoinSemantic:EOInnerJoin];

Note that this relationship is to-many precisely because the destination attribute isn’t the primary key for its
entity (Movie), and therefore isn’t unique with regard to that entity.

A relationship isn’t restricted to only one EOJoin. It’s entirely possible for a relationship to be defined based
on two or more attributes in the source and destination entities. For example, consider an employees
database that contains a picture of each employee identified by first and last name. You’d define the
relationship by joining each of the first and last names in the Employee entity to the same attribute in the
EmpPhoto attribute.

A simple relationship is considered to reference all of the attributes in its joins. You can use the
referencesProperty: method to find out if an EORelationship references a particular attribute.

Creating a Flattened Relationship

A flattened relationship depends on several simple relationships already existing. Assuming that several do
exist, creating a flattened relationship is straightforward. For example, suppose that the Movie entity has a
to-many relationship to the Director entity, called toDirectors. The Director entity in turn has a relationship
to the Talent entity called toTalent. In the Movies database, the Director table acts as an intermediate table
between Movie and Talent. In this situation, it make sense to flatten the relationship Movies has to Director
(toDirectors) to give Movie access to the Talent table through Director’s toTalent relationship. For more
discussion of when to use flattened relationships, see the chapters “Designing Enterprise Objects” and
“Advanced Enterprise Object Modeling” in the Enterprise Objects Framework Developer’s Guide.

This code excerpt creates a flattened relationship from Movie to Talent:

EOEntity *movieEntity; // Assume this exists.

EORelationship *toDirectorsRelationship;

toDirectorsRelationship = [[[EORelationship alloc] init] autorelease];

[toDirectorsRelationship setName:@"directors"];

[toDirectorsRelationship setEntity:movieEntity];

[movieEntity addRelationship:toDirectorsRelationship];

[toDirectorsRelationship setDefinition:@"toDirector.toTalent"];
224

 Classes:

y

All that’s needed to establish the relationship is a data path (also called the definition) naming each
component relationship connected, with the names separated by periods. Note that because the cardinalit
of a flattened relationship is determinable from its components, no setToMany: message is required here.

A simple relationship is considered to reference all of the relationships in its definition, plus every attribute
referenced by the component relationships. You can use the referencesProperty: method to find out if an
EORelationship references another relationship or attribute.
225

226

 Classes: EOSQLExpression

.

EOSQLExpression

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOSQLExpression.h
EOAccess/EOSchemaGeneration.h

Class Description

EOSQLExpression is an abstract superclass that defines how to build SQL statements for adaptor channels
You don’t typically use instances of EOSQLExpression; rather, you use EOSQLExpression subclasses
written to work with a particular RDBMS and corresponding adaptor. A concrete subclass of
EOSQLExpression overrides many of its methods in terms of the query language syntax for its specific
RDBMS. EOSQLExpression objects are used internally by the Framework, and unless you’re creating a
concrete adaptor, you won’t ordinarily need to interact with EOSQLExpression objects yourself. You most
commonly create and use an EOSQLExpression object when you want to send an SQL statement directly
to the server. In this case, you simply create an expression with the EOSQLExpression class method
expressionForString:, and send the expression object to an adaptor channel using EOAdaptorChannel’s
evaluateExpression: method.

For more information, see “EOSQLExpression”.

Method Types

Creating an EOSQLExpression object
+ selectStatementForAttributes:lock:fetchSpecification:entity:
+ insertStatementForRow:entity:
+ updateStatementForRow:qualifier:entity:
+ deleteStatementWithQualifier:entity:
+ expressionForString:
– initWithEntity:

Building SQL Expressions
– prepareSelectExpressionWithAttributes:lock:fetchSpecification:
– prepareInsertExpressionWithRow:
– prepareUpdateExpressionWithRow:qualifier:
– prepareDeleteExpressionForQualifier:
– setStatement:
– statement
227

Generating SQL for attributes and values
+ formatSQLString:format:
+ formatValue:forAttribute:
+ formatStringValue:
– sqlStringForValue:attributeNamed:
– sqlStringForAttributeNamed:
– sqlStringForAttribute:
– sqlStringForAttributePath:

Generating SQL for names of database objects
– sqlStringForSchemaObjectName:
+ setUseQuotedExternalNames:
+ useQuotedExternalNames
– externalNameQuoteCharacter

Generating an attribute list
– addSelectListAttribute:
– addInsertListAttribute:value:
– addUpdateListAttribute:value:
– appendItem:toListString:
– listString

Generating a value list
– addInsertListAttribute:value:
– addUpdateListAttribute:value:
– valueList

Generating a table list
– tableListWithRootEntity:
– aliasesByRelationshipPath

Generating the join clause
– joinExpression
– addJoinClause
– assembleJoinClauseWithLeftName:rightName:joinSemantic:
– joinClauseString

Generating a search pattern
+ sqlPatternFromShellPattern:
+ sqlPatternFromShellPattern:withEscapeCharacter:

Generating a relational operator
– sqlStringForSelector:value:

Accessing the where clause
– whereClauseString
228

 Classes: EOSQLExpression
Generating an order by clause
– addOrderByAttributeOrdering:
– orderByString

Accessing the lock clause
– lockClause

Assembling a statement
– assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder:

selectString:columnList:tableList:whereClause:joinClause:
orderByClause:lockClause:

– assembleInsertStatementWithRow:tableList:columnList:valueList:
– assembleUpdateStatementWithRow:qualifier:tableList:updateList:

whereClause:
– assembleDeleteStatementWithQualifier:tableList:whereClause:

Generating SQL for qualifiers
– sqlStringForConjoinedQualifiers:
– sqlStringForDisjoinedQualifiers:
– sqlStringForKeyComparisonQualifier:
– sqlStringForKeyValueQualifier:
– sqlStringForNegatedQualifier:

Managing bind variables
+ setUseBindVariables:
+ useBindVariables
– addBindVariableDictionary:
– bindVariableDictionaries
– bindVariableDictionaryForAttribute:value:
– mustUseBindVariableForAttribute:
– shouldUseBindVariableForAttribute:

Using table aliases
– setUseAliases:
– useAliases

Accessing the entity
entity

Creating a schema generation script
+ schemaCreationStatementsForEntities:options:
– createDatabaseStatementsForConnectionDictionary:

administrativeConnectionDictionary:
– dropDatabaseStatementsForConnectionDictionary:

administrativeConnectionDictionary:
229

e

rk
Class Methods

createDatabaseStatementsForConnectionDictionary:
administrativeConnectionDictionary:

+ (NSArray *)createDatabaseStatementsForConnectionDictionary:
(NSDictionary *)connectionDictionary
administrativeConnectionDictionary:(NSDictionary *)adminDictionary

Generates the SQL statements that will create a database (or user, for Oracle) that can be accessed by th
provided connection dictionary and administrative connection dictionary.

See also: + dropDatabaseStatementsForConnectionDictionary:administrativeConnectionDictionary:

deleteStatementWithQualifier:entity:
+ (EOSQLExpression *)deleteStatementWithQualifier:(EOQualifier *)qualifier entity: (id)entity

Creates and returns an SQL DELETE expression to delete the rows described by qualifier. Creates an
instance of EOSQLExpression, initializes it with entity (an EOEntity object), and sends it a
prepareDeleteExpressionForQualifier: message. Raises an NSInvalidArgumentException if qualifier is
nil .

The expression created with this method does not use table aliases because Enterprise Objects Framewo
assumes that all INSERT, UPDATE, and DELETE statements are single-table operations. As a result, all
keys in qualifier should be simple key names; no key paths are allowed. To generate DELETE statements
that do use table aliases, you must override prepareDeleteExpressionForQualifier: to send a
setUseAliases:YES message prior to invoking super’s version.

dropDatabaseStatementsForConnectionDictionary:
administrativeConnectionDictionary:

+ (NSArray *)dropDatabaseStatementsForConnectionDictionary:
(NSDictionary *)connectionDictionary
administrativeConnectionDictionary:(NSDictionary *)adminDictionary

Generates the SQL statements to drop the database (or user, for Oracle).

See also: + createDatabaseStatementsForConnectionDictionary:
administrativeConnectionDictionary:
230

 Classes: EOSQLExpression

rk
expressionForString:
+ (EOSQLExpression *)expressionForString:(NSString *)string

Creates and returns an SQL expression for string. string should be a valid expression in the target query
language. This method does not perform substitutions or formatting of any kind.

See also: – setStatement:

formatSQLString:format:
+ (NSString *)formatSQLString: (NSString *)sqlString format: (NSString *)format

Applies format (an EOAttribute object’s “read” or “write” format) to sqlString (a value for the attribute). If
format is nil , this method returns sqlString unchanged.

See also: – readFormat (EOAttribute), – writeFormat (EOAttribute)

formatStringValue:
+ (NSString *)formatStringValue: (NSString *)string

Formats string for use as a string constant in a SQL statement. EOSQLExpression’s implementation
encloses the string in single quotes, escaping any single quotes already present in string. Raises an
NSInternalInconsistencyException if string is nil .

formatValue:forAttribute:
+ (NSString *)formatValue: (id)value forAttribute: (EOAttribute *)attribute

Overridden by subclasses to return a string representation of value suitable for use in an SQL statement.
EOSQLExpression’s implementation returns value unchanged. A subclass should override this method to
format value depending on attribute’s externalType. For example, a subclass might format a date using a
special database-specific syntax or standard form or truncate numbers to attribute’s precision and scale.

insertStatementForRow:entity:
+ (EOSQLExpression *)insertStatementForRow:(NSDictionary *)row entity: (EOEntity *)entity

Creates and returns an SQL INSERT expression to insert row. Creates an instance of EOSQLExpression,
initializes it with entity, and sends it prepareInsertExpressionWithRow:. Raises an
NSInvalidArgumentException if entity is nil .

The expression created with this method does not use table aliases because Enterprise Objects Framewo
assumes that all INSERT, UPDATE, and DELETE statements are single-table operations. To generate
231

INSERT statements that do use table aliases, you must override prepareInsertExpressionWithRow: to
send a setUseAliases:YES message prior to invoking super’s version.

schemaCreationStatementsForEntities:options:
+ (NSArray *)schemaCreationStatementsForEntities:(NSArray *)entities

options:(NSDictionary *)options

Returns an array of SQLExpressions suitable to create the schema for the Entity objects in entities. The
options dictionary specifies the aspects of the schema for which to create SQLExpressions:

If you specify “createDatabase” or “dropDatabase,” the SQL for those statements must be executed by an
administrative user.

EOSQLExpression’s implementation uses the following methods:

• createTableStatementsForEntityGroups
• dropTableStatementsForEntityGroups
• primaryKeySupportStatementsForEntityGroups
• dropPrimaryKeySupportStatementsForEntityGroups
• primaryKeyConstraintStatementsForEntityGroups
• foreignKeyConstraintStatementsForRelationship

to generate SQLExpressions for the support identified in options.

Dictionary Key Acceptable Values
(java.util.Strings) Default

createTables “YES” or “NO” YES

dropTables “YES” or “NO” YES

createPrimaryKeySupport “YES” or “NO” YES

dropPrimaryKeySupport “YES” or “NO” YES

primaryKeyConstraints “YES” or “NO” YES

foreignKeyConstraints “YES” or “NO” NO

createDatabase “YES” or “NO” NO

dropDatabase “YES” or “NO” NO
232

 Classes: EOSQLExpression

d
selectStatementForAttributes:lock:fetchSpecification:entity:
+ (EOSQLExpression *)selectStatementForAttributes:(NSArray *)attributes

lock:(BOOL)flag
fetchSpecification:(EOFetchSpecification *)fetchSpecification
entity: (EOEntity *)entity

Creates and returns an SQL SELECT expression. Creates an instance of EOSQLExpression, initializes it
with entity, and sends it prepareSelectExpressionWithAttributes:lock:fetchSpecification:. The
expression created with this method uses table aliases. Raises an NSInvalidArgumentException if attributes
is nil or empty, fetchSpecification is nil , or entity is nil .

The expression created with this method uses table aliases. To generate SELECT statements that don’t use
them, you must override prepareSelectExpressionWithAttributes:lock:fetchSpecification: to send a
setUseAliases:NO message prior to invoking super’s version.

setUseBindVariables:
+ (void)setUseBindVariables:(BOOL)flag

Sets according to flag whether all instances of EOSQLExpression subclasses use bind variables. By default,
instances don't use bind variables; if the value for the global user default named
EOAdaptorUseBindVariables is YES, though, instances do use them. For more information on bind
variables, see the discussion in the class description.

See also: + useBindVariables

setUseQuotedExternalNames:
+ (void)setUseQuotedExternalNames:(BOOL)flag

Sets whether all instances of EOSQLExpression subclasses quote external names when they are reference
in SQL statements. By setting flag to YES, you can access database tables with names such as “%return”,
“1st year”, and “TABLE” that you couldn’t otherwise access. By default, instances don't quote external
names; if the value for the global user default named EOAdaptorQuotesExternalNames is YES, though,
instances do use quotes.

See also: + useQuotedExternalNames, – sqlStringForSchemaObjectName:,
– externalNameQuoteCharacter
233

rk
sqlPatternFromShellPattern:
+ (NSString *)sqlPatternFromShellPattern:(NSString *)pattern

Translates a “like” qualifier to an SQL “like” expression. Invoked from sqlStringForKeyValueQualifier:
when the qualifier argument is an EOKeyValueQualifier object whose selector is isLike: .
EOSQLExpression’s implementation performs the following substitutions

See also: + sqlPatternFromShellPattern:withEscapeCharacter:

sqlPatternFromShellPattern:withEscapeCharacter:
+ (NSString *)sqlPatternFromShellPattern:(NSString *)pattern

withEscapeCharacter:(unichar)escapeCharacter

Like sqlPatternFromShellPattern: except the argument escapeCharacter allows you to specify a
character for escaping the wild card characters “%” and “_”.

updateStatementForRow:qualifier:entity:
+ (EOSQLExpression *)updateStatementForRow:(NSDictionary *)row

qualifier: (EOQualifier *)qualifier
entity: (EOEntity *)entity

Creates and returns an SQL UPDATE expression to update the row identified by qualifier with the values
in row. row should only contain entries for values that have actually changed. Creates an instance of
EOSQLExpression, initializes it with entity, and sends it prepareUpdateExpressionWithRow:qualifier:
. Raises an NSInvalidArgumentException if row is nil or empty, qualifier is nil , or entity is nil .

The expression created with this method does not use table aliases because Enterprise Objects Framewo
assumes that all INSERT, UPDATE, and DELETE statements are single-table operations. As a result, all
keys in qualifier should be simple key names; no key paths are allowed. To generate UPDATE statements

Character in pattern Substitution string

* %

? _

% [%] (unless the percent character appears in square brackets)

_ [_] (unless the underscore character appears in square brackets)
234

 Classes: EOSQLExpression

that do use table aliases, you must override prepareUpdateExpressionWithRow:qualifier: to send a
setUseAliases:YES message prior to invoking super’s version.

See also: – setUseAliases:

useBindVariables
+ (BOOL)useBindVariables

Returns YES if instances use bind variables, NO otherwise. For more information on bind variables, see the
discussion in the class description.

See also: + setUseBindVariables:

useQuotedExternalNames
+ (BOOL)useQuotedExternalNames

Returns YES if instances use quoted external names, NO otherwise.

See also: + setUseQuotedExternalNames:, – sqlStringForSchemaObjectName:,
– externalNameQuoteCharacter

Instance Methods

addBindVariableDictionary:
– (void)addBindVariableDictionary: (NSMutableDictionary *)binding

Adds binding to the receiver’s array of bind variable dictionaries. binding is generally created using the
method bindVariableDictionaryForAttribute:value: and is added to the receiver’s bind variable
dictionaries in sqlStringForValue:attributeNamed: when the receiver uses a bind variable for the
specified attribute. See the method description for bindVariableDictionaryForAttribute:value: for a
description of the contents of a bind variable dictionary, and for more information on bind variables, see the
discussion in the class description.

See also: – bindVariableDictionaries
235

addInsertListAttribute:value:
– (void)addInsertListAttribute: (EOAttribute *)attribute value:(NSString *)value

Adds the SQL string for attribute to a comma-separated list of attributes and value to a comma-separated
list of values. Both lists are constructed for use in an INSERT statement. Use the methods listString and
valueList to access the attributes and value lists.

Invokes appendItem:toListString: to add an SQL string for attribute to the receiver’s listString , and again
to add a formatted SQL string for value to the receiver’s valueList.

See also: – sqlStringForAttribute: , – sqlStringForValue:attributeNamed: , + formatValue:
forAttribute:

addJoinClause
– (void)addJoinClauseWithLeftName:(NSString *)leftName rightName:(NSString *)rightName

joinSemantic:(EOJoinSemantic)semantic

Creates a new join clause by invoking assembleJoinClauseWithLeftName:rightName:joinSemantic:
and adds it to the receiver’s join clause string. Separates join conditions already in the join clause string with
the word “and”. Invoked from joinExpression.

See also: joinClauseString

addOrderByAttributeOrdering:
– (void)addOrderByAttributeOrdering: (EOSortOrdering *)sortOrdering

Adds an attribute-direction pair (“LAST_NAME asc”, for example) to the receiver’s ORDER BY string. If
sortOrdering’s selector is compareCaseInsensitiveAscending: or compareCaseInsensitiveDescending:, the
string generated has the format “upper(attribute) direction”. Use the method orderByString to access the
ORDER BY string. addOrderByAttributeOrdering: invokes appendItem:toListString: to add the
attribute-direction pair.

See also: sqlStringForAttributeNamed:

addSelectListAttribute:
– (void)addSelectListAttribute: (EOAttribute *)attribute

Adds an SQL string for attribute to a comma-separated list of attribute names for use in a SELECT
statement. The SQL string for attribute is formatted with attribute’s “read” format. Use listString to access
the list. addSelectListAttribute: invokes appendItem:toListString: to add the attribute name.

See also: – sqlStringForAttribute: , + formatSQLString:format: , – readFormat (EOAttribute)
236

 Classes: EOSQLExpression
addUpdateListAttribute:value:
– (void)addUpdateListAttribute: (EOAttribute *)attribute value:(NSString *)value

Adds a attribute-value assignment (“LAST_NAME = ‘Thomas’”, for example) to a comma-separated list
for use in an UPDATE statement. Formats value with attribute’s “write” format. Use listString to access
the list. addUpdateListAttribute:value: invokes appendItem:toListString: to add the attribute-value
assignment.

See also: + formatSQLString:format:

aliasesByRelationshipPath
– (NSMutableDictionary *)aliasesByRelationshipPath

Returns a dictionary of table aliases. The keys of the dictionary are relationship paths—“department” and
“department.location”, for example. The values are the table aliases for the corresponding table—“t1” and
“t2”, for example. The aliasesByRelationshipPath dictionary always has at least one entry: an entry for the
EOSQLExpression’s entity. The key of this entry is the empty string (@“”) and the value is “t0”. The
dictionary returned from this method is built up over time with successive calls to
sqlStringForAttributePath: .

See also: – tableListWithRootEntity:

appendItem:toListString:
– (void)appendItem:(NSString *)itemString toListString: (NSMutableString *)listString

Adds itemString to a comma-separated list. If listString already has entries, this method appends a comma
followed by itemString. Invoked from addSelectListAttribute: , addInsertListAttribute:value: ,
addUpdateListAttribute:value: , and addOrderByAttributeOrdering:

assembleDeleteStatementWithQualifier:tableList:whereClause:
– (NSString *)assembleDeleteStatementWithQualifier:(EOQualifier *)qualifier

tableList: (NSString *)tableList
whereClause:(NSString *)whereClause

Invoked from prepareDeleteExpressionForQualifier: to return an SQL DELETE statement of the form:

DELETE FROM tableList
SQL_WHERE whereClause

qualifier is the argument to prepareDeleteExpressionForQualifier: from which whereClause was derived.
It is provided for subclasses that need to generate the WHERE clause in a particular way.
237

.

assembleInsertStatementWithRow:tableList:columnList:valueList:
– (NSString *)assembleInsertStatementWithRow:(NSDictionary *)row

tableList: (NSString *)tableList
columnList: (NSString *)columnList
valueList:(NSString *)valueList

Invoked from prepareInsertExpressionWithRow: to return an SQL INSERT statement of the form:

INSERT INTO tableList (columnList)

VALUES valueList

or, if columnList is nil :

INSERT INTO tableList

VALUES valueList

row is the argument to prepareInsertExpressionWithRow: from which columnList and valueList were
derived. It is provided for subclasses that need to generate the list of columns and values in a particular way

assembleJoinClauseWithLeftName:rightName:joinSemantic:
– (NSString *)assembleJoinClauseWithLeftName:(NSString *)leftName

rightName:(NSString *)rightName
joinSemantic:(EOJoinSemantic)semantic

Returns a join clause of the form:

leftName operator rightName

Where operator is “=” for an inner join, “*=” for a left-outer join, and “=*” for a right-outer join. Invoked
from addJoinClause.
238

 Classes: EOSQLExpression
assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder:
selectString:columnList:tableList:whereClause:joinClause:
orderByClause:lockClause:

– (NSString *)assembleSelectStatementWithAttributes:(NSArray *)attributes
lock:(BOOL)lock
qualifier: (EOQualifier *)qualifier
fetchOrder: (NSArray *)fetchOrder
selectString:(NSString *)selectString
columnList: (NSString *)columnList
tableList: (NSString *)tableList
whereClause:(NSString *)whereClause
joinClause:(NSString *)joinClause
orderByClause:(NSString *)orderByClause
lockClause:(NSString *)lockClause

Invoked from prepareSelectExpressionWithAttributes:lock:fetchSpecification: to return an SQL
SELECT statement of the form:

SELECT columnList
FROM tableList lockClause
WHERE whereClause AND joinClause
ORDER BY orderByClause

If lockClause is nil , it is omitted from the statement. Similarly, if orderByClause is nil , the “ORDER BY
orderByClause” is omitted. If either whereClause or joinClause is nil , the “AND” and nil -valued argument
are omitted. If both are nil , the entire WHERE clause is omitted.

attributes, lock, qualifier, and fetchOrder are the arguments to prepareSelectExpressionWithAttributes:
lock:fetchSpecification: from which the other assembleSelect... arguments were derived. They are
provided for subclasses that need to generate the clauses of the SELECT statement in a particular way.

assembleUpdateStatementWithRow:qualifier:tableList:updateList:whereClause:
– (NSString *)assembleUpdateStatementWithRow:(NSDictionary *)row

qualifier: (EOQualifier *)qualifier
tableList: (NSString *)tableList
updateList:(NSString *)updateList
whereClause:(NSString *)whereClause

Invoked from prepareUpdateExpressionWithRow:qualifier: to return an SQL UPDATE statement of the
form:

UPDATE tableList
SET updateList
WHERE whereClause
239

row and qualifier are the arguments to prepareUpdateExpressionWithRow:qualifier: from which
updateList and whereClause were derived. They are provided for subclasses that need to generate the
clauses of the UPDATE statement in a particular way.

bindVariableDictionaries
– (NSArray *)bindVariableDictionaries

Returns the receiver’s bind variable dictionaries. For more information on bind variables, see the discussion
in the class description.

See also: – addBindVariableDictionary:

bindVariableDictionaryForAttribute:value:
– (NSMutableDictionary *)bindVariableDictionaryForAttribute: (EOAttribute *)attribute value:

(id)value

Implemented by subclasses to create and return the bind variable dictionary for attribute and value. The
dictionary returned from this method must contain at least the following key-value pairs:

An adaptor subclass may define additional entries as required by its RDBMS.

Invoked from sqlStringForValue:attributeNamed: when the message
mustUseBindVariableForAttribute: attribute returns YES or when the receiver’s class uses bind variables
and the message shouldUseBindVariableForAttribute: attribute returns YES. For more information on
bind variables, see the discussion in the class description.

A subclass that uses bind variables should implement this method without invoking EOSQLExpression’s
implementation. The subclass implementation must return a dictionary with entries for the keys listed above
and may add additional keys.

See also: – bindVariableDictionaryForAttribute:value: , + useBindVariables

Key Value

EOBindVariableNameKey the name of the bind variable for attribute

EOBindVariablePlaceHolderKey the placeholder string used in the SQL statement

EOBindVariableAttributeKey attribute

EOBindVariableValueKey value
240

 Classes: EOSQLExpression

y
entity
– (EOEntity *)entity

Returns the receiver’s entity.

See also: – initWithEntity:

externalNameQuoteCharacter
– (NSString *)externalNameQuoteCharacter

Returns the string ‘\”’ (an escaped quote character) if the receiver uses quoted external names, or the empt
string (“”) otherwise.

See also: + useQuotedExternalNames, – sqlStringForSchemaObjectName:

initWithEntity:
– initWithEntity: (EOEntity *)entity

Initializes a new instance of EOSQLExpression with entity.

See also: – entity

joinClauseString
– (NSMutableString *)joinClauseString

Returns the part of the receiver’s WHERE clause that specifies join conditions. Together, the
joinClauseString and the whereClauseString make up a statement’s WHERE clause. If the receiver’s
statement doesn’t contain join conditions, this method returns an empty string.

An EOSQLExpression’s joinClauseString is generally set by invoking joinExpression.

See also: – addJoinClause

joinExpression
– (void)joinExpression

Builds up the joinClauseString for use in a SELECT statement. For each relationship path in the
aliasesByRelationshipPath dictionary, this method invokes addJoinClause for each of the relationship’s
EOJoin objects.
241

If the aliasesByRelationshipPath dictionary only has one entry (the entry for the EOSQLExpression’s
entity), the joinClauseString is empty.

You must invoke this method after invoking addSelectListAttribute: for each attribute to be selected and
after sending sqlStringForSQLExpression:self to the qualifier for the SELECT statement. (These methods
build up the aliasesByRelationshipPath dictionary by invoking sqlStringForAttributePath: .)

See also: – whereClauseString, – sqlStringForSQLExpression: (EOQualifierSQLGeneration protocol)

listString
– (NSMutableString *)listString

Returns a comma-separated list of attributes or “attribute = value” assignments. listString is built up with
successive invocations of addInsertListAttribute:value: , addSelectListAttribute: , or
addUpdateListAttribute:value: for INSERT statements, SELECT statements, and UPDATE statements,
respectively. The contents of listString vary according to the type of statement the receiver is building:

lockClause
– (NSString *)lockClause

Overridden by subclasses to return the SQL string used in a SELECT statement to lock selected rows. A
concrete subclass of EOSQLExpression must override this method to return the string used by its adaptor’s
RDBMS.

mustUseBindVariableForAttribute:
– (BOOL)mustUseBindVariableForAttribute: (EOAttribute *)attribute

Returns YES if the receiver must use bind variables for attribute, NO otherwise. EOSQLExpression’s
implementation returns NO. An SQL expression subclass that uses bind variables should override this
method to return YES if the underlying RDBMS requires that bind variables be used for attributes with
attribute’s external type.

See also: – shouldUseBindVariableForAttribute: , – bindVariableDictionaryForAttribute:value:

Type of Statement Sample listString Contents

INSERT FIRST_NAME, LAST_NAME, EMPLOYEE_ID

UPDATE FIRST_NAME = “Timothy”, LAST_NAME = “Richardson”

SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.DEPARTMENT_NAME
242

 Classes: EOSQLExpression
orderByString
– (NSMutableString *)orderByString

Returns the comma-separated list of “attribute direction” pairs (“LAST_NAME asc, FIRST_NAME asc”,
for example) for use in a SELECT statement.

See also: – addOrderByAttributeOrdering:

prepareDeleteExpressionForQualifier:
– (void)prepareDeleteExpressionForQualifier:(EOQualifier *)qualifier

Generates a DELETE statement by performing the following steps:

1. Sends an sqlStringForSQLExpression:self message to qualifier to generate the receiver’s
whereClauseString.

2. Invokes tableListWithRootEntity: to get the table name for the FROM clause.

3. Invokes assembleDeleteStatementWithQualifier:tableList:whereClause:.

See also: + deleteStatementWithQualifier:entity:

prepareInsertExpressionWithRow:
– (void)prepareInsertExpressionWithRow:(NSDictionary *)row

Generates an INSERT statement by performing the following steps:

1. Invokes addInsertListAttribute:value: for each entry in row to prepare the comma-separated list of attributes
and the corresponding list of values.

2. Invokes tableListWithRootEntity: to get the table name.

3. Invokes assembleInsertStatementWithRow:tableList:columnList:valueList:.

See also: + insertStatementForRow:entity:

prepareSelectExpressionWithAttributes:lock:fetchSpecification:
– (void)prepareSelectExpressionWithAttributes:(NSArray *)attributes

lock:(BOOL)flag
fetchSpecification:(EOFetchSpecification *)fetchSpecification

Generates a SELECT statement by performing the following steps:

1. Invokes addSelectListAttribute: for each entry in attributes to prepare the comma-separated list of attributes.
243

2. Sends an sqlStringForSQLExpression:self message to fetchSpecification’s qualifier to generate the receiver’s
whereClauseString.

3. Invokes addOrderByAttributeOrdering: for each EOAttributeOrdering object in fetchSpecification. First
conjoins the qualifier in fetchSpecification with the restricting qualifier, if any, of the receiver’s entity.

4. Invokes joinExpression to generate the receiver’s joinClauseString.

5. Invokes tableListWithRootEntity: to get the comma-separated list of tables for the FROM clause.

6. If flag is YES, invokes lockClause to get the SQL string to lock selected rows.

7. Invokes assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder: selectString:columnList:
tableList:whereClause:joinClause: orderByClause:lockClause:.

See also: + selectStatementForAttributes:lock:fetchSpecification:entity:

prepareUpdateExpressionWithRow:qualifier:
– (void)prepareUpdateExpressionWithRow:(NSDictionary *)row qualifier: (EOQualifier *)qualifier

Generates an UPDATE statement by performing the following steps:

1. Invokes addUpdateListAttribute:value: for each entry in row to prepare the comma-separated list of
“attribute = value” assignments.

2. Sends an sqlStringForSQLExpression:self message to qualifier to generate the receiver’s
whereClauseString.

3. Invokes tableListWithRootEntity: to get the table name for the FROM clause.

4. Invokes assembleUpdateStatementWithRow:qualifier:tableList:updateList:whereClause:.

See also: + updateStatementForRow:qualifier:entity:

setStatement:
– (void)setStatement:(NSString *)string

Sets the receiver’s SQL statement to string, which should be a valid expression in the target query language.
Use this method—instead of a prepare... method—to directly assign an SQL string to an
EOSQLExpression object. This method does not perform substitutions or formatting of any kind.

See also: + expressionForString:, – statement
244

 Classes: EOSQLExpression
setUseAliases:
– (void)setUseAliases:(BOOL)flag

Tells the receiver whether or not to use table aliases.

See also: – useAliases

shouldUseBindVariableForAttribute:
– (BOOL)shouldUseBindVariableForAttribute: (EOAttribute *)attribute

Returns YES if the receiver can provide a bind variable dictionary for attribute, NO otherwise. Bind
variables aren't used for values associated with this attribute when the class method useBindVariables
returns NO. EOSQLExpression’s implementation returns NO. An SQL expression subclass should override
this method to return YES if the receiver should use bind variables for attributes with attribute’s external
type. It should also return YES for any attribute for which the receiver must use bind variables.

See also: – mustUseBindVariableForAttribute:

sqlStringForAttribute:
– (NSString *)sqlStringForAttribute: (EOAttribute *)attribute

Returns the SQL string for attribute, complete with a table alias if the receiver uses table aliases. Invoked
from sqlStringForAttributeNamed: when the attribute name is not a path.

See also: – sqlStringForAttributePath:

sqlStringForAttributeNamed:
– (NSString *)sqlStringForAttributeNamed: (NSString *)name

Returns the SQL string for the attribute named name, complete with a table alias if the receiver uses table
aliases. Generates the return value using sqlStringForAttributePath: if name is an attribute path
(“department.name”, for example); otherwise, uses sqlStringForAttribute: .

sqlStringForAttributePath:
– (NSString *)sqlStringForAttributePath: (NSArray *)path

Returns the SQL string for path, complete with a table alias if the receiver uses table aliases. Invoked from
sqlStringForAttributeNamed: when the specified attribute name is a path
(“department.location.officeNumber”, for example). path is an array of any number of EORelationship
objects followed by an EOAttribute object. The EORelationship and EOAttribute objects each correspond
245

to a component in path. For example, if the attribute name argument to sqlStringForAttributeNamed: is
“department.location.officeNumber”, path is an array containing the following objects in the order listed:

• The EORelationship object in the receiver’s entity named “department”. (Assume the relationship’s
destination entity is named “Department”.)

• The EORelationship object in the Department entity named “location”. (Assume the relationship’s
destination entity is named “Location”.)

• The EOAttribute object in the Location entity named “officeNumber”.

Assuming that the receiver uses aliases and the alias for the Location table is t2, the SQL string for this
sample attribute path is “t2.officeNumber”.

If the receiver uses table aliases, this method has the side effect of adding a “relationship path”-“alias name”
entry to the aliasesByRelationship dictionary.

See also: – sqlStringForAttribute: , – aliasesByRelationshipPath

sqlStringForConjoinedQualifiers:
– (NSString *)sqlStringForConjoinedQualifiers:(NSArray *)qualifiers

Creates and returns an SQL string that is the result of interposing the word “AND” between the SQL strings
for the qualifiers in qualifiers. Generates an SQL string for each qualifier by sending
sqlStringForSQLExpression: messages to the qualifiers with self as the argument. If the SQL string for a
qualifier contains only white space, it isn’t included in the return value. The return value is enclosed in
parentheses if the SQL strings for two or more qualifiers were ANDed together.

sqlStringForDisjoinedQualifiers:
– (NSString *)sqlStringForDisjoinedQualifiers:(NSArray *)qualifiers

Creates and returns an SQL string that is the result of interposing the word “OR” between the SQL strings
for the qualifiers in qualifiers. Generates an SQL string for each qualifier by sending
sqlStringForSQLExpression: messages to the qualifiers with self as the argument. If the SQL string for a
qualifier contains only white space, it isn’t included in the return value. The return value is enclosed in
parentheses if the SQL strings for two or more qualifiers were ORed together.

sqlStringForKeyComparisonQualifier:
– (NSString *)sqlStringForKeyComparisonQualifier: (EOKeyComparisonQualifier *)qualifier

Creates and returns an SQL string that is the result of interposing an operator between the SQL strings for
the right and left keys in qualifier. Determines the SQL operator by invoking sqlStringForSelector:value:
with qualifier’s selector and nil for the value. Generates SQL strings for qualifier’s keys by invoking
246

 Classes: EOSQLExpression

sqlStringForAttributeNamed: to get SQL strings. This method also formats the strings for the right and
left keys using formatSQLString:format: with the corresponding attributes’ “read” formats.

sqlStringForKeyValueQualifier:
– (NSString *)sqlStringForKeyValueQualifier: (EOKeyValueQualifier *)qualifier

Creates and returns an SQL string that is the result of interposing an operator between the SQL strings for
qualifier’s key and value. Determines the SQL operator by invoking sqlStringForSelector:value: with
qualifier’s selector and value. Generates an SQL string for qualifier’s key by invoking
sqlStringForAttributeNamed: to get an SQL string and formatSQLString:format: with the
corresponding attribute’s “read” format. Similarly, generates an SQL string for qualifier’s value by invoking
sqlStringForValue:attributeNamed: to get an SQL string and formatValue:forAttribute: to format it.
(First invokes sqlPatternFromShellPattern: for the value if qualifier’s selector is isLike: .)

sqlStringForNegatedQualifier:
– (NSString *)sqlStringForNegatedQualifier:(EOQualifier *)qualifier

Creates and returns an SQL string that is the result of surrounding the SQL string for qualifier in parentheses
and appending it to the word “not”. For example, if the string for qualifier is “FIRST_NAME = ‘John’”,
sqlStringForNegatedQualifier: returns the string “not (FIRST_NAME = ‘John’)”.

Generates an SQL string for qualifier by sending an sqlStringForSQLExpression:: message to qualifier
with self as the argument. If the SQL string for qualifier contains only white space, this method returns nil .

sqlStringForSchemaObjectName:
– (NSString *)sqlStringForSchemaObjectName:(NSString *)name

Returns name enclosed in the external name quote character if the receiver uses quoted external names,
otherwise simply returns name unaltered.

See also: + useQuotedExternalNames, – externalNameQuoteCharacter
247

sqlStringForSelector:value:
– (NSString *)sqlStringForSelector:(SEL)selector value:(id)value

Returns an SQL operator for selector and value. The following table summarizes EOSQLExpression’s
default mapping:

Raises an NSInternalInconsistencyException if selector is an unknown operator.

See also: – sqlStringForKeyComparisonQualifier: , – sqlStringForKeyValueQualifier:

sqlStringForValue:attributeNamed:
– (NSString *)sqlStringForValue:(id)value attributeNamed:(NSString *)name

Returns a string for value appropriate for use in an SQL statement. If the receiver uses a bind variable for
the attribute named name, then sqlStringForValue:attributeNamed: gets the bind variable dictionary for
the attribute, adds it to the receiver’s array of bind variables dictionaries, and returns the value for the
binding’s EOBindVariablePlaceHolderKey. Otherwise, this method invokes formatValue:forAttribute:
and returns the formatted string for value.

See also: – mustUseBindVariableForAttribute: , – shouldUseBindVariableForAttribute: ,
+ useBindVariables, – bindVariableDictionaries, – addBindVariableDictionary:

Selector SQL Operator

isEqualTo: “is” if value is an EONull, “=” otherwise

isNotEqualTo: “is not” if value is an EONull, “<> otherwise

isLessThan: “<”

isGreaterThan: “>”

isLessThanOrEqualTo: “<=”

isGreaterThanOrEqualTo: “>=”

isLike: “like”
248

 Classes: EOSQLExpression
statement
– (NSString *)statement

Returns the complete SQL statement for the receiver. An SQL statement can be assigned to an
EOSQLExpression object directly using the class method expressionForString: or using the instance
method setStatement:. Generally, however, an EOSQLExpression’s statement is built up using one of the
following methods:

• – prepareSelectExpressionWithAttributes:lock:fetchSpecification:
• – prepareInsertExpressionWithRow:
• – prepareUpdateExpressionWithRow:qualifier:
• – prepareDeleteExpressionForQualifier:

tableListWithRootEntity:
– (NSString *)tableListWithRootEntity: (EOEntity *)entity

Returns the comma-separated list of tables for use in a SELECT, UPDATE, or DELETE statement’s FROM
clause. If the receiver doesn’t use table aliases, the table list consists only of the table name for entity—
“EMPLOYEE”, for example. If the receiver does use table aliases (only in SELECT statements by default),
the table list is a comma separated list of table names and their aliases, for example:

EMPLOYEE t0, DEPARTMENT t1

tableListWithRootEntity: creates a string containing the table name for entity and a corresponding table
alias (“EMPLOYEE t0”, for example). For each entry in aliasesByRelationshipPath, this method appends
a new table name and table alias.

See also: – useAliases, – aliasesByRelationshipPath

useAliases
– (BOOL)useAliases

Returns YES if the receiver generates statements with table aliases, NO otherwise. For example, the
following SELECT statement uses table aliases:

SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.NAME

FROM EMPLOYEE t0, DEPARTMENT t1

WHERE t0.DEPARTMENT_ID = t1.DEPARTMENT_ID

The EMPLOYEE table has the alias t0, and the DEPARTMENT table has the alias t1.
249

y
By default, EOSQLExpression uses table aliases only in SELECT statements. Enterprise Objects
Framework assumes that INSERT, UPDATE, and DELETE statements are single-table operations. For
more information, see the discussion in the class description.

See also: – setUseAliases:, – aliasesByRelationshipPath

valueList
– (NSMutableString *)valueList

Returns the comma-separated list of values used in an INSERT statement. For example, the value list for
the following INSERT statement:

INSERT EMPLOYEE (FIRST_NAME, LAST_NAME, EMPLOYEE_ID, DEPARTMENT_ID, SALARY)

VALUES (’Shaun’, ’Hayes’, 1319, 23, 4600)

is “‘Shaun’, ‘Hayes’, 1319, 23, 4600”. An EOSQLExpression’s valueList is generated a value at a time with
addInsertListAttribute:value: messages.

whereClauseString
– (NSString *)whereClauseString

Returns the part of the receiver’s WHERE clause that qualifies rows. The whereClauseString does not
specify join conditions; the joinClauseString does that. Together, the whereClauseString and the
joinClauseString make up a statement’s where clause. For example, a qualifier for an Employee entity
specifies that a statement only affects employees who belong to the Finance department and whose monthl
salary is greater than $4500. Assume the corresponding where clause looks like this:

WHERE EMPLOYEE.SALARY > 4500 AND DEPARTMENT.NAME = ‘Finance’

AND EMPLOYEE.DEPARTMENT_ID = DEPARTMENT.DEPARTMENT_ID

EOSQLExpression generates both a whereClauseString and a joinClauseString for this qualifier. The
whereClauseString qualifies the rows and looks like this:

EMPLOYEE.SALARY > 4500 AND DEPARTMENT.NAME = ‘Finance’

The joinClauseString specifies the join conditions between the EMPLOYEE table and the DEPARTMENT
table and looks like this:

EMPLOYEE.DEPARTMENT_ID = DEPARTMENT.DEPARTMENT_ID

An EOSQLExpression’s whereClauseString is generally set by sending a sqlStringForSQLExpression:
message to an EOQualifier object.

See also: – sqlStringForSQLExpression: (EOQualifierSQLGeneration protocol)
250

 Classes: EOSQLExpression

e

EOSQLExpression

Building Expressions

The following four methods create EOSQLExpression objects for the four basic database operations—
select, insert, update, and delete:

• + selectStatementForAttributes:lock:fetchSpecification:entity:
• + insertStatementForRow:entity:
• + updateStatementForRow:qualifier:entity:
• + deleteStatementWithQualifier:entity:

Unless you’re implementing an EOSQLExpression subclass, these and the class method
expressionForString: are the only EOSQLExpression methods you should ever need. If, on the other hand,
you are creating a subclass, you need to understand the mechanics of how EOSQLExpression builds SQL
statements. Each of the creation methods above creates an EOSQLExpression, initializes the expression
with a specified entity, and sends the new expression object one of the following prepare... methods:

• – prepareSelectExpressionWithAttributes:lock:fetchSpecification:
• – prepareInsertExpressionWithRow:
• – prepareUpdateExpressionWithRow:qualifier:
• – prepareDeleteExpressionForQualifier:

The prepare... methods, in turn, invoke a corresponding assemble... method, first generating values for the
assemble... method’s arguments. The assemble... methods:

• – assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder: selectString:columnList:tableList:
whereClause:joinClause: orderByClause:lockClause:

• – assembleInsertStatementWithRow:tableList:columnList:valueList:
• – assembleUpdateStatementWithRow:qualifier:tableList:updateList:whereClause:
• – assembleDeleteStatementWithQualifier:tableList:whereClause:

combine their arguments into SQL statements that the database server can understand.

These three sets of methods establish a framework in which SQL statements are generated. The bulk of th
remaining methods generate pieces of an SQL statement.

An individual SQL statement is constructed by combining the SQL strings for any model or value objects
specified in the “build” method in the appropriate form. An SQL string for a modeling or value object is a
string representation of the object that the database understands; for example, the SQL string for an
EOEntity is ultimately its table name. An EOSQLExpression gets the SQL strings for attributes and values
with the methods sqlStringForAttributeNamed: and sqlStringForValue:attributeNamed: . If necessary,
it also formats the SQL strings according to an EOAttribute’s “read” or “write” format with the class
method formatSQLString:format: .

Each of the “build” methods above invokes a number of instance methods. These methods are documented
individually below.
251

t

r

t
Using Table Aliases

By default, EOSQLExpression uses table aliases in SELECT statements. For example, the following
SELECT statement uses table aliases:

SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.NAME

FROM EMPLOYEE t0, DEPARTMENT t1

WHERE t0.DEPARTMENT_ID = t1.DEPARTMENT_ID

The EMPLOYEE table is aliased t0, and the DEPARTMENT table is aliased t1. Table aliases are necessary
in some SELECT statements—when a table contains a self-referential relationship, for example. Assume
the EMPLOYEE table contains a manager column. Managers are also employees, so to retrieve all the
employees whose manager is Bob Smith, the SELECT statement looks like this:

SELECT t0.FIRST_NAME, t0.LAST_NAME

FROM EMPLOYEE t0, EMPLOYEE t1

WHERE t1.FIRST_NAME = "BOB" AND t1.LAST_NAME = "SMITH" AND

t0.MANAGER_ID = t1.EMPLOYEE_ID

When the Framework maps operations on enterprise objects to operations on database rows, it reduces
insert, update, and delete operations to one or more single-table operations. As a result, EOSQLExpression
assumes that INSERT, UPDATE, and DELETE statements are always single-table operations, and does no
use table aliases in the statements of these types.

In addition, if EOSQLExpression detects that all the attributes in a SELECT statement’s attribute list are
flattened attributes and they’re all flattened from the same table, the expression doesn’t use table aliases. Fo
example, suppose that an EOSQLExpression object is created to select a customer’s credit card. In the
application, a customer object has a credit card object as one of its properties, and all operations on credi
cards are described in terms of a customer. As a result, the expression object is initialized with the entity for
the Customer object. Rather than create a statement like the following:

SELECT t1.TYPE, t1.NUMBER, t1.EXPIRATION, t1.CREDIT_LIMIT, t1.CUSTOMER_ID

FROM CUSTOMER t0, CREDIT_CARD t1

WHERE t1.CUSTOMER_ID = t0.CUSTOMER_ID AND t1.CUSTOMER_ID = 459

EOSQLExpression detects that all the attributes correspond to columns in the CREDIT_CARD table and
creates the following statement:

SELECT TYPE, NUMBER, EXPIRATION, CREDIT_LIMIT, CUSTOMER_ID

FROM CREDIT_CARD

WHERE CUSTOMER_ID = 459

Bind Variables

Some RDBMS client libraries use bind variables. A bind variable is a placeholder used in an SQL statement
that is replaced with an actual value after the database server determines an execution plan. If you are
writing an adaptor for a database server that uses bind variables, you must override the following
EOSQLExpression variables:
252

 Classes: EOSQLExpression

• – bindVariableDictionaryForAttribute:value:
• – mustUseBindVariableForAttribute:
• – shouldUseBindVariableForAttribute:

If your adaptor doesn’t need to use bind variables, the default implementations of the bind variable methods
are sufficient.
253

254

 Classes: EOSQLQualifier

EOSQLQualifier

Inherits From: EOQualifier : NSObject

Conforms To: EOQualifierSQLGeneration, NSObject (NSObject)

Declared In: EOAccess/EOSQLQualifier.h

Class Description

EOSQLQualifier is a subclass of EOQualifier that contains unstructured text that can be transformed into
an SQL expression. EOSQLQualifier is provided for backwards compatibility with pre-2.0 Enterprise
Objects Framework releases and to provide a way to create SQL expressions with any arbitrary SQL.
EOSQLQualifier formats are not parsed, they simply perform substitution for keys and format characters.
The qualifying information is expressed in the database server’s query language (nearly always SQL), and
you’re responsible for ensuring that the query language statement is valid for your database server.
EOSQLQualifiers can’t be evaluated against objects in memory. As a result, you should use EOQualifier
whenever possible and only use EOSQLQualifier in cases that absolutely require it.

You create an SQL qualifier using alloc... and initWithEntity:qualifierFormat: . This method takes as
arguments the root entity for the qualifier and a format string like that used with the standard creation
method qualifierWithQualifierFormat: .

Note: Because an SQL qualifier must be rooted to an entity, you can’t use qualifierWithQualifierFormat:
to create EOSQLQualifier objects.

Adopted Protocols

EOQualifierSQLGeneration
– schemaBasedQualifierWithRootEntity:
– sqlStringForSQLExpression:
255

Class Methods

qualifierWithQualifierFormat:
+ (EOQualifier *)qualifierWithQualifierFormat: (NSString *)format, ...

Raises an exception. An EOSQLQualifier must be created with an entity, and this method does not provide
one. Use alloc... and initWithEntity:qualifierFormat: to create an EOSQLQualifier.

Instance Methods

initWithEntity:qualifierFormat:
– initWithEntity: (EOEntity *)entity qualifierFormat: (NSString *)qualifierFormat, ...

Initializes a newly allocated EOSQLQualifier rooted in entity and built from a format string. qualifierFormat
is a printf() -style format string like that used with EOQualifier’s qualifierWithQualifierFormat: method.
This is the designated initializer for the EOSQLQualifier class. Returns self if qualifierFormat is
successfully parsed, nil otherwise.
256

 Classes: EOStoredProcedure

nal

EOStoredProcedure

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOStoredProcedure.h

Class Description

An EOStoredProcedure represents a stored procedure defined in a database, and associates a name inter
to the Framework with an external name by which the stored procedure is known to the database. If a stored
procedure has arguments, its EOStoredProcedure object also maintains a group of EOAttributes which
represent the stored procedure’s arguments. See the EOAttribute class specification for more information

You usually define stored procedures in your EOModel with the EOModeler application, which is
documented in the Enterprise Objects Framework Developer’s Guide. EOStoredProcedures are primarily
used by the Enterprise Objects Framework to map operations for an EOEntity to stored procedures (see the
description for EOEntity’s setStoredProcedure:forOperation: method). You can assign stored procedures
to an entity for any of the following scenarios:

• Fetching all the objects for the entity
• Fetching a single object by its primary key
• Inserting a new object
• Deleting an object
• Generating a new primary key

Your code probably won’t use EOStoredProcedures unless you’re working at the adaptor level.

Like the other major modeling classes, EOStoredProcedure provides a user dictionary for your application
to store any application-specific information related to the stored procedure.

Method Types

Creating a new EOStoredProcedure
– initWithName:

Accessing the model
– model
257

Accessing the name
– setName:
– beautifyName
– name

Accessing the external name
– setExternalName:
– externalName

Accessing the arguments
– setArguments:
– arguments

Accessing the user dictionary
– setUserInfo:
– userInfo

Instance Methods

arguments
– (NSArray *)arguments

Returns the EOAttribute objects that describe the stored procedure’s arguments or nil if the stored
procedure has no arguments.

beautifyName
– (void)beautifyName

Renames the receiver’s name and its arguments to conform to the Framework’s naming conventions. For
example, “NAME” is renamed “name” and “FIRST_NAME” is renamed “firstName”.

See also: – setArguments:, – beautifyNames (EOModel)

externalName
– (NSString *)externalName

Returns the name of the stored procedure as it is defined in the database, or nil if the receiver doesn’t have
an external name.

See also: – setExternalName:
258

 Classes: EOStoredProcedure

initWithName:
– (EOStoredProcedure *)initWithName: (NSString *)name

The designated initializer for EOStoredProcedure, this method initializes a new EOStoredProcedure object
and sets its name to name. Returns self.

See also: – setName:, – name

model
– (EOModel *)model

Returns the model to which the receiver belongs.

See also: – addStoredProcedure: (EOModel)

name
– (NSString *)name

Returns the name of the receiver.

See also: – setName:, – initWithName:

setArguments:
– (void)setArguments:(NSArray *)arguments

Sets arguments as the array of EOAttributes that describe the receiver’s arguments. The EOAttribute objects
in arguments must be ordered to match the database stored procedure definition.

See also: – arguments

setExternalName:
– (void)setExternalName:(NSString *)name

Sets the external name of the stored procedure to name. name should be the name of the stored procedure
as it is defined in the database.

See also: – externalName
259

setName:
– (void)setName:(NSString *)name

Sets the name of the receiver.

See also: – name, – initWithName:

setUserInfo:
– (void)setUserInfo:(NSDictionary *)dictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types (that is, NSString, NSDictionary, NSArray, and NSData).

See also: – userInfo

userInfo
– (NSDictionary *)userInfo

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: – setUserInfo:
260

 Classes: NSString Additions

.

o

NSString Additions

Inherits From: NSObject

Declared In: EOAccess/EOEntity.h

Class Description

The access layer adds two methods to the NSString class, to enable the conversion of modeling object
names to database schema names, and database schema names to modeling object names.

Class Methods

externalNameForInternalName:separatorString:useAllCaps:
+ (NSString *)externalNameForInternalName:(NSString *)name,

separatorString:(NSString *)separatorString,
useAllCaps:(BOOL)useAllCaps)

Used by the Framework to convert modeling object names to database schema names that conform to a
standard convention. A conforming database schema name is upper-case and uses “_” to separate words
Consequently “name” becomes “NAME” and “firstName” becomes “FIRST_NAME”.

separatorString is a character that is used to separate words. The Framework uses “_” by default as in the
examples above. useAllCaps indicates whether to capitalize the name. For example, providing NO converts
“firstName” to “first_name”.

nameForExternalName:separatorString:initialCaps:
+ (NSString *)nameForExternalName:(NSString *)name,

separatorString:(NSString *)separatorString,
initialCaps: (BOOL)initialCaps)

Used by name beautification to convert database schema names to modeling object names that conform t
a standard convention. A conforming attribute, relationship, or stored procedure name is lower-case except
for the initial letter of each embedded word other than the first. Consequently “NAME” becomes “name”
and “FIRST_NAME” becomes “firstName”. A conforming entity is all lower-case except for the initial
letter of each word. Consequently “CUSTOMER_ACCOUNT” becomes “CustomerAccount”.
261

separatorString is a character that is used to separate words. The Framework uses “_” by default as in the
examples above. initialCaps indicates whether to capitalize the first letter of the first word. By default, the
Framework uses YES for entities and NO for everything else.

See also: – beautifyNames (EOModel), – beautifyName (EOAttribute, EOEntity, EORelationship,
EOStoredProcedure)
262

 Classes: EOAdaptorChannelDelegate

r
EOAdaptorChannelDelegate

Adopted By: EOAdaptorChannel delegate objects

Declared In: EOAccess/EOAdaptorChannel.h

Protocol Description

EOAdaptorChannel sends messages to its delegate for nearly every operation that would affect data in the
database server. The delegate can use these methods to preempt these operations, modify their results, o
simply track activity.

Instance Methods

adaptorChannelDidChangeResultSet:
– (void)adaptorChannelDidChangeResultSet:(id)channel

Invoked from fetchRowWithZone: when a select operation resulted in multiple result sets. This method
tells the delegate that the next invocation of fetchRowWithZone: will fetch from the next result set. This
method is invoked when fetchRowWithZone: returns nil and there are still result sets left to fetch. The
delegate can invoke setAttributesToFetch: to prepare for fetching the new rows.

adaptorChannel:didEvaluateExpression:
– (void)adaptorChannel:(id)channel

didEvaluateExpression:(EOSQLExpression *)expression

Invoked from evaluateExpression: to tell the delegate that a query language expression has been evaluated
by the database server.

adaptorChannel:didExecuteStoredProcedure:withValues:
– (void)adaptorChannel:(id)channel

didExecuteStoredProcedure:(EOStoredProcedure *)procedure
withValues:(NSDictionary *)values

Invoked from executeStoredProcedure:withValues: after procedure is executed successfully.
263

adaptorChannel:didFetchRow:
– (void)adaptorChannel:(id)channel didFetchRow:(NSMutableDictionary *)row

Invoked from fetchRowWithZone: after a row is fetched successfully. This method is not invoked if an
exception occurs during the fetch or if the same returns nil because there are no more rows in the current
result set. The delegate may modify row, which will be returned from fetchRowWithZone:.

adaptorChannelDidFinishFetching:
– (void)adaptorChannelDidFinishFetching:(id)channel

Invoked from fetchRowWithZone: to tell the delegate that fetching is finished for the current select
operation. This method is invoked when a fetch ends in fetchRowWithZone: because there are no more
result sets.

adaptorChannel:didPerformOperations:exception:
– (NSException *)adaptorChannel:(id)channel

didPerformOperations:(NSArray *)operations
exception:(NSException *)exception

Invoked from performAdaptorOperations: . exception is nil if no exception was raised while operations
were performed. Otherwise, exception is the raised exception. The delegate can return the same or a
different exception, which is re-raised by performAdaptorOperations: , or it can return nil to prevent the
adaptor channel from raising an exception.

adaptorChannel:didSelectAttributes:fetchSpecification:lock:entity:
– (void)adaptorChannel:(id)channel

didSelectAttributes:(NSArray *)attributes
fetchSpecification:(EOFetchSpecification *)fetchSpecification
lock:(BOOL)flag
entity:(EOEntity *)entity

Invoked from selectAttributes:fetchSpecification:lock:entity: to tell the delegate that rows have been
selected in the database server.
264

 Classes: EOAdaptorChannelDelegate

e

adaptorChannelShouldConstructStoredProcedureReturnValues:
– (NSDictionary *)adaptorChannelShouldConstructStoredProcedureReturnValues:(id)channel

Invoked from returnValuesForLastStoredProcedureInvocation to tell the delegate that channel is
constructing return values for the last stored procedure evaluated. If the delegate returns a value other than
nil , that value will be returned immediately from returnValuesForLastStoredProcedureInvocation.

adaptorChannel:shouldEvaluateExpression:
– (BOOL)adaptorChannel:(id)channel

shouldEvaluateExpression:(EOSQLExpression *)expression

Invoked from evaluateExpression: to tell the delegate that channel is sending an expression to the database
server. The delegate returns YES to permit the adaptor channel to send expression to the server. If the
delegate returns NO, the adaptor channel does not send the expression and returns immediately. When th
delegate returns NO, the adaptor channel expects that the implementor of the delegate has done the work
that evaluateExpression: would have done. The delegate can create a new EOSQLExpression and send the
expression itself before returning NO.

adaptorChannel:shouldExecuteStoredProcedure:withValues:
– (NSDictionary *)adaptorChannel:(id)channel

shouldExecuteStoredProcedure:(EOStoredProcedure *)procedure
withValues:(NSDictionary *)values

Invoked from executeStoredProcedure:withValues: to tell the delegate that channel is executing a stored
procedure. If the delegate returns a value other than nil , that value is used as the arguments to the stored
procedure instead of values.

adaptorChannel:shouldReturnValuesForStoredProcedure:
– (NSDictionary *)adaptorChannel:(id)channel

shouldReturnValuesForStoredProcedure:(NSDictionary *)returnValues

Invoked from returnValuesForLastStoredProcedureInvocation to tell the delegate that channel is
returning values for a stored procedure. If the delegate returns a value other than nil , that value is returned
from returnValuesForLastStoredProcedureInvocation instead of returnValues.
265

adaptorChannel:shouldSelectAttributes:fetchSpecification:lock:entity:
– (BOOL)adaptorChannel:(id)channel

shouldSelectAttributes:(NSArray *)attributes
fetchSpecification:(EOFetchSpecification *)fetchSpecification
lock:(BOOL)flag
entity:(EOEntity *)entity

Invoked from selectAttributes:fetchSpecification:lock:entity: to ask the delegate whether a select
operation should be performed. The delegate should not modify fetchSpecification. Instead, if the delegate
wants to perform a different select it should invoke selectAttributes:fetchSpecification:lock:entity: itself
with a new fetch specification, and return NO (indicating that the adaptor channel should not perform the
select itself).

adaptorChannelWillFetchRow:
– (void)adaptorChannelWillFetchRow:(id)channel

Invoked from fetchRowWithZone: to tell the delegate that a single row will be fetched. The delegate can
determine the attributes used by the fetch by sending attributesToFetch to channel, and can change the set
of attributes to fetch by sending setAttributesToFetch: to channel. The adaptor channel performs the actual
fetch.

adaptorChannel:willPerformOperations:
– (NSArray *)adaptorChannel:(id)channel willPerformOperations: (NSArray *)operations

Invoked from performAdaptorOperations: to tell the delegate that channel is performing the
EOAdaptorOperations in operations. The delegate may return operations or a different NSArray for the
adaptor channel to perform. If the delegate returns nil , the adaptor channel does not perform the operations
and returns from the method immediately.
266

 Classes: EOAdaptorContextDelegate
EOAdaptorContextDelegate

Adopted By: EOAdaptorContext delegate objects

Declared In: EOAccess/EOAdaptorContext.h

Protocol Description

EOAdaptorContext sends messages to its delegate for any transaction begin, commit, or rollback. The
delegate can use these methods to preempt these operations, modify their results, or simply track activity.

Instance Methods

adaptorContextDidBegin:
– (void)adaptorContextDidBegin:context

Invoked from beginTransaction to tell the delegate that a transaction has begun.

adaptorContextDidCommit:
– (void)adaptorContextDidCommit:context

Invoked from commitTransaction to tell the delegate that a transaction has been committed.

adaptorContextDidRollback:
– (void)adaptorContextDidRollback:context

Invoked from rollbackTransaction to tell the delegate that a transaction has been rolled back.

adaptorContextShouldBegin:
– (BOOL)adaptorContextShouldBegin:context

Invoked from beginTransaction to tell the delegate that context is beginning a transaction. If this method
returns NO, the adaptor context does not begin a transaction. Return YES to allow the adaptor context to
begin a transaction.
267

adaptorContextShouldCommit:
– (BOOL)adaptorContextShouldCommit:context

Invoked from commitTransaction to tell the delegate that context is committing a transaction. If this
method returns NO, the adaptor context does not commit the transaction. Return YES to allow the adaptor
context to commit.

Note that if you implement this delegate method to return NO, your delegate must perform the database
COMMIT itself; the rest of the Enterprise Objects Framework assumes that the commit has taken place.
adaptorContextShouldCommit: doesn’t specify whether or not the commit should take place; it only
specifies whether or not the adaptor context should do it for you.

adaptorContextShouldConnect:
– (BOOL)adaptorContextShouldConnect:context

Invoked before the adaptor attempts to connect. The delegate can return NO if it wants to override the
connect, YES if it wants the adaptor to attempt to connect in the usual way. The delegate should raise an
exception if it fails to connect.

adaptorContextShouldRollback:
– (BOOL)adaptorContextShouldRollback:context

Invoked from rollbackTransaction to tell the delegate that context is rolling back a transaction. If this
method returns NO, the adaptor context does not roll back the transaction. Return YES to allow the adaptor
context to roll back.
268

 Classes: EOAdaptorDelegate
EOAdaptorDelegate

Adopted By: EOAdaptor delegate objects

Declared In: EOAccess/EOAdaptor.h

Protocol Description

The delegate for EOAdaptor can implement the method adaptor:fetchedValueForValue:attribute: to
perform a database-specific transformations on a value.

Instance Methods

adaptor:fetchedValueForValue:attribute:
– (id)adaptor:(EOAdaptor *)adaptor

fetchedValueForValue:(id)value
attribute: (EOAttribute *)attribute

Invoked from fetchedValueForValue:attribute: to allow the delegate to perform a database-specific
transformation on value. The delegate should return the value that the adaptor’s database server would
ultimately store for value if it was inserted or updated in the column described by attribute.

Ordinarily, fetchedValueForValue:attribute: invokes one of the type-specific fetchedValue... methods
depending on the type of value. If you implement this delegate method, fetchedValueForValue:attribute:
does not invoke the other fetchedValue... methods. It simply invokes your delegate method and returns the
value returned from it. Therefore, an implementation of adaptor:fetchedValueForValue:attribute: must
handle values of all types.
269

270

 Classes:

EOCustomClassArchiving
(informal protocol)

Category Of: NSObject

Declared In: EOAccess/EOAttribute.h

Category Description

EOCustomClassArchiving defines methods that can be used to write any object that conforms to NSCoding
to the database as binary data, as generated by NSArchiver. Since data in this fomat is neither
human-readable nor readable by non-OpenStep applications, it’s usually preferable to supply other custom
archiving methods for your custom value classes. For a comprehensive discussion of working with custom
data types, see the EOAttribute class specification and the chapter “Advanced Enterprise Object Modeling”
in the Enterprise Objects Framework Developer’s Guide.

For more information, see “Archiving Attributes with Custom Types” in “WebObjects Programming
Topics.” Is this cross-reference correct?

Class Methods

objectWithArchiveData:
+ (id)objectWithArchiveData: (NSData *)data

Returns an object created from data. NSObject’s implementation of this method invokes NSUnarchiver’s
unarchiveObjectWithData: method and returns the result. Your custom value class can therefore take
advantage of this method merely by implementing the NSCoding protocol method initWithCoder: .

See also: – archiveData

Instance Methods

archiveData
– (NSData *)archiveData

Return the receiver’s value as an NSData object whose bytes can be stored in an external repository.
NSObject’s implementation of this method invokes NSArchiver’s archivedDataWithRootObject: method
and returns the result. Your custom value class can therefore take advantage of this method merely by
implementing the NSCoding protocol method encodeWithCoder:.

See also: + objectWithArchiveData:
271

272

 Classes: EODatabaseContextDelegation
EODatabaseContextDelegation
Declared In: EOAccess/EODatabaseContext.h

Protocol Description

An EODatabaseContext shares its delegate with its EODatabaseChannels. These delegate methods are
actually sent from EODatabaseChannel, but they’re defined in EODatabaseContext for ease of access:

– databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:

– databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:

– databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globalID:databaseChannel:

– databaseContext:shouldUsePessimisticLockWithFetchSpecification: databaseChannel:

You can use the EODatabaseContext delegate methods to intervene when objects are created and when
they’re fetched from the database. This gives you more fine-grained control over such issues as how an
object’s primary key is generated (databaseContextNewPrimaryKeyForObjectdatabaseContext:
newPrimaryKeyForObject:entity:), how and if objects are locked
(databaseContextShouldLockObjectWithGlobalIDdatabaseContext:
shouldLockObjectWithGlobalID:snapshot:), what fetch specification is used to fetch objects
(databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:), how batch
faulting is performed (databaseContext:shouldFetchArrayFault: and databaseContext:
shouldFetchObjectFault:), and so on. For more information, see the individual delegate method
descriptions.

Instance Methods

databaseContext:didFetchObjects:fetchSpecification:editingContext:
– (void)databaseContext:(EODatabaseContext *)aDatabaseContext

didFetchObjects:(NSArray *)objects
fetchSpecification:(EOFetchSpecification *)fetchSpecification editingContext:
(EOEditingContext *)anEditingContext

Invoked from objectsWithFetchSpecification:editingContext: after aDatabaseContext fetches objects
using the criteria defined in fetchSpecification on behalf of anEditingContext.

See also: – databaseContext:shouldFetchObjectFault:
273

databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:
– (void)databaseContext:(EODatabaseContext *)aDatabaseContext

didSelectObjectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification
databaseChannel:(EODatabaseChannel *)channel

Invoked from the EODatabaseChannel method selectObjectsWithFetchSpecification:editingContext: to
tell the delegate that channel selected the objects on behalf of aDatabaseContext as specified by
fetchSpecification.

See also: – databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:

databaseContext:failedToFetchObject:globalID:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

failedToFetchObject:(id)object
globalID: (EOGlobalID *)globalID

Sent when a to-one fault cannot find its data in the database. The object is a cleared fault identified by
globalID. If this method returns YES, aDatabaseContext assumes that the delegate has handled the
situation to its satisfaction, in whatever way it deemed appropriate (for example, by displaying an alert
panel or initializing a fault object with new values). If it returns NO or if the delegate method is not
implemented, aDatabaseContext raises an NSObjectNotAvailableException.

databaseContext:newPrimaryKeyForObject:entity:
– (NSDictionary *)databaseContext:(EODatabaseContext *)aDatabaseContext

newPrimaryKeyForObject: (id)object
entity: (EOEntity *)entity

Sent when a newly inserted enterprise object doesn’t already have a primary key set. This delegate method
can be used to implement custom primary key generation. If the delegate is not implemented or returns nil ,
then aDatabaseContext will send an EOAdaptorChannel a primaryKeyForNewRowWithEntity:
message in an attempt to generate the key.

The dictionary you return from this delegate method contains the attribute or attributes (if object has a
compound primary key) that make up object’s primary key.

databaseContext:shouldFetchArrayFault:
– (BOOL)databaseContext:(EODatabaseContext *)databaseContext shouldFetchArrayFault:

(id)fault

Invoked when a fault is fired, this delegate method lets you fine-tune the behavior of batch faulting.
Delegates can fetch the array themselves (for example, by using the EODatabaseContext method
274

 Classes: EODatabaseContextDelegation
batchFetchRelationship:forSourceObjects:editingContext:) and return NO, or return YES to allow the
databaseContext to do the fetch itself. If databaseContext performs the fetch it will batch fault according
to the batch count on the relationship being fetched.

See also: – databaseContext:shouldFetchObjectFault:

databaseContext:shouldFetchObjectFault:
– (BOOL)databaseContext:(EODatabaseContext *)databaseContext shouldFetchObjectFault:

(id)fault

Invoked when a fault is fired, this delegate method lets you fine-tune the behavior of batch faulting.
Delegates can fetch the fault themselves (for example, by using the EODatabaseContext method
objectsWithFetchSpecification:editingContext:) and return NO, or return YES to allow databaseContext
to perform the fetch. If databaseContext performs the fetch, it will batch fault according to the batch count
on the entity being fetched.

See also: – databaseContext:shouldFetchArrayFault:

databaseContext:shouldFetchObjectsWithFetchSpecification:editingContext:
– (NSArray *)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldFetchObjectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification
editingContext:(EOEditingContext *)anEditingContext

Invoked from objectsWithFetchSpecification:editingContext: to give the delegate the opportunity to
satisfy anEditingContext’s fetch request (using the criteria specified in fetchSpecification) from a local
cache. If the delegate returns nil , aDatabaseContext performs the fetch. Otherwise, the returned array is
returned as the fetch result.

See also: databaseContextDidFetchObjectsdatabaseContext:didFetchObjects:fetchSpecification:
editingContext:

databaseContext:shouldInvalidateObjectWithGlobalID:snapshot:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldInvalidateObjectWithGlobalID: (EOGlobalID *)globalId
snapshot:(NSDictionary *)snapshot

Invoked from invalidateObjectsWithGlobalIDs: . Delegate can cause aDatabaseContext’s object as
identified by globalID to not be invalidated and that object’s snapshot to not be cleared by returning NO.
275

databaseContext:shouldLockObjectWithGlobalID:snapshot:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldLockObjectWithGlobalID: (EOGlobalID *)globalID
snapshot:(NSDictionary *)snapshot

Invoked from lockObjectWithGlobalID:editingContext: . The delegate should return YES if it wants the
operation to proceed or NO if it doesn’t. Values from snapshot are used to create a qualifier from the
attributes used for locking specified for the object’s entity (that is, the object identified by globalID).
Delegates can override the locking mechanism by implementing their own locking procedure and returning
NO. Methods that override the locking mechanism should raise an exception on the failure to lock exactly
one object.

databaseContext:shouldRaiseExceptionForLockFailure:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldRaiseExceptionForLockFailure:(NSException *)exception

Invoked from lockObjectWithGlobalID:editingContext: . This method allows the delegate to suppress an
exception that has occurred during aDatabaseContext’s attempt to lock the object.

databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldSelectObjectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification
databaseChannel:(EODatabaseChannel *)channel

Invoked from the EODatabaseChannel method selectObjectsWithFetchSpecification:editingContext: to
tell the delegate that channel will select objects on behalf of aDatabaseContext as specified by
fetchSpecification. The delegate should not modify fetchSpecification’s qualifier or fetch order. If the
delegate returns YES the channel will go ahead and select the object; if the delegate returns NO (possibly
after issuing custom SQL against the adaptor) the channel will skip the select and return.

databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globalID:
databaseChannel:

– (NSDictionary *)databaseContext:(EODatabaseContext *)aDatabaseContext
shouldUpdateCurrentSnapshot:(NSDictionary *)currentSnapshot
newSnapshot:(NSDictionary *)newSnapshot
globalID: (EOGlobalID *)globalID
databaseChannel:(EODatabaseChannel *)channel

Invoked from the EODatabaseChannel method fetchObject when aDatabaseContext already has a
snapshot (currentSnapshot) for a row fetched from the database. This method is invoked without first
276

 Classes: EODatabaseContextDelegation

r

checking whether the snapshots are equivalent (the check would be too expensive to do in the common
case), so the receiver may be passed equivalent snapshots. The default behavior is to not update an olde
snapshot with newSnapshot. The delegate can override this behavior by returning a dictionary (possibly
newSnapshot) that will be recorded as the updated snapshot. This will result in aDatabaseContext
broadcasting an EOObjectsChangedInStoreNotification, causing the object store hierarchy to invalidate
existing objects (as identified by globalID) built from the obsolete snapshot. Returning nil raises an
exception. You can use this method to achieve the same effect as using an EOFetchSpecification with
setRefreshesRefetchedObjects: set to YES—that is, it allows you to overwrite in-memory object values
with values from the database that may have been changed by someone else.

Returning currentSnapshot causes the aDatabaseContext to perform the default behavior (that is, not
updating the older snapshot).

databaseContext:shouldUsePessimisticLockWithFetchSpecification:
databaseChannel:

– (BOOL)databaseContext:(EODatabaseContext *)databaseContext
shouldUsePessimisticLockWithFetchSpecification:(EOFetchSpecification *)fetchSpecification
databaseChannel:(EODatabaseChannel *)channel

Invoked from the EODatabaseChannel method selectObjectsWithFetchSpecification:editingContext:
regardless of the update strategy specified on channel’s databaseContext. The delegate should not modify
the qualifier or fetch order contained in fetchSpecification. If the delegate returns YES the channel locks the
rows being selected; if the delegate returns NO the channel selects the rows without locking.

databaseContext:willOrderAdaptorOperationsFromDatabaseOperations:
– (NSArray *)databaseContext:(EODatabaseContext *)aDatabaseContext

willOrderAdaptorOperationsFromDatabaseOperations:(NSArray *)databaseOperations

Sent from performChanges. If the delegate responds to this message, it must return an array of
EOAdaptorOperations that aDatabaseContext can then submit to an EOAdaptorChannel for execution. The
delegate can fabricate its own array by asking each of the databaseOperations for its list of
EOAdaptorOperations, and adding them to the array which will eventually be returned by this method. The
delegate is free to optimize, order, or transform the list in whatever way it deems necessary. This method is
useful for applications that need a special ordering of the EOAdaptorOperations so as not to violate any
database referential integrity constraints.
277

databaseContext:willPerformAdaptorOperations:adaptorChannel:
– (NSArray *)databaseContext:(EODatabaseContext *)aDatabaseContext

willPerformAdaptorOperations: (NSArray *)adaptorOperations
adaptorChannel:(EOAdaptorChannel *)adaptorChannel

Sent from performChanges. The delegate can return a new adaptorOperations array which
aDatabaseContext will hand to adaptorChannel for execution in place of the old array of
EOAdaptorOperations. This method is useful for applications that need a special ordering of the
EOAdaptorOperations so as not to violate any database referential integrity constraints.

databaseContext:willRunLoginPanelToOpenDatabaseChannel:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

willRunLoginPanelToOpenDatabaseChannel:(EODatabaseChannel *)channel

When aDatabaseContext is about to use a channel, it checks to see if the channel’s corresponding
EOAdaptorChannel is open. If it isn’t, it attempts to open the EOAdaptorChannel by sending it an
openChannel message. If that doesn’t succeed, aDatabaseContext will ask the EOAdaptorChannel’s
adaptor to run the login panel and open the channel. aDatabaseContext gives the delegate a chance to
intervene in this by invoking this delegate method. The delegate can return NO to stop aDatabaseContext
from running the login panel. In this case, the delegate is responsible for opening the channel. If the delegate
returns YES, aDatabaseContext runs the login panel.
278

 Classes: EOEditingContext Additions
EOEditingContext Additions
(informal protocol)

Category Of: EOEditingContext

Declared In: EOAccess/EOUtilities.h

Class Description

EOEditingContext Additions is a collection of convenience methods intended to make common operations
with EOF easier. EOEditingContext Additions is a category on EOEditingContext provided in EOAccess.

Note: The Objective-C source code for EOUtilities is available as an example. On Mac OS X Server
systems, see /System/Developer/Examples/EnterpriseObjects/Sources/EOUtilities. On NT, see
$NEXT_ROOT\Developer\Examples\EnterpriseObjects\Sources\EOUtilities.

Method Types

Fetching multiple objects
– objectsForEntityNamed:
– objectsForEntityNamed:qualifierFormat:
– objectsMatchingValue:forKey:entityNamed:
– objectsMatchingValues:entityNamed:
– objectsOfClass:
– objectsWithFetchSpecificationNamed:entityNamed:bindings:

Fetching single objects
– objectForEntityNamed:qualifierFormat:
– objectMatchingValue:forKey:entityNamed:
– objectMatchingValues:entityNamed:
– objectWithFetchSpecificationNamed:entityNamed:bindings:
– objectWithPrimaryKey:entityNamed:
– objectWithPrimaryKeyValue:entityNamed:

Fetching raw rows
– executeStoredProcedureNamed:arguments:
– objectFromRawRow:entityNamed:
– rawRowsForEntityNamed:qualifierFormat:
– rawRowsMatchingValue:forKey:entityNamed:
– rawRowsMatchingValues:entityNamed:
– rawRowsWithSQL:modelNamed:
– rawRowsWithStoredProcedureNamed:arguments:
279

Accessing the EOF stack
– connectWithModelNamed:connectionDictionaryOverrides:
– databaseContextForModelNamed:

Accessing object data
– destinationKeyForSourceObject:relationshipNamed:
– localInstanceOfObject:
– localInstancesOfObjects:
– primaryKeyForObject:

Accessing model information
– entityForClass:
– entityForObject:
– entityNamed:
– modelGroup

Instance Methods

connectWithModelNamed:connectionDictionaryOverrides:
– (void)connectWithModelNamed:(NSString *)modelName

connectionDictionaryOverrides:(NSDictionary *)overrides

Connects to the database using the connection information in the specified model and the provided
overrides dictionary. This method facilitates per-session database logins in WebObjects applications.
Typically, you’d put a login name and password in the overrides dictionary and otherwise use the values in
the model’s connection dictionary. Raises an exception if the connection failed.

databaseContextForModelNamed:
– (EODatabaseContext *)databaseContextForModelNamed:(NSString *)entityName

Returns the database context used to service the specified model.

destinationKeyForSourceObject:relationshipNamed:
– (NSDictionary *)destinationKeyForSourceObject:(id)object

relationshipNamed:(NSString *)entityName

Returns the foreign key for the rows at the destination entity of the specified relationship. As an example,
given entities Department and Employee with a relationship called “department” joining
280

 Classes: EOEditingContext Additions

n
Department.ID Employee.deptID , invoking this method on a Department object with ID equal to
5 will return a dictionary with a value of 5 for the deptID key.

See also: – primaryKeyForObject:

entityForClass:
– (EOEntity *)entityForClass:(Class)classObject

Returns the entity associated with the specified class. Raises an exception if the specified entity can’t be
found or if more than one entity is associated with the class.

See also: – entityForObject: , – entityNamed:, – objectsOfClass:

entityForObject:
– (EOEntity *)entityForObject: (id)object

Returns the entity associated with the provided enterprise object. Raises an exception if the specified entity
can’t be found.

See also: – entityForClass:, – entityNamed:

entityNamed:
– (EOEntity *)entityNamed:(NSString *)entityName

Returns the entity with the specified name. Raises an exception if the specified entity can’t be found.

See also: – entityForClass:, – entityForObject:

executeStoredProcedureNamed:arguments:
– (NSDictionary *)executeStoredProcedureNamed:(NSString *)storedProcedureName

arguments:(NSDictionary *)arguments

Executes the specified stored procedure with the provided arguments. Returns the stored procedure’s retur
values (if any). Use only with stored procedures that don’t return results rows.

See also: – rawRowsWithStoredProcedureNamed:arguments:
281

localInstanceOfObject:
– (id)localInstanceOfObject:(id)object

Translates the specified enterprise object from another editing context to the specified one.

See also: – localInstancesOfObjects:

localInstancesOfObjects:
– (NSArray *)localInstancesOfObjects:(NSArray *)objects

Translates the specified enterprise objects from another editing context to the specified one.

See also: – localInstanceOfObject:

modelGroup
– (EOModelGroup *)modelGroup

Returns the model group associated with the editing context’s root object store, an
EOObjectStoreCoordinator.

objectForEntityNamed:qualifierFormat:
– (id)objectForEntityNamed:(NSString *)entityName qualifierFormat: (NSString *)format, ...

Creates a qualifier with the provided format string and arguments, and returns matching enterprise objects.
Raises an EOMoreThanOneException unless exactly one object is retrieved.

See also: – objectsForEntityNamed:qualifierFormat: , – rawRowsForEntityNamed:qualifierFormat:

objectFromRawRow:entityNamed:
– (id)objectFromRawRow:(NSDictionary *)row entityNamed:(NSString *)entityName

Fetches and returns the object corresponding to the specified raw row (using EOEditingContext’s
faultForRawRow:entityNamed:). This method can only be used on raw rows that include the row’s
primary key.
282

 Classes: EOEditingContext Additions

.

objectMatchingValue:forKey:entityNamed:
– (id)objectMatchingValue:(id)value forKey: (NSString *)key entityNamed:(NSString *)entityName

Creates an EOKeyValueQualifier with the specified key and value and returns matching enterprise objects.
Raises an EOMoreThanOneException unless exactly one object is retrieved.

See also: – objectMatchingValues:entityNamed:, – objectsMatchingValue:forKey:entityNamed:

objectMatchingValues:entityNamed:
– (id)objectMatchingValues:(NSDictionary *)values entityNamed:(NSString *)entityName

Creates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
together into an EOAndQualifier, and returns matching enterprise objects. Raises an
EOMoreThanOneException unless exactly one object is retrieved.

See also: – objectMatchingValue:forKey:entityNamed: , – objectsMatchingValues:entityNamed:

objectsForEntityNamed:
– (NSArray *)objectsForEntityNamed:(NSString *)entityName

Fetches and returns the enterprise objects associated with the specified entity.

See also: – objectsForEntityNamed:qualifierFormat: , – objectsMatchingValue:forKey:entityNamed:,
– objectsMatchingValues:entityNamed:

objectsForEntityNamed:qualifierFormat:
– (NSArray *)objectsForEntityNamed:(NSString *)entityName

qualifierFormat: (NSString *)format, ...

Creates a qualifier with the provided format string and arguments, and returns matching enterprise objects

See also: – objectForEntityNamed:qualifierFormat: , – objectsForEntityNamed:
283

.

objectsMatchingValue:forKey:entityNamed:
– (NSArray *)objectsMatchingValue:(id)value

forKey: (NSString *)key
entityNamed:(NSString *)entityName

Creates an EOKeyValueQualifier with the specified key and value and returns matching enterprise objects

See also: – objectMatchingValue:forKey:entityNamed: , – objectsForEntityNamed:,
– objectsMatchingValues:entityNamed:

objectsMatchingValues:entityNamed:
– (NSArray *)objectsMatchingValues:(NSDictionary *)values entityNamed:(NSString *)entityName

Creates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
together into an EOAndQualifier, and returns matching enterprise objects.

See also: – objectMatchingValues:entityNamed:, – objectsForEntityNamed:,
– objectsMatchingValue:forKey:entityNamed:

objectsOfClass:
– (NSArray *)objectsOfClass:(Class)classObject

Fetches and returns the enterprise objects associated with the specified class. Raises an
EOMoreThanOneException if more than one entity for the class exists.

See also: – entityForClass:

objectsWithFetchSpecificationNamed:entityNamed:bindings:
– (NSArray *)objectsWithFetchSpecificationNamed:(NSString *)fetchSpecName

entityNamed:(NSString *)entityName bindings:(NSDictionary *)bindings

Fetches and returns the enterprise objects retrieved with the specified fetch specification and bindings.

See also: – objectWithFetchSpecificationNamed:entityNamed:bindings:
284

 Classes: EOEditingContext Additions
objectWithFetchSpecificationNamed:entityNamed:bindings:
– (id)objectWithFetchSpecificationNamed:(NSString *)fetchSpecName

entityNamed:(NSString *)entityName
bindings:(NSDictionary *)bindings

Fetches and returns the enterprise objects retrieved with the specified fetch specification and bindings.
Raises an EOMoreThanOneException unless exactly one object is retrieved.

See also: – objectsWithFetchSpecificationNamed:entityNamed:bindings:

objectWithPrimaryKey:entityNamed:
– (id)objectWithPrimaryKey: (NSDictionary *)keyDictionary entityNamed:(NSString *)entityName

Fetches and returns the enterprise object identified by the specified primary key dictionary. Raises an
EOMoreThanOneException unless exactly one object is retrieved.

See also: – objectMatchingValue:forKey:entityNamed: , – objectWithPrimaryKeyValue:
entityNamed:, – primaryKeyForObject:

objectWithPrimaryKeyValue:entityNamed:
– (id)objectWithPrimaryKeyValue: (id)value entityNamed:(NSString *)entityName

Fetches and returns the enterprise object identified by the specified primary key value. For use only with
enterprise objects that have non-compound primary keys. Raises an EOMoreThanOneException unless
exactly one object is retrieved.

See also: – objectsMatchingValues:entityNamed:, – objectWithPrimaryKey:entityNamed:

primaryKeyForObject:
– (NSDictionary *)primaryKeyForObject: (id)object

Returns the primary key dictionary for the specified enterprise object.

See also: – objectWithPrimaryKey:entityNamed: , – objectWithPrimaryKeyValue:entityNamed:
285

rawRowsForEntityNamed:qualifierFormat:
– (NSArray *)rawRowsForEntityNamed:(NSString *)entityName

qualifierFormat: (NSString *)format, ...;

Creates a qualifier for the specified entity and with the specified qualifier format and returns matching raw
row dictionaries.

See also: – objectsForEntityNamed:qualifierFormat: , – rawRowsWithSQL:modelNamed:

rawRowsMatchingValue:forKey:entityNamed:
– (NSArray *)rawRowsMatchingValue:(id)value

forKey: (NSString *)key
entityNamed:(NSString *)entityName

Creates an EOKeyValueQualifier with the specified key and value and returns matching raw rows.

See also: – objectMatchingValue:forKey:entityNamed: , – objectsMatchingValue:forKey:
entityNamed:, – rawRowsMatchingValues:entityNamed:

rawRowsMatchingValues:entityNamed:
– (NSArray *)rawRowsMatchingValues:(NSDictionary *)values

entityNamed:(NSString *)entityName

Creates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
together into an EOAndQualifier, and returns matching raw rows.

See also: – objectMatchingValues:entityNamed:, – objectsMatchingValues:entityNamed:,
– rawRowsMatchingValue:forKey:entityNamed:

rawRowsWithSQL:modelNamed:
– (NSArray *)rawRowsWithSQL: (NSString *)sqlString modelNamed:(NSString *)modelName

Evaluates the specified SQL and returns the resulting raw rows.

See also: – rawRowsForEntityNamed:qualifierFormat: , – rawRowsWithStoredProcedureNamed:
arguments:
286

 Classes: EOEditingContext Additions
rawRowsWithStoredProcedureNamed:arguments:
– (NSArray *)rawRowsWithStoredProcedureNamed:(NSString *)storedProcedureName

arguments:(NSDictionary *)arguments

Executes the specified stored procedure with the provided arguments and returns the resulting raw rows.

See also: – rawRowsWithSQL:modelNamed:
287

288

 Classes:

EOModelGroupClassDelegation

Inherits From: NSObject

Declared In: EOAccess/EOModelGroup.h

Protocol Description

An EOModelGroup object should have a delegate which can influence how it finds and loads models. In
addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself can have
a delegate. The class delegate implements a single method—defaultModelGroup.

For more information on EOModelGroup instance delegate methods, see the EOModelGroupDelegation
specifications.

Instance Methods

defaultModelGroup
– (EOModelGroup *)defaultModelGroup

If implemented by the EOModelGroup class delegate, this method should return the EOModelGroup to be
returned in response to the message defaultModelGroup. If this delegate method returnsnil ,
EOModelGroup uses the default behavior of the defaultModelGroup class method.

Note: This method is implemented by the delegate assigned to the EOModelGroup class object.

See also: + classDelegate (EOModelGroup class), + setClassDelegate: (EOModelGroup class)
289

290

 Classes:
EOModelGroupDelegation

Inherits From: NSObject

Declared In: EOAccess/EOModelGroup.h

Protocol Description

An EOModelGroup object should have a delegate which can influence how it finds and loads models. The
EOModelGroup instance delegate can implement the methods below:

• entity:relationshipForRow:relationship:
• subEntityForEntity:primaryKey:isFinal:
• entity:failedToLookupClassNamed:
• entity:classForObjectWithGlobalID:

In addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself can
have a delegate. The class delegate implements a single method—defaultModelGroup. For more
information, see the EOModelGroupClassDelegation.

Instance Methods

entity:classForObjectWithGlobalID:
– (Class)entity:(EOEntity *)entity classForObjectWithGlobalID:(EOGlobalID *)globalID

Used to fine-tune inheritance. The delegate can use globalID to determine a subclass to be used in place of
the one specified in entity.

entity:failedToLookupClassNamed:
– (Class)entity:(EOEntity *)entity failedToLookupClassNamed:(NSString *)className

Invoked when the class name specified for entity cannot be found at run-time. The delegate can take action
(such as loading a bundle) to provide entity with a class corresponding to className. If the delegate cannot
provide anything, or if there is no delegate, EOGenericRecord is used.
291

entity:relationshipForRow:relationship:
– (EORelationship *)entity:(EOEntity *)entity relationshipForRow:(NSDictionary *)row

relationship:(EORelationship *)relationship

Invoked when relationships are instantiated for a newly fetched object. The delegate can use the information
in row to determine which entity the target enterprise object should be associated with, and replace the
relationship appropriately.

modelGroup:entityNamed:
– (EOModel *)modelGroup:(EOModelGroup *)group entityNamed:(NSString *)name

If implemented by the delegate, this method should search the group for the entity named name and return
the entity’s EOModel. Return nil if name is not an entity in group.

relationship:failedToLookupDestinationNamed:
– (EOEntity *)relationship:(EORelationship *)relationship failedToLookupDestinationNamed:

(NSString *)entityName

Invoked when loading relationship and the destination entityName specified in the model file cannot be
found in the model group. This most often occurs when a model references entities in another model file
that can’t be found. If the delegate doesn’t implement this method, an exception is raised. If the delegate
does implement this method, the method’s return value is set as the destination entity. if the delegate returns
nil , the destination entity is set to nil .

subEntityForEntity:primaryKey:isFinal:
– (EOEntity *)subEntityForEntity: (EOEntity *)entity

primaryKey: (NSDictionary *)primaryKey
isFinal:(BOOL *)flag

Allows the delegate to fine-tune inheritance by indicating from which sub-entity an object should be fetched
based on its primaryKey. The entity returned must be a sub-entity of entity. If the delegate knows that the
object should be fetched from the returned entity and not one of its sub-entities, it should set flag to YES.
292

 Classes:
 EOPropertyListEncoding

Implemented By: EOAttribute
EOEntity
EORelationship
EOStoredProcedure

Interface Description

The EOPropertyListEncoding protocol declares methods that read and write objects to property lists—a
dictionary containing only property list data types (that is, NSDictionary objects, NStrings, NSArray
objects, and NSData objects).

Classes that implement this protocol must also initialize their instances with initWithPropertyList:
owner:.

Objects initialized with initWithPropertyList:owner: are initialized from propertyList. The owner
argument is optional and should be used only by objects requiring a reference to their owner. The newly
created object isn’t considered fully functional until it receives an awakeWithPropertyList message,
which finishes initializing the object. The awakeWithPropertyList invocation should be deferred until
after all of the objects identified in propertyList have been created.

The method encodeIntoPropertyList: is responsible for encoding the receiver into a property list for later
restoration.

This interface is used to read and write modeling objects (EOModel, EOEntity, EOAttribute, and so on) to
a model file.

Methods

awakeWithPropertyList
– (void)awakeWithPropertyList: (NSDictionary *)propertyList
Finishes initializing the receiver from propertyList, which must have been initialized with

initWithPropertyList:owner: .

awakeWithPropertyList is responsible for restoring references to other objects. Consequently, it should
not be invoked until all other objects that the receiver might reference have been initialized from
propertyList.
293

encodeIntoPropertyList:
– (void)encodeIntoPropertyList:(NSMutableDictionary *)propertyList

Returns the receiver as a property list.

initWithPropertyList:owner:
– initWithPropertyList: (NSDictionary *)propertyList owner:(id)owner

Intializes a newly-allocated object from a property list. owner is optional, and should be used by objects
requiring a back pointer to their owner. This method must be followed by a call to awakeWithPropertyList
in order to create a fully-functional object. The call to awakeWithPropertyList should be deferred until
after all other objects have been sent init messages.
294

 Classes:

EOQualifierSQLGeneration

Adopted By: EOAndQualifier, EOKeyComparisonQualifier, EOKeyValueQualifier,
EONotQualifier, EOOrQualifier, EOSQLQualifier

Declared In: EOAccess/EOSQLQualifier.h

Protocol Description

The EOQualifierSQLGeneration protocol declares two methods that are adopted by qualifier classes to
qualify fetches from a database. One of the methods, schemaBasedQualifierWithRootEntity:, is used to
provide a qualifier suitable for evaluation by a database from a qualifier suitable for in-memory evaluation.
The other method, sqlStringForSQLExpression:, is used by concrete subclasses of EOSQLExpression to
generate WHERE clauses for SQL statements.

Instance Methods

sqlStringForSQLExpression:
– (NSString *)sqlStringForSQLExpression:(EOSQLExpression *)sqlExpression

Returns a SQL statement suitable for inclusion in a WHERE clause. Invoked from a concrete subclass of
EOSQLExpression while it’s preparing a SELECT, UPDATE, or DELETE statement.

See also: – whereClauseString (EOSQLExpression)

schemaBasedQualifierWithRootEntity:
– (EOQualifier *)schemaBasedQualifierWithRootEntity:(EOEntity *)entity

Returns a qualifier suitable for evaluation by a database (as opposed to in-memory evaluation). Invoked by
an EODatabaseChannel object before it uses its EOAdaptorChannel to perform a database operation.

Whereas in-memory qualifier evaluation uses pointers to resolve relationships, a database qualifier must use
foreign keys. For example, consider the qualifier below that is used to fetch all employees who work in a
specified department:

Department *dept; // Assume this exists.

EOQualifier *qualifer;

qualifier = [EOQualifier qualifierWithQualifierFormat:@"department = %@", dept];
295

For an in-memory search, the Framework queries employee objects for their department object and includes
an employee in the result list if its department object is equal to dept. (See the EOQualifierEvaluation
protocol description for more information on in-memory searching.)

For a database search, the Framework needs to qualify the fetch by specifying a foreign key value for dept.
The Framework sends qualifier a schemaBasedQualifierWithRootEntity: message that creates and
returns a new qualifier. Assume that the entity for employee objects has an attribute named departmentID
and that the primary key value for dept is 459, the resulting qualifier specifies the search conditions as:

department.departmentID = 459

See also: – selectObjectsWithFetchSpecification:editingContext: (EODatabaseChannel)
296

	The EOAccess Framework
	Framework: /System/Library/Frameworks/EOAccess.framework
	Introduction
	EOAccess Framework Class Hierarchy
	Figure 1 The EOAccess Framework class hierarchy

	The Database Level
	The Adaptor Level
	The Modeling Classes
	Faulting
	Additions to Other Frameworks
	Miscellaneous Classes
	Delegates
	Miscellaneous Protocols

	EOAccessArrayFaultHandler
	Class Description
	Instance Methods
	completeInitializationOfObject
	databaseContext
	editingContext
	initWithSourceGlobalID:relationshipName:databaseContext:editingContext:
	relationshipName
	sourceGlobalID

	EOAccessFaultHandler
	Class Description
	Instance Methods
	completeInitializationOfObject
	databaseContext
	editingContext
	globalID
	initWithglobalID:relationshipName:databaseContext:editingContext:

	EOAccessGenericFaultHandler
	Class Description
	Instance Methods
	generation
	linkAfter:usingGeneration:
	next
	previous

	EOAdaptor
	Class Description
	Method Types
	Class Methods
	adaptorWithModel:
	adaptorWithName:
	assignExternalInfoForAttribute:
	assignExternalInfoForEntireModel:
	assignExternalInfoForEntity:
	assignExternalTypeForAttribute:
	availableAdaptorNames
	externalTypesWithModel:
	internalTypeForExternalType:model:
	setExpressionClassName:adaptorClassName:

	Instance Methods
	assertConnectionDictionaryIsValid
	canServiceModel:
	connectionDictionary
	contexts
	createAdaptorContext
	createDatabaseWithAdministrativeConnectionDictionary:
	databaseEncoding
	defaultExpressionClass
	delegate
	dropDatabaseWithAdministrativeConnectionDictionary:
	expressionClass
	fetchedValueForDataValue:attribute:
	fetchedValueForDateValue:attribute:
	fetchedValueForNumberValue:attribute:
	fetchedValueForStringValue:attribute:
	fetchedValueForValue:attribute:
	hasOpenChannels
	initWithName:
	isValidQualifierTypeIn:model:
	name
	prototypeAttributes
	runLoginPanel
	runLoginPanelAndValidateConnectionDictionary
	setConnectionDictionary:
	setDelegate:
	sharedLoginPanelInstance
	Creating an EOAdaptor Subclass

	EOAdaptorChannel
	Class Description
	Notifying the Adaptor Channel’s Delegate

	Method Types
	Instance Methods
	adaptorContext
	addStoredProceduresNamed:toModel:
	attributesToFetch
	cancelFetch
	closeChannel
	delegate
	deleteRowDescribedByQualifier:entity:
	deleteRowsDescribedByQualifier:entity:
	describeModelWithTableNames:
	describeResults
	describeStoredProcedureNames
	describeTableNames
	dictionaryWithObjects:forAttributes:zone:
	evaluateExpression:
	executeStoredProcedure:withValues:
	fetchRowWithZone:
	initWithAdaptorContext:
	insertRow:forEntity:
	isDebugEnabled
	isFetchInProgress
	isOpen
	lockRowComparingAttributes:entity:qualifier:snapshot:
	openChannel
	performAdaptorOperation:
	performAdaptorOperations:
	primaryKeyForNewRowWithEntity:
	returnValuesForLastStoredProcedureInvocation
	selectAttributes:fetchSpecification:lock:entity:
	setAttributesToFetch:
	setDebugEnabled:
	setDelegate:
	updateValues:inRowDescribedByQualifier:entity:
	updateValues:inRowsDescribedByQualifier:entity:
	Creating an EOAdaptorChannel Subclass

	EOAdaptorContext
	Class Description
	Method Types
	Class Methods
	debugEnabledDefault
	setDebugEnabledDefault:

	Instance Methods
	adaptor
	beginTransaction
	canNestTransactions
	channels
	commitTransaction
	createAdaptorChannel
	delegate
	hasBusyChannels
	hasOpenChannels
	initWithAdaptor:
	isDebugEnabled
	rollbackTransaction
	setDebugEnabled:
	setDelegate:
	transactionDidBegin
	transactionDidCommit
	transactionDidRollback
	transactionNestingLevel

	Notifications
	EOAdaptorContextBeginTransactionNotification
	EOAdaptorContextCommitTransactionNotification
	EOAdaptorContextRollbackTransactionNotification

	EOAdaptorContext
	Controlling Transactions
	The Adaptor Context’s Delegate and Notifications
	Creating an EOAdaptorContext Subclass

	EOAdaptorOperation
	Class Description
	Method Types
	Instance Methods
	adaptorOperator
	attributes
	changedValues
	compareAdaptorOperation:
	entity
	exception
	qualifier
	initWithEntity:
	setAdaptorOperator:
	setAttributes:
	setChangedValues:
	setException:
	setQualifier:
	setStoredProcedure:
	storedProcedure

	EOAttribute
	Class Description
	Adopted Protocols
	Method Types
	Instance Methods
	adaptorValueByConvertingAttributeValue:
	adaptorValueConversionMethod
	adaptorValueConversionMethodName
	adaptorValueType
	allowsNull
	beautifyName
	columnName
	definition
	entity
	externalType
	factoryMethodArgumentType
	isDerived
	isFlattened
	isReadOnly
	name
	newDateForYear:month:day:hour:minute:second:millisecond:timezone:zone:
	newValueForBytes:length:
	newValueForBytes:length:encoding:
	overridesPrototypeDefinitionForKey:
	parameterDirection
	parent
	precision
	prototype
	prototypeName
	readFormat
	scale
	serverTimeZone
	setAdaptorValueConversionMethodName:
	setAllowsNull:
	setColumnName:
	setDefinition:
	setExternalType:
	setFactoryMethodArgumentType:
	setName:
	setParameterDirection:
	setPrecision:
	setPrototype:
	setReadFormat:
	setReadOnly:
	setScale:
	setServerTimeZone:
	setUserInfo:
	setValueClassName:
	setValueFactoryMethodName:
	setValueType:
	setWidth:
	setWriteFormat:
	storedProcedure
	userInfo
	validateName:
	validateValue:
	valueClassName
	valueFactoryMethod
	valueFactoryMethodName
	valueType
	width
	writeFormat

	Creating Attributes
	Creating a Simple Attribute
	Creating a Derived Attribute
	Creating a Flattened Attribute

	Mapping Attributes
	Mapping from Database to Objects
	Working with Custom Data Types
	Fetching Custom Values
	Converting Custom Values

	SQL Statement Formats

	EODatabase
	Class Description
	Method Types
	Instance Methods
	adaptor
	addModel:
	addModelIfCompatible:
	entityForObject:
	entityNamed:
	forgetAllSnapshots
	forgetSnapshotForGlobalID:
	forgetSnapshotsForGlobalIDs:
	initWithAdaptor:
	initWithModel:
	invalidateResultCache
	invalidateResultCacheForEntityNamed:
	models
	recordSnapshot:forGlobalID:
	recordSnapshot:forSourceGlobalID:relationshipName:
	recordSnapshots:
	recordToManySnapshots:
	registerContext:
	registeredContexts
	removeModel:
	resultCacheForEntityNamed:
	setResultCache:forEntityNamed:
	snapshotForGlobalID:
	snapshotForSourceGlobalID:relationshipName:
	snapshots
	unregisterContext:

	EODatabase
	Figure 2 The Access Layer
	Figure 3 The EODatabase Level as an Intermediary Between the Adaptor Level and the Control Layer
	Snapshots
	Result Cache

	EODatabaseChannel
	Class Description
	Method Types
	Instance Methods
	adaptorChannel
	cancelFetch
	databaseContext
	delegate
	fetchObject
	initWithDatabaseContext:
	isFetchInProgress
	isLocking
	isRefreshingObjects
	selectObjectsWithFetchSpecification:editingContext:
	setCurrentEditingContext:
	setCurrentEntity:
	setDelegate:
	setIsLocking:
	setIsRefreshingObjects:

	EODatabaseContext
	Class Description
	Method Types
	Class Methods
	contextClassToRegister
	forceConnectionWithModel:connectionDictionaryOverrides:editingContext:
	registeredDatabaseContextForModel:editingContext:
	setContextClassToRegister:

	Instance Methods
	adaptorContext
	arrayFaultWithSourceGlobalID:relationshipName:editingContext:
	availableChannel
	batchFetchRelationship:forSourceObjects:editingContext:
	commitChanges
	coordinator
	database
	delegate
	faultForGlobalID:editingContext:
	faultForRawRow:entityNamed:editingContext:
	forgetAllLocks
	forgetLocksForObjectsWithGlobalIDs:
	forgetSnapshotForGlobalID:
	forgetSnapshotsForGlobalIDs:
	handlesFetchSpecification:
	hasBusyChannels
	initializeObject:withGlobalID:editingContext:
	initWithDatabase:
	invalidateAllObjects
	invalidateObjectsWithGlobalIDs:
	isObjectLockedWithGlobalID:
	isObjectLockedWithGlobalID:editingContext:
	localSnapshotForGlobalID:
	localSnapshotForSourceGlobalID:relationshipName:
	lock
	lockObjectWithGlobalID:editingContext:
	objectsForSourceGlobalID:relationshipName:editingContext:
	objectsWithFetchSpecification:editingContext:
	ownsGlobalID:
	ownsObject:
	performChanges
	prepareForSaveWithCoordinator:editingContext:
	recordChangesInEditingContext
	recordSnapshot:forGlobalID:
	recordSnapshot:forSourceGlobalID:relationshipName:
	recordSnapshots:
	recordToManySnapshots:
	recordUpdateForObject:changes:
	refaultObject:withGlobalID:editingContext:
	registerChannel:
	registeredChannels
	registerLockedObjectWithGlobalID:
	rollbackChanges
	saveChangesInEditingContext:
	setDelegate:
	setUpdateStrategy:
	snapshotForGlobalID:
	snapshotForSourceGlobalID:relationshipName:
	unlock
	unregisterChannel:
	updateStrategy
	valuesForKeys:object:

	Notifications
	EODatabaseChannelNeededNotification

	EODatabaseContext
	Creating and Using an EODatabaseContext
	Fetching and Saving Objects
	Setting a Fetch Limit
	Using a Custom Query
	Faulting
	Batch Faulting
	Prefetching Relationships

	Delegate Methods
	Snapshots
	Updating And Locking Strategies

	EODatabaseDataSource
	Class Description
	Method Types
	Instance Methods
	auxiliaryQualifier
	databaseContext
	entity
	fetchSpecification
	fetchSpecificationForFetch
	fetchSpecificationName
	initWithEditingContext:entityName:
	initWithEditingContext:entityName:fetchSpecificationName:
	isFetchEnabled
	qualifierBindingKeys
	qualifierBindings
	setAuxiliaryQualifier:
	setFetchEnabled:
	setFetchSpecification:
	setFetchSpecificationByName:
	setQualifierBindings:

	EODatabaseOperation
	Class Description
	Method Types
	Instance Methods
	adaptorOperations
	addAdaptorOperation:
	databaseOperator
	dbSnapshot
	entity
	globalID
	initWithGlobalID:object:entity:
	newRow
	object
	primaryKeyDiffs
	recordToManySnapshot:relationshipName:
	removeAdaptorOperation:
	rowDiffs
	rowDiffsForAttributes:
	setDatabaseOperator:
	setDBSnapshot:
	setNewRow:
	toManySnapshots

	EOEntity
	Class Description
	Adopted Protocols
	Method Types
	Instance Methods
	addAttribute:
	addFetchSpecification:withName:
	addRelationship:
	addSubEntity:
	anyAttributeNamed:
	anyRelationshipNamed:
	attributeNamed:
	attributes
	attributesToFetch
	1. Attributes that are class properties, “used for locking,” or primary keys.
	2. Source attributes of any to-many relationship (flattened or non-flattened) that is a class pro...
	3. Source attributes of any non-flattened, to-one relationship that is a class property or that i...
	4. The foreign key attributes of any flattened, to-one relationship that is a class property or t...

	attributesUsedForLocking
	beautifyName
	cachesObjects
	classDescriptionForInstances
	className
	classProperties
	classPropertyNames
	externalModelsReferenced
	externalName
	externalQuery
	fetchSpecificationNamed:
	fetchSpecificationNames
	globalIDForRow:
	isAbstractEntity
	isPrimaryKeyValidInObject:
	isQualifierForPrimaryKey:
	isReadOnly
	isValidAttributeUsedForLocking:
	isValidClassProperty:
	isValidPrimaryKeyAttribute:
	maxNumberOfInstancesToBatchFetch
	model
	name
	parentEntity
	primaryKeyAttributeNames
	primaryKeyAttributes
	primaryKeyForGlobalID:
	primaryKeyForRow:
	primaryKeyRootName:
	qualifierForPrimaryKey:
	referencesProperty:
	relationshipNamed:
	relationships
	removeAttribute:
	removeFetchSpecificationNamed:
	removeRelationship:
	removeSubEntity:
	restrictingQualifier
	setAttributesUsedForLocking:
	setCachesObjects:
	setClassName:
	setClassProperties:
	setExternalName:
	setExternalQuery:
	setIsAbstractEntity:
	setMaxNumberOfInstancesToBatchFetch:
	setName:
	setPrimaryKeyAttributes:
	setReadOnly:
	setRestrictingQualifier:
	setStoredProcedure:forOperation:
	setUserInfo:
	storedProcedureForOperation:
	subEntities
	userInfo
	validateName:

	Creating an Entity

	EOEntityClassDescription
	Class Description
	Instance Methods
	entity
	initWithEntity:

	EOGenericRecord Additions
	Class Description
	Instance Methods
	entity

	EOJoin
	Class Description
	Method Types
	Instance Methods
	destinationAttribute
	initWithSourceAttribute:destinationAttribute:
	isReciprocalToJoin:
	sourceAttribute

	EOLoginPanel
	Class Description
	Instance Methods
	administrativeConnectionDictionaryForAdaptor:
	runPanelForAdaptor:validate:allowsCreation:

	EOModel
	Class Description
	Creating an EOModel Programmatically

	Method Types
	Instance Methods
	adaptorName
	addEntity:
	addStoredProcedure:
	availablePrototypeAttributeNames
	beautifyNames
	connectionDictionary
	encodeTableOfContentsIntoPropertyList:
	entities
	entityForObject:
	entityNamed:
	entityNames
	externalModelsReferenced
	initWithContentsOfFile:
	initWithTableOfContentsPropertyList:path:
	loadAllModelObjects
	modelGroup
	name
	path
	prototypeAttributeNamed:
	referencesToProperty:
	removeEntity:
	removeEntityAndReferences:
	removeStoredProcedure:
	setAdaptorName:
	setConnectionDictionary:
	setModelGroup:
	setName:
	setUserInfo:
	storedProcedureNamed:
	storedProcedureNames
	storedProcedures
	userInfo
	writeToFile:

	Notifications
	EOEntityLoadedNotification

	Loading a Model File

	EOModelGroup
	Class Description
	EOModelGroup Delegates

	Method Types
	Class Methods
	classDelegate
	defaultGroup
	globalModelGroup
	setClassDelegate:
	setDefaultGroup:

	Instance Methods
	addModel:
	addModelWithFile:
	delegate
	entityForObject:
	entityNamed:
	fetchSpecificationNamed:entityNamed:
	loadAllModelObjects
	modelNamed:
	modelNames
	models
	modelWithPath:
	removeModel:
	setDelegate:
	storedProcedureNamed:

	Notifications
	EOModelAddedNotification
	EOModelInvalidatedNotification

	Setting Up A Model Group Programmatically

	EOObjectStoreCoordinator Additions
	Class Description
	Instance Methods
	modelGroup
	setModelGroup:

	EOQualifier Additions
	Class Description
	Instance Methods
	qualifierMigratedFromEntity:relationshipPath:

	EORelationship
	Class Description
	Specifying the Join Semantic

	Adopted Protocols
	Method Types
	Instance Methods
	addJoin:
	anyInverseRelationship
	beautifyName
	componentRelationships
	definition
	deleteRule
	destinationAttributes
	destinationEntity
	entity
	inverseRelationship
	isCompound
	isFlattened
	isMandatory
	isToMany
	joinSemantic
	joins
	name
	numberOfToManyFaultsToBatchFetch
	ownsDestination
	propagatesPrimaryKey
	qualifierWithSourceRow:
	referencesProperty:
	removeJoin:
	setDefinition:
	setDeleteRule:
	setEntity:
	setIsMandatory:
	setJoinSemantic:
	setName:
	setNumberOfToManyFaultsToBatchFetch:
	setOwnsDestination:
	setPropagatesPrimaryKey:
	setToMany:
	setUserInfo:
	sourceAttributes
	userInfo
	validateName:
	validateValue:

	Creating Relationships
	Creating a Simple Relationship
	Creating a Flattened Relationship

	EOSQLExpression
	Class Description
	Method Types
	Class Methods
	createDatabaseStatementsForConnectionDictionary: administrativeConnectionDictionary:
	deleteStatementWithQualifier:entity:
	dropDatabaseStatementsForConnectionDictionary: administrativeConnectionDictionary:
	expressionForString:
	formatSQLString:format:
	formatStringValue:
	formatValue:forAttribute:
	insertStatementForRow:entity:
	schemaCreationStatementsForEntities:options:
	selectStatementForAttributes:lock:fetchSpecification:entity:
	setUseBindVariables:
	setUseQuotedExternalNames:
	sqlPatternFromShellPattern:
	sqlPatternFromShellPattern:withEscapeCharacter:
	updateStatementForRow:qualifier:entity:
	useBindVariables
	useQuotedExternalNames

	Instance Methods
	addBindVariableDictionary:
	addInsertListAttribute:value:
	addJoinClause
	addOrderByAttributeOrdering:
	addSelectListAttribute:
	addUpdateListAttribute:value:
	aliasesByRelationshipPath
	appendItem:toListString:
	assembleDeleteStatementWithQualifier:tableList:whereClause:
	assembleInsertStatementWithRow:tableList:columnList:valueList:
	assembleJoinClauseWithLeftName:rightName:joinSemantic:
	assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder: selectString:columnList:tableLis...
	assembleUpdateStatementWithRow:qualifier:tableList:updateList:whereClause:
	bindVariableDictionaries
	bindVariableDictionaryForAttribute:value:
	entity
	externalNameQuoteCharacter
	initWithEntity:
	joinClauseString
	joinExpression
	listString
	lockClause
	mustUseBindVariableForAttribute:
	orderByString
	prepareDeleteExpressionForQualifier:
	1. Sends an sqlStringForSQLExpression:self message to qualifier to generate the receiver’s whereC...
	2. Invokes tableListWithRootEntity: to get the table name for the FROM clause.
	3. Invokes assembleDeleteStatementWithQualifier:tableList:whereClause:.

	prepareInsertExpressionWithRow:
	1. Invokes addInsertListAttribute:value: for each entry in row to prepare the comma-separated lis...
	2. Invokes tableListWithRootEntity: to get the table name.
	3. Invokes assembleInsertStatementWithRow:tableList:columnList:valueList:.

	prepareSelectExpressionWithAttributes:lock:fetchSpecification:
	1. Invokes addSelectListAttribute: for each entry in attributes to prepare the comma-separated li...
	2. Sends an sqlStringForSQLExpression:self message to fetchSpecification’s qualifier to generate ...
	3. Invokes addOrderByAttributeOrdering: for each EOAttributeOrdering object in fetchSpecification...
	4. Invokes joinExpression to generate the receiver’s joinClauseString.
	5. Invokes tableListWithRootEntity: to get the comma-separated list of tables for the FROM clause.
	6. If flag is YES, invokes lockClause to get the SQL string to lock selected rows.
	7. Invokes assembleSelectStatementWithAttributes:lock:qualifier:fetchOrder: selectString:columnLi...

	prepareUpdateExpressionWithRow:qualifier:
	1. Invokes addUpdateListAttribute:value: for each entry in row to prepare the comma-separated lis...
	2. Sends an sqlStringForSQLExpression:self message to qualifier to generate the receiver’s whereC...
	3. Invokes tableListWithRootEntity: to get the table name for the FROM clause.
	4. Invokes assembleUpdateStatementWithRow:qualifier:tableList:updateList:whereClause:.

	setStatement:
	setUseAliases:
	shouldUseBindVariableForAttribute:
	sqlStringForAttribute:
	sqlStringForAttributeNamed:
	sqlStringForAttributePath:
	sqlStringForConjoinedQualifiers:
	sqlStringForDisjoinedQualifiers:
	sqlStringForKeyComparisonQualifier:
	sqlStringForKeyValueQualifier:
	sqlStringForNegatedQualifier:
	sqlStringForSchemaObjectName:
	sqlStringForSelector:value:
	sqlStringForValue:attributeNamed:
	statement
	tableListWithRootEntity:
	useAliases
	valueList
	whereClauseString

	EOSQLExpression
	Building Expressions
	Using Table Aliases
	Bind Variables

	EOSQLQualifier
	Class Description
	Adopted Protocols
	Class Methods
	qualifierWithQualifierFormat:

	Instance Methods
	initWithEntity:qualifierFormat:

	EOStoredProcedure
	Class Description
	Method Types
	Instance Methods
	arguments
	beautifyName
	externalName
	initWithName:
	model
	name
	setArguments:
	setExternalName:
	setName:
	setUserInfo:
	userInfo

	NSString Additions
	Class Description
	Class Methods
	externalNameForInternalName:separatorString:useAllCaps:
	nameForExternalName:separatorString:initialCaps:

	EOAdaptorChannelDelegate
	Protocol Description
	Instance Methods
	adaptorChannelDidChangeResultSet:
	adaptorChannel:didEvaluateExpression:
	adaptorChannel:didExecuteStoredProcedure:withValues:
	adaptorChannel:didFetchRow:
	adaptorChannelDidFinishFetching:
	adaptorChannel:didPerformOperations:exception:
	adaptorChannel:didSelectAttributes:fetchSpecification:lock:entity:
	adaptorChannelShouldConstructStoredProcedureReturnValues:
	adaptorChannel:shouldEvaluateExpression:
	adaptorChannel:shouldExecuteStoredProcedure:withValues:
	adaptorChannel:shouldReturnValuesForStoredProcedure:
	adaptorChannel:shouldSelectAttributes:fetchSpecification:lock:entity:
	adaptorChannelWillFetchRow:
	adaptorChannel:willPerformOperations:

	EOAdaptorContextDelegate
	Protocol Description
	Instance Methods
	adaptorContextDidBegin:
	adaptorContextDidCommit:
	adaptorContextDidRollback:
	adaptorContextShouldBegin:
	adaptorContextShouldCommit:
	adaptorContextShouldConnect:
	adaptorContextShouldRollback:

	EOAdaptorDelegate
	Protocol Description
	Instance Methods
	adaptor:fetchedValueForValue:attribute:

	EOCustomClassArchiving
	(informal protocol)
	Category Description
	Class Methods
	objectWithArchiveData:

	Instance Methods
	archiveData

	EODatabaseContextDelegation
	Protocol Description
	Instance Methods
	databaseContext:didFetchObjects:fetchSpecification:editingContext:
	databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:
	databaseContext:failedToFetchObject:globalID:
	databaseContext:newPrimaryKeyForObject:entity:
	databaseContext:shouldFetchArrayFault:
	databaseContext:shouldFetchObjectFault:
	databaseContext:shouldFetchObjectsWithFetchSpecification:editingContext:
	databaseContext:shouldInvalidateObjectWithGlobalID:snapshot:
	databaseContext:shouldLockObjectWithGlobalID:snapshot:
	databaseContext:shouldRaiseExceptionForLockFailure:
	databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:
	databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globalID: databaseChannel:
	databaseContext:shouldUsePessimisticLockWithFetchSpecification: databaseChannel:
	databaseContext:willOrderAdaptorOperationsFromDatabaseOperations:
	databaseContext:willPerformAdaptorOperations:adaptorChannel:
	databaseContext:willRunLoginPanelToOpenDatabaseChannel:

	EOEditingContext Additions
	(informal protocol)
	Class Description
	Method Types
	Instance Methods
	connectWithModelNamed:connectionDictionaryOverrides:
	databaseContextForModelNamed:
	destinationKeyForSourceObject:relationshipNamed:
	entityForClass:
	entityForObject:
	entityNamed:
	executeStoredProcedureNamed:arguments:
	localInstanceOfObject:
	localInstancesOfObjects:
	modelGroup
	objectForEntityNamed:qualifierFormat:
	objectFromRawRow:entityNamed:
	objectMatchingValue:forKey:entityNamed:
	objectMatchingValues:entityNamed:
	objectsForEntityNamed:
	objectsForEntityNamed:qualifierFormat:
	objectsMatchingValue:forKey:entityNamed:
	objectsMatchingValues:entityNamed:
	objectsOfClass:
	objectsWithFetchSpecificationNamed:entityNamed:bindings:
	objectWithFetchSpecificationNamed:entityNamed:bindings:
	objectWithPrimaryKey:entityNamed:
	objectWithPrimaryKeyValue:entityNamed:
	primaryKeyForObject:
	rawRowsForEntityNamed:qualifierFormat:
	rawRowsMatchingValue:forKey:entityNamed:
	rawRowsMatchingValues:entityNamed:
	rawRowsWithSQL:modelNamed:
	rawRowsWithStoredProcedureNamed:arguments:

	EOModelGroupClassDelegation
	Protocol Description
	Instance Methods
	defaultModelGroup

	EOModelGroupDelegation
	Protocol Description
	Instance Methods
	entity:classForObjectWithGlobalID:
	entity:failedToLookupClassNamed:
	entity:relationshipForRow:relationship:
	modelGroup:entityNamed:
	relationship:failedToLookupDestinationNamed:
	subEntityForEntity:primaryKey:isFinal:

	EOPropertyListEncoding
	Interface Description
	Methods
	awakeWithPropertyList
	encodeIntoPropertyList:
	initWithPropertyList:owner:

	EOQualifierSQLGeneration
	Protocol Description
	Instance Methods
	sqlStringForSQLExpression:
	schemaBasedQualifierWithRootEntity:

