

T
he WebObjects Framework
Framework: /System/Library/Frameworks/WebObjects.framework

Header File Directories: /System/Library/Frameworks/WebObjects.framework/Headers

Introduction

The WebObjects class hierarchy is rooted in the Foundation Framework’s NSObject class (see Figure 1).
The remainder of the WebObjects Framework consists of several related groups of classes as well as a few
individual classes.

Figure 1 The WebObjects Framework class hierarchy

The more commonly-used classes within the WebObjects framework can be grouped as follows:

• Server and Application Level Classes. WOAdaptor defines the interface for objects mediating the
exchange of data between an HTTP server and a WebObjects application. WOApplication receives
requests from the adaptor and initiates and coordinates the request-handling process, after which it
returns a response to the adaptor.

• Session Level Classes. WOSession encapsulates the state of a session; WOSession objects persiste
between the cycles of the request-response loop. WOSessionStore provides the strategy or mechanism
through which WOSession objects are made persistent.

• Request Level Classes. WORequest stores essential data about an HTTP request, such as header
information, form values, HTTP version, host and page name, and session, context, and sender IDs.
WOResponse stores and allows the modification of HTTP response data, such as header information,
status, and HTTP version. WOContext provides access to the objects involved in the current cycle, such
as the current request, response, session, and application objects.

• Page Level Classes. WOComponent represents and integral, reusable page (or portion of a page) for
display in a web browser. WOElement declares the three request-handling methods:
2

 Classes:

takeValuesFromRequest:inContext:, invokeActionForRequest:inContext:, and appendToResponse:
inContext:. WODynamicElement is an abstract class for subclasses that generate particular dynamic
elements. WOAssociation knows how to find and set a value by reference to a key.

• Database Integration Level Classes. WODisplayGroup performs fetches, queries, creations, and
deletions of records from one table in the database.
3

4

 Classes: WOAdaptor

r.

WOAdaptor

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOAdaptor.h

Class Description

WOAdaptor is an abstract class that represents objects that can receive events from a WebObjects adapto
A WebObjects adaptor is a process that handles communication between the server and a WebObjects
application. The WebObjects application (a WOApplication instance) communicates with the adaptor using
messages defined in the WOAdaptor class.

The purpose of the WOAdaptor class is to perform these tasks:

• Register with the application’s run loop to begin receiving events.
• Receive incoming events from the run loop and package them as WORequest objects.
• Forward the WORequest to the WOApplication by sending it the message dispatchRequest:.
• Receive the WOResponse object from the WOApplication and send it to the client using an RPC

mechanism.

Method Types

Creation
– initWithName:arguments:

Obtaining attributes
– doesBusyRunOnce
– dispatchesRequestsConcurrently

Event registering
– registerForEvents
– unregisterForEvents

Running
– runOnce
5

Instance Methods

doesBusyRunOnce
– (BOOL)doesBusyRunOnce

Returns whether repeatedly invoking runOnce would result in busy waiting.

dispatchesRequestsConcurrently
– (BOOL)dispatchesRequestsConcurrently

Returns YES if the adaptor is multi-threaded, NO otherwise. If the adaptor is multi-threaded, the adaptor
may dispatch requests to the application concurrently in separate threads.

See also: – adaptorsDispatchRequestsConcurrently (WOApplication)

initWithName:arguments:
– (id)initWithName: (NSString *)aName arguments:(NSDictionary *)someArguments

Initializes a WOAdaptor with the name aName and arguments someArguments. aName is the name of the
WOAdaptor subclass. someArguments are the default options specified for this adaptor (such as port
number and listen queue depth).

The WOApplication method adaptorWithName:arguments: invokes this message when it encounters an
WOAdaptor option on the command line. The WOApplication retains each of its WOAdaptors.

See also: – adaptorWithName:arguments: (WOApplication)

registerForEvents
– (void)registerForEvents

Performs any actions necessary to have the WOAdaptor start receiving events.

See also: – runLoop in WOApplication

runOnce
– (void)runOnce

Invoked by the application’s main loop

See also: – doesBusyRunOnce
6

 Classes: WOAdaptor

unregisterForEvents
– (void)unregisterForEvents

Undoes the actions performed in registerForEvents so that the WOAdaptor stops receiving events.
7

8

 Classes: WOApplication

es

WOApplication

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOApplication.h

Class Description

The primary role of the WOApplication class is to coordinate the handling of HTTP requests. Each
application must have exactly one WOApplication object (or, simply, application object). The application
object receives client requests from an HTTP server adaptor, manages the processing that generates a
response, and returns that response—typically an object representing a web page—to the adaptor. The
adaptor, in turn, forwards the response in a suitable form to the HTTP server that originated the request.

In handling requests, an application object creates and manages one or more sessions; a session
(represented by a WOSession object) dedicates resources to a period of access by a single user and stor
persistent state during that period. Conceptually, each cycle of the request-response loop (or transaction)
takes place within a session.

Besides acting as a facilitator between the adaptor and the rest of the application during request handling,
WOApplication performs many secondary functions. It returns pages based on component name, caches
page instances and component definitions, provides some facilities for error handling and script debugging,
coordinates the different levels of multi-threaded execution, and furnishes a variety of data.

Typical deployment schemes balance the processing load by having multiple application instances per
server adaptor. A single application, in turn, can interact with multiple adaptors; for example, an application
can simultaneously communicate with secure-socket and Distributed Object adaptors as well as HTTP
adaptors.

You can instantiate ready-made application objects from the WOApplication class or you can obtain the
application object from a custom subclass of WOApplication. Custom WOApplication subclasses are
common in WebObjects applications since there is often a need to override the awake, sleep, init , and
request-handling methods. Compiled WOApplication subclasses can take any name, but if the name is
anything other than “Application” you must implement your own main function to instantiate the
application object from this class. However, if the class name is “Application,” you don’t need to modify
main. In scripted applications, the code in the Application.wos file becomes the implementation logic of a
WOApplication subclass automatically created at run time; the application object is instantiated from this
subclass.
9

Adopted Protocols

NSLocking
– lock
– unlock

Method Types

Creating
– init
+ application

Obtaining attributes
– adaptorsDispatchRequestsConcurrently
– allowsConcurrentRequestHandling
– isConcurrentRequestHandlingEnabled
– baseURL
– name
– number
– path

Locking
– lock
– unlock
– lockRequestHandling
– unlockRequestHandling

Managing adaptors
– adaptorWithName:arguments:
– adaptors

Managing cache
– setCachingEnabled:
– isCachingEnabled

Managing sessions
– setSessionStore:
– sessionStore
– saveSessionForContext:
– restoreSessionWithID:inContext:
– createSessionForRequest:
10

 Classes: WOApplication

Managing pages
– setPageCacheSize:
– pageCacheSize
– permanentPageCacheSize
– setPermanentPageCacheSize:
– setPageRefreshOnBacktrackEnabled:
– isPageRefreshOnBacktrackEnabled
– pageWithName:forRequest:
– pageWithName:inContext:

Creating elements
– dynamicElementWithName:associations:template:languages:

Running
– runLoop
– run
– setTimeOut:
– timeOut
– terminate
– isTerminating

Handling requests
– dispatchRequest:
– awake
– takeValuesFromRequest:inContext:
– invokeActionForRequest:inContext:
– appendToResponse:inContext:
– sleep

Handling errors
– handleSessionCreationErrorInContext:
– handlePageRestorationErrorInContext:
– handleSessionRestorationErrorInContext:
– handleException:inContext:

Backward compatibility
– requiresWOF35RequestHandling
– requiresWOF35TemplateParser

Scripted class support
– scriptedClassWithPath:
– scriptedClassWithPath:encoding:
11

Script debugging
– logWithFormat:
– debugWithFormat:
– trace:
– traceAssignments:
– traceObjectiveCMessages:
– traceScriptedMessages:
– traceStatements:
– logTakeValueForDeclarationNamed:type:bindingNamed:

associationDescription:value:
– logSetValueForDeclarationNamed:type:bindingNamed:

associationDescription:value:

Statistics report
– setStatisticsStore:
– statisticsStore
– statistics

Monitor support
– monitoringEnabled
– activeSessionsCount
– refuseNewSessions:
– isRefusingNewSessions
– setMinimumActiveSessionsCount:
– minimumActiveSessionsCount
– terminateAfterTimeInterval:
– logToMonitorWithFormat:

Resource manager support
– setResourceManager:
– resourceManager

Request handling
– defaultRequestHandler
– setDefaultRequestHandler:
– registerRequestHandler:forKey:
– removeRequestHandlerForKey:
– registeredRequestHandlerKeys
– requestHandlerForKey:
– handlerForRequest:
12

 Classes: WOApplication

User defaults
+ loadFrameworks
+ setLoadFrameworks:
+ isDebuggingEnabled
+ setDebuggingEnabled:
+ autoOpenInBrowser
+ setAutoOpenInBrowser:
+ isDirectConnectEnabled
+ setDirectConnectEnabled:
+ cgiAdaptorURL
+ setCGIAdaptorURL:
+ isCachingEnabled
+ setCachingEnabled:
+ applicationBaseURL
+ setApplicationBaseURL:
+ frameworksBaseURL
+ setFrameworksBaseURL:
+ recordingPath
+ setRecordingPath:
+ projectSearchPath
+ setProjectSearchPath:
+ isMonitorEnabled
+ setMonitorEnabled:
+ monitorHost
+ setMonitorHost:
+ SMTPHost
+ setSMTPHost:
+ adaptor
+ setAdaptor:
+ port
+ setPort:
+ listenQueueSize
+ setListenQueueSize:
+ workerThreadCount
+ setWorkerThreadCount:
+ additionalAdaptors
+ setAdditionalAdaptors:
+ includeCommentsInResponses
+ setIncludeCommentsInResponses:
+ componentRequestHandlerKey
+ setComponentRequestHandlerKey:
+ directActionRequestHandlerKey
+ setDirectActionRequestHandlerKey:
13

+ resourceRequestHandlerKey
+ setResourceRequestHandlerKey:
+ sessionTimeout
+ setSessionTimeOut:

Class Methods

adaptor
+ (NSString *)adaptor

Returns the class name of the primary adaptor. This is the cover method for the user default WOAdaptor.

See also: + setAdaptor:

additionalAdaptors
+ (NSArray *)additionalAdaptors

Returns an array of adaptor description dictionaries. This is the cover method for the user default
WOAdditionalAdaptors.

See also: + setAdditionalAdaptors:

application
+ (WOApplication *)application

 Initializes and returns a WOApplication object. This initializes application attributes and initializes the
adaptor or adaptors specified on the command line. If no adaptor is specified, WODefaultAdaptor is made
the default adaptor. Some of the more interesting attribute initializations are:

• Session store is in the server.
• Page cache size is 30 pages.
• Client caching of pages is enabled (isPageRefreshOnBacktrackEnabled returns NO).
• Component-definition caching is disabled (isCachingEnabled returns NO).

A exception is raised if initialization does not succeed.

You may call this method, but do not override it.
14

 Classes: WOApplication

applicationBaseURL
+ (NSString *)applicationBaseURL

Returns a path to where the current application may be found under the document root (either the project
or the .woa wrapper). This is the cover method for the user default WOApplicationBaseURL.

See also: + setApplicationBaseURL:

autoOpenInBrowser
+ (BOOL)autoOpenInBrowser

Returns whether automatic browser launching is enabled. By default, automatic browser launching is
enabled.

cgiAdaptorURL
+ (NSString *)cgiAdaptorURL

Returns the URL for the web server including the path to the WebObjects CGI adaptor (for example, http:
//localhost/cgi-bin/WebObjects). This URL is used by the direct connect feature only. This is the cover
for the user default WOCGIAdaptorURL.

See also: + setCGIAdaptorURL:

componentRequestHandlerKey
+ (NSString *)componentRequestHandlerKey

Returns the key which identifies URLs directed at component-action-based requests. By default, this
method returns the string “wo”.

directActionRequestHandlerKey
+ (NSString *)directActionRequestHandlerKey

Returns the key which identifies URLs directed at component-based requests. By default, this method
returns the string “wa”.
15

s

o

r

frameworksBaseURL
+ (NSString *)frameworksBaseURL

Returns a path to where all frameworks may be found under the document root. This value is used to
determine URLs that should be generated to reference Web Server Resources in those frameworks. This i
the cover method for the user default WOFrameworksBaseURL.

See also: + setFrameworksBaseURL:

includeCommentsInResponses
+ (BOOL)includeCommentsInResponses

Returns whether or not HTML comments are appended to the response. This is the cover method for the
user default WOIncludeCommentsInResponses.

See also: + setIncludeCommentsInResponses:

isCachingEnabled
+ (BOOL)isCachingEnabled

Returns whether or not component caching is enabled. If this is enabled, changes to a component will be
reparsed after being saved (assuming the project is under the NSProjectSearchPath). Note that this has n
effect on page caching. This is the cover method for the user default WOCachingEnabled.

See also: + setCachingEnabled:, – pageCacheSize, – isCachingEnabled

isDebuggingEnabled
+ (BOOL)isDebuggingEnabled

Returns whether or not debugging is enabled. If YES, debugWithFormat: prints out. Most startup-time
status message are supressed if this method returns NO. By default, debugging is enabled. This is the cove
method for the user default WODebuggingEnabled.

See also: – setDebuggingEnabled:, – debugWithFormat:
16

 Classes: WOApplication

isDirectConnectEnabled
+ (BOOL)isDirectConnectEnabled

Returns whether or not direct connect is enabled. By default it is enabled. For more information, see
setDirectConnectEnabled:.

See also: + cgiAdaptorURL

isMonitorEnabled
+ (BOOL)isMonitorEnabled

Returns whether or not the application can communicate with a Monitor application. It returns YES if the
application can contact Monitor upon startup and subsequently let Monitor gather statistics. It returns NO
if no comunication with Monitor can take place. By default, it can communicate with a Monitor
application. 'This is a cover method for the user default WOMonitorEnabled.

See also: + setMonitorEnabled:, + monitorHost, + setMonitorHost:

listenQueueSize
+ (NSNumber *)listenQueueSize

Returns the size of the listen queue which will created by the primary adaptor (usually WODefaultAdaptor).
This is the cover method for the user default WOListenQueueSize.

See also: + setListenQueueSize:

loadFrameworks
+ (NSArray *)loadFrameworks

Returns the array of frameworks to be loaded during application initialization.

See also: + setLoadFrameworks:

monitorHost
+ (NSString *)monitorHost

Returns the host on which Monitor is assumed to be running. This value is used during initialization if
isMonitorEnabled returns YES. This is a cover for the user default WOMonitorHost.

See also: + setMonitorHost:, + isMonitorEnabled
17

.

e
port
+ (NSNumber *)port

Returns the port number on which the primary adaptor will listen (usually WODefaultAdaptor). This is the
cover method for the user default WOPort.

See also: + setPort:

projectSearchPath
+ (NSArray *)projectSearchPath

Returns an array of file system paths which are searched for projects for rapid turnaround mode. This is the
cover method for the user default NSProjectSearchPath.

See also: + setProjectSearchPath:

recordingPath
+ (NSString *)recordingPath

Returns a file system path which is where the recording information should be saved. By default, this
method returns null.

If this method returns a path, all requests and responses are recorded in the HTTP format in numbered files
(0000-request, 0000-response, 0001-request, 0001-response, and so on), and saved under the recording
path specified. This directory is then used by the Playback tool to test the application. You will most likely
set this as a command line argument (-WORecordingPath pathname), exercise your application to
record a scenario you would like to test, and then stop the application. Afterward you can restart the
application without the WORecordingPath argument, and point Playback to the recording directory just
created to replay your sequence of requests and compare the responses received with the ones recorded

See also: + setRecordingPath:

resourceRequestHandlerKey
+ (NSString *)resourceRequestHandlerKey

Returns the key which identifies URLs directed through the resource request handler. Resource requests ar
only used during development of an application when the application is being run without an HTTP server.

See also: + setResourceRequestHandlerKey:
18

 Classes: WOApplication

sessionTimeout
+ (NSNumber*)sessionTimeOut

Returns the number (of seconds) which will be used as the default timeout for each newly created session.
You may either override this method, change the user default WOSessionTimeOut, or set the session
timeout in your session’s init method.

See also: + setSessionTimeOut:

setAdaptor:
+ (void)setAdaptor:(NSString *)anAdaptorName

Sets the the class name of the primary adaptor to anAdaptorName.

See also: + adaptor

setAdditionalAdaptors:
+ (void)setAdditionalAdaptors:(NSArray *)anAdaptorPlist

Sets the array of adaptor description dictionaries to anAdaptorPlist. Each adaptor description dictionary
must have “WOAdaptor” defined, which is the name of the adaptor class. Other attributes such as WOPort
may also be specified, but are adaptor specific. For example WOWorkerThreadCount is specific to the
WODefaultAdaptor class and may not apply for all adaptors.

See also: + additionalAdaptors

setApplicationBaseURL:
+ (void)setApplicationBaseURL:(NSString *)aBaseURL

Sets to aBaseURL the path to which the current application may be found under the document root (either
the project or the .woa wrapper).

See also: + applicationBaseURL

setAutoOpenInBrowser:
+ (void)setAutoOpenInBrowser:(BOOL)isEnabled

Controls whether starting up this application also launches a web browser. If isEnabled is YES, the
application launches the web browser. If NO, the application does not launch the browser. Browser
launching is enabled by default as long as there is a WOAdaptorURL key in the file
NeXT_ROOT/NextLibrary/WOAdaptors/Configuration/WebServerConfig.plist .
19

o
To disable web browser launching, you must send this message in the init method of your application
subclass (or application script).

See also: + autoOpenInBrowser

setCGIAdaptorURL:
+ (void)setCGIAdaptorURL: (NSString *)aURL

Sets the URL for the web server to aURL. The URL must include the path to the WebObjects CGI adaptor
(for example, http://localhost/cgi-bin/WebObjects). This URL is used by the direct connect feature only..

See also: + cgiAdaptorURL

setCachingEnabled:
+ (void)setCachingEnabled:(BOOL)flag

Sets whether or not component caching is enabled. If this is enabled, changes to a component will be
reparsed after being saved (assuming the project is under the NSProjectSearchPath). Note that this has n
effect on page caching.

See also: + isCachingEnabled, – pageCacheSize, – isCachingEnabled

setComponentRequestHandlerKey:
+ (void)setComponentRequestHandlerKey:(NSString *)key

Sets the component request handler key. This affects all URLs generated during appendToResponse:
inContext:: of component-based actions.

See also: + componentRequestHandlerKey

setDebuggingEnabled:
+ (void)setDebuggingEnabled:(BOOL)flag

Sets whether or not debugging is enabled. If YES, debugWithFormat: prints out. Most startup-time status
message are supressed if this method returns NO. By default, debugging is enabled.

See also: + isDebuggingEnabled, – debugWithFormat:
20

 Classes: WOApplication

setDirectActionRequestHandlerKey:
+ (void)setDirectActionRequestHandlerKey:(NSString *)key

Sets the Direct Action request handler key. This affects all URLs generated during appendToResponse:
inContext:: of direct actions.

See also: + directActionRequestHandlerKey

setDirectConnectEnabled:
+ (void)setDirectConnectEnabled:(BOOL)flag

Sets whether or not direct connect is enabled. By default it is enabled.

Direct connect actually transforms your application in a simple web server of its own. In particular, it is
then able to find and return its images and resources as if it were a web server. It is very useful in
development mode: You don’t need a web server. Just point your URL to the port where your application
is listening, and the application will handle all urls.

If this flag is YES, the following happens:

• When using autoOpenInBrowser, a direct connect URL will be used.
• When using WOMailDelivery to mail pages with dynamic links in them, these links will be generated

with a complete direct connect URL format. People receiving these mails will be able to access the
application with direct connect.

• All files on the system are accessible through the resource request handler. On the other hand, if this flag
is NO, the resource request handler can be used to retrieve data objects from memory only, and no more
reading in the file system is permitted (secure mode for deployment).

See also: + isDirectConnectEnabled, + cgiAdaptorURL

setFrameworksBaseURL:
+ (void)setFrameworksBaseURL:(NSString *)aString

Sets to aString the path to where all frameworks may be found under the document root. This value is used
to determine URLs that should be generated to reference Web Server Resources in those frameworks.

See also: + frameworksBaseURL
21

setIncludeCommentsInResponses:
+ (void)setIncludeCommentsInResponses:(BOOL)flag

Sets whether or not HTML comments are appended to the response.

See also: + includeCommentsInResponses

setListenQueueSize:
+ (void)setListenQueueSize:(NSNumber *)aListenQueueSize

Sets the size of the listen queue which will created by the primary adaptor (usually WODefaultAdaptor).

See also: + listenQueueSize

setLoadFrameworks:
+ (void)setLoadFrameworks:(NSArray *)frameworkList

Sets the array of frameworks to be loaded during application initialization.

See also: + loadFrameworks

setMonitorEnabled:
+ (void)setMonitorEnabled:(BOOL)flag

Sets whether or not the application will communicate with a Monitor application. If flag is YES, the
application can contact Monitor upon startup and subsequently let Monitor gather statistics. If flag is NO,
no comunication with Monitor can take place. By default, it can communicate with a Monitor application.

See also: + isMonitorEnabled

setMonitorHost:
+ (void)setMonitorHost:(NSString *)hostName

Sets the host on which Monitor is assumed to be running. This value is used during initialization if
isMonitorEnabled returns YES.

See also: + monitorHost, + isMonitorEnabled
22

 Classes: WOApplication

s
setPort:
+ (void)setPort:(NSNumber *)port

Sets the port number on which the primary adaptor will listen (usually WODefaultAdaptor).

See also: + port

setProjectSearchPath:
+ (void)setProjectSearchPath:(NSArray)searchPath

Sets the array of file system paths which are searched for projects for rapid turnaround mode.

See also: + projectSearchPath

setRecordingPath:
+ (void)setRecordingPath:(NSString *)path

Sets the file system path where the recording information should be saved. Use null as the path if you don’t
want to save recording information. By default, recording information is not saved.

If you save recording information, all requests and responses are recorded in the HTTP format in numbered
files (0000-request, 0000-response, 0001-request, 0001-response, and so on), and saved under the
recording path specified. This directory is then used by the Playback tool to test the application. You will
most likely set this as a command line argument (-WORecordingPath pathname), exercise your
application to record a scenario you would like to test, and then stop the application. Afterward you can
restart the application without the WORecordingPath argument, and point Playback to the recording
directory just created to replay your sequence of requests and compare the responses received with the one
recorded.

See also: + recordingPath

setResourceRequestHandlerKey:
+ (void)setResourceRequestHandlerKey:(NSString *)key

Sets the resource request handler key. This affects all URLs generated during appendToResponse:
inContext:: of resources.

See also: + resourceRequestHandlerKey
23

setSessionTimeOut:
public void setSessionTImeOut(java.lang.Number aTimeOut)
+ (void)setSessionTimeOut:(NSNumber*)aTimeOut

Accessor to set the default session timeOut.

See also: + sessionTimeout

setSMTPHost:
+ (void)setSMTPHost:(NSString *)hostName

Sets the name of the host that will be used to send e-mail messages created by WOMailDelivery.

See also: + SMTPHost

setWorkerThreadCount:
+ (void)setWorkerThreadCount:(NSNumber *)aWorkerThreadCount

SEts the count of worker threads which will created by the primary adaptor (usually WODefaultAdaptor).
A worker thread count of 0 implies single-threaded mode.

See also: + workerThreadCount

SMTPHost
+ (NSString *)SMTPHost

Returns the name of the host that will be used to send e-mail messages created by WOMailDelivery. This
is the cover method for the user default WOSMTPHost.

See also: + setSMTPHost:

workerThreadCount
+ (NSNumber *)workerThreadCount

Returns the count of worker threads which will created by the primary adaptor (usually
WODefaultAdaptor). A worker thread count of 0 implies single-threaded mode. This is the cover method
for the user default WOWorkerThreadCount.

See also: + setWorkerThreadCount:
24

 Classes: WOApplication

Instance Methods

activeSessionsCount
– (int)activeSessionsCount

Returns the number of sessions that are currently active. (A session is active if it has not yet timed out.)

The number returned here is only accurate if the application stores state in memory in the server, which is
the default. If you use a custom state-storage strategy, there may be no way to tell how many sessions are
active for a given application instance.

See also: – minimumActiveSessionsCount, – setMinimumActiveSessionsCount:

adaptorWithName:arguments:
– (WOAdaptor *)adaptorWithName:(NSString *)aName

arguments:(NSDictionary *)someArguments

Invoked during the init method to create an adaptor. If you subclass WOAdaptor, you specify the
WOAdaptor subclass you want the application to use with the -a option on the application’s command line.
When WOApplication encounters the -a option, it invokes this method. This method looks for a subclass of
WOAdaptor with the name aName (which was supplied as the -a option’s argument), and if such a class
exists, a new instance is initialized using the WOAdaptor method initWithName:arguments: . The
someArguments array is populated with any adaptor-specific options (such as -p or -q) that follow the
adaptor name on the command line. See the WOAdaptor class for more information.

See also: – adaptors

adaptors
– (NSArray *)adaptors

Returns the current list of application adaptors. A WOApplication can have multiple adaptors. (To associate
the WOApplication with multiple adaptors, you specify each adaptor on the application’s command line
using the -a option.) This allows you to design an application that can not only listen to a socket for
incoming HTTP requests (using the WODefaultAdaptor), but can also receive remote request messages
using more advanced RPC mechanisms such as DO, CORBA, and DCOM.

adaptorsDispatchRequestsConcurrently
– (BOOL)adaptorsDispatchRequestsConcurrently

Returns YES if at least one adaptor contains multiple threads and will attempt to concurrently invoke the
request handlers.
25

e

h
allowsConcurrentRequestHandling
– (BOOL)allowsConcurrentRequestHandling

Override to return YES if concurrent request handling is allowed.

appendToResponse:inContext:
– (void)appendToResponse:(WOResponse *)aResponse inContext:(WOContext *)aContext

The WOApplication object sends this message to itself to initiate the last phase of request handling. This
occurs right after the invokeActionForRequest:inContext:: method has completed, typically with the
return a response page. In the append-to-response phase, the application objects (particularly the respons
component itself) generate the HTML content of the page. WOApplication’s default implementation of this
method forwards the message to the session object.

See also: – invokeActionForRequest:inContext:

awake
– (void)awake

Invoked at the beginning of each cycle of the request-response loop, affording the opportunity to perform
initializations with application-wide scope. Since the default implementation does nothing, overridden
implementations do not have to call super.

See also: – sleep

baseURL
– (NSString *)baseURL

Returns the application URL relative to the server’s document root, for example:

WebObjects/Examples/HelloWorld.woa.

See also: – name, – path

createSessionForRequest:
– (WOSession *)createSessionForRequest:(WORequest *)aRequest

Creates and returns a WOSession object to manage a session for the application. The method goes throug
several steps to locate the class to use for instantiating this object:

1. First it looks for a compiled class of name “Session” that is a subclass of WOSession.
26

 Classes: WOApplication

.
2. If such a class does not exist, it looks for a “.wos” script with the name of “Session” in the application wrapper
(“ .woa” directory).

3. If the Session.wos script exists, the method parses the script and dynamically adds a scripted-class subclass of
WOSession to the runtime.

The method then returns an allocated and initialized (using the default WOSession initializer) session
instance of the selected class. It raises an exception if it is unable to create a new session.

Note: An implication of the foregoing description is that the names of compiled WOSession subclasses
should be “Session”; if not, you will have to override this method to use the proper class to create the
session object.

See also: – restoreSessionWithID:inContext:, – saveSessionForContext:

debugWithFormat:
– (void)debugWithFormat: (NSString *)aFormatString,...

Prints a message to the standard error device (stderr), if WODebuggingEnabled is YES. The message can
include formatted variable data using printf-style conversion specifiers. Note that in WebScript, all variables
are objects, so the only conversion specifier allowed is %@. In compiled Objective-C code, all printf
conversion specifiers are allowed.

You control whether this method displays output with the WODebuggingEnabled user default option. If
WODebuggingEnabled is YES, then the debugWithStringFormat: messages display their output. If
WODebuggingEnabled is NO, the debugWithStringFormat: messages don’t display their output.

defaultRequestHandler
– (WORequestHandler *)defaultRequestHandler

Returns the request handler to be used when no request handler key was found in the URL or WORequest
This method returns the WOComponent request handler by default. When an application is contacted for
the first time it is usually via a URL like the following:

http://somehost/cgi-bin/WebObjects/AppName.woa

The way that URLs of that type are handled is determined by the default request handler.

dispatchRequest:
– (WOResponse *)dispatchRequest:(WORequest *)aRequest

The main entry point for any given interaction. Invoked by the adaptor.
27

dynamicElementWithName:associations:template:languages:
– (WODynamicElement *)dynamicElementWithName:(NSString *)aName

associations:(NSDictionary *)someAssociations
template:(WOElement *)anElement
languages:(NSArray *)languages

Creates and returns a WODynamicElement object based on the element’s name, a dictionary of
associations, and a template of elements. This method is invoked automatically to provide a
WODynamicElement object that represents a WEBOBJECT element in the HTML template. You don’t
ordinarily invoke dynamicElementWithName:associations:template:languages:, but you might
override it to substitute your own WODynamicElement or reusable component for one of the built-in
WODynamicElements.

The arguments aName and someAssociations are derived from a corresponding line in the declarations file.
aName is an NSString that identifies the kind of element to create. Generally aName specifies a built-in
WODynamicElement such as WOString, but it may also identify a reusable component. (For more
information, see the chapter “Using Reusable Components” in the WebObjects Developer’s Guide.) For
example, in the dynamicElementWithName:associations:template:languages: message for the
following declaration:

APP_STRING: WOString {value = applicationString;};

aName contains the string “WOString”.

The someAssociations dictionary contains an entry for each attribute specified in the corresponding
declaration. For the declaration above, someAssociations contains a single entry for WOString’s value
attribute. The keys of someAssociations are the attribute names and the values are WOAssociation objects.

WOApplication’s implementation of dynamicElementWithName:associations:template:languages:
first searches for a WODynamicElement named aName. If a WODynamicElement is found, the method
creates an instance using the method initWithName:associations:template: and returns it. Otherwise, it
searches for a component—either scripted or compiled—to return instead. If neither are found, this method
returns nil .

handleException:inContext:
– (WOResponse *)handleException:(NSException *)anException inContext:(WOContext

*)aContext

Invoked when an exception occurs within the request-response loop. The default behavior displays a page
with debugging information. You can override this method to catch exceptions and display a “friendlier”
error page. For example, the following code replaces the standard error page with a component named
ErrorPage.wo.

- (WOResponse *)handleException:(NSException *)anException {

WOResponse *response = [[WOResponse alloc] init];
28

 Classes: WOApplication

h
WORequest *request = [[self context] request];

WOString newURL = [NSString stringWithFormat:@"http:

//%@%@/%@.woa/-/ErrorPage.wo",

[request applicationHost],

[request adaptorPrefix],

[request applicationName]];

[response setHeader:newURL forKey:@"location"];

[response setHeader:@"text/html" forKey:@"content-type"];

[response setHeader:@"0" forKey:@"content-length"];

[response setStatus:302];

return response;

}

See also: – handleSessionCreationErrorInContext:, – handleSessionRestorationErrorInContext:

handlePageRestorationErrorInContext:
– (WOResponse *)handlePageRestorationErrorInContext:(WOContext *)aContext

Invoked when a page (WOComponent) instance cannot be restored, which typically happens when a user
backtracks too far. Specifically, this method is invoked when the following occurs: the request is not the
first of a session, page restoration by context ID fails, and page re-creation is disabled. The default behavior
displays a page with debugging information. You can override this method to display a “friendlier” error
page.

See also: – handleException:inContext:, – handleSessionCreationErrorInContext:,
– handleSessionRestorationErrorInContext:

handleSessionCreationErrorInContext:
– (WOResponse *)handleSessionCreationErrorInContext:(WOContext *)aContext

Invoked when a session (WOSession) instance cannot be created. The default behavior displays a page wit
debugging information. You can override this method to display a “friendlier” error page.

See also: – handleException:inContext:, – handlePageRestorationErrorInContext:,
– handleSessionRestorationErrorInContext:
29

t
handleSessionRestorationErrorInContext:
– (WOResponse *)handleSessionRestorationErrorInContext:(WOContext *)aContext

Invoked when a session (WOSession) instance cannot be restored, which typically happens when the
session times out. The default behavior displays a page with debugging information. You can override this
method to display a “friendlier” error page.

See also: – handleException:inContext:, – handlePageRestorationErrorInContext:,
– handleSessionCreationErrorInContext:

handlerForRequest:
– (WORequestHandler *)handlerForRequest:(WORequest *)aRequest

Returns the request handler used to handle a given request.

See also: – registerRequestHandler:forKey:, – registeredRequestHandlerKeys,
– requestHandlerForKey:

init
– (id)init

Initializes application attributes and initializes the adaptor or adaptors specified on the command line. If no
adaptor is specified, WODefaultAdaptor is made the default adaptor. Some of the more interesting attribute
initializations are:

• Session store is in the server.
• Page cache size is 30 pages.
• Client caching of pages is enabled (isPageRefreshOnBacktrackEnabled returns NO).
• Component-definition caching is disabled (isCachingEnabled returns NO).

A exception is raised if initialization does not succeed.

Note: The global variable “WOApp” is initialized in this method. Your subclasses of WOApplication
(including Application.wos) should be sure to call super’s init method as their first line of code.

invokeActionForRequest:inContext:
– (WOElement *)invokeActionForRequest:(WORequest *)aRequest

inContext:(WOContext *)aContext

The WOApplication object sends this message to itself to initiate the middle phase of request handling. In
this phase, the message is propagated through the objects of the application until the dynamic element tha
has received the user action (for instance, a click on a button) responds to the message by triggering the
30

 Classes: WOApplication

e
method in the request component that is bound to the action. The default WOApplication implementation
of this method forwards the message to the session object.

See also: – appendToResponse:inContext:

isCachingEnabled
– (BOOL)isCachingEnabled

Returns YES if starting up the application also launches a web browser, and NO otherwise. Browser
launching is enabled by default as long as there is a WOAdaptorURL key in the file
NeXT_ROOT/NextLibrary/WOAdaptors/Configuration/WebServerConfig.plist .

See also: + setAutoOpenInBrowser:

isConcurrentRequestHandlingEnabled
– (BOOL)isConcurrentRequestHandlingEnabled

Returns whether component-definition caching is enabled. The default is NO.

See also: – setCachingEnabled:

isPageRefreshOnBacktrackEnabled
– (BOOL)isPageRefreshOnBacktrackEnabled

Returns whether caching of pages is disabled in the client. If so, the client does not restore request pages
from its cache but re-creates them “from scratch” by resending the URL to the server. This flag is set to NO
by default.

See also: – setPageRefreshOnBacktrackEnabled:

isRefusingNewSessions
– (BOOL)isRefusingNewSessions

Returns YES if the application instance is refusing new sessions, and NO otherwise. When the application
instance refuses new sessions, the WebObjects adaptor tries to start the session in another instance of th
same application. If no other instance is running and accepting new sessions, the user receives an error
message.
31

.

isTerminating
– (BOOL)isTerminating

Returns whether the application will terminate at the end of the current request-response loop.

See also: – setTimeOut:, – terminate, – terminateAfterTimeInterval: , – timeOut

lock
– (void)lock

Locks the application object.

lockRequestHandling
– (void)lockRequestHandling

Serializes request handler access if concurrent request handling isn’t enabled.

logSetValueForDeclarationNamed:type:bindingNamed:associationDescription:
value:

– (void)logSetValueForDeclarationNamed:(NSString*)aDeclarationName
type:(NSString*)aDeclarationType bindingNamed:(NSString*)aBindingName
associationDescription:(NSString*)anAssociationDescription value:(id)aValue

Formats and logs a message anytime a value is set through a WOAssociation, when WODebug is set to YES
for the declaration in which the association appears. (Setting a value means the child component/element
is setting a value in the parent). See logTakeValueForDeclarationNamed:type:bindingNamed:
associationDescription:value: for a description of each of the arguments to this method.

logTakeValueForDeclarationNamed:type:bindingNamed:associationDescription:
value:

– (void)logTakeValueForDeclarationNamed:(NSString*)aDeclarationName
type:(NSString*)aDeclarationType bindingNamed:(NSString*)aBindingName
associationDescription:(NSString*)anAssociationDescription value:(id)aValue

Formats and logs a message anytime a value is “taken” through a WOAssociation , when WODebug is set
to YES for the declaration in which the association appears. (Taking a value means the child
component/element is taking a value from the parent). Override this method to alter the format of the log
message. The arguments of this method are defined in the following example of a WebObjects declaration
32

 Classes: WOApplication

aDeclarationName : aDeclarationType {

 aBindingName = anAssociationDescription;

}

Also, aValue is the value which is being pushed to or pulled from the child to the parent.

logToMonitorWithFormat:
– (void)logToMonitorWithFormat: (NSString *)aFormat,...

Same as logWithFormat: but prints the string to the Monitor application’s standard error. That is, the
message is displayed in the command-shell window that was used to launch the Monitor application.

You use this method to log messages about significant events when the application is ready to be deployed
and you will use Monitor regularly to monitor the application. Otherwise, use logWithFormat: . If the
Monitor application is not running or if this application instance is not being monitored, this method does
nothing.

logWithFormat:
– (void)logWithFormat: (NSString *)aFormat,...

Prints a message to the standard error device (stderr). The message can include formatted variable data
using printf-style conversion specifiers, for example:

id i = 500;

id f = 2.045;

[self logWithFormat:@"Amount = %@, Rate = %@, Total = %@", i, f, i*f];

Note that in WebScript, all variables are objects, so the only conversion specifier allowed is %@ as shown
above. In compiled Objective-C code, all printf conversion specifiers are allowed. The equivalent method
in Java is logString.

minimumActiveSessionsCount
– (int)minimumActiveSessionsCount

Returns the minimum number of active sessions allowed. If the number of active sessions is less than or
equal to this number and isRefusingNewSessions is YES, the application instance terminates. The default
is 0.

See also: – activeSessionsCount, – refuseNewSessions:, – setMinimumActiveSessionsCount:
33

monitoringEnabled
– (BOOL)monitoringEnabled

Returns YES if the application is “monitorable” by the Monitor application, and NO otherwise. An
application is “monitorable” if it was able to find a running Monitor upon startup and it is able to
successfully communicate with that Monitor.

By default, all applications are monitorable if the Monitor application is running on the same machine as
the application. You can specifically disable monitoring using the -WOMonitorEnabled NO option
on the application command line. If you want the application to be monitorable and the Monitor is running
on another host, you can start up the application through Monitor, or you can specify Monitor’s host on the
application command line this way:

MyApp.exe -WOMonitorEnabled YES -WOMonitorHost monitorHost ...

See also: – logToMonitorWithFormat: , the online document ServingWebObjects

name
– (NSString *)name

Returns the name of the application, which is the name of the executable (without the .exe extension).

See also: – baseURL, – path

number
– (NSString *)number

Returns @"-1" . This is provided for backwards compatibility only.

pageCacheSize
– (unsigned int)pageCacheSize

Returns the size of the internal cache for page instances. The default size is 30 instances.

See also: : – setPageCacheSize:

pageWithName:forRequest:
– (WOComponent *)pageWithName:(NSString *)aName forRequest:(WORequest *)aRequest

Returns a new page instance (a WOComponent object) identified by aName. If aName is nil , the “Main”
component is assumed. If the method cannot create a valid page instance, it raises an exception.
34

 Classes: WOApplication

h

As part of its implementation, this method creates a context with aRequest and calls pageWithName:
inContext:.

See also: – restorePageForContextID: (WOSession), – savePage: (WOSession)

pageWithName:inContext:
– (WOComponent *)pageWithName:(NSString *)aName inContext:(WOContext *)aContext

Returns a new page instance (a WOComponent object) identified by aName. If aName is nil , the “Main”
component is assumed. If the method cannot create a valid page instance, it raises an exception.

See also: pageWithName:forRequest:, – restorePageForContextID: (WOSession), – savePage:
(WOSession)

path
– (NSString *)path

Returns the filesystem path of the application, which is an absolute path and includes the “.woa” extension;
for example “C:/NETSCAPE/ns-home/docs/WebObjects/Examples/HelloWorld.woa” is a typical
application path.

See also: – baseURL, – name

permanentPageCacheSize
– (unsigned int)permanentPageCacheSize

Returns the permanent page cache size. The default is 30. The permanent page cache holds pages whic
should not fall out of the regular page cache. For example, a control page in a frameset should exist for the
duration of a session.

See also: savePageInPermanentCache: (WOApplication)

refuseNewSessions:
– (void)refuseNewSessions:(BOOL)flag

Controls whether this application instance will create a session when it receives an HTTP request from a
new user. If flag is YES, the application does not create new sessions; when it receives a request from a new
user, it refuses that request, and the adaptor must try to find another application instance that can process
the request. If flag is NO, the application creates new sessions. NO is the default.
35

You use this method with setMinimumActiveSessionsCount: to gracefully shut down application
instances. Use setMinimumActiveSessionsCount: to set the active session minimum to a certain number.
When number of active sessions reaches the number you set and isRefusingNewSessions returns YES, the
application terminates.

See also: – activeSessionsCount, – isRefusingNewSessions, – minimumActiveSessionsCount,
– setMinimumActiveSessionsCount:

registerRequestHandler:forKey:
– (void)registerRequestHandler:(WORequestHandler *)aHandler forKey: (NSString *)aKey

Registers a new request handler. aKey must specify a key which can be found in the URLs following the
instance number or application name.

See also: – removeRequestHandlerForKey:, – registeredRequestHandlerKeys,
– requestHandlerForKey:

registeredRequestHandlerKeys
– (NSArray *)registeredRequestHandlerKeys

Returns an array of strings containing the keys of all of the registered request handlers.

See also: – handlerForRequest:, – requestHandlerForKey:

removeRequestHandlerForKey:
– (WORequestHandler *)removeRequestHandlerForKey:(NSString *)aRequestHandlerKey

Removes the specified request handler from the application.

See also: – registerRequestHandler:forKey:, – requestHandlerForKey:

requestHandlerForKey:
– (WORequestHandler *)requestHandlerForKey:(NSString *)key

Returns the request handler used to handle requests containing the specified key.

See also: – handlerForRequest:, – registerRequestHandler:forKey:, – registeredRequestHandlerKeys
36

 Classes: WOApplication

requiresWOF35RequestHandling
– (BOOL)requiresWOF35RequestHandling

For backward compatibility, if your project depends upon features or side effects of the old request
handling, you will want to override this method and return YES. By default, it returns NO.

requiresWOF35TemplateParser
– (BOOL)requiresWOF35TemplateParser

For backward compatibility, if your project depends upon features or side effects removed from the new,
4.0 template parser, you will want to override this method and return YES. By default, it returns NO.

resourceManager
– (WOResourceManager *)resourceManager

Returns the WOResourceManager object that the application uses to manage resources.

See also: – setResourceManager:

restoreSessionWithID:inContext:
– (WOSession *)restoreSessionWithID:(NSString *)aSessionID inContext:(WOContext *)aContext

Restores the WOSession object representing a session. In normal request handling, this method is invoked
at the start of a cycle of the request-response loop. The default implementation simply invokes
WOSessionStore’s checkoutSessionWithID:request: method, but raises an exception if the
WOSessionStore object is missing.

See also: – createSessionForRequest:, – saveSessionForContext:

run
– (void)run

Runs the application in a near-indefinite run loop in the default run-loop mode. Before starting the run loop,
the method sends registerForEvents to the application’s adaptors so that they can begin receiving run-loop
events. Normally, run is invoked in the main function.

See also: – setTimeOut:, – terminate, – terminateAfterTimeInterval:
37

runLoop
– (NSRunLoop *)runLoop

Returns the application’s run loop. Use this method when you need a run loop for such things as registering
timers.

saveSessionForContext:
– (void)saveSessionForContext:(WOContext *)aContext

Called at the end of the request handling loop, when the current session object needs to be saved. The
default implementation simply invokes WOSessionStore’s checkinSessionForContext: method, but raises
an exception if the WOSessionStore object is missing.

See also: – restoreSessionWithID:inContext:

scriptedClassWithPath:
– (Class)scriptedClassWithPath:(NSString *)aPath

Loads a Webscript-based class with the pathname aPath into the application. The specified script is parsed
assuming the default string encoding, and the class and categories found in the script file are dynamically
added to the runtime.

scriptedClassWithPath:encoding:
– (Class)scriptedClassWithPath:(NSString *)aPath encoding:(NSStringEncoding)anEncoding

Loads a scripted class with the pathname aPath using the encoding anEncoding. The class and categories
found in the script file are dynamically added to the runtime. The script must use the
@interface/@implementation syntax.

sessionStore
– (WOSessionStore *)sessionStore

Returns the application’s current WOSessionStore object (which, by default, stores state in the server).

See also: – setSessionStore:
38

 Classes: WOApplication

ts.

,

setCachingEnabled:
– (void)setCachingEnabled:(BOOL)flag

Enables or disables the caching of component definitions. Component definitions contain templates and
other information about pages and subcomponents, and are used to generate instances of those componen
When this flag is enabled, the application parses the script (or implementation) file, the HTML, and the
declaration (“.wod”) file of a component once and then stores the resulting component definition. By
default, this kind of caching is disabled so that you can edit a scripted component without having to
relaunch the application every time to check the results. You should always enable component-definition
caching when you deploy an application since performance improves significantly.

Do not confuse this type of caching with page-instance caching (see setPageCacheSize:). Caching
Strategies in the class description provides further details.

See also: – isCachingEnabled

setDefaultRequestHandler:
– (void)setDefaultRequestHandler:(WORequestHandler *)aHandler

Sets the default request handler. If, for instance, you want the default request handler to use direct actions
write something like the following:

aHandler = [self requestHandlerForKey:@”wa”];

[self setDefaultRequestHandler:aHandler];

See also: – defaultRequestHandler

setMinimumActiveSessionsCount:
– (void)setMinimumActiveSessionsCount:(int)anInt

Sets the minimum number of active sessions to anInt. The default is 0.

You use this method to gracefully shut down application instances. If the active sessions count reaches this
number and isRefusingNewSessions returns YES, the application terminates. You might want to terminate
application instances periodically for performance reasons; some applications leak a certain amount of
memory per transaction, and shutting down and restarting instances of those applications can free up that
memory.

See also: – activeSessionsCount, – isRefusingNewSessions, – minimumActiveSessionsCount,
– refuseNewSessions:
39

e
 it

.”

setPageCacheSize:
– (void)setPageCacheSize:(unsigned int)anInt

Sets whether caching of page instances will occur and the number of pages the cache will hold. When
page-instance caching is enabled, the application stores the WOComponent instance corresponding to th
response page in the session. When the page is backtracked to, it restores it from the session and makes
the request page. The state of the page is retained. By default, page-instance caching is enabled, with a
cache limit of 30 pages.

You turn page-instance caching off by invoking this method with an argument of zero. In this case, when
the user backtracks to a page, the page is not stored in the session and so must be re-created “from scratch
Do not confuse this type of caching with component-definition caching (see setCachingEnabled:).

See also: – pageCacheSize

setPageRefreshOnBacktrackEnabled:
– (void)setPageRefreshOnBacktrackEnabled:(BOOL)flag

When flag is YES, disables caching of pages by the client by setting the page’s expiration-time header to
the current date and time. (By default, this attribute is set to NO.) Disabling of client caching affects what
happens during backtracking. With client caching turned off, the browser resends the URL to the server for
the page requested by backtracking. The application must return a new page to the browser (corresponding
to a new WOComponent instance). This behavior is desirable when you do not want the user to backtrack
to a page that might be obsolete because of changes that have occurred in the session.

When this flag is turned on and a request corresponding to a client backtrack occurs, the retrieved page will
only be asked to regenerate its response. The first two phases of a normal request-response loop (value
extraction from the request and action invocation) do not occur.

See Caching Strategies in the class description for further details.

See also: – isPageRefreshOnBacktrackEnabled

setPermanentPageCacheSize:
– (void)setPermanentPageCacheSize:(unsigned int)aSize;

Sets the permanentPageCacheSize to aSize

See also: – permanentPageCacheSize
40

 Classes: WOApplication

setResourceManager:
– (void)setResourceManager:(WOResourceManager *)aResourceManager

Sets the WOResourceManager object to aResourceManager. WOResourceManager objects search for and
retrieve resources from the application directory and from shared framework directories.

See also: – resourceManager

setSessionStore:
– (void)setSessionStore:(WOSessionStore *)aSessionStore

Set the session-store object for the application. By default, an object that stores session state in process
memory (that is, in the server) is used. The session-store object specifies the state storage strategy for the
whole application. This object is responsible for making session objects persistent. You should set the
session store object when the application starts up, before the first request is handled.

See also: – sessionStore

setStatisticsStore:
– (void)setStatisticsStore:(WOStatisticsStore *)aStatisticsStore

Sets the WOStatisticsStore object to aStatisticsStore. WOStatisticsStore objects record application
statistics while the application runs.

See also: – statisticsStore

setTimeOut:
– (void)setTimeOut:(NSTimeInterval)aTimeInterval

Sets the number of seconds the application can experience inactivity (no HTTP requests) before it
terminates execution.

This method differs from terminateAfterTimeInterval: in that with this method, the application must be
idle for aTimeInterval seconds for the application to terminate.terminateAfterTimeInterval: terminates
the application whether it is active or not.

See also: – timeOut
41

f
d
d

 to

t
sleep
– (void)sleep

Invoked at the conclusion of a request-handling cycle to give an application the opportunity for deallocating
objects created and initialized in its awake method. The default implementation does nothing.

statistics
– (bycopyNSDictionary *)statistics

Returns a copy of the dictionary containing the application statistics maintained by WOStatisticsStore. This
method is used by the Monitor application to retrieve application statistics. If you need to access the
statistics internally, use this message instead:

[[[WOApplication application] statisticsStore] statistics]

statisticsStore
– (WOStatisticsStore *)statisticsStore

Returns the WOStatisticsStore object, which records statistics while the application runs.

See also: – setStatisticsStore:

takeValuesFromRequest:inContext:
– (void)takeValuesFromRequest:(WORequest *)aRequest inContext:(WOContext *)aContext

The component action request handler sends this message to the WOApplication to start the first phase o
request handling. In this phase, the message is propagated to the session and component objects involve
in the request as well as the request page’s dynamic elements. Each dynamic element acquires any entere
data or changed state (such as a check in a check box) associated with an attribute and assigns the value
the variable bound to the attribute. The default WOApplication implementation of this method forwards the
message to the session object.

See also: – appendToResponse:inContext:, – invokeActionForRequest:inContext:

terminate
– (onewayvoid)terminate

Terminates the application process. Termination does not take place until the handling of the current reques
has completed.

See also: – isTerminating, – setTimeOut:
42

 Classes: WOApplication

.
terminateAfterTimeInterval:
– (void)terminateAfterTimeInterval: (NSTimeInterval)aTimeInterval

Sets the application to terminate itself after aTimeInterval seconds has elapsed. After the specified time
interval has elapsed, the application immediately stops all current processing. If any sessions are active,
users may lose information.

This method differs from setTimeOut: in that it does not set idle time; terminateAfterTimeInterval: :
shuts down the application regardless of whether it is idle.

timeOut
– (NSTimeInterval)timeOut

Returns the application’s time-out interval: a period (in seconds) of inactivity before the application
terminates execution. The default application time-out interval is a very large number.

See also: – setTimeOut:

trace:
– (void)trace:(BOOL)flag

If flag is YES, prints all trace messages (messages for scripted messages, compiled messages, and all
statements in the application) to the standard error device. If flag is NO, stops printing all trace messages.

See also: – traceAssignments:, – traceObjectiveCMessages::, – traceScriptedMessages:,
– traceStatements:

traceAssignments:
– (void)traceAssignments:(BOOL)flag

If flag is YES, prints a message to the standard error device every time an assignment statement is executed
If flag is NO, stops printing trace assignment messages.

See also: – trace:, – traceObjectiveCMessages::, – traceScriptedMessages:, – traceStatements:
43

s

s
traceObjectiveCMessages:
– (void)traceObjectiveCMessages:(BOOL)flag

If flag is YES, prints a message to the standard error device every time a message is sent to a compiled clas
from Webscript. If flag is NO, stops printing these messages.

See also: – trace:, – traceAssignments:, – traceScriptedMessages:, – traceStatements:

traceScriptedMessages:
– (void)traceScriptedMessages:(BOOL)flag

If flag is YES, prints a message to the standard error device every time a message is sent to a scripted clas
from Webscript. If flag is NO, stops printing trace scripted method messages.

See also: – trace:, – traceAssignments:, – traceObjectiveCMessages:, – traceStatements:

traceStatements:
– (void)traceStatements:(BOOL)flag

If flag is YES, prints a message to the standard error device every time a statement in the application is
executed from Webscript. If flag is NO, stops printing trace statement messages.

See also: – trace:, – traceAssignments:, – traceObjectiveCMessages:, – traceScriptedMessages:

unlock
– (void)unlock

Unlocks the application object.

unlockRequestHandling
– (void)unlockRequestHandling

Disables serialized request handler access if concurrent request handling isn’t enabled.
44

 Classes: WOApplication
Notifications

WOApplicationDidFinishLaunchingNotification

Posted just before the application begins waiting for requests. The notification contains the application
instance.

The notification contains the application instance.

WOApplicationWillFinishLaunchingNotification

Posted when an application has finished its init method. Register to receive this notification if you have an
object that wishes to set various setting in the application. For example, if you have a WORequestHandler
implemented in a framework and you want to register it with the WOApplication, you would register to
receive this notification and then implement a method that register your WORequestHandler with the
application.

The notification contains the application instance.
45

46

 Classes: WOAssociation

WOAssociation

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOAssociation.h

Class Description

The WOAssociation class cluster’s single public class, WOAssociation, declares the programmatic
interface to objects that represent the values of WebObject attributes, as specified in a declarations file. You
rarely need to create subclasses of WOAssociation, except in situations where you need to subclass
WODynamicElement.

The purpose of a WOAssociation object is to provide a unified interface to values of different types. For
example, consider these declarations:

TREENAME1:WOString {value = "Ash"};

TREENAME2:WOString {value = treeName};

TREENAME3:WOString {value = selectedTree.name};

At runtime, the WebObjects parser scans an HTML template and these declarations and creates three
WOString dynamic element objects. In the first case, the WOString’s value attribute is assigned a constant
string. In the second, it’s associated with the treeName variable of the component in which the dynamic
element is declared. In the third, value is associated with the name attribute of the component’s
selectedTree variable. The search path for the value can be arbitrarily deep, depending on the needs of your
application:

MAYOR:WOString {value = country.state.city.mayor.name};

To resolve a path such as this, WebObjects accesses each part in turn. First, it looks for the component’s
country variable. If the component responds to a country message, it sends one to determine the value;
otherwise, it directly accesses the component’s country instance variable to determine the value. Next, it
checks the country object for a state attribute, using the same strategy of looking for an accessor method
named state and then, if necessary, accessing the state variable’s value directly. It continues in this way
until the ultimate value is determined.

WOAssociation objects present the WebObjects framework with a unified interface to attribute values,
whether their values are static or dynamic. The value attribute for TREENAME1 in the example above will
never change during the course of program execution, but the other WOStrings have values that are
potentially dynamic, and so will have to be determined at runtime. Since the value of any WOAssociation
can be determined by sending it a valueInComponent: message, objects that use WOAssociation objects
47

don’t have to be concerned with how values are resolved. The WODynamicElement class makes extensive
use of this feature. See the WODynamicElement class specification for more information.

Adopted Protocols

 NSCopying
– copy
– copyWithZone:

Method Types

Creation
+ associationWithKeyPath:
+ associationWithValue:

Obtaining association attributes
– isValueConstant
– isValueSettable

Setting and retrieving value
– setValue:inComponent:
– valueInComponent:

Class Methods

associationWithKeyPath:
+ (WOAssociation *)associationWithKeyPath:(NSString *)aKeyPath

Creates and returns a WOAssociation object whose value is determined by evaluating aKeyPath. This
method is used when a dynamic element’s attribute is set to a variable from the component’s script. For
example, when the WebObjects parser sees a declaration of this sort,

TREENAME3:WOString {value = selectedTree.name};

it invokes associationWithKeyPath: to create a WOAssociation whose key is "selectedTree.name". When
the resulting WOAssociation is asked for its value, it searches for the value of the name attribute of in the
current component’s selectedTree attribute.

If aKeyPath is nil , the value of the WOAssociation is also nil .

See also: – associationWithValue:
48

 Classes: WOAssociation

s
associationWithValue:
+ (WOAssociation *)associationWithValue:(id)aValue

Creates and returns a WOAssociation object whose value is aValue, a constant value. This method is used
when a dynamic element’s attribute is set to a constant. For example, when the WebObjects parser sees a
declaration of this sort,

TREENAME3:WOString {value = "Time Flies!"};

it invokes this method to create a WOAssociation whose value is "Time Flies!".

See also: + associationWithKeyPath:

Instance Methods

isValueConstant
– (BOOL)isValueConstant

Returns YES if the WOAssociation’s value is a constant, NO otherwise.

See also: – associationWithValue: , – isValueSettable

isValueSettable
– (BOOL)isValueSettable

Returns NO if the receiver’s value is constant, YES otherwise.

See also: + associationWithKeyPath: , – isValueConstant

setValue:inComponent:
– (void)setValue:(id)aValue inComponent:(WOComponent *)aComponent

Finds the attribute of aComponent pointed to by the left-hand-side of the receiver and set its value to aValue.
This method raises NSInternalInconsistencyException if the receiver’s value is not settable. For example,
sending a setValue:inComponent: message to a WOAssociation created from this declaration,

USER:WOTextField {value = userName};

sets the current component’s userName variable to the value typed into the WOTextField.

One way in which the WebObjects framework uses this method is to synchronize the values of nested
components. When attributes in child and parent components are associated with one another and change
49

e

s
e
occur in one component, this method is invoked to migrate those changes to the other component. See th
reusable components chapter in the WebObjects Developer’s Guide for more information.

See also: – valueInComponent:

valueInComponent:
– (id)valueInComponent:(WOComponent *)aComponent

Returns a value based on the receiver’s association and the current component. For example, sending a
value message to a WOAssociation created from this declaration,

DOWNPAYMENT:WOString {value = downpayment};

returns the value of the current component’s downpayment variable.

Sending a value message to a WOAssociation created from this declaration,

DOWNPAYMENT:WOString {value = "$5000.00"};

returns the value "$5000.00" (independent of the current component).

This method raises an exception if it cannot resolve the WOAssociation’s value with the current component.

One way in which the WebObjects framework uses this method is to synchronize the values of nested
components. When attributes in child and parent components are associated with one another and change
occur in one component, this method is invoked to migrate those changes to the other component. See th
reusable components chapter in the WebObjects Developer’s Guide for more information.

See also: – setValue:inComponent:
50

 Classes: WOComponent

n

t
t

s

nt
WOComponent

Inherits From: WOElement : NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOComponent.h

Class Description
WOComponent objects dynamically render web pages (or sections of pages) at run time. They provide custom
navigation and other logic for the page, provide a framework for organizing constituent objects (static and
dynamic HTML elements and subcomponents), and enable the attribute bindings of dynamic elements.

The WOComponent class has many methods that have the same names as methods of the WOApplicatio
class. However, the scope of the WOComponent methods is limited to a component rather than being
application-wide. For example, you can control component-definition caching on a per-component basis
using setCachingEnabled:, which has a WOApplication counterpart. When this kind of caching is enabled
for a component, the application parses the contents of the component directory the first time the componen
is requested, creates the component definition, stores this object in memory, and restores it for subsequen
requests.

WOComponent objects also respond to awake, sleep, and the three request-handling messages:
takeValuesFromRequest:inContext:, invokeActionForRequest:inContext:,and appendToResponse:
inContext:. You can override these methods in your compiled subclasses, and thereby integrate your
custom behavior into the request-response loop. (You can also override these methods in component script
using WebScript.)

Subcomponents

A WOComponent object can represent a dynamic fragment of a Web page as well as an entire page. Such
subcomponents, or reusable components, are nested within a parent component representing the page or
another subcomponent. Each component keeps track of its parent and subcomponents—when a compone
receives a request-handling message, such as takeValuesFromRequest:inContext:, it forwards that
message to its subcomponents

The WOComponent class also provides a child-parent callback mechanism to allow a child component to
communicate with its parent. In the parent’s declaration file, bind an arbitrary attribute of the child to an
action method of the parent. Then, as the last step in the child’s action method, invoke
performParentAction: with the argument being the arbitrary attribute, returning the object received back
as the response page. See the method description for performParentAction: for details.
51

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copy
– copyWithZone:

Method Types

Creation
– init

Obtaining attributes
– application
– baseURL
– context
– frameworkName
– hasSession
– name
– pageWithName:
– path
– session

Caching
– isCachingEnabled
– setCachingEnabled:

Managing resources
– templateWithName:
– pathForResourceNamed:ofType:

Handling requests
– appendToResponse:inContext:
– awake
– invokeActionForRequest:inContext:
– sleep
– takeValuesFromRequest:inContext:

Logging
– debugWithFormat:
– logWithFormat:
– logWithFormat:arguments:
– validationFailedWithException:value:keyPath:
52

 Classes: WOComponent

e

Template parsing
+ templateWithHTMLString:declarationString:languages:

Components statistics
– descriptionForResponse:inContext:

Invoking actions
– parent
– performParentAction:

Synchronizing components
– hasBinding:
– setValue:forBinding:
– synchronizesVariablesWithBindings
– valueForBinding:

Other
– generateResponse

Class Methods

templateWithHTMLString:declarationString:languages:
+ (WOElement *)templateWithHTMLString: (NSString *)anHTMLString declarationString:

(NSString *)aDeclarationString languages:(NSArray*)languages

Programmatically creates the component’s template using anHTMLString as the HTML template contents
and aDeclarationString as the declarations file contents. Returns (as a WOElement object) the graph of
static and dynamic elements build by parsing the HTML and declaration strings. You can then use the
returned WOElement as the component’s template.

See also: – templateWithName:

Instance Methods

appendToResponse:inContext:
– (void)appendToResponse:(WOResponse *)aResponse inContext:(WOContext *)aContext

Component objects associated with a response receive this message during the last phase of the
request-response loop. In the append-to-response phase, the application objects (particularly the respons
page instance itself) generate the HTML content of the page. WOComponent’s default implementation of
this method forwards the message to the root WOElement object of the component template. Compiled or
53

scripted subclasses of WOComponent can override this method to replace or supplement the default
behavior with custom logic.

See also: – invokeActionForRequest:inContext: , – takeValuesFromRequest:
inContext:

application
– (WOApplication *)application

Returns the WOApplication object for the current application.

See also: WOApplication class, – context , – session

awake
– (void)awake

Invoked at the beginning of a WOComponent’s involvement in a cycle of the request-response loop, giving
the WOComponent an opportunity to initialize its instance variables or perform setup operations. The
default implementation does nothing.

See also: – init , – sleep

baseURL
– (NSString *)baseURL

Returns the component URL relative to the server’s document root, for example:
“/WebObjects/MyApp.woa/Resources/Main.wo”

See also: – name, – path

context
– (WOContext *)context

Returns the WOContext object for the current transaction.

See also: WOContext class, – application , – session
54

 Classes: WOComponent

e.
debugWithFormat:
– (void)debugWithFormat: (NSString *)aFormatString,...

Like logWithFormat: , prints a message to the standard error device (stderr), but only prints the message if
the WODebuggingEnabled user default option is YES. If WODebuggingEnabled is NO, the
debugWithFormat: messages aren’t printed. See logWithFormat: for information on the format of
aFormatString.

See also: – logWithFormat:arguments:

descriptionForResponse:inContext:
– (NSString *)descriptionForResponse:(WOResponse *)aResponse

inContext:(WOContext *)aContext

Records information about the component if it is the response component in the current request-response
loop transaction. The default implementation records the component’s name. You might override this
method if you want to record more information about the component. For example, you might want to
record the values of some instance variables as well as the component name.

This message is sent only to the top-level response component, that is, the one representing the entire pag
Components nested inside of that top-level component do not receive this message.

If a CLFF log file is kept for this application, the string returned by this method is recorded in that log file.
Thus, you must ensure that the string you return can be analyzed by a CLFF-analysis tool.

See also: WOStatisticsStore class

frameworkName
– (NSString *)frameworkName

If the component is stored in a framework, this method returns the name of that framework. For example,
if the component is in the framework
NeXT_ROOT/System/Library/Frameworks/WOExtensions.framework, then this method returns the
string “WOExtensions”.

If the component is not stored in a framework, this method returns nil .

See also: WOResourceManager class
55

generateResponse
– (WOResponse *)generateResponse

Returns a newly-created WOResponse object. WOComponent’s implementation of this method translates
the receiving component into a WOResponse object by sending iteself an appendToResponse:inContext:
message.

See also: – generateResponse (WOResponse)

hasBinding:
– (BOOL)hasBinding:(NSString *)aBindingName

 Returns whether the component has a binding named aBindingName.

hasSession
– (BOOL)hasSession

Returns whether the component is already in a session. For example, in direct actions, sessions are lazily
created and you can avoid creating another one unnecessarily by calling hasSession before session.

See also: – session

init
– (id)init

Initializes a WOComponent object. If a WebObjects Builder archive file exists in the component directory,
it initializes component variables from this archive. An exception is thrown if the method cannot determine
the name of the component or if it cannot initialize the object for any other reason. Override init in compiled
subclasses to perform custom initializations; as always, invoke super’s init method as the first thing.

See also: – awake

invokeActionForRequest:inContext:
– (WOElement *)invokeActionForRequest:(WORequest *)aRequest

inContext:(WOContext *)aContext

WOComponent objects associated with a request page receive this message during the middle phase of
request handling. In this middle phase, the invokeActionForRequest:inContext: message is propagated
through the WOElement objects of the page; the dynamic element on which the user has acted (by, for
example, clicking a button) responds by triggering the method in the request component that is bound to
56

 Classes: WOComponent
the action. WOComponent’s default implementation of this method forwards the message to the root
WOElement object of the component template.Compiled or scripted subclasses of WOComponent can
override this method to replace or supplement the default behavior with custom logic.

See also: – appendToResponse:inContext:, – takeValuesFromRequest:inContext:

isCachingEnabled
– (BOOL)isCachingEnabled

Returns whether component-definition caching is enabled for this component. NO is the default.

See also: – setCachingEnabled:

logWithFormat:
– (void)logWithFormat: (NSString *)aFormat,...

Prints a message to the standard error device (stderr). The message can include formatted variable data
using printf -style conversion specifiers, for example:

id i = 500;

id f = 2.045;

[self logWithFormat:@"Amount = %@, Rate = %@, Total = %@",

i, f, i*f];

Note that in WebScript, all variables are objects, so the only conversion specifier allowed is %@ as shown
above. In compiled Objective-C code, all printf conversion specifiers are allowed. The equivalent method
in Java is logString.

logWithFormat:arguments:
– (void)logWithFormat: (NSString *)aFormat arguments:(va_list)someArguments

Prints a message to the standard error device (stderr). This method is used by logWithFormat: .

name
– (NSString *)name

Returns the name of the component minus the “.wo” extension; for example “Main” is a typical component
name.

See also: – baseURL, – path
57

s

pageWithName:
– (WOComponent *)pageWithName:(NSString *)aName

Returns a new page instance (a WOComponent object) identified by aName. If aName is nil , the “Main”
component is assumed. If the method cannot create a valid page instance, it raises an exception.

See also: – restorePageForContextID: (WOSession), – savePage: (WOSession)

parent

– (WOComponent *)parent

Returns the parent component of the receiver.

path
– (NSString *)path

Returns the file-system path of the component, which is an absolute path and includes the “.wo” extension;
for example “C:\Apple\Library\WOApps\MyApp.woa\Resources\Main.wo” is a typical path.

See also: – baseURL, – name

pathForResourceNamed:ofType:
– (NSString *)pathForResourceNamed:(NSString *)aName ofType:(NSString *)aType

Returns the absolute path to the component resource having the name of aName and an extension of aType.
The method searches all localized “.lproj” directories of the component before searching directly under the
“.wo” component directory for a non-localized resource of the given name and extension.

This method is provided for backwards compatibility only. For WebObjects 3.5 and above, you should use
the WOResourceManager API to retrieve resources. WOResourceManager is not able to retrieve resource
stored inside component directories.

performParentAction:
– (id)performParentAction: (NSString *)anActionName

Allows a subcomponent to invoke an action method of its parent component bound to the child component
(attribute). Parent and child components are “synchronized” when this method returns: the variables that
are bound by a declaration of the child component in the parent component’s declaration file have the same
value.
58

 Classes: WOComponent

An example best illustrates this mechanism. Let’s say you have a Palette subcomponent, and this
WOComponent is nested in a parent component with a “displaySelection” action method. When the user
selects an item in the palette (perhaps a color), you want to invoke “displaySelection” to show the result of
the new selection (perhaps a car in the new color). The declaration in the parent’s “.wod” file would look
like this:

PALETTE: Palette {

 selection = number;

 callBack = "displaySelection";

};

The “callBack” item is an arbitrary attribute of the child component bound in this declaration to the parent
component’s “displaySelection” method.The performParentAction: method is used to activate this
binding. Let’s assume the child component has an action method called “click”; the implementation would
look like this:

- click { /* this is the child’s action */

selection = /* some value */;

/* now invoke the parent’s action */

return [self performParentAction:callBack];

}

session
– (WOSession *)session

Returns the current WOSession object. This method creates a new one if there isn’t one.

See also: WOSession class, – application, – context, – hasSession

setCachingEnabled:
– (void)setCachingEnabled:(BOOL)flag

Enables or disables the caching of component definitions for the receiving component. WOComponent
definitions contain templates and other common information related to components, and are used to
generate instances of those components.When this attribute is set to YES, the application parses the HTML
template and the declaration (“.wod”) file of a component once and then stores the resulting component
definition for future requests. By default, this kind of caching is disabled so that you can edit a scripted
component without having to relaunch the application every time to check the results.(Note that this does
not apply to Java subclasses of WOComponent; in this case, you still have to kill and relaunch the
application.)

With WOApplication’s method of the same name, you can turn component-definition caching off globally.
You can then control caching of individual component definitions using WOComponent’s version of this
59

t

e
method. Selective caching is an especially valuable technique for very large applications where only the
most frequently requested components should be cached.

See also: – isCachingEnabled

setValue:forBinding:
– (void)setValue:aValue forBinding: (NSString *)aBindingName

Sets the value of the binding specified by aBindingName in the parent component to aValue. If the parent
doesn’t provide aBindingName in its declarations file, this method attempts to set the value in the current
component using takeValue:forKey: . If the current component doesn’t define this key, this method silently
returns.

See also: – synchronizesVariablesWithBindings, – valueForBinding:

sleep
– (void)sleep

Invoked at the conclusion of a request-handling cycle to give component the opportunity for deallocating
objects created and initialized in its awake method. The default implementation does nothing.

synchronizesVariablesWithBindings
– (BOOL)synchronizesVariablesWithBindings

Returns whether a nested component pulls all values down from its parent and pushes all values to its paren
before and after each phase of the request-response loop. By default, this method returns YES. Override
this method to create a non-synchronizing component.

See also: – setValue:forBinding:, – valueForBinding:

takeValuesFromRequest:inContext:
– (void)takeValuesFromRequest:(WORequest *)aRequest inContext:(WOContext *)aContext

WOComponent objects associated with a request receive this message during the first phase of the
request-response loop. The default WOComponent behavior is to send the message to the root object of th
component’s template.In this phase, each dynamic element in the template extracts any entered data or
changed state (such as a check in a check box) associated with an attribute and assigns the value to the
60

 Classes: WOComponent

t
component variable bound to the attribute.Compiled or scripted subclasses of Component can override this
method to replace or supplement the default behavior with custom logic.

See also: – appendToResponse:inContext:, – invokeActionForRequest:inContext:

templateWithName:
– (WOElement *)templateWithName:(NSString *)aName

Returns the root object of the graph of static and dynamic HTML elements and subcomponents that is used
to graphically render the component identified by aName. This template is constructed from the “.html” and
“.wod” file found in the component directory. You identify the template by specifying the component
directory, which consists of the component name plus the “wo” extension: for example, “HelloWorld.wo.”
If the template is not cached, the application will parse the HTML and declaration files of the specified
component to create the template.

See also: – setCachingEnabled:

validationFailedWithException:value:keyPath:
– (void)validationFailedWithException: (NSException *)exception

value:(id)value
keyPath:(NSString *)keyPath

Called when an Enterprise Object or formatter failed validation during an assignment. The default
implementation ignores the error. Subclassers can override to record the error and possibly return a differen
page for the current action.

valueForBinding:
– valueForBinding:(NSString *)aBindingName

Gets the value for the specified binding from the parent component. If the parent doesn’t provide
aBindingName in its delcarations file, this method attempts to get the value from the current component
using valueForKey:. If the current component doesn’t define this key, this method returns nil. This
cascading lookup makes it easy to provide default values for optional bindings.

See also: – setValue:forBinding:, – synchronizesVariablesWithBindings
61

62

 Classes: WOContext

WOContext

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOContext.h

Class Description

A WOContext object lets you access objects and information that define the context of a transaction. In a
typical request-response loop (a transaction), several objects have a hand in what is going on: the
WOApplication and WOSession objects, the page involved in the request or response (a WOComponent
object), the page's subcomponents (also WOComponents), plus the dynamic elements on the page. The
WOContext object passed as an argument in the takeValuesFromRequest:inContext:,
invokeActionForRequest:inContext:, and appendToResponse:inContext: messages allows access to
these objects. A context is identified by the context ID, which appears in the URL after the session ID and
page name. Each context ID is an integer that the session increments each time a new context is created.

WOContext objects provide other information and services related to the current transaction. From them
you can get the entire URL currently in effect as well as portions of that URL, such as the element ID, the
context ID, and the URL up to and including the session ID.

A WOContext object plays a further role behind the scenes. For the benefit of a page's dynamic elements,
it keeps track of the current component, that is, the WOComponent associated with the current element in
the request-handling cycle. The current component can be the WOComponent that represents one of the
page's subcomponents or the page itself. By reference to the current component (accessed through
WOContext's component method), a dynamic element can exchange values associatively between itself
and the WOComponent that contains it.

Adopted Protocols

NSCopying
– copy
– copyWithZone:
63

Method Types

Creating new object instances
+ contextWithRequest:
– init
– initWithRequest:

Obtaining attributes
– component
– contextID
– elementID
– hasSession
– isInForm
– page
– request
– response
– session
– senderID
– setInForm:

Manipulating element ID

– appendElementIDComponent:
– appendZeroElementIDComponent
– deleteAllElementIDComponents
– deleteLastElementIDComponent
– incrementLastElementIDComponent

Generating URLs
– directActionURLForActionNamed:queryDictionary:
– completeURLWithRequestHandlerKey:path:queryString:isSecure:

port:
– componentActionURL
– urlWithRequestHandlerKey:path:queryString:

Class Methods

contextWithRequest:
+ (WOContext *)contextWithRequest:(WORequest *)aRequest

Creates and returns a WOContext with aRequest. This is the preferred way to create a WOContext. All other
constructors call this one, so if you subclass WOContext, you need to override only this one.
64

 Classes: WOContext

.

Instance Methods

appendElementIDComponent:
– (void)appendElementIDComponent:(NSString *)aString

Appends a string to the current element ID to create an identifier of an HTML element. For example, if the
current element ID is "0.1.1" and you send this message with an argument of "NameField," the element ID
for that field becomes "0.1.1.NameField".

See also: – deleteAllElementIDComponents , – deleteLastElementIDComponent ,
– incrementLastElementIDComponent

appendZeroElementIDComponent
– (void)appendZeroElementIDComponent

Appends a ".0" to the current element ID to create an identifier of the first "child" HTML element. For
example, if the current element ID is "0.1.1", after you send this message the element ID becomes "0.1.1.0"

See also: – deleteAllElementIDComponents , – deleteLastElementIDComponent ,
– incrementLastElementIDComponent

completeURLWithRequestHandlerKey:path:queryString:isSecure:port:
– (NSString *)completeURLWithRequestHandlerKey:(NSString *)requestHandlerKey

path:(NSString *)aRequestHandlerPath
queryString: (NSString *)aQueryString
isSecure:(BOOL)isSecure
port: (int)somePort

Returns the complete URL for the specified request handler. The requestHandlerKey is one of the keys
provided by WOApplication. The requestHandlerPath is any URL encoded string. The queryString is
added at the end of the URL behind a “?”. If isSecure is YES, this method uses “https” instead of “http.” If
somePort is 0 (zero), this method uses the default port.

See also: – urlWithRequestHandlerKey:path:queryString:

component
– (WOComponent *)component

Returns the component that dynamic elements are currently using to push and pull values associatively.
This component could represent the current request or response page or a subcomponent of that page.

See also: WOComponent class, – page , – request , – response , – senderID
65

componentActionURL
– (NSString *)componentActionURL

Returns the complete URL for the component action.

contextID
– (NSString *)contextID

Returns the context ID of the receiver.

deleteAllElementIDComponents
– (void)deleteAllElementIDComponents

Deletes all components of the current element ID.

See also: – appendElementIDComponent: , – appendZeroElementIDComponent ,
– incrementLastElementIDComponent

deleteLastElementIDComponent
– (void)deleteLastElementIDComponent

Deletes the last digit (or name) of the current element ID, along with its dot separator. Thus, after sending
this message, "0.0.1.1" becomes "0.0.1".

See also: – appendElementIDComponent: , – appendZeroElementIDComponent ,
– incrementLastElementIDComponent

directActionURLForActionNamed:queryDictionary:
– (NSString *)directActionURLForActionNamed: (NSString *)anActionName

queryDictionary: (NSDictionary *)aQueryDict

Returns the complete URL for the specified action. You can specify aQueryDict, and anActionName can be
@"ActionClass/ActionName" or @"ActionName".

See also: WODirectAction class specification
66

 Classes: WOContext
elementID
– (NSString *)elementID

Returns the element ID identifying the current WOElement.This method helps you avoid creating a session
in direct actions.

hasSession
– (BOOL)hasSession

Returns whether a session exists for the receiving context.

See also: – senderID

incrementLastElementIDComponent
– (void)incrementLastElementIDComponent

Increments the last digit of the current element ID. For example, after this message is sent, "0.0.1.2"
becomes "0.0.1.3".

See also: – appendElementIDComponent:, – appendZeroElementIDComponent,
– deleteAllElementIDComponents, – deleteLastElementIDComponent

init
– (id)init

Returns a WOContext instance initialized with a unique context ID. Generally, you should call
initWithRequest: instead to ensure that the WOContext instance is properly initialized.

initWithRequest:
– (id)initWithRequest: (WORequest *)aRequest

Returns a WOContext with aRequest.

isInForm
– (BOOL)isInForm

Returns YES when in the context of a WOForm.

See also: setInForm:
67

d

:
page
– (WOComponent *)page

Returns the WOComponent object that represents the request or response page.

See also: – component, – request, – response, – senderID

request
– (WORequest *)request

Returns the transaction's WORequest object.

See also: – component, – page, – response, – senderID

response
– (WOResponse *)response

Returns the transaction's WOResponse object.

See also: – component, – page, – response, – senderID

senderID
– (NSString *)senderID

Returns the part of the WORequest’s URI that identifies the dynamic element on the page (such as a form
or an active image) responsible for submitting the request. The sender ID is the same as the element ID use
to identify the dynamic element. A request's sender ID may be nil , as it always is on the first request of a
session.

See also: – initWithRequest:, – request , – uri (WORequest)

session
– (WOSession *)session

Returns the object representing the receiving context’s session, if one exists. If the receiver does not have a
session, this method creates a new session object and returns it. Note that not all contexts have a session
Direct Actions, for instance, don’t always need a session. Use hasSession to determine whether a context
has a session associated with it.

See also: – component, – page, – request, – response, WOSession class
68

 Classes: WOContext
setInForm:
– setInForm:(BOOL)flag

If you write something that behaves like a WOForm, set this to notify WODynamicElements that they are
in a form.

See also: isInForm

urlWithRequestHandlerKey:path:queryString:
– (NSString *)urlWithRequestHandlerKey: (NSString *)requestHandlerKey

path:(NSString *)aRequestHandlerPath
queryString: (NSString *)aQueryString

Returns a URL relative to cgi-bin/WebObjects for the specified request handler. The
requestHandlerKey is one of the keys provided by WOApplication. The requestHandlerPath is any URL
encoded string. The queryString is added at the end of the URL behind a “?”.

– completeURLWithRequestHandlerKey:path:queryString:isSecure:port:
69

70

 Classes: WOCookie

r

WOCookie

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOCookie.h

Class Description

WOCookie is used for the creation and setting of cookies in your response objects. A cookie allows for the
persistent storage of client state. Instead of using a WOSession object (which can potentially have a shorte
life span), a cookie allows server-side applications to store state in client browsers for a specific or
indeterminate amount of time. An advantage to cookies is that the data will be stored on the client and not
on the server, allowing the server to maintain less state information. A specific advantage in WebObjects
applications is that cookies allow the server to put state into the browser that is not bound to a session.
Hence, the client can “leave” your application and return with its cookie’s state intact.

A WOCookie object defines a cookie that can be added to the HTTP header for your response. You create
a cookie using one of two methods:

• cookieWithName:value:
• cookieWithName:value:path:domain:expires:isSecure:

To add or remove cookies from the response, use the WOResponse methods addCookie: and
removeCookie:. To retrieve cookie data, use the WORequest methods cookieValues,
cookieValueForKey:, and cookieValuesForKey:. WORequest returns the data as name/value pairs and not
as WOCookie objects, since browsers don’t return the additional data WOCookies provide, such as path
name and expiration date.

For more information about cookies and their implementation details, see Netscape’s preliminary
specification at http://www.netscape.com/newsref/std/cookie_spec.html and RFC 2109 - HTTP State
Management Mechanism at http://www.cis.ohio-state.edu/htbin/rfc/rfc2109.html.

If and when new details evolve in the implementation of cookies, you can subclass WOCookie and
implement new behaviors. Pay particular attention to how you override headerString, which WOResponse
uses to fill the HTTP response with a header string.
71

Method Types

Creation
+ cookieWithName:value:
+ cookieWithName:value:path:domain:expires:isSecure:
– initWithName:value:path:domain:expires:isSecure:

Obtaining a cookie’s attributes
– domain
– expires
– headerString
– isSecure
– name
– path
– value

Setting a cookie’s attributes
– setDomain:
– setExpires:
– setIsSecure:
– setName:
– setPath:
– setValue:

Class Methods

cookieWithName:value:
+ (WOCookie *)cookieWithName:(NSString *)aName value:(NSString *)aValue

Creates and returns a cookie with just a name and its value. It sets the path attribute to your application’s
path.

See also: – cookieWithName:value:path:domain:expires:isSecure:
72

 Classes: WOCookie

cookieWithName:value:path:domain:expires:isSecure:
+ (WOCookie *)cookieWithName:(NSString *)aName

value:(NSString *)aValue
path:(NSString *)aPath
domain:(NSString *)aDomain
expires:(NSDate *)expirationDate
isSecure:(BOOL)flag

Creates and returns a cookie, specifying all its attributes. For more information, see the descriptions of the
methods that return attribute values.

See also: – cookieWithName:value:, – domain, – expires, – isSecure, – name, – path, – value

Instance Methods

domain
– (NSString *)domain

Returns the value of the cookie’s “domain” attribute. It’s of the form “companyname.com”.

expires
– (NSDate *)expires

Returns the value of the cookie’s “expires” attribute as an NSDate. The expiration date tells the browser
how long to keep the cookie in its cache. To have the browser remove the cookie from its cache, set the
expiration date to a date in the past.

headerString
– (NSString *)headerString

Returns the string that will be used in the HTTP header. The returned string has the format:

Set-cookie: name= value ; expires= date ; path= path ; domain= domain ; secure;

The calendar format for the expiration date is:

@”%A, %d-%b-%Y %H:%M:%S GMT”

where all times are converted relative to Greenwich Mean Time.

This method is called by WOResponse when generating the response.
73

initWithName:value:path:domain:expires:isSecure:
– initWithName: (NSString *)aName

value:(NSString *)aValue
path:(NSString *)aPath
domain:(NSString *)aDomain
expires:(NSDate *)expirationDate
isSecure:(BOOL)flag

Initializes a cookie with all its attributes. For more information, see the descriptions of the methods that
return attribute values.

See also: – domain, – expires, – isSecure, – name, – path, – value

isSecure
– (BOOL)isSecure

 Returns the cookie’s “secure” attribute. This attribute specifies whether the cookie should be transmitted
only with secure HTTP. The default value is NO.

name
– (NSString *)name

Returns the cookie’s “name” attribute. The name is similar to the key of a dictionary or hash table. Together,
the name and value form the cookie’s data.

path
– (NSString *)path

Returns the value of the cookie’s “path” attribute. Cookies for a specific path are sent only when accessing
URLs within that path. For more information on cookies and their paths, see Netscape’s preliminary
specification at http://www.netscape.com/newsref/std/cookie_spec.html and RFC 2109 - HTTP State
Management Mechanism at http://www.cis.ohio-state.edu/htbin/rfc/rfc2109.html.

setDomain:
– (void)setDomain:(NSString *)aDomain

Sets the cookie’s “domain” attribute to aDomain. For more information, see domain.

See also: – cookieWithName:value:path:domain:expires:isSecure:
74

 Classes: WOCookie
setExpires:
– (void)setExpires:(NSDate *)expirationDate

Sets the cookie’s “expires” attribute to expirationDate. For more information, see expires.

See also: – cookieWithName:value:path:domain:expires:isSecure:

setIsSecure:
– (void)setIsSecure:(BOOL)flag

Sets the cookie’s “secure” attribute to flag. For more information, see isSecure.

See also: – cookieWithName:value:path:domain:expires:isSecure:

setName:
– (void)setName:(NSString *)aName

Sets the cookie’s “name” attribute to aName. For more information, see name.

See also: – cookieWithName:value:path:domain:expires:isSecure:, – cookieWithName:value:

setPath:
– (void)setPath:(NSString *)aPath

Sets the cookie’s “path” attribute to aPath. For more information, see path.

See also: – cookieWithName:value:path:domain:expires:isSecure:

setValue:
– (void)setValue:(NSString *)aValue

Sets the cookie’s “value” attribute to aValue. For more information, see value.

See also: – cookieWithName:value:path:domain:expires:isSecure:, – cookieWithName:value:

value
– (NSString *)value

Returns the value of the cookie’s value attribute. This attribute is similar to the value of a dictionary or hash
table. Together, the name and value form the cookie’s data.
75

76

 Classes: WODirectAction
WODirectAction

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WODirectAction.h

Class Description

WODirectAction is an abstract class that defines the interface for direct action classes. You subclass
WODirectAction to provide an object that is a repository for action methods.

WODirectAction provides the simplest interface for addig logic and custom code to your WebObjects
application. WODirectAction objects are instantiated when a URL requested by a client browser is sent to
your WebObjects application. The WODirectActionRequestHandler determines the proper class and action
to be invoked and then passes control to your WODirectAction subclass.

In contrast to a WOComponent-based action, a direct action is well-defined by the URL that invokes it. For
example, the following URL will invoke the method findEmployeeAction on the subclass of
WODirectAtion called Common:

http://localhost/cgi-bin/WebObjects/Myapp.woa/wa/Common/findEmployee

A subclass of WODirectAction is a repository for action methods. New WebObjects applications contain a
default implementation of the WODirectAction subclass called DirectAction. The DirectAction class is
used when no class is specified in the URL.

In summary, here are some URLs and the actions they invoke:

WODirectActionRequestHandler invokes methods only on subclasses on WODirectAction. If the specified
class or action doesn’t exist, WODirectActionRequestHandler throwsraises an exception.

This URL... Invokes this method...

../MyApp.woa/wa/ defaultAction on class DirectAction

../MyApp.woa/wa/ find
findAction on classDirectAction , if it exists
defaultAction on class find , otherwise

../MyApp.woa/wa/Common/find findAction on class Common
77

Method Types

Creation
– initWithRequest:

Obtaining attributes
– request

Obtaining a session
– existingSession
– session

Obtaining a page
– pageWithName:

Performing an action
– performActionNamed:

Value assignment
– takeFormValueArraysForKeyArray:
– takeFormValueArraysForKeys:
– takeFormValuesForKeyArray:
– takeFormValuesForKeys:

Debugging
– debugWithFormat:
– logWithFormat:

Instance Methods

debugWithFormat:
– (void)debugWithFormat: (NSString *)aFormatString,...

This method is similar to logWithFormat: except that you can control whether it displays output with the
WODebuggingEnabled user default option. If WODebuggingEnabled is YES, then the
debugWithFormat: messages display their output. If WODebuggingEnabled is NO, the
debugWithFormat: messages don’t display their output.

See also: – debugWithFormat: (– WOApplication)
78

 Classes: WODirectAction

ed
existingSession
– (WOSession*)existingSession

Restores the session based on the request. If the request did not have a session ID or the session ID referr
to a non-existent session, then this method returns nil . To determine if a session failed to restore, check the
request’s session ID to see if it non-nil and if so, call this method to check its result.

See also: – session

initWithRequest:
– initWithRequest: (WORequest *)aRequest

This is the designated initializer for all subclasses of WODirectAction. Whne you create a subclass, you
must override this method to provide any additional initialization.

logWithFormat:
– (void)logWithFormat: (NSString *)aFormatString,...

Prints a message to the standard error device (stderr). The message can include formatted variable data
using printf-style conversion specifiers, for example:

id i = 500;

id f = 2.045;

[self logWithFormat:@"Amount = %@, Rate = %@, Total = %@", i, f, i*f];

Note that in WebScript, all variables are objects, so the only conversion specifier allowed is %@ as shown
above. In compiled Objective-C code, all printf conversion specifiers are allowed. The equivalent method
in Java is logString.

See also: – logWithFormat: (– WOApplication)

pageWithName:
– (WOComponent *)pageWithName:(NSString *)aComponentName

Returns the WOComponent with the specified name.
79

performActionNamed:
– (id <WOActionResults>)performActionNamed:(NSString *)anActionName

Performs the action with the specified name and returns the result of that action. The default
implementation appends “Action” to anActionName and tries to invoke resulting method name. Override
this method to change how actions are dispatched.

request
– (WORequest *)request

Returns the WORequest object that initiated the action.

session
– (WOSession *)session

Returns the current session. If there is no session, this method first tries to restore the session that the
request’s session ID refers to. If the request has no session ID—which is a possibility if the application is
written entirely with direct actions—this method creates a new session and returns it. If the session ID
refers to a session that doesn’t exist or cannot be restored, this method raises an exception.

See also: – existingSession

takeFormValueArraysForKeyArray:
– (void)takeFormValueArraysForKeyArray: (NSArray *)aKeyArray

Performs takeValue:forKey: on each key in aKeyArray using values from the receiver’s request.

This method uses an NSArray for each form value. This is useful when a user can select multiple items for
a form value, such as a WOBrowser. If a form value contains only one item, this method uses an NSArray
with one object. To use single objects as form values, use takeFormValuesForKeyArray:.

See also: takeFormValueArraysForKeys:

takeFormValueArraysForKeys:
– (void)takeFormValueArraysForKeys:(NSString *)aFirstKey,...

Performs takeValue:forKey: on the specified keys using values from the receiver’s request. The last key
must be nil.
80

 Classes: WODirectAction
This method uses an NSArray for each form value. This is useful when a user can select multiple items for
a form value, such as a WOBrowser. If a form value contains only one item, this method uses an NSArray
with one object. To use single objects as form values, use takeFormValuesForKeys:.

See also: takeFormValueArraysForKeyArray:

takeFormValuesForKeyArray:
– (void)takeFormValuesForKeyArray: (NSArray *)aKeyArray

Performs takeValue:forKey: on the each key in aKeyArray using values from the receiver’s request.

This method uses an a single object for each form value. If a form value contains more than one item, such
as a WOBrowser, this method uses the first item in the array. To use arrays of objects as form values, use
takeFormValueArraysForKeyArray:.

See also: takeFormValuesForKeys:

takeFormValuesForKeys:
– (void)takeFormValuesForKeys:(NSString *)aFirstKey,...

Performs takeValue:forKey: on the specified keys using values from the receiver’s request. The last key
must be nil.

This method uses an a single object for each form value. If a form value contains more than one item, such
as a WOBrowser, this method uses the first item in the array. To use arrays of objects as form values, use
takeFormValueArraysForKeys:.

See also: takeFormValuesForKeyArray:
81

82

 Classes: WODisplayGroup

t

n

WODisplayGroup

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: WebObjects/WODisplayGroup.h

Class Description

A WODisplayGroup is the basic user interface manager for a WebObjects application that accesses a
database. It collects objects from an EODataSource (defined in EOControl), filters and sorts them, and
maintains a selection in the filtered subset. You bind WebObjects dynamic elements to WODisplayGroup
attributes and methods to display information from the database on your web page.

A WODisplayGroup manipulates its EODataSource by sending it fetchObjects, insertObject:, and other
messages, and registers itself as an editor and message handler of the EODataSource’s EOEditingContex
(also defined in EOControl). The EOEditingContext then monitors the WODisplayGroup for changes to
objects.

Most of a WODisplayGroup’s interactions are with its EODataSource and its EOEditingContext. See the
EODataSource, and EOEditingContext class specifications in the Enterprise Objects Framework Reference
for more information on these interactions.

The Delegate

The WODisplayGroup delegate offers a number of methods, and WODisplayGroup invokes them as
appropriate. Besides displayGroup:displayArrayForObjects: , there are methods that inform the delegate
that the WODisplayGroup has fetched, created an object (or failed to create one), inserted or deleted an
object, changed the selection, or set a value for a property. There are also methods that request permissio
from the delegate to perform most of these same actions. The delegate can return YES to permit the action
or NO to deny it. See each method’s description in the WODisplayGroup.Delegates protocol specification
for more information.

Adopted Protocols

NSCoding
- encodeWithCoder:
- initWithCoder:
83

Method Types

Creating instances
– init

Configuring behavior
– setFetchesOnLoad:
– fetchesOnLoad
– setSelectsFirstObjectAfterFetch:
– selectsFirstObjectAfterFetch
– setValidatesChangesImmediately:
– validatesChangesImmediately

Setting the data source
– setDataSource:
– dataSource

Setting the qualifier and sort ordering
– setQualifier:
– qualifier
– setSortOrderings:
– sortOrderings

Managing queries
– qualifierFromQueryValues
– queryMatch
– queryMax
– queryMin
– queryOperator
– allQualifierOperators
– relationalQualifierOperators
– setDefaultStringMatchFormat:
– defaultStringMatchFormat
– setDefaultStringMatchOperator:
– defaultStringMatchOperator
– qualifyDisplayGroup
– qualifyDataSource
– inQueryMode
– setInQueryMode:

Fetching objects from the data source
– fetch

Getting the objects
– allObjects
– displayedObjects
84

 Classes: WODisplayGroup
Batching the results
– setNumberOfObjectsPerBatch:
– numberOfObjectsPerBatch
– hasMultipleBatches
– displayNextBatch
– displayPreviousBatch
– batchCount
– setCurrentBatchIndex:
– currentBatchIndex
– indexOfFirstDisplayedObject
– indexOfLastDisplayedObject
– displayBatchContainingSelectedObject

Updating display of values
– redisplay
– updateDisplayedObjects

Setting the objects
– setObjectArray:

Changing the selection
– setSelectionIndexes:
– selectObjectsIdenticalTo:
– selectObjectsIdenticalTo:selectFirstOnNoMatch:
– selectObject:
– clearSelection
– selectNext
– selectPrevious

Examining the selection
– selectionIndexes
– selectedObject
– selectedObjects

Inserting and deleting objects
– insertObject: atIndex:
– insertObjectAtIndex:
– insert
– setInsertedObjectDefaultValues:
– insertedObjectDefaultValues
– deleteObjectAtIndex:
– deleteSelection
– delete
85

Setting up a detail display group
– hasDetailDataSource
– setMasterObject:
– masterObject
– setDetailKey:
– detailKey

Working with named fetch specifications
– queryBindings

Setting the delegate
– setDelegate:
– delegate

Instance Methods

allObjects
– (NSArray *)allObjects

Returns all of the objects collected by the receiver.

See also: – displayedObjects, – fetch

allQualifierOperators
– (NSArray *)allQualifierOperators

Returns an array containing all of the relational operators supported by EOControl’s EOQualifier: =, !=, <,
<=, >, >=, “like” and “caseInsensitiveLike”.

See also: – queryOperator, – relationalQualifierOperators

batchCount
– (unsigned)batchCount

The number of batches to display. For example, if the displayed objects array contains two hundred records
and the batch size is ten, batchCount returns twenty (twenty batches of ten records each).

See also: – currentBatchIndex, – displayNextBatch, – displayPreviousBatch, – hasMultipleBatches,
– numberOfObjectsPerBatch
86

 Classes: WODisplayGroup

clearSelection
– (BOOL)clearSelection

Invokes setSelectionIndexes: to clear the selection, returning YES on success and NO on failure.

currentBatchIndex
– (unsigned)currentBatchIndex

Returns the index of the batch currently being displayed. The total batch count equals the number of
displayed objects divided by the batch size. For example, if the WODisplayGroup has one hundred objects
to display and the batch size is twenty, there are five batches. The first batch has a batch index of 1.

See also: – batchCount, – numberOfObjectsPerBatch, – setCurrentBatchIndex:

dataSource
– (EODataSource *)dataSource

Returns the receiver’s EODataSource (defined in the EOControl framework).

See also: – hasDetailDataSource, – setDataSource:

defaultStringMatchFormat
– (NSString *)defaultStringMatchFormat

Returns the format string that specifies how pattern matching will be performed on string values in the
queryMatch dictionary. If a key in the queryMatch dictionary does not have an associated operator in the
queryOperator dictionary, then its value is matched using pattern matching, and the format string returned
by this method specifies how it will be matched.

See also: – defaultStringMatchOperator , – setDefaultStringMatchFormat:

defaultStringMatchOperator
– (NSString *)defaultStringMatchOperator

Returns the operator used to perform pattern matching for string values in the queryMatch dictionary. If a
key in the queryMatch dictionary does not have an associated operator in the queryOperator dictionary,
then the operator returned by this method is used to perform pattern matching. Unless the default is
changed, this method returns caseInsensitiveLike.

See also: – defaultStringMatchFormat , – setDefaultStringMatchOperator:
87

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

delete
– (id)delete

Uses deleteSelection to attempt to delete the selected objects and then causes the page to reload. Returns
nil to force reloading of the web page.

See also: – deleteObjectAtIndex:

deleteObjectAtIndex:
– (BOOL)deleteObjectAtIndex:(unsigned)index

Attempts to delete the object at index, returning YES if successful and NO if not. Checks with the delegate
using the method displayGroup:shouldDeleteObject:. If the delegate returns NO, this method fails and
returns NO. If successful, it sends the delegate a displayGroup:didDeleteObject: message.

This method performs the delete by sending deleteObject to the EODataSource (defined in the EOControl
framework). If that message raises an exception, this method fails and returns NO.

See also: – delete, – deleteSelection

deleteSelection
– (BOOL)deleteSelection

Attempts to delete the selected objects, returning YES if successful and NO if not.

See also: – delete, – deleteObjectAtIndex:

detailKey
– (NSString *)detailKey

For detail display groups, returns the key to the master object that specifies what this detail display group
represents. That is, if you send the object returned by the masterObject method a valueForKey: message
with this key, you obtain the objects controlled by this display group.
88

 Classes: WODisplayGroup

This method returns nil if the receiver is not a detail display group or if the detail key has not yet been set.
You typically create a detail display group by dragging a to-many relationship from EOModeler to an open
component in WebObjects Builder.

See also: – hasDetailDataSource, – masterObject, – setDetailKey:

displayBatchContainingSelectedObject
– (id)displayBatchContainingSelectedObject

Displays the batch containing the selection and sets the current batch index to that batch’s index. Returns
nil to force the page to reload.

See also: : – displayNextBatch, – displayPreviousBatch, – setCurrentBatchIndex:

displayedObjects
– (NSArray *)displayedObjects

Returns the objects that should be displayed or otherwise made available to the user, as filtered by the
receiver’s delegate, by the receiver’s qualifier and sort ordering.

If batching is in effect, displayedObjects returns the current batch of objects.

See also: – allObjects, – updateDisplayedObjects, – qualifier , – setSortOrderings:, – displayGroup:
displayArrayForObjects: (delegate method)

displayNextBatch
– (id)displayNextBatch

Increments the current batch index, displays that batch of objects, and clears the selection. If the batch
currently being displayed is the last batch, this method displays the first batch of objects. Returns nil to force
the page to reload.

See also: – batchCount, – currentBatchIndex, – displayBatchContainingSelectedObject,
– displayPreviousBatch
89

displayPreviousBatch
– (id)displayPreviousBatch

Decrements the current batch index, displays that batch of objects, and clears the selection. If the batch
currently being displayed is the first batch, this method displays the last batch of objects. Returns nil to force
the page to reload.

See also: – batchCount, – currentBatchIndex, – displayBatchContainingSelectedObject,
– displayNextBatch

fetch
– (id)fetch

Attempts to fetch objects from the EODataSource (defined in the EOControl framework).

Before fetching, this method sends displayGroupShouldFetch: to the delegate. If this method was
successful, it then sends a fetchObjects message to the receiver’s EODataSource to replace the object array,
and if successful sends the delegate a displayGroup:didFetchObjects: message.

This method returns nil to force the page to reload.

See also: – allObjects, – updateDisplayedObjects

fetchesOnLoad
– (BOOL)fetchesOnLoad

Returns YES if the receiver fetches automatically after the component that contains it is loaded, NO if it
must be told explicitly to fetch. The default is YES. You can set this behavior in WebObjects Builder using
the Display Group Options panel. Note that if the display group fetches on load, it performs the fetch each
time the component is loaded into the web browser.

See also: – fetch, – setFetchesOnLoad:

hasDetailDataSource
– (BOOL)hasDetailDataSource

Returns YES if the display group’s data source is an EODetailDataSource (defined in the EOControl
framework), and NO otherwise. If you drag a to-many relationship from EOModeler to an open component
in WebObjects Builder, you create a display group that has an EODetailDataSource. You can also set this
up using the Display Group Options panel in WebObjects Builder.

See also: – detailKey, – masterObject
90

 Classes: WODisplayGroup
hasMultipleBatches
– (BOOL)hasMultipleBatches

Returns YES if the batch count is greater than 1. A display group displays its objects in batches if the
numberOfObjectsPerBatch method returns a number that is less than the number of objects in the
displayedObjects array.

See also: – batchCount, – setNumberOfObjectsPerBatch:

indexOfFirstDisplayedObject
– (unsigned)indexOfFirstDisplayedObject

Returns the index of the first object displayed by the current batch. For example, if the current batch is
displaying items 11 through 20, this method returns 11.

See also: – indexOfLastDisplayedObject

indexOfLastDisplayedObject
– (unsigned)indexOfLastDisplayedObject

Returns the index of the last object display by the current batch. For example, if the current batch is
displaying items 11 through 20, this method returns 20.

See also: – indexOfFirstDisplayedObject

init
– init

Initializes the WODisplayGroup. The WODisplayGroup then needs to have an EODataSource set with
setDataSource:.

inQueryMode
– (BOOL)inQueryMode

Returns YES to indicate that the receiver is in query mode, NO otherwise. In query mode, controls in the
user interface that normally display values become empty, allowing users to type queries directly into them
(this is also known as a “Query by Example” interface). In effect, the receiver’s “displayedObjects” are
replaced with an empty queryMatch dictionary. When qualifyDisplayGroup or qualifyDataSource is
91

subsequently invoked, the query is performed and the display reverts to displaying values—this time, the
objects returned by the query.

See also: – setInQueryMode:

insert
– (id)insert

Invokes insertObjectAtIndex: with an index just past the first index in the selection, or at the end if there’s
no selection.

This method returns nil to force the page to reload.

insertedObjectDefaultValues
– (NSDictionary *)insertedObjectDefaultValues

Returns the default values to be used for newly inserted objects. The keys into the dictionary are the
properties of the entity that the display group manages. If the dictionary returned by this method is empty,
the insert method adds an object that is initially empty. Because the object is empty, the display group has
no value to display on the HTML page for that object, meaning that there is nothing for the user to select
and modify. Use the setInsertedObjectDefaultValues: method to set up a default value so that there is
something to display on the page.

insertObjectAtIndex:
– (id)insertObjectAtIndex: (unsigned)index

Asks the receiver’s EODataSource (defined in the EOControl framework) to create a new object by sending
it a createObject message, then inserts the new object using insertObject: atIndex:. If a new object can’t
be created, this method sends the delegate a displayGroup:createObjectFailedForDataSource: message.

If the object is successfully created, this method then sets the default values specified by
insertedObjectDefaultValues.

See also: – insert

insertObject: atIndex:
– (void)insertObject:anObject atIndex:(unsigned)index

Inserts anObject into the receiver’s EODataSource and displayed objects at index, if possible. This method
checks with the delegate before actually inserting, using displayGroup:shouldInsertObject:atIndex: . If
92

 Classes: WODisplayGroup
the delegate refuses, anObject isn’t inserted. After successfully inserting the object, this method informs the
delegate with a displayGroup:didInsertObject: message, and selects the newly inserted object.

 Raises an NSRangeException if index is out of bounds.

See also: – insertObjectAtIndex: , – insert

masterObject
– (id)masterObject

Returns the master object for a detail display group (a display group that represents a detail in a
master-detail relationship). A detail display group is one that uses an EODetailDataSource (defined in the
EOControl framework). You create a detail display group by dragging a to-many relationship from
EOModeler to an open component in WebObjects Builder. If the display group is not a detail display group
or does not have a master object set, this method returns nil .

See also: – detailKey, – hasDetailDataSource, – setMasterObject:

numberOfObjectsPerBatch
– (unsigned)numberOfObjectsPerBatch

Returns the batch size. You can set the batch size using setNumberOfObjectsPerBatch: or using
WebObjects Builder’s Display Group Options panel.

qualifier
– (EOQualifier *)qualifier

Returns the receiver’s qualifier, which it uses to filter its array of objects for display when the delegate
doesn’t do so itself.

See also: – displayedObjects, – setQualifier::,– updateDisplayedObjects

qualifierFromQueryValues
– (EOQualifier *)qualifierFromQueryValues

Builds a qualifier constructed from entries in these query dictionaries: queryMatch, queryMax,
queryMin , and queryOperator.

See also: – qualifyDataSource, – qualifyDisplayGroup
93

qualifyDataSource
– (void)qualifyDataSource

Takes the result of qualifierFromQueryValues and applies to the receiver’s data source. The receiver then
sends itself a fetch message. If the receiver is in query mode, query mode is exited. This method differs
from qualifyDisplayGroup as follows: whereas qualifyDisplayGroup performs in-memory filtering of
already fetched objects, qualifyDataSource triggers a new qualified fetch against the database.

See also: – queryMatch, – queryMax,, – queryMin ,– queryOperator

qualifyDisplayGroup
– (void)qualifyDisplayGroup

Takes the result of the qualifierFromQueryValues and applies to the receiver using setQualifier:. The
method updateDisplayedObjects is invoked to refresh the display. If the receiver is in query mode, query
mode is exited.

See also: – qualifyDataSource, – queryMatch, – queryMax, -– queryMin , – queryOperator

queryBindings
– (NSMutableDictionary *)queryBindings

Returns a dictionary containing the actual values that the user wants to query upon. You use this method to
perform a query stored in the model file. Bind keys in this dictionary to elements on your component that
specify query values, then pass this dictionary to the fetch specification that performs the fetch.

queryMatch
– (NSMutableDictionary *)queryMatch

Returns a dictionary of query values to match. The qualifierFromQueryValues method uses this
dictionary along with the queryMax and queryMin dictionaries to construct qualifiers.

Use the queryOperator dictionary to specify the type of matching (=, <, >, like, and so on) for each key
in the queryMatch dictionary.

If the queryOperator dictionary does not contain a key contained in the queryMatch dictionary, the
default is to match the value exactly (=) if the value is a number or a date and to perform pattern matching
if the value is an NSString. In the case of string values, the defaultStringMatchFormat and
defaultStringMatchOperator specify exactly how the pattern matching will be performed.

See also: – allQualifierOperators , – qualifyDataSource, – qualifyDisplayGroup ,
– relationalQualifierOperators
94

 Classes: WODisplayGroup
queryMax
– (NSMutableDictionary *)queryMax

Returns a dictionary of “less than” query values. The qualifierFromQueryValues method uses this
dictionary along with the queryMatch and queryMin dictionaries to construct qualifiers.

See also: – qualifyDataSource, – qualifyDisplayGroup , – queryOperator

queryMin
– (NSMutableDictionary *)queryMin

Returns a dictionary of “greater than” query values. The qualifierFromQueryValues method uses this
dictionary along with the queryMatch and queryMin dictionaries to construct qualifiers.

See also: – qualifyDataSource, – qualifyDisplayGroup , – queryOperator

queryOperator
– (NSMutableDictionary *)queryOperator

Returns a dictionary of operators to use on items in the queryMatch dictionary. If a key in the queryMatch
dictionary also exists in queryOperator, that operator for that key is used. The allQualifierOperators
method returns the operator strings you can use as values in this dictionary.

See also: – qualifierFromQueryValues, – queryMax, – queryMin , – relationalQualifierOperators

redisplay
– (void)redisplay

Sends out a contents changed notification.

relationalQualifierOperators
– (NSArray *)relationalQualifierOperators

Returns an array containing all of the relational operators supported by EOControl’s EOQualifier: =, !=, <,
<=, >, and >=. In other words, returns all of the EOQualifier operators except for the ones that work
exclusively on strings: “like” and “caseInsensitiveLike”.

See also: – allQualifierOperators , – queryOperator
95

selectedObject
– (id)selectedObject

Returns the first selected object in the displayed objects array, or nil if there’s no such object.

See also: – displayedObjects, – selectionIndexes, – selectedObjects

selectedObjects
– (NSArray *)selectedObjects

Returns the objects selected in the receiver’s displayed objects array.

See also: – displayedObjects, – selectionIndexes, – selectedObject

selectionIndexes
– (NSArray *)selectionIndexes

Returns the selection as an array of NSNumbers. The NSNumbers are indexes into the array returned by
displayedObjects.

See also: – selectedObject, – selectedObjects, – setSelectionIndexes:

selectNext
– (id)selectNext

Attempts to select the object just after the currently selected one. The selection is altered in this way:

• If there are no objects, does nothing.
• If there’s no selection, selects the object at index zero.
• If the first selected object is the last object in the displayed objects array, selects the first object.
• Otherwise selects the object after the first selected object.

 This method returns nil to force the page to reload.

See also: – selectPrevious, – setSelectionIndexes:
96

 Classes: WODisplayGroup
selectObject:
– (BOOL)selectObject:(id)anObject

Attempts to select the object equal to anObject in the receiver’s displayed objects array, returning YES if
successful and NO otherwise. anObject is equal to an object in the displayed objects array if its address is
the same as the object in the array.

See also: – selectNext, – selectPrevious

selectObjectsIdenticalTo:
– (BOOL)selectObjectsIdenticalTo:(NSArray *)objectSelection

Attempts to select the objects in the receiver’s displayed objects array whose ids are equal to those of
objects, returning YES if successful and NO otherwise.

See also: – setSelectionIndexes:, – selectObjectsIdenticalTo:selectFirstOnNoMatch:

selectObjectsIdenticalTo:selectFirstOnNoMatch:
– (BOOL)selectObjectsIdenticalTo:(NSArray *)objects selectFirstOnNoMatch:(BOOL)flag

Selects the objects in the receiver’s displayed objects array whose ids are equal to those of objects, returning
YES if successful and NO otherwise. If no objects in the displayed objects array match objects and flag is
YES, attempts to select the first object in the displayed objects array.

See also: – setSelectionIndexes:, – selectObjectsIdenticalTo:

selectPrevious
– (id)selectPrevious

Attempts to select the object just before the presently selected one. The selection is altered in this way:

• If there are no objects, does nothing.
• If there’s no selection, selects the object at index zero.
• If the first selected object is at index zero, selects the last object.
• Otherwise selects the object before the first selected object.

This method returns nil to force the page to reload.

See also: – selectNext, – redisplay
97

selectsFirstObjectAfterFetch
– (BOOL)selectsFirstObjectAfterFetch

Returns YES YES if the receiver automatically selects its first displayed object after a fetch if there was no
selection, NO if it leaves an empty selection as-is.

WODisplayGroups by default do select the first object after a fetch when there was no previous selection.

See also: – displayedObjects, – fetch, – setSelectsFirstObjectAfterFetch:

setCurrentBatchIndex:
– (void)setCurrentBatchIndex:(unsigned)anInt

Displays the anInt batch of objects. The total batch count equals the number of displayed objects divided
by the batch size. For example, if the WODisplayGroup has one hundred objects to display and the batch
size is twenty, there are five batches. The first batch has a batch index of 1. setCurrentBatchIndex:3 would
display the third batch of objects (objects 41 to 60 in this example).

If anInt is greater than the number of batches, this method displays the first batch.

See also: – batchCount, – currentBatchIndex,
– displayBatchContainingSelectedObject,– displayNextBatch,
– displayPreviousBatch,– numberOfObjectsPerBatch

setDataSource:
– (void)setDataSource:(EODataSource *)aDataSource

Sets the receiver’s EODataSource (defined in the EOControl framework) to aDataSource. In the process, it
performs these actions:

Unregisters itself as an editor and message handler for the previous EODataSource’s EOEditingContext
(also defined in EOControl), if necessary, and registers itself with aDataSource’s EOEditingContext. If the
new EOEditingContext already has a message handler, however, the receiver doesn’t assume that role.

Clears the receiver’s array of objects.

Sends displayGroupDidChangeDataSource: to the delegate if there is one.

See also: – dataSource
98

 Classes: WODisplayGroup

r
setDefaultStringMatchFormat:
– (void)setDefaultStringMatchFormat:(NSString *)format

Sets how pattern matching will be performed on NSString values in the queryMatch dictionary. This
format is used for properties listed in the queryMatch dictionary that have NSString values and that do not
have an associated entry in the queryOperator dictionary. In these cases, the value is matched using pattern
matching and format specifies how it will be matched.

The default format string for pattern matching is “%@* ” which means that the string value in the
queryMatch dictionary is used as a prefix. For example, if the queryMatch dictionary contains a value
“Jo” for the key “Name”, the query returns all records whose name values begin with “Jo”.

See also: – defaultStringMatchFormat , – setDefaultStringMatchOperator:

setDefaultStringMatchOperator:
– (void)setDefaultStringMatchOperator:(NSString *)operator

Sets the operator used to perform pattern matching for NSString values in the queryMatch dictionary. This
operator is used for properties listed in the queryMatch dictionary that have NSString values and that do
not have an associated entry in the queryOperator dictionary. In these cases, the operator operator is used
to perform pattern matching.

The default value for the query match operator is caseInsensitiveLike, which means that the query does
not consider case when matching letters. The other possible value for this operator is like, which matches
the case of the letters exactly.

See also: – allQualifierOperators , – defaultStringMatchOperator , – relationalQualifierOperators ,
– setDefaultStringMatchFormat:

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject, without retaining it.

See also: – delegate, WODisplayGroupDelegate

setDetailKey:
– (void)setDetailKey:(NSString *)detailKey

Sets the detail key to detailKey for a detail display group. The detail key is the key that retrieves from the
master object the objects that this display group manages. You must set a detail key before you set a maste
object.
99

.

If the receiver is not a detail display group, this method has no effect. A display group is a detail display
group if its data source is an EODetailDataSource (defined in the EOControl framework). You typically
create a detail display group by dragging a to-many relationship from EOModeler to an open component in
WebObjects Builder. Doing so sets the detail key and master object, so you rarely need to use this method

See also: – hasDetailDataSource, – detailKey, – setMasterObject:

setFetchesOnLoad:
– (void)setFetchesOnLoad:(BOOL)flag

Controls whether the receiver automatically fetches its objects after being loaded. If flag is YES it does; if
flag is NO the receiver must be told explicitly to fetch. The default is NO. You can also set this behavior in
WebObjects Builder in the Display Group Options panel.

See also: – fetch, – fetchesOnLoad

setInQueryMode:
– (void)setInQueryMode:(BOOL)flag

Sets according to flag whether the receiver is in query mode. In query mode, controls in the user interface
that normally display values become empty, allowing users to type queries directly into them (this is also
known as a “Query by Example” interface). In effect, the receiver’s “displayedObjects” are replaced with
an empty queryMatch dictionary. When qualifyDisplayGroup or qualifyDataSource is subsequently
invoked, the query is performed and the display reverts to displaying values—this time, the objects returned
by the query.

See also: – inQueryMode

setInsertedObjectDefaultValues:
– (void)setInsertedObjectDefaultValues:(NSDictionary *)defaultValues

Sets default values to be used for newly inserted objects. When you use the insert method to add an object,
that object is initially empty. Because the object is empty, there is no value to be displayed on the HTML
page, meaning there is nothing for the user to select and modify. You use this method to provide at least one
field that can be displayed for the newly inserted object. The possible keys into the dictionary are the
properties of the entity managed by this display group. For example, a component that displays a list of
movie titles and allows the user to insert new movie titles might contain these statements to ensure that all
new objects have something to display as a movie title:

[defaultValues setObject:@"New title" forKey:@"title"];
100

 Classes: WODisplayGroup

[movies setInsertedObjectDefaultValues:defaultValues];

See also: – insertedObjectDefaultValues

setMasterObject:
– (void)setMasterObject:(id)masterObject

Sets the master object to masterObject for detail display groups and then performs a fetch if the display
group is set to fetch on load. The master object owns the objects controlled by this display group.

Before you use this method, you should use the setDetailKey: to set the key to this relationship. You
typically create a detail display group by dragging a to-Many relationship from EOModeler to an open
component in WebObjects Builder. Doing so sets the master object and detail key, so you typically do not
have to use this method.

If the receiver is not a detail display group, this method has no effect.

See also: – hasDetailDataSource, – masterObject

setNumberOfObjectsPerBatch:
– (void)setNumberOfObjectsPerBatch:(unsigned)count

Sets the number of objects the receiver displays at a time. For example, suppose you are displaying one
hundred records. Instead of displaying all of these at once, you can set the batch size so that the page
displays a more manageable number (for example, 10). WebObjects Builder allows you to set the number
of objects per batch on the Display Group Options panel.

See also: – batchCount, – displayNextBatch, – displayPreviousBatch, – numberOfObjectsPerBatch

setObjectArray:
– (void)setObjectArray: (NSArray *)objects

Sets the receiver’s objects to objects, regardless of what its EODataSource (defined in the EOControl
framework) provides. This method doesn’t affect the EODataSource’s objects at all; specifically, it results
in neither inserts nor deletes of objects in the EODataSource. objects should contain objects with the same
property names or methods as those accessed by the receiver. This method is used by fetch to set the array
of fetched objects; you should rarely need to invoke it directly.

After setting the object array, this method restores as much of the original selection as possible. If there’s
no match and the receiver selects after fetching, then the first object is selected.

See also: – allObjects, – displayedObjects, – fetch, – selectsFirstObjectAfterFetch
101

setQualifier:
– (void)setQualifier:(EOQualifier *)aQualifier

Sets the receiver’s qualifier to aQualifier. This qualifier is used to filter the receiver’s array of objects for
display. Use updateDisplayedObjects to apply the qualifier.

If the receiver’s delegate responds to displayGroup:displayArrayForObjects: , that method is used
instead of the qualifier to filter the objects.

See also: – displayedObjects, – qualifier

setSelectionIndexes:
– (BOOL)setSelectionIndexes:(NSArray *)selection

Selects the objects at selection in the receiver’s array if possible, returning YES if successful and NO if not
(in which case the selection remains unaltered). This method is the primitive method for altering the
selection; all other such methods invoke this one to make the change.

This method checks the delegate with a displayGroup:shouldChangeSelectionToIndexes: message. If
the delegate returns NO, this method also fails and returns NO. If the receiver successfully changes the
selection, its observers each receive a displayGroupDidChangeSelection: message and, if necessary, a
displayGroupDidChangeSelectedObjects: message.

Note: The selection set here is only a programmatic selection; the objects on the screen are not highlighted
in any way.

See also: – allObjects

setSelectsFirstObjectAfterFetch:
– (void)setSelectsFirstObjectAfterFetch:(BOOL)flag

Controls whether the receiver automatically selects its first displayed object after a fetch when there were
no selected objects before the fetch. If flag is YES it does; if flag is NO then no objects are selected.

WODisplayGroups by default do select the first object after a fetch when there was no previous selection.

See also: – displayedObjects, – fetch, – selectsFirstObjectAfterFetch
102

 Classes: WODisplayGroup

d
setSortOrderings:
– (void)setSortOrderings:(NSArray *)keySortOrderArray

Sets the EOSortOrdering objects (defined in the EOControl framework) that updateDisplayedObjects
uses to sort the displayed objects to orderings. Use updateDisplayedObjects to apply the sort
orderings.You can also set this value using the WebObjects Builder Display Group Options panel.

If the receiver’s delegate responds to displayGroup:displayArrayForObjects: , that method is used
instead of the sort orderings to order the objects.

See also: – displayedObjects, – sortOrderings, – updateDisplayedObjects

setValidatesChangesImmediately:
– (void)setValidatesChangesImmediately:(BOOL)flag

Controls the receiver’s behavior on encountering a validation error. In the Web context, this method has no
effect.

WODisplayGroups by default don’t validate changes immediately.

See also: – saveChanges (in EOControl’s EOEditingContext), - tryToSaveChanges (EOEditingContext
Additions), – validatesChangesImmediately

sortOrderings
– (NSArray *)sortOrderings

Returns an array of EOSortOrdering objects (defined in the EOControl framework) that
updateDisplayedObjects uses to sort the displayed objects, as returned by the displayedObjects method.

See also: – setSortOrderings:

updateDisplayedObjects
– (void)updateDisplayedObjects

Recalculates the receiver’s displayed objects arrays and redisplays. If the delegate responds to
displayGroup:displayArrayForObjects: , it’s sent this message and the returned array is set as the
WODisplayGroup’s displayed objects. Otherwise, the receiver applies its qualifier and sort ordering to its
array of objects. In either case, any objects that were selected before remain selected in the new displaye
object’s array.

See also: – redisplay, – allObjects, – displayedObjects, – qualifier , – selectedObjects, – sortOrderings
103

validatesChangesImmediately
– (BOOL)validatesChangesImmediately

Returns YES if the receiver immediately handles validation errors, or leaves them for the EOEditingContext
(defined in the EOControl framework) to handle when saving changes.

By default, WODisplayGroups don’t validate changes immediately.

See also: – setValidatesChangesImmediately:
104

 Classes: WODynamicElement

WODynamicElement

Inherits From: WOElement : NSObject

Declared In: WebObjects/WODynamicElement.h

Class Description

WODynamicElement is an abstract superclass for classes that generate dynamic elements: objects
representing HTML or PDF elements whose values can programmatically change at run time. Dynamic
elements have a name and one or more properties, instance variables holding such things as user-entered
data or user-triggerable actions. The properties of a dynamic element are associated with, or "bound" to, the
properties of the WOComponent object that represents the page (or portion of a page) in which the dynamic
element appears.

At runtime, a dynamic element can extract values from the request, feed those values across the bindings
to the owning component, receive back new data, and include that data in the next representation of the
page. A dynamic element can also detect if the user has manipulated it (for instance, clicking a button) to
signal some intention and then trigger the appropriate action method in the owning WOComponent. The
bindings between properties of a dynamic element and properties of a WOComponent are made possible
by associations, objects that know how to "push" and "pull" values to and from another object using keys.
All objects that inherit from NextObject have associative capabilities through NextObjects’s
implementation of the KeyValueCoding protocol.

WODynamicElements must implement the default initializer to initialize their instance variables with the
appropriate association objects (passed in). As WOElement objects, they must also implement one or more
of the three request-handling methods. In the context of request handling, a dynamic element can use its
associations to:

• Push request values into the associated properties of their WOComponent (takeValuesFromRequest:
inContext:)

• Invoke action methods of the WOComponent (invokeActionForRequest:inContext:)

• Extract values from the WOComponent when composing a dynamic HTML response
(appendToResponse:inContext:)

All dynamic elements must implement appendToResponse:inContext:. If they accept user input or
respond to user actions (such as mouse clicks), they should implement takeValuesFromRequest:
inContext: and invokeActionForRequest:inContext:, respectively.

Note: If you write a dynamic element that appends content to the response (this is typically done by
overriding appendToResponse:inContext:), be sure to verify that the request is not client-side:

- (void)appendToResponse:(WOResponse *)response inContext:(WOContext *)context {
105

if(![[context request]] isFromClientComponent]){

// append content here

}

}

Dynamic elements do not know about their WOComponent object until run time. During request-handling,
the application stores components (representing a page and subcomponents on the page) on a stack
maintained by the WOContext object, with the currently referenced WOComponent on top of the stack. A
dynamic element's WOAssociation retrieves the current WOComponent (through an invocation of
WOContext's component method) and reads and writes values from and to the WOComponent using
KeyValueCoding methods.

A dynamic element can represent a single HTML or PDF element (such as an editable text field) or a
compound element, such as the LoginPanel whose implementation is described below. WebObjects
includes a suite of ready-made dynamic elements and the WebObjects Builder application makes these
objects available on its palettes. The Dynamic Elements Reference describes WebObjects' dynamic
elements and provides examples showing how to use them.

Method Types

Creation
– initWithName:associations:template:

WODynamicElement

Instance Methods

initWithName:associations:template:
– (id)initWithName: (NSString *)aName associations:(NSDictionary *)someAssociations template:

(WOElement *)anElement

Returns a dynamic element identified by class aName and initialized with the objects in dictionary
someAssociations. The dictionary contains WOAssociation objects, which know how to take values from,
and set values in, an "owning" WOComponent. To properly initialize a dynamic element, you should use
the published keys of the dynamic element to get the associations that belong to the dynamic element; then
assign these objects to instance variables. The anElement argument, if not nil , is the root object of a graph
of WOElements associated with the dynamic element.

Typically, a key in the someAssociations dictionary is identified with a property of the element, and the
value of this key is the name of a property of the associated Component. For example, the value of key
"userName" might be bound to "employee.name" in the WOComponent; this designation means that
WOComponent has a property called "employee" (possibly referring to an "Employee" object) which in
turn has a property called "name". In this case, the binding is two-way; changes in the dynamic element are
106

 Classes: WODynamicElement

reflected in the WOComponent property, and changes in the WOComponent property are communicated to
the dynamic element. The value of an association can also be a constant, in which case the binding is
one-way: WOComponent to dynamic element.
107

108

 Classes: WOElement

s

d

st
WOElement

Inherits From: NSObject

Declared In: WebObjects/WOElement.h

Class Description

The WOElement class is the abstract superclass of all objects that represent static and dynamic UI element
on a World Wide Web page (currently, HTML and PDF elements). You cannot directly instantiate objects
from WOElement; you must create a concrete subclass of WOElement and generate objects from it.

Note: For custom dynamic elements, you need to create a subclass of WODynamicElement.

WOElement declares the three methods corresponding to the phases of the request-response loop (invoke
in the following order), but WOElement’s implementations do nothing:

• takeValuesFromRequest:inContext:
• invokeActionForRequest:inContext:
• appendToResponse:inContext:

The first argument of these messages is an object that represents the HTTP request or response (WOReque
or WOResponse). The second argument is a WOContext object that represents the context of the
transaction.

Concrete subclasses of WOElement (or WODynamicElement) must, at minimum, implement
appendToResponse:inContext:. Subclasses of WODynamicElement must implement one or both of the
remaining methods.

Method Types

Handling requests
– appendToResponse:inContext:
– invokeActionForRequest:inContext:
– takeValuesFromRequest:inContext:
109

t

d
Instance Methods

appendToResponse:inContext:
– (void)appendToResponse:(WOResponse *)aResponse inContext:(WOContext *)aContext

This method is invoked in WOElement objects in the request-handling phase when objects involved in the
current transaction append their HTML content to the transaction's WOResponse object. If the WOElement
has child WOElements, it should forward the message to them. WOElement's default implementation of
this method does nothing.

See also: WOResponse class for methods used to append HTML content

invokeActionForRequest:inContext:
– (WOElement *)invokeActionForRequest:(WORequest *)aRequest inContext:(WOContext

*)aContext

This method is invoked in WOElements in the phase of request handling that results in the triggering of an
action method and the return of a response WOComponent. In this phase, the message is propagated
through the objects of the application until the dynamic element for the activated HTML control (for
instance, a custom button) responds to the message by invoking the method in the request component tha
is bound to the action. To see if it has been activated, the dynamic element should check its element ID
(obtained from its WOContext) against the sender ID in the request and context. To invoke the action
method, the dynamic element should return the value of the action. The default WOElement
implementation of this method returns nil

See also: WOContext class for a description of element IDs

takeValuesFromRequest:inContext:
– (void)takeValuesFromRequest:(WORequest *)aRequest inContext:(WOContext *)aContext

This method is invoked in (dynamic) WOElement objects during the phase of request handling that extracts
user-entered data. Each dynamic element acquires any entered data (such as HTML form data) or change
state (such as a check in a check box) associated with an attribute and assigns the value to the
WOComponent variable bound to the attribute. In this way, even back-end business objects are updated.
The default WOElement implementation of this method does nothing.

See also: WORequest class for methods used to extract form data
110

 Classes: WOMailDelivery

lt
WOMailDelivery

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOMailDelivery.h

Class Description

WOMailDelivery uses a tool compiled on all platforms:
/System/Library/WebObjects/Executables/WOSendMail[.exe] . This tool constructs an
email message from a file and uses SMTP to send it. It requires an SMTP server to be set. There is a defau
value for this SMTP hostname: “smtp”. To change this value, use the following command:

defaults write NSGlobalDomain WOSMTPHost “ aHostName”

Note that this default can be handled by WOApplication as a command-line argument.

There is only one instance of WOMailDelivery, which you access with the sharedInstance class method.
You cannot create one of your own.

Method Types

Obtaining an instance
– sharedInstance

Composing mail
– composeEmailFrom:to:cc:subject:component:send:
– composeEmailFrom:to:cc:subject:plainText:send:

Sending mail
– sendEmail:
111

Class Methods

sharedInstance
+ (WOMailDelivery *)sharedInstance

Instance Methods Returns the current application’s WOMailDelivery instance. Use this method instead of
creating an instance of your own.

composeEmailFrom:to:cc:subject:component:send:
– (NSString *)composeEmailFrom:(NSString *)sender

to:(NSArray *)destination
cc:(NSArray *)ccAddresses
subject:(NSString *)subject
component:(WOComponent *)aComponent
send:(BOOL)flag

Composes an email message to destination with “from,” “cc,” and “subject” lines. The body of the message
is the HTML generated when this method invokes generateResponse on aComponent. WOMailDelivery
uses the WOCGIAdaptorURL default to complete all URLs in the message to be mailed, so the email’s
reader can click on the URLs to visit them.

If flag is YES, the message is sent immediately.

composeEmailFrom:to:cc:subject:plainText:send:
– (NSString *)composeEmailFrom:(NSString *)sender

to:(NSArray *)destination
cc:(NSArray *)ccAddresses
subject:(NSString *)subject
plainText: (NSString *)message
send:(BOOL)flag

Composes an email message to destination with “from,” “cc,” and “subject” lines, setting the content type
of the email as (Content-type: TEXT/PLAIN; CHARSET=US-ASCII). If flag is YES, the message is sent
immediately.

sendEmail:
– (void)sendEmail:(NSString *)mailString

Sends anEmail, with anEmail being an NSString following the SMTP format.The composeEmailFrom...
methods return such NSStrings and this method lets you modify those strings before sending them.
112

 Classes: WORequest

r

,

s

WORequest

Inherits From: NSObject

Declared In: WebObjects/WORequest.h

Class Description

A WORequest object typically represents an HTTP request and thus constitutes an event that requires a
reaction from a WebObjects application. WORequest objects encapsulate the data transmitted to a HTTP
server in a request. Requests originate from user actions in a browser, such as the submission of a URL o
a mouse click on a hyperlink, button, or active image in a page; from the perspective of WebObjects, the
URL identifies a WebObjects application and the click on a control usually results in the display of a page
of a WebObjects application. Such actions cause the browser to send an HTTP request to an HTTP server
which forwards the request to a WebObjects adaptor, which converts it to a WORequest object and sends
that object to the appropriate request handler.

WORequest objects can also be created from HTTP requests sent by client-side components (Java applet
specially modified to interact with the server side of a WebObjects application), and from HTTP requests
submitted by custom client-side programs that don't use the Java client-side components. More rarely,
WORequest objects can originate from custom adaptors that handle HTTP requests or non-HTTP events.
(All the adaptors shipped with WebObjects handle HTTP events only).

Since adaptors usually create WORequest objects, and since you can usually use WebObjects' adaptors
without modifications, you probably won't have to create your own instances of WORequest in your code
(although you can if you need to). More typically, your code will obtain information from WORequest
objects as they become available during certain points in the request-response loop. The application
supplies WORequest objects as arguments in the takeValuesFromRequest:inContext: and
invokeActionForRequest:inContext: methods, which are implementable by WOApplication,
WOSession, WOComponent, and WOElement objects. You can also obtain the current WORequest object
at any time during request handling through WOContext's request method.

Note: Because WORequest objects usually correspond to HTTP requests, the data they encapsulate is
almost the same as what you would find in an HTTP request. Thus an understanding of HTTP
requests is important for understanding the data vended by WORequest objects. A recommended
prerequisite therefore is to review the current HTTP specification or HTTP documentation.
113

Adopted Protocols

NSCopying
– copy
– copyWithZone:

Method Types

Working with cookies
– cookieValueForKey:
– cookieValues
– cookieValuesForKey:

Form values
– defaultFormValueEncoding
– formValueEncoding
– formValueForKey:
– formValueKeys
– formValues
– formValuesForKey:
– isFormValueEncodingDetectionEnabled

Headers
– headerForKey:
– headerKeys
– headersForKey:

Request handling
– requestHandlerKey
– requestHandlerPath
– requestHandlerPathArray

Form Values
– setDefaultFormValueEncoding:
– setFormValueEncodingDetectionEnabled:
114

 Classes: WORequest

Obtaining attributes
– adaptorPrefix
– applicationName
– applicationNumber
– browserLanguages
– content
– httpVersion
– isFromClientComponent
– initWithMethod:uri:httpVersion:headers:content:userInfo:
– method
– uri
– userInfo

Instance Methods

adaptorPrefix
– (NSString *)adaptorPrefix

Returns the part of the request's URI that is specific to a particular adaptor. This is typically a URL ending
in "/WebObjects", "/WebObjects.exe", "/WebObjects.dll", or uppercase versions of these strings.
WebObjects uses a request's adaptor prefix to set the adaptor prefix in the generated response's URL. A
WORequest must always have an adaptor prefix.

See also: – applicationName, – applicationNumber, – uri

applicationName
– (NSString *)applicationName

Returns the part of the request's URI that identifies the application the request is intended for. This name
does not include the ".woa" extension of an application directory. A WORequest must always have an
application name specified.

See also: – adaptorPrefix, – applicationNumber, – uri
115

applicationNumber
– (int)applicationNumber

Returns the part of the request's URI that identifies the particular application instance the request is
intended for. This attribute is -1 if the request can be handled by any instance of the application, which is
always the case for the first request in a session.

See also: – applicationName, – uri

browserLanguages
– (NSArray *)browserLanguages

Returns the language preference list from the user’s browser.

content
– (NSData *)content

Returns the content the WORequest was initialized with (which defaults to nil). The format of the data is
undefined, but you can usually identify it by the value of the "content-type" header.

See also: – httpVersion, – method

cookieValueForKey:
– (NSString *)cookieValueForKey:(NSString *)aKey

Returns a string value for the cookie key specified by aKey.

See also: – cookieValues, – cookieValuesForKey:, WOCookie class specification

cookieValues
– (NSDictionary *)cookieValues

Returns a dictionary of cookie values and cookie keys.

See also: – cookieValueForKey:, – cookieValuesForKey:, WOCookie class specification
116

 Classes: WORequest

cookieValuesForKey:
– (NSArray *)cookieValuesForKey:(NSString *)aKey

Returns an array of values for the cookie key specified by aKey. Use this method to retrieve information
stored in a cookie in an HTTP header. Valid keys are specified in the cookie specification.

See also: – cookieValueForKey:, – cookieValues, WOCookie class specification

defaultFormValueEncoding
– (NSStringEncoding)defaultFormValueEncoding

Returns the default string encoding the WORequest object uses for converting form values from ASCII to
Unicode. It uses the default encoding only when it can detect no encoding from the ASCII form values or
if encoding detection is disabled. If no default form-value encoding is set, NSISOLatin1StringEncoding is
used.

See also: – setDefaultFormValueEncoding:

formValueEncoding
– (NSStringEncoding)formValueEncoding

Returns the encoding last used to convert form values from ASCII to Unicode. This encoding is either the
result of an earlier detection of form-value encoding or the default form value encoding.

See also: – defaultFormValueEncoding, – isFormValueEncodingDetectionEnabled

formValueForKey:
– id formValueForKey: (NSString *)aKey

Returns a form value identified by the name aKey. If there are multiple form values identified by the same
name, only one of the values is returned, and which of these values is not defined. You should use this
method for names that you know occur only once in the name/value pairs of form data.

formValueKeys
– (NSArray *)formValueKeys

Returns an array of NSStrings corresponding to the names (or keys) used to access values of a form. The
array is not sorted in any particular order, and is not necessarily sorted in the same order on successive
invocations of this method.
117

f

t.

s
formValues
– (NSDictionary *)formValues

Returns an NSDictionary containing all of the form data name/value pairs.

formValuesForKey:
– (NSArray *)formValuesForKey:(NSString *)aKey

Returns an array of all values (as NSStrings) of the form identified by the name aKey. This array is not
sorted in any particular order, and is not necessarily sorted in the same order on successive invocations o
this method. You should use this method when you know that a name (key) used for accessing form data
can be matched with more than one value.

headerForKey:
– (NSString *)headerForKey:(NSString *)aKey

Returns one value of a particular header in the header dictionary the request was initialized with. This will
be a string corresponding to one of the values of the header whose name is passed in as the key argumen
If the specified header has multiple values, only one of these values is returned, and which one of them this
is is not defined. However, on successive invocations of this method, the same value will always be
returned. This method is intended to be used for headers that are known to have only one value.

headerKeys
– (NSArray *)headerKeys

Returns an array of the keys of the header dictionary the request was initialized with (which default to an
empty dictionary). This will be an array of strings corresponding to the headers' names. The array is not
sorted in any particular order, and not necessarily sorted in the same order on successive invocations of thi
method.

headersForKey:
– (NSArray *)headersForKey:(NSString *)aKey

Returns the values of a particular header that is identified by aKey. The returned object contains NSStrings
sorted in no particular order, but which will always be sorted in the same order on successive invocations
of this method. Use this method for headers that you know have (or can have) multiple values.
118

 Classes: WORequest

:

t
httpVersion
– (NSString *)httpVersion

Returns the HTTP version the request was initialized with. An application uses the WORequest's HTTP
version to initialize the HTTP version of the response that is generated by request handling. The
WORequest's HTTP version typically derives from the HTTP version of the client (for example, the
browser) that initiated the request.

initWithMethod:uri:httpVersion:headers:content:userInfo:
– (id)initWithMethod: (NSString *)aMethod uri: (NSString *)aURL httpVersion: (NSString

*)anHTTPVersion headers:(NSDictionary *)someHeaders content:(NSData *)aContent
userInfo:(NSDictionary *)userInfo

Returns a WORequest object initialized with the specified parameters. The first two arguments are required

• aMethod must be either "GET" or "POST"; anything else causes an exception to be raised.

• aURL must be a valid URL; if the URL is invalid, an exception is raised.

If either argument is omitted, an exception is raised.

The remaining arguments are optional; if you specify nil for these, the designated initializer substitutes
default values or initializes them to nil . The someHeaders argument (if not nil) should be a dictionary
whose NSString keys correspond to header names and whose values are arrays of one or more strings
corresponding to the values of each header. The userInfo dictionary can contain any information that the
WORequest object wants to pass along to other objects involved in handling the request.

For more information on each argument, see the description of the corresponding accessor method.

isFormValueEncodingDetectionEnabled
– (BOOL)isFormValueEncodingDetectionEnabled

Returns whether detection of form-value encoding is allowed to take place when form values are obtained.

See also: – setFormValueEncodingDetectionEnabled:

isFromClientComponent
– (BOOL)isFromClientComponent

Returns whether the request originated from an event in a client-side component (that is, a Java applet tha
can interact with the server side of a WebObjects application).
119

If you use dynamic elements and write write HTML code in the response, you should check that the request
is not from a client-side component before writing into the response.

method
– (NSString *)method

Returns the method the WORequest object was initialized with. A WORequest's method defines where it
will look for form values. The only currently supported methods are "GET" and "PUT", which have the
same meaning as the HTTP request method tokens of the same name.

See also: – content, – httpVersion

requestHandlerKey
– (NSString *)requestHandlerKey

Returns the part of the request’s URI which identifies the request handler. This identifies the request handle
which will process the reuquest and cannot be null .

requestHandlerPath
– (NSString *)requestHandlerPath

Returns the part of the URL which identifies, for a given request handler, which information is requested.
Different request handlers use this part of the URL in different ways.

requestHandlerPathArray
– (NSArray *)requestHandlerPathArray

Returns the request handler path decomposed into elements.

sessionID
– (NSString *)sessionID

Returns the session ID, or nil if no session ID is found. This method first looks for the session ID in the
URL, then checks the form values, and finally checks to see if the session ID is stored in a cookie.
120

 Classes: WORequest

r

s
setDefaultFormValueEncoding:
– (void)setDefaultFormValueEncoding:(NSStringEncoding)anEncoding

Sets the default string encoding for the receiver to use when converting its form values from ASCII to
Unicode. The default string encoding is called into play if the WORequest cannot detect an encoding from
the ASCII form values or if encoding detection is disabled. If no default form value encoding is explicitly
set, the WORequest uses NSISOLatin1StringEncoding.

See also: – defaultFormValueEncoding, – setFormValueEncodingDetectionEnabled:

setFormValueEncodingDetectionEnabled:
– (void)setFormValueEncodingDetectionEnabled:(BOOL)flag

Enables or disables automatic detection of the best encoding for the receiver to use when it converts form
values from ASCII to Unicode. When detection is enabled, a WORequest object scans the ASCII form
values and applies heuristics to decide which is the best encoding to use. If no specific encoding is
discernible, or if detection is disabled, the WORequest uses the default form value encoding for the
conversion.

See also: – isFormValueEncodingDetectionEnabled,– setDefaultFormValueEncoding:

uri
– (NSString *)uri

Returns the Uniform Resource Identifier (URI) the WORequest was initialized with. For a session's first
request, the URI indicates the resource that the request is seeking (such as a WebObjects application); fo
subsequent requests in the session, the URI indicates which page of the application should handle the
request. If the request was caused (as is usually the case) by a web browser submitting a URL to an HTTP
server, the URI is that part of the URL that follows the port number. Because the format of WebObjects
URLs and the corresponding request URI might change between different versions of WebObjects, you
should not attempt to parse the URI returned by this method. Instead, use WORequest's accessor method
to access particular URI/URL components.

See also: – adaptorPrefix, – applicationName, – applicationNumber

userInfo
– (NSDictionary *)userInfo

Returns the value of the user information the receiver was initialized with (nil by default). WebObjects
imposes no restrictions on the format or content of the user information dictionary. In fact, WebObjects
classes do not themselves use the dictionary, but just pass it around as the request is handled. Custom
121

adaptors, for example, could initialize the dictionary with special information for other objects of an
application.
122

 Classes: WORequestHandler

n

WORequestHandler

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOResourceManager.h

Class Description

WORequestHandler is an abstract class that defines request handlers. A request handler is an object that ca
handle requests received by the WebObjects adaptor. All WebObjects applications have multiple request
handlers that can handle certain types of requests. Three private request handlers are defined in the
WebObjects framework:

• WOComponentRequestHandler, which handles requests for actions implemented in a component.
• WODirectActionRequestHandler, which handles requests for actions implemented in a WODirectAction

class.
• WOResourceRequestHandler, which handles requests for resources.

These three request handlers handle most styles of requests that an application can typically receive. If you
want to create your own style of request, then you should write your own WORequestHandler. Unless you
write your own request handler, your code typically won’t have to directly interact with
WORequestHandler objects at all.

Adopted Protocols

NSLocking
– lock
– unlock

Method Types

Handling Requests
– handleRequest:
123

Instance Methods

handleRequest:
– (WOResponse *)handleRequest:(WORequest *)aRequest

Request handlers must implement this method and perform all request-specific handling. By default, a
request is an HTTP request. You must supply your own server-side adaptor to accept anything other than
HTTP.
124

 Classes: WOResourceManager

WOResourceManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOResourceManager.h

Class Description

WOResourceManager manages an application’s resources. It defines methods that retrieve resources from
standard directories. Each WebObjects application contains a resource manager object, which you can
access by sending resourceManager to the WOApplication class

Adopted Protocols

NSLocking
– lock
– unlock

Method Types

Retrieving resources
– pathForResourceNamed:inFramework:languages:
– urlForResourceNamed:inFramework:languages:request:

Retrieving localized strings
– stringForKey:inTableNamed:withDefaultValue:inFramework:

languages:

Managing the application-wide data cache
– flushDataCache
– removeDataForKey:session:
– setData:forKey:mimeType:session:
125

t
Instance Methods

flushDataCache
– (void)flushDataCache

Removes all data from the image data cache. Use this method if you are storing data in the application-wide
cache that you no longer need.

Access to the WOResourceManager object is locked at the beginning of this method and unlocked at the
end.

See also: – removeDataForKey:session:, – setData:forKey:mimeType:session:

lock
– (void)lock

Locks access to the WOResourceManager object. When the WOResourceManager is locked, no other
threads may access it.

Usually, you don’t need to invoke this method in your own code. All messages that you send to a
WOResourceManager object lock access to the object at the beginning of the method and unlock access a
the end. You only need to use this method if you’re subclassing WOResourceManager. In that case, you
should lock access to the WOResourceManager object in methods that load resources.

See also: – unlock

pathForResourceNamed:inFramework:languages:
– (NSString *)pathForResourceNamed:(NSString *)aResourceFile

inFramework: (NSString *)aFrameworkName
languages:(NSArray *)languagesList

Returns the absolute path for the resource aResourceFile. Include the file’s extension when specifying
aResourceFile. If the file is in the application, specify lnil for the framework argument.

This method always returns a path like
/Local/Library/WebObjects/Applications/MyApp.woa/WebServerResources/MyResource. It does
not return the path relative to the HTTP server’s document root unless the entire application is located in
the document root.

Access to the WOResourceManager object is locked at the beginning of this method and unlocked at the
end.

See also: – urlForResourceNamed:inFramework:languages:request:
126

 Classes: WOResourceManager

.

removeDataForKey:session:
– (void)removeDataForKey:(NSString *)key session:(WOSession *)aSession

Removes the data stored in the data cache under the key key. The session argument is currently ignored;
specify nil to have WOResourceManager use the application-wide cache.

This method is used by default when a dynamic element requests an image or embedded object from a
database and the key attribute is not set for that dynamic element. If the key attribute isn’t set, the data
retrieved from the database is stored in the cache using setData:forKey:mimeType:session:, sent to the
dynamic element, and then removed from the cache using removeDataForKey:session:. If the key attribute
is set, removeDataForKey:session: is not invoked.

You rarely need to invoke this method yourself. Use it only if you need to limit the amount of memory your
application uses, if your application has data stored in the cache, and you know that the data is no longer
needed.

Access to the WOResourceManager object is locked at the beginning of this method and unlocked at the
end.

See also: – flushDataCache

setData:forKey:mimeType:session:
– (void)setData:(NSData *)someData

forKey: (NSString *)key
mimeType:(NSString *)type
session:(WOSession *)aSession

Adds the image or embbedded object someData of MIME type type to the data cache for the session specify
by aSession. The data is stored under the key key. The session argument is currently ignored; specify nil to
have WOResourceManager use the application-wide cache.

This method is invoked any time a dynamic element requests an image or embedded object from a database
You rarely need to invoke it yourself.

By default when a dynamic element requests an image from the database, WOResourceManager fetches
the image, stores it in the cache using setData:forKey:mimeType:session:, sends it to the dynamic
element, and then removes it from the cache using removeDataForKey:session:. However, if the dynamic
element has a key attribute defined, then the image is stored in the database under that key, and it is not
removed from the database.

Access to the WOResourceManager object is locked at the beginning of this method and unlocked at the
end.

See also: – flushDataCache
127

t

e
stringForKey:inTableNamed:withDefaultValue:inFramework:languages:
– (NSString *)stringForKey: (NSString *)aKey

inTableNamed:(NSString *)aTableName
withDefaultValue: (NSString *)aDefaultValue
inFramework: (NSString *)aFrameworkName
languages:(NSArray *)languagesList

Returns a localized string from string table aTable.strings using aKey to look it up. If no string value for
the key is found in the table, aDefaultValue (optional) is returned. The method first searches the
aTable.strings file, if it exists, in each of the localized (.lproj) subdirectories of the application wrapper;
searching proceeds in the order specified by the array languagesList. If no string value matching the key is
found, the search then continues to the aTable.strings file (if it exists) directly under the Resources
directory (inside the directory with the .woa extension).

unlock
– (void)unlock

Removes the lock on the WOResourceManager object, allowing other threads to access it.

Usually, you don’t need to invoke this method in your own code. All messages that you send to a
WOResourceManager object lock access to the object at the beginning of the method and unlock access a
the end. You only need to use this method if you’re subclassing WOResourceManager. In that case, you
should lock access to the WOResourceManager object in methods that load resources and unlock when th
method is finished accessing the WOResourceManager object.

See also: – lock

urlForResourceNamed:inFramework:languages:request:
– (NSString *)urlForResourceNamed:(NSString *)aResourceFile

inFramework: (NSString *)aFrameworkName
languages:(NSArray *)languagesList
request:(WORequest *)aRequest

Returns the URL associated with a resource named aResourceFile. The URL returned is of the following
form:

WebObjects/MyApp.woa/WebServerResources/English.lproj/aResourceFile

Include the file’s extension when specifying aResourceFile. If the file is in the application, specifyl nil for
the framework argument.

This method locates resources under the application or framework. The URL returned is computed by
concatenating the application’s base URL (returned by WOApplication’s baseURL method and settable
128

 Classes: WOResourceManager

using the WOApplicationBaseURL user default) and the relative path of the resource. This method does not
check to see if the file is actually under the document root. For example, if your application is installed in
/Local/Library/WebObjects/Applications , and the method finds aResourceFile in the Resources
directory, it returns:

/WebObjects/MyApp.woa/Resources/aResourceFile

even though the Resources directory is not under the document root.

Access to the WOResourceManager object is locked at the beginning of this method and unlocked at the
end.

See also: – pathForResourceNamed:inFramework:languages:
129

130

 Classes: WOResponse

e
e

.

s
WOResponse

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOResponse.h

Class Description

A WOResponse object represents an HTTP response that an application returns to a Web server to complet
a cycle of the request-response loop. The composition of a response occurs during the third and final phas
of this loop, a phase marked by the propagation of the appendToResponse:inContext: message through
the objects of the application. The WOApplication object first sends this message, passing in a
newly-created WOResponse object as an argument. WOElement objects, which represent the dynamic and
static HTML elements on a page, respond to the message by appending their HTML representation to the
content of the WOResponse object. WOApplication, WOSession, and WOComponent objects can also
respond to the message by adding information to the WOResponse object.

A WOResponse has two major parts: HTML content and HTTP information. The content is what is
displayed in a Web browser; it can include escaped HTML, which is HTML code shown "as is,"
uninterpreted. The other information encapsulated by a WOResponse object is in the handling the response
This HTTP data includes headers, status codes, and version string. See the HTTP specification or HTTP
documentation for descriptions of these items.

As you might expect, the methods of the WOResponse class can be divided into two groups, those that add
to a response's HTML content and those that read and set HTTP information. The former group consists of
methods that escape HTML (appendContentHTMLAttributeValue: and appendContentHTMLString:
) and those that don't. For images and other binary data, you can use the appendContentData:. You can
obtain and set the entire content of the response with content and setContent:. The following example
shows a sequence of "appendContent" messages that compose an HTTP "POST" message:

[aResponse appendContentString:@"<form method=\"POST\" action=\""];

[aResponse appendContentHTMLAttributeValue:[aContext url]];

[aResponse appendContentCharacter:'"'];

[aResponse.appendContentString:@">"];

Most of the remaining WOResponse methods set and read the response's HTTP headers, the HTTP statu
code, and the HTTP version.
131

Content Encodings

You can set the string encoding used for the response content with setContentEncoding: and you find out
what the current encoding is with contentEncoding. An integer represents the type of encoding. The
following table lists these integer values along with their OPENSTEP string-constant names.

Adopted Protocols

NSCopying
– copy
– copyWithZone:

int Value OPENSTEP Name Notes

1 NSASCIIStringEncoding 0 through 127

2 NSNEXTSTEPStringEncoding

3 NSJapaneseEUCStringEncoding

4 NSUTF8StringEncoding

5 NSISOLatin1StringEncoding default

6 NSSymbolStringEncoding

7 NSNonLossyASCIIStringEncoding 7-bit verbose ASCII to represent all unichars

8 NSShiftJISStringEncoding

9 NSISOLatin2StringEncoding

10 NSUnicodeStringEncoding

11 NSWindowsCP1251StringEncoding Cyrillic; same as AdobeStandardCyrillic

12 NSWindowsCP1252StringEncoding Windows Latin1

13 NSWindowsCP1253StringEncoding Windows Greek

14 NSWindowsCP1254StringEncoding Windows Turkish

15 NSWindowsCP1250StringEncoding Windows Latin2

21 NSISO2022JPStringEncoding ISO 2022 Japanese encoding for electronic mail
132

 Classes: WOResponse
WOActionResults
– generateResponse

Method Types

Creation
– init

Obtaining attributes
+ defaultEncoding
– content
– headerForKey:
– headerKeys
– headersForKey:
– httpVersion
– status
– userInfo

Setting attributes
+ setDefaultEncoding:
– setContent:
– setHeader:forKey:
– setHeaders:forKey:
– setHTTPVersion:
– setStatus:
– setUserInfo:

Appending response content
– appendContentBytes:length:
– appendContentCharacter:
– appendContentData:
– appendContentString:
– setContentEncoding:
– contentEncoding

Working with HTML content
– appendContentHTMLAttributeValue:
– appendContentHTMLString:
+ stringByEscapingHTMLString:
+ stringByEscapingHTMLAttributeValue:

Working with cookies
– addCookie:
– cookies
– removeCookie:
133

d

Class Methods

defaultEncoding
+ (NSStringEncoding)defaultEncoding

Returns the default character encoding used to construct a new WOResponse. By default, this encoding is
NSISOLatin1. For more information, see “Content Encodings”.

setDefaultEncoding:
+ (void)setDefaultEncoding:(NSStringEncoding)aStringEncoding

Lets you specify the character encoding used by default when construcing a new WOResponse. For more
information, see “Content Encodings”.

stringByEscapingHTMLString:
+ (NSString *)stringByEscapingHTMLString: (NSString *)aString

This method takes a string and, if escaping is required, returns a new string with certain characters escape
out. If escaping is not required, no conversion is performed and aString is returned. Use this method to
escape strings which will appear in the visible part of an HTML file (that is, not inside a tag). The escaped
characters are:

stringByEscapingHTMLAttributeValue:
+ (NSString *)stringByEscapingHTMLAttributeValue: (NSString *)aString

This method takes astring and, if escaping is required, returns a new string with certain characters escaped
out. If escaping is not required, no conversion is performed and aString is returned. Use this method to
escape strings which will appear as attribute values of a tag. The escaped characters are:

& &

" "

< <

> >

& &
134

 Classes: WOResponse
Instance Methods

addCookie:
– (void)addCookie:(WOCookie *)aCookie

Adds the specified WOCookie object to the response.

See also: – cookies, – removeCookie:, WOCookie class specification

appendContentBytes:length:
– (void)appendContentBytes:(const void *)someBytes length:(unsigned)length

Appends length number of bytes pointed to by someBytes to the HTTP response.

appendContentCharacter:
– (void)appendContentCharacter:(char)aChar

Appends a single ASCII character (aChar) to the HTTP response.

Example:

// ...

if (aFlag)

[aResponse appendContentCharacter:'Y'];

else

[aResponse appendContentCharacter:'N'];

 " "

 \t 	

 \n

 \r 

 < <

 > >
135

appendContentData:
– (void)appendContentData:(NSData *)dataObject

Appends a data-encapsulating object (dataObject) to the HTTP response.

appendContentHTMLAttributeValue:
– (void)appendContentHTMLAttributeValue: (NSString *)aValue

Appends an HTML attribute value to the HTTP content after transforming the string aValue into an NSData
object using the receiver's content encoding. Special HTML characters ("<", ">", "&", and double quote)
are escaped so that the browser does not interpret them. In other words, the message

[aResponse appendContentHTMLAttributeValue:@""];

would transform the argument to "".

See also: – setContentEncoding:

appendContentHTMLString:
– (void)appendContentHTMLString: (NSString *)aString

Appends an HTML string to the HTTP response after transforming the string aString into an NSData object
using the receiver's content encoding. Special HTML characters ("<", ">", "&", and double quote) are
escaped so that the browser does not interpret them. For example, "<P>" becomes "<P>".

See also: – setContentEncoding:

appendContentString:
– (void)appendContentString:(NSString *)aString

Appends a string to the content of the HTTP response. The string is transformed into an NSData object
using the receiver's content encoding. The special HTML characters "<", ">", "&", and double-quote are
not escaped so the browser can interpret them as HTML.

content
– (NSData *)content

Returns the HTML content of the receiver as an NSData object.

An exception is raised if you attempt to get the content when all elements of the page have not had their
chance to append HTML to the response. Thus, you should invoke this method in the application object’s
136

 Classes: WOResponse

o

e

s
handleRequest: method, after super’s handleRequest: has been invoked. (For scripted applications,
handleRequest: is implemented in Application.wos). Note that at this point in the request-handling
process, the components, pages, and session have already been put to sleep, so you won’t have access t
any context, session, or page information. If you need such information for your response, store it
somewhere--such as in WOResponse’s “user info” dictionary—at a point when you do have access to it.
You may want to do this in your application’s appendToResponse:inContext: method, for example.

See also: – setContent:, – setContentEncoding:

contentEncoding
– (NSStringEncoding)contentEncoding

Returns an integer representing the encoding used for the response content. See “Content Encodings” in th
class description for a mapped list of supported encodings and their Objective-C names. Usually, you will
want the response encoding to be the same as that used by the submitting form on the client browser. In thi
case it is preferable to use WORequest's formValueEncoding.

NSStringEncoding theEncoding = [[aContext request] formValueEncoding];

The default string encoding is ISO Latin1.

See also: – setContent:, – setContentEncoding:

cookies
– (NSArray *)cookies

Returns an array of WOCookie objects to be included in the response.

See also: – addCookie:, – removeCookie:, WOCookie class specification

generateResponse
– (WOResponse *)generateResponse

Returns a WOResponse object. WOResponse’s implementation simply returns itself.

See also: – generateResponse (WOComponent)
137

headerForKey:
– (NSString *)headerForKey:(NSString *)aKey

Returns the HTTP header information identified by aKey. If there are multiple headers associated with the
one key, only the first one is returned. Returns nil if there are no headers for the key.

See also: – setHeader:forKey:

headerKeys
– (NSArray *)headerKeys

Returns an array of string keys associated with the receiver's HTTP headers. Returns nil if there are no
headers. You could easily test to see if a header is included by doing something similar to this:

NSArray *hKeys = [aResponse headerKeys];

if ([hKeys containsObject:@"expires"]) {

// do something

}

See also: – setHeaders:forKey:

headersForKey:
– (NSArray *)headersForKey:(NSString *)aKey

Returns all HTTP headers identified by aKey.

See also: – setHeaders:forKey:

httpVersion
– (NSString *)httpVersion

Returns the version of HTTP used for the response (for example, "HTTP/1.0").

See also: – setHTTPVersion:

init
– (id)init

Initializes a WOResponse instance. HTTP status is set to 200 (OK), client caching is enabled, and the
default string encoding is made ISO Latin 1.
138

 Classes: WOResponse
removeCookie:
– (void)removeCookie:(WOCookie *)aCookie

Removes the specified WOCookie object from the response.

See also: – cookies, – removeCookie:, WOCookie class specification

setContent:
– (void)setContent:(NSData *)someData

Sets the HTML content of the HTTP response to someData.

See also: – content

setContentEncoding:
– (void)setContentEncoding:(NSStringEncoding)anEncoding

Sets the encoding used for the content of the HTTP response. See “Content Encodings” in the class
description for a mapped list of supported encodings and their Objective-C names. The default string
encoding is ISO Latin1.

See also: – contentEncoding

setHTTPVersion:
– (void)setHTTPVersion:(NSString *)aVersion

Sets the version of HTTP used for the response (for example, "HTTP/1.0").

See also: – httpVersion

setHeader:forKey:
– (void)setHeader:(NSString *)aHeader forKey: (NSString *)aKey

Sets the HTTP header aHeader in the receiver and associates, for retrieval, the HTTP key aKey with the
header. This method is commonly used to set the type of content in a response, for example:

[aResponse setHeader:@"text/html" forKey:@"content-type"];

See also: – headerForKey:
139

setHeaders:forKey:
– (void)setHeaders:(NSArray *)headerList forKey: (NSString *)aKey

Sets the list of HTTP headers headerList in the receiver and associates, for retrieval, the HTTP key aKey
with the list of header elements.

See also: – headerKeys, – headersForKey:

setStatus:
– (void)setStatus:(unsigned int)anInt

Sets the HTTP status to anInt. Consult the HTTP specification or HTTP documentation for the significance
of status integers.

See also: – status

setUserInfo:
– (void)setUserInfo:(NSDictionary *)aDictionary

Sets a dictionary in the WOResponse object that, as a convenience, can contain any kind of information
related to the current response. Objects further down the appendToResponse:inContext: message "chain"
can retrieve this information using userInfo.

status
– (unsigned int)status

Returns an integer code representing the HTTP status. Consult the HTTP specification or HTTP
documentation for the significance of these status codes.

By default, the status is 200 ("OK" status).

See also: – setStatus:

userInfo
– (NSDictionary *)userInfo

Returns a dictionary that, as a convenience, can contain any kind of information related to the current
response. An object further "upstream" in the appendToResponse:inContext: message "chain" can set this
dictionary in the WOResponse object as a way to pass information to other objects.

See also: – setUserInfo:
140

 Classes: WOResponse
141

142

 Classes: WOSession

t

o

WOSession

Inherits From: NSObject

Declared In: WebObjects/WOSession.h

Class Description

WOSession objects represent sessions, periods during which access to a WebObjects application and its
resources is granted to a particular client (typically a browser). An application can have many concurrent
sessions, each with its own special "view" of the application and its own set of data values. For instance,
one client could be accessing a "catalog" application, where that client is going from page to page, filling
a virtual shopping cart with items for purchase. Another client might be accessing the same application at
the same time, but that person might have different items in his or her shopping cart.

Perhaps the most important thing a WOSession object does is encapsulate state for a session. After the
application handles a request, it stores the WOSession until the next request of the session occurs. All the
information that is important for maintaining continuity throughout the session is preserved. And the
integrity of session data is maintained as well; the data of a session not only persists between requests bu
is kept separate from that of all other sessions.

When you develop an application, you identify data with session-wide scope by declaring instance variables
in your subclass of WOSession (or, for scripted applications, in Session.wos). Then, before the end of a
cycle of the request-response loop, ensure that the instance variables hold current session values.

The application uses a session ID to identify a session object. Upon receiving the first request of a session,
the application assigns a session ID (a unique, randomly generated string) to the session. The session ID
appears in the URL between the application name and the page name.

At the end of each cycle of the request-response loop, the application stores the WOSession object
according to the storage strategy implemented by the chosen WOSessionStore. When the application
receives the next request of the session, it restores the WOSession, using the session ID as key.

To be stored and restored according to any WOSessionStore strategy, a WOSession must be convertable t
an object archive. WOSessions are therefore asked to serialize and deserialize themselves prior to being
archived and unarchived (in either binary or ASCII format). To accomplish this, the WOSession should
implement the encodeWithCoder: and initWithCoder: methods of the NSCoding protocol.

Because storage of sessions in application memory can consume large amounts of memory over time,
WOSession includes methods for controlling the lifespan of session objects. The setTimeOut: method sets
a period of inactivity after which the session is terminated. The terminate method explicitly ends a session.

The WOSession class provides several other methods useful for tasks ranging from localization to database
access:
143

• WOSession objects can interject custom session behavior into the request-response loop by
implementing the request-handling methods (takeValuesFromRequest:inContext:,
invokeActionForRequest:inContext:, and appendToResponse:inContext:) as well as awake and
sleep.

• For database access, the defaultEditingContext method gives each WOSession object in an application
its own Enterprise Objects editing context.

• An object in an application doesn't have to know which instance variables its WOSession holds in order
to store session values. With the setObject:forKey: and objectForKey: methods it can store and retrieve
values as needed. This mechanism is especially useful for reusable components.

• An application's WOSession objects also play a role in localization. Through the setLanguages: method
you can store a list of the languages supported by the application. The sequence of language strings in
the list indicates the order of language preference for a particular session. Several resource-access
methods in WOResourceManager, WOApplication, and WOComponent refer to the languages array
when they locate such things as localized strings, images, and sounds.

• WOSession objects also allow you to affect load balancing with the setDistributionEnabled: method;
if the flag set by this method is NO (the default), transactions of the session are restricted to a single
application instance. If this the case, the application instance number as well as the application host name
are appended to the URL.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copy
– copyWithZone:

Method Types

Creating
– init
144

 Classes: WOSession
Obtaining attributes
– domainForIDCookies
– expirationDateForIDCookies
– isDistributionEnabled
– sessionID
– storesIDsInCookies
– storesIDsInURLs

Setting attributes
– setDistributionEnabled:
– setStoresIDsInCookies:
– setStoresIDsInURLs:

Terminating
– terminate
– isTerminating
– timeOut
– setTimeOut:

Localization
– languages
– setLanguages:

Managing component state
– setObject:forKey:
– objectForKey:
– removeObjectForKey:

Managing enterprise objects
– defaultEditingContext
– setDefaultEditingContext:

Handling requests
– appendToResponse:inContext:
– awake
– context
– invokeActionForRequest:inContext:
– sleep
– takeValuesFromRequest:inContext:

Statistics
– statistics

Debugging
– debugWithFormat:

Page Management
– savePage:
– restorePageForContextID:
145

s
Instance Methods

appendToResponse:inContext:
– (void)appendToResponse:(WOResponse *)aResponse inContext:(WOContext *)aContext

This method is invoked during the phase of the request-response loop during which the objects associated
with a response page append their HTML content to the response. WOSession's default implementation of
this method forwards the message to the WOComponent that represents the response page. Then, it record
information about the current transaction by sending recordStatisticsForResponse:inContext: and then
descriptionForResponse:inContext: to the WOStatisticsStore object.

Compiled or scripted subclasses of WOSession can override this method to replace or supplement the
default behavior with custom logic.

See also: – invokeActionForRequest:inContext:, – takeValuesFromRequest:inContext:

awake
– (void)awake

Invoked at the beginning of a WOSession's involvement in a cycle of the request-response loop, giving the
WOSession an opportunity to initialize its instance variables or perform setup operations. The default
implementation does nothing.

See also: – sleep

context
– (WOContext *)context

Returns the WOContext object for the current transaction.

See also: WOContext class

debugWithFormat:
– (void)debugWithFormat: (NSString *)aFormatString,...

Prints a message to the standard error device (stderr), if WODebuggingEnabled is YES. The message can
include formatted variable data using printf-style conversion specifiers, Note that in WebScript, all variables
are objects, so the only conversion specifier allowed is %@. In compiled Objective-C code, all printf
conversion specifiers are allowed.
146

 Classes: WOSession

.

You control whether this method displays output with the WODebuggingEnabled user default option. If
WODebuggingEnabled is YES, then the debugWithFormat: messages display their output. If
WODebuggingEnabled is NO, the debugWithFormat: messages don’t display their output.

defaultEditingContext
– (EOEditingContext *)defaultEditingContext

Returns the default EOEditingContext object for the session. The method creates the editing context the
first time that it is invoked and caches it for subsequent invocations. There is only one unique
EOEditingContext instance per session. The instance is initialized with the default object store coordinator
as the parent object store.

domainForIDCookies
– (NSString *)domainForIDCookies

Returns the path that is passed when creating a rendezvous cookie for the application. This path is lazily
created the first time it is used from the current request’s adaptorPrefix and the application name
(including the “.woa” extension).

expirationDateForIDCookies
– (NSDate *)expirationDateForIDCookies

Returns when session and instance ID cookies expire. By default, no expiration date is set and this method
returns nil. Override this method if you want to return some other time, such as the session expiration date

Different applications can override this method to enforce different behavior:

• A typical online banking application might use cookies and set the timeout to a very short amount of time
(two minutes, for example), so that if the client doesn’t interact with the browser and no request is made
of the server, the client’s session is timed out. This could be easily enforced on both the client—by setting
the cookie timeout—and on the server from within the session object.

• A site wishing to personalize its pages based upon a user ID might set the timeout far into the distant
future so that even when a client shuts down his browser, the cookie will still be there when he comes
back with a bookmarked URL.

• Sites that want you to log in each time you visit could store the user ID in a cookie and then set the
expiration date on the cookie to nil so that the cookie will go away whenever the client quits their
browser.
147

s

n

.

init
– (id)init

Initializes a WOSession object. Session timeout is set from the WOApplication method sessionTimeout.
This method throws exceptions if no session ID has been assigned or if it cannot initialize the object for any
other reason. Override init in compiled subclasses to perform custom initializations; as always, invoke the
superclass method as the first thing.

invokeActionForRequest:inContext:
– (WOElement *)invokeActionForRequest:(WORequest *)aRequest

inContext:(WOContext *)aContext

WOSession objects receive this message during the middle phase of the request-response loop. During thi
phase, the invokeActionForRequest:inContext: message is propagated through the objects of an
application, most importantly, the WOElement objects of the request page. The dynamic element on which
the user has acted (by, for example, clicking a button) responds by triggering the method in the request
WOComponent that is bound to the action. The default behavior of WOSession is to send the message to
the WOComponent object that represents the request. Compiled or scripted subclasses of WOSession ca
override this method to replace or supplement the default behavior with custom logic.

See also: – appendToResponse:inContext:, – takeValuesFromRequest:inContext:

isDistributionEnabled
– (BOOL)isDistributionEnabled

Returns whether state distribution among multiple application instances is enabled. Returns false by default
since the default WOSessionStore (state in the server) does not allow distribution. If this flag is disabled, a
specific application instance (whose identifying number is embedded in the URL) is assigned to the session

See also: setDistributionEnabled:

isTerminating
– (BOOL)isTerminating

Returns whether the WOSession object will terminate at the end of the current request-response loop.

See also: – terminate
148

 Classes: WOSession

,
languages
– (NSArray *)languages

Returns the list of languages supported by the session. The order of language strings (for example,
"French") indicates the preferred order of languages. This is initialized from the users’s browser preferences
unless explicitly set with setLanguages:. For details, see "Localization" in the WebObjects programming
topics.

See also: – setLanguages:

objectForKey:
– (id)objectForKey:(NSString *)aKey

Returns an object stored in the session under a specific key.

See also: – setObject:forKey:

removeObjectForKey:
– (void)removeObjectForKey:(NSString *)key

Removes the object stored in the session under the specified key.

restorePageForContextID:
– (WOComponent *)restorePageForContextID:(NSString *)contextID

Returns a page instance stored in the session page cache. The key to the stored instance is its context ID
which derives from the transaction’s WOContext or WORequest objects. This method returns nil if
restoration is impossible.

See also: – savePage:

savePage:
– (void)savePage:(WOComponent *)aPage

Saves the page instance aPage in the session page cache. The context ID for the current transaction is made
the key for obtaining this instance in the cache using restorePageForContextID:.
149

e

ll
savePageInPermanentCache:
– (void)savePageInPermanentCache:(WOComponent*)aPage

Puts aPage into a separate page cache. This cache is searched first when attempting to restore the page th
next time its requested. This effectively makes aPage live for the duration of the application regardless of
the size of your page cache. This is useful whe you are using frames and its possible for a page of controls
to be bumped from the page cache.

See also: – permanentPageCacheSize (WOApplication), – setPermanentPageCacheSize:
(WOApplication)

sessionID
– (NSString *)sessionID

Returns the unique, randomly generated string that identifies the session object. The session ID occurs in
the URL after the request handler key.

setDefaultEditingContext:
– (void)setDefaultEditingContext:(EOEditingContext *)editingContext

Sets the editing context to be returned by defaultEditingContext. This can be used to set an editing context
initialized with a different parent object store than the default. This is useful when, for instance, each session
needs its own login to the database. Once a default editing context has been established, you may not ca
setDefaultEditingContext: again. Therefore, to provide your own default editing context, you must call
setDefaultEditingContext: before ever calling defaultEditingContext since that will lazily establish an
editing context.

See also: – defaultEditingContext

setDistributionEnabled:
– (void)setDistributionEnabled:(BOOL)aFlag

Enables or disables the distribution mechanism that effects load balancing among multiple application
instances. When disabled (the default), generated URLs include the application instance number; the
adaptor uses this number to route the request to the specific application instance based on information in
the configuration file. When this flag is enabled, generated URLs do not contain the application instance
number, and thus transactions of a session are handled by whatever application instance is available.

See also: – isDistributionEnabled
150

 Classes: WOSession

setLanguages:
– (void)setLanguages:(NSArray *)languages

Sets the languages for which the session is localized. The ordering of language strings in the array
determines the order in which the application will search languages.lproj directories for localized strings,
images, and component definitions.

See also: – languages

setObject:forKey:
– (void)setObject:(id)anObject forKey: (NSString *)aKey

Stores an object within the session under a given key (aKey). This method allows a reusable component to
add state dynamically to any WOSession object. This method eliminates the need for prior knowledge of
the WOSession's instance variables. A suggested mechanism for generating a unique key prefix for a given
subcomponent is to concatenate the component's name and its element ID. For a specific component
instance, such a prefix should remain unique and invariant within a session.

See also: – objectForKey:

setStoresIDsInCookies:
– (void)setStoresIDsInCookies:(BOOL)flag

Enables or disables the cookie mechanism. Two cookies are created for you when enabled: a session ID
cookie with the name “wosid,” and an instance ID cookie with the name “woinst.” By default, the cookie
mechanism is disabled.

setStoresIDsInURLs:
– (void)setStoresIDsInCookies:(BOOL)flag

Enables or disables the storing of session and instance IDs in URLs. By default, IDs are stored in URLs.

setTimeOut:
– (void)setTimeOut:(NSTimeInterval)seconds

Set the session timeout in seconds. When a session remains inactive—that is, the application receives no
request for this session—for a period longer than the time-out setting, the session will terminate, resulting
151

e
in the deallocation of the WOSession object. By default, the session time-out is set from the WOApplication
method sessionTimeout.

See also: – timeOut

sleep
– (void)sleep

Invoked at the conclusion of each request-response loop in which the session is involved, giving the
WOSession the opportunity to deallocate objects initialized in the awake method. The default WOSession
implementation does nothing.

statistics
– (NSArray *)statistics

Returns a list of the pages accessed by this session, ordered from first accessed to last. For each page, th
string stored is obtained by sending descriptionForResponse:inContext: to the WOComponent object. By
default, this returns the component's name. If the application keeps a CLFF log file, this list is recorded in
the log file when the session terminates.

See also: – appendToResponse:inContext:

storesIDsInCookies
– (BOOL)storesIDsInCookies

Returns whether the cookie mechanism for storing session and instance IDs is enabled. The cookie
mechanism is disabled by default.

storesIDsInURLs
– (BOOL)storesIDsInURLs

Returns whether the URL mechanism for storing session IDs and instance IDs is enabled. The URL
mechanism is enabled by default.
152

 Classes: WOSession

es

takeValuesFromRequest:inContext:
– (void)takeValuesFromRequest:(WORequest *)aRequest inContext:(WOContext *)aContext

WOSession objects receive this message during the first phase of the request-response loop. During this
phase, the dynamic elements associated with the request page extract any user input and assign the valu
to the appropriate component variables. The default behavior of WOSession is to send the message to the
WOComponent object that represents the request. Compiled or scripted subclasses of WOSession can
override this method to replace or supplement the default behavior with custom logic.

See also: – appendToResponse:inContext:, – invokeActionForRequest:inContext:

terminate
– (void)terminate

Causes the session to terminate after the conclusion of the current request-response loop.

See also: – isTerminating

timeOut
– (NSTimeInterval)timeOut

Returns the timeout interval in seconds.

See also: – setTimeOut:
153

154

 Classes: WOSessionStore

e

d

ion
lf

ary
,

t

WOSessionStore

Inherits From: NSObject

Declared In: WebObjects/WOSessionStore.h

Class Description

WOSessionStore, an abstract superclass, offers an object abstraction for storing client state per session. Th
application object (WOApplication) uses an instance of a concrete WOSessionStore subclass to implement
a strategy for storing and retrieving session state. You typically set the WOSessionStore during application
initialization through WOApplication's setSessionStore: method.

An application first creates a session (WOSession) when it receives a request without a session ID. When
this first request has been handled, the application stores the WOSession object under a randomly generate
session ID by invoking its own saveSessionForContext: method. This method by default forwards the
message to the chosen WOSessionStore and that WOSessionStore takes care of the details of saving sess
state. When the next request comes in for that session, the application restores the session by sending itse
restoreSessionWithID:request:, which by default is forwarded to the application's WOSessionStore. The
WOSessionStore then asks the WOContext of the transaction for the session ID of the session. Based on
the implementation of the WOSessionStore, the session object is located and returned.

There is one subclass of WOSessionStore implemented for the developer's convenience. A server
WOSessionStore (the default) stores session state in the server, in application memory. The
serverSessionStore method returns this WOSessionStore.

See the chapter "Managing State" in the WebObjects Developers Guide for the purposes, mechanisms, and
limitations of session store in the server, page, and cookies.

You can create a custom session store by making a subclass of WOSessionStore. The subclass should
properly implement the saveSessionForContext: and restoreSessionWithID:request: methods (using the
session ID as the key for storage) and should have a public method that the application object can use to
obtain an instance. Some interesting session stores could be:

• A database session store that stores session data in a database as blobs, with the session ID as the prim
key. This kind of WOSessionStore can be shared by many instances of the same WebObjects application
thus distributing the load (requests) among the instances.

• An adaptive session store that stores session state either in cookies or on the server, depending on wha
the client supports.

If you create your own WOSessionStore class that generates persistent objects, you should implement an
algorithm that cleans up session state after the session is inactive for a long time. The server
WOSessionStore provided by WebObjects performs this clean-up properly, but the API is not yet public.
155

lt

e
,

Method Types

Obtaining a session store
+ serverSessionStore

Checking a session in and out
– checkinSessionForContext:
– checkoutSessionWithID:request:

Saving and restoring a context
– restoreSessionWithID:request:
– saveSessionForContext:

Class Methods

serverSessionStore
+ (WOSessionStore *)serverSessionStore

Returns a WOSessionStore object that stores session state in application memory. Since this is the defau
storage strategy, you do not need to explicitly set the session store during application initialization if this is
the strategy you want.

State storage in the server is the most secure and is the easiest to implement. You can also easily manag
the amount of storage consumed by setting session timeouts, limiting the size of the page-instance cache
and page uniquing. (See "Managing State" in the WebObjects Developers Guide for details on these
techniques.)

You may use WOSession's initWithCoder: method to restore session state from the archived data.

Instance Methods

checkinSessionForContext:
– (void)checkinSessionForContext:(WOContext *)aContext

This method calls saveSessionForContext: (implemented in the concrete subclass) to save the session
referred to by aContext using whatever storage technique is supported by the receiver. This method also
“checks in” the session so that pending (and future) requests for the same session may procede. This
method is called by WOApplication to save the session even if the session was not previously checked out
via checkoutSessionWithID:request: (that is, the session is a new session which was just created and,
therefore, not restored).
156

 Classes: WOSessionStore

”
e

r
checkoutSessionWithID:request:
– (WOSession*)checkoutSessionWithID:(NSString *)aSessionID request:(WORequest *)aRequest

This method returns a session for aSessionID if one is stored. This method calls restoreSessionWithID:
request: (implemented in the concrete subclass) to do the actual session restoration using whatever storage
technique is supported by the receiver. If the session is located and restored, this method also “checks out
aSessionID so that simultaneous access to the same session is precluded. If the session is not restored, th
aSessionID is not checked out.

restoreSessionWithID:request:
– (WOSession *)restoreSessionWithID:(NSString *)aSessionID request:(WORequest *)aRequest

Implemented by a private concrete subclass to restore the current session object from a particular type of
storage.

The default implementation of this method does nothing

saveSessionForContext:
– (void)saveSessionForContext:(WOContext *)aContext

Implemented by a private concrete subclass to save the current session object using a particular strategy fo
state storage. The default implementation of this method does nothing.

You may use the method encodeWithCoder: to save session state to archived data.
157

158

 Classes: WOStatisticsStore

s,
WOStatisticsStore

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: WebObjects/WOStatisticsStore.h

Class Description

The WOStatisticsStore object records statistics about a WebObjects application while that application runs.
All WebObjects applications have a WOStatisticsStore object, which you can access by sending
statisticsStore to the WOApplication object.

Recording Information

The WOStatisticsStore object records the bulk of its statistics at the end of each cycle of the
request-response loop. Specifically, at the end of WOSession’s appendToResponse:inContext: method,
the WOSession sends the recordStatisticsForResponse:inContext: message to the WOStatisticsStore.
This message tells the WOStatisticsStore to begin recording statistics. Then, WOSession sends it a
descriptionForResponse:inContext: message. This method sends the response component a
descriptionForResponse:inContext: message. The default implementation of descriptionForResponse:
inContext: in WOComponent returns the component’s name.

You can override descriptionForResponse:inContext: in each of your components if you want to record
more information. For example, you might want to record the values of all of the component’s variables or
perhaps just one or two key variables.

If you want to record extra information about the session, you can override WOStatisticsStore’s
recordStatisticsForResponse:inContext: method.

Maintaining a Log File

You can maintain an application log file by sending the message setLogFile:rotationFrequencyInDays:
to the WOStatisticsStore object. When a log file has been specified, each session records information in the
log file about the pages it accessed.

The log is maintained in Common Log File Format (CLFF) so that it can be analyzed by any standard
CLFF-analysis tool. (For more information about the statistics recorded in the log file, see the
formatDescription:forResponse:inContext: method description.) If a log file has been specified, the
WOSession object keeps its own statistics about which pages it has accessed. When the session terminate
it writes this information to the log file.
159

Method Types

Recording information
– recordStatisticsForResponse:inContext:
– descriptionForResponse:inContext:
– setSessionMovingAverageSampleSize:
– transactionMovingAverageSampleSize

Retrieving information
– statistics

Maintaining a CLFF log file
– setLogFile:rotationFrequencyInDays:
– logFileRotationFrequencyInDays
– logFile

Recording information in the CLFF log file
– formatDescription:forResponse:inContext:
– logString:

Securing access to the WOStats page
– setPassword:
– validateLogin:forSession:

Instance Methods

descriptionForResponse:inContext:
– (NSString *)descriptionForResponse:(WOResponse *)aResponse

inContext:(WOContext *)aContext

Records information about the current response by sending the descriptionForResponse:inContext:
message to the response page and returning the result. This method is invoked at the end of the
request-response loop in WOSession’s appendToResponse:inContext: method, after the
recordStatisticsForResponse:inContext: method.

formatDescription:forResponse:inContext:
– (NSString *)formatDescription: (NSString *)responseDescription

forResponse:(WOResponse *)aResponse
inContext:(WOContext *)aContext

If log file recording is enabled, this method formats the string responseDescription in using Common Log
File Format (CLFF). The resulting string contains:

• The host from which the HTTP request was received
160

 Classes: WOStatisticsStore

• The name of the user that performed the request
• The current date
• The request’s HTTP method (GET or PUT)
• The WebObjects application name
• The result of the descriptionForResponse:inContext: method (by default, this method returns the

response component’s name)
• The request’s HTTP version
• The HTTP status of the response
• The size of the response

You enable log file recording by setting a log file using the setLogFile:rotationFrequencyInDays:
method.

This method is used by WOSession to record information about the current transaction when log file
recording is enabled.

See also: – logFile, – logString:

logFile
– (NSString *)logFile

Returns the full path to the CLFF log file. This log file does not exist unless you send setLogFile:
rotationFrequencyInDays: to the WOStatisticsStore.

See also: – formatDescription:forResponse:inContext:, – logFileRotationFrequencyInDays,
– logString:

logFileRotationFrequencyInDays
– (double)logFileRotationFrequencyInDays

The number of days a log file lasts. That is, a log file’s contents are flushed after a certain time interval to
ensure that it does not grow too large and a new log file is started. This method returns that time interval.

Before a new log file is started, the contents of the current log file are saved to a backup file. You can then
inspect this log file and/or remove it when its data has grown stale.

See also: – setLogFile:rotationFrequencyInDays:
161

e

logString:
– (void)logString:(NSString *)aString

Writes the string aString to the CLFF log file specified by logFile. The method is used to record a session’s
statistics when that session ends. You can also use it to record any string to the log file that might be helpful
to you.

See also: – formatDescription:forResponse:inContext:

sessionMovingAverageSampleSize
– (int)sessionMovingAverageSampleSize

Returns the sample size used to compute moving average statistics for each session. The WOStatisticsStor
object uses this sample size to compute the response time for the last n transactions and the idle time
between the last n transactions, where n is the number returned by this method. The default sample size is
10.

See also: – setSessionMovingAverageSampleSize:

recordStatisticsForResponse:inContext:
– (void)recordStatisticsForResponse:(WOResponse *)aResponse inContext:

(WOContext *)aContext

Records statistics for the current cycle of the request-response loop. This method is invoked at the end of
WOSession’s appendToResponse:inContext: method, immediately before the descriptionForResponse:
inContext: method. By default, this method records the name of the response page for later use by
descriptionForResponse:inContext:. You can override it if you want to record more information about the
session before the current request and response are deallocated. You must begin your implementation by
invoking the superclass method.

setLogFile:rotationFrequencyInDays:
– (void)setLogFile:(NSString *)filePath rotationFrequencyInDays:(double)logRotation

Sets the full path of the log file to which CLFF statistics will be recorded to filePath. The logRotation
argument specifies the number of days statistics will be recorded to this log file. Every logRotation days,
the contents of the current log file are saved to a backup file and a new log file is started.

The default is not to record information to a log file.

See also: – logFile, – logFileRotationFrequencyInDays
162

 Classes: WOStatisticsStore

;
setSessionMovingAverageSampleSize:
– (void)setSessionMovingAverageSampleSize:(int)aSize

Sets the moving average sample size for each session to aSize. The WOStatisticsStore object uses this
sample size to compute the response time for the last aSize transactions and the idle time between the last
aSize transactions.

The default moving average session sample size is 10 transactions.

See also: – sessionMovingAverageSampleSize

setPassword:
– (void)setPassword:(NSString *)aPassword

Implements security for the WOStats page by setting its password to aPassword. By default, there is no
password, so any user can access the WOStats page (provided they know the URL). If you implement this
method, when you enter the WOStats URL, a login panel appears. You can leave the User name field blank
as long as you type the appropriate password in the password field, the WOStats page will appear.

See also: – validateLogin:forSession:

setTransactionMovingAverageSampleSize:
– (void)setTransactionMovingAverageSampleSize:(int)aSize

Sets the moving average sample size for each transaction to aSize. The WOStatisticsStore object uses this
sample size to compute the response time for the last aSize transactions and the idle time between the last
aSize transactions.

The default moving average transaction sample size is 100 transactions.

See also: – transactionMovingAverageSampleSize

statistics
– (NSDictionary *)statistics

Returns a dictionary containing the statistics that the WOStatisticsStore records.

The averages that are displayed by this method are not computed until this method is invoked. Therefore,
invoking this method is costly and should not be done at every request.
163

transactionMovingAverageSampleSize
– (int)transactionMovingAverageSampleSize

Returns the sample size used to compute moving average statistics for each transaction. The
WOStatisticsStore object uses this sample size to compute the response time for the last n transactions and
the idle time between the last n transactions, where n is the number returned by this method. The default
sample size is 100.

See also: – setTransactionMovingAverageSampleSize:

validateLogin:forSession:
– (BOOL)validateLogin:(NSString *)string forSession:(WOSession *)aSession

Returns YES if string is the password set by setPassword:, and NO otherwise. The password controls if the
user can see the WOStats page.
164

 Classes: EOEditingContext Additions

EOEditingContext Additions

Inherits From: NSObject

Declared In: WebObjects/WODisplayGroup.h

Class Description

The WebObjects Framework adds one method to the Enterprise Objects Framework’s EOEditingContext
class that atempts to commit changes made in the receiver to its parent EOObjectStore.

Instance Methods

tryToSaveChanges
– (NSException *)tryToSaveChanges

Attempts to commit changes made in the receiver to its parent EOObjectStore by sending it the message
saveChangesInEditingContext:. If the parent is an EOObjectStoreCoordinator, it guides its
EOCooperatingObjectStores, typically EODatabaseContexts, through a multi-pass save operation (see the
EOObjectStoreCoordinator class specification for more information). If no message handler or delegate is
available and a database error occurs, an exception is raised that can be caught in WebScript; the error
message indicates the nature of the problem.
165

166

 Classes: WOActionResults
WOActionResults

Adopted By: WOComponent, WOResponse

Declared In: WebObjects/WOResponse.h

Protocol Description

The WOActionResults protocol is the return type for direct actions. As a convenience, direct actions can
return either WOComponent objects or WOResponse objects; both of which implement the
WOActionResults protocol. This protocol implement only one method generateResponse.

If you want to return any other class from a direct action, then that class must implement this protocol.

generateResponse
– (WOResponse *)generateResponse

Returns a response object. WOResponse’s implementation of this method returns the receiver.
WOComponent’s implementation of this method calls appendToResponse:inContext: on itself and all
children components in its template and returns the result as a WOResponse object. If you want to return
any other class from a direct action, then that class must implement this method.
167

168

 Classes: WODisplayGroupDelegate

st
t
WODisplayGroupDelegate

Adopted By: WODisplayGroup delegate objects

Declared In: WebObjects/WODisplayGroup.h

Protocol Description

WODisplayGroup offers a number of methods for its delegate to implement; if the delegate does implement
them, the WODisplayGroup instances invoke them as appropriate. There are methods that inform the
delegate that the EODisplayGroup has fetched, created an object (or failed to create one), inserted or
deleted an object, changed the selection, or set a value for a property. There are also methods that reque
permission from the delegate to perform most of these same actions. The delegate can return YES to permi
the action or NO to deny it. See each method's description for more information.

Instance Methods

displayGroup:createObjectFailedForDataSource:
– (void)displayGroup:(WODisplayGroup *)aDisplayGroup

createObjectFailedForDataSource:(id)aDataSource

Invoked from insertObject: atIndex: to inform the delegate that aDisplayGroup has failed to create a new
object for aDataSource. If the delegate doesn’t implement this method, the WODisplayGroup fails silently.

displayGroup:didDeleteObject:
– (void)displayGroup:(WODisplayGroup *)aDisplayGroup didDeleteObject:(id)anObject

Informs the delegate that aDisplayGroup has deleted anObject.

displayGroup:didFetchObjects:
– (void)displayGroup:(WODisplayGroup *)aDisplayGroup didFetchObjects:(NSArray *)objects

Informs the delegate that aDisplayGroup has fetched objects.
169

displayGroup:didInsertObject:
– (void)displayGroup:(WODisplayGroup *)aDisplayGroup didInsertObject: (id)anObject

Informs the delegate that aDisplayGroup has inserted anObject.

displayGroup:didSetValue:forObject:key:
– (void)displayGroup:(WODisplayGroup *)aDisplayGroup

didSetValue:(id)value
forObject: (id)anObject
key:(NSString *)key

Informs the delegate that aDisplayGroup has altered a property value of anObject. key identifies the
property, and value is its new value.

displayGroup:displayArrayForObjects:
– (NSArray *)displayGroup:(WODisplayGroup *)aDisplayGroup

displayArrayForObjects: (NSArray *)objects

Invoked from updateDisplayedObjects, this method allows the delegate to filter and sort aDisplayGroup’s
array of objects to limit which ones get displayed. objects contains all of aDisplayGroup’s objects. The
delegate should filter any objects that shouldn’t be shown and sort the remainder, returning a new array
containing this group of objects. You can use the NSArray methods filteredArrayUsingQualifier: and
sortedArrayUsingKeyOrderingArray: to create the new array.

If the delegate doesn’t implement this method, the WODisplayGroup uses its own qualifier and sort
ordering to update the displayed objects array.

See also: – displayedObjects, – qualifier , – sortOrderings

displayGroupDidChangeDataSource:
– (void)displayGroupDidChangeDataSource:(WODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s EODataSource (defined in the EOControl framework) has
changed.
170

 Classes: WODisplayGroupDelegate
displayGroupDidChangeSelectedObjects:
– (void)displayGroupDidChangeSelectedObjects:(WODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s selected objects have changed, regardless of whether the
selection indexes have changed.

displayGroupDidChangeSelection:
– (void)displayGroupDidChangeSelection:(WODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s selection has changed.

displayGroupShouldFetch:
– (BOOL)displayGroupShouldFetch:(WODisplayGroup *)aDisplayGroup

Allows the delegate to prevent aDisplayGroup from fetching. If the delegate returns YES, aDisplayGroup
performs the fetch; if the delegate returns NO, aDisplayGroup abandons the fetch.

displayGroup:shouldChangeSelectionToIndexes:
– (BOOL)displayGroup:(WODisplayGroup *)aDisplayGroup

shouldChangeSelectionToIndexes:(NSArray *)newIndexes

Allows the delegate to prevent a change in selection by aDisplayGroup. newIndexes is the proposed new
selection. If the delegate returns YES, the selection changes; if the delegate returns NO, the selection
remains as it is.

displayGroup:shouldDeleteObject:
– (BOOL)displayGroup:(WODisplayGroup *)aDisplayGroup shouldDeleteObject:anObject

Allows the delegate to prevent aDisplayGroup from deleting anObject. If the delegate returns YES,
anObject is deleted; if the delegate returns NO, the deletion is abandoned.
171

e
displayGroup:shouldInsertObject:atIndex:
– (BOOL)displayGroup:(WODisplayGroup *)aDisplayGroup

shouldInsertObject:anObject
atIndex:(unsigned int)anIndex

Allows the delegate to prevent redisplay from inserting anObject at anIndex. If the delegate returns YES,
anObject is inserted; if the delegate returns NO, the insertion is abandoned.

displayGroup:shouldRedisplayForChangesInEditingContext:
– (BOOL)displayGroup:(WODisplayGroup *)aDisplayGroup

shouldRedisplayForEditingContextChangeNotification:(NSNotification *)aNotification

Invoked whenever aDisplayGroup receives an EOObjectsChangedInEditingContextNotification, this
method allows the delegate to suppress redisplay based on the nature of the change that has occurred. If th
delegate returns YES, aDisplayGroup redisplays; if it returns NO, aDisplayGroup doesn’t.

See also: – redisplay

displayGroup:shouldRefetchForInvalidatedAllObjectsNotification:
– (BOOL)displayGroup:(WODisplayGroup *)aDisplayGroup

shouldRefetchForInvalidatedAllObjectsNotification:(NSNotification *)aNotification

Invoked whenever aDisplayGroup receives an EOInvalidatedAllObjectsInStoreNotification, this method
allows the delegate to suppress the refetching of the invalidated objects. If the delegate returns YES,
aDisplayGroup immediately fetches its objects. If the delegate returns NO, aDisplayGroup doesn’t
immediately fetch, instead delaying until absolutely necessary.

See also: – redisplay
172

	The WebObjects Framework
	Framework: /System/Library/Frameworks/WebObjects.framework
	Introduction
	Figure 1 The WebObjects Framework class hierarchy

	WOAdaptor
	Class Description
	Method Types
	Instance Methods
	doesBusyRunOnce
	dispatchesRequestsConcurrently
	initWithName:arguments:
	registerForEvents
	runOnce
	unregisterForEvents

	WOApplication
	Class Description
	Adopted Protocols
	Method Types
	Class Methods
	adaptor
	additionalAdaptors
	application
	applicationBaseURL
	autoOpenInBrowser
	cgiAdaptorURL
	componentRequestHandlerKey
	directActionRequestHandlerKey
	frameworksBaseURL
	includeCommentsInResponses
	isCachingEnabled
	isDebuggingEnabled
	isDirectConnectEnabled
	isMonitorEnabled
	listenQueueSize
	loadFrameworks
	monitorHost
	port
	projectSearchPath
	recordingPath
	resourceRequestHandlerKey
	sessionTimeout
	setAdaptor:
	setAdditionalAdaptors:
	setApplicationBaseURL:
	setAutoOpenInBrowser:
	setCGIAdaptorURL:
	setCachingEnabled:
	setComponentRequestHandlerKey:
	setDebuggingEnabled:
	setDirectActionRequestHandlerKey:
	setDirectConnectEnabled:
	setFrameworksBaseURL:
	setIncludeCommentsInResponses:
	setListenQueueSize:
	setLoadFrameworks:
	setMonitorEnabled:
	setMonitorHost:
	setPort:
	setProjectSearchPath:
	setRecordingPath:
	setResourceRequestHandlerKey:
	setSessionTimeOut:
	setSMTPHost:
	setWorkerThreadCount:
	SMTPHost
	workerThreadCount

	Instance Methods
	activeSessionsCount
	adaptorWithName:arguments:
	adaptors
	adaptorsDispatchRequestsConcurrently
	allowsConcurrentRequestHandling
	appendToResponse:inContext:
	awake
	baseURL
	createSessionForRequest:
	1. First it looks for a compiled class of name “Session” that is a subclass of WOSession.
	2. If such a class does not exist, it looks for a “.wos” script with the name of “Session” in the...
	3. If the Session.wos script exists, the method parses the script and dynamically adds a scripted...

	debugWithFormat:
	defaultRequestHandler
	dispatchRequest:
	dynamicElementWithName:associations:template:languages:
	handleException:inContext:
	handlePageRestorationErrorInContext:
	handleSessionCreationErrorInContext:
	handleSessionRestorationErrorInContext:
	handlerForRequest:
	init
	invokeActionForRequest:inContext:
	isCachingEnabled
	isConcurrentRequestHandlingEnabled
	isPageRefreshOnBacktrackEnabled
	isRefusingNewSessions
	isTerminating
	lock
	lockRequestHandling
	logSetValueForDeclarationNamed:type:bindingNamed:associationDescription: value:
	logTakeValueForDeclarationNamed:type:bindingNamed:associationDescription: value:
	logToMonitorWithFormat:
	logWithFormat:
	minimumActiveSessionsCount
	monitoringEnabled
	name
	number
	pageCacheSize
	pageWithName:forRequest:
	pageWithName:inContext:
	path
	permanentPageCacheSize
	refuseNewSessions:
	registerRequestHandler:forKey:
	registeredRequestHandlerKeys
	removeRequestHandlerForKey:
	requestHandlerForKey:
	requiresWOF35RequestHandling
	requiresWOF35TemplateParser
	resourceManager
	restoreSessionWithID:inContext:
	run
	runLoop
	saveSessionForContext:
	scriptedClassWithPath:
	scriptedClassWithPath:encoding:
	sessionStore
	setCachingEnabled:
	setDefaultRequestHandler:
	setMinimumActiveSessionsCount:
	setPageCacheSize:
	setPageRefreshOnBacktrackEnabled:
	setPermanentPageCacheSize:
	setResourceManager:
	setSessionStore:
	setStatisticsStore:
	setTimeOut:
	sleep
	statistics
	statisticsStore
	takeValuesFromRequest:inContext:
	terminate
	terminateAfterTimeInterval:
	timeOut
	trace:
	traceAssignments:
	traceObjectiveCMessages:
	traceScriptedMessages:
	traceStatements:
	unlock
	unlockRequestHandling

	Notifications
	WOApplicationDidFinishLaunchingNotification
	WOApplicationWillFinishLaunchingNotification

	WOAssociation
	Class Description
	Adopted Protocols
	Method Types
	Class Methods
	associationWithKeyPath:
	associationWithValue:

	Instance Methods
	isValueConstant
	isValueSettable
	setValue:inComponent:
	valueInComponent:

	WOComponent
	Class Description
	WOComponent objects dynamically render web pages (or sections of pages) at run time. They provide...
	Subcomponents

	Adopted Protocols
	Method Types
	Class Methods
	templateWithHTMLString:declarationString:languages:

	Instance Methods
	appendToResponse:inContext:
	application
	awake
	baseURL
	context
	debugWithFormat:
	descriptionForResponse:inContext:
	frameworkName
	generateResponse
	hasBinding:
	hasSession
	init
	invokeActionForRequest:inContext:
	isCachingEnabled
	logWithFormat:
	logWithFormat:arguments:
	name
	pageWithName:
	parent
	path
	pathForResourceNamed:ofType:
	performParentAction:
	session
	setCachingEnabled:
	setValue:forBinding:
	sleep
	synchronizesVariablesWithBindings
	takeValuesFromRequest:inContext:
	templateWithName:
	validationFailedWithException:value:keyPath:
	valueForBinding:

	WOContext
	Class Description
	Adopted Protocols
	Method Types
	Class Methods
	contextWithRequest:

	Instance Methods
	appendElementIDComponent:
	appendZeroElementIDComponent
	completeURLWithRequestHandlerKey:path:queryString:isSecure:port:
	component
	componentActionURL
	contextID
	deleteAllElementIDComponents
	deleteLastElementIDComponent
	directActionURLForActionNamed:queryDictionary:
	elementID
	hasSession
	incrementLastElementIDComponent
	init
	initWithRequest:
	isInForm
	page
	request
	response
	senderID
	session
	setInForm:
	urlWithRequestHandlerKey:path:queryString:

	WOCookie
	Class Description
	Method Types
	Class Methods
	cookieWithName:value:
	cookieWithName:value:path:domain:expires:isSecure:

	Instance Methods
	domain
	expires
	headerString
	initWithName:value:path:domain:expires:isSecure:
	isSecure
	name
	path
	setDomain:
	setExpires:
	setIsSecure:
	setName:
	setPath:
	setValue:
	value

	WODirectAction
	Class Description
	Method Types
	Instance Methods
	debugWithFormat:
	existingSession
	initWithRequest:
	logWithFormat:
	pageWithName:
	performActionNamed:
	request
	session
	takeFormValueArraysForKeyArray:
	takeFormValueArraysForKeys:
	takeFormValuesForKeyArray:
	takeFormValuesForKeys:

	WODisplayGroup
	Class Description
	The Delegate

	Adopted Protocols
	Method Types
	Instance Methods
	allObjects
	allQualifierOperators
	batchCount
	clearSelection
	currentBatchIndex
	dataSource
	defaultStringMatchFormat
	defaultStringMatchOperator
	delegate
	delete
	deleteObjectAtIndex:
	deleteSelection
	detailKey
	displayBatchContainingSelectedObject
	displayedObjects
	displayNextBatch
	displayPreviousBatch
	fetch
	fetchesOnLoad
	hasDetailDataSource
	hasMultipleBatches
	indexOfFirstDisplayedObject
	indexOfLastDisplayedObject
	init
	inQueryMode
	insert
	insertedObjectDefaultValues
	insertObjectAtIndex:
	insertObject: atIndex:
	masterObject
	numberOfObjectsPerBatch
	qualifier
	qualifierFromQueryValues
	qualifyDataSource
	qualifyDisplayGroup
	queryBindings
	queryMatch
	queryMax
	queryMin
	queryOperator
	redisplay
	relationalQualifierOperators
	selectedObject
	selectedObjects
	selectionIndexes
	selectNext
	selectObject:
	selectObjectsIdenticalTo:
	selectObjectsIdenticalTo:selectFirstOnNoMatch:
	selectPrevious
	selectsFirstObjectAfterFetch
	setCurrentBatchIndex:
	setDataSource:
	setDefaultStringMatchFormat:
	setDefaultStringMatchOperator:
	setDelegate:
	setDetailKey:
	setFetchesOnLoad:
	setInQueryMode:
	setInsertedObjectDefaultValues:
	setMasterObject:
	setNumberOfObjectsPerBatch:
	setObjectArray:
	setQualifier:
	setSelectionIndexes:
	setSelectsFirstObjectAfterFetch:
	setSortOrderings:
	setValidatesChangesImmediately:
	sortOrderings
	updateDisplayedObjects
	validatesChangesImmediately

	WODynamicElement
	Class Description
	Method Types
	WODynamicElement

	Instance Methods
	initWithName:associations:template:

	WOElement
	Class Description
	Method Types
	Instance Methods
	appendToResponse:inContext:
	invokeActionForRequest:inContext:
	takeValuesFromRequest:inContext:

	WOMailDelivery
	Class Description
	Method Types
	Class Methods
	sharedInstance

	Instance Methods Returns the current application’s WOMailDelivery instance. Use this method inste...
	composeEmailFrom:to:cc:subject:component:send:
	composeEmailFrom:to:cc:subject:plainText:send:
	sendEmail:

	WORequest
	Class Description
	Adopted Protocols
	Method Types
	Instance Methods
	adaptorPrefix
	applicationName
	applicationNumber
	browserLanguages
	content
	cookieValueForKey:
	cookieValues
	cookieValuesForKey:
	defaultFormValueEncoding
	formValueEncoding
	formValueForKey:
	formValueKeys
	formValues
	formValuesForKey:
	headerForKey:
	headerKeys
	headersForKey:
	httpVersion
	initWithMethod:uri:httpVersion:headers:content:userInfo:
	isFormValueEncodingDetectionEnabled
	isFromClientComponent
	method
	requestHandlerKey
	requestHandlerPath
	requestHandlerPathArray
	sessionID
	setDefaultFormValueEncoding:
	setFormValueEncodingDetectionEnabled:
	uri
	userInfo

	WORequestHandler
	Class Description
	Adopted Protocols
	Method Types
	Instance Methods
	handleRequest:

	WOResourceManager
	Class Description
	Adopted Protocols
	Method Types
	Instance Methods
	flushDataCache
	lock
	pathForResourceNamed:inFramework:languages:
	removeDataForKey:session:
	setData:forKey:mimeType:session:
	stringForKey:inTableNamed:withDefaultValue:inFramework:languages:
	unlock
	urlForResourceNamed:inFramework:languages:request:

	WOResponse
	Class Description
	Content Encodings

	Adopted Protocols
	Method Types
	Class Methods
	defaultEncoding
	setDefaultEncoding:
	stringByEscapingHTMLString:
	stringByEscapingHTMLAttributeValue:

	Instance Methods
	addCookie:
	appendContentBytes:length:
	appendContentCharacter:
	appendContentData:
	appendContentHTMLAttributeValue:
	appendContentHTMLString:
	appendContentString:
	content
	contentEncoding
	cookies
	generateResponse
	headerForKey:
	headerKeys
	headersForKey:
	httpVersion
	init
	removeCookie:
	setContent:
	setContentEncoding:
	setHTTPVersion:
	setHeader:forKey:
	setHeaders:forKey:
	setStatus:
	setUserInfo:
	status
	userInfo

	WOSession
	Class Description
	Adopted Protocols
	Method Types
	Instance Methods
	appendToResponse:inContext:
	awake
	context
	debugWithFormat:
	defaultEditingContext
	domainForIDCookies
	expirationDateForIDCookies
	init
	invokeActionForRequest:inContext:
	isDistributionEnabled
	isTerminating
	languages
	objectForKey:
	removeObjectForKey:
	restorePageForContextID:
	savePage:
	savePageInPermanentCache:
	sessionID
	setDefaultEditingContext:
	setDistributionEnabled:
	setLanguages:
	setObject:forKey:
	setStoresIDsInCookies:
	setStoresIDsInURLs:
	setTimeOut:
	sleep
	statistics
	storesIDsInCookies
	storesIDsInURLs
	takeValuesFromRequest:inContext:
	terminate
	timeOut

	WOSessionStore
	Class Description
	Method Types
	Class Methods
	serverSessionStore

	Instance Methods
	checkinSessionForContext:
	checkoutSessionWithID:request:
	restoreSessionWithID:request:
	saveSessionForContext:

	WOStatisticsStore
	Class Description
	Recording Information
	Maintaining a Log File

	Method Types
	Instance Methods
	descriptionForResponse:inContext:
	formatDescription:forResponse:inContext:
	logFile
	logFileRotationFrequencyInDays
	logString:
	sessionMovingAverageSampleSize
	recordStatisticsForResponse:inContext:
	setLogFile:rotationFrequencyInDays:
	setSessionMovingAverageSampleSize:
	setPassword:
	setTransactionMovingAverageSampleSize:
	statistics
	transactionMovingAverageSampleSize
	validateLogin:forSession:

	EOEditingContext Additions
	Class Description
	Instance Methods
	tryToSaveChanges

	WOActionResults
	Protocol Description
	generateResponse

	WODisplayGroupDelegate
	Protocol Description
	Instance Methods
	displayGroup:createObjectFailedForDataSource:
	displayGroup:didDeleteObject:
	displayGroup:didFetchObjects:
	displayGroup:didInsertObject:
	displayGroup:didSetValue:forObject:key:
	displayGroup:displayArrayForObjects:
	displayGroupDidChangeDataSource:
	displayGroupDidChangeSelectedObjects:
	displayGroupDidChangeSelection:
	displayGroupShouldFetch:
	displayGroup:shouldChangeSelectionToIndexes:
	displayGroup:shouldDeleteObject:
	displayGroup:shouldInsertObject:atIndex:
	displayGroup:shouldRedisplayForChangesInEditingContext:
	displayGroup:shouldRefetchForInvalidatedAllObjectsNotification:

