

 The InformixEOAdaptor Framework

r

bject

The InformixEOAdaptor Framework

Framework: System/Library/Frameworks/InformixEOAdaptor.framework

Header File Directories: System/Library/Frameworks/InformixEOAdaptor.framework/Headers

Introduction

The InformixEOAdaptor framework is a set of classes that allow your programs to connect to an Informix
server. These classes provide Informix-specific method implementations for the EOAccess framework’s
EOAdaptor, EOAdaptorChannel, EOAdaptorContext, and EOSQLExpression abstract classes.

The following table lists the classes in the InformixEOAdaptor Framework and provides a brief description
of each class.

The Connection Dictionary

The connection dictionary contains items needed to connect to an Informix server, such as the database
name (it's common to omit the user name and password from the connection dictionary, and prompt users
to enter those values in a login panel). The keys of this dictionary identify the information the server
expects, and the values of those keys are the values that the adaptor uses when trying to connect to the
server. For Informix databases the required keys are as follows:

dbName
userName
password

Class Description

InformixAdaptor
Represents a single connection to a Informix database server, and is responsible fo
keeping login and model information, performing Informix-specific formatting of SQL
expressions, and reporting errors.

InformixChannel
Represents an independent communication channel to the database server its
InformixAdaptor is connected to.

InformixContext
Represents a single transaction scope on the database server to which its adaptor o
is connected.

InformixSQLExpression Defines how to build SQL statements for InformixChannels.
1

Locking

All adaptors use the database server's native locking facilities to lock rows on the server. In the Informix
adaptor locking is determined by the isolation level, which is implemented in InformixChannel. Locking
occurs when:

• You send the adaptor channel a selectAttributes:fetchSpecification:lock:entity: message with YES
specified as the value for the lock: parameter.

• You explicitly lock an object’s row with the EODatabaseContext’s lockObjectWithGlobalID:
editingContext: message.

• You set pessimistic locking at the database level and fetch objects.

Data Type Mapping

Every adaptor provides a mapping between each server data type and the Objective-C type to which a
database value will be coerced when it’s fetched from the database. The following table lists the mapping
used by InformixAdaptor.

Informix Data Type Objective-C Data Type Java Data Type

VARCHAR NSString String

NVARCHAR NSString String

DECIMAL NSDecimalNumber BigDecimal

MONEY NSDecimalNumber BigDecimal

BYTE NSData NSData

TEXT NSString String

DATE NSCalendarDate NSGregorianDate

INTEGER NSNumber Number

SMALLINT NSNumber Number

NCHAR NSString String

CHAR NSString Number

SERIAL NSNumber Number

FLOAT NSNumber Number
2

 The InformixEOAdaptor Framework

The type mapping methods—externalTypesWithModel:, internalTypeForExternalType:model: , and
isValidQualifierType:model:—allow for an adaptor to supplement its set of type mappings with additional
mappings for user-defined database types. InformixAdaptor does not make use of the model argument if
one is provided.

Prototype Attributes

The InformixEOAdaptor Framework provides the following set of prototype attributes:

SMALLFLOAT NSNumber Number

DATETIME YEAR TO SECOND NSCalendarDate NSGregorianDate

INTERVAL NSString String

Name External Type Value Class Name Other Attributes

binaryID BYTE NSData

city VARCHAR NSString
columnName = CITY
width = 50

date
"DATETIME YEAR
TO SECOND"

NSCalendarDate columnName = ""

longText TEXT NSString

money INTEGER NSDecimalNumber columnName = ""

phoneNumber VARCHAR NSString
columnName = PHONE
width = 20

rawImage BYTE NSData columnName = RAW_IMAGE

state VARCHAR NSString
columnName = STATE
width = 2;

streetAddress VARCHAR NSString
columnName = STREET_ADDRESS
width = 100;

Informix Data Type Objective-C Data Type Java Data Type
3

e

s

Generating Primary Keys

Each adaptor provides a database-specific implementation of the method
primaryKeyForNewRowWithEntity: for generating primary keys. The InformixChannel’s
implementation uses a table named eo_sequence_table to keep track of the next available primary key valu
for a given table. The table contains a row for each table for which the adaptor provides primary key values.
The statement used to create the eo_sequence_table is:

create table eo_sequence_table (

table_name varchar(32,0),

counter integer

)

InformixChannel uses a stored procedure named eo_pk_for_table to access and maintain the primary key
counter in eo_sequence_table. The stored procedure is defined as follows:

create procedure

eo_pk_for_table (tname varchar(32))

returning int;

define cntr int;

update EO_SEQUENCE_TABLE

set COUNTER = COUNTER + 1

where TABLE_NAME = tname;

select COUNTER into cntr

from EO_SEQUENCE_TABLE

where TABLE_NAME = tname;

return cntr;

end procedure;

The stored procedure increments the counter in the eo_sequence_table row for the specified table, select
th counter value, and returns it. InformixChannel executes this eo_pk_for_table stored procedure from
primaryKeyForNewRowWithEntity: and returns the stored procedure’s return value.

tiffImage BYTE NSImage
adaptorValueConversionMethodName = TIFFRepresentation
columnName = PHOTO
valueFactoryMethodName = "imageWithData:"

uniqueID INTEGER NSNumber
columnName = ""
valueType = i

zipCode VARCHAR NSString
columnName = ZIP
width = 10

Name External Type Value Class Name Other Attributes
4

 The InformixEOAdaptor Framework

To use InformixChannel’s database-specific primary key generation mechanism, be sure that your database
accommodates the adaptor’s scheme. To modify your database so that it supports the adaptor’s mechanism
for generating primary keys, use EOModeler. For more information on this topic, see Enterprise Objects
Framework Developer’s Guide.

Bind Variables

The InformixAdaptor uses bind variables. A bind variable is a placeholder used in an SQL statement that is
replaced with an actual value after the database server determines an execution plan. You use the following
methods to operate on bind variables:

• bindVariableDictionaryForAttribute:value:
• mustUseBindVariableForAttribute:
• shouldUseBindVariableForAttribute:
5

6

 Classes: InformixAdaptor

't

InformixAdaptor

Inherits From: EOAdaptor : NSObject

Declared In: InformixEOAdaptor/InformixAdaptor.h

Class Description

An InformixAdaptor represents a single connection to an Informix database server, and is responsible for
keeping login and model information, performing Informix-specific formatting of SQL expressions, and
reporting errors.

The InformixAdaptor class has these restrictions: You can't have nested transactions, and the adaptor doesn
support full outer joins.

Method Types

Mapping external types to internal types
externalTypesWithModel:
internalTypeForExternalType:model:

Working with channels and contexts adaptorChannelClass
adaptorContextClass

Testing the connection dictionary assertConnectionDictionaryIsValid

Getting information from the connection dictionary
informixConnectionString
informixDefaultForKey:
connectionKeys

Getting the default expression class defaultExpressionClass

Verifying a qualifier type isValidQualifierType:model:

Error handling raiseInformixError:
7

Class Methods

externalTypesWithModel:
+ (NSArray *)externalTypesWithModel:(EOModel *)model

Overrides the EOAdaptor method externalTypesWithModel: to return the Informix database types.

See also: internalTypeForExternalType:model:

internalTypeForExternalType:model:
+ (NSString *)internalTypeForExternalType: (NSString *)externalType model:(EOModel *)model

Overrides the EOAdaptor method internalTypeForExternalType:model: to return the name of the
Objective-C class used to represent values stored in the database as externalType.

See also: externalTypesWithModel:

Instance Methods

adaptorChannelClass
– (Class)adaptorChannelClass

Returns the InformixChannel class.

adaptorContextClass
– (Class)adaptorContextClass

Returns the InformixContext class.

assertConnectionDictionaryIsValid
– (void)assertConnectionDictionaryIsValid

Overrides the EOAdaptor method assertConnectionDictionaryIsValid to verify that the receiver can
connect to the database with its connection dictionary. Briefly forms a connection to the server to validate
the connection dictionary and then closes the connection (in other words, this method doesn’t open a
connecton to the database—that happens when the first adaptor channel is sent an openChannel message).
The adaptor uses this method in conjunction with displaying a server login panel. Raises an exception if an
error occurs.
8

 Classes: InformixAdaptor

 to

connectionKeys
– (NSArray *)connectionKeys

Returns an NSArray containing the keys in the receiver’s connection dictionary. You can use this method to
prompt the user to supply values for the connection dictionary.

defaultExpressionClass
– (Class)defaultExpressionClass

Returns the InformixSQLExpression class.

informixConnectionString
– (NSString *)informixConnectionString

Returns the user name, password, and database name as a string suitable to be supplied as an argument
db_connect().

informixDefaultForKey:
– (NSString *)informixDefaultForKey: (NSString *)key

Returns the user default setting for key. To get this information it first checks the user defaults, and then the
adaptor’s internal defaults dictionary.

isValidQualifierType:model:
– (BOOL)isValidQualifierType: (NSString *)typeName model:(EOModel *)model

Overrides the EOAdaptor method isValidQualifierType:model: to return YES if an attribute of type
typeName can be used in a qualifier (a SQL WHERE clause) sent to the database server, or NO otherwise.
typeName is the name of a type as required by the database server, such as an Informix “VARCHAR”.

raiseInformixError:
– (void)raiseInformixError: (NSString *)sqlString

Examines Informix structures for error flags and raises an exception if one is found. Extracts the error
information in the connection structure and use it to build and raise an exception.
9

10

 Classes: InformixChannel

InformixChannel

Inherits From: EOAdaptorChannel : NSObject

Declared In: InformixEOAdaptor/InformixChannel.h
InformixEOAdaptor/InformixDescription.h

Class Description

An InformixChannel represents an independent communication channel to the database server its
InformixAdaptor is connected to. All of an InformixChannel’s operations take place within the context of
transactions controlled or tracked by its InformixContext. An InformixContext can manage multiple
InformixChannels, and a channel is associated with only one context.

The features InformixChannel adds to EOAdaptorChannel are as follows:

• Informix-specific error handling
• The ability to configure the fetch buffer
• The ability to read a list of table names from the database

Method Types

Getting the cursor data area – cursorDataArea

Setting the isolation level – informixSetIsolationTo:

Setting the fetch buffer length – setFetchBufferLength:
– fetchBufferLength

Instance Methods

cursorDataArea
– (struct informix_cursor *)cursorDataArea

If the channel is connected, returns an Informix-specific data structure describing characteristics of the
channel. Otherwise, returns NULL.
11

fetchBufferLength
– (unsigned)fetchBufferLength

Returns the size, in bytes, of the fetch buffer. The larger the buffer, the more rows can be returned for each
round trip to the server.

See also: – setFetchBufferLength:

informixSetIsolationTo:
– (void)informixSetIsolationTo: (InformixIsolationLevel)isol

Sets to isolationLevel the isolation transaction level of the connection represented by the receiver.

setFetchBufferLength:
– (void)setFetchBufferLength:(unsigned)length

Sets to length the size, in bytes, of the fetch buffer. The larger the buffer, the more rows can be returned for
each round trip to the server.

See also: – fetchBufferLength
12

 Classes: InformixContext

t
l

InformixContext

Inherits From: EOAdaptorContext : NSObject

Declared In: InformixEOAdaptor/InformixContext.h

Class Description

An InformixContext represents a single transaction scope on the database server to which its adaptor objec
is connected. If the server supports multiple concurrent transaction sessions, the adaptor may have severa
adaptor contexts. An InformixContext may in turn have several InformixChannels, which handle actual
access to the data on the server.

The features the InformixContext class adds to EOAdaptorContext are methods for setting
Informix-specific characteristics for the context.

Method Types

Managing a connection to the server
– connect
– connection
– disconnect
– isConnected

Returning information about an InformixContext
– fetchesInProgress
– hasTransactions
– isOnLine

Instance Methods

connect
– (void)connect

Opens a connection to the database server. InformixChannel sends this message to InformixContext when
it (InformixChannel) is about to open a channel to the server.

See also: – disconnect
13

connection
– (long)connection

Returns an identifier for the receiver's connection to the server.

disconnect
– (void)disconnect

Closes a connection to the database server. InformixChannel sends this message to InformixContext when
it (InformixChannel) has just closed a channel to the server.

See also: – connect

fetchesInProgress
– (unsigned)fetchesInProgress

Returns the number of fetches the receiver has in progress.

hasTransactions
– (BOOL)hasTransactions

Returns YES to indicate that the receiver has transactions in process, NO otherwise.

isConnected
– (BOOL)isConnected

Returns YES if the receiver has an open connection to the database, NO otherwise.

See also: – connect, – disconnect, – isConnected

isOnLine
– (BOOL)isOnLine

Returns YES if Is the server an Informix on-line server, NO otherwise.
14

 Classes: InformixSQLExpression

InformixSQLExpression

Inherits From: EOSQLExpression : NSObject

Declared In: InformixEOAdaptor/InformixSQLExpression.h

Class Description

InformixSQLExpression defines how to build SQL statements for InformixChannels.

Bind Variables

The InformixAdaptor uses bind variables. A bind variable is a placeholder used in an SQL statement that is
replaced with an actual value after the database server determines an execution plan. You use the following
methods to operate on bind variables:

• bindVariableDictionaryForAttribute:value:
• mustUseBindVariableForAttribute:
• shouldUseBindVariableForAttribute:

Class Methods

formatValue:forAttribute:
+ (NSString *)formatValue: (id)value forAttribute: (EOAttribute *)attribute

Overrides the EOSQLExpression method formatValue:forAttribute: to return a formatted string
representation of value for attribute that is suitable for use in a SQL statement.

serverTypeIdForName
+ (int)serverTypeIdForName:(NSString *)typeName

Returns the Informix type code (such as InfDecimal, InfDate, or InfCHAR) for typeName (such as
“DECIMAL”, “DATE”, or “CHAR”).
15

Instance Methods

bindVariableDictionaryForAttribute:value:
- (NSMutableDictionary *)bindVariableDictionaryForAttribute: (EOAttribute *)attribute

value:value

Overrides the EOSQLExpression method bindVariableDictionaryForAttribute:value: to return the
receiver’s bind variable dictionaries. For more information on bind variables, see the discussion in the class
description.

See also: – mustUseBindVariableForAttribute: , – shouldUseBindVariableForAttribute:

mustUseBindVariableForAttribute:
- (BOOL)mustUseBindVariableForAttribute: (EOAttribute *)attribute

Overrides the EOSQLExpression method mustUseBindVariableForAttribute: to return YES if the
receiver must use bind variables for attribute, NO otherwise. A returned value of YES indicates that the
underlying RDBMS requires that bind variables be used for attributes with attribute’s external type.

See also: – bindVariableDictionaryForAttribute:value: , – shouldUseBindVariableForAttribute:

shouldUseBindVariableForAttribute:
- (BOOL)shouldUseBindVariableForAttribute: (EOAttribute *)attribute

Overrides the EOSQLExpression method shouldUseBindVariableForAttribute: to return YES if the
receiver can provide a bind variable dictionary for attribute, NO otherwise. A returned value of YES
indicates that the receiver should use bind variables for attributes with attribute’s external type.

See also: – bindVariableDictionaryForAttribute:value: , – mustUseBindVariableForAttribute:
16

	The InformixEOAdaptor Framework
	Framework: System/Library/Frameworks/InformixEOAdaptor.framework
	Introduction

	InformixAdaptor
	Class Description
	Method Types
	Class Methods
	externalTypesWithModel:
	internalTypeForExternalType:model:

	Instance Methods
	adaptorChannelClass
	adaptorContextClass
	assertConnectionDictionaryIsValid
	connectionKeys
	defaultExpressionClass
	informixConnectionString
	informixDefaultForKey:
	isValidQualifierType:model:
	raiseInformixError:

	The Connection Dictionary
	Locking
	Data Type Mapping
	Prototype Attributes
	Generating Primary Keys
	Bind Variables

	InformixChannel
	Class Description
	Method Types
	Instance Methods
	cursorDataArea
	fetchBufferLength
	informixSetIsolationTo:
	setFetchBufferLength:

	InformixContext
	Class Description
	Method Types
	Instance Methods
	connect
	connection
	disconnect
	fetchesInProgress
	hasTransactions
	isConnected
	isOnLine

	InformixSQLExpression
	Class Description
	Bind Variables

	Class Methods
	formatValue:forAttribute:
	serverTypeIdForName

	Instance Methods
	bindVariableDictionaryForAttribute:value:
	mustUseBindVariableForAttribute:
	shouldUseBindVariableForAttribute:

