The WebObjects Framework

Framework: com.apple.yellow.webobjects

Introduction

The WebObijects class hierarchy is rooted in the Foundation Framework’s NSObiject class (see Figure 1).
The remainder of the WebObjects Framework consists of several related groups of classes as well as a
few individual classes.

Figure 1 The WebObjects Framework class hierarchy

— WiAdaptor

— WApplication

— WiAssoclation

= WO ontext

— W ookie

— W DHrectAction

— WODisplayGroup

MSDhject ————t— WO Element —EWDGﬂmpunem
— WO Request WO Dynamick lement

— WO RequestHandler

— Wl ResourceManager

— W Hesponse

— WikSession

— WSessionStore

— W Siatistics Siore

The more commonly-used classes within the WebObjects framework can be grouped as follows:

Server and Application Level ClassesWOAdaptor defines the interface for objects mediating the
exchange of data between an HTTP server and a WebObjects application. WOApplication receives
requests from the adaptor and initiates and coordinates the request-handling process, after which it
returns a response to the adaptor.

Session Level Classe8VOSession encapsulates the state of a session; WOSession objects persiste
between the cycles of the request-response loop. WOSessionStore provides the strategy or mechanism
through which WOSession objects are made persistent.

Request Level ClassesVORequest stores essential data about an HTTP request, such as header
information, form values, HTTP version, host and page name, and session, context, and sender IDs.
WOResponse stores and allows the modification of HTTP response data, such as header information,
status, and HTTP version. WOContext provides access to the objects involved in the current cycle, such
as the current request, response, session, and application objects.

Page Level ClassesVOComponent represents and integral, reusable page (or portion of a page) for
display in a web browser. WOElement declares the three request-handling methods:
takeValuesFromRequest:.inContext:, invokeActionForRequest:inContext:, and appendToResponse:
inContext:. WODynamicElement is an abstract class for subclasses that generate particular dynamic
elements. WOAssociation knows how to find and set a value by reference to a key.

Database Integration Level ClassedVODisplayGroup performs fetches, queries, creations, and
deletions of records from one table in the database.

Classes: WOAdaptor

WOAdaptor
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

WOAdaptor is an abstract class that represents objects that can receive events from a WebObjects adaptor.
A WebObjects adaptor is a process that handles communication between the server and a WebObjects
application. The WebObijects application (a WOApplication instance) communicates with the adaptor using
messages defined in the WOAdaptor class.

The purpose of the WOAdaptor class is to perform these tasks:

Register with the application’s run loop to begin receiving events.

Receive incoming events from the run loop and package them as WORequest objects.

Forward the WORequest to the WOApplication by sending it the medsqagtchRequest

Receive the WOResponse object from the WOApplication and send it to the client using an RPC
mechanism.

Method Types
Constructors
WOAdaptor
Obtaining attributes
doesBusyRunOnce

dispatchesRequestsConcurrently

Event registering

registerForEvents
unregisterForEvents

Running

runOnce

Constructors
WOAdaptor
publicWOAdaptor (java.lang.StringaName NSDictionarysomeArgumenys

Initializes a WOAdaptor with the nana®ameand argumentsomeArgumentaNameis the name of the
WOAdaptor subclassomeArgumentare the default options specified for this adaptor (such as port
number and listen queue depth).

The WOApplication methoddaptorWithName:arguments: invokes this message when it encounters an
WOAdaptor option on the command line. The WOApplication retains each of its WOAdaptors.

See also: adaptorWithName (WOApplication)

Instance Methods

doesBusyRunOnce
public booleardoesBusyRunOncé

Returns whether repeatedly invokingOnce would result in busy waiting.

dispatchesRequestsConcurrently
public booleardispatchesRequestsConcurrentif)

Returns true if the adaptor is multi-threaded, false otherwise. If the adaptor is multi-threaded, the adaptor
may dispatch requests to the application concurrently in separate threads.

See also: adaptorsDispatchRequestsConcurrenth(WOApplication)

registerForEvents
public voidregisterForEventy)

Performs any actions necessary to have the WOAdaptor start receiving events.

See also: runLoop in WOApplication

Classes: WOAdaptor

runOnce
public voidrunOnce()

Invoked by the application’s main loop

See also: doesBusyRunOnce

unregisterForEvents
public voidunregisterForEventy)

Undoes the actions performedraygisterForEvents so that the WOAdaptor stops receiving events.

Classes: WOApplication

WOApplication

Inherits From: NSObiject

Package: com.apple.yellow.webobjects

Class Description

The primary role of the WOApplication class is to coordinate the handling of HTTP requests. Each
application must have exactly one WOApplication object (or, simply, application object). The application
object receives client requests from an HTTP server adaptor, manages the processing that generates a
response, and returns that response—typically an object representing a web page—to the adaptor. The
adaptor, in turn, forwards the response in a suitable form to the HTTP server that originated the request.

In handling requests, an application object creates and manages one or more sessions; a session
(represented by a WOSession object) dedicates resources to a period of access by a single user and stores
persistent state during that period. Conceptually, each cycle of the request-response loop (or transaction)
takes place within a session.

Besides acting as a facilitator between the adaptor and the rest of the application during request handling,
WOApplication performs many secondary functions. It returns pages based on component name, caches

page instances and component definitions, provides some facilities for error handling and script debugging,
coordinates the different levels of multi-threaded execution, and furnishes a variety of data.

Typical deployment schemes balance the processing load by having multiple application instances per
server adaptor. A single application, in turn, can interact with multiple adaptors; for example, an application
can simultaneously communicate with secure-socket and Distributed Object adaptors as well as HTTP
adaptors.

You can instantiate ready-made application objects from the WOApplication class or you can obtain the
application object from a custom subclass of WOApplication. Custom WOApplication subclasses are
common in WebObijects applications since there is often a need to overriteatte sleep and
request-handling methods. Compiled WOApplication subclasses can take any name, but if the name is
anything other than “Application” you must implement your awnain function to instantiate the

application object from this class. However, if the class name is “Application,” you don’t need to modify
main. In scripted applications, the code in &pplication.wos file becomes the implementation logic of a
WOApplication subclass automatically created at run time; the application object is instantiated from this
subclass.

Method Types

Constructors

Obtaining attributes

Locking

Managing adaptors

Managing sessions

Managing pages

Creating elements

WOApplication

adaptorsDispatchRequestsConcurrently
allowsConcurrentRequestHandling
isConcurrentRequestHandlingEnabled
baseURL

name

number

path

lock

unlock
lockRequestHandling
unlockRequestHandling

adaptorWithName
adaptors

setSessionStore
sessionStore
saveSessionForContext
restoreSessionWithID
createSessionForRequest

setPageCacheSize

pageCacheSize
permanentPageCacheSize
setPermanentPageCacheSize
setPageRefreshOnBacktrackEnabled
isPageRefreshOnBacktrackEnabled
pageWithName

pageWithName

dynamicElementWithName

Classes: WOApplication

Running

Handling requests

Handling errors

Backward compatibility

Scripted class support

Script debugging

Statistics report

runLoop

run
setTimeOut
timeOut
terminate
isTerminating

dispatchRequest

awake
takeValuesFromRequest
invokeActionForRequest
appendToResponse
sleep

handleSessionCreationErrorinContext
handlePageRestorationErrorinContext
handleSessionRestorationErrorinContext
handleException

requiresWOF35RequestHandling
requiresWOF35TemplateParser

scriptedClassNameWithPath
scriptedClassNameWithPathEncoding

logString

debugWithString

trace

traceAssignments
traceObjectiveCMessages
traceScriptedMessages
traceStatements
logTakeValueForDeclarationNamed
logSetValueForDeclarationNamed

setStatisticsStore
statisticsStore
statistics

10

Monitor support

Resource manager support

Request handling

monitoringEnabled
activeSessionsCount
refuseNewSessions:
isRefusingNewSessions
setMinimumActiveSessionsCount
minimumActiveSessionsCount
terminateAfterTimelnterval
logToMonitorString

setResourceManager
resourceManager

defaultRequestHandler
setDefaultRequestHandler
registerRequestHandler
removeRequestHandlerForKey
registeredRequestHandlerKeys
requestHandlerForKey:
handlerForRequest

Classes: WOApplication

User defaults

loadFrameworks
setLoadFrameworks
isDebuggingEnabled
setDebuggingEnabled
autoOpenlInBrowser
setAutoOpeninBrowser
isDirectConnectEnabled
setDirectConnectEnabled
cgiAdaptorURL
setCGlAdaptorURL
isCachingEnabled
setCachingEnabled
applicationBaseURL
setApplicationBaseURL
frameworksBaseURL
setFrameworksBaseURL
recordingPath
setRecordingPath
projectSearchPath
setProjectSearchPath
isMonitorEnabled
setMonitorEnabled
monitorHost
setMonitorHost
SMTPHost
setSMTPHost
adaptor
setAdaptorpublic static void setAdaptor(java.lang.String
anAdaptorName)
port
setPort
listenQueueSize
setListenQueueSize
workerThreadCount
setWorkerThreadCount
additionalAdaptors
setAdditionalAdaptors
includeCommentsinResponses
setincludeCommentsinResponses:
componentRequestHandlerKey
setComponentRequestHandlerKey
directActionRequestHandlerKey

11

setDirectActionRequestHandlerKey

resourceRequestHandlerKey

setResourceRequestHandlerKey

sessionTimeout

setSessionTimeOutpublic void
setSessionTImeOut(java.lang.Number aTimeOut)

Constructors

WOApplication
publicWOApplication ()

Creates and initializes application attributes and initializes the adaptor or adaptors specified on the
command line. If no adaptor is specified, WODefaultAdaptor is made the default adaptor. Some of the more
interesting attribute initializations are:

« Session store is in the server.
» Page cache size is 30 pages.
« Client caching of pages is enablé&zPageRefreshOnBacktrackEnabledeturns false).

A exception is thrown if initialization does not succeed.

Note: The global variable “WOApp” is initialized in this method.

Static Methods

12

adaptor
public static java.lang.Stringdaptor()

Returns the class name of the primary adaptor. This is the cover method for the user default WOAdaptor.

See also: setAdaptorpublic static void setAdaptor(java.lang.String anAdaptorName)

additionalAdaptors
public static NSArrayadditionalAdaptors()

Returns an array of adaptor description dictionaries. This is the cover method for the user default
WOAdditionalAdaptors.

See also: setAdditionalAdaptors

Classes: WOApplication

application
public static WOApplicatiorapplication()

Returns a WOApplication object.You may call this method, but do not override it.

applicationBaseURL
public static java.lang.StringpplicationBaseURL()

Returns a path to where the current application may be found under the document root (either the project
or the.woawrapper). This is the cover method for the user default WOApplicationBaseURL.

See also: setApplicationBaseURL

autoOpeninBrowser
public static booleanutoOpeninBrowser)

Returns whether automatic browser launching is enabled. By default, automatic browser launching is
enabled.

cgiAdaptorURL
public static java.lang.StringgiAdaptorURL ()

Returns the URL for the web server including the path to the WebObjects CGI adaptor (for eltimple,
/Nlocalhost/cgi-bin/WebObjectg. This URL is used by the direct connect feature only. This is the cover
for the user default WOCGIAdaptorURL.

See also: setCGlAdaptorURL

componentRequestHandlerKey
public static java.lang.StringpmponentRequestHandlerKey)

Returns the key which identifies URLs directed at component-action-based requests. By default, this
method returns the string “wo”.

13

14

directActionRequestHandlerKey
public static java.lang.StringjrectActionRequestHandlerKey()

Returns the key which identifies URLs directed at component-based requests. By default, this method
returns the string “wa”.

frameworksBaseURL
public static java.lang.StringameworksBaseURL()

Returns a path to where all frameworks may be found under the document root. This value is used to
determine URLs that should be generated to reference Web Server Resources in those frameworks. This is
the cover method for the user default WOFrameworksBaseURL.

See also: setFrameworksBaseURL

includeCommentsinResponses
public static booleamcludeCommentsinResponsd$

Returns whether or not HTML comments are appended to the response. This is the cover method for the
user default WOIncludeCommentsinResponses.

Seealso: setincludeCommentsinResponses:

isCachingEnabled
public static booleaisCachingEnabled)

Returns whether or not component caching is enabled. If this is enabled, changes to a component will be
reparsed after being saved (assuming the project is under the NSProjectSearchPath). Note that this has no
effect on page caching. This is the cover method for the user default WOCachingEnabled.

See also: setCachingEnabledpageCacheSize

isDebuggingEnabled
public static booleaisDebuggingEnabled)

Returns whether or not debugging is enabled. If ttelbugWithString prints out. Most startup-time status
message are supressed if this method returns false. By default, debugging is enabled. This is the cover
method for the user default WODebuggingEnabled.

See also: setDebuggingEnableddebugWithString

Classes: WOApplication

isDirectConnectEnabled
public static booleaisDirectConnectEnabled)

Returns whether or not direct connect is enabled. By default it is enabled. For more information, see
setDirectConnectEnabled

See also: cgiAdaptorURL

isMonitorEnabled
public static booleaisMonitorEnabled()

Returns whether or not the application can communicate with a Monitor application. It returns true if the
application can contact Monitor upon startup and subsequently let Monitor gather statistics. It returns false
if no comunication with Monitor can take place. By default, it can communicate with a Monitor
application. 'This is a cover method for the user default WOMonitorEnabled.

See also: setMonitorEnabled, monitorHost, setMonitorHost

listenQueueSize
public static java.lang.NumbéstenQueueSiz

Returns the size of the listen queue which will created by the primary adaptor (usually WODefaultAdaptor).
This is the cover method for the user default WOListenQueueSize.

See also: setListenQueueSize

loadFrameworks
public static NSArrayoadFrameworks()

Returns the array of frameworks to be loaded during application initialization.

See also: setLoadFrameworks

logString
public static voidogString(java.lang.Strin@String

Prints a message to the standard error device (stderr). The message can include formatted variable data
using String’s concatenation feature, for example:

inti=500;
float f = 2.045;

15

16

WOApplication.logString("Amount =" +i+", Rate =" + ", Total =" + i*f);

See also: logToMonitorString

monitorHost
public static java.lang.StringonitorHost()

Returns the host on which Monitor is assumed to be running. This value is used during initialization if
isMonitorEnabled returns true. This is a cover for the user default WOMonitorHost.

See also: setMonitorHost, isMonitorEnabled

port
public static java.lang.Numbeort ()

Returns the port number on which the primary adaptor will listen (usually WODefaultAdaptor). This is the
cover method for the user default WOPort.

See also: setPort

projectSearchPath
public static NSArrayrojectSearchPath()

Returns an array of file system paths which are searched for projects for rapid turnaround mode. This is the
cover method for the user default NSProjectSearchPath.

See also: setProjectSearchPath

recordingPath
public static java.lang.StringcordingPath()

Returns a file system path which is where the recording information should be saved. By default, this
method returns nil.

If this method returns a path, all requests and responses are recorded in the HTTP format in numbered files
(0000-request0000-responsg0001-request0001-responsgand so on), and saved under the recording

path specified. This directory is then used by the Playback tool to test the application. You will most likely
set this as a command line argumeWwQRecordingPath pathname), exercise your application to

record a scenario you would like to test, and then stop the application. Afterward you can restart the

Classes: WOApplication

application without the WORecordingPath argument, and point Playback to the recording directory just
created to replay your sequence of requests and compare the responses received with the ones recorded.

See also: setRecordingPath

resourceRequestHandlerKey
public static java.lang.StringsourceRequestHandlerKey)

Returns the key which identifies URLs directed through the resource request handler. Resource requests are
only used during development of an application when the application is being run without an HTTP server.

See also: setResourceRequestHandlerKey

sessionTimeout
public static java.lang.NumbsessionTimeOuf)

Returns the number (of seconds) which will be used as the default timeout for each newly created session.
You may either override this method, change the user default WOSessionTimeOut, or set the session
timeout in your sessionigit method.

See also: setSessionTimeOutpublic void setSessionTImeOut(java.lang.Number aTimeOut)
setAdaptor public static voidsetAdaptor(java.lang.StringagnAdaptorNampe
Sets the the class name of the primary adapt@nAalaptorName

See also: adaptor

setAdditionalAdaptors
public static voidsetAdditionalAdaptors(NSArray anAdaptorPlist

Sets the array of adaptor description dictionariestddaptorPlist Each adaptor description dictionary

must have “WOAdaptor” defined, which is the name of the adaptor class. Other attributes such as WOPort
may also be specified, but are adaptor specific. For example WOWorkerThreadCount is specific to the
WODefaultAdaptor class and may not apply for all adaptors.

See also: additionalAdaptors

17

18

setApplicationBaseURL
public static voidsetApplicationBaseURL(java.lang.StringaBaseUR).

Sets taaBaseURLthe path to which the current application may be found under the document root (either
the project or thewoa wrapper).

See also: applicationBaseURL

setAutoOpeninBrowser
public static voidsetAutoOpeninBrowserbooleanisEnableq

Controls whether starting up this application also launches a web browsEndbledis true, the
application launches the web browsefalte, the application does not launch the browser. Browser
launching is enabled by default as long as there is a WOAdaptorURL key in the file
NeXT_ROOT/NextLibrary/WOAdaptors/Configuration/WebServerConfig.plist .

To disable web browser launching, you must send this message in your subclass’s constructor.

See also: autoOpeninBrowser

setCGlAdaptorURL
public static voidsetCGIAdaptorURL (java.lang.StrinqaURL)

Sets the URL for the web serveradRL The URL must include the path to the WebObjects CGI adaptor
(for examplehttp://localhost/cgi-bin/WebObjects). This URL is used by the direct connect feature only..

See also: cgiAdaptorURL

setCachingEnabled
public static voidsetCachingEnabledboolearflag)

Sets whether or not component caching is enabled. If this is enabled, changes to a component will be
reparsed after being saved (assuming the project is under the NSProjectSearchPath). Note that this has no
effect on page caching.

See also: iIsCachingEnabled pageCacheSize

Classes: WOApplication

setComponentRequestHandlerKey
public static voidsetComponentRequestHandlerKefjava.lang.Strindey)

Sets the component request handler key. This affects all URLs generatecagpendToResponseof
component-based actions.

See also: componentRequestHandlerKey

setDebuggingEnabled
public static voidsetDebuggingEnable¢boolearflag)

Sets whether or not debugging is enabled. If WebugWithString prints out. Most startup-time status
message are supressed if this method returns false. By default, debugging is enabled.

See also: isDebuggingEnabled debugWithString

setDirectActionRequestHandlerKey
public static voidsetDirectActionRequestHandlerKeyjava.lang.Stringey)

Sets the Direct Action request handler key. This affects all URLs generatedappampd ToResponseof
direct actions.

See also: directActionRequestHandlerKey

setDirectConnectEnabled
public static voidsetDirectConnectEnabledboolearflag)

Sets whether or not direct connect is enabled. By default it is enabled.

Direct connect actually transforms your application in a simple web server of its own. In particular, it is
then able to find and return its images and resources as if it were a web server. It is very useful in
development mode: You don’t need a web server. Just point your URL to the port where your application
is listening, and the application will handle all urls.

If this flag is true, the following happens:

* When usinqautoOpeninBrowser, a direct connect URL will be used.

* When using WOMailDelivery to mail pages with dynamic links in them, these links will be generated
with a complete direct connect URL format. People receiving these mails will be able to access the
application with direct connect.

19

20

« Allfiles on the system are accessible through the resource request h@ndlee other hand, if this flag
is false, the resource request handler can be used to retrieve data objects from memory only, and no more
reading in the file system is permitted (secure mode for deployment).

See also: isDirectConnectEnabled cgiAdaptorURL

setFrameworksBaseURL
public static voidsetFrameworksBaseURI(java.lang.Strin@String

Sets taStringthe path to where all frameworks may be found under the document root. This value is used
to determine URLSs that should be generated to reference Web Server Resources in those frameworks.

See also: frameworksBaseURL

setincludeCommentsinResponses:
public static voidsetincludeCommentsinResponsé€boolearflag)

Sets whether or not HTML comments are appended to the response.

See also: includeCommentsinResponses

setListenQueueSize
public static voidsetListenQueueSiz@ava.lang.NumbeaListenQueueSize

Sets the size of the listen queue which will created by the primary adaptor (usually WODefaultAdaptor).

See also: listenQueueSize

setLoadFrameworks
public static voidsetLoadFrameworkgNSArrayframeworkLis}

Sets the array of frameworks to be loaded during application initialization.

See also: loadFrameworks

Classes: WOApplication

setMonitorEnabled
public static voidsetMonitorEnabled(booleanflag)

Sets whether or not the application will communicate with a Monitor applicatifiag i true, the
application can contact Monitor upon startup and subsequently let Monitor gather statitigss félse,
no comunication with Monitor can take place. By default, it can communicate with a Monitor application.

See also: isMonitorEnabled

setMonitorHost
public static voidsetMonitorHost(java.lang.StrindhostNamg

Sets the host on which Monitor is assumed to be running. This value is used during initialization if
isMonitorEnabled returns true.

See also: monitorHost, isMonitorEnabled

setPort
public static voidsetPorf(java.lang.Numbeport)

Sets the port number on which the primary adaptor will listen (usually WODefaultAdaptor).

See also: port

setProjectSearchPath
public static voidsetProjectSearchPatiiNSArray searchPath

Sets the array of file system paths which are searched for projects for rapid turnaround mode.

See also: projectSearchPath

setRecordingPath
public static voidsetRecordingPatl{java.lang.Stringath)

Sets the file system path where the recording information should be saved. Use nil as the path if you don't
want to save recording information. By default, recording information is not saved.

If you save recording information, all requests and responses are recorded in the HTTP format in numbered
files (0000-request0000-response0001-request0001-responseand so on), and saved under the

recording path specified. This directory is then used by the Playback tool to test the application. You will
most likely set this as a command line argumemMdRecordingPath pathname), exercise your

21

22

application to record a scenario you would like to test, and then stop the application. Afterward you can
restart the application without the WORecordingPath argument, and point Playback to the recording
directory just created to replay your sequence of requests and compare the responses received with the ones
recorded.

See also: recordingPath

setResourceRequestHandlerKey
public static voidsetResourceRequestHandlerKgyava.lang.Stringey)

Sets the resource request handler key. This affects all URLs generatechgpendToResponseof
resources.

See also: resourceRequestHandlerKey

setSessionTimeOut public voidsetSessionTImeOujava.lang.NumbeaTimeOu}
(void)setSessionTimeOu{NSNumber*aTimeOut

Accessor to set the default session timeOut.

See also: sessionTimeout

setSMTPHost
public static voicssetSMTPHos{(java.lang.StrindhostNamg

Sets the name of the host that will be used to send e-mail messages created by WOMailDelivery.
See also: SMTPHost

setWorkerThreadCount
public static voidsetWorkerThreadCount(java.lang.NumbeaWorkerThreadCouit

SEts the count of worker threads which will created by the primary adaptor (usually WODefaultAdaptor).
A worker thread count of 0 implies single-threaded mode.

See also: workerThreadCount

Classes: WOApplication

SMTPHost
public static java.lang.StringMTPHost()

Returns the name of the host that will be used to send e-mail messages created by WOMailDelivery. This
is the cover method for the user default WOSMTPHost.

See also: setSMTPHost

workerThreadCount
public static java.lang.Numbe&rorkerThreadCount()

Returns the count of worker threads which will created by the primary adaptor (usually
WODefaultAdaptor). A worker thread count of O implies single-threaded mode. This is the cover method
for the user default WOWorkerThreadCount.

See also: setWorkerThreadCount

Instance Methods

activeSessionsCount
public intactiveSessionsCour(}

Returns the number of sessions that are currently active. (A session is active if it has not yet timed out.)

The number returned here is only accurate if the application stores state in memory in the server, which is
the default. If you use a custom state-storage strategy, there may be no way to tell how many sessions are
active for a given application instance.

See also: minimumActiveSessionsCountsetMinimumActiveSessionsCount

adaptorWithName
public WOAdaptoradaptorWithName(java.lang.StringatName NSDictionarysomeArgumenys

Invoked during the constructor to create an adaptor. If you subclass WOAdaptor, you specify the
WOAdaptor subclass you want the application to use witkathption on the application’s command line.
When WOApplication encounters theeoption, it invokes this method. This method looks for a subclass of
WOAdaptor with the namaName(which was supplied as tha option’s argument), and if such a class
exists, a new instance is created. SbmeArgumentarray is populated with any adaptor-specific options
(such asp or-q) that follow the adaptor name on the command line. See the WOAdaptor class for more
information.

See also: adaptors

23

24

adaptors
public NSArrayadaptors()

Returns the current list of application adaptors. A WOApplication can have multiple adaptors. (To associate
the WOApplication with multiple adaptors, you specify each adaptor on the application’s command line
using the-a option.) This allows you to design an application that can not only listen to a socket for
incoming HTTP requests (using the WODefaultAdaptor), but can also receive remote request messages
using more advanced RPC mechanisms such as DO, CORBA, and DCOM.

adaptorsDispatchRequestsConcurrently
public boolearadaptorsDispatchRequestsConcurrentlg)

Returns true if at least one adaptor contains multiple threads and will attempt to concurrently invoke the
request handlers.

allowsConcurrentRequestHandling
public boolearallowsConcurrentRequestHandling)

Override to return true if concurrent request handling is allowed.

appendToResponse
public voidappendToRespons@VOResponsaResponsaVOContexiaContex}

The WOApplication object sends this message to itself to initiate the last phase of request handling. This
occurs right after thaavokeActionForRequest:inContext: method has completed, typically with the

return a response page. In the append-to-response phase, the application objects (particularly the response
component itself) generate the HTML content of the page. WOApplication’s default implementation of this
method forwards the message to the session object.

See also: invokeActionForRequest

awake
public voidawake()

Invoked at the beginning of each cycle of the request-response loop, affording the opportunity to perform
initializations with application-wide scope. Since the default implementation does nothing, overridden
implementations do not have to caliper.

See also: Sleep

Classes: WOApplication

baseURL
public java.lang.StrinpaseURL()

Returns the application URL relative to the server’'s document root, for example:
WebObjects/Examples/HellowWorld.woa.

See also: hame path

createSessionForRequest
public WOSessiorreateSessionForReque8iVORequesaRequest

Creates and returns a WOSession object to manage a session for the application. The method goes through
several steps to locate the class to use for instantiating this object:

1. Firstit looks for a compiled class of name “Session” that is a subclass of WOSession.

2. If such a class does not exist, it looks foveos’ script with the name of “Session” in the application wrapper
(“.wod’ directory).

3. If theSession.woscript exists, the method parses the script and dynamically adds a scripted-class subclass of
WOSession to the runtime.

The method then returns an allocated and initialized (using the default WOSession constructor) session
instance of the selected class. It throws an exception if it is unable to create a new session.

Note: An implication of the foregoing description is that the names of compiled WOSession subclasses
should be “Session”; if not, you will have to override this method to use the proper class to create the
session object.

See also: restoreSessionWithlQ saveSessionForContext

debugWithString
public voiddebugWithString(java.lang.StringaFormatString

Prints a message to the standard error device (stdé)ebuggingEnabledis true. The message can
include formatted variable data using String's concatenation feature.

You control whether this method displays output with the WODebuggingEnableduser default option. If
WODebuggingEnabledis true, then the debugWithStringFormat: messages display their output. If
WODebuggingEnabledis false, the debugWithStringFormat: messages don’t display their output.

25

26

defaultRequestHandler
public WORequestHandlelefaultRequestHandlex)

Returns the request handler to be used when no request handler key was found in the URL or WORequest.
This method returns the WOComponent request handler by default. When an application is contacted for
the first time it is usually via a URL like the following:

http://somehost/cgi-bin/\WebObjects/AppName.woa
The way that URLSs of that type are handled is determined by the default request handler.

dispatchRequest
public WOResponsdispatchRequesfWWORequesaRequedt

The main entry point for any given interaction. Invoked by the adaptor.

dynamicElementWithName

public WODynamicElemerdynamicElementWithName(java.lang.StringaName
NSDictionarysomeAssociations
WOElementanElement
NSArraylanguage$

Creates and returns a WODynamicElement object based on the element’s name, a dictionary of
associations, and a template of elements. This method is invoked automatically to provide a
WODynamicElement object that representWBBOBJECElement in the HTML template. You don't
ordinarily invokedynamicElementWithName:associations:template:languagesbut you might
override it to substitute your own WODynamicElement or reusable component for one of the built-in
WODynamicElements.

The argumentaNameandsomeAssociatiorare derived from a corresponding line in the declarations file.
aNameis a String that identifies the kind of element to create. Genabtdiiynespecifies a built-in
WODynamicElement such as WOString, but it may also identify a reusable component. (For more
information, see the chapter “Using Reusable Components” Web®bjects Developer’s Guidléor
example, in thelynamicElementWithName:associations:template:languagesnessage for the

following declaration:

APP_STRING: WOString {value = applicationString;};
aNamecontains the string “WOString”.

ThesomeAssociationdictionary contains an entry for each attribute specified in the corresponding
declaration. For the declaration abosemeAssociationsontains a single entry for WOString’s value
attribute. The keys cdfomeAssociatiorare the attribute names and the values are WOAssociation objects.

Classes: WOApplication

WOApplication’s implementation afynamicElementWithName:associations:template:languages:

first searches for a WODynamicElement narallidme If a WODynamicElement is found, the method

creates an instance and returns it. Otherwise, it searches for a component—either scripted or compiled—to
return instead. If neither are found, this method retnutis

handleException
public WOResponskBandleException(java.lang. ThrowablanExceptionWOContextaContex}

Invoked when an exception occurs within the request-response loop. The default behavior displays a page
with debugging information. You can override this method to catch exceptions and display a “friendlier”
error page.

See also: handleSessionCreationErrorinContext handleSessionRestorationErrorinContext

handlePageRestorationErrorinContext
public WOResponskandlePageRestorationErrorinContex{WOContextaContex}t

Invoked when a page (WOComponent) instance cannot be restored, which typically happens when a user
backtracks too far. Specifically, this method is invoked when the following occurs: the request is not the first
of a session, page restoration by context ID fails, and page re-creation is disabled. The default behavior
displays a page with debugging information. You can override this method to display a “friendlier” error
page.
See also: handleException handleSessionCreationErrorinContext

handleSessionRestorationErrorinContext

handleSessionCreationErrorinContext
public WOResponskandleSessionCreationErrorinContex{WOContextaContex}

Invoked when a session (WOSession) instance cannot be created. The default behavior displays a page with
debugging information. You can override this method to display a “friendlier” error page.

See also: handleException handlePageRestorationErrorinContext
handleSessionRestorationErrorinContext

27

28

handleSessionRestorationErrorinContext
public WOResponskandleSessionRestorationErrorinContexfWWOContextaContex}

Invoked when a session (WOSession) instance cannot be restored, which typically happens when the
session times out. The default behavior displays a page with debugging information. You can override this
method to display a “friendlier” error page.

See also: handleException handlePageRestorationErrorinContext
handleSessionCreationErrorinContext

handlerForRequest
public WORequestHandlérandlerForReques{WORequesaRequest

Returns the request handler used to handle a given request.

See also: registerRequestHandler registeredRequestHandlerKeysrequestHandlerForKey:

invokeActionForRequest
public WOElemeninvokeAction(WORequesaRequestWOContextaContex}

The WOApplication object sends this message to itself to initiate the middle phase of request handling. In
this phase, the message is propagated through the objects of the application until the dynamic element that
has received the user action (for instance, a click on a button) responds to the message by triggering the
method in the request component that is bound to the action. The default WOApplication implementation
of this method forwards the message to the session object.

See also: appendToResponse

isConcurrentRequestHandlingEnabled
public booleansConcurrentRequestHandlingEnabled)

Returns whether component-definition caching is enabled. The defaldtes

isPageRefreshOnBacktrackEnabled
public booleansPageRefreshOnBacktrackEnable)

Returns whether caching of pages is disabled in the client. If so, the client does not restore request pages
from its cache but re-creates them “from scratch” by resending the URL to the server. This fladdtsset to
by default.

See also: setPageRefreshOnBacktrackEnabled

Classes: WOApplication

isRefusingNewSessions
public booleansRefusingNewSessiotis

Returngrue if the application instance is refusing new sessionsfaselotherwise. When the application
instance refuses new sessions, the WebObjects adaptor tries to start the session in another instance of the
same application. If no other instance is running and accepting new sessions, the user receives an error
message.

isTerminating
public booleansTerminating()

Returns whether the application will terminate at the end of the current request-response loop.

See also: setTimeOut, terminate, terminateAfterTimelnterval , timeOut

lock
public voidlock()

Locks the application object.

lockRequestHandling
public voidlockRequestHandling)

Serializes request handler access if concurrent request handling isn’'t enabled.

logSetValueForDeclarationNamed

public voidlogSetValueForDeclarationNameg@ava.lang.StringDeclarationNamgjava.lang.String
aDeclarationTypejava.lang.String@BindingNamejava.lang.StringinAssociationDescriptign
java.lang.ObjecaVvalug

Formats and logs a message anytime a value is set through a WOAssociation, when WODebug is set to true
for the declaration in which the association appears. (Setting a value means the child component/element
is setting a value in the parent). $@gTakeValueForDeclarationNamedfor a description of each of the
arguments to this method.

29

30

logTakeValueForDeclarationNamed

public voidlogTakeValueForDeclarationNamedjava.lang.StringaDeclarationNamg
java.lang.Strin@DeclarationTypejava.lang.Strin@BindingNamejava.lang.String
anAssaociationDescriptignava.lang.ObjecaValug

Formats and logs a message anytime a value is “taken” through a WOAssociation , when WODebug is set
to true for the declaration in which the association appears. (Taking a value means the child
component/element is taking a value from the parent). Override this method to alter the format of the log
message. The arguments of this method are defined in the following example of a WebObjects declaration.

aDeclarationName : aDeclarationType {
aBindingName = anAssociationDescription;

}
Also, aValueis the value which is being pushed to or pulled from the child to the parent.

logToMonitorString
public voidlogToMonitorString (java.lang.StringaFormay

Same asogString but prints the string to the Monitor application’s standard error. That is, the message is
displayed in the command-shell window that was used to launch the Monitor application.

You use this method to log messages about significant events when the application is ready to be deployed
and you will use Monitor regularly to monitor the application. Otherwiselog&dring. If the Monitor
application is not running or if this application instance is not being monitored, this method does nothing.

minimumActiveSessionsCount
public intminimumActiveSessionsCounf)

Returns the minimum number of active sessions allowed. If the number of active sessions is less than or
equal to this number ansRefusingNewSessionis true, the application instance terminates. The default
is O.

See also: activeSessionsCountefuseNewSessionssetMinimumActiveSessionsCount

monitoringEnabled
public booleammonitoringEnabled()
Returngrue if the application is “monitorable” by the Monitor application, #&lde otherwise. An

application is “monitorable” if it was able to find a running Monitor upon startup and it is able to
successfully communicate with that Monitor.

Classes: WOApplication

By default, all applications are monitorable if the Monitor application is running on the same machine as
the application. You can specifically disable monitoring using\W@MonitorEnabled NO option

on the application command line. If you want the application to be monitorable and the Monitor is running
on another host, you can start up the application through Monitor, or you can specify Monitor’s host on the
application command line this way:

MyApp.exe -WOMonitorEnabled YES -WOMonitorHost monitorHost ...

See also: logToMonitorString , the online documer8ervingWebObjects

name
public java.lang.Stringame()

Returns the name of the application, which is the name of the executable (withevethextension).

See also: baseURL, path

number
public java.lang.Stringumber()

Returns'-1" . This is provided for backwards compatibility only.

pageCacheSize
public intpageCacheSizg

Returns the size of the internal cache for page instances. The default size is 30 instances.

See also: : setPageCacheSize

pageWithName
public WOComponemnpageWithNamdjava.lang.StringaName WORequesaRequest

Returns a new page instance (a WOComponent object) identifedddoye If aNameis null, the “Main”
component is assumed. If the method cannot create a valid page instance, it throws an exception.

As part of its implementation, this method creates a contexaRidguesand callpageWithName

See also: restorePageForContextID(WOSession)savePagdWOSession)

31

32

pageWithName
public WOComponernpageWithNamdjava.lang.StringaName WOContextaContex}

Returns a new page instance (a WOComponent object) identifedddige If aNameis null, the “Main”
component is assumed. If the method cannot create a valid page instance, it throws an exception.

See also: pageWithName restorePageForContextID(WOSession)savePagéWOSession)

path
public java.lang.Stringath()

Returns the filesystem path of the application, which is an absolute path and includesahextension;
for example C:/NETSCAPE/ns-home/docs/WebObjects/Examples/HelloWorld.wdas a typical
application path.

See also: baseURL name

permanentPageCacheSize
public intpermanentPageCacheSiZg

Returns the permanent page cache size. The default is 30. The permanent page cache holds pages which
should not fall out of the regular page cache. For example, a control page in a frameset should exist for the
duration of a session.

See also: savePagelnPermanentCachB8NVOApplication)

refuseNewSessions:
public voidrefuseNewSessiorfboolearflag)

Controls whether this application instance will create a session when it receives an HTTP request from a
new user. Iflagistrue, the application does not create new sessions; when it receives a request from a new
user, it refuses that request, and the adaptor must try to find another application instance that can process
the request. Iflag is false the application creates new sessidalseis the default.

You use this method witbetMinimumActiveSessionsCountto gracefully shut down application
instances. UsgetMinimumActiveSessionsCountto set the active session minimum to a certain number.
When number of active sessions reaches the number you seRafusingNewSession®turngrue, the
application terminates.

See also: activeSessionsCounisRefusingNewSessionsinimumActiveSessionsCount
setMinimumActiveSessionsCount

Classes: WOApplication

registerRequestHandler
public voidregisterRequestHandle(WORequestHandleaHandlet java.lang.StringKey)

Registers a new request handéfeymust specify a key which can be found in the URLSs following the
instance number or application name.

See also: removeRequestHandlerForKey registeredRequestHandlerKeysrequestHandlerForKey:

registeredRequestHandlerKeys
public NSArrayregisteredRequestHandlerKey§)

Returns an array of strings containing the keys of all of the registered request handlers.

See also: handlerForRequest requestHandlerForKey:

removeRequestHandlerForKey
public WORequestHandleemoveRequestHandlerForKeyjava.lang.StringaRequestHandlerKgy

Removes the specified request handler from the application.

See also: registerRequestHandler requestHandlerForKey:

requestHandlerForKey:
public WORequestHandleequestHandlerForKey(java.lang.Stringey)

Returns the request handler used to handle requests containing the specified key.

See also: handlerForRequest registerRequestHandler registeredRequestHandlerKeys

requiresWOF35RequestHandling
public booleanequiresWOF35RequestHandling)

For backward compatibility, if your project depends upon features or side effects of the old request
handling, you will want to override this method and return true. By default, it returns false.

34

requiresWOF35TemplateParser
public booleanequiresWOF35TemplateParsef)

For backward compatibility, if your project depends upon features or side effects removed from the new,
4.0 template parser, you will want to override this method and return true. By default, it returns false.

resourceManager
public WOResourceManagersourceManager)

Returns the WOResourceManager object that the application uses to manage resources.

See also: SetResourceManager

restoreSessionWithlD
public voidrestoreSessionWithljava.lang.StringaSessionDWOContexiaContex}

Restores the WOSession object representing a session. In normal request handling, this method is invoked
at the start of a cycle of the request-response loop. The default implementation simply invokes
WOSessionStoresheckoutSessionWithIDmethod, but raises an exception if the WOSessionStore object

is missing.

See also: createSessionForRequessaveSessionForContext

run
public voidrun ()

Runs the application in a near-indefinite run loop in the default run-loop mode. Before starting the run loop,
the method sendsgisterForEventsto the application’s adaptors so that they can begin receiving run-loop
events. Normallytun is invoked in the main function.

See also: setTimeOut, terminate, terminateAfterTimelnterval

runLoop
public NSRunLoop runLoop()

Returns the application’s run loop. Use this method when you need a run loop for such things as registering
timers.

Classes: WOApplication

saveSessionForContext
public voidsaveSessionForConteX{vOContextaContex}

Called at the end of the request handling loop, when the current session object heeds to be saved. The default
implementation simply invokes WOSessionStootisckinSessionForContextnethod, but throws an
exception if the WOSessionStore object is missing.

See also: restoreSessionWithID

scriptedClassNameWithPath
public java.lang.StringcriptedClassNameWithPatlfjava.lang.StringPath

Loads a Webscript-based class with the pathrePa¢hinto the application. The specified script is parsed
assuming the default string encoding, and the class and categories found in the script file are dynamically
added to the runtime.

scriptedClassNameWithPathEncoding

public java.lang.StringcriptedClassNameWithPathEncodingjava.lang.StringPath
int anEncoding

Loads a scripted class with the pathnaBathusing the encodingnEncoding The class and categories
found in the script file are dynamically added to the runtime. The script must use the
@interface/@implementation syntax.

sessionStore
public WOSessionStorgessionStorg

Returns the application’s current WOSessionStore object (which, by default, stores state in the server).

See also: setSessionStore

setDefaultRequestHandler

public voidsetDefaultRequestHandle(WORequestHandleaHandlel)
Sets the default request handler.

See also: defaultRequestHandler

35

36

setMinimumActiveSessionsCount
public voidsetMinimumActiveSessionsCour(int anint)

Sets the minimum number of active sessioreaiot The default is O.

You use this method to gracefully shut down application instances. If the active sessions count reaches this
number and isRefusingNewSessions rettmns, the application terminates. You might want to terminate
application instances periodically for performance reasons; some applications leak a certain amount of
memory per transaction, and shutting down and restarting instances of those applications can free up that
memory.

See also: activeSessionsCounisRefusingNewSessionsninimumActiveSessionsCount
refuseNewSessions:

setPageCacheSize
public voidsetPageCacheSiZmt anint)

Sets whether caching of page instances will occur and the number of pages the cache will hold. When
page-instance caching is enabled, the application stores the WOComponent instance corresponding to the
response page in the session. When the page is backtracked to, it restores it from the session and makes it
the request page. The state of the page is retained. By default, page-instance caching is enabled, with a
cache limit of 30 pages.

You turn page-instance caching off by invoking this method with an argument of zero. In this case, when
the user backtracks to a page, the page is not stored in the session and so must be re-created “from scratch.”

See also: pageCacheSize

setPageRefreshOnBacktrackEnabled
public voidsetPageRefreshOnBacktrackEnable@boolearflag)

Whenflagis true, disables caching of pages by the client by setting the page’s expiration-time header to
the current date and time. (By default, this attribute is datga) Disabling of client caching affects what
happens during backtracking. With client caching turned off, the browser resends the URL to the server for
the page requested by backtracking. The application must return a new page to the browser (corresponding
to a new WOComponent instance). This behavior is desirable when you do not want the user to backtrack
to a page that might be obsolete because of changes that have occurred in the session.

When this flag is turned on and a request corresponding to a client backtrack occurs, the retrieved page will
only be asked to regenerate its response. The first two phases of a normal request-response loop (value
extraction from the request and action invocation) do not occur.

Classes: WOApplication

See Caching Strategies in the class description for further details.

See also: ISPageRefreshOnBacktrackEnabled

setPermanentPageCacheSize
public voidsetPermanentPageCacheSigat aSiz¢

Sets the permanentPageCacheSize to aSize

See also: permanentPageCacheSize

setResourceManager
public voidsetResourceManaggiWOResourceManagaResourceManaggr

Sets the WOResourceManager obje@ResourceManageywWOResourceManager objects search for and
retrieve resources from the application directory and from shared framework directories.

See also: resourceManager

setSessionStore
public voidsetSessionStor@VOSessionStoraSessionStoje

Set the session-store object for the application. By default, an object that stores session state in process
memory (that is, in the server) is used. The session-store object specifies the state storage strategy for the
whole application. This object is responsible for making session objects persistent. You should set the
session store object when the application starts up, before the first request is handled.

See also: sessionStore

setStatisticsStore
public voidsetStatisticsStoréWOStatisticsStoraStatisticsStone

Sets the WOStatisticsStore objectfatatisticsStord/WOStatisticsStore objects record application
statistics while the application runs.

See also: statisticsStore

37

38

setTimeOut
public voidsetTimeOutdoubleaTimelnterva)

Sets the number of seconds the application can experience inactivity (no HTTP requests) before it
terminates execution.

This method differs fronterminateAfterTimelnterval in that with this method, the application must be
idle for aTimelntervalseconds for the application to terminsgeminateAfterTimelnterval terminates
the application whether it is active or not.

See also: timeOut

sleep
public voidsleef)

Invoked at the conclusion of a request-handling cycle to give an application the opportunity for deallocating
objects created and initialized in its awake method. The default implementation does nothing.

statistics
public NSDictionarystatisticy)

Returns a copy of the dictionary containing the application statistics maintained by WOStatisticsStore. This
method is used by the Monitor application to retrieve application statistics. If you need to access the
statistics internally, use this message instead:

WOApplication.application().statisticsStore().statistics()

statisticsStore
public WOStatisticsStorstatisticsStord)
Returns the WOStatisticsStore object, which records statistics while the application runs.

See also: setStatisticsStore

takeValuesFromRequest
public voidtakeValuesFromRequesfWWORequesaRequestWOContexiaContext

The component action request handler sends this message to the WOApplication to start the first phase of
request handling. In this phase, the message is propagated to the session and component objects involved
in the request as well as the request page’s dynamic elements. Each dynamic element acquires any entered
data or changed state (such as a check in a check box) associated with an attribute and assigns the value to

Classes: WOApplication

the variable bound to the attribute. The default WOApplication implementation of this method forwards the
message to the session object.

See also: appendToResponsgnvokeActionForRequest

terminate
public voidterminate()

Terminates the application process. Termination does not take place until the handling of the current request
has completed.

See also: isTerminating, setTimeOut

terminateAfterTimelnterval
public voidterminateAfterTimelnterval (doubleaTimelnterva)

Sets the application to terminate itself ati@melntervalseconds has elapsed. After the specified time
interval has elapsed, the application immediately stops all current processing. If any sessions are active,
users may lose information.

This method differs frommetTimeOutin that it does not set idle timerminateAfterTimelnterval: : shuts
down the application regardless of whether it is idle.

timeOut
public doublgimeOut()

Returns the application’s time-out interval: a period (in seconds) of inactivity before the application
terminates execution. The default application time-out interval is a very large number.

See also: setTimeOut

trace
public voidtrace(booleanflag)

If flagistrue, prints all trace messages (messages for scripted messages, compiled messages, and all
statements in the application) to the standard error devitag i§ false, stops printing all trace messages.

See also: traceAssignmentstraceObjectiveCMessagestraceScriptedMessagedraceStatements

39

40

traceAssignments
public voidtraceAssignmentgbooleanflag)

If flagistrue, prints a message to the standard error device every time an assignment statement is executed.
If flag is false, stops printing trace assignment messages.

See also: trace, traceObjectiveCMessagestraceScriptedMessagedraceStatements

traceObjectiveCMessages
public voidtraceObjectiveCMessagedbooleanflag)

If flagistrue, prints a message to the standard error device every time a message is sent to a compiled class
from Webscript. Ifflag is false, stops printing these messages.

See also: trace, traceAssignmentstraceScriptedMessagesraceStatements

traceScriptedMessages
public voidtraceScriptedMessagedooleanflag)

If flagistrue, prints a message to the standard error device every time a message is sent to a scripted class
from Webscript. Ifflag is false stops printing trace scripted method messages.

See also: trace, traceAssignmentstraceObjectiveCMessagedraceStatements

traceStatements
public voidtraceStatementgboolearflag)

If flagistrue, prints a message to the standard error device every time a statement in the application is
executed from Webscript. filag is false, stops printing trace statement messages.

See also: trace, traceAssignmentstraceObjectiveCMessagedraceScriptedMessages

unlock
public voidunlock()

Unlocks the application object.

Classes: WOApplication

unlockRequestHandling
public voidunlockRequestHandling))

Disables serialized request handler access if concurrent request handling isn’t enabled.

Notifications
WOApplicationDidFinishLaunchingNotification

Posted just before the application begins waiting for requests. The notification contains the application
instance.

WOApplicationWillFinishLaunchingNotification

Posted when an application has finishethitsmethod. Register to receive this notification if you have an
object that wishes to set various setting in the application. For example, if you have a WORequestHandler
implemented in a framework and you want to register it with the WOApplication, you would register to
receive this notification and then implement a method that register your WORequestHandler with the
application.

The notification contains the application instance.

41

42

Classes: WOAssociation

WOAssociation
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

The WOAssociation class declares the programmatic interface to objects that represent the values of
WebObject attributes, as specified in a declarations file. You rarely need to create subclasses of
WOAssociation, except in situations where you need to subclass WODynamicElement.

The purpose of a WOAssociation object is to provide a unified interface to values of different types. For
example, consider these declarations:

TREENAME1:WOString {value = "Ash'};
TREENAME2:WOString {value = treeName};
TREENAME3:WOString {value = selectedTree.name};

At runtime, the WebObjects parser scans an HTML template and these declarations and creates three
WOString dynamic element objects. In the first case, the WOStxialyie attribute is assigned a constant
string. In the second, it's associated with tfeeNamevariable of the component in which the dynamic
element is declared. In the thirdilue is associated with theame attribute of the component’s
selectedTreevariable. The search path for the value can be arbitrarily deep, depending on the needs of your
application:

MAYOR:WOString {value = country.state.city.mayor.name};

To resolve a path such as this, WebObjects accesses each part in turn. First, it looks for the component’s
country variable. If the component responds tmantry message, it sends one to determine the value;
otherwise, it directly accesses the componamtimtry instance variable to determine the value. Next, it
checks theountry object for astate attribute, using the same strategy of looking for an accessor method
namedstate and then, if necessary, accessingstia¢e variable’s value directly. It continues in this way

until the ultimate value is determined.

WOAssociation objects present the WebObjects framework with a unified interface to attribute values,
whether their values are static or dynamic. The value attribute for TREENAMEL1 in the example above will
never change during the course of program execution, but the other WOStrings have values that are
potentially dynamic, and so will have to be determined at runtime. Since the value of any WOAssociation
can be determined by sending itaduelInComponentmessage, objects that use WOAssociation objects
don’t have to be concerned with how values are resolved. The WODynamicElement class makes extensive
use of this feature. See the WODynamicElement class specification for more information.

43

Method Types

Creation
associationWithKeyPath
associationWithValue

Obtaining association attributes
isValueConstant
isValueSettable

Setting and retrieving value
setValue
valuelnComponent

Static Methods
associationWithKeyPath
public static WOAssociatioassociationWithKeyPathjava.lang.StringaKeyPath

Creates and returns a WOAssociation object whose value is determined by evakieyipath This
method is used when a dynamic element’s attribute is set to a variable from the component’s script. For
example, when the WebObjects parser sees a declaration of this sort,

TREENAME3:WOString {value = selectedTree.name};

it invokesassociationWithKeyPath:to create a WOAssociation whose key is "selectedTree.name". When
the resulting WOAssociation is asked for its value, it searches for the valuenahtkeattribute of in the
current component'selectedTreeattribute.

If aKeyPathis null, the value of the WOAssociation is alwall.

See also: associationWithValue

associationWithValue
public static WOAssociatioassociationWithValugjava.lang.ObjecaValue

Creates and returns a WOAssociation object whose vahiMaige a constant value. This method is used
when a dynamic element’s attribute is set to a constant. For example, when the WebObjects parser sees a
declaration of this sort,

TREENAME3:WOString {value = "Time Flies!"};
it invokes this method to create a WOAssociation whose value is "Time Flies!".

See also: associationWithKeyPath

44

Classes: WOAssociation

Instance Methods
isValueConstant
public booleansValueConstant)
Returns true if the WOAssociation’s value is a constant, false otherwise.

See also: associationWithValue , isValueSettable

isValueSettable
public booleansValueSettabl€)
Returns false if the receiver’s value is constant, true otherwise.

See also: associationWithKeyPath , isValueConstant

setValue

public voidsetValugjava.lang.ObjecaValue
public voidsetValugjava.lang.ObjecaValue WOComponenaComponent

Finds the attribute @iComponenpointed to by the left-hand-side of the receiver and set its vadivatoe

If aComponents not given, this method fins the attribute in the current component association with the
receiver. This method throws an exception if the receiver’s value is not settable. For example, sending a
setValue:inComponent:message to a WOAssociation created from this declaration,

USER:WOTextField {value = userName};
sets the current componentiserNamevariable to the value typed into the WOTextField.

One way in which the WebObjects framework uses this method is to synchronize the values of nested
components. When attributes in child and parent components are associated with one another and changes
occur in one component, this method is invoked to migrate those changes to the other component. See the
reusable components chapter in\ebObjects Developer’'s Guidlar more information.

See also: valuelnComponent

valuelInComponent
public java.lang.ObjecatalueInComponenf{WOComponenaComponent

Returns a value based on the receiver’s association and the current component. For example, sending a
value message to a WOAssociation created from this declaration,

DOWNPAYMENT:WOString {value = downpayment};

45

46

returns the value of the current componedt®/npaymentvariable.
Sending avalue message to a WOAssociation created from this declaration,
DOWNPAYMENT:WOString {value = "$5000.00'};
returns the value "$5000.00" (independent of the current component).
This method raises an exception if it cannot resolve the WOAssociation’s value with the current component.

One way in which the WebObjects framework uses this method is to synchronize the values of nested
components. When attributes in child and parent components are associated with one another and changes
occur in one component, this method is invoked to migrate those changes to the other component. See the
reusable components chapter in\tebObjects Developer’'s Guidlar more information.

See also: setValue

Classes: WOComponent

WOComponent
Inherits From: WOElement : NSObject
Package: com.apple.yellow.webobjects

Class Description

WOComponent objects dynamically render web pages (or sections of pages) at run time. They provide custom
navigation and other logic for the page, provide a framework for organizing constituent objects (static and
dynamic HTML elements and subcomponents), and enable the attribute bindings of dynamic elements.

The WOComponent class has many methods that have the same names as methods of the WOApplication
class. However, the scope of the WOComponent methods is limited to a component rather than being
application-wide. For example, you can control component-definition caching on a per-component basis
usingsetCachingEnabled which has a WOApplication counterpart. When this kind of caching is enabled

for a component, the application parses the contents of the component directory the first time the component
is requested, creates the component definition, stores this object in memory, and restores it for subsequent
requests.

WOComponent objects also responaizake, sleep and the three request-handling messages:
takeValuesFromRequestinvokeActionForRequestandappendToResponseYou can override these

methods in your compiled subclasses, and thereby integrate your custom behavior into the request-response
loop. (You can also override these methods in component scripts using WebScript.)

Subcomponents

A WOComponent object can represent a dynamic fragment of a Web page as well as an entire page. Such
subcomponent®r reusable componentare nested within a parent component representing theopage

another subcomponent. Each component keeps track of its parent and subcomponents—when a component
receives a request-handling message, sutdka¥aluesFromRequestit forwards that message to its
subcomponents

The WOComponent class also provides a child-parent callback mechanism to allow a child component to
communicate with its parent. In the parent’s declaration file, bind an arbitrary attribute of the child to an
action method of the parent. Then, as the last step in the child’s action method, invoke
performParentAction with the argument being the arbitrary attribute, returning the object received back
as the response page. See the method descriptiparformParentAction for details.

a7

Method Types

Constructors
WOComponent

Obtaining attributes
application
baseURL
context
frameworkName
hasSession
name
pageWithName
path
session

Caching
isCachingEnabled
setCachingEnabled

Managing resources
templateWithName
pathForResource

Handling requests
appendToResponse
awake
invokeActionForRequest
sleep
takeValuesFromRequest

Logging
debugString
logString
validationFailedWithExceptionpublic void
validationFailedWithException(java.lang.Throwable exception,
java.lang.Object value, java.lang.String keyPath)

Template parsing
templateWithHTMLString

Components statistics
descriptionForResponse

Invoking actions
parent
performParentAction

48

Classes: WOComponent

Synchronizing components
hasBinding:
setValue:forBinding:
synchronizesVariablesWithBindings
valueForBinding:

Other
generateResponse

Constructors

WOComponent
publicWOComponent()

WebObijects Builder archive file exists in the component directory, it initializes component variables from
this archive. This constructor throws exceptions if it cannot determine the name of the component or if it
cannot initialize the object for any other reason. Oveif@@Component) in compiled subclasses to
perform custom initializations; as always, invakgers default constructor as the first thing.

Static Methods

debugString
public static voidogString(java.lang.Strin@String

Like logString, prints a message to the standard error device (stderr), but only prints the message if the
WODebuggingEnabled user default optiotrige. If WODebuggingEnabled iglse, thedebugString
messages aren't printed. SegString for information on the format &String

logString
public static voidogString(java.lang.Strin@String

Prints a message to the standard error device (stderr). The message can include formatted variable data
using String's concatenation feature, for example:

inti = 500;
float f = 2.045;
WOComponent.logString("Amount ="+i+", Rate =" +f", Total =" + i*f);

49

templateWithHTMLString

public static WOElemertemplateWithHTMLString (java.lang.StringagnHTMLString
java.lang.StringDeclarationStringNSArray languagey

Programmatically creates the component’s template asiHg MLStringas the HTML template contents
andaDeclarationStringas the declarations file contents. Returns (as a WOElement object) the graph of
static and dynamic elements build by parsing the HTML and declaration strings. You can then use the
returned WOElement as the component’s template.

See also: templateWithName

Instance Methods

50

appendToResponse
public voidappendToRespons@VOResponsaResponsaVOContexiaContex}

Component objects associated with a response receive this message during the last phase of the
request-response loop. In the append-to-response phase, the application objects (particularly the response
page instance itself) generate the HTML content of the page. WOComponent’s default implementation of
this method forwards the message to the root WOElement object of the component template. Compiled or
scripted subclasses of WOComponent can override this method to replace or supplement the default
behavior with custom logic.

See also: invokeActionForRequest , takeValuesFromRequest

application
public WOApplicationapplication()

Returns the WOApplication object for the current application.

See also: WOApplication class, context , session

awake
public voidawake()

Invoked at the beginning of a WOComponent's involvement in a cycle of the request-response loop, giving
the WOComponent an opportunity to initialize its instance variables or perform setup operations. The
default implementation does nothing.

See also: , sleep

Classes: WOComponent

baseURL
public java.lang.StrinpaseURL()

Returns the component URL relative to the server’'s document root, for example:
“/WebObjects/MyApp.woa/Resources/Main.wo”

See also: name, path

context
public WOContextontext()

Returns the WOContext object for the current transaction.

See also: WOContexikclass, application , session

descriptionForResponse
public java.lang.StringescriptionForRespons@VOResponsaResponseaNVOContextaContex}t

Records information about the component if it is the response component in the current request-response
loop transaction. The default implementation records the component’s name. You might override this
method if you want to record more information about the component. For example, you might want to
record the values of some instance variables as well as the component name.

This message is sent only to the top-level response component, that is, the one representing the entire page.
Components nested inside of that top-level component do not receive this message.

If a CLFF log file is kept for this application, the string returned by this method is recorded in that log file.
Thus, you must ensure that the string you return can be analyzed by a CLFF-analysis tool.

See also: WOStatisticsStore class

frameworkName
public java.lang.StrinframeworkName()

If the component is stored in a framework, this method returns the name of that framework. For example,
if the component is in the framework
NeXT_ROOMystem/Library/Frameworks/WOEXxtensions.framework, then this method returns the

string “WOEXxtensions”.

If the component is not stored in a framework, this method retudhs

See also: WOResourceManager class

51

52

generateResponse
public WOResponsgenerateRespongg

Returns a newly-created WOResponse object. WOComponent's implementation of this method translates
the receiving component into a WOResponse object by sending itesgib@andToResponsenessage.

hasBinding:
public boolearhasBinding(java.lang.StringBindingNamg

Returns whether the component has a binding naBadlingName

hasSession
public boolearhasSessiof)

Returns whether the component is already in a session. For example, in direct actions, sessions are lazily
created and you can avoid creating another one unnecessarily by ltaiBessioreforesession

See also: Session

invokeActionForRequest

public WOElemeninvokeAction(WORequesaRequestWOContextaContex}
WOComponent objects associated with a request page receive this message during the middle phase of
request handling. In this middle phase, ithkeActionForRequestmessage is propagated through the
WOElement objects of the page; the dynamic element on which the user has acted (by, for example, clicking
a button) responds by triggering the method in the request component that is bound to the action.
WOComponent's default implementation of this method forwards the message to the root WOElement
object of the component template.Compiled or scripted subclasses of WOComponent can override this
method to replace or supplement the default behavior with custom logic. (Scripted subclasses must use the
Objective-C form of this methodhvokeActionForRequest:inContext:).

See also: appendToResponsgakeValuesFromRequest

isCachingEnabled
public boolearnsCachingEnabled)

Returns whether component-definition caching is enabled for this compfatemis the default.

See also: setCachingEnabled

Classes: WOComponent

name
public java.lang.Stringame()

Returns the name of the component, which includes a path of all directories under
DOCUMENTROOMWebObjectsand is minus the “.wo” extension; for example “Main” is a typical
component name.

See also: baseURL, path

pageWithName
public WOComponernpageWithNamgjava.lang.StringaName

Returns a new page instance (a WOComponent object) identifedddige If aNameis null, the “Main”
component is assumed. If the method cannot create a valid page instance, it throws an exception.

See also: restorePageForContextID(WOSession)savePagéWOSession)

parent
public WOComponerparent()

Returns the parent component of the receiver.

path
public java.lang.Stringath()

Returns the file-system path of the component, which is an absolute path and includes the “.wo” extension;
for example “C:\Apple\Library\WOApps\MyApp.woa\Resources\Main.wo” is a typical path.

See also: baseURL, name

pathForResource
public java.lang.StringathForResourcdjava.lang.StringaName java.lang.String Type
Returns the absolute path to the component resource having the redaeneiind an extension afType

The method searches all localized “.Iproj” directories of the component before searching directly under the
“.wo0” component directory for a non-localized resource of the given name and extension.

This method is provided for backwards compatibility only. For WebObjects 3.5 and above, you should use
the WOResourceManager API to retrieve resources. WOResourceManager is not able to retrieve resources
stored inside component directories.

53

54

performParentAction
public java.lang.ObjeqterformParentAction (java.lang.StringanActionNamg

Allows a subcomponent to invoke an action method of its parent component bound to the child component
(attribute). Parent and child components are “synchronized” when this method returns: the variables that
are bound by a declaration of the child component in the parent component’s declaration file have the same
value.

An example best illustrates this mechanism. Let’s say you have a Palette subcomponent, and this
WOComponent is nested in a parent component with a “displaySelection” action method. When the user
selects an item in the palette (perhaps a color), you want to invoke “displaySelection” to show the result of
the new selection (perhaps a car in the new color). The declaration in the parent’s “.wod” file would look
like this:

PALETTE: Palette {
selection = number;
callBack = "displaySelection";

I3

The “callBack” item is an arbitrary attribute of the child component bound in this declaration to the parent
component’s “displaySelection” method. TherformParentAction: method is used to activate this

binding. Let's assume the child component has an action method called “click”; the implementation would
look like this:

public WOComponent click() { [* this is the child's action */
selection = /* some value */,

* now invoke the parent's action */

return performParentAction(callBack);

}

session
public WOSessiosessiof)

Returns the current WOSession object. This method creates a new one if there isn’t one.

See also: WOSession clasgpplication, context, hasSession

setCachingEnabled
public voidsetCachingEnabled@boolearflag)

Enables or disables the caching of component definitions for the receiving component. WOComponent
definitions contain templates and other common information related to components, and are used to
generate instances of those components.When this attribute igrset tbe application parses the HTML
template and the declaration (“.wod”) file of a component once and then stores the resulting component

Classes: WOComponent

definition for future requests. By default, this kind of caching is disabled so that you casceiite
component without having to relaunch the application every time to check the results.(Note that this does
not apply to Java subclasses of WOComponent; in this case, you still have to kill and relaunch the
application.)

With WOApplication’s method of the same name, you can turn component-definition caching off globally.
You can then control caching of individual component definitions using WOComponent's version of this

method. Selective caching is an especially valuable technique for very large applications where only the
most frequently requested components should be cached.

See also: isCachingEnabled

setValue:forBinding:
public voidsetValueForBinding(java.lang.ObjecaValue java.lang.Strin@BindingNamg

Sets the value of the binding specifieddBindingNamen the parent component&/alue If the parent
doesn't provideaBindingNamen its declarations file, this method attempts to set the value in the current
component usintakeValueForKey:. If the current component doesn’t define this key, this method silently
returns.

See also: synchronizesVariablesWithBindings valueForBinding:

sleep
public voidsleef)

Invoked at the conclusion of a request-handling cycle to give component the opportunity for deallocating
objects created and initialized in #vake method. The default implementation does nothing.

synchronizesVariablesWithBindings
public boolearsynchronizesVariablesWithBindings)

Returns whether a nested component pulls all values down from its parent and pushes all values to its parent
before and after each phase of the request-response loop. By default, this methaduet@msrride this
method to create a non-synchronizing component.

See also: setValue:forBinding:, valueForBinding:

55

56

takeValuesFromRequest
public voidtakeValuesFromRequesfWWORequesaRequestWOContexiaContext

WOComponent objects associated with a request receive this message during the first phase of the
request-response loop. The default WOComponent behavior is to send the message to the root object of the
component’s template.In this phase, each dynamic element in the template extracts any entered data or
changed state (such as a check in a check box) associated with an attribute and assigns the value to the
component variable bound to the attribute.Compiled or scripted subclasses of Component can override this
method to replace or supplement the default behavior with custom logic. (Scripted subclasses must use the
Objective-C form of this methodakeValuesFromRequest:.inContext).

See also: appendToResponsgnvokeActionForRequest

templateWithName
public WOElementemplateWithName(java.lang.StringaName

Returns the root object of the graph of static and dynamic HTML elements and subcomponents that is used
to graphically render the component identifiecdibyame This template is constructed from the “.html” and
“.wod"” file found in the component directory. You identify the template by specifying the component
directory, which consists of the component name plus the “wo” extension: for example, “HelloWorld.wo.”

If the template is not cached, the application will parse the HTML and declaration files of the specified
component to create the template.

See also: setCachingEnabled

validationFailedWithException public void
validationFailedWithException(java.lang.Throwablexception
java.lang.Objectalug java.lang.StrindceyPath

Called when an Enterprise Object or formatter failed validation during an assignment. The default
implementation ignores the error. Subclassers can override to record the error and possibly return a different
page for the current action.

valueForBinding:

public java.lang.ObjeatalueForBinding(java.lang.Strin@BindingNamg
Gets the value for the specified binding from the parent component. If the parent doesn’t provide
aBindingNamen its delcarations file, this method attempts to get the value from the current component

usingvalueForKey. If the current component doesn’t define this key, this method returns null. This
cascading lookup makes it easy to provide default values for optional bindings.

See also: setValue:forBinding:, synchronizesVariablesWithBindings

Classes: WOContext

WOContext
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

A WOContext object lets you access objects and information that defioerttextof a transaction. In a

typical request-response loop (a transaction), several objects have a hand in what is going on: the
WOApplication and WOSession objects, the page involved in the request or response (a WOComponent
object), the page's subcomponents (also WOComponents), plus the dynamic elements on the page. The
WOContext object passed as an argument itatted/aluesFromRequestinvokeActionForRequest and
appendToResponsenessages allows access to these objects. A context is identifiedcoyntine ID

which appears in the URL after the session ID and page name. Each context ID is an integer that the session
increments each time a new context is created.

WOContext objects provide other information and services related to the current transaction. From them
you can get the entire URL currently in effect as well as portions of that URL, such as the element ID, the
context ID, and the URL up to and including the session ID.

A WOContext object plays a further role behind the scenes. For the benefit of a page's dynamic elements,
it keeps track of theurrent componenthat is, the WOComponent associated with the current element in

the request-handling cycle. The current component can be the WOComponent that represents one of the
page's subcomponents or the page itself. By reference to the current component (accessed through
WOContext'scomponentmethod), a dynamic element can exchange values associatively between itself
and the WOComponent that contains it.

Method Types
Constructors
WOContext
Creating new object instances
contextWithRequest

57

Obtaining attributes
component
contextlD
elementID
hasSession
isinForm
page
request
response
session
senderlD
setinForm

Manipulating element ID

appendElementIDComponent
appendZeroElementiIDComponent
deleteAllElementIDComponents
deleteLastElementIDComponent
incrementLastElementIDComponent

Generating URLs
directActionURLForActionNamed
completeURLWithRequestHandlerKey
componentActionURL
urlwithRequestHandlerKey

Constructors

WOContext
publicWOContext()

Returns a WOContext instance initialized with a unique context ID.

Class Methods

contextWithRequest
public static WOContextontextWithReques{WORequesaRequest

Creates and returns a WOContext veiRequestThis is the preferred way to create a WOContext. All other
constructors call this one, so if you subclass WOContext, you need to override only this one.

58

Classes: WOContext

Instance Methods

appendElementIDComponent
public voidappendElementIDComponen(java.lang.Strin@gString

Appends a string to the current element ID to create an identifier of an HTML element. For example, if the
current element ID is "0.1.1" and you send this message with an argument of "NameField," the element ID
for that field becomes "0.1.1.NameField".

See also: deleteAllElementIDComponents , deleteLastElementiIDComponent ,
incrementLastElementiIDComponent

appendZeroElementIDComponent
public voidappendZeroElementIDComponen()

Appends a ".0" to the current element ID to create an identifier of the first "child" HTML element. For
example, if the current element ID is "0.1.1", after you send this message the element ID becomes "0.1.1.0".

See also: deleteAllElementIDComponents , deleteLastElementiIDComponent .
incrementLastElementiIDComponent

completeURLWithRequestHandlerKey

public java.lang.StringompleteURLWithRequestHandlerKeyjava.lang.StringequestHandlerKey
java.lang.String@RequestHandlerPath
java.lang.Strin@QueryString
booleansSecure
int somePort

Returns the complete URL for the specified request handlerefihestHandlerKeis one of the keys
provided by WOApplication. TheequestHandlerPatis any URL encoded string. Tly@eryStringis

added at the end of the URL behind a “?isBecurds true, this method uses “https” instead of “http.” If
somePoris 0 (zero), this method uses the default port.

See also: urlWithRequestHandlerKey

component
public WOComponentomponen()

Returns the component that dynamic elements are currently using to push and pull values associatively. This
component could represent the current request or response page or a subcomponent of that page.

See also: WOComponent class, page, request , response , senderlD

59

60

componentActionURL
public java.lang.StringomponentActionURL()

Returns the complete URL for the component action.

contextlD
public java.lang.StringontextID()

Returns the context ID of the receiver.

deleteAllElementIDComponents
public voiddeleteAllElementIDComponentg)

Deletes all components of the current element ID.

See also: appendElementIDComponent , appendZeroElementiDComponent
incrementLastElementiIDComponent

deleteLastElementIDComponent
public voiddeleteLastElementiIDComponen()

Deletes the last digit (or name) of the current element ID, along with its dot separator. Thus, after sending
this message, "0.0.1.1" becomes "0.0.1".

See also: appendElementIDComponent , appendZeroElementiIDComponent
incrementLastElementiIDComponent

directActionURLForActionNamed

public java.lang.StringlirectActionURLForActionNamed (java.lang.StringanActionNamg
NSDictionaryaQueryDic})

Returns the complete URL for the specified action. You can sa@ifgryDict andanActionName&an be
"ActionClass/ActionName" or "ActionName".

See also: WODirectAction class specification

Classes: WOContext

elementID
public java.lang.StringlementIX)

Returns the element ID identifying the current WOElement.This method helps you avoid creating a session
in direct actions.

hasSession
public boolearhasSessiof)

Returns whether a session exists for the receiving context.

See also: senderlD

incrementLastElementIDComponent
public voidincrementLastElementiIDComponent)

Increments the last digit of the current element ID. For example, after this message is sent, "0.0.1.2"
becomes "0.0.1.3".

See also: appendElementiIDComponentappendZeroElementIDComponent
deleteAllElementIDComponents deleteLastElementIDComponent

isinForm
public booleansinForm()

Returns true when in the context of a WOForm.

See also: setlnForm

page
public WOComponerpag«)

Returns the WOComponent object that represents the request or response page.

See also: component request response senderiD

61

62

request
public WORequestequesk)

Returns the transaction's WORequest object.

Seealso: component page responsesenderlD

response
public WOResponsesponse)

Returns the transaction's WOResponse object.

See also: component page responsesenderlD

senderlD
public java.lang.StringenderlD()

Returns the part of the WORequest’s URI that identifies the dynamic element on the page (such as a form
or an active image) responsible for submitting the request. The sender ID is the same as the element ID used
to identify the dynamic element. A request's sender ID mapultbeas it always is on the first request of a
session.

See also: request, uri (WORequest)

session
public WOSessiogessiof)

Returns the object representing the receiving context’s session, if one exists. If the receiver does not have a
session, this method creates a new session object and returns it. Note that not all contexts have a session:
Direct Actions, for instance, don't always need a sessionhblsgessiorno determine whether a context

has a session associated with it.

See also: component page request response WOSession class

setinForm
public voidsetinForm(booleanflag)

If you write something that behaves like a WOForm, set this to notify WODynamicElements that they are
in a form.

See also: isInForm

Classes: WOContext

urlWithRequestHandlerKey

public java.lang.StringrlWithRequestHandlerKey (java.lang.StringequestHandlerKey
java.lang.String@RequestHandlerPath
java.lang.StrinqaQueryString

Returns a URL relative togi-bin/WebObjects for the specified request handler. The
requestHandlerKeis one of the keys provided by WOApplication. TTequestHandlerPatis any URL
encoded string. ThgueryStringis added at the end of the URL behind a “?”.

completeURLWithRequestHandlerKey

63

64

Classes: WOCookie

WOCookie

Inherits From: NSObiject

Package: com.apple.yellow.webobjects

Class Description

WOCookie is used for the creation and setting of cookies in your response objects. A cookie allows for the
persistent storage of client state. Instead of using a WOSession object (which can potentially have a shorter
life span), a cookie allows server-side applications to store state in client browsers for a specific or
indeterminate amount of time. An advantage to cookies is that the data will be stored on the client and not
on the server, allowing the server to maintain less state information. A specific advantage in WebObjects
applications is that cookies allow the server to put state into the browser that is not bound to a session.
Hence, the client can “leave” your application and return with its cookie’s state intact.

A WOCookie object defines a cookie that can be added to the HTTP header for your response. You create
a cookie using the static methodokieWithName To add or remove cookies from the response, use the
WOResponse methodsldCookie andremoveCookie To retrieve cookie data, use the WORequest
methodscookieValues cookieValueForKey, andcookieValuesForKey WORequest returns the data as
name/value pairs and not as WOCookie objects, since browsers don't return the additional data WOCookies
provide, such as path name and expiration date.

For more information about cookies and their implementation details, see Netscape’s preliminary
specification ahttp://www.netscape.com/newsref/std/cookie_spec.htrahd RFC 2109 - HTTP State
Management Mechanism laittp://www.cis.ohio-state.edu/htbin/rfc/rfc2109.html

If and when new details evolve in the implementation of cookies, you can subclass WOCookie and
implement new behaviors. Pay particular attention to how you ovéeatterString, which WOResponse
uses to fill the HTTP response with a header string.

Method Types

Constructors
WOCookie

Creation
cookieWithName

65

Obtaining a cookie’s attributes
domain
expires
headerString
isSecure
name
path
value

Setting a cookie’s attributes
setDomain
setExpires
setlsSecure
setName
setPath
setValue

Constructors

WOCookie
publicWOCookie()

Creates and returns a new empty cookie. To set its attributes, use the apmepriathods.

See also: cookieWithName, setDomain setExpires setlsSecuresetName setPath setValue

Class Methods

cookieWithName
public static WOCookieookieWithName(java.lang.StringaName java.lang.StringValué

Creates and returns a cookie with just a name and its value. This method sets the path attribute to your
application’s path.

66

Classes: WOCookie

public static WOCookieookieWithName(java.lang.StringaName
java.lang.Strin@Value
java.lang.StringaPath
java.lang.StringaDomain
NSDateexpirationDate
boolearflag)

Creates and returns a cookie, specifying all its attributes. For more information, see the descriptions of the
methods that return attribute values.

See also: domain, expires isSecure name, path, value

Instance Methods
domain
public java.lang.Stringomain()

Returns the value of the cookie’s “domain” attribute. It's of the form “companyname.com”.

expires
public NSDateexpirey)

Returns the value of the cookie’s “expires” attribute as an NSDate. The expiration date tells the browser
how long to keep the cookie in its cache. To have the browser remove the cookie from its cache, set the
expiration date to a date in the past.

headerString
public java.lang.StrintpeaderString()

Returns the string that will be used in the HTTP header. The returned string has the format:
Set-cookie: name=value; expires=date; path=path; domain=domain; secure;

The calendar format for the expiration date is:
@ %A, %0d-%6b-%Y %H:%M:%S GMT”

where all times are converted relative to Greenwich Mean Time.

This method is called by WOResponse when generating the response.

67

68

isSecure
public boolearisSecurg)

Returns the cookie’s “secure” attribute. This attribute specifies whether the cookie should be transmitted
only with secure HTTP. The default value is false.

name
public java.lang.Stringame()

Returns the cookie’s “name” attribute. The name is similar to the key of a dictionary or hash table. Together,
the name and value form the cookie’s data.

path
public java.lang.Stringath()

Returns the value of the cookie’s “path” attribute. Cookies for a specific path are sent only when accessing
URLSs within that path. For more information on cookies and their paths, see Netscape’s preliminary
specification ahttp://www.netscape.com/newsref/std/cookie_spec.htrahd RFC 2109 - HTTP State
Management Mechanism laittp://www.cis.ohio-state.edu/htbin/rfc/rfc2109.html

setDomain
public voidsetDomair(java.lang.StringaDomain

Sets the cookie’s “domain” attribute a®omain For more information, semain.

See also: cookieWithName

setExpires
public voidsetExpiredNSDateexpirationDaté

Sets the cookie’s “expires” attributedmpirationDate For more information, sesxpires

See also: cookieWithName

Classes: WOCookie

setlsSecure
public voidsetisSecuréboolearflag)

Sets the cookie’s “secure” attributeftag. For more information, saéseSecure

See also: cookieWithName

setName
public voidsetNamdjava.lang.StringatNamé

Sets the cookie’s “name” attributedadlame For more information, se&ame

See also: cookieWithName

setPath
public voidsetPathjava.lang.StringPath

Sets the cookie’s “path” attribute &Path For more information, sggth.

See also: cookieWithName

setValue
public voidsetValugjava.lang.StringaValug

Sets the cookie’s “value” attribute &/alue For more information, sealue

See also: cookieWithName

value
public java.lang.Stringalue()

Returns the value of the cookie’s value attribute. This attribute is similar to the value of a dictionary or hash
table. Together, the name and value form the cookie’s data.

69

70

Classes: WODirectAction

WODirectAction
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

WODirectAction is an abstract class that defines the interface for direct action classes. You subclass
WODirectAction to provide an object that is a repository for action methods.

WODirectAction provides the simplest interface for addig logic and custom code to your WebObjects
application. WODirectAction objects are instantiated when a URL requested by a client browser is sent to
your WebObijects application. The WODirectActionRequestHandler determines the proper class and action
to be invoked and then passes control to your WODirectAction subclass.

In contrast to a WOComponent-based action, a direct action is well-defined by the URL that invokes it. For
example, the following URL will invoke the methiddEmployeeAction on the subclass of
WODirectAtion called Common:

http://localhost/cgi-bin\WebObjects/Myapp.woa/wa/Common/findEmployee

A subclass of WODirectAction is a repository for action methods. New WebObjects applications contain a
default implementation of the WODirectAction subclass called DirectAction. The DirectAction class is
used when no class is specified in the URL.

In summary, here are some URLSs and the actions they invoke:

This URL... Invokes this method...

../IMyApp.woa/wa/ defaultAction on class DirectAction

findAction on classDirectAction , if it exists

~IMyApp.woalwa/ find defaultAction on class find , otherwise

.IMyApp.woa/wa/Common/find findAction on class Common

WODirectActionRequestHandler invokes methods only on subclasses on WODirectAction. If the specified
class or action doesn't exist, WODirectActionRequestHandler throwsraises an exception.

71

Method Types

Constructors
WODirectAction

Obtaining attributes
request

Obtaining a session
existingSession

session
Obtaining a page

pageWithName
Performing an action

performActionNamed

Value assignment
takeFormValueArraysForKeyArray
takeFormValuesForKeyArray

Debugging
debugString
logString
Constructors
WODirectAction

publicWODirectAction ()
publicWODirectAction (WORequesaWOReque}t

Subclasses must override to provide any additional initialization.

Static Methods

72

debugString
public static voiddebugString(java.lang.Strin@String

This method is similar to logString except that you can control whether it displays output with the
WODebuggingEnableduser default option. If WODebuggingEnabledis YES, then the debugString
messages display their output. If WODebuggingEnabledis NO, the debugString messages don’t display
their output.

Classes: WODirectAction

logString
public static voidogString(java.lang.Strin@String

Prints a message to the standard error device (stderr). The message can include formatted variable data
using String's concatenation feature, for example:

inti=500;
float f = 2.045;
WOComponent.logString("Amount="+1i+", Rate =" + ", Total =" + i*f);

Instance Methods

existingSession
public WOSessiorxistingSessiof)

Restores the session based on the request. If the request did not have a session ID or the session ID referred
to a non-existent session, then this method retustis To determine if a session failed to restore, check
the request’s session ID to see if it manl and if so, call this method to check its result.

See also: session

pageWithName
public WOComponempageWithNamgjava.lang.StringaComponentName

Returns the WOComponent with the specified name.

performActionNamed
public WOActionResultperformActionNamed(java.lang.StringanActionNamg

Performs the action with the specified hame and returns the result of that action. The default
implementation appends “Action” to anActionNamand tries to invoke resulting method name. Override
this method to change how actions are dispatched.

request
public WORequestequesi)
Returns the WORequest object that initiated the action.

73

74

session
public WOSessiosessiof)

Returns the current session. If there is no session, this method first tries to restore the session that the
request’s session ID refers to. If the request has no session ID—which is a possibility if the application is
written entirely with direct actions—this method creates a new session and returns it. If the session ID
refers to a session that doesn’t exist or cannot be restored, this method throws an exception.

See also: existingSession

takeFormValueArraysForKeyArray
public voidtakeFormValueArraysForKeyArray (NSArray aKeyArray
Performs takeValueForKey on each key in aKeyArrayusing values from the receiver’s request.

This method uses an NSArray for each form value. This is useful when a user can select multiple items for
a form value, such as a WOBrowser. If a form value contains only one item, this method uses an NSArray
with one object. To use single objects as form values, use takeFormValuesForKeyArray.

takeFormValuesForKeyArray
public voidtakeFormValuesForKeyArray (NSArray akeyArray
Performs takeValueForKey on the each key in aKeyArrayusing values from the receiver’s request.

This method uses an a single object for each form value. If a form value contains more than one item, such
as a WOBrowser, this method uses the first item in the array. To use arrays of objects as form values, use
takeFormValueArraysForKeyArray.

Classes: WODisplayGroup

WODisplayGroup

Inherits From: NSObiject
Implements: NSCoding
Package: com.apple.yellow.webobjects

Class Description

A WODisplayGroup is the basic user interface manager for a WebObjects application that accesses a
database. It collects objects from an EODataSource (defined in EOControl), filters and sorts them, and
maintains a selection in the filtered subset. You bind WebObjects dynamic elements to WODisplayGroup
attributes and methods to display information from the database on your web page.

A WODisplayGroup manipulates its EODataSource by sendfetctiObjects insertObject:, and other
messages, and registers itself as an editor and message handler of the EODataSource’s EOEditingContext
(also defined in EOControl). The EOEditingContext then monitors the WODisplayGroup for changes to
objects.

Most of a WODisplayGroup’s interactions are with its EODataSource and its EOEditingContext. See the
EODataSource, and EOEditingContext class specifications Entieeprise Objects Framework Reference
for more information on these interactions.

The Delegate

The WODisplayGroup delegate offers a number of methods, and WODisplayGroup invokes them as
appropriate. BesidatisplayArrayForObjects, there are methods that inform the delegate that the
WODisplayGroup has fetched, created an object (or failed to create one), inserted or deleted an object,
changed the selection, or set a value for a property. There are also methods that request permission from the
delegate to perform most of these same actions. The delegate catruettiorpermit the action dalse

to deny it. See each method’s description in the WODisplayGroup.Delegates interface specification for
more information.

Method Types

Constructor
WODisplayGroup

75

Configuring behavior
setFetchesOnLoad
fetchesOnLoad
setSelectsFirstObjectAfterFetch
selectsFirstObjectAfterFetch
setValidatesChangesimmediately
validatesChangesimmediately

Setting the data source
setDataSource
dataSource

Setting the qualifier and sort ordering
setQualifier
qualifier
setSortOrderings
sortOrderings

Managing queries
gualifierFromQueryValues
gueryMatch
queryMax
queryMin
gueryOperator
allQualifierOperators
relationalQualifierOperators
setDefaultStringMatchFormat
defaultStringMatchFormat
setDefaultStringMatchOperator
defaultStringMatchOperator
qualifyDisplayGroup
gualifyDataSource
inQueryMode
setinQueryMode

Fetching objects from the data source
fetch

Getting the objects
allObjects
displayedObjects

76

Classes: WODisplayGroup

Batching the results

Updating display of values

Setting the objects

Changing the selection

Examining the selection

Inserting and deleting objects

setNumberOfObjectsPerBatch
numberOfObjectsPerBatch
hasMultipleBatches
displayNextBatch
displayPreviousBatch
batchCount
setCurrentBatchindex
currentBatchindex
indexOfFirstDisplayedObject
indexOfLastDisplayedObject
displayBatchContainingSelectedObject

redisplay
updateDisplayedObjects

setObjectArray

setSelectionindexes

selectObjectsldenticalTo
selectObjectsldenticalToAndSelectFirstOnNoMatch
selectObject

clearSelection

selectNext

selectPrevious

selectionindexes
selectedObject
selectedObjects

insertNewObjectAtindex

insert
setinsertedObjectDefaultValues
insertedObjectDefaultValues
deleteObjectAtindex
deleteSelection

delete

77

Setting up a detail display group
hasDetailDataSource
setMasterObiject
masterObiject
setDetailKey
detailKey

Working with named fetch specifications
gueryBindings

Setting the delegate
setDelegate
delegate

Constructors
WODisplayGroup
publicWODisplayGroup()

Creates and returns a new WODisplayGroup. The WODisplayGroup then needs to have an EODataSource
(defined in EOControl) set wittetDataSource

Instance Methods

allObjects
public NSArrayallObjects()

Returns all of the objects collected by the receiver.

See also: displayedObjects fetch

allQualifierOperators
public NSArrayallQualifierOperators ()

Returns an array containing all of the relational operators supported by EOControl's EOQualifier: =, I=, <,
<=, > >= ‘ike” and “caselnsensitiveLiké.

See also: queryOperator, relationalQualifierOperators

78

Classes: WODisplayGroup

batchCount
public intbatchCount()

The number of batches to display. For example, if the displayed objects array contains two hundred records
and the batch size is tdmtchCount returns twenty (twenty batches of ten records each).

See also: currentBatchindex, displayNextBatch displayPreviousBatch hasMultipleBatches
numberOfObjectsPerBatch

clearSelection
public boolearclearSelectiorf)

InvokessetSelectionindexeso clear the selection, returnitigie on success arfdlse on failure.

currentBatchindex
public intcurrentBatchindex()

Returns the index of the batch currently being displayed. The total batch count equals the number of
displayed objects divided by the batch size. For example, if the WODisplayGroup has one hundred objects
to display and the batch size is twenty, there are five batches. The first batch has a batch index of 1.

See also: batchCount, numberOfObjectsPerBatch setCurrentBatchindex

dataSource
public com.apple.yellow.eocontrol. EODataSoule¢gaSource)

Returns the receiver’s EODataSource (defined in the EOControl framework).

See also: hasDetailDataSourcesetDataSource

defaultStringMatchFormat
public java.lang.StringlefaultStringMatchFormat ()

Returns the format string that specifies how pattern matching will be performed on string values in the
queryMatch dictionary. If a key in thgueryMatch dictionary does not have an associated operator in the
queryOperator dictionary, then its value is matched using pattern matching, and the format string returned
by this method specifies how it will be matched.

See also: defaultStringMatchOperator , setDefaultStringMatchFormat

79

80

defaultStringMatchOperator
public java.lang.StringlefaultStringMatchOperator ()

Returns the operator used to perform pattern matching for string valuegjuetigatch dictionary. If a
key in thequeryMatch dictionary does not have an associated operator iuitiyOperator dictionary,
then the operator returned by this method is used to perform pattern matching. Unless the default is
changed, this method returns caselnsensitiveLike.

See also: defaultStringMatchFormat, setDefaultStringMatchOperator

delegate
public java.lang.Objedelegatd)

Returns the receiver’s delegate.

See also: setDelegate

delete
public java.lang.Objedeletq))

UsesdeleteSelectiorto attempt to delete the selected objects and then causes the page to reload. Returns
null to force reloading of the web page.

See also: deleteObjectAtindex

deleteObjectAtindex
public booleardeleteObjectAtindex(int index

Attempts to delete the objectiatiex returningtrue if successful anthlseif not. Checks with the delegate
using the methodhouldDeleteObiject If the delegate returralse, this method fails and returfeise. If
successful, it sends the delegatédbDeleteObjectmessage.

This method performs the delete by sendialpteObjectto the EODataSource (defined in the EOControl
framework). If that message raises an exception, this method fails and faksgns

See also: delete deleteSelection

Classes: WODisplayGroup

deleteSelection
public booleardeleteSelectiof)

Attempts to delete the selected objects, returtring if successful anéalseif not.

See also: delete deleteObjectAtindex

detailKey
public java.lang.StringetailKey()

For detail display groups, returns the key to the master object that specifies what this detail display group
represents. That is, if you send the object returned hyésterObject method avalueForKey: message
with this key, you obtain the objects controlled by this display group.

This method returnsull if the receiver is not a detail display group or if the detail key has not yet been set.
You typically create a detail display group by dragging a to-many relationship from EOModeler to an open
component in WebObijects Builder.

See also: hasDetailDataSourcemasterObject, setDetailKey

displayBatchContainingSelectedObject
public java.lang.ObjedisplayBatchContainingSelectedObjed)

Displays the batch containing the selection and sets the current batch index to that batch’s index. Returns
null to force the page to reload.

See also: : displayNextBatch displayPreviousBatch setCurrentBatchindex

displayedObijects
public NSArraydisplayedObjectg)

Returns the objects that should be displayed or otherwise made available to the user, as filtered by the
receiver’s delegate, by the receiver’s qualifier and sort ordering.

If batching is in effectdisplayedObjectsreturns the current batch of objects.

See also: allObjects, updateDisplayedObjects qualifier, setSortOrderings displayArrayForObjects
(delegate method)

81

82

displayNextBatch
public java.lang.ObjedisplayNextBatch()

Increments the current batch index, displays that batch of objects, and clears the selection. If the batch
currently being displayed is the last batch, this method displays the first batch of objects. Réittons
force the page to reload.

See also: batchCount, currentBatchindex, displayBatchContainingSelectedObject
displayPreviousBatch

displayPreviousBatch
public java.lang.ObjedisplayPreviousBatch)

Decrements the current batch index, displays that batch of objects, and clears the selection. If the batch
currently being displayed is the first batch, this method displays the last batch of objects. iRéittons
force the page to reload.

See also: batchCount, currentBatchindex, displayBatchContainingSelectedObjectdisplayNextBatch

fetch
public java.lang.Objedetch()

Attempts to fetch objects from the EODataSource (defined in the EOControl framework).

Before fetching, this method sendisplayGroupShouldFetchto the delegate. If this method was
successful, it then sendfetichObjectsmessage to the receiver's EODataSource to replace the object array,
and if successful sends the delegatdid&etchObjects message.

This method returnsull to force the page to reload.

See also: allObjects, updateDisplayedObjects

fetchesOnLoad

public boolearfetchesOnLoad)
Returngrue if the receiver fetches automatically after the component that contains it is |tsed,it
must be told explicitly to fetch. The defaultige. You can set this behavior in WebObjects Builder using

the Display Group Options panel. Note that if the display group fetches on load, it performs the fetch each
time the component is loaded into the web browser.

See also: fetch, setFetchesOnlLoad

Classes: WODisplayGroup

hasDetailDataSource
public boolearhasDetailDataSourcé€)

Returngrue if the display group’s data source is an EODetailDataSource (defined in the EOControl
framework), andalse otherwise. If you drag a to-many relationship from EOModeler to an open
component in WebObjects Builder, you create a display group that has an EODetailDataSource. You can
also set this up using the Display Group Options panel in WebObjects Builder.

See also: detailKey, masterObject

hasMultipleBatches
public boolearhasMultipleBatcheq)

Returngrue if the batch count is greater than 1. A display group displays its objects in batches if the
numberOfObjectsPerBatchmethod returns a number that is less than the number of objects in the
displayedObjectsarray.

See also: batchCount, setNumberOfObjectsPerBatch

indexOfFirstDisplayedObject
public intindexOfFirstDisplayedObject()

Returns the index of the first object displayed by the current batch. For example, if the current batch is
displaying items 11 through 20, this method returns 11.

See also: indexOfLastDisplayedObject

indexOfLastDisplayedObject
public intindexOfLastDisplayedObjecy)

Returns the index of the last object display by the current batch. For example, if the current batch is
displaying items 11 through 20, this method returns 20.

See also: indexOfFirstDisplayedObject

inQueryMode
public booleannQueryMode()

Returngrue to indicate that the receiver is in query mddise otherwise. In query mode, controls in the
user interface that normally display values become empty, allowing users to type queries directly into them
(this is also known as a “Query by Example” interface). In effect, the receiver’s “displayedObjects” are

83

84

replaced with an empiyueryMatch dictionary. WhemualifyDisplayGroup or qualifyDataSourceis
subsequently invoked, the query is performed and the display reverts to displaying values—this time, the
objects returned by the query.

See also: setinQueryMode

insert
public java.lang.Objedhsert()

InvokesinsertNewObjectAtindex with an index just past the first index in the selection, or at the end if
there’s no selection.

This method returnsull to force the page to reload.

insertedObjectDefaultValues
public NSDictionaryinsertedObjectDefaultValueg)

Returns the default values to be used for newly inserted objects. The keys into the dictionary are the
properties of the entity that the display group manages. If the dictionary returned by this method is empty,
theinsert method adds an object that is initially empty. Because the object is empty, the display group has
no value to display on the HTML page for that object, meaning that there is nothing for the user to select
and modify. Use theetinsertedObjectDefaultValuesmethod to set up a default value so that there is
something to display on the page.

insertNewObjectAtindex
public java.lang.ObjedhsertNewObjectAtindex(int indeX

Asks the receiver's EODataSource (defined in the EOControl framework) to create a new object by sending
it acreateObjectmessage, then inserts the new object . If a new object can't be created, this method sends
the delegate ereateObjectFailedForDataSourcemessage.

If the object is successfully created, this method then sets the default values specified by
insertedObjectDefaultValues

See also: insert

Classes: WODisplayGroup

masterObject
public java.lang.ObjeanasterObject()

Returns the master object for a detail display group (a display group that represents a detail in a
master-detail relationship). A detail display group is one that uses an EODetailDataSource (defined in the
EOControl framework). You create a detail display group by dragging a to-many relationship from
EOModeler to an open component in WebObjects Builder. If the display group is not a detail display group
or does not have a master object set, this method retulins

See also: detailKey, hasDetailDataSourcesetMasterObject

numberOfObjectsPerBatch
public intnumberOfObjectsPerBatch()

Returns the batch size. You can set the batch size ssiNgmberOfObjectsPerBatchor using
WebObjects Builder’s Display Group Options panel.

qualifier
public com.apple.yellow.eocontrol. EOQualifagralifier ()

Returns the receiver’s qualifier, which it uses to filter its array of objects for display when the delegate
doesn’t do so itself.

See also: displayedObjects setQualifier:,updateDisplayedObjects

qualifierFromQueryValues
public com.apple.yellow.eocontrol. EOQualifaralifierFromQueryValues()

Builds a qualifier constructed from entries in these query dictionariesyMatch, queryMax,
queryMin, andqueryOperator.

See also: qualifyDataSource qualifyDisplayGroup

qualifyDataSource
public voidqualifyDataSource()

Takes the result afualifierFromQueryValues and applies to the receiver’s data source. The receiver then
sends itself #etch message. If the receiver is in query mode, query mode is exited. This method differs

85

86

from qualifyDisplayGroup as follows: whereagualifyDisplayGroup performs in-memory filtering of
already fetched objectqualifyDataSourcetriggers a new qualified fetch against the database.

See also: queryMatch, queryMax,, queryMin ,queryOperator

qualifyDisplayGroup
public voidqualifyDisplayGroup ()
Takes the result of thgualifierFromQueryValues and applies to the receiver ussgfQualifier. The

methodupdateDisplayedObijectsis invoked to refresh the display. If the receiver is in query mode, query
mode is exited.

See also: qualifyDataSource queryMatch, queryMax, -queryMin , queryOperator

queryBindings
public NSMutableDictionargueryBindings()

Returns a dictionary containing the actual values that the user wants to query upon. You use this method to
perform a query stored in the model file. Bind keys in this dictionary to elements on your component that
specify query values, then pass this dictionary to the fetch specification that performs the fetch.

gueryMatch
public NSMutableDictionargueryMatch()

Returns a dictionary of query values to match. GhalifierFromQueryValues method uses this
dictionary along with thgueryMax andqueryMin dictionaries to construct qualifiers.

Use thegueryOperator dictionary to specify the type of matching (=, <like, and so on) for each key
in thequeryMatch dictionary.

If the queryOperator dictionary does not contain a key contained ingilreryMatch dictionary, the

default is to match the value exactly (=) if the value is a number or a date and to perform pattern matching
if the value is a String. In the case of string valuesdéfaultStringMatchFormat and
defaultStringMatchOperator specify exactly how the pattern matching will be performed.

See also: allQualifierOperators, qualifyDataSource qualifyDisplayGroup,
relationalQualifierOperators

Classes: WODisplayGroup

gueryMax
public NSMutableDictionargueryMax()

Returns a dictionary of “less than” query values. GhalifierFromQueryValues method uses this
dictionary along with thgueryMatch andqueryMin dictionaries to construct qualifiers.

See also: qualifyDataSource qualifyDisplayGroup, queryOperator

queryMin
public NSMutableDictionargueryMin ()

Returns a dictionary of “greater than” query values. dimdifierFromQueryValues method uses this
dictionary along with thgueryMatch andqueryMin dictionaries to construct qualifiers.

See also: qualifyDataSource qualifyDisplayGroup, queryOperator

queryOperator
public NSMutableDictionargueryOperator ()

Returns a dictionary of operators to use on items igukeyMatch dictionary. If a key in thgueryMatch
dictionary also exists igueryOperator, that operator for that key is used. BEliQualifierOperators
method returns the operator strings you can use as values in this dictionary.

See also: qualifierFromQueryValues, queryMax, queryMin, relationalQualifierOperators

redisplay
public voidredisplay()

Sends out a contents changed notification.

relationalQualifierOperators
public NSArrayrelationalQualifierOperators ()

Returns an array containing all of the relational operators supported by EOControl’s EOQualifier: =, !=, <,
<=, >, and >=. In other words, returns all of the EOQualifier operators except for the ones that work
exclusively on strings:like” and “caselnsensitiveLiké.

See also: allQualifierOperators, queryOperator

87

88

selectedObject
public java.lang.ObjecelectedObject)

Returns the first selected object in the displayed objects arnawil of there’s no such object.

See also: displayedObjects selectionindexesselectedObjects

selectedObjects
public NSArrayselectedObject§)

Returns the objects selected in the receiver’s displayed objects array.

See also: displayedObjects selectionindexesselectedObject

selectionindexes
public NSArrayselectionindexeg)

Returns the selection as an array of integers. The integers are indexes into the array returned by
displayedObjects

See also: selectedObjectselectedObjectssetSelectionindexes

selectNext
public java.lang.ObjecelectNex()

Attempts to select the object just after the currently selected one. The selection is altered in this way:

« If there are no objects, does nothing.

« If there’s no selection, selects the object at index zero.

« If the first selected object is the last object in the displayed objects array, selects the first object.
» Otherwise selects the object after the first selected object.

This method returnsull to force the page to reload.

See also: selectPrevioussetSelectionindexes

Classes: WODisplayGroup

selectObject
public boolearselectObjecfjava.lang.ObjecanObjec}

Attempts to select the object equabttObjectin the receiver’s displayed objects array, returiiing if
successful anthlse otherwiseanObjectis equal to an object in the displayed objects array if its address is
the same as the object in the array.

See also: selectNext selectPrevious

selectObjectsldenticalTo
public boolearselectObjectsldentical T§NSArray objectSelection

Attempts to select the objects in the receiver’s displayed objects array whose addresses are equal to those
of objects, returningrue if successful anéhlse otherwise.

See also: setSelectionindexesselectObjectsldenticalToAndSelectFirstOnNoMatch

selectObjectsldenticalToAndSelectFirstOnNoMatch
public boolearselectObjectsldenticalToAndSelectFirstOnNoMatcKNSArray objects boolearflag)

Selects the objects in the receiver’s displayed objects array whose addresses are equal whfrote of
returningtrue if successful anéalse otherwise. If no objects in the displayed objects array match objects
andflagis true, attempts to select the first object in the displayed objects array.

See also: setSelectionIndexesselectObjectsldenticalTo

selectPrevious
public java.lang.ObjectelectPrevious)

Attempts to select the object just before the presently selected one. The selection is altered in this way:

« If there are no objects, does nothing.

« If there’s no selection, selects the object at index zero.

If the first selected object is at index zero, selects the last object.
» Otherwise selects the object before the first selected object.

This method returnsull to force the page to reload.

See also: selectNexjredisplay

89

90

selectsFirstObjectAfterFetch
public boolearselectsFirstObjectAfterFetch)

Returngrue if the receiver automatically selects its first displayed object after a fetch if there was no
selectionfalseif it leaves an empty selection as-is.

WODisplayGroups by default do select the first object after a fetch when there was no previous selection.

See also: displayedObjects fetch, setSelectsFirstObjectAfterFetch

setCurrentBatchindex
public voidsetCurrentBatchindex(int anint)

Displays theanint batch of objects. The total batch count equals the number of displayed objects divided
by the batch size. For example, if the WODisplayGroup has one hundred objects to display and the batch
size is twenty, there are five batches. The first batch has a batch indert@urrentBatchindex(3)

would display the third batch of objects (objects 41 to 60 in this example).

If anintis greater than the number of batches, this method displays the first batch.

See also: batchCount, currentBatchindex, displayBatchContainingSelectedObjectisplayNextBatch,
displayPreviousBatchnumberOfObjectsPerBatch

setDataSource
public voidsetDataSourcécom.apple.yellow.eocontrol. EODataSouatgataSource

Sets the receiver’'s EODataSource (defined in the EOControl framewaiBataSourceln the process, it
performs these actions:

Unregisters itself as an editor and message handler for the previous EODataSource’s EOEditingContext
(also defined in EOContral), if necessary, and registers itselabitdhaSourcs EOEditingContext. If the
new EOEditingContext already has a message handler, however, the receiver doesn’t assume that role.

Clears the receiver’s array of objects.
SenddisplayGroupDidChangeDataSourceo the delegate if there is one.

See also: dataSource

setDefaultStringMatchFormat
public voidsetDefaultStringMatchFormat(java.lang.Strindorma)

Sets how pattern matching will be performed on String values iquitigyMatch dictionary. This format
is used for properties listed in tqaeryMatch dictionary that have String values and that do not have an

Classes: WODisplayGroup

associated entry in thgueryOperator dictionary. In these cases, the value is matched using pattern
matching andormatspecifies how it will be matched.

The default format string for pattern matchingd@*” which means that the string value in the
queryMatch dictionary is used as a prefix. For example, ifgheryMatch dictionary contains a value
“Jo” for the key “Name”, the query returns all records whose name values begin with “Jo”.

See also: defaultStringMatchFormat, setDefaultStringMatchOperator

setDefaultStringMatchOperator
public voidsetDefaultStringMatchOperator(java.lang.Stringpperato))

Sets the operator used to perform pattern matching for String valuesjuettydlatch dictionary. This
operator is used for properties listed in gueryMatch dictionary that have String values and that do not
have an associated entry in tigeryOperator dictionary. In these cases, the operafmeratoris used to
perform pattern matching.

The default value for the query match operat@aselnsensitiveLike which means that the query does
not consider case when matching letters. The other possible value for this opdikatpwnisich matches
the case of the letters exactly.

See also: allQualifierOperators, defaultStringMatchOperator, relationalQualifierOperators,
setDefaultStringMatchFormat

setDelegate
public voidsetDelegat§ava.lang.ObjecanObjec}

Sets the receiver’s delegateatwObject
See also: delegate WODisplayGroup.Delegate

setDetailKey
public voidsetDetailKeyjava.lang.StringletailKey

Sets the detail key wetailKeyfor a detail display group. The detail key is the key that retrieves from the
master object the objects that this display group manages. You must set a detail key before you set a master
object.

If the receiver is not a detail display group, this method has no effect. A display group is a detail display
group if its data source is an EODetailDataSource (defined in the EOControl framework). You typically

91

92

create a detail display group by dragging a to-many relationship from EOModeler to an open component in
WebObijects Builder. Doing so sets the detail key and master object, so you rarely need to use this method.

See also: hasDetailDataSourcedetailKey, setMasterObject

setFetchesOnLoad
public voidsetFetchesOnLoa¢booleanflag)

Controls whether the receiver automatically fetches its objects after being lodtigislifrue it does; if
flagis falsethe receiver must be told explicitly to fetch. The defaudtilise You can also set this behavior
in WebObijects Builder in the Display Group Options panel.

See also: fetch, fetchesOnLoad

setinQueryMode
public voidsetinQueryMode(booleanflag)

Sets according tthag whether the receiver is in query mode. In query mode, controls in the user interface
that normally display values become empty, allowing users to type queries directly into them (this is also
known as a “Query by Example” interface). In effect, the receiver’s “displayedObjects” are replaced with
an emptyqueryMatch dictionary. WhemualifyDisplayGroup or qualifyDataSourceis subsequently

invoked, the query is performed and the display reverts to displaying values—this time, the objects returned
by the query.

See also: inQueryMode

setinsertedObjectDefaultValues
public voidsetinsertedObjectDefaultValuegNSDictionarydefaultValues

Sets default values to be used for newly inserted objects. When you usethmethod to add an object,

that object is initially empty. Because the object is empty, there is no value to be displayed on the HTML
page, meaning there is nothing for the user to select and modify. You use this method to provide at least one
field that can be displayed for the newly inserted object. The possible keys into the dictionary are the
properties of the entity managed by this display group. For example, a component that displays a list of
movie titles and allows the user to insert new movie titles might contain these statements to ensure that all
new objects have something to display as a movie title:

[defaultValues setObject:@"New title" forkey:@"title"];
[movies setinsertedObjectDefaultValues:defaultValues];

See also: insertedObjectDefaultValues

Classes: WODisplayGroup

setMasterObject
public voidsetMasterObjecijava.lang.ObjectasterObjeqt

Sets the master objectrmasterObjector detail display groups and then performs a fetch if the display
group is set to fetch on load. The master object owns the objects controlled by this display group.

Before you use this method, you should uses#iBetailKeyto set the key to this relationship. You

typically create a detail display group by dragging a to-Many relationship from EOModeler to an open
component in WebObjects Builder. Doing so sets the master object and detail key, so you typically do not
have to use this method.

If the receiver is not a detail display group, this method has no effect.

See also: hasDetailDataSourcemasterObject

setNumberOfObjectsPerBatch
public voidsetNumberOfObjectsPerBatclfint coun)

Sets the number of objects the receiver displays at a time. For example, suppose you are displaying one
hundred records. Instead of displaying all of these at once, you can set the batch size so that the page
displays a more manageable number (for example, 10). WebObjects Builder allows you to set the number
of objects per batch on the Display Group Options panel.

See also: batchCount, displayNextBatch displayPreviousBatch numberOfObjectsPerBatch

setObjectArray

public voidsetObjectArray (NSArray objects
Sets the receiver’s objectsdbjects regardless of what its EODataSource (defined in the EOControl
framework) provides. This method doesn't affect the EODataSource’s objects at all; specifically, it results
in neither inserts nor deletes of objects in the EODataSabjaxtsshould contain objects with the same

property names or methods as those accessed by the receiver. This method isetcletblset the array
of fetched objects; you should rarely need to invoke it directly.

After setting the object array, this method restores as much of the original selection as possible. If there’s
no match and the receiver selects after fetching, then the first object is selected.

See also: allObjects, displayedObjects fetch, selectsFirstObjectAfterFetch

93

94

setQualifier
public voidsetQualifier(com.apple.yellow.eocontrol. EOQualifi@Qualifien

Sets the receiver’s qualifier &Qualifier This qualifier is used to filter the receiver’s array of objects for
display. UsaupdateDisplayedObjectsto apply the qualifier.

If the receiver’s delegate respondsligplayArrayForObjects, that method is used instead of the qualifier
to filter the objects.

See also: displayedObijects qualifier

setSelectionindexes
public boolearsetSelectionindexedNSArray selection

Selects the objects sttlectionin the receiver’s array if possible, returninge if successful anthlseif not
(in which case the selection remains unaltersglpctionis an array of java.lang.Integers. This method is
the primitive method for altering the selection; all other such methods invoke this one to make the change.

This method checks the delegate witthauldChangeSelectionTolndexemessage. If the delegate
returnsfalse this method also fails and retumiatse If the receiver successfully changes the selection, its
observers each receivesabjectChangedmessage and, if necessary, a
displayGroupDidChangeSelectedObjectsnessage.

Note: The selection set here is only a programmatic selection; the objects on the screen are not highlighted
in any way.

See also: allObjects

setSelectsFirstObjectAfterFetch
public voidsetSelectsFirstObjectAfterFetcliboolearflag)

Controls whether the receiver automatically selects its first displayed object after a fetch when there were
no selected objects before the fetcHldd is true it does; ifflag is falsethen no objects are selected.

WODisplayGroups by default do select the first object after a fetch when there was no previous selection.

See also: displayedObjects fetch, selectsFirstObjectAfterFetch

Classes: WODisplayGroup

setSortOrderings
public voidsetSortOrderinggNSArray keySortOrderArray

Sets the EOSortOrdering objects (defined in the EOControl frameworkiypitiate DisplayedObjects
uses to sort the displayed objects to orderings.ugdateDisplayedObjectsto apply the sort
orderings.You can also set this value using the WebObjects Builder Display Group Options panel.

If the receiver’s delegate respondglisplayGroup:displayArrayForObjects: , that method is used
instead of the sort orderings to order the objects.

See also: displayedObjects sortOrderings, updateDisplayedObjects

setValidatesChangesimmediately
public voidsetValidatesChangesimmediatel{pooleanflag)

Controls the receiver’s behavior on encountering a validation error. In the Web context, this method has no
effect.

WODisplayGroups by default don't validate changes immediately.

See also: —saveChangegin EOControl's EOEditingContext), - tryToSaveChanges (EOEditingContext
Additions),validatesChangesimmediately

sortOrderings
public NSArraysortOrderings()

Returns an array of EOSortOrdering objects (defined in the EOControl framework) that
updateDisplayedObjectsuses to sort the displayed objects, as returned lmighkyyedObjectsmethod.

See also: setSortOrderings

updateDisplayedObjects
public voidupdateDisplayedObjectg)

Recalculates the receiver’s displayed objects arrays and redisplays. If the delegate responds to
displayArrayForObjects, it's sent this message and the returned array is set as the WODisplayGroup’s
displayed objects. Otherwise, the receiver applies its qualifier and sort ordering to its array of objects. In
either case, any objects that were selected before remain selected in the new displayed object’s array.

See also: redisplay, allObjects, displayedObjects qualifier, selectedObjectssortOrderings

95

96

validatesChangesimmediately
public boolearvalidatesChangesimmediatelf)

Returndrue if the receiver immediately handles validation errors, or leaves them for the EOEditingContext
(defined in the EOControl framework) to handle when saving changes.

By default, WODisplayGroups don't validate changes immediately.

See also: setValidatesChangesimmediately

Classes: WODynamicElement

WODynamicElement
Inherits From: WOElement : NSObject
Package: com.apple.yellow.webobjects

Class Description

WODynamicElement is an abstract superclass for classes that generate dynamic elements: objects
representing HTML or PDF elements whose values can programmatically change at run time. Dynamic
elements have a name and one or npooperties instance variables holding such things as user-entered

data or user-triggerable actions. The properties of a dynamic element are associated with, or "bound" to, the
properties of the WOComponent object that represents the page (or portion of a page) in which the dynamic
element appears.

At runtime, a dynamic element can extract values from the request, feed those values across the bindings
to the owning component, receive back new data, and include that data in the next representation of the
page. A dynamic element can also detect if the user has manipulated it (for instance, clicking a button) to
signal some intention and then trigger the appropriate action method in the owning WOComponent. The
bindings between properties of a dynamic element and properties of a WOComponent are made possible
by associationsobjects that know how to "push™ and "pull” values to and from another object using keys.
All objects that inherit from NextObject have associative capabilities through NextObjects’s
implementation of the KeyValueCoding interface.

WODynamicElements must implement the default constructor to initialize their instance variables with the
appropriate association objects (passed in). As WOElement objects, they must also implement one or more
of the three request-handling methods. In the context of request handling, a dynamic element can use its
associations to:

« Push request values into the associated properties of their WOCompake¥aluesFromRequesk
 Invoke action methods of the WOComponemtdkeActionForReques)

« Extract values from the WOComponent when composing a dynamic HTML response
(appendToResponse

All dynamic elements must implemeamppendToResponself they accept user input or respond to user
actions (such as mouse clicks), they should impletaéry/aluesFromRequestand
invokeActionForRequest respectively.

Note: If you write a dynamic element that appends content to the response (this is typically done by
overridingappendToResponsk be sure to verify that the request is not client-side:
public void appendToResponse(WOResponse r, WOContext c){
if('c.request().isFromClientComponent()){

97

/I append content here

}
}

Dynamic elements do not know about their WOComponent object until run time. During request-handling,
the application stores components (representing a page and subcomponents on the page) on a stack
maintained by the WOContext object, with the currently referenced WOComponent on top of the stack. A
dynamic element's WOAssociation retrieves the current WOComponent (through an invocation of
WOContext'ssomponentmethod) and reads and writes values from and to the WOComponent using
KeyValueCoding methods.

A dynamic element can represent a single HTML or PDF element (such as an editable text field) or a
compound element, such as the LoginPanel whose implementation is described below. WebObjects
includes a suite of ready-made dynamic elements and the WebObjects Builder application makes these
objects available on its palettes. Thynamic Elements Referendescribes WebObjects' dynamic

elements and provides examples showing how to use them.

Method Types

Constructors
WODynamicElement

Constructors

98

WODynamicElement

publicWODynamicElement()
publicWODynamicElement(java.lang.StringaName
com.apple.yellow.foundation.NSDictionaagsociationsWOElementnElemerit

Returns a dynamic element identified by clNameand initialized with the objects in dictionary
associationsThe dictionary contains WOAssociation objects, which know how to take values from, and
set values in, an "owning" WOComponent. To properly initialize a dynamic element, you should use the
published keys of the dynamic element to get the associations that belong to the dynamic element; then
assign these objects to instance variablesafiidemenargument, if nohull, is the root object of a graph

of WOElements associated with the dynamic element.

Typically, a key in thessociationglictionary is identified with a property of the element, and the value of
this key is the name of a property of the associated Component. For example, the value of key "userName"
might be bound to "employee.name" in the WOComponent; this designation means that WOComponent
has a property called "employee" (possibly referring to an "Employee" object) which in turn has a property
called "name". In this case, the binding is two-way; changes in the dynamic element are reflected in the

WOComponent property, and changes in the WOComponent property are communicated to the dynamic

Classes: WODynamicElement

element. The value of an association can also be a constant, in which case the binding is one-way:
WOComponent to dynamic element.

99

100

Classes: WOElement

WOElement
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

The WOEIlement class is the abstract superclass of all objects that represent static and dynamic Ul elements
on a World Wide Web page (currently, HTML and PDF elements). You cannot directly instantiate objects
from WOElement; you must create a concrete subclass of WOElement and generate objects from it.

Note: For custom dynamic elements, you need to create a subclass of WODynamicElement.

WOElement declares the three methods corresponding to the phases of the request-response loop (invoked
in the following order), but WOElement's implementations do nothing:

 takeValuesFromRequest
« invokeActionForRequest
« appendToResponse

The first argument of these messages is an object that represents the HTTP request or response (WORequest
or WOResponse). The second argument is a WOContext object that represents the context of the
transaction.

Concrete subclasses of WOElement (or WODynamicElement) must, at minimum, implement
appendToResponseSubclasses of WODynamicElement must implement one or both of the remaining

methods.
Method Types

Constructors
WOElement

Handling requests
appendToResponse
invokeActionForRequest
takeValuesFromRequest

101

Constructors

WOElement
public WOElement()

Returns an initialized WOElement.

Instance Methods

appendToResponse
public voidappendToRespons@VOResponsaResponsaVOContexiaContex}

This method is invoked in WOEIlement objects in the request-handling phase when objects involved in the
current transaction append their HTML content to the transaction's WOResponse object. If the WOElement
has child WOElements, it should forward the message to them. WOElement's default implementation of
this method does nothing.

See also: WOResponse class for methods used to append HTML content

invokeActionForRequest
public WOElemeninvokeAction(WORequesaRequestWOContextaContex}

This method is invoked in WOElements in the phase of request handling that results in the triggering of an
action method and the return of a response WOComponent. In this phase, the message is propagated
through the objects of the application until the dynamic element for the activated HTML control (for
instance, a custom button) responds to the message by invoking the method in the request component that
is bound to the action. To see if it has been activated, the dynamic element should check its element ID
(obtained from its WOContext) against the sender ID in the request and context. To invoke the action
method, the dynamic element should return the value of the action. The default WOElement
implementation of this method returns null

See also: WOContext class for a description of element IDs

takeValuesFromRequest
public voidtakeValuesFromRequesfWwWORequesaRequestWOContexiaContext

This method is invoked in (dynamic) WOEIlement objects during the phase of request handling that extracts
user-entered data. Each dynamic element acquires any entered data (such as HTML form data) or changed
state (such as a check in a check box) associated with an attribute and assigns the value to the

102

Classes: WOElement

WOComponent variable bound to the attribute. In this way, even back-end business objects are updated.
The default WOElement implementation of this method does nothing.

See also: WORequest class for methods used to extract form data

103

104

Classes: WOMailDelivery

WOMailDelivery

Inherits From: NSObiject

Package: com.apple.yellow.webobjects

Class Description

WOMailDelivery uses a tool compiled on all platforms:
/System/Library/WebObjects/Executables/WOSendMail[.exe] . This tool constructs an

email message from a file and uses SMTP to send it. It requires an SMTP server to be set. There is a default
value for this SMTP hostname: “smtp”. To change this value, use the following command:

defaults write NSGlobalDomain WOSMTPHost “aHostName”
Note that this default can be handled by WOApplication as a command-line argument.

There is only one instance of WOMailDelivery, which you access withhitagedInstancestatic. You
cannot create one of your own.

Method Types
Obtaining an instance
sharedInstance
Composing mail
composeComponentEmail
composePlainTextEmail
Sending mail
sendEmail

105

Static Methods

sharedInstance
public static WOMailDeliverysharedinstance)

Instance Methods Returns the current application’s WOMailDelivery instance. Use this method instead of
creating an instance of your own.

composeComponentEmail

public java.lang.StringomposeComponentEmafjava.lang.Stringendey
com.apple.yellow.foundation.NSArralestination
com.apple.yellow.foundation.NSArragAddresses
java.lang.Stringubject
WOComponenaComponent
boolearflag)

Composes an email messagdestinatiorwith “from,” “cc,” and “subject” lines. The body of the message

is the HTML generated when this method invogererateResponsenaComponentWOMailDelivery

uses the WOCGIAdaptorURL default to complete all URLs in the message to be mailed, so the email’s
reader can click on the URLSs to visit them.

If flagis true, the message is sent immediately.

composePlainTextEmail

public java.lang.StringomposePlainTextEmaifjava.lang.Stringender
com.apple.yellow.foundation.NSArralestination
com.apple.yellow.foundation.NSArragAddresses
java.lang.Stringubject
java.lang.Stringnessage
booleanflag)

Composes an email messagééstinationwith “from,” “cc,” and “subject” lines, setting the content type
of the email as (Content-type: TEXT/PLAIN; CHARSET=US-ASCIIXldg is YES, the message is sent
immediately.

sendEmail
public voidsendEmailjava.lang.StringnailString

SendsanEmail with anEmailbeing a String following the SMTP format. Tbempose...Emaiimethods
return such Strings and this method lets you modify those strings before sending them.

106

Classes: WORequest

WORequest
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

A WORequest object typically represents an HTTP request and thus constitutes an event that requires a
reaction from a WebObijects application. WORequest objects encapsulate the data transmitted to a HTTP
server in a request. Requests originate from user actions in a browser, such as the submission of a URL or
a mouse click on a hyperlink, button, or active image in a page; from the perspective of WebObjects, the
URL identifies a WebObjects application and the click on a control usually results in the display of a page
of a WebObjects application. Such actions cause the browser to send an HTTP request to an HTTP server,
which forwards the request to a WebObjects adaptor, which converts it to a WORequest object and sends
that object to the appropriate request handler.

WORequest objects can also be created from HTTP requests sent by client-side components (Java applets
specially modified to interact with the server side of a WebObjects application), and from HTTP requests
submitted by custom client-side programs that don't use the Java client-side components. More rarely,
WORequest objects can originate from custom adaptors that handle HTTP request$iTTP events.

(All the adaptors shipped with WebObjects handle HTTP events only).

Since adaptors usually create WORequest objects, and since you can usually use WebObjects' adaptors
without modifications, you probably won't have to create your own instances of WORequest in your code
(although you can if you need to). More typically, your code will obtain information from WORequest
objects as they become available during certain points in the request-response loop. The application
supplies WORequest objects as arguments itatte/aluesFromRequest:inContext:and
invokeActionForRequest:inContext: methods, which are implementable by WOApplication,

WOSession, WOComponent, and WOElement objects. You can also obtain the current WORequest object
at any time during request handling through WOConteatjsest method.

Note: Because WORequest objects usually correspond to HTTP requests, the data they encapsulate is
almost the same as what you would find in an HTTP request. Thus an understanding of HTTP
requests is important for understanding the data vended by WORequest objects. A recommended
prerequisite therefore is to review the current HTTP specification or HTTP documentation.

Method Types

Constructors
WORequest

107

108

Working with cookies

Form values

Headers

Request handling

Form Values

Obtaining attributes

cookieValueForKey
cookieValues
cookieValuesForKey

defaultFormValueEncoding
formValueEncoding

formValueForKey

formValueKeys

formValues

formValuesForKey
isFormValueEncodingDetectionEnabled

headerForKey
headerKeys
headersForKey

requestHandlerKey
requestHandlerPath
requestHandlerPathArray

setDefaultFormValueEncoding
setFormValueEncodingDetectionEnabled

adaptorPrefix
applicationName
applicationNumber
browserLanguages
content

httpVersion
isFromClientComponent
method

uri

userinfo

Classes: WORequest

Constructors

WORequest

publicWORequest)

publicWORequest{java.lang.StringaMethod
java.lang.StringnURL,
java.lang.StringnHTTPVersion
NSDictionarysomeHeaders
NSDataaContent
NSDictionaryuserinfg

Returns a WORequest object initialized with the specified parameters. The first two arguments are required:
« aMethodmust be either “GET” or “POST"; anything else causes an exception to be thrown.

» aURLmust be a valid URL; if the URL is invalid, an exception is thrown.

If either argument is omitted, the constructor throws an exception.

The remaining arguments are optional; if you spewifly for these, the constructor substitutes default

values or initializes them toull. ThesomeHeaderargument (if nonhull) should be a dictionary whose

String keys correspond to header names and whose values are arrays of one or more strings corresponding
to the values of each header. TUserinfodictionary can contain any information that the WORequest

object wants to pass along to other objects involved in handling the request.

For more information on each argument, see the description of the corresponding accessor method.

See also: method, httpVersion, content, userinfo

Instance Methods
adaptorPrefix
public java.lang.StringdaptorPrefix()

Returns the part of the request's URI that is specific to a particular adaptor. This is typically a URL ending
in "/WebObjects", "/WebObijects.exe", "/WebObjects.dIl", or uppercase versions of these strings.
WebObijects uses a request's adaptor prefix to set the adaptor prefix in the generated response's URL. A
WORequest must always have an adaptor prefix.

See also: applicationName, applicationNumber, uri

109

110

applicationName
public java.lang.StringpplicationName()

Returns the part of the request's URI that identifies the application the request is intended for. This name
does not include the ".woa" extension of an application directory. A WORequest must always have an
application name specified.

See also: adaptorPrefix, applicationNumber, uri

applicationNumber
public intapplicationNumber()

Returns the part of the request's URI that identifies the particular application instance the request is
intended for. This attribute is -1 if the request can be handled by any instance of the application, which is
always the case for the first request in a session.

See also: applicationName, uri

browserLanguages
public NSArraybrowserLanguages)

Returns the language preference list from the user’s browser.

content
public NSDatacontent()

Returns the content the WORequest was initialized with (which defaultdl Jo The format of the data is
undefined, but you can usually identify it by the value of the "content-type" header.

See also: httpVersion, method

cookieValueForKey
public java.lang.StringookieValueForKey(java.lang.StringaKey)

Returns a string value for the cookie key specifiedKgy

See also: cookieValues cookieValuesForKey WOCookie class specification

Classes: WORequest

cookieValues
public NSDictionarycookieValueg)

Returns a dictionary of cookie values and cookie keys.

See also: cookieValueForKey, cookieValuesForKey WOCookie class specification

cookieValuesForKey
public NSArraycookieValuesForKeyjava.lang.StringaKey)

Returns an array of values for the cookie key specifieaKlay Use this method to retrieve information
stored in a cookie in an HTTP header. Valid keys are specified in the cookie specification.

See also: cookieValueForKey, cookieValues WOCookie class specification

defaultFormValueEncoding
public intdefaultFormValueEncoding()

Returns thelefaultstring encoding the WORequest object uses for converting form values from ASCII to
Unicode. It uses the default encoding only when it can detect no encoding from the ASCII form values or
if encoding detection is disabled. If no default form-value encoding is set, NSISOLatin1StringEncoding is
used.

See also: setDefaultFormValueEncoding

formValueEncoding
public intformValueEncoding()

Returns the encoding last used to convert form values from ASCIl to Unicode. This encoding is either the
result of an earlier detection of form-value encoding or the default form value encoding.

See also: defaultFormValueEncoding, isFormValueEncodingDetectionEnabled

formValueForKey
public java.lang.ObjedbrmValueForKey (java.lang.StringaKey)

Returns a form value identified by the naa@y If there are multiple form values identified by the same
name, only one of the values is returned, and which of these values is not defined. You should use this
method for names that you know occur only once in the name/value pairs of form data.

111

112

formValueKeys
public NSArrayformValueKeys()

Returns an array of NSStrings corresponding to the names (or keys) used to access values of a form. The
array is not sorted in any particular order, and is not necessarily sorted in the same order on successive
invocations of this method.

formValues
public NSDictionaryformValues()

Returns an NSDictionary containing all of the form data name/value pairs.

formValuesForKey
public NSArrayformValuesForKey(java.lang.StringaKey)

Returns an array of all values (as Strings) of the form identified by theatéygeThis array is not sorted

in any particular order, and is not necessarily sorted in the same order on successive invocations of this
method. You should use this method when you know that a name (key) used for accessing form data can
be matched with more than one value.

headerForKey
public java.lang.StrinpeaderForKey(java.lang.StringaKey)

Returns one value of a particular header in the header dictionary the request was initialized with. This will
be a string corresponding to one of the values of the header whose name is passed in as the key argument.
If the specified header has multiple values, only one of these values is returned, and which one of them this
is is not defined. However, on successive calls to this method, the same value will always be returned. This
method is intended to be used for headers that are known to have only one value.

headerKeys
public NSArrayheaderKeys)

Returns an array of the keys of the header dictionary the request was initialized with (which default to an
empty dictionary). This will be an array of strings corresponding to the headers' names. The array is not
sorted in any particular order, and not necessarily sorted in the same order on successive calls to this
method.

Classes: WORequest

headersForKey
public NSArrayheadersForKeyjava.lang.StringaKey)

Returns the values of a particular header that is identifiedkby The returned object contains Strings
sorted in no particular order, but which will always be sorted in the same order on successive calls to this
method. Use this method for headers that you know have (or can have) multiple values.

httpVersion
public java.lang.StringttpVersion()

Returns the HTTP version the request was initialized with. An application uses the WORequest's HTTP
version to initialize the HTTP version of the response that is generated by request handling. The
WORequest's HTTP version typically derives from the HTTP version of the client (for example, the
browser) that initiated the request.

iIsFormValueEncodingDetectionEnabled
public booleansFormValueEncodingDetectionEnabled)

Returns whether detection of form-value encoding is allowed to take place when form values are obtained.

See also: setFormValueEncodingDetectionEnabled

isFromClientComponent
public booleansFromClientComponent()

Returns whether the request originated from an event in a client-side component (that is, a Java applet that
can interact with the server side of a WebObjects application).

If you use dynamic elements and write write HTML code in the response, you should check that the request
is not from a client-side component before writing into the response.

method
public java.lang.Stringnethod()

Returns the method the WORequest object was initialized with. A WORequest's method defines where it
will look for form values. The only currently supported methods are "GET" and "PUT", which have the
same meaning as the HTTP request method tokens of the same name.

See also: content, httpVersion

113

114

requestHandlerKey
public java.lang.StringequestHandlerKey()

Returns the part of the request’'s URI which identifies the request handler. This identifies the request handle
which will process the reuquest and cannotibe

requestHandlerPath
public java.lang.StringequestHandlerPath()

Returns the part of the URL which identifies, for a given request handler, which information is requested.
Different request handlers use this part of the URL in different ways.

requestHandlerPathArray
public NSArrayrequestHandlerPathArray()

Returns the request handler path decomposed into elements.

session|D
public native java.lang.Stringessionl|¥)

Returns the session ID, pull if no session ID is found. This method first looks for the session ID in the
URL, then checks the form values, and finally checks to see if the session ID is stored in a cookie.

setDefaultFormValueEncoding
public voidsetDefaultFormValueEncodindint anEncoding

Sets the default string encoding for the receiver to use when converting its form values from ASCII to
Unicode. The default string encoding is called into play if the WORequest cannot detect an encoding from
the ASCII form values or if encoding detection is disabled. If no default form value encoding is explicitly
set, the WORequest uses NSISOLatin1StringEncoding.

See also: defaultFormValueEncoding, setFormValueEncodingDetectionEnabled

setFormValueEncodingDetectionEnabled
public voidsetFormValueEncodingDetectionEnable(boolearflag)

Enables or disables automatic detection of the best encoding for the receiver to use when it converts form
values from ASCII to Unicode. When detection is enabled, a WORequest object scans the ASCII form

Classes: WORequest

values and applies heuristics to decide which is the best encoding to use. If no specific encoding is
discernible, or if detection is disabled, the WORequest uses the default form value encoding for the
conversion.

See also: iIsSFormValueEncodingDetectionEnablegsetDefaultFormValueEncoding

uri
public java.lang.Stringri ()

Returns the Uniform Resource Identifier (URI) the WORequest was initialized with. For a session's first
request, the URI indicates the resource that the request is seeking (such as a WebObijects application); for
subsequent requests in the session, the URI indicates which page of the application should handle the
request. If the request was caused (as is usually the case) by a web browser submitting a URL to an HTTP
server, the URI is that part of the URL that follows the port number. Because the format of WebObjects
URLs and the corresponding request URI might change between different versions of WebObijects, you
should not attempt to parse the URI returned by this method. Instead, use WORequest's accessor methods
to access particular URI/URL components.

See also: adaptorPrefix, applicationName, applicationNumber

userinfo
public NSDictionaryuserinfo()

Returns the value of the user information the receiver was initialized mwillhbly default). WebObjects
imposes no restrictions on the format or content of the user information dictionary. In fact, WebObjects
classes do not themselves use the dictionary, but just pass it around as the request is handled. Custom
adaptors, for example, could initialize the dictionary with special information for other objects of an
application.

115

116

Classes: WORequestHandler

WORequestHandler
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

WORequestHandler is an abstract class that defines request handlers. A request handler is an object that can
handle requests received by the WebObjects adaptor. All WebObjects applications have multiple request
handlers that can handle certain types of requests. Three private request handlers are defined in the
WebObijects framework:

« WOComponentRequestHandler, which handles requests for actions implemented in a component.

» WODirectActionRequestHandler, which handles requests for actions implemented in a WODirectAction
class.

* WOResourceRequestHandler, which handles requests for resources.

These three request handlers handle most styles of requests that an application can typically receive. If you
want to create your own style of request, then you should write your own WORequestHandler. Unless you
write your own request handler, your code typically won't have to directly interact with

WORequestHandler objects at all.

Method Types

Constructor
WORequestHandler

Handling Requests
handleRequest

Constructors

WORequestHandler
publicWORequestHandlex()

Returns an initialized WORequestHandler.

117

Instance Methods

handleRequest
public WOResponskBandleRequesfWORequesaRequest

Request handlers must implement this method and perform all request-specific handling. By default, a
request is an HTTP request. You must supply your own server-side adaptor to accept anything other than
HTTP.

118

Classes: WOResourceManager

WOResourceManager
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

WOResourceManager manages an application’s resources. It defines methods that retrieve resources from
standard directories. Each WebObijects application contains a resource manager object, which you can
access by sendirrgsourceManagerto the WOApplication class

Method Types

Retrieving resources
pathForResourceNamed
urlForResourceNamed
Retrieving localized strings
stringForKey

Managing the application-wide data cache
flushDataCache

removeDataForKeypublic void removeDataForKey(java.lang.String
key, WOSession aSession)
setData

Controlling access
lock
unlock

Instance Methods

flushDataCache
public voidflushDataCach€)

Removes all data from the image data cache. Use this method if you are storing data in the application-wide
cache that you no longer need.

119

120

Access to the WOResourceManager object is locked at the beginning of this method and unlocked at the
end.

See also: removeDataForKeypublic void removeDataForKey(java.lang.String key, WOSession
aSession)setData

lock
public voidlock()

Locks access to the WOResourceManager object. When the WOResourceManager is locked, no other
threads may access it.

Usually, you don’t need to invoke this method in your own code. All messages that you send to a
WOResourceManager object lock access to the object at the beginning of the method and unlock access at
the end. You only need to use this method if you're subclassing WOResourceManager. In that case, you
should lock access to the WOResourceManager object in methods that load resources.

See also: unlock

pathForResourceNamed

public java.lang.StringathForResourceNamegjava.lang.String@ResourceFilg
java.lang.StringaFrameworkName
NSArraylanguagesLigt

Returns the absolute path for the resoafResourceFilelnclude the file’s extension when specifying
aResourceFilelf the file is in the application, specifll for the framework argument.

This method always returns a path like
/Local/Library/WebObjects/Applications/MyApp.woa/WebServerResources/MyResourcelt does

not return the path relative to the HTTP server’'s document root unless the entire application is located in
the document root.

Access to the WOResourceManager object is locked at the beginning of this method and unlocked at the
end.

See also: urlForResourceNamed
removeDataForKey public voidremoveDataForKey(java.lang.Strindkey WOSessioraSession

Removes the data stored in the data cache under the key key The session argument is currently ignored;
specify null to have WOResourceManager use the application-wide cache.

This method is used by default when a dynamic element requests an image or embedded object from a
database and they attribute is not set for that dynamic element. Ifkbg attribute isn’t set, the data
retrieved from the database is stored in the cache ssiBgta sent to the dynamic element, and then

Classes: WOResourceManager

removed from the cache usirgmoveDataForKey:session:If thekey attribute is set,
removeDataForKey:sessionis not invoked.

You rarely need to invoke this method yourself. Use it only if you need to limit the amount of memory your
application uses, if your application has data stored in the cache, and you know that the data is no longer
needed.

Access to the WOResourceManager object is locked at the beginning of this method and unlocked at the
end.

See also: flushDataCache

setData

public voidsetDatg NSDatasomeData
java.lang.Strinckey
java.lang.StringnimeType
WOQOSessioraSession

Adds the image or embbedded obgmieDataf MIME typetypeto the data cache for the session specify
by aSessionThe data is stored under the k&y The session argument is currently ignored; specify null
to have WOResourceManager use the application-wide cache.

This method is invoked any time a dynamic element requests an image or embedded object from a database.
You rarely need to invoke it yourself.

By default when a dynamic element requests an image from the database, WOResourceManager fetches
the image, stores it in the cache usietpata:forKey:mimeType:session; sends it to the dynamic

element, and then removes it from the cache usimpveDataForKeypublic void
removeDataForKey(java.lang.String key, WOSession aSessiojowever, if the dynamic element has

akey attribute defined, then the image is stored in the database under that key, and it is not removed from
the database.

Access to the WOResourceManager object is locked at the beginning of this method and unlocked at the
end.

See also: flushDataCache

121

122

stringForKey

public java.lang.StringtringForKey (java.lang.Strin@aKey
java.lang.String@TableNamge
java.lang.StringaDefaultValue
java.lang.StringaFrameworkName
NSArraylanguagesLigt

Returns a localized string from string tabEablestrings usingaKeyto look it up. If no string value for
the key is found in the tablaDefaultValug(optional) is returned. The method first searches the
aTablestrings file, if it exists, in each of the localizedptoj) subdirectories of the application wrapper;
searching proceeds in the order specified by the EmnagyagesListlf no string value matching the key is
found, the search then continues todfablestrings file (if it exists) directly under the Resources
directory (inside the directory with thevoa extension).

unlock
public voidunlock()

Removes the lock on the WOResourceManager object, allowing other threads to access it.

Usually, you don't need to invoke this method in your own code. All messages that you send to a
WOResourceManager object lock access to the object at the beginning of the method and unlock access at
the end. You only need to use this method if you're subclassing WOResourceManager. In that case, you
should lock access to the WOResourceManager object in methods that load resources and unlock when the
method is finished accessing the WOResourceManager object.

See also: lock

urlForResourceNamed

public java.lang.StringrIForResourceNamedjava.lang.StringaResourceFile
java.lang.StringaFrameworkName
NSArraylanguagesList
WORequesaRequest

Returns the URL associated with a resource naaRssourceFileThe URL returned is of the following
form:

WebObjects/MyApp.woa/WebServerResources/English.lprofResourceFile

Include the file’s extension when specifymigesourceFilelf the file is in the application, specifyll for
the framework argument.

This method locates resources under the application or framework. The URL returned is computed by
concatenating the application’s base URL (returned by WOApplicatiassURL method and settable

Classes: WOResourceManager

using the WOApplicationBaseURL user default) and the relative path of the resource. This method does not
check to see if the file is actually under the document root. For example, if your application is installed in
/Local/Library/WebObijects/Applications, and the method findgResourceFilen theResources

directory, it returns:

/WebObjects/MyApp.woa/ResourceslResourceFile
even though thResourcedirectory is not under the document root.

Access to the WOResourceManager object is locked at the beginning of this method and unlocked at the
end.

See also: pathForResourceNamed

123

124

Classes: WOResponse

WOResponse
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

A WOResponse object represents an HTTP response that an application returns to a Web server to complete
a cycle of the request-response loop. The composition of a response occurs during the third and final phase
of this loop, a phase marked by the propagation ddpipendToResponsenessage through the objects of

the application. The WOApplication object first sends this message, passing in a newly-created
WOResponse object as an argument. WOElement objects, which represent the dynamic and static HTML
elements on a page, respond to the message by appending their HTML representation to the content of the
WOResponse object. WOApplication, WOSession, and WOComponent objects can also respond to the
message by adding information to the WOResponse object.

A WOResponse has two major parts: HTML content and HTTP information. The content is what is
displayed in a Web browser; it can incluskcapedTML, which is HTML code shown "as is,"

uninterpreted. The other information encapsulated by a WOResponse object is in the handling the response.
This HTTP data includes headers, status codes, and version string. See the HTTP specification or HTTP
documentation for descriptions of these items.

As you might expect, the methods of the WOResponse class can be divided into two groups, those that add
to a response's HTML content and those that read and set HTTP information. The former group consists of
methods that escape HTMadpendContentHTMLAttributeValue andappendContentHTMLString)

and those that don't. For images and other binary data, you can appeneContentData You can

obtain and set the entire content of the responsecaiitent andsetContent The following example

shows a sequence of "appendContent” messages that compose an HTTP "POST" message:

aResponse.appendContentString("<form method=\"POST\" action=\"");
aResponse.appendContentHTMLAttributeValue(aContext.url());
aResponse.appendContentCharacter(™);
aResponse.appendContentString(">");

Most of the remaining WOResponse methods set and read the response's HTTP headers, the HTTP status
code, and the HTTP version.

125

126

Content Encodings

You can set the string encoding used for the response conteset@bntentEncodingand you find out
what the current encoding is witlhntentEncoding An integer represents the type of encoding. The
following table lists these integer values along with their OPENSTEP string-constant names.

int Value OPENSTEP Name Notes

1 NSASCIIStringEncoding 0 through 127

2 NSNEXTSTEPStringEncoding

3 NSJapaneseEUCStringEncoding

4 NSUTF8StringEncoding

5 NSISOLatin1StringEncoding default

6 NSSymbolStringEncoding

7 NSNonLossyASCIIStringEncoding 7-bit verbose ASCII to represent all unichars
8 NSShiftJISStringEncoding

9 NSISOLatin2StringEncoding

10 NSUnicodeStringEncoding

11 NSWindowsCP1251StringEncoding Cyrillic; same as AdobeStandardCyrillic

12 NSWindowsCP1252StringEncoding ~ Windows Latinl

13 NSWindowsCP1253StringEncoding ~ Windows Greek

14 NSWindowsCP1254StringEncoding ~ Windows Turkish

15 NSWindowsCP1250StringEncoding ~ Windows Latin2

21 NSIS0O2022JPStringEncoding ISO 2022 Japanese encoding for electronic mail

Classes: WOResponse

Interfaces Implemented

Method Types

Constructors
WOResponse

Obtaining attributes
defaultEncoding
content
headerForKey
headerKeys
headersForKey
httpVersion
status
userinfo

Setting attributes
setDefaultEncoding
setContent
setHeader
setHeaders
setHTTPVersion
setStatus
setUserInfo

Appending response content
appendContentData
appendContentString
setContentEncoding
contentEncoding

Working with HTML content
appendContentHTMLAttributeValue
appendContentHTMLString
stringByEscapingHTMLString
stringByEscapingHTMLAttributeValue

Working with cookies
addCookie
cookies
removeCookie

127

Constructors

WOResponse
publicWOResponsg€)

Returns an initialized WOResponse instance. HTTP status is set to 200 (OK), client caching is enabled, and
the default string encoding is made ISO Latin 1.

Static Methods

128

defaultEncoding
public static intdefaultEncoding()

Returns the default character encoding used to construct a new WOResponse. By default, this encoding is
NSISOLatinl. For more information, see “Content Encodings”.

setDefaultEncoding
public static voidsetDefaultEncodindint aStringEncodiny

Lets you specify the character encoding used by default when construcing a new WOResponse. For more
information, see “Content Encodings”.

stringByEscapingHTMLString
public static java.lang.StringtringByEscapingHTMLString (java.lang.Strin@String

This method takes a string and, if escaping is required, returns a new string with certain characters escaped
out. If escaping is not required, no conversion is performe@&trthgis returned. Use this method to

escape strings which will appear in the visible part of an HTML file (that is, not inside a tag). The escaped
characters are:

& &
"

< <

> >

Classes: WOResponse

stringByEscapingHTMLAttributeValue
public static java.lang.StringtringByEscapingHTMLAttributeValue (java.lang.Strin@String

This method takes astring and, if escaping is required, returns a new string with certain characters escaped
out. If escaping is not required, no conversion is performe@&trthgis returned. Use this method to
escape strings which will appear as attribute values of a tag. The escaped characters are:

& &
"

\t 	

\n

\r 

< <

> >

Instance Methods

addCookie
public voidaddCookig(WOCookieaCookig

Adds the specified WOCookie object to the response.

See also: cookies removeCookie WOCookie class specification

appendContentCharacter
public voidappendContentCharacte(byteaChan

Appends a single ASCII charactaGhar) to the HTTP response.

appendContentData
public voidappendContentDatdNSDatadataObject

Appends a data-encapsulating objeit&Objec} to the HTTP response.

129

appendContentHTMLAttributeValue
public voidappendContentHTMLAttributeValue (java.lang.StringValue

Appends an HTML attribute value to the HTTP content after transforming theatahgeinto an NSData
object using the receiver's content encoding. Special HTML characters ("<", ">", "&", and double quote)
areescapedso that the browser does not interpret them. In other words, the message

aResponse.appendContentHTMLAttributeValue('");
would transform the argument to "&lIt;B>".

See also: setContentEncoding

appendContentHTMLString
public voidappendContentHTMLString (java.lang.Strin@String

Appends an HTML string to the HTTP response after transforming the @8trigginto an NSData object
using the receiver's content encoding. Special HTML characters (<", ">", "&", and double quote) are
escapedso that the browser does not interpret them. For example, "<P>" becomes "&ItP>".

See also: setContentEncoding

appendContentString
public voidappendContentStringjava.lang.Strin@String
Appends a string to the content of the HTTP response. The string is transformed into an NSData object

using the receiver's content encoding. The special HTML characters "<", ">", "&", and double-quote are
not escaped so the browser can interpret them as HTML.

content
public NSDatacontent)

Returns the HTML content of the receiver as an NSData object.

An exception is raised if you attempt to get the content when all elements of the page have not had their
chance to append HTML to the response. Thus, you should invoke this method in the application object’s
handleRequest:method, after superlsandleRequest:has been invoked. (For scripted applications,
handleRequest:is implemented in Application.wos). Note that at this point in the request-handling

process, the components, pages, and session have already been put to sleep, so you won't have access to
any context, session, or page information. If you need such information for your response, store it

130

Classes: WOResponse

somewhere--such as in WOResponse’s “user info” dictionary—at a point when you do have access to it.
You may want to do this in your applicatiomppendToResponsenethod, for example.

See also: setContent setContentEncoding

contentEncoding
public intcontentEncodind)

Returns an integer representing the encoding used for the response content. See “Content Encodings” in the
class description for a mapped list of supported encodings and their Objective-C names. Usually, you will
want the response encoding to be the same as that used by the submitting form on the client browser. In this
case it is preferable to use WORequédstimValueEncoding.

NSStringEncoding theEncoding = [[aContext request] formValueEncoding];
The default string encoding is ISO Latin1.

See also: setContent setContentEncoding

cookies
public NSArraycookieg)

Returns an array of WOCookie objects to be included in the response.

See also: addCookie, removeCookie WOCookie class specification

headerForKey
public java.lang.StrinpeaderForKey(java.lang.StringaKey)

Returns the HTTP header information identifiecabgy If there are multiple headers associated with the
one key, only the first one is returned. Retural if there are no headers for the key.

See also: setHeader

headerKeys
public NSArrayheaderKeys)

Returns an array of string keys associated with the receiver's HTTP headers. iRetuftisere are no
headers. You could easily test to see if a header is included by doing something similar to this:

ImmutableVector hKeys = aResponse.headerKeys();
if (hKeys.contains("expires™) {

131

/I do something

}
See also: setHeaders

headersForKey
public NSArrayheadersForKeyjava.lang.StringaKey)

Returnsall HTTP headers identified laKey

See also: setHeaders

httpVersion
public java.lang.StringpttpVersion()

Returns the version of HTTP used for the response (for example, "HTTP/1.0").

See also: setHTTPVersion

removeCookie
public voidremoveCookigWOCookieaCookig

Removes the specified WOCookie object from the response.

See also: cookies removeCookie WOCookie class specification

setContent
public voidsetConten{NSDatasomeData

Sets the HTML content of the HTTP responsedmeData

See also: content

132

Classes: WOResponse

setContentEncoding
public voidsetContentEncodingint anEncoding

Sets the encoding used for the content of the HTTP response. See “Content Encodings” in the class
description for a mapped list of supported encodings and their Objective-C names. The default string
encoding is ISO Latinl.

See also: contentEncoding

setHTTPVersion
public voidsetHTTPVersion(java.lang.StringaVersion

Sets the version of HTTP used for the response (for example, "HTTP/1.0").

See also: httpVersion

setHeader
public voidsetHeade(java.lang.StringaHeader java.lang.StringKey)

Sets the HTTP headaHeaderin the receiver and associates, for retrieval, the HTTRaKeywith the
header. This method is commonly used to set the type of content in a response, for example:

aResponse.setHeader("text/html", "content-type");

See also: headerForKey

setHeaders
public voidsetHeadergNSArrayheaderList java.lang.StringKey)

Sets the list of HTTP headénsaderLisin the receiver and associates, for retrieval, the HTTRaKey
with the list of header elements.

See also: headerKeys headersForKey

setStatus
public voidsetStatugint anint)

Sets the HTTP status émint Consult the HTTP specification or HTTP documentation for the significance
of status integers.

See also: status

133

134

setUserlInfo
public voidsetUserInfaNSDictionaryaDictionary)

Sets a dictionary in the WOResponse object that, as a convenience, can contain any kind of information
related to the current response. Objects further dowayhendToResponsenessage "chain"” can retrieve
this information usingiserinfo.

status
public intstatug))

Returns an integer code representing the HTTP status. Consult the HTTP specification or HTTP
documentation for the significance of these status codes.

By default, the status is 200 ("OK" status).

See also: setStatus

userinfo
public NSDictionaryuserinfo()

Returns a dictionary that, as a convenience, can contain any kind of information related to the current
response. An object further "upstream” in éippendToResponsenessage "chain” can set this dictionary
in the WOResponse object as a way to pass information to other objects.

See also: setUserInfo

Classes: WOSession

WOQOSession
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

WOSession objects represeessionsperiods during which access to a WebObjects application and its
resources is granted to a particular client (typically a browser). An application can have many concurrent
sessions, each with its own special "view" of the application and its own set of data values. For instance,
one client could be accessing a "catalog" application, where that client is going from page to page, filling
a virtual shopping cart with items for purchase. Another client might be accessing the same application at
the same time, but that person might have different items in his or her shopping cart.

Perhaps the most important thing a WOSession object does is encapsulate state for a session. After the
application handles a request, it stores the WOSession until the next request of the session occurs. All the
information that is important for maintaining continuity throughout the session is preserved. And the
integrity of session data is maintained as well; the data of a session not only persists between requests but
is kept separate from that of all other sessions.

When you develop an application, you identify data with session-wide scope by declaring instance variables
in your subclass of WOSession (or, for scripted applicatiorSegsion.wos Then, before the end of a
cycle of the request-response loop, ensure that the instance variables hold current session values.

The application usessassion ICto identify a session object. Upon receiving the first request of a session,
the application assigns a session ID (a unigue, randomly generated string) to the session. The session ID
appears in the URL between the application name and the page name.

At the end of each cycle of the request-response loop, the application stores the WOSession object
according to the storage strategy implemented by the chosen WOSessionStore. When the application
receives the next request of the session, it restores the WOSession, using the session ID as key.

To be stored and restored according to any WOSessionStore strategy, a WOSession must be convertable to
an object archive. WOSessions are therefore asked to serialize and deserialize themselves prior to being
archived and unarchived (in either binary or ASCII format). To accomplish this, the WOSession should
implement theencodeWithCoder: andinitwWithCoder: methods of the NSCoding protocol.

Because storage of sessions in application memory can consume large amounts of memory over time,
WOSession includes methods for controlling the lifespan of session objecsetTimeOut method sets
a period of inactivity after which the session is terminatedtdimeinate method explicitly ends a session.

The WOSession class provides several other methods useful for tasks ranging from localization to database
access:

135

« WOSession objects can interject custom session behavior into the request-response loop by
implementing the request-handling methdd&€ValuesFromRequestinvokeAction, and
appendToResponseas well asawake andsleep

» For database access, tefaultEditingContext method gives each WOSession object in an application
its own Enterprise Objects editing context.

» An application's WOSession objects also play a role in localization. Througetttemguagesnethod
you can store a list of the languages supported by the application. The sequence of language strings in
the list indicates the order of language preference for a particular session. Several resource-access
methods in WOResourceManager, WOApplication, and WOComponent refelangioagesarray
when they locate such things as localized strings, images, and sounds.

» WOSession objects also allow you to affect load balancing withetiistributionEnabled method; if
the flag set by this methodfese (the default), transactions of the session are restricted to a single
application instance. If this the case, the application instance number as well as the application host name
are appended to the URL.

Method Types
Constructor
WOSession
Obtaining attributes
isDistributionEnabled
sessionID

storesIDsInCookies
storesIDsInURLSs

Setting attributes
setDistributionEnabled
setStoresIDsInCookies
setStoresIDsINURLs

Terminating
terminate
isTerminating
timeOut
setTimeOut

Localization
languages
setLanguages

136

Classes: WOSession

Managing enterprise objects
defaultEditingContext
setDefaultEditingContext

Handling requests
appendToResponse
awake
context
invokeAction
sleep
takeValuesFromRequest

Statistics
statistics

Page Management
savePage
restorePageForContextID

Constructors

WOSession
publicWOSessiorf)

Returns an initialized WOSession object. Session time-out is set by default to a very long period. This
method throws exceptions if no session ID has been assigned or if it cannot initialize the object for any other
reason. ThésDistributionEnabled flag is set tdalse meaning that each transaction will be assigned to an
application instance specified in a configuration file for load balancing

Instance Methods

appendToResponse
public voidappendToRespons@VOResponsaResponsaVOContexiaContex}

This method is invoked during the phase of the request-response loop during which the objects associated
with a response page append their HTML content to the response. WOSession's default implementation of
this method forwards the message to the WOComponent that represents the response page. Then, it records
information about the current transaction by sendiogrdStatisticsForResponsend then
descriptionForResponseo the WOStatisticsStore object.

137

138

Compiled or scripted subclasses of WOSession can override this method to replace or supplement the
default behavior with custom logic.

See also: invokeAction, takeValuesFromRequest

awake
public voidawake()

Invoked at the beginning of a WOSession's involvement in a cycle of the request-response loop, giving the
WOSession an opportunity to initialize its instance variables or perform setup operations. The default
implementation does nothing.

See also: Sleep

context
public WOContextontext()

Returns the WOContext object for the current transaction.

See also: WOContext class

defaultEditingContext
public com.apple.yellow.eocontrol. EOEditingContdgfaultEditingContext()

Returns the default EOEditingContext object for the session. The method creates the editing context the first
time that it is invoked and caches it for subsequent invocations. There is only one unique EOEditingContext
instance per session. The instance is initialized with the default object store coordinator as the parent object
store.

invokeAction
public WOElemeninvokeAction(WORequesaRequestWOContextaContex}

WOSession objects receive this message during the middle phase of the request-response loop. During this
phase, thénvokeActionForRequest:inContext: message is propagated through the objects of an

application, most importantly, the WOEIlement objects of the request page. The dynamic element on which
the user has acted (by, for example, clicking a button) responds by triggering the method in the request
WOComponent that is bound to the action. The default behavior of WOSession is to send the message to

Classes: WOSession

the WOComponent object that represents the request. Compiled or scripted subclasses of WOSession can
override this method to replace or supplement the default behavior with custom logic.

See also: appendToResponsdakeValuesFromRequest

isDistributionEnabled
public booleansDistributionEnabled()

Returns whether state distribution among multiple application instances is enabled. faksteloysdefault
since the default WOSessionStore (state in the server) does not allow distribution. If this flag is disabled, a
specific application instance (whose identifying number is embedded in the URL) is assigned to the session.

See also: setDistributionEnabled

isTerminating
public booleansTerminating()

Returns whether the WOSession object will terminate at the end of the current request-response loop.

See also: terminate

languages
public NSArraylanguageg$)

Returns the list of languages supported by the session. The order of language strings (for example,
"French") indicates the preferred order of languages. This is initialized from the users’s browser preferences
unless explicitly set witsetLanguagesFor details, see "Localization" in the WebObjects programming
topics.

See also: setLanguages

restorePageForContextID
public WOComponentestorePageForContextIjava.lang.StringontextID

Returns a page instance stored in the session page cache. The key to the stored instance is its context ID,
which derives from the transaction’s WOContext or WORequest objects. This methodmatuihs
restoration is impossible.

See also: savePage

139

140

savePage
public voidsavePagéNNOComponenaPagg

Saves the page instarefeagein the session page cache. The context ID for the current transaction is made
the key for obtaining this instance in the cache usstprePageForContextlD

savePagelnPermanentCache
pubic voidsavePagelnPermanentCach®/OComponenaPagg

PutsaPageinto a separate page cache. This cache is searched first when attempting to restore the page the
next time its requested. This effectively ma&@agelive for the duration of the application regardless of

the size of your page cache. This is useful whe you are using frames and its possible for a page of controls
to be bumped from the page cache.

See also: permanentPageCacheSizeNOApplication),setPermanentPageCacheSiZ8VOApplication)

session|D
public java.lang.StringessionlI¥)

Returns the unique, randomly generated string that identifies the session object. The session ID occurs in
the URL after the request handler key.

setDefaultEditingContext
public voidsetDefaultEditingContext{EOEditingContexeditingContext

Sets the editing context to be returnedibfaultEditingContext. This can be used to set an editing context
initialized with a different parent object store than the default. This is useful when, for instance, each session
needs its own login to the database. Once a default editing context has been established, you may not call
setDefaultEditingContext: again. Therefore, to provide your own default editing context, you must call
setDefaultEditingContext: before ever callingefaultEditingContext since that will lazily establish an

editing context.

See also: defaultEditingContext

setDistributionEnabled
public voidsetDistributionEnabled(boolearaFlag)
Enables or disables the distribution mechanism that effects load balancing among multiple application

instances. When disabled (the default), generated URLSs include the application instance number; the
adaptor uses this number to route the request to the specific application instance based on information in

Classes: WOSession

the configuration file. When this flag is enabled, generated URLs do not contain the application instance
number, and thus transactions of a session are handled by whatever application instance is available.

See also: isDistributionEnabled

setLanguages
public voidsetLanguage@NSArraylanguage¥

Sets the languages for which the session is localized. The ordering of language strings in the array
determines the order in which the application will sedaolyuagedproj directories for localized strings,
images, and component definitions.

See also: languages

setStoreslIDsInCookies
public voidsetStoresIDsInCookiegboolearflag)

Enables or disables the cookie mechanism. Two cookies are created for you when enabled: a session 1D
cookie with the name “wosid,” and an instance ID cookie with the name “woinst.” By default, the cookie
mechanism is disabled.

setStoresIDsINURLs
public voidsetStoresIDsInCookiegboolearflag)

Enables or disables the storing of session and instance IDs in URLS. By default, IDs are stored in URLSs.

setTimeOut
public voidsetTimeOut(doublesecond}p

Set the session timeout in seconds. When a session remains inactive—that is, the application receives no
request for this session—for a period longer than the time-out setting, the session will terminate, resulting
in the deallocation of the WOSession object. By default, the session time-out is set from the WOApplication

methodsessionTimeout

See also: timeOut

141

sleep
public voidsleef)

Invoked at the conclusion of each request-response loop in which the session is involved, giving the
WOSession the opportunity to deallocate objects initialized inwake method. The default WOSession
implementation does nothing.

statistics
public NSArraystatisticy)

Returns a list of the pages accessed by this session, ordered from first accessed to last. For each page, the
string stored is obtained by senddegscriptionForResponsdo the WOComponent object. By default, this

returns the component's name. If the application keeps a CLFF log file, this list is recorded in the log file
when the session terminates.

See also: appendToResponse

storesIDsInCookies
public boolearstoresIDsInCookieg)

Returns whether the cookie mechanism for storing session and instance IDs is enabled. The cookie
mechanism is disabled by default.

storesIDsInURLs
public boolearstoresIDsINURLS()

Returns whether the URL mechanism for storing session IDs and instance IDs is enabled. The URL
mechanism is enabled by default.

takeValuesFromRequest

public voidtakeValuesFromRequesfWORequesaRequestWOContexiaContext
WOSession objects receive this message during the first phase of the request-response loop. During this
phase, the dynamic elements associated with the request page extract any user input and assign the values
to the appropriate component variables. The default behavior of WOSession is to send the message to the

WOComponent object that represents the request. Compiled or scripted subclasses of WOSession can
override this method to replace or supplement the default behavior with custom logic.

See also: appendToResponsgnvokeAction

142

Classes: WOSession

terminate
public voidterminate()

Causes the session to terminate after the conclusion of the current request-response loop.

See also: isTerminating

timeOut
public doublgimeOut()

Returns the timeout interval in seconds.

See also: setTimeOut

Notifications
WOSessionDidCreateNotification
public static final java.lang.StringOSessionDidCreateNotification

Sent at the the end of the session initiation (including awake). The object of the notification is the session
instance

WOSessionDidRestoreNotification
public static final java.lang.StringOSessionDidCreateNotification

Sent after the sesion is fully restored (including awake). The object of the notification is the session
instance.

WOSessionWillTimeoutNotification
public static final java.lang.StringgOSessionDidCreateNotification

Sent when a session times out but before it is released. The session ID is the object of the notification.

143

144

Classes: WOSessionStore

WOSessionStore
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

WOSessionStore, an abstract superclass, offers an object abstraction for storing client state per session. The
application object (WOApplication) uses an instance of a concrete WOSessionStore subclass to implement
a strategy for storing and retrieving session state. You typically set the WOSessionStore during application
initialization through WOApplication'setSessionStorenethod.

An application first creates a session (WOSession) when it receives a request without a session ID. When
this first request has been handled, the application stores the WOSession object under a randomly generated
session ID by invoking its owsaveSessionForContexmnethod. This method by default forwards the

message to the chosen WOSessionStore and that WOSessionStore takes care of the details of saving session
state. When the next request comes in for that session, the application restores the session by sending itself
restoreSessionWithIQ which by default is forwarded to the application's WOSessionStore. The
WOSessionStore then asks the WOContext of the transaction for the session ID of the session. Based on
the implementation of the WOSessionStore, the session object is located and returned.

There is one subclass of WOSessionStore implemented for the developer's conversengs. A
WOSessionStore (the default) stores session state in the server, in application memory. The
serverSessionStorenethod returns this WOSessionStore.

See the chapter "Managing State" in\WebObjects Developers Guifte the purposes, mechanisms, and
limitations of session store in the server, page, and cookies.

You can create a custom session store by making a subclass of WOSessionStore. The subclass should
properly implement theaveSessionForContexandrestoreSessionWithIDmethods (using the session

ID as the key for storage) and should have a public method that the application object can use to obtain an
instance. Some interesting session stores could be:

» A database session store that stores session data in a database as blobs, with the session ID as the primary
key. This kind of WOSessionStore can be shared by many instances of the same WebObjects application,
thus distributing the load (requests) among the instances.

« An adaptive session store that stores session state either in cookies or on the server, depending on what
the client supports.

If you create your own WOSessionStore class that generates persistent objects, you should implement an
algorithm that cleans up session state after the session is inactive for a long time. The server
WOSessionStore provided by WebObjects performs this clean-up properly, but the API is not yet public.

145

Method Types

Obtaining a session store
serverSessionStore

Checking a session in and out
checkinSessionForContext
checkoutSessionWithID

Saving and restoring a context
restoreSessionWithID
saveSessionForContext

Static Methods

serverSessionStore
public static WOSessionStoserverSessionStorg

Returns a WOSessionStore object that stores session state in application memory. Since this is the default
storage strategy, you do not need to explicitly set the session store during application initialization if this is
the strategy you want.

State storage in the server is the most secure and is the easiest to implement. You can also easily manage
the amount of storage consumed by setting session timeouts, limiting the size of the page-instance cache,
and page uniquing. (See "Managing State" intlebObjects Developers Guitte details on these

techniques.)

You may use the coding constructor for the sessid@$essionNSCode)) to restore session state from
the archived data.

Instance Methods

checkinSessionForContext
public voidcheckinSessionForConteX¢vOContextaContex}

This method callsaveSessionForContextimplemented in the concrete subclass) to save the session
referred to byaContextusing whatever storage technique is supported by the receiver. This method also
“checks in” the session so that pending (and future) requests for the same session may procede. This
method is called by WOApplication to save the session even if the session was not previously checked out
via checkoutSessionWithlD(that is, the session is a new session which was just created and, therefore, not
restored).

146

Classes: WOSessionStore

checkoutSessionWithID
public WOSessiorcheckoutSessionWithIZjava.lang.StringaSessionIDWORequesaRequest

This method returns a session &3essionlDf one is stored. This method caléstoreSessionWithID
(implemented in the concrete subclass) to do the actual session restoration using whatever storage technique
is supported by the receiver. If the session is located and restored, this method also “chaSkessioti|D

so that simultaneous access to the same session is precluded. If the session is not reaesdichd

is not checked out.

restoreSessionWithID
public WOSessionestoreSessionWithlQjava.lang.StringaSession DWORequesaRequest

Implemented by a private concrete subclass to restore the current session object from a particular type of
storage.

The default implementation of this method does nothing

saveSessionForContext
public voidsaveSessionForConteX{vOContextaContex}

Implemented by a private concrete subclass to save the current session object using a particular strategy for
state storage. The default implementation of this method does nothing.

You may use the NSCoding interface metbadodeWithCoderto save session state to archived data.

147

148

Classes: WOStatisticsStore

WOStatisticsStore
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

The WOStatisticsStore object records statistics about a WebObjects application while that application runs.
All WebObjects applications have a WOStatisticsStore object, which you can access by sending
statisticsStoreto the WOApplication objedRecording Information

The WOStatisticsStore object records the bulk of its statistics at the end of each cycle of the
request-response loop. Specifically, at the end of WOSesajgpesidToResponsenethod, the

WOSession sends thecordStatisticsForResponsenessage to the WOStatisticsStore. This message tells
the WOStatisticsStore to begin recording statistics. Then, WOSession sedésdtiptionForResponse
message. This method sends the response compamhesttrgptionForResponsemessage. The default
implementation oflescriptionForResponseén WOComponent returns the component’s name.

You can overridelescriptionForResponsén each of your components if you want to record more
information. For example, you might want to record the values of all of the component’s variables or
perhaps just one or two key variables.

If you want to record extra information about the session, you can override WOStatisticsStore’s
recordStatisticsForResponse:inContextmethod.

Maintaining a Log File

You can maintain an application log file by sending the messsibegFileto the WOStatisticsStore
object. When a log file has been specified, each session records information in the log file about the pages
it accessed.

The log is maintained in Common Log File Format (CLFF) so that it can be analyzed by any standard
CLFF-analysis tool. (For more information about the statistics recorded in the log file, see the
formatDescription method description.) If a log file has been specified, the WOSession object keeps its
own statistics about which pages it has accessed. When the session terminates, it writes this information to
the log file.

149

Method Types
Constructor
WOStatisticsStore

Recording information
recordStatisticsForResponse
descriptionForResponse
setSessionMovingAverageSampleSize
transactionMovingAverageSampleSize

Retrieving information
statistics

Maintaining a CLFF log file
setLogFile
logFileRotationFrequencylnDays
logFile

Recording information in the CLFF log file
formatDescription
logString

Securing access to the WOStats page
setPassword
validateLogin

Constructors

WOStatisticsStore
public WOStatisticsStore)

Returns an initialized WOStatisticsStore.

Instance Methods
descriptionForResponse
public java.lang.StringescriptionForRespons@VOResponsaResponsaVOContextaContexy

Records information about the current response by sendimig$iceptionForResponsemessage to the
response page and returning the result. This method is invoked at the end of the request-response loop in
WOSession'sappendToResponsenethod, after theecordStatisticsForResponsanethod.

150

Classes: WOStatisticsStore

formatDescription

public java.lang.StrindprmatDescription (java.lang.StringesponseDescriptign
WOResponsaResponse
WOContextaContex}

If log file recording is enabled, this method formats the stésgonseDescriptioim using Common Log
File Format (CLFF). The resulting string contains:

» The host from which the HTTP request was received

« The name of the user that performed the request

* The current date

* The request's HTTP method (GET or PUT)

« The WebObjects application name

» The result of thelescriptionForResponsemethod (by default, this method returns the response
component’s name)

e The request’'s HTTP version

e The HTTP status of the response

« The size of the response

You enable log file recording by setting a log file usingsiéité.ogFile method.

This method is used by WOSession to record information about the current transaction when log file
recording is enabled.

See also: logFile, logString

logFile
public java.lang.StringpgFile()

Returns the full path to the CLFF log file. This log file does not exist unless yosettodFileto the
WOStatisticsStore.

See also: formatDescription, logFileRotationFrequencylinDays logString

logFileRotationFrequencylnDays
public doubldogFileRotationFrequencylnDayg)

The number of days a log file lasts. That is, a log file's contents are flushed after a certain time interval to
ensure that it does not grow too large and a new log file is started. This method returns that time interval.

Before a new log file is started, the contents of the current log file are saved to a backup file. You can then
inspect this log file and/or remove it when its data has grown stale.

See also: setLogFile

151

logString
public voidlogString(java.lang.Strin@String

Writes the strin@Stringto the CLFF log file specified bggFile. The method is used to record a session’s
statistics when that session ends. You can also use it to record any string to the log file that might be helpful
to you.

See also: formatDescription

sessionMovingAverageSampleSize
public intsessionMovingAverageSample Six)

Returns the sample size used to compute moving average statistics for each session. The WOStatisticsStore
object uses this sample size to compute the response time for thédesactions and the idle time

between the last transactions, whenmeis the number returned by this method. The default sample size is

10.

See also: setSessionMovingAverageSampleSize

recordStatisticsForResponse
public voidrecordStatisticsForRespons@VOResponsaResponseaVOContextaContext

Records statistics for the current cycle of the request-response loop. This method is invoked at the end of
WOSession'sippendToResponsenethod, immediately before thescriptionForResponsanethod. By

default, this method records the name of the response page for laterdesetigtionForResponse:
inContext:. You can override it if you want to record more information about the session before the current
request and response are deallocated. You must begin your implementation by invoking the superclass
method.

setLogFile
public voidsetLogFilg(java.lang.StrindilePath doublelogRotatior)

Sets the full path of the log file to which CLFF statistics will be recordé:Rath ThelogRotation
argument specifies the number of days statistics will be recorded to this log fileldgrmtationdays,
the contents of the current log file are saved to a backup file and a new log file is started.

The default is not to record information to a log file.

See also: logFile, logFileRotationFrequencylnDays

152

Classes: WOStatisticsStore

setSessionMovingAverageSampleSize
public voidsetSessionMovingAverageSampleSidet aSiz¢

Sets the moving average sample size for each sesa®@z®The WOStatisticsStore object uses this
sample size to compute the response time for tha%isétransactions and the idle time between the last
aSizetransactions.

The default moving average session sample size is 10 transactions.

See also: sessionMovingAverageSampleSize

setPassword
public voidsetPasswordjava.lang.Strin@aPassword

Implements security for the WOStats page by setting its passwaRhsswordBy default, there is no
password, so any user can access the WOStats page (provided they know the URL). If you implement this
method, when you enter the WOStats URL, a login panel appears. You can leave the User name field blank;
as long as you type the appropriate password in the password field, the WOStats page will appear.

See also: validateLogin

setTransactionMovingAverageSampleSize
public voidsetTransactionMovingAverageSampleSizent aSiz¢

Sets the moving average sample size for each transacti@izwThe WOStatisticsStore object uses this
sample size to compute the response time for tha$isétransactions and the idle time between the last
aSizetransactions.

The default moving average transaction sample size is 100 transactions.

See also: transactionMovingAverageSampleSize

statistics
public NSDictionarystatisticy)

Returns a dictionary containing the statistics that the WOStatisticsStore records.

The averages that are displayed by this method are not computed until this method is invoked. Therefore,
invoking this method is costly and should not be done at every request.

153

154

transactionMovingAverageSampleSize
public inttransactionMovingAverageSampleSig()

Returns the sample size used to compute moving average statistics for each transaction. The
WOStatisticsStore object uses this sample size to compute the response time fon thensactions and
the idle time between the lastransactions, whemeis the number returned by this method. The default
sample size is 100.

See also: setTransactionMovingAverageSampleSize

validateLogin
public boolearvalidateLogin(java.lang.Stringtring, WOSessiomSession

Returngrue if string is the password set lsgtPassword andfalse otherwise. The password controls if
the user can see the WOStats page.

Classes:

WOActionResults
Implemented By: WOComponent, WOResponse
Package: com.apple.yellow.webobjects

Interface Description

The WOActionResults interface is the return type for direct actions. As a convenience, direct actions can
return either WOComponent objects or WOResponse objects; both of which implement the
WOACctionResults protocol. This interface implements only one mejbodrateResponse

If you want to return any other class from a direct action, then that class must implement this protocol.
generateResponse
public abstract WORespongenerateRespongg

Returns a response object. WOResponse’s implementation of this method returns the receiver.
WOComponent's implementation of this method capipendToRespons@n itself and all children

components in its template and returns the result as a WOResponse object. If you want to return any other
class from a direct action, then that class must implement this method.

155

156

Classes:

WODisplayGroup.Delegate

Implemented By: WODisplayGroup delegate objects

Package: com.apple.yellow.webobjects

Interface Description

WODisplayGroup offers a number of methods for its delegate to implement; if the delegate does implement
them, the WODisplayGroup instances invoke them as appropriate. There are methods that inform the
delegate that the EODisplayGroup has fetched, created an object (or failed to create one), inserted or deleted
an object, changed the selection, or set a value for a property. There are also methods that request
permission from the delegate to perform most of these same actions. The delegate can return true to permit
the action or false to deny it. See each method's description for more information.

Instance Methods

createObjectFailedForDataSource

public abstract voidreateObjectFailedForDataSourcé
WODisplayGroupmDisplayGroup
java.lang.ObjecaDataSourcg

Invoked frominsertNewObjectAtindex to inform the delegate thaDisplayGrouphas failed to create a

new object fomDataSourcelf the delegate doesn’t implement this method, the WODisplayGroup fails
silently.

didDeleteObject

public abstract voididDeleteObjeci
WODisplayGroupmDisplayGroup
java.lang.ObjecanObjec}

Informs the delegate thaDisplayGrouphas deletednObject

157

158

didFetchObjects

public abstract voididFetchObjectq
WODisplayGroumDisplayGroup
NSArrayobjects

Informs the delegate thaDisplayGrouphas fetcheabjects

didinsertObject

public abstract voidlidinsertObject(
WODisplayGroupmDisplayGroup
java.lang.ObjecanObjec}

Informs the delegate thaDisplayGrouphas insertednObject

didSetValueForObjectWithKey

public abstract voididSetValueForObjectWithKey(
WODisplayGroupmDisplayGroup
java.lang.Objectalue
java.lang.ObjecanObject
java.lang.Stringkey)

Informs the delegate thaDisplayGrouphas altered a property valueasfObject keyidentifies the
property, andralueis its new value.

displayArrayForObjects

public abstract NSArraglisplayArrayForObjects (
WODisplayGroupmDisplayGroup
NSArrayobjects

Invoked fromupdateDisplayedObjects this method allows the delegate to filter and @DisplayGroups

array of objects to limit which ones get displayejectscontains all oBDisplayGroups objects. The
delegate should filter any objects that shouldn't be shown and sort the remainder, returning a new array
containing this group of objects. You can use the NSArray mefitmiedArrayUsingQualifier and
sortedArrayUsingKeyOrderingArray to create the new array.

If the delegate doesn’t implement this method, the WODisplayGroup uses its own qualifier and sort
ordering to update the displayed objects array.

See also: displayedObjects qualifier, sortOrderings

Classes:

displayGroupDidChangeDataSource
public abstract voidisplayGroupDidChangeDataSourcé
WODisplayGroupmDisplayGroup)

Informs the delegate thaDisplayGroups EODataSource (defined in the EOControl framework) has
changed.

displayGroupDidChangeSelectedObjects
public abstract voidlisplayGroupDidChangeSelectedObject@/ODisplayGroupaDisplayGroup)

Informs the delegate thaDisplayGrougs selected objects have changed, regardless of whether the
selection indexes have changed.

displayGroupDidChangeSelection
public abstract voidlisplayGroupDidChangeSelectiofWwODisplayGroupaDisplayGroup

Informs the delegate thaDisplayGrougs selection has changed.

displayGroupShouldFetch
public abstract booleatisplayGroupShouldFetcHWODisplayGroupaDisplayGroup

Allows the delegate to preveabisplayGroupfrom fetching. If the delegate returns tra®isplayGroup
performs the fetch; if the delegate returns fa&splayGroupabandons the fetch.

shouldChangeSelectionTolndexes
public abstract booleashouldChangeSelectionTolndexés
WODisplayGroupmDisplayGroup
NSArraynewlndexes

Allows the delegate to prevent a change in selecticalbgplayGroup newlndexess the proposed new
selection. If the delegate returns true, the selection changes; if the delegate returns false, the selection
remains as it is.

159

shouldDeleteObject

public abstract booleashouldDeleteObjecf
WODisplayGroupmDisplayGroup
java.lang.ObjecanObjec}

Allows the delegate to preveabisplayGroupfrom deletinganObject If the delegate returns true,
anObijectis deleted; if the delegate returns false, the deletion is abandoned.

shouldinsertObject

public abstract booleashouldinsertObject(
WODisplayGroupmDisplayGroup
java.lang.ObjecanObject
int anindey

Allows the delegate to prevergdisplay from insertinganObjectatanindex If the delegate returns true,
anObjectis inserted; if the delegate returns false, the insertion is abandoned.

shouldRedisplayForChangesinEditingContext
public abstract booleashouldRedisplayForChangesinEditingContext
WODisplayGroupmDisplayGroup
NSNotificationaNotification

Invoked wheneveaDisplayGroupreceives an EOObjectsChangedinEditingContextNotification, this
method allows the delegate to suppress redisplay based on the nature of the change that has occurred. If the
delegate returns truaDisplayGroupredisplays; if it returns falsaDisplayGroupdoesn't.

See also: redisplay

shouldRefetchForinvalidatedAllObjectsNotification
public abstract booleashouldRefetchForinvalidatedAllObjects(
WODisplayGroupmDisplayGroup
NSNotificationaNotification

Invoked wheneveaDisplayGroupreceives an EOlnvalidatedAllObjectsinStoreNotification, this method
allows the delegate to suppress the refetching of the invalidated objects. If the delegate returns true,
aDisplayGroupimmediately fetches its objects. If the delegate returns fBieplayGroupdoesn’t
immediately fetch, instead delaying until absolutely necessary.

See also: redisplay

160

	The WebObjects Framework
	Introduction
	Figure 1 The WebObjects Framework class hierarchy

	WOAdaptor
	Class Description
	Method Types
	Constructors
	WOAdaptor

	Instance Methods
	doesBusyRunOnce
	dispatchesRequestsConcurrently
	registerForEvents
	runOnce
	unregisterForEvents

	WOApplication
	Class Description
	Method Types
	Constructors
	WOApplication

	Static Methods
	adaptor
	additionalAdaptors
	application
	applicationBaseURL
	autoOpenInBrowser
	cgiAdaptorURL
	componentRequestHandlerKey
	directActionRequestHandlerKey
	frameworksBaseURL
	includeCommentsInResponses
	isCachingEnabled
	isDebuggingEnabled
	isDirectConnectEnabled
	isMonitorEnabled
	listenQueueSize
	loadFrameworks
	logString
	monitorHost
	port
	projectSearchPath
	recordingPath
	resourceRequestHandlerKey
	sessionTimeout
	setAdditionalAdaptors
	setApplicationBaseURL
	setAutoOpenInBrowser
	setCGIAdaptorURL
	setCachingEnabled
	setComponentRequestHandlerKey
	setDebuggingEnabled
	setDirectActionRequestHandlerKey
	setDirectConnectEnabled
	setFrameworksBaseURL
	setIncludeCommentsInResponses:
	setListenQueueSize
	setLoadFrameworks
	setMonitorEnabled
	setMonitorHost
	setPort
	setProjectSearchPath
	setRecordingPath
	setResourceRequestHandlerKey
	setSMTPHost
	setWorkerThreadCount
	SMTPHost
	workerThreadCount

	Instance Methods
	activeSessionsCount
	adaptorWithName
	adaptors
	adaptorsDispatchRequestsConcurrently
	allowsConcurrentRequestHandling
	appendToResponse
	awake
	baseURL
	createSessionForRequest
	1. First it looks for a compiled class of name “Session” that is a subclass of WOSession.
	2. If such a class does not exist, it looks for a “.wos” script with the name of “Session” in the...
	3. If the Session.wos script exists, the method parses the script and dynamically adds a scripted...

	debugWithString
	defaultRequestHandler
	dispatchRequest
	dynamicElementWithName
	handleException
	handlePageRestorationErrorInContext
	handleSessionCreationErrorInContext
	handleSessionRestorationErrorInContext
	handlerForRequest
	invokeActionForRequest
	isConcurrentRequestHandlingEnabled
	isPageRefreshOnBacktrackEnabled
	isRefusingNewSessions
	isTerminating
	lock
	lockRequestHandling
	logSetValueForDeclarationNamed
	logTakeValueForDeclarationNamed
	logToMonitorString
	minimumActiveSessionsCount
	monitoringEnabled
	name
	number
	pageCacheSize
	pageWithName
	pageWithName
	path
	permanentPageCacheSize
	refuseNewSessions:
	registerRequestHandler
	registeredRequestHandlerKeys
	removeRequestHandlerForKey
	requestHandlerForKey:
	requiresWOF35RequestHandling
	requiresWOF35TemplateParser
	resourceManager
	restoreSessionWithID
	run
	runLoop
	saveSessionForContext
	scriptedClassNameWithPath
	scriptedClassNameWithPathEncoding
	sessionStore
	setDefaultRequestHandler
	setMinimumActiveSessionsCount
	setPageCacheSize
	setPageRefreshOnBacktrackEnabled
	setPermanentPageCacheSize
	setResourceManager
	setSessionStore
	setStatisticsStore
	setTimeOut
	sleep
	statistics
	statisticsStore
	takeValuesFromRequest
	terminate
	terminateAfterTimeInterval
	timeOut
	trace
	traceAssignments
	traceObjectiveCMessages
	traceScriptedMessages
	traceStatements
	unlock
	unlockRequestHandling

	Notifications
	WOApplicationDidFinishLaunchingNotification
	WOApplicationWillFinishLaunchingNotification

	WOAssociation
	Class Description
	Method Types
	Static Methods
	associationWithKeyPath
	associationWithValue

	Instance Methods
	isValueConstant
	isValueSettable
	setValue
	valueInComponent

	WOComponent
	Class Description
	WOComponent objects dynamically render web pages (or sections of pages) at run time. They provide...
	Subcomponents

	Method Types
	Constructors
	WOComponent

	Static Methods
	debugString
	logString
	templateWithHTMLString

	Instance Methods
	appendToResponse
	application
	awake
	baseURL
	context
	descriptionForResponse
	frameworkName
	generateResponse
	hasBinding:
	hasSession
	invokeActionForRequest
	isCachingEnabled
	name
	pageWithName
	parent
	path
	pathForResource
	performParentAction
	session
	setCachingEnabled
	setValue:forBinding:
	sleep
	synchronizesVariablesWithBindings
	takeValuesFromRequest
	templateWithName
	valueForBinding:

	WOContext
	Class Description
	Method Types
	Constructors
	WOContext

	Class Methods
	contextWithRequest

	Instance Methods
	appendElementIDComponent
	appendZeroElementIDComponent
	completeURLWithRequestHandlerKey
	component
	componentActionURL
	contextID
	deleteAllElementIDComponents
	deleteLastElementIDComponent
	directActionURLForActionNamed
	elementID
	hasSession
	incrementLastElementIDComponent
	isInForm
	page
	request
	response
	senderID
	session
	setInForm
	urlWithRequestHandlerKey

	WOCookie
	Class Description
	Method Types
	Constructors
	WOCookie

	Class Methods
	cookieWithName

	Instance Methods
	domain
	expires
	headerString
	isSecure
	name
	path
	setDomain
	setExpires
	setIsSecure
	setName
	setPath
	setValue
	value

	WODirectAction
	Class Description
	Method Types
	Constructors
	WODirectAction

	Static Methods
	debugString
	logString

	Instance Methods
	existingSession
	pageWithName
	performActionNamed
	request
	session
	takeFormValueArraysForKeyArray
	takeFormValuesForKeyArray

	WODisplayGroup
	Class Description
	The Delegate

	Method Types
	Constructors
	WODisplayGroup

	Instance Methods
	allObjects
	allQualifierOperators
	batchCount
	clearSelection
	currentBatchIndex
	dataSource
	defaultStringMatchFormat
	defaultStringMatchOperator
	delegate
	delete
	deleteObjectAtIndex
	deleteSelection
	detailKey
	displayBatchContainingSelectedObject
	displayedObjects
	displayNextBatch
	displayPreviousBatch
	fetch
	fetchesOnLoad
	hasDetailDataSource
	hasMultipleBatches
	indexOfFirstDisplayedObject
	indexOfLastDisplayedObject
	inQueryMode
	insert
	insertedObjectDefaultValues
	insertNewObjectAtIndex
	masterObject
	numberOfObjectsPerBatch
	qualifier
	qualifierFromQueryValues
	qualifyDataSource
	qualifyDisplayGroup
	queryBindings
	queryMatch
	queryMax
	queryMin
	queryOperator
	redisplay
	relationalQualifierOperators
	selectedObject
	selectedObjects
	selectionIndexes
	selectNext
	selectObject
	selectObjectsIdenticalTo
	selectObjectsIdenticalToAndSelectFirstOnNoMatch
	selectPrevious
	selectsFirstObjectAfterFetch
	setCurrentBatchIndex
	setDataSource
	setDefaultStringMatchFormat
	setDefaultStringMatchOperator
	setDelegate
	setDetailKey
	setFetchesOnLoad
	setInQueryMode
	setInsertedObjectDefaultValues
	setMasterObject
	setNumberOfObjectsPerBatch
	setObjectArray
	setQualifier
	setSelectionIndexes
	setSelectsFirstObjectAfterFetch
	setSortOrderings
	setValidatesChangesImmediately
	sortOrderings
	updateDisplayedObjects
	validatesChangesImmediately

	WODynamicElement
	Class Description
	Method Types
	Constructors
	WODynamicElement

	WOElement
	Class Description
	Method Types
	Constructors
	WOElement

	Instance Methods
	appendToResponse
	invokeActionForRequest
	takeValuesFromRequest

	WOMailDelivery
	Class Description
	Method Types
	Static Methods
	sharedInstance

	Instance Methods Returns the current application’s WOMailDelivery instance. Use this method inste...
	composeComponentEmail
	composePlainTextEmail
	sendEmail

	WORequest
	Class Description
	Method Types
	Constructors
	WORequest

	Instance Methods
	adaptorPrefix
	applicationName
	applicationNumber
	browserLanguages
	content
	cookieValueForKey
	cookieValues
	cookieValuesForKey
	defaultFormValueEncoding
	formValueEncoding
	formValueForKey
	formValueKeys
	formValues
	formValuesForKey
	headerForKey
	headerKeys
	headersForKey
	httpVersion
	isFormValueEncodingDetectionEnabled
	isFromClientComponent
	method
	requestHandlerKey
	requestHandlerPath
	requestHandlerPathArray
	sessionID
	setDefaultFormValueEncoding
	setFormValueEncodingDetectionEnabled
	uri
	userInfo

	WORequestHandler
	Class Description
	Method Types
	Constructors
	WORequestHandler

	Instance Methods
	handleRequest

	WOResourceManager
	Class Description
	Method Types
	Instance Methods
	flushDataCache
	lock
	pathForResourceNamed
	setData
	stringForKey
	unlock
	urlForResourceNamed

	WOResponse
	Class Description
	Content Encodings

	Interfaces Implemented
	Method Types
	Constructors
	WOResponse

	Static Methods
	defaultEncoding
	setDefaultEncoding
	stringByEscapingHTMLString
	stringByEscapingHTMLAttributeValue

	Instance Methods
	addCookie
	appendContentCharacter
	appendContentData
	appendContentHTMLAttributeValue
	appendContentHTMLString
	appendContentString
	content
	contentEncoding
	cookies
	headerForKey
	headerKeys
	headersForKey
	httpVersion
	removeCookie
	setContent
	setContentEncoding
	setHTTPVersion
	setHeader
	setHeaders
	setStatus
	setUserInfo
	status
	userInfo

	WOSession
	Class Description
	Method Types
	Constructors
	WOSession

	Instance Methods
	appendToResponse
	awake
	context
	defaultEditingContext
	invokeAction
	isDistributionEnabled
	isTerminating
	languages
	restorePageForContextID
	savePage
	savePageInPermanentCache
	sessionID
	setDefaultEditingContext
	setDistributionEnabled
	setLanguages
	setStoresIDsInCookies
	setStoresIDsInURLs
	setTimeOut
	sleep
	statistics
	storesIDsInCookies
	storesIDsInURLs
	takeValuesFromRequest
	terminate
	timeOut

	Notifications
	WOSessionDidCreateNotification
	WOSessionDidRestoreNotification
	WOSessionWillTimeoutNotification

	WOSessionStore
	Class Description
	Method Types
	Static Methods
	serverSessionStore

	Instance Methods
	checkinSessionForContext
	checkoutSessionWithID
	restoreSessionWithID
	saveSessionForContext

	WOStatisticsStore
	Class Description
	The WOStatisticsStore object records statistics about a WebObjects application while that applica...
	Maintaining a Log File

	Method Types
	Constructors
	WOStatisticsStore

	Instance Methods
	descriptionForResponse
	formatDescription
	logFile
	logFileRotationFrequencyInDays
	logString
	sessionMovingAverageSampleSize
	recordStatisticsForResponse
	setLogFile
	setSessionMovingAverageSampleSize
	setPassword
	setTransactionMovingAverageSampleSize
	statistics
	transactionMovingAverageSampleSize
	validateLogin

	WOActionResults
	Interface Description
	generateResponse

	WODisplayGroup.Delegate
	Interface Description
	Instance Methods
	createObjectFailedForDataSource
	didDeleteObject
	didFetchObjects
	didInsertObject
	didSetValueForObjectWithKey
	displayArrayForObjects
	displayGroupDidChangeDataSource
	displayGroupDidChangeSelectedObjects
	displayGroupDidChangeSelection
	displayGroupShouldFetch
	shouldChangeSelectionToIndexes
	shouldDeleteObject
	shouldInsertObject
	shouldRedisplayForChangesInEditingContext
	shouldRefetchForInvalidatedAllObjectsNotification

