

 The ODBCEOAdaptor Framework

e

's

bject

The ODBCEOAdaptor Framework

Framework: com.apple.yellow.odbceoadaptor

Header File Directories: System/Developer/Java/Headers

Introduction

The ODBCEOAdaptor framework is a set of classes that allow your programs to connect to an ODBC
server. These classes provide ODBC-specific method implementations for the EOAccess framework’s
EOAdaptor, EOAdaptorChannel, EOAdaptorContext, and EOSQLExpression abstract classes.

ODBC (Open Data Base Connectivity) defines a standard interface that Windows applications can use to
access any data source. Unlike the other Enterprise Objects Frameworks adaptors that support a single typ
of database, the ODBC adaptor supports any data source that has an ODBC driver. Consequently, in
addition to having standard adaptor features, the ODBC adaptor also manages information relating to the
driver and to the data types defined by the data source the driver supports.

The following table lists the classes in the ODBCEOAdaptor Framework and provides a brief description
of each class.

The Connection Dictionary

The connection dictionary contains items needed to connect to an ODBC server, such as the data source (it
common to omit the user name and password from the connection dictionary, and prompt users to enter
those values in a login panel). The keys of this dictionary identify the information the server expects, and

Class Description

ODBCAdaptor
Represents a single connection to a ODBC database server, and is responsible for
keeping login and model information, performing ODBC-specific formatting of SQL
expressions, and reporting errors.

ODBCChannel
Represents an independent communication channel to the database server its
ODBCAdaptor is connected to.

ODBCContext
Represents a single transaction scope on the database server to which its adaptor o
is connected.

ODBCSQLExpression Defines how to build SQL statements for ODBCChannels.
1

the values of those keys are the values that the adaptor uses when trying to connect to the server. For ODBC
the required keys are as follows:

dataSource
userName
password

The connection dictionary can also optionally have the keys connectionString, typeInfo, and driverInfo.

The connectionString contains the user name, password, and data source. If the connectionString key is
present in the connection dictionary, the other login keys are ignored and this string is used to connect to
the database.

The typeInfo key refers to the typeInfo dictionary, which is used to cache type information in the connection
dictionary. This is done because different ODBC drivers work with different data types. Caching type
information in the connection dictionary avoids costly connections to the driver and the database. The
typeInfo dictionary contains the following information for every type in your database:

defaultODBCType = (<CHAR/TIMESTAMP/BIT/...>, ...)

precision = <precision>

minScale = <minScale>

maxScale = <maxScale>

isUnsigned = <YES/NO>

isNullable = <YES/NO>

isSearchable = <YES/NO>

createParams = <0/1/2>

Likewise, the driverInfo key refers to the driverInfo dictionary, which stores information about the driver,
such as its name and version. This information is also cached in the connection dictionary.

Locking

All adaptors use the database server's native locking facilities to lock rows on the server. If you’re using the
Microsoft SQL Server, the ODBC adaptor locks a row by using the HOLDLOCK keyword in SELECT
statements. In all other cases it uses the SELECT... FOR UPDATE... statement. Locking occurs when:

• You send the adaptor channel a selectAttributesWithFetchSpecification message with true specified as
the value for the lock keyword.

• You explicitly lock an object’s row with the EODatabaseContext’s lockObjectWithGlobalID message.

• You set pessimistic locking at the database level and fetch objects.

Data Type Mapping

Every adaptor provides a mapping between each server data type and the Objective-C type to which a
database value will be coerced when it’s fetched from the database. ODBC adds an intermediate layer: the
generic ODBC type (identifier) to which each database data type maps.
2

 The ODBCEOAdaptor Framework

For example, the following table shows the mapping from some of the Microsoft Access database data types
to ODBC to Objective-C and Java:

Microsoft Access
Database Type Generic ODBC Type Objective-C Type Java Data Type

TEXT SQL_VARCHAR NSString String

CURRENCY SQL_NUMERIC NSDecimalNumber BigDecimal

BINARY SQL_BINARY NSData NSData

DATETIME SQL_TIMESTAMP NSCalendarDate NSGregorianDate
3

The following table lists the mapping between generic ODBC types and Objective-C types.

ODBC Data Type Objective-C Data Type Java Data Type

SQL_VARCHAR NSString String

SQL_CHAR NSString String

SQL_LONGVARCHAR NSString String

SQL_DECIMAL NSDecimalNumber BigDecimal

SQL_NUMERIC NSDecimalNumber BigDecimal

SQL_BIGINT NSNumber Number

SQL_SMALLINT NSNumber Number

SQL_INTEGER NSNumber Number

SQL_REAL NSNumber Number

SQL_FLOAT NSNumber Number

SQL_DOUBLE NSNumber Number

SQL_BIT NSNumber Number

SQL_TINYINT NSNumber Number

SQL_VARBINARY NSData NSData

SQL_BINARY NSData NSData

SQL_LONGVARBINARY NSData NSData

SQL_TIMESTAMP NSCalendarDate NSGregorianDate

SQL_DATE NSCalendarDate NSGregorianDate

SQL_TIME NSCalendarDate NSGregorianDate
4

 The ODBCEOAdaptor Framework

Prototype Attributes

The ODBCEOAdaptor Framework provides the following set of prototype attributes:

Generating Primary Keys

Each adaptor provides a database-specific implementation of the method
primaryKeyForNewRowWithEntity: for generating primary keys. The ODBCChannel’s
implementation uses a table named EO_PK_TABLE to keep track of the next available primary key value
for a given table. The table contains a row for each table for which the adaptor provides primary key values.

Name External Type Value Class Name Other Attributes

binaryID BINARY NSData width = 12

city CHAR NSString
columnName = CITY
width = 50

date DATETIME NSCalendarDate columnName = ""

longText LONGTEXT NSString

money CURRENCY NSDecimalNumber columnName = ""

phoneNumber CHAR NSString
columnName = PHONE
width = 20

rawImage LONGBINARY NSData columnName = RAW_IMAGE

state CHAR NSString
columnName = STATE;
width = 2

streetAddress CHAR NSString
columnName = STREET_ADDRESS
width = 100

tiffImage LONGBINARY NSImage
adaptorValueConversionMethodName = TIFFRepresentation
columnName = PHOTO
valueFactoryMethodName = "imageWithData:";

uniqueID LONG NSNumber
columnName = ""
valueType = i

zipCode CHAR NSString
columnName = ZIP
width = 10
5

ODBCChannel’s implementation of primaryKeyForNewRowWithEntity: attempts to select a value from
the EO_PK_TABLE for the new row’s table. If the attempt fails because the table doesn’t exist, the adaptor
creates the table using the following SQL statement:

CREATE TABLE EO_PK_TABLE (

 NAME TEXT_TYPE(40),

 PK NUMBER_TYPE

)

where TEXT_TYPE is the external (database) type for characters and NUMBER_TYPE is the external type
for the table’s primary key attribute. The ODBC adaptor sets the PK value for each row to the corresponding
table’s maximum primary key value plus one. After determining a primary key value for the new row, the
ODBC adaptor updates the counter in the corresponding row in EO_PK_TABLE.

For more information on this topic, see Enterprise Objects Framework Developer’s Guide.

Bind Variables
The ODBCAdaptor uses bind variables. A bind variable is a placeholder used in an SQL statement that is

replaced with an actual value after the database server determines an execution plan.
6

 Classes: ODBCAdaptor

e

ODBCAdaptor

Inherits From: EOAdaptor : NSObject

Package: com.apple.yellow.odbceoadaptor

Class Description

An ODBCAdaptor represents a single connection to an ODBC database server, and is responsible for
keeping login and model information, performing ODBC-specific formatting of SQL expressions, and
reporting errors.

ODBC (Open Data Base Connectivity) defines a standard interface that Windows applications can use to
access any data source. Unlike the other Enterprise Objects Frameworks adaptors that support a single typ
of database, the ODBC adaptor supports any data source that has an ODBC driver. Consequently, in
addition to having standard adaptor features, the ODBC adaptor also manages information relating to the
driver and to the data types defined by the data source the driver supports.

The ODBCAdaptor class doesn’t support nested transactions.

Method Types

Mapping external types to internal types
externalTypeForOdbcType
getOdbcInfoWithConnectionDictionary
odbcTypeForExternalType
odbcTypeForStringRepresentation
resetOdbcInfoWithConnectionDictionary
stringRepresentationForOdbcType

Access information in the connection dictionary
driverInfoForModel
typeInfoForModel
driverInfo
typeInfo

Testing the connection dictionary
odbcConnectionString
7

Static Methods

driverInfoForModel
public static com.apple.yellow.foundation.NSDictionary

driverInfoForModel (com.apple.yellow.eoaccess.EOModel model)

Returns an NSDictionary containing the driver information cached in the connection dictionary of model.
If the information is not yet cached in model, connects to the database to get it.

See also: typeInfoForModel , driverInfo , typeInfo

externalTypeForOdbcType
public static java.lang.String externalTypeForOdbcType(int type,

com.apple.yellow.eoaccess.EOModel model)

Returns the external type that represents the best match for an ODBC type in model.

getOdbcInfoWithConnectionDictionary
public static com.apple.yellow.foundation.NSDictionary

getOdbcInfoWithConnectionDictionary(com.apple.yellow.foundation.NSDictionary connectio
nDictionary)

Sets up the typeInfo and driverInfo dictionaries in connectionDictionary, and returns an updated connection
dictionary. Creates an ODBCAdaptor, ODBCContext, and ODBCChannel, and connects to the database to
get the information for the typeInfo and driverInfo dictionaries.

odbcTypeForExternalType
public static java.lang.String odbcTypeForExternalType(java.lang.String externalType,

com.apple.yellow.eoaccess.EOModel model)

Returns the ODBC type for externalType, as defined in the typeInfo dictionary in model’s connection
dictionary.
8

 Classes: ODBCAdaptor

odbcTypeForStringRepresentation
public static int odbcTypeForStringRepresentation(java.lang.String type)

Returns the ODBC type (such as SQL_CHAR) for type (such as @“CHAR”). The method
stringRepresentationForOdbcType performs the opposite function: returning a string for a specified
ODBC type. These methods are used in conjunction to encode ODBC types in the typeInfo dictionary.

resetOdbcInfoWithConnectionDictionary
public static com.apple.yellow.foundation.NSDictionary

resetOdbcInfoWithConnectionDictionary(com.apple.yellow.foundation.NSDictionary connecti
onDictionary)

Removes the typeInfo and driverInfo dictionaries from a copy of connectionDictionary and returns the
modified connection dictionary.

stringRepresentationForOdbcType
public static java.lang.String stringRepresentationForOdbcType(int type)

Returns the string representation of type—for example, for the type SQL_CHAR this method would return
the string @“CHAR”. The method odbcTypeForStringRepresentation performs the opposite function:
returning the ODBC type for a specified string. These methods are used in conjunction to encode ODBC
types in the typeInfo dictionary.

typeInfoForModel
public static com.apple.yellow.foundation.NSDictionary

typeInfoForModel (com.apple.yellow.eoaccess.EOModel model)

Returns an NSDictionary containing the type information cached in the connection dictionary of model. If
the information is not yet cached in model, connects to the database to get it.

See also: driverInfoForModel , driverInfo , typeInfo
9

Instance Methods

driverInfo
public com.apple.yellow.foundation.NSDictionary driverInfo ()

Returns an NSDictionary containing the driver information cached in the receiver’s model’s connection
dictionary. If the information is not yet cached in the model, connects to the database to get it.

See also: typeInfo

odbcConnectionString
public java.lang.String odbcConnectionString()

Returns the user name, password, and data source as a string that’s used to connect to the database.

typeInfo
public com.apple.yellow.foundation.NSDictionary typeInfo()

Returns an NSDictionary containing the type information cached in the receiver’s model’s connection
dictionary. If the information is not yet cached in the model, connects to the database to get it.

See also: driverInfo , driverInfoForModel , typeInfoForModel
10

 Classes: ODBCChannel

ODBCChannel

Inherits From: EOAdaptorChannel : NSObject

Package: com.apple.yellow.odbceoadaptor

Class Description

An ODBCChannel represents an independent communication channel to the database server its
ODBCAdaptor is connected to. All of an ODBCChannel’s operations take place within the context of
transactions controlled or tracked by its ODBCContext. An ODBCContext can manage multiple
ODBCChannels, and a channel is associated with only one context.

The features ODBCChannel adds to EOAdaptorChannel are methods for returning the ODBC Statement
Handle (HSTMT), and for returning a dictionary-formatted result from SQLTypeInfo().

Method Types

Getting type information
odbcTypeInfo

Opening and closing a channel
openChannel
closeChannel
isOpen

Modifying rows
deleteRowsDescribedByQualifier
insertRow

Fetching rows
selectAttributesWithFetchSpecification
fetchRow
attributesToFetch
cancelFetch
describeResults
setAttributesToFetch
isFetchInProgress

Sending SQL to the server
evaluateExpression
11

Instance Methods

attributesToFetch
public com.apple.yellow.foundation.NSArray attributesToFetch()

Overrides the EOAdaptorChannel method attributesToFetch to return the set of attributes to retrieve with
fetchRow.

cancelFetch
public void cancelFetch()

Overrides the EOAdaptorChannel method cancelFetch to clear all result sets established by the last
selectAttributesWithFetchSpecification or evaluateExpression message and terminate the current fetch,
so that isFetchInProgress returns NO.

closeChannel
public void closeChannel()

Overrides the EOAdaptorChannel method closeChannel to close the channel so that it can’t perform
operations with the server. Any fetch in progress is canceled. This method has the side effect of closing the
receiver’s adaptor context’s connection with the database if the receiver is its adaptor context’s last open
channel.

deleteRowsDescribedByQualifier
public int deleteRowsDescribedByQualifier(com.apple.yellow.eocontrol.EOQualifier qualifier,

com.apple.yellow.eoaccess.EOEntity entity)

Overrides the EOAdaptorChannel method deleteRowsDescribedByQualifier to delete the rows described
by qualifier and return the number of rows deleted. Raises an exception on failure. Some possible reasons
for failure are:

• The adaptor channel isn’t open
• The adaptor channel is in an invalid state (for example, it’s fetching).
• An error occurs in the database server
12

 Classes: ODBCChannel

describeResults
public com.apple.yellow.foundation.NSArray describeResults()

Overrides the EOAdaptorChannel method describeResults to return an array of EOAttributes describing
the properties available in the current result set, as determined by selectAttributesWithFetchSpecification
or a statement evaluated by evaluateExpression. Raises an exception if an error occurs.

evaluateExpression
public void evaluateExpression(com.apple.yellow.eoaccess.EOSQLExpression expression)

Overrides the EOAdaptorChannel method evaluateExpression to send expression to the database server for
evaluation, beginning a transaction first and committing it after evaluation if a transaction isn’t already in
progress. Raises an exception if an error occurs.

fetchRow
public com.apple.yellow.foundation.NSMutableDictionary fetchRow()

Overrides the EOAdaptorChannel method fetchRow to fetch the next row from the result set of the last
selectAttributesWithFetchSpecification or evaluateExpression message sent to the receiver. Returns
values for the receiver’s attributesToFetch. When there are no more rows in the current result set, this
method returns null , and invokes the delegate method adaptorChannelDidChangeResultSet if there are
more results sets. When there are no more rows or result sets, this method returns null , ends the fetch, and
invokes adaptorChannelDidFinishFetching. isFetchInProgress returns true until the fetch is canceled
or until this method exhausts all result sets and returns null . Raises an exception if an error occurs.

insertRow
public void insertRow(com.apple.yellow.foundation.NSDictionary row,

com.apple.yellow.eoaccess.EOEntity entity)

Overrides the EOAdaptorChannel method insertRow to insert the values of row into the table in the
database that corresponds to entity. row is an NSDictionary whose keys are attribute names and whose
values are the values to insert. Raises an exception on failure. Some possible reasons for failure are:

• The user logged in to the database doesn’t have permission to insert a new row.
• The adaptor channel is in an invalid state (for example, fetching).
• The row fails to satisfy a constraint defined in the database server.
13

isFetchInProgress
public boolean isFetchInProgress()

Overrides the EOAdaptorChannel method isFetchInProgress to return true if the receiver is fetching, false
otherwise. An adaptor channel is fetching if:

• It’s been sent a successful selectAttributesWithFetchSpecification message.
• An expression sent through evaluateExpression resulted in a select operation being performed.

An adaptor channel stops fetching when there are no more records to fetch or when it’s sent a cancelFetch
message.

isOpen
public boolean isOpen()

Overrides the EOAdaptorChannel method isOpen to return true if the channel has been opened with
openChannel, false if not.

odbcTypeInfo
public com.apple.yellow.foundation.NSDictionary odbcTypeInfo()

Returns the result from SQLTypeInfo(), formatted in an NSDictionary ready to incorporate into a model
file.

openChannel
public void openChannel()

Overrides the EOAdaptorChannel method openChannel to put the channel and both its context and adaptor
into a state where they are ready to perform database operations. Raises an exception if error occurs.

selectAttributesWithFetchSpecification
public void

selectAttributesWithFetchSpecification(com.apple.yellow.foundation.NSArray attributes,
com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification,
boolean flag,
com.apple.yellow.eoaccess.EOEntity entity)

Overrides the EOAdaptorChannel method selectAttributesWithFetchSpecification to select attributes in
rows matching the qualifier in fetchSpecification and set the receiver’s attributes to fetch. The selected rows
14

 Classes: ODBCChannel

r
.
compose one or more result sets, each row of which will be returned by subsequent fetchRow messages
according to fetchSpecification’s sort orderings. If flag is true, the rows are locked if possible so that no
other user can modify them (the lock specification in fetchSpecification is ignored). Raises an exception if
an error occurs. Some possible reasons for failure are:

• The adaptor channel is in an invalid state (for example, fetching).
• The database failed to lock the specified rows.

setAttributesToFetch
public void setAttributesToFetch(com.apple.yellow.foundation.NSArray attributes)

Overrides the EOAdaptorChannel method setAttributesToFetch to change the set of attributes used to
describe the fetch data in the middle of a select. This method raises an exception if invoked when there is
no fetch in progress.

updateValuesInRowsDescribedByQualifier
public int

updateValuesInRowsDescribedByQualifier(com.apple.yellow.foundation.NSDictionary row,
com.apple.yellow.eocontrol.EOQualifier qualifier,
com.apple.yellow.eoaccess.EOEntity entity)

Overrides the EOAdaptorChannel method updateValuesInRowsDescribedByQualifier to update the
rows described by qualifier with the values in values. values is an NSDictionary whose keys are attribute
names and whose values are the new values for those attributes (the dictionary need only contain entries fo
the attributes being changed). Returns the number of updated rows. Raises an exception if an error occurs
Some possible reasons for failure are:

• The user logged in to the database doesn’t have permission to update.
• The adaptor channel is in an invalid state (for example, fetching).
• The new values fail to satisfy a constraint defined in the database server.
15

16

 Classes: ODBCContext

t
l

it
ODBCContext

Inherits From: EOAdaptorContext : NSObject

Package: com.apple.yellow.odbceoadaptor

Class Description

An ODBCContext represents a single transaction scope on the database server to which its adaptor objec
is connected. If the server supports multiple concurrent transaction sessions, the adaptor may have severa
adaptor contexts. An ODBCContext may in turn have several ODBCChannels, which handle actual access
to the data on the server.

The features the ODBCContext class adds to EOAdaptorContext are methods for managing ODBC
connections and for getting information about the driver.

Instance Methods

odbcConnect
public void odbcConnect()

Opens a connection to the database server. ODBCChannel sends this message to ODBCContext when it
(ODBCChannel) is about to open a channel to the server. This method is called automatically by the
framework.

odbcDisconnect
public void odbcDisconnect()

Closes the connection to the database server. ODBCChannel sends this message to ODBCContext when
(ODBCChannel) has just closed a channel to the server.
17

18

19

 Classes: ODBCSQLExpression

ODBCSQLExpression

Inherits From: EOSQLExpression : NSObject

Package: com.apple.yellow.odbceoadaptor

Class Description

ODBCSQLExpression defines how to build SQL statements for ODBCChannels.

Bind Variables
The ODBCAdaptor uses bind variables. A bind variable is a placeholder used in an SQL statement that is

replaced with an actual value after the database server determines an execution plan.

Instance Methods

bindVariableDictionaryForAttribute
public com.apple.yellow.foundation.NSMutableDictionary

bindVariableDictionaryForAttribute (com.apple.yellow.eoaccess.EOAttribute attribute,
java.lang.Object value)

Overrides the EOSQLExpression method bindVariableDictionaryForAttribute to return the receiver’s
bind variable dictionaries. For more information on bind variables, see the discussion in the class
description.

	The ODBCEOAdaptor Framework
	Framework: com.apple.yellow.odbceoadaptor
	Introduction
	The Connection Dictionary
	Locking
	Data Type Mapping
	Prototype Attributes
	Generating Primary Keys
	Bind Variables

	ODBCAdaptor
	Class Description
	Method Types
	Static Methods
	driverInfoForModel
	externalTypeForOdbcType
	getOdbcInfoWithConnectionDictionary
	odbcTypeForExternalType
	odbcTypeForStringRepresentation
	resetOdbcInfoWithConnectionDictionary
	stringRepresentationForOdbcType
	typeInfoForModel

	Instance Methods
	driverInfo
	odbcConnectionString
	typeInfo

	ODBCChannel
	Class Description
	Method Types
	Instance Methods
	attributesToFetch
	cancelFetch
	closeChannel
	deleteRowsDescribedByQualifier
	describeResults
	evaluateExpression
	fetchRow
	insertRow
	isFetchInProgress
	isOpen
	odbcTypeInfo
	openChannel
	selectAttributesWithFetchSpecification
	setAttributesToFetch
	updateValuesInRowsDescribedByQualifier

	ODBCContext
	Class Description
	Instance Methods
	odbcConnect
	odbcDisconnect

	ODBCSQLExpression
	Class Description
	Bind Variables

	Instance Methods
	bindVariableDictionaryForAttribute

