

KKKK

Revised for version 1.3

November 1997
© Apple Computer, Inc. 1994 - 1997

KKKK

I N S I D E M A C I N T O S H

Networking With Open Transport

K

Apple Computer, Inc.
© 1994-1997 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the ÒkeyboardÓ Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 InÞnite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh,
AppleTalk, EtherTalk,
ImageWriter,LaserWriter, LocalTalk,
Mac, MPW, and TokenTalk are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Busines Machines
Corporation, used under license
therefrom.
UNIX is a regisered trademark in
the United States and other
countries, licensed exclusively
through X/Open Company, Ltd.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD ÒAS
IS,Ó AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modiÞcation,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential

damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you speciÞc legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings xxi

Preface About This Book xxvii

For More Information xxviii
Format of a Typical Chapter xxix
Conventions Used in This Book xxxi

Special Fonts xxxi
Types of Notes xxxi

The Development Environment xxxii

Part 1 Open Transport Essentials 1

Chapter 1 Introduction to Open Transport 3

Introduction to Open Transport 5
Basic Networking Concepts 6

Types of Protocols 8
Addressing 10
Protocol Stacks and the OSI Model 11

About Networking With Open Transport 14
Open Transport Architecture 14

Open Transport API 16
Software Modules 17
Drivers and Hardware 17
Open Transport and Interrupt-Time Processing 18

Providers: Endpoints, Mappers, and Services 18
Transport Independence 22
Endpoints and Protocol Layering 22

Deciding Which Protocol to Use 23
General Purpose or Special Purpose 23
Choice of Protocol Family 24
iii

High-Level or Low-Level Protocol 24
Connection-Oriented or Connectionless 25
Transaction-Based or Transactionless 25
Summary 26

Chapter 2 Getting Started With Open Transport 29

Initializing Open Transport 31
Initializing From a Client Application 32
Initializing From a Stand-Alone Code Resource 33
Using ASLM and Open Transport 33
Using the Gestalt Function to Determine Whether Open Transport Is

Available 34
ConÞguring and Opening a Provider 34

Creating a ConÞguration Structure 35
Opening a Provider 36
Reusing Provider ConÞgurations 37

Specifying an Address 37
Addressing in Open Transport 37
Using TNetBuf Structures 38
Storing an Address in a TNetBuf Structure 40
Using Helper Routines to Initialize an Address 40

Closing Open Transport 42
Closing From Applications 42
Closing From Stand-Alone Code 43

Open Transport Libraries 44
Downloading a URL With HTTP 45

Using Threads for Easy Synchronous Processing 50
Specifying the Host Names and HTTP Commands 51
Opening an Endpoint and Setting the Mode of Operation 52
Connecting to the Host and Sending Data 53
Receiving Data From the Remote Endpoint 54
Error Handling 55
Unbinding the Endpoint and Final Clean-Up 56
iv

Chapter 3 Providers 59

About Providers 61
Provider Functions 63
Interrupt-Time Processing 64
Modes of Operation 65
Provider Events 67
Function Results 68

Using Providers 69
Controlling a ProviderÕs Modes of Operation 70

Which Mode To Use 70
Specifying How Provider Functions Execute 71
Setting a ProviderÕs Blocking Status 72
Setting a ProviderÕs Send-Acknowledgment Status 72

Using NotiÞer Functions to Handle Provider Events 73
Transferring a ProviderÕs Ownership 77
Closing a Provider 79

Chapter 4 Endpoints 81

About Endpoints 83
Endpoint Types and Type of Service 85
Naming Conventions for Endpoint Functions 85
Endpoint Options 87
Modes of Operation 88
Endpoint States 89
Transport Service Data Units 98

Using Endpoints 99
Opening and Binding Endpoints 100
Obtaining Information About E ndpoints 101
Handling Events for Endpoints 102

Clearing Events and Synchronization Problems 104
NotiÞer Reentrancy 104
Polling for Events 105

Establishing and Terminating Connections 105
Establishing a Connection 107
Terminating a Connection 112

Sending and Receiving Data 118
v

Sending Data Using Multiple Sends 118
Receiving Data 119

Transferring Data Between Transactionless Endpoints 119
Using Connectionless Transactionless Service 119
 Using Connection-Oriented Transactionless Service 120

Transferring Data Between Transaction-Based Endpoints 121
Using Connectionless Transaction-Based Service 123
Using Connection-Oriented Transaction-Based Service 125

Chapter 5 Programming With Open Transport 127

Open Transport Programming Models 129
Using Synchronous Processing With Threads 130
Polling for Events 132
Using Asynchronous Processing With a NotiÞer 134

Interrupt-Safe Functions 136
Memory Management From NotiÞers 136

Interrupt Levels and Open Transport Processing 136
Hardware Interrupt Level 136
Deferred Task Level 137
System Task Level 138
Using Timer Tasks 139
Using System and Deferred Tasks 139

Calling Open Transport Functions 140
Scheduling Tasks 140
Deallocating Resources 141

Handling Synchronization Problems 141
Handling Multiple Simultaneous Connections 142

Problems With Accepting Multiple Simultaneous Connections 142
Using "tilisten" to Accept Multiple Simultaneous Connections 143

Improving Performance 144
Streamlining Endpoint Creation 144
Handling Dead Clients 145
Shutting Down Servers 146
vi

Chapter 6 Mappers 147

About Mappers 150
Using Mappers 150

Setting Modes of Operation for Mappers 151
Specifying Name and Address Information 152
Searching for Names 153

Retrieving Entries in Asynchronous Mode 154
Code Sample: Using OTLookupName 155

Chapter 7 Option Management 163

About Options and Option Negotiation 166
Explicit Use of Options and Portability of Code 166
Types of Options 167
The Format of Option Information 167
XTI-Level Options and General Options 169

Using Options 171
Determining Which Function to Use to Negotiate Options 171
Obtaining the Maximum Size of an Options Buffer 172
Setting Option Values 172

Specifying Option Values 173
Setting Default Values 174

Retrieving Option Values 174
Obtaining Current and Default Values 175
Parsing an Options Buffer 175

Verifying Option Values 176
Sample Code: Getting and Setting Options 177

Chapter 8 Ports 189

About Ports 191
Identifying Ports 192

Port Name 192
Port Reference 192

Multiport IdentiÞers 192
Pseudodevices 193
vii

Port Structures 193
Using Ports 194

Obtaining Port Information 195
Requesting a Port to Yield Ownership 198
Registering as an Open Transport Client 198

Chapter 9 Utilities 201

About Utility Functions 203
Using List Management Functions 204

Chapter 10 Advanced Topics 213

Acknowledging Sends 215
Sending Noncontiguous Data 216
No-Copy Receiving 218
Using Raw Mode 225

Using Option Management to Set Raw Mode 225
Testing for Raw Mode Support 227
Sending and Receiving in Raw Mode at the Protocol Level 227

Chapter 11 TCP/IP Services 235

About the TCP/IP Protocol Family 237
About TCP/IP Services 240
About the Open Transport DNR 243
About Single Link Multi-Homing 243

ConÞguring Your System to Use Multiple IP Addresses 244
Checking for Availability 245
Getting Information About Secondary Addresses 245

Using TCP/IP Services 245
Setting Options When ConÞguring a TCP/IP Provider 245
Using RawIP 247

Receiving RawIP Datagrams 248
Sending RawIP Datagrams 248
Manually Setting the IP Header 248
viii

Limitations of the Header-Included Mode 249
Using IP Multicasting 250
Querying DNS Servers 251
Avoiding Delay When Rebinding to TCP Connections 251
Using General Open Transport Functions With TCP/IP 253

Obtaining Endpoint Data With TCP/IP 253
Using Endpoint Functions With TCP/IP 254
Using Mapper Functions With TCP/IP 258

Chapter 12 Introduction to AppleTalk 261

About AppleTalk 264
AppleTalk Networks and Addresses 266
Multinodes 268
Handling Miscellaneous Events 268
ConÞguring AppleTalk Protocol Providers 269

About AppleTalk Protocols Under Open Transport 271
AppleTalk Addressing and the Name Binding Protocol (NBP) 273
The AppleTalk Service Provider 273
Datagram Delivery Protocol (DDP) 274
AppleTalk Data Stream Protocol (ADSP) 275
AppleTalk Transaction Protocol (ATP) 275
Printer Access Protocol (PAP) 276

Chapter 13 AppleTalk Addressing 277

About AppleTalk Addressing 280
Using AppleTalk Addressing 280

Specifying a DDP Address 281
Specifying an NBP Address 282
Specifying a Combined DDP-NBP Address 285
Specifying and Using a Multinode Address 285
Registering Your EndpointÕs Name 286
Looking Up Names and Addresses 287
Manipulating an NBP Name 289
ix

Chapter 14 AppleTalk Service Providers 291

About AppleTalk Service Providers 294
Using AppleTalk Service Providers 295

Creating AppleTalk Service Providers 296
Working With AppleTalk Zones 296
Getting the Name of an ApplicationÕs Zone 297
Getting a List of Zone Names 298
Getting Information About the Current AppleTalk Environment 299

Chapter 15 Datagram Delivery Protocol (DDP) 301

About DDP 304
Using DDP 305

Binding a DDP Endpoint 305
Using the DDP Type Field to Filter Packet Delivery 306
Using the Self-Send and Checksum Options 307
Using Echo Packets 308
Working With Multinodes 309
The DDP Source Address Option 310
Using General Open Transport Functions With DDP 310

Chapter 16 AppleTalk Data Stream Protocol (ADSP) 311

About ADSP 313
Using ADSP 315

Binding ADSP Endpoints 316
Sending and Receiving ADSP Data 316

The End-of-Message Option 317
The Checksum Option 318

Sending Expedited Data 318
Disconnecting 318
Using General Open Transport Functions With ADSP 319

OTBind 319
OTConnect 319
OTRcvConnect 319
OTListen 320
x

OTAccept 320
OTSnd 320
OTRcv 320
OTSndDisconnect 320
OTRcvDisconnect 321

Chapter 17 AppleTalk Transaction Protocol (ATP) 323

About ATP 326
Using ATP 327

At-Least-Once and Exactly-Once Transactions 327
Sending and Receiving ATP Data 328
Specifying ATP Options 329

The Retry Count and Interval Options 329
The Release Timer Option 330
Other ATP-SpeciÞc Options 330

Using the ATP Packet Header User Bytes 331
Using General Open Transport Functions With ATP 331

OTSndURequest 331
OTRcvURequest 332
OTSndUReply 332
OTRcvUReply 332

Chapter 18 Printer Access Protocol (PAP) 333

About PAP 335
Using PAP 337

Binding PAP Endpoints 338
Specifying PAP Options 339

The End-of-Message Option 339
The Open Retry Option 340
The Server Status Option 340
The Reply Count Option 341

Disconnecting 343
Using General Open Transport Functions With PAP 343

OTBind 343
xi

OTConnect 344
OTRcvConnect 344
OTListen 344
OTAccept 344
OTSnd 344
OTRcv 345
OTSndDisconnect 345
OTRcvDisconnect 345

Chapter 19 Serial Endpoint Providers 347

About Serial Endpoint Providers 349
About Serial Communication 350
DTR and CTS Signals 352
Asynchronous and Synchronous Communication 352
Handshaking Methods for Flow Control 353

Using Serial Endpoints 354
Opening and Closing Serial Endpoints 354
Sending and Receiving Data 355
Using Serial-SpeciÞc Commands 356
Using Options to Change Serial Communications Settings 357

Controlling Serial Port I/O Handshaking 358
Obtaining Status Information About the Serial Port 359

Using General Open Transport Functions
With Serial Endpoints 360

Obtaining Endpoint Data With Serial Endpoints 360
Using Endpoint Functions With Serial Endpoints 361

Part 2 Open Transport Reference 365

Chapter 20 Initializing and Closing Open Transport Reference 367

Error Constants 369
The Gestalt Selector and Response Bits 369
The OTConÞguration Structure 370
xii

The OTAddress Structure 371
The TNetBuf Structure 371

Functions 372
Initializing and Closing Open Transport 372
Creating, Cloning, and Disposing of a ConÞguration Structure 376

Chapter 21 Providers Reference 381

Constants and Data Types 383
Error-Checking Constant 383
Event Codes 383

Functions 389
Opening and Closing Providers 389
Controlling a ProviderÕs Modes of Operation 393
Using NotiÞer Functions 405
Sending Module-SpeciÞc Commands 411

Application-DeÞned NotiÞer Functions 413

Chapter 22 Endpoints Reference 417

Constants and Data Types 421
Error-Checking Constant 421
Endpoint Service Types 422
Open Transport Flags 422
Open Flags 423
Endpoint Flags 424
Endpoint States 424
Structure Types 425
The TEndpointInfo Structure 426
The TBind Structure 429
The TUnitData Structure 430
The TUDErr Structure 430
The TUnitRequest Structure 431
The TUnitReply Structure 432
The TCall Structure 433
The TRequest Structure 434
xiii

The TReply Structure 434
The TDiscon Structure 435

Functions 436
Creating Endpoints 436
Binding and Unbinding Endpoints 441
Obtaining Information About an Endpoint 446
Allocating Structures 456
Determining if Bytes Are Available 461
Functions for Connectionless Transactionless Endpoints 462
Functions for Connectionless Transaction-Based Endpoints 469
Establishing Connection 484
Functions for Connection-Oriented Transactionless Endpoints 494
Functions for Connection-Oriented Transaction-Based Endpoints 499
Tearing Down a Connection 512

Chapter 23 Programming With Open Transport Reference 519

Data Types 521
Callback Function 521

Functions 521
Checking Synchronous Calls 522
Working With System Tasks 524
Working With Timer Tasks 529
Working With Deferred Tasks 533
Entering and Leaving Hardware Interrupt Time 537
Application-DeÞned Functions 541

Chapter 24 Mappers Reference 543

Constants and Data Types 545
Error-Checking Constant 545
The TRegisterRequest Structure 545
The TRegisterReply Structure 546
The TLookupRequest Structure 547
The TLookupReply Structure 548
The TLookupBuffer Structure 549
xiv

Functions 550
Creating Mappers 550
Registering and Deleting Names 554
Looking Up Names 558

Chapter 25 Option Management Reference 563

Constants and Data Types 565
XTI-Level Options 565
Generic Options 567
Status Codes 569
Action Flags 570
The Linger Structure 571
The Keepalive Structure 572
The TOption Structure 572
The TOption Header Structure 573
The Option Management Structure 574

Functions 575
Determining and Changing Function Values 575
Finding Options 579
Manipulating the Format of Option Information 582

Chapter 26 Ports Reference 587

Constants and Data Types 589
Error-Checking Constant 589
Port-Related Constants 589
Bus Type Constants 590
Port-Related Events 590
The Port Structure 592
The Port Reference 595
The Client List Structure 597
The Port Close Structure 598

Functions 599
Getting Information About Ports 599
Registering New Ports 607
xv

Requesting a Port to Yield Ownership 611
Registering as a Client 614

Chapter 27 Utilities Reference 617

Constants and Data Types 621
The Timestamp Data Type 621
The Lock Data Type 621
The Linked List Structure 622
The LIFO List Structure 622
The FIFO List Structure 622
The Get Link Object Macro 623
The Application-DeÞned List Search Function Prototype 624

Functions 624
Allocating and Freeing Memory 624
Memory Manipulation Utility Functions 626
Idling and Delaying Processing 630
String Manipulation Utility Functions 632
Timestamp Utility Functions 635
OTLIFO List Utility Functions 641
OTFIFO List Utility Functions 645
Adding and Removing aList Element 655
Atomic Operations 657
Locking Functions 667

Application-DeÞned Functions 669

Chapter 28 Advanced Topics Reference 671

Constants and Data Types 673
OTData Constant 673
OTBuffer Constant 673
Raw Mode Constants 674
The OTData Structure 674
The No-Copy Receive Buffer Structure 675
Buffer Information Structure 676

Functions 677
xvi

Chapter 29 TCP/IP Services Reference 681

Constants and Data Types 683
Basic Types and Constants 683
Internet Address Structure 685
DNS Address Structure 686
DNS Query Information Structure 687
Internet Interface Information Structure 688
Internet Host Information Structure 689
Internet System Information Structure 690
IP Multicast Address Structure 690
Internet Mail Exchange Structure 691

Options 691
Protocol Levels 691
TCP Options 692
UDP Options 694
IP Options 694

Functions 699
Resolving Internet Addresses 700
Opening a TCP/IP Service Provider 703
Getting Information About an Internet Host 705
Retrieving DNS Query Information 708
Address Utilities 711
Single Link Multi-Homing 716

Chapter 30 AppleTalk Reference 719

AppleTalk Addressing Reference 721
Constants and Data Types 721

Basic Constants 721
Address Format Constants 722
The DDP Address Structure 722
The NBP Address Structure 723
The Combined DDP-NBP Address Structure 724
The Multinode Address Structure 726
The NBP Entity Structure 727

AppleTalk Utility Functions 728
AppleTalk Service Provider Reference 745
xvii

Constants and Data Types 745
Completion Event Constants 745
The AppleTalk Information Structure 746

AppleTalk Service Functions 747
Obtaining Information About Zones 750
Obtaining Information About Your AppleTalk Environment 754

DDP Reference 756
Options 756

ADSP Reference 757
Options 757

ATP Reference 757
Options 757

PAP Reference 758
Options 758

Chapter 31 Serial Endpoint Reference 761

Constants 763
Options 765

Protocol Level 765
Serial Options 765

Serial-SpeciÞc Commands 769

Appendix A Open Transport and XTI 775

Open Transport Programming Interfaces 775
Function Names 776
Extensions to XTI 779
Data Structures 780
Result Codes 781
xviii

Appendix B Result Codes 785

Appendix C Special Functions 793

Functions Callable at Hardware Interrupt Time 793
Native Functions Callable at Hardware Interrupt Time 796
Functions Callable From Deferred Tasks 798
Functions That Allocate Memory 805

Appendix D XTI Option Summary 807

Types of Options 807
Determining Which Function to Use to Negotiate Options 810
Options Negotiation Rules 811

Negotiating Multiple Options 811
Initiating an Option Negotiation 812
Options That Are Absolute Requirements 812
Options That Are Not Absolute Requirements 813
Conßicting Option Values 813
Privileged or Read-Only Options 813
Error Conditions 814
Allowing the Endpoint Provider to Select an Option Value 816

Retrieving Option Values 816
Retrieving Values for Connection-Oriented Endpoints 816
Retrieving Values for Connectionless Transactionless Endpoints 817
Retrieving Values for Connectionless Transaction-Based Endpoints 818

Glossary 819

Index 833
xix

xx

Figures, Tables, and Listings

Chapter 1 Introduction to Open Transport 3

Figure 1-1 The OSI model and Open Transport protocols 12
Figure 1-2 The basic architecture of Open Transport 15
Figure 1-3 An Open Transport Provider 19
Figure 1-4 Hierarchy of Open Transport providers 21

Table 1-1 The Open Transport protocol matrix and some Open Transport
protocols 9

Chapter 2 Getting Started With Open Transport 29

Figure 2-1 The TNetbuf structure 39

Table 2-1 Open Transport libraries for PowerPC code 44
Table 2-2 Open Transport libraries for 68000 code 45

Listing 2-1 Using a TNetBuf structure to store an address 40
Listing 2-2 Using Helper Routines to Initialize an Address 41
Listing 2-3 CFM terminate procedure 43
Listing 2-4 Downloading a URL With HTTP 46

Chapter 3 Providers 59

Table 3-1 Result codes that all Open Transport functions can return 69

Listing 3-1 A notifier function 74
Listing 3-2 Transferring provider ownsership 78

Chapter 4 Endpoints 81

Figure 4-1 Typical endpoint states for a connectionless endpoint 91
Figure 4-2 Possible endpoint states for a connection-oriented endpoint 93
Figure 4-3 Establishing a connection with the active peer in synchronous

mode 108
xxi

Figure 4-4 Establishing a connection in asynchronous mode 110
Figure 4-5 An abortive disconnect 113
Figure 4-6 Remote orderly disconnect 115
Figure 4-7 A local orderly disconnect 117
Figure 4-8 How a transaction ID is generated 122
Figure 4-9 Data transfer using connectionless transaction-based endpoints in

asynchronous mode 125
Figure 4-10 Data transfer using connection-oriented transaction-based endpoints

in asynchronous mode 126

Table 4-1 The names of functions used to transfer data 86
Table 4-2 Endpoint functions that behave differently in synchronous and

asynchronous modes 88
Table 4-3 Endpoint states 90
Table 4-4 Functions that can change an endpoint’s state 95
Table 4-5 Events that can change an endpoint’s state 97
Table 4-6 The Open Transport type-of-service matrix and some Open

Transport protocols 99
Table 4-7 Pending asynchronous events and the functions that clear

them 103
Table 4-8 Pending asynchronous events and the synchronous functions they

can affect 105

Chapter 5 Programming With Open Transport 127

Figure 5-1 Synchronous processing with threads 131
Figure 5-2 Polling for events 133
Figure 5-3 Asynchronous processing with a notifier 134

Chapter 6 Mappers 147

Figure 6-1 Format of entries in OTLookupName reply buffer 154

Table 6-1 Completion events for asynchronous mapper functions 151

Listing 6-1 The main function to OTLookupNameTest 156
Listing 6-2 Notifier that yields time to other processes 157
Listing 6-3 The LookupAndPrint function 158
Listing 6-4 Printing names and addresses 161
xxii

Chapter 7 Option Management 163

Figure 7-1 The format of option information 168
Figure 7-2 An options buffer 169

Table 7-1 XTI-level options 170
Table 7-2 Open Transport generic options 171

Listing 7-1 Constructing an options buffer using the OTCreateOptions
function 174

Listing 7-2 Using the OTCreateOptionString function to parse through a
buffer 176

Listing 7-3 Calling functions that get, set, and display options 177
Listing 7-4 Getting an option value 179
Listing 7-5 Setting an option value 181
Listing 7-6 Parsing an options buffer 182
Listing 7-7 Obtaining options for a specific level 183
Listing 7-8 Using the OTCreateOptionString function 184
Listing 7-9 Building an options buffer from a configuration string 187

Chapter 8 Ports 189

Listing 8-1 Finding all serial ports 196

Chapter 9 Utilities 201

Listing 9-1 ListMania: global declarations 205
Listing 9-2 The InitWidgetLists function 206
Listing 9-3 The CreateWidget function 206
Listing 9-4 The ProduceWidgets function 207
Listing 9-5 The ConsumeWidgets function 208
Listing 9-6 The PrintWidget function 209
Listing 9-7 The DumpAllWidgetLists 210
Listing 9-8 The DumpWidgetList function 210

Chapter 10 Advanced Topics 213

Figure 10-1 Describing noncontiguous data 217
Figure 10-2 OTBuffer structures 220
xxiii

Listing 10-1 Doing a no-copy receive: method 1 221
Listing 10-2 Doing a no-copy receive: method 2 223
Listing 10-3 Negotiating raw mode using options 225
Listing 10-4 Testing for raw data support 227
Listing 10-5 Testing for raw mode support for a DDP endpoint 229

Chapter 11 TCP/IP Services 235

Figure 11-1 TCP/IP protocols and functional layers 238
Figure 11-2 Internet subnet address 242

Table 11-1 The Open Transport protocol matrix and TCP/IP protocols 239
Table 11-2 Configuration strings for TCP/IP options 246

Listing 11-1 Sample IP Secondary Addresses file 244
Listing 11-2 Setting an option value 252

Chapter 12 Introduction to AppleTalk 261

Figure 12-1 AppleTalk protocol stack and the OSI model 265

Table 12-1 AppleTalk addressing identifiers 267
Table 12-2 Protocol identifiers for use in configuring AppleTalk providers 270
Table 12-3 Indicating AppleTalk options in the configuration string 271
Table 12-4 Open Transport support for AppleTalk endpoint protocols 272

Chapter 13 AppleTalk Addressing 277

Listing 13-1 Setting up a DDP Address 282
Listing 13-2 Setting up an NBP address 284

Table 13-1 Open Transport name-registration functions 287
Table 13-2 Open Transport name and address functions 288
Table 13-3 Wildcard operators 289

Chapter 14 AppleTalk Service Providers 291

Figure 14-1 AppleTalk service providers and their underlying delivery
mechanism 295
xxiv

Listing 14-1 Using the DoGetMyZone function synchronously 298

Chapter 15 Datagram Delivery Protocol (DDP) 301

Figure 15-1 The DDP endpoint provider’s underlying delivery mechanism 304

Table 15-1 Effects of using the DDP type field 307

Chapter 16 AppleTalk Data Stream Protocol (ADSP) 311

Figure 16-1 The ADSP endpoint provider’s underlying delivery
mechanism 314

Chapter 17 AppleTalk Transaction Protocol (ATP) 323

Figure 17-1 The ATP endpoint provider’s underlying delivery mechanism 327

Table 17-1 ATP option definitions and default values 329

Chapter 18 Printer Access Protocol (PAP) 333

Figure 18-1 The PAP endpoint provider’s underlying delivery mechanism 336

Listing 18-1 Using the ATP_OPTREPLYCNT option 341

Chapter 19 Serial Endpoint Providers 347

Figure 19-1 The format of serialized bits 351
Figure 19-2 Serial port I/O handshaking 358

Appendix A Open Transport and XTI 775

Table A-1 XTI-to-Open Transport function cross-reference 776
Table A-2 Open Transport-to-XTI function cross-reference 777
Table A-3 Open Transport Functions not found in XTI 779
Table A-4 XTI-to-Open Transport data structure cross-reference 780
Table A-5 Apple extensions to XTI data structures 781
xxv

Table A-6 XTI-to-Open Transport result code cross-reference 782

Appendix B Result Codes 785

Table B-1 Open Transport result codes 785

Appendix C Special Functions 793

Table C-1 Functions callable at hardware interrupt time, all ISAs 793
Table C-2 Functions callable at hardware interrupt time, native ISA only 796
Table C-3 Functions callable from deferred tasks 798
Table C-4 Functions that allocate memory 805

Appendix D XTI Option Summary 807

Figure D-1 Negotiating an association-related option 808

Table D-1 Open Transport endpoint functions and the types of options they
accept 808
xxvi

P R E F A C E
About This Book

This book, Inside Macintosh: Networking With Open Transport, describes the 1.2
release of Open Transport, a communications architecture for implementing
network protocols and other communication systems on Mac OS computers.
Open Transport provides a set of programming interfaces for applications and
other software running on Mac OS computers. This book is about client
programming only; it does not include information on how to implement Open
Transport network protocol modules or device drivers. That information is
covered in the documents provided with the Protocol and Module SDKs.

This book is divided into two parts: the Þrst part provides a conceptual
description of Open Transport and instructional examples of how to use it. The
second part provides reference information. To get the most out of this book,
read the chapters that cover general Open Transport concepts Þrst. If you are
planning to use an AppleTalk or TCP/IP protocol, read the protocol-speciÞc
chapters after you are familiar with Open TransportÕs architecture and general
functions.

The Þrst chapter ÒIntroduction to Open Transport,Ó deÞnes many terms that
are used throughout the rest of this book. This chapter also gives an overview
of the Open Transport architecture and the way it is used to implement
networking protocols.

The chapter ÒGetting Started With Open TransportÓ is an introductory
walk-through a very simple Open Transport program that downloads a URL.

The chapter ÒProvidersÓ describes the generic Open Transport functions that
you can use with any provider. The chapters ÒEndpointsÓ and ÒMappersÓ
introduce functions that are particular for endpoint and mapper providers.

The chapter ÒProgramming With Open TransportÓ talks about the structure of
Open Transport programs and about how Mac OS interrupt levels affect
program execution. The next four chapters, ÒOption Management,Ó ÒPorts,Ó
ÒUtilities,Ó and ÒAdvanced Topics,Ó focus on more specialized topics in Open
Transport.

The chapter ÒTCP/IP Services Ó and the AppleTalk-speciÞc chapters describe
how to use the Open Transport implementations of AppleTalk and TCP/IP. The
last chapter in the conceptual portion of the book, ÒSerial Endpoint Providers,Ó
describes how to use Open Transport with a serial driver.
xxvii

P R E F A C E
ÒOpen Transport Reference,Ó the second part of this book, contains complete
reference information about the Open Transport API, divided into chapters that
correspond to the preceding conceptual ones.

At the end of this book are four appendixes: ÒOpen Transport and XTI,Ó
ÒResult Codes,Ó ÒSpecial Functions,Ó and ÒXTI Option Summary.Ó

■ ÒOpen Transport and XTI.Ó This appendix describes the correspondence
between the XTI and Open Transport client programming interfaces. Open
Transport is a superset of XTI and therefore includes functions that are not
deÞned in XTI. This appendix focuses on how general provider functions
and endpoint functions correspond to XTI functions.

■ ÒResult Codes.Ó This appendix lists the result codes returned by the Open
Transport-preferred C functions.

■ ÒSpecial Functions.Ó This appendix lists the functions that are callable at
hardware interrupt time, the functions that are callable at deferred task time,
and the functions that allocate memory.

■ ÒXTI Option SummaryÓ describes option types and option negotiation rules.

For More Information 0

If you are new to programming for the Macintosh, you can read the book Inside
Macintosh:Overview for an introduction to general concepts of Macintosh
programming. Other books in the Inside Macintosh series are helpful for speciÞc
information about other aspects of the Macintosh Toolbox and the Macintosh
operating system. In particular, to beneÞt most from this book, you should
already be familiar with the runtime environment of Macintosh applications, as
described in Mac OS Runtime Architectures and Inside Macintosh: Processes. These
and other documents published by Apple Computer may be found at

<http://devworld.apple.com>

The information in this book constitutes only a part of the body of literature
documenting the AppleTalk and TCP/IP protocol families and the XTI
standard upon which Open Transport is based.

For more information about the AppleTalk protocol family, see the book Inside
AppleTalk, second edition, which has detailed speciÞcations for each of the
AppleTalk protocols.

For more information about the TCP/IP protocol family, see any good book on
TCP/IP. Two such books for information on TCP/IP protocol internals are TCP/
xxviii

P R E F A C E
IP Illustrated, Volume 1 by W. Richard Stevens and Internetworking with TCP/IP,
Volume 1 by Douglas E. Comer. For internet standards speciÞcations, see

<ftp://ds.internic.net/dtd/>

For more information about the XTI standard, see X/Open CAE SpeciÞcation
(1992): X/Open Transport Interface (XTI). The Open Transport TCP/IP software
modules are based on the UNIX Streams architecture. For more information
about Streams, see UNIX System V Release 4: ProgrammerÕs Guide: STREAMS.

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, Þle types, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.
3 InÞnite Loop, M/S 303-2T
Cupertino, CA 95014-6299

<devsupport@apple.com>

Format of a Typical Chapter 0

Most of the conceptual chapters in this book (the chapters in the Þrst part)
follow a standard structure. For example, the chapter ÒEndpointsÓ contains
these sections:

■ ÒAbout Endpoints.Ó This section presents a general introduction to
endpoints and endpoint providers.

■ ÒUsing Endpoints.Ó This section explains how to use endpoint functions to
transfer data.

The reference chapters in this book (the chapters in the second part) provide
complete reference information about the Open Transport API. For example,
the chapter ÒEndpoints ReferenceÓ contains these sections:

■ ÒConstants and Data Types.Ó This section includes the constants, types,
enumerations, and structures speciÞc to the use of endpoints.
xxix

P R E F A C E
■ ÒFunctions.Ó This section presents detailed descriptions of the functions that
are used with endpoints.

The reference chapters for the AppleTalk and TCP/IP protocols describe
functions and option information that are speciÞc to each protocol.
xxx

P R E F A C E
Conventions Used in This Book 0

Inside Macintosh uses special conventions to present certain types of
information.

Special Fonts 0

All code listings, reserved words, and names of actual data structures, Þelds,
constants, parameters, and routines are shown in Letter Gothic (this is
Letter Gothic).

Words that appear in boldface are key terms or concepts and are deÞned in the
glossary.

Types of Notes 0

There are several types of notes used in this book.

Note
A note like this contains information that is interesting but
not essential to an understanding of the main text. ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you
should be aware of as you design your application. Failure
to heed these warnings could result in system crashes or
loss of data. ▲
xxxi

P R E F A C E
The Development Environment 0

The Open Transport functions described in this book are available using C,
C++, or Pascal language interfaces. How you access these functions depends
on the development environment you are using.

All code listings in this book are shown in ANSI C. They show ways of using
various functions and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and in many cases tested. However,
Apple Computer, Inc., does not intend for you to use these code samples in
your application.
xxxii

P A R T O N E
Open Transport Essentials 1

P A R T O N E

C H A P T E R 1

Contents

Contents
Figure 1-0
Listing 1-0
Table 1-0
1 Introduction to Open Transport
Introduction to Open Transport 5
Basic Networking Concepts 6

Types of Protocols 8
Addressing 10
Protocol Stacks and the OSI Model 11

About Networking With Open Transport 14
Open Transport Architecture 14

Open Transport API 16
Software Modules 17
Drivers and Hardware 17
Open Transport and Interrupt-Time Processing 18

Providers: Endpoints, Mappers, and Services 18
Transport Independence 22
Endpoints and Protocol Layering 22

Deciding Which Protocol to Use 23
General Purpose or Special Purpose 23
Choice of Protocol Family 24
High-Level or Low-Level Protocol 24
Connection-Oriented or Connectionless 25
Transaction-Based or Transactionless 25
Summary 26
3

C H A P T E R 1
Introduction to Open Transport 1

This chapter provides an overview of the 1.2 release of the Open Transport, a
communications architecture for implementing network protocols and other
communications systems. This book discusses only the implementation of
Open Transport on the Mac OSÑthat is, the set of programming interfaces for
applications and other software running on Mac OS computers.

This chapter introduces some of the terminology that is used throughout the
rest of this book. Read this chapter to gain an overview of the Open Transport
architecture and the way itÕs used to implement networking protocols. You
should also read this chapter for suggestions on which networking protocols to
use for various application requirements.

This chapter begins with a brief description of Open Transport and the
advantages it provides over earlier Macintosh networking architectures. Next,
ÒBasic Networking ConceptsÓ deÞnes a variety of terms used in Open
Transport and in networking in general. The section ÒAbout Networking With
Open TransportÓ describes the Open Transport architecture and some concepts
important to Open Transport: providers, transport independence, and
endpoints. Finally, the section ÒDeciding Which Protocol to UseÓ gives you
guidelines to help you decide which protocol or protocol family to use for a
given purpose.

The chapters that make up the rest of this book describe how to use the Open
Transport programming interface and the Open Transport implementations of
AppleTalk and TCP/IP.

Introduction to Open Transport 1

Open Transport is the networking architecture used by Apple Computer, Inc.
for Mac OS computers. Whereas AppleTalk provided a proprietary networking
system for Macintosh computers, the current Macintosh OS with Open
Transport provides not only AppleTalk but also the industry-standard TCP/IP
protocols and serial connections. In addition, the Open Transport architecture
allows developers to add other networking systems to the Macintosh
Operating System without altering the user experience or the application
programming interface (API).
Introduction to Open Transport 5

C H A P T E R 1

Introduction to Open Transport
The independence of the APIs from the underlying networking or transport
technology is called transport independence and is one of the cardinal features
of Open Transport. This feature is described in more detail in ÒTransport
IndependenceÓ (page 22).

Other important features of Open Transport are its support of multihoming
and multinodes.

■ Multihoming allows multiple Ethernet, token ring, FDDI, and other
network interface controller (NIC) cards to be active on a single computer at
the same time. This feature is currently available only for AppleTalk
protocols. Single link multihoming, introduced with Open Transport
version 1.3, supports multiple IP addresses on the same hardware interface.
This feature is available only to TCP/IP protocols.

■ Multinode support is an AppleTalk feature that allows an application to
acquire node IDs in addition to the standard node ID that is assigned to the
system when the node joins an AppleTalk network. The prime example of a
multinode application is Apple Remote Access (ARA). The chapters
ÒAppleTalk AddressingÓ (page 279) and ÒDatagram Delivery Protocol
(DDP)Ó (page 303) in this book describe the use of multinodes.

Basic Networking Concepts 1

Although this book is intended for readers who already have some knowledge
of networking fundamentals, many people use slightly different deÞnitions for
the same networking terms. Therefore, this section provides deÞnitions of
networking and communications terms as used in this book .

A network is a system of computers and other devices (such as printers and
modems) that are connected in such a way that they can exchange data.

A networking system consists of hardware and software. Hardware on a
network includes physical devices such as Macintosh personal computer
workstations, printers, and Macintosh computers acting as Þle servers, print
servers, and routers; these devices are all referred to as nodes on the network.

If the nodes are not all connected to a single physical cable, special hardware
and software devices must connect the cables in order to forward messages to
their destination addresses. A bridge is a device that connects networking
cables without examining the addresses of messages or making decisions as to
6 Basic Networking Concepts

C H A P T E R 1

Introduction to Open Transport
the best route for a message to take. By contrast, a router contains addressing
and routing information that lets it determine from a messageÕs address the
most efÞcient route for the message. A message can be passed from router to
router several times before being delivered to its destination.

In order for nodes to exchange data, they must use a common set of rules
deÞning the format of the data and the manner in which it is to be transmitted.
A protocol is a formalized set of procedural rules for the exchange of
information and for the interactions among the networkÕs interconnected
nodes. A network software developer implements these rules in software
modules that carry out the functions speciÞed by the protocol.

Whereas a router can connect networks only if they use the same protocol and
address format, a gateway converts addresses and protocols to connect
dissimilar networks.

A set of networks connected by routers or gateways is called an internet. The
term Internet (note the capitalization) is often used to refer to the largest
worldwide system of networks, also called the Worldwide Internet. The basic
protocol used to implement the WorldWide Internet is called the Internet
Protocol, or IP. Because the word internet is used in several different ways, it is
important to note capitalization and context whenever you see this word.

A networking protocol commonly uses the services of another, more
fundamental protocol to achieve its ends. For example, the AppleTalk Data
Stream Protocol (ADSP) uses the Datagram Delivery Protocol (DDP) to
encapsulate the data and deliver it over an AppleTalk network. The protocol
that uses the services of an underlying protocol is said to be a client of the
lower protocol; for example, ADSP is a client of DDP. A set of protocols related
in this fashion is called a protocol stack. Protocol stacks are described in more
detail in ÒProtocol Stacks and the OSI ModelÓ (page 11).

Note
Although it is sometimes important to distinguish between
a protocol and the software that implements the protocol,
in most cases you can infer which is meant from the
context. Accordingly, this book usually uses the term
protocol rather than the more precise term protocol
implementation to refer to the Open Transport
implementation of a protocol. ◆
Basic Networking Concepts 7

C H A P T E R 1

Introduction to Open Transport
Types of Protocols 1

Networking protocols can be characterized as connectionless or connection-
oriented, and as transactionless or transaction-based.

A connectionless protocol is one in which a node that wants to communicate
with another simply sends a message without Þrst establishing that the
receiving node is prepared to receive it. Each message sent must include
addressing information so that it can be delivered to its destination.

A connection-oriented protocol is one in which two nodes on the network that
want to communicate must go through a connection-establishment process
called a handshake. This involves the exchange of predetermined signals
between the nodes in which each end identiÞes itself to the other. Once a
connection is established, the communicating applications or processes on the
nodes at either end can send and receive data without having to add addresses
to the messages or repeat the handshake process. Connection-oriented
protocols provide support for sessions. A session is a logical (as opposed to
physical) connection between two entities on a network or internet. A session
must be set up at the beginning, maintained by the periodic exchange of
information, and broken down at the end. All of these services entail overhead
compared to a connectionless protocol, for which no connection setup or
breakdown is required and for which no session must be maintained.

A connection-oriented session is analogous to a telephone call. The party who
initiates the call knows whether the connection is made because someone at the
other end of the line either answers or not. As long as the connection is
maintained, neither party needs to dial the other telephone number again. A
connectionless protocol is analogous to mail. A person sends a letter expecting
it will be delivered to its destination. Although the mail usually arrives safely,
the sender doesnÕt know this unless the recipient initiates a response afÞrming
it. Each letter sent by either party requires a complete address.

A transactionless protocol deÞnes how the data is to be organized and
delivered from one node to another. A connection-oriented transactionless
protocol is used to maintain a symmetrical connection; that is, one in which
both ends have equal control over the communication. Both ends can send and
receive data and initiate or terminate the session. In this case, the connection is
referred to as full duplex. If the two sides have to take turns transmitting and
receiving, the connection is referred to as half duplex.

A connectionless transactionless protocol sends data in discrete datagrams. A
datagram, also referred to as a packet, is a unit of data that includes a header
portion that holds the destination address (and may contain other information,
8 Basic Networking Concepts

C H A P T E R 1

Introduction to Open Transport
such as a checksum value) and a data portion that holds the message text. A
connection-oriented transactionless protocol can send data as a continuous
stream of data or, in some cases, as packets.

Low-level connectionless protocols such as DDP and IP usually provide
best-effort delivery of data. Best-effort delivery means that the protocol
attempts to deliver any packets that meet certain requirements, such as
containing a valid destination address, but the protocol does not inform the
sender when it is unable to deliver the data, nor does it attempt to recover from
error conditions and data loss. Higher-level protocols, on the other hand, can
provide reliable delivery of data. Reliable delivery includes error checking and
recovery from error or loss of data.

A transaction-based protocol speciÞes the sequence and some of the content of
messages passed between nodes. When using a transaction-based protocol, the
application on one node, known as the requester, sends a request to the other
application, known as the responder, to perform a task. The responder
completes the task and returns a response that reports the outcome of the task.
Once one node has issued a request, the receiving node is constrained to
respond in a predeÞned way. A transaction-based connection is sometimes
referred to as an asymmetrical connection.

Table 1-1 shows where some Open Transport protocols Þt in the protocol-type
matrix. A protocol of one type can be a client of a different type. For example,
the connection-oriented transactionless AppleTalk Printer Access Protocol
(PAP) is a client of the connectionless transaction-based AppleTalk Transaction
Protocol (ATP), which is in turn a client of the connectionless transactionless
Datagram Delivery Protocol (DDP).

* Open Transport does not currently provide an implementation of the AppleTalk
Session Protocl (ASP).

Table 1-1 The Open Transport protocol matrix and some Open Transport protocols

Connectionless Connection-oriented

Transactionless PPP
DDP
IP
UDP

Serial connection
ADSP
TCP
PAP

Transaction-based ATP ASP*
Basic Networking Concepts 9

C H A P T E R 1

Introduction to Open Transport
Addressing 1

In order to establish a network connection or to send a message using a
connectionless protocol, you must have the address of the destination. Each
protocol uses a speciÞc type of address, which might be the same as that used
by a lower-level protocol in the protocol stack or might be unique to that
protocol. DDP and IP, for example, use addresses sufÞcient for node-to-node
delivery of datagrams, through routers if necessary. The protocols and
applications that are clients of DDP are assigned socket numbers. A socket is a
piece of software that serves as an addressable entity on a node. DDP is
responsible for delivering a datagram to the correct socket.

Similarly, IP delivers each datagram to a speciÞc client protocolÑsuch as
Transaction Control Protocol (TCP) or User Datagram Protocol (UDP)Ñ
running on a speciÞc node. The processes using the TCP/IP client protocols are
each assigned a port number; the client protocol is responsible for delivering
the datagram to the correct port number. Whereas AppleTalk normally assigns
socket numbers dynamically to a process when it registers itself on the
network, the TCP/IP port numbers are preassigned by convention or by
previous arrangement between users.

For more information about AppleTalk addresses, see the chapter ÒAppleTalk
AddressingÓ (page 279) in this book. For more information about TCP/IP
addresses, see the chapter ÒTCP/IP ServicesÓ (page 237) in this book.
10 Basic Networking Concepts

C H A P T E R 1

Introduction to Open Transport
Protocol Stacks and the OSI Model 1

Most networking systems are designed as layered architectures in which
low-level protocols provide services to higher-level protocols in the same
protocol stack. Network designers relate each protocol to a reference model,
which provides guidelines as to what sort of services should be provided by a
protocol at a certain level in the hierarchy. Because these reference models
provide a framework that makes it easier to compare the services offered by
different protocols, this book shows how each protocol discussed relates to one
or more reference models. In this section, the Open Systems Interconnection
(OSI) model is described. The OSI model is a seven-layered standard that was
published by the International Standards Organization (ISO) in the 1970s. This
is the model with which the AppleTalk networking system architecture is most
closely aligned.

It is important to note that often more than one protocol is deÞned and
implemented to handle the requirements of a layer in different ways. In
addition, some protocols include functions that span more than one layer
speciÞed by a model. For example, in favor of efÞciency, a network protocol
developer may elect to deÞne a single protocol that spans two or more layers of
a reference model.

Figure 1-1 shows the layers of the OSI model and how the AppleTalk and TCP/
IP protocols provided with the Open Transport system software Þt into this
model.
Basic Networking Concepts 11

C H A P T E R 1

Introduction to Open Transport
Figure 1-1 The OSI model and Open Transport protocols

Each layer of the OSI model has a speciÞc purpose, as follows:

■ The data-link layer and the physical layer provide for connectivity. The
communication between networked systems can be via a physical cable
made of wire or optical Þber, or it can be via infrared or microwave
transmission. In addition to these, the hardware can include a network
interface controller (NIC), if one is used. The hardware or transport media
comprise the physical layer.

ATP, NBP, TCP, UDP

ADSP, PAP

AFP

Session

Presentation

Application

Transport

Network

Data-link

Physical

OSI Layers Examples

Telnet, FTP,
SMTP, SNMP

IP, DDP

Ethernet, token ring, FDDI drivers, and hardware

Not provided with Open Transport

Provided with Open Transport
12 Basic Networking Concepts

C H A P T E R 1

Introduction to Open Transport
The physical hardware provides nodes on a network with a shared data
transmission medium called a data link. The data-link layer includes both a
protocol that speciÞes the physical aspects of the data link, and the
link-access protocol, which handles the logistics of sending the data packet
over the transport medium.

■ The network layer speciÞes the network routing of data packets between
nodes and the communications between networks, which is referred to as
internetworking.

■ The transport layer isolates some of the physical and functional aspects of a
network from the upper three layers. It provides for end-to-end
accountability, ensuring that all packets of data sent across the network are
received and in the correct order. This is the process that is referred to as
reliable delivery of data, and it involves providing a means of identifying
packet loss and supplying a retransmission mechanism. The transport layer
may also provide connection and session management services.

■ The session layer serves as an interface into the transport layer, which is
below it. The session layer allows for establishing a session, which is the
process of setting up a connection over which a dialog between two
applications or processes can occur. Some of the functions that the session
layer provides for are ßow control, establishment of synchronization points
for checks and recovery during Þle transfer, full-duplex and half-duplex
dialogs between processes, and aborts and restarts.

■ The presentation layer assumes that an end-to-end path or connection
already exists across the network between the two communicating parties,
and it is concerned with the representation of data values for transfer, or the
transfer syntax.

■ The highest layer of the OSI model is the application layer. This layer allows
for the development of application software. Software written at this layer
beneÞts from the services of all the underlying layers.
Basic Networking Concepts 13

C H A P T E R 1

Introduction to Open Transport
About Networking With Open Transport 1

Networking on the Mac OS is implemented through the Open Transport
system software. The Open Transport software provides an API that gives you
access to the services of the various protocols. The functions you use depend
not on the speciÞc protocol you want to use, but on whether the protocol is
connection-oriented or connectionless, and whether it is transaction-based or
transactionless.

This section describes the architecture of Open Transport and discusses some
basic Open Transport features and concepts.

Open Transport Architecture 1

The Open Transport system software consists of a set of application interface
and utility routines (known collectively as the Open Transport API), a set of
software modules that implement networking protocols and other services,
and hardware drivers. Below the hardware drivers are networking and
communications hardware: cards, cables, and built-in ports. These components
are illustrated in Figure 1-2 and discussed further in the following sections.
14 About Networking With Open Transport

C H A P T E R 1

Introduction to Open Transport
Figure 1-2 The basic architecture of Open Transport

Application

Open Transport API

UDP TCP

DDP

ATP

IP

Communications hardware

Data transport media

PAP

Ethernet Driver
About Networking With Open Transport 15

C H A P T E R 1

Introduction to Open Transport
Open Transport API 1

The Open Transport API consists of two types of functions: utility functions,
which are implemented by Open Transport iself; and interface functions,
which Open Transport passes through to the underlying software modules.
Because the interface functions are implemented by the software modules, the
same function might operate somewhat differently depending on the speciÞc
modules that execute it. Where such dependencies exist, they are described in
the chapter describing a particular protocol.

The Open Transport API is a superset of a standard API deÞned by the X/Open
Company, Ltd. The X/Open API is called the X/Open Transport Interface, or
XTI. Both XTI and Open Transport are designed to be independent of the
underlying data transport provider; for example, you use the same functions to
send a packet of data whether the packet is being transferred by DDP over an
AppleTalk network or IP over Ethernet. However, whereas XTI speciÞes
functions only for connectionless and connection-oriented protocols, Open
Transport also includes functions for transaction-based protocols.

The set of functions you use and the sequence of functions you call depends on
the operation you want to perform and whether the protocol you want to use is
connectionless or connection-oriented, transactionless or transaction-based.

In accordance with XTI, the Open Transport API supports protocol options. An
option is a value of interest to a speciÞc protocol. For example, an option might
enable or disable checksums or specify the priority of a datagram. The
available options and their signiÞcance are deÞned by each implementation of
each protocol. Every option has a default value, and you can almost always use
the default values and not specify any options. It is important to note that,
because each option is protocol dependent, specifying a nondefault value for
an option decreases or eliminates the transport independence of your
application. Protocol options are described throughout this book with the
protocol to which they apply. Option handling is described in ÒOption
ManagementÓ (page 165) in this book.

The XTI speciÞcation deÞnes a number of asynchronous events that indicate
occurrences such as the arrival of data. Open Transport includes all the
standard events deÞned by XTI, additional asynchronous events, plus
completion events that individual functions issue when they complete
asynchronous execution. You can poll for asynchronous events, but you cannot
16 About Networking With Open Transport

C H A P T E R 1

Introduction to Open Transport
poll for completion events. The preferred method for handling all Open
Transport events is to write an event-handling callback function, called a
notiÞer function. Open Transport event handling and notiÞer functions are
described in detail in the chapter ÒProvidersÓ (page 61) in this book.

Software Modules 1

The software modules shown in Figure 1-2 (page 15) are implemented as
STREAMS modules. The STREAMS architecture is a UNIX¨ standard in which
protocols (and other service providers) are implemented as software modules
that communicate between each other using messages. Open Transport
conforms to the Transport Provider Interface (TPI) and Data Link Provider
Interface (DLPI) standards, which describe the content and ordering of the
messages between modules. In a STREAMS environment, all modules have the
following attributes:

■ They process messages asynchronously. One module can send a message to
another module and then receive the reply as a message, all without
interfering with any other system activity.

■ All the Open Transport STREAMS modules share a single address space.

■ They may never block; that is, if a module canÕt complete an operation, it
must return with an error rather than indeÞnitely holding up processing.

Figure 1-2 (page 15) shows the AppleTalk implementation of the actual
STREAMS architecture.

You can write your own STREAMS modules to work with Open Transport. The
Open Transport TCP/IP software modules are based on the UNIX STREAMS
standard. This book does not cover STREAMS or writing a STREAMS modules.
For more information about STREAMS, see UNIX System V Release 4:
ProgrammerÕs Guide: STREAMS and the Open Transport Module DevloperÕs SDK.

Drivers and Hardware 1

The Open Transport STREAMS modules communicate with hardware drivers,
which in turn control the ßow of data through communications cards or
built-in ports. Normally, the user selects which card or port to use through the
Open Transport control panels. Your application can use the default port for a
particular protocol or, in some cases, you can conÞgure Open Transport to use a
speciÞc port.
About Networking With Open Transport 17

C H A P T E R 1

Introduction to Open Transport
Open Transport supports multihoming; that is, an individual node can have
more than one hardware device (ports or cards) for a given type of transport. In
the current version, multihoming is supported only with AppleTalk protocols.

Open Transport and Interrupt-Time Processing 1

Open Transport places severe limitations on functions that can be called at
hardware interrupt time and imposes some restrictions on functions that can be
called at secondary interrupt time. For a discussion of interrupt-time
processing, see ÒInterrupt-Time ProcessingÓ (page 64). For more detailed
information, see ÒProgramming With Open TransportÓ (page 129).

Providers: Endpoints, Mappers, and Services 1

The concept of a provider is central to an understanding of Open Transport. A
provider is a set of software modules and drivers that provides a service to
clients of Open Transport. For example, when you open an ADSP connection,
Open Transport logically links a set of AppleTalk software modules, a
communications driver, and a card or port to create what is known as an ADSP
endpoint provider. The Open Transport includes functions for three types of
providers:

■ endpoint providers

■ mapper providers

■ service providers

You use an endpoint provider to send and receive information over a data link.
Figure 1-3 illustrates an ASP endpoint provider.
18 About Networking With Open Transport

C H A P T E R 1

Introduction to Open Transport
Figure 1-3 An Open Transport Provider

Application

Open Transport API

PAP

ATP

Provider

IP

Ethernet
driver

Ethernet card

Ethernet cable
About Networking With Open Transport 19

C H A P T E R 1

Introduction to Open Transport
In order to use an endpoint provider, you must Þrst conÞgure and open an
endpoint. An endpoint consists of a set of data structures, maintained by Open
Transport, that specify the components of the endpoint provider and the
manner in which that provider is to operate (blocking or nonblocking,
synchronous or asynchronous, and so forth). An endpoint also maintains state
information and other information that Open Transport needs in order to
operate that provider.

The Open Transport endpoint functions provide an application programming
interface (API) to endpoint providers. When you conÞgure an Open Transport
endpoint, you specify which protocol or set of protocols the provider is to use;
the highest-level protocol you specify for the endpoint provider determines
whether the transport mechanism is connectionless or connection-oriented, and
whether it is transactionless or transaction-based. For example, if you specify
ADSP as the highest-level protocol in the endpoint provider, the transport is
connection-oriented and transactionless.

See ÒEndpoints and Protocol LayeringÓ (page 22) for more information on the
conÞguration of endpoint providers.

Mapper providers implement a standard interface for dealing with addresses.
In order to receive data over a network, a process must have a network
address. Whereas an address is typically a number of signiÞcance to the
network software, it is much easier for people using the network to refer to
each addressable entity by some name. Consequently, most networks include
some naming scheme and a facility that converts between names and
addresses. For example, a process using an AppleTalk network must register its
name on the network using the Name-Binding Protocol (NBP), which it
accesses through a mapper provider.

You use a mapper provider to relate network addresses to network node names
and to register and remove node names for networks that support this ability.
To use a mapper provider, you must conÞgure and open a mapper, a set of data
structures that store information about the mapper provider for use by Open
Transport.

You use service providers to handle features unique to a speciÞc type of Open
Transport service. For example, because the concept of zones is not common to
all protocol families, the AppleTalk service provider API includes functions
that deal with AppleTalk zones. Similarly, the TCP/IP Domain Service Resolver
(DNR) provides some services speciÞc to the TCP/IP protocol family.
Consequently, the TCP/IP service provider functions provide an interface to
the DNR.
20 About Networking With Open Transport

C H A P T E R 1

Introduction to Open Transport
Each provider supports some subset of the standard Open Transport functions,
depending on the nature of that provider; for example, an endpoint provider
implements different functions than a mapper provider. WhatÕs more, a
connection-oriented transactionless endpoint provider implements different
functions than a connectionless transaction-based endpoint provider.

Some Open Transport functions are common to all providers. These allow you
to open or close a provider, to determine whether a provider executes functions
synchronously or asynchronously, to issue a command directly to a STREAMS
module underlying a provider, and so on.

When you open an endpoint, mapper, or service provider, the open function
returns a provider reference, analogous to the Þle reference you get from the
File Manager when you open a Þle. You must specify that provider reference
whenever you want to execute a function related to that endpoint, mapper, or
service. For example, to send data, you specify the provider reference for the
endpoint you want to use.

Figure 1-4 shows the hierarchical relationship among Open Transport
providers. The C++ API provides classes that mirror this object-oriented
hierarchy.

Figure 1-4 Hierarchy of Open Transport providers

Provider

Mapper

Endpoint

AT Services

TCP/IP Services
About Networking With Open Transport 21

C H A P T E R 1

Introduction to Open Transport
Transport Independence 1

In contrast to earlier Mac OS application programming interfaces (APIs) for
AppleTalk and TCP/IP, in which each protocol had a separate and unique set
of routines, Open Transport provides a single set of functions that you can use
with any protocol or protocol family. The type of endpoint you open
(connectionless or connection-oriented, and transactionless or
transaction-based) determines which functions you call to send and receive
data, independent of the speciÞc protocol or protocol family you use.

For example, if you open a connectionless, transactionless endpoint, you use
the OTSndUData function to send data. You use this function whether you are
using DDP, IP, or UDP. If you open a connection-oriented, transactionless
endpoint, on the other hand, you Þrst establish a connection using the
OTConnect and OTRcvConnect functions, and then use the OTSnd function to send
data. You use these same functions whether you are using TCP, ADSP, or any
other Open Transport connection-oriented, transactionless protocol.

Although transport independence means that you can use the same API
regardless of the protocol or communcations hardware you want to use, it does
not free you from all knowledge of the transport type. When you open an
endpoint, you must specify the highest-level protocol in the endpoint provider,
and you must call the functions appropriate to the type of that protocol. For
example, although your application can use the same set of functions to send
data through either an ADSP or a TCP connection (that is, functions for a
connection-based transactionless protocol), you must specify which of these
protocols you want to use use when you open the endpoint.

You can customize most Open Transport protocols by the speciÞcation of
option values. Because options are both protocol dependent and
implementation dependent, the use of any option values other than the
defaults makes your code less transport independent. Unless you have a
compelling reason to change an option value, donÕt specify any options. You
can almost always use the default values provided by Open Transport.

Addressing schemes are also protocol-dependent; in order to use speciÞc
protocols, you will need to understand these schemes and to use the
appropriate protocol-dependent data structure and functions.

Endpoints and Protocol Layering 1

When you conÞgure an Open Transport endpoint, you specify the highest-level
protocol to be used by that endpoint provider. Optionally, you can specify
22 About Networking With Open Transport

C H A P T E R 1

Introduction to Open Transport
other protocols and ports to be included in the endpoint provider. For example,
if you specify only ADSP, Open Transport uses the default underlying protocol
for ADSP, which is DDP, over the default AppleTalk port. However, you can
specify that ADSP is to use a speciÞc Ethernet card as the port.

Because the type of endpoint you open depends only on the highest-level
protocol in the endpoint provider, protocol layering does not affect the
transport independence of Open Transport. That is, you use the same functions
to open and maintain a connection and to send messages whether you are
using ADSP over DDP through Ethernet, or TCP over IP through token ring.

Deciding Which Protocol to Use 1

Each of the networking protocols available with Open Transport implements a
different set of services. This section provides a brief discussion of the uses of
each of the protocols included with the Open Transport system software on the
Macintosh computer. If you have Open Transport software modules provided
by vendors other than Apple Computer, Inc., you should refer to the
documentation that came with that software to determine its use.

There are instances in which the protocol to be used is dictated by the
application; for example, HTTP requires TCP. In some cases, you might be in a
position to choose the protocol yourself. If so, before you open an endpoint,
you should make your choice based on the following issues:

■ general purpose or special purpose

■ choice of protocol family, AppleTalk or TCP/IP

■ connection-oriented or connectionless

■ transaction-based or transactionless

■ high- or low-level protocol

This section discusses each of these choices in turn.

General Purpose or Special Purpose 1

Your choice of protocol is very simple if there is only one protocol that
performs the function you are interested in. For example, if you want to send a
print job directly to an AppleTalk printer, you probably need to use the Printer
Deciding Which Protocol to Use 23

C H A P T E R 1

Introduction to Open Transport
Access Protocol (PAP). On the other hand, if you want to transfer data of a
general nature, there are many protocols that can do the job. The following
sections describe the factors you can take into consideration in order to choose
among those protocols.

Choice of Protocol Family 1

There are two sets of protocols, or protocol families, included with the Open
Transport system software: AppleTalk and TCP/IP. In addition, other
developers can provide protocols and protocol families compatible with Open
Transport. You must decide which protocol family to use for a speciÞc purpose.
For information on the use of other protocols, see the documentation that came
with the software.

AppleTalk is a networking technology developed by Apple Computer, Inc.
Every Mac OS computer that has ever been made includes AppleTalk hardware
and system software. If your application needs to communicate with other Mac
OS computers, AppleTalk is a natural choice. Note that the other computers
need not be running Open Transport; the nodes must be running the same
protocol, but need not be using the same implementation of the protocol.

TCP/IP, on the other hand, is the standard protocol family used by the
Worldwide Internet and by many networks owned by businesses and other
organizations. It offers faster performance compared to AppleTalk and makes
cross-platform applications easier to develop. If you wish to communicate with
the Worldwide Internet without going through a gateway, or if you want to
connect to a network that uses TCP/IP protocols, choose one of the Open
Transport TCP/IP protocols.

High-Level or Low-Level Protocol 1

Figure 1-1 (page 12) shows the protocols provided by Apple Computer, Inc.
with Open Transport and where they Þt in the OSI model. All the high-level
protocols (except UDP) shown in Figure 1-1 provide error checking and error
recovery services, including checking for correct packet sequence and
retransmission of lost or damaged packets.

If you use a high-level protocol that provides for reliable delivery of data and
error recovery, you need not implement these services yourself. On the other
hand, these protocols generate somewhat more network trafÞc than the
24 Deciding Which Protocol to Use

C H A P T E R 1

Introduction to Open Transport
lower-level protocols, including handshake and control signals, signals to
maintain sessions, and retransmitted packets.

The network-layer protocols IP and DDP provide best-effort delivery between
nodes on a network. They are connectionless protocols and do not correct for
corruption of data, packet loss, or incorrect packet sequencing. They generate
the least possible amount of network trafÞc for the data they transmit. These
protocols are appropriate for applications that do not require highly accurate
data transmission and for applications that provide their own error recovery. If
you want to implement your own protocol stack based on AppleTalk or TCP/
IP protocols, these are the protocols to use.

The high-level protocol UDP is unusual in that it comines attributes of both
high and low level protocolsÑthat is, it does not provide error recovery
services but it checks for data corruption.

Connection-Oriented or Connectionless 1

Connection-oriented protocols ensure reliable delivery of data and do not
require you to repeat the recipientÕs address or repeat the connection process
for the duration of the session. Once you have established a connection, the
protocol maintains the connection, informing you if it has closed for any
reason. Because of the reliability of connection-oriented protocols, they are a
good choice whenever you have a lot of data to exchange over a limited period
of time. However, in order to maintain the connection, these protocols
sometimes send control signals, which result in increased network trafÞc.

Open Transport AppleTalk offers two connection-oriented protocols: ADSP and
PAP. ADSP is a full-duplex transactionless protocol, well suited to the transfer
of large amounts of data. PAP is a transactionless session-layer protocol and a
client of ATP. It is intended primarily for communication with AppleTalk
printer products.

Open Transport TCP/IP provides one connection-oriented protocol, TCP,
which is a transactionless protocol. TCP, like ADSP, provides highly reliable
data delivery suitable for the transfer of large amounts of data.

Transaction-Based or Transactionless 1

A transaction-based protocol is suited to many client-server interactions where
the client requests services and there are a limited number of ways in which the
server can respond. File servers and printers are examples of servers that can
Deciding Which Protocol to Use 25

C H A P T E R 1

Introduction to Open Transport
use these protocols. However, you should keep in mind that transaction-based
protocols limit transport independence: currently, only Apple Talk uses these
protocols. In addition, given that transaction-based protocols incur some
overhead to set up, you might consider choosing one of the
connection-oriented protocols instead; these also involve the overhead of
establishing the connection but offer more possibility for
transport-independence.

Open Transport AppleTalk includes the ATP transaction-based protocols. An
ATP transaction request must Þt in a single packet; however, the response can
contain up to eight packets. ATP transactions are an efÞcient means of
transporting small amounts of data across the network. ATP provides a
semi-reliable loss-free transport service.

You should use ATP

■ if you want to send a small amount of data

■ if your application requires delivery of all packets

■ if your application can tolerate a minor degree of performance degradation

■ if you do not want to incur the overhead involved in maintaining a session

A workstation application that requires a state-dependent service should use
ADSP instead of ATP. State dependence means that the response to a request is
dependent on a previous request. For example, before a workstation
application connected to a Þle server can read a Þle, it must have Þrst issued a
request to open the Þle. When a dialog is state dependent, all requests must be
delivered in order and duplicate packets must not be sent; ADSP provides for
this.

An ATP transaction-based request, such as a workstation application
requesting a server to return the time of day, is independent of other requests
and not state dependent.

The Open Transport system software does not include any transaction-based
protocols for the TCP/IP protocol family.

Summary 1

The following is a summary of the preceding sections:
26 Deciding Which Protocol to Use

C H A P T E R 1

Introduction to Open Transport
1. If your application requires a speciÞc protocol, use that one.

2. If your intended connectees are local Mac OS computers, use the AppleTalk
protocol family.

3. If your intended connectees are not Mac OS computers, or Mac OS
computers on a remote network, use the TCP/IP protocol family.

4. To take advantage of Open TransportÕs transport independence and provide
both AppleTalk and TCP/IP, let the user choose.

5. If you need reliability, use a connection-oriented protocol.

6. If you need low overhead or you are writing a real-time application, use a
connectionless protocol.

7. Avoid transaction-based protocols.
Deciding Which Protocol to Use 27

C H A P T E R 1

Introduction to Open Transport
28 Deciding Which Protocol to Use

C H A P T E R 2

Contents

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 Getting Started With Open
Transport
Initializing Open Transport 31
Initializing From a Client Application 32
Initializing From a Stand-Alone Code Resource 33
Using ASLM and Open Transport 33
Using the Gestalt Function to Determine Whether Open Transport Is
Available 34

ConÞguring and Opening a Provider 34
Creating a ConÞguration Structure 35
Opening a Provider 36
Reusing Provider ConÞgurations 37

Specifying an Address 37
Addressing in Open Transport 37
Using TNetBuf Structures 38
Storing an Address in a TNetBuf Structure 40
Using Helper Routines to Initialize an Address 40

Closing Open Transport 42
Closing From Applications 42
Closing From Stand-Alone Code 43

Open Transport Libraries 44
Downloading a URL With HTTP 45

Using Threads for Easy Synchronous Processing 50
Specifying the Host Names and HTTP Commands 51
Opening an Endpoint and Setting the Mode of Operation 52
Connecting to the Host and Sending Data 53
Receiving Data From the Remote Endpoint 54
Error Handling 55
Unbinding the Endpoint and Final Clean-Up 56
29

C H A P T E R 2
30 Contents

C H A P T E R 2
Getting Started With Open Transport 2

This chapter introduces the basic information needed to use Open Transport. If
you are writing an application or stand-alone code resource that calls Open
Transport functions, you must read the appropriate sections in this chapter to
Þnd out how you initialize and close Open Transport, how you conÞgure
providers, and how you specify addresses. The code sample shown in
Listing 2-4 (page 46) includes material that is described in greater detail in the
next two chapters, ÒProvidersÓ and ÒEndpointsÓ; however, it is highly
recommended that you read through the sections in this chapter that describe
this code. Doing so will enable you to assimilate information in the later
chapters more easily and will give you a general sense of what an Open
Transport program is like.

The corresponding reference chapter, ÒInitializing and Closing Open Transport
ReferenceÓ provides more detailed information about the data structures and
functions introduced in this chapter.

Initializing Open Transport 2

The Þrst step in using Open Transport is to initialize it, and the most practical
and efÞcient way to do that is to call the InitOpenTransport function just before
you need to call any Open Transport functions. Note that only the client calling
Open Transport functions needs to initialize it or close it.

When you initialize Open Transport, it initializes data structures that it needs
so that you can call Open Transport functions. An error is returned if Open
Transport cannot be used . The following code sample illustrates how you
might initialize Open Transport from an application and how you might close
it down again upon termination.

void main(void)
{

Boolean gOTInited;
gOTInited = (InitOpenTransport() == noErr);

/* The rest of your application goes here.*/
if (gOTInited) {

CloseOpenTransport();
Initializing Open Transport 31

C H A P T E R 2

Getting Started With Open Transport
gOTInited = false;
}

}

Note
If your application needs to manipulate ports or call
Open Transport utility functions but it does not need
to open or use any providers, you can call the function
InitOpenTransportUtilities instead of the function
InitOpenTransport. ◆

Open Transport consists of several parts: the Open Transport kernel, Open
Transport utilities, AppleTalk, and TCP/IP. Which of these parts are loaded
into memory depends partly on control panel settings and partly on actions
you take:

■ AppleTalk is loaded if the user has activated it in the control panel. If the
user has not activated AppleTalk, it is not possible to load it
programmatically.

■ TCP/IP is loaded in one of two ways. If the user activates it in the control
panel and checks ÒLoad Only When NeededÓ (the default), TCP/IP is
loaded when you open a TCP/IP endpoint or a TCP/IP service provider. If
the user activates TCP/IP and checks ÒLoad Only When Needed,Ó TCP/IP
is loaded at start-up. If the user does not activate TCP/IP in the control
panel, it is not possible to load it programmatically.

■ The Open Transport kernel is loaded when AppleTalk or TCP/IP is loaded
or when you call the InitOpenTransport function.

■ The Open Transport utilities are always loaded. You still need to call the
function InitOpenTransportUtilities to register yourself as an Open
Transport client if you want to get or change port information without
loading the Open Transport kernel.

Initializing From a Client Application 2

If you are writing an application, you must follow these steps before you can
call any Open Transport functions:

1. Include the Open Transport client header Þle, OpenTransport.h.

2. Call the InitOpenTransport function (or the InitOpenTransportUtilities
function if only accessing port information).
32 Initializing Open Transport

C H A P T E R 2

Getting Started With Open Transport
3. Link with the appropriate libraries as described in ÒOpen Transport
LibrariesÓ (page 44).

Note
68000 applications do not need to explicitly establish an A5
world before calling Open Transport nor do they need to
reset their A5 world before each call to an Open Transport
function. This is all done automatically for them.
(PowerPC applications never need to be concerned about
establishing an A5 world.) ◆

Initializing From a Stand-Alone Code Resource 2

If you are writing a stand-alone code resource or a shared library, you must
follow these steps before calling any Open Transport functions:

1. Include the Open Transport client header Þle, OpenTransport.h.

2. Establish an A5 world if you are writing 68000 code; see the Apple Shared
Library Manager DeveloperÕs Guide for details on how to do this. (Stand-alone
68000 code resources must ensure that their A5 world is correct each time
they call an Open Transport function.)

3. Call the InitOpenTransport function (or the InitOpenTransportUtilities
function).

4. Call the CloseOpenTransport function when Þnished.

5. Link with the appropriate libraries as described in ÒOpen Transport
LibrariesÓ (page 44). Remember that a code resource or shared library
should link with the ÒExtnÓ variants of the libraries.

Using ASLM and Open Transport 2

Open Transport is based on ASLM and initializes this manager itself. But if
your 68000 application uses ASLM, you must

■ call the InitLibraryManager function before calling the InitOpenTransport
function

■ call the CloseLibraryManager function after calling the CloseOpenTransport
function.
Initializing Open Transport 33

C H A P T E R 2

Getting Started With Open Transport
This is true for both applications, shared libraries, and stand-alone resources.
For applications the ExitToShell trap will be patched so that the close calls are
executed whether you call them explicitly or not. For stand-alone code, you
must call the close calls yourself.

Using the Gestalt Function to Determine Whether Open
Transport Is Available 2

If you are writing an installer, you might want to know if Open Transport is
available on your computer. To do this, call the Gestalt function with 'otan' as
its selector. If Gestalt returns no error and its response parameter returns with
a value other than 0, Open Transport is available. To Þnd out whether
AppleTalk, TCP, or NetWare are present, you can examine the response
parameter bits. For a list of the possible bit values, see ÒThe Gestalt Selector
and Response BitsÓ (page 369).

For version 1.1 or later of Open Transport, you can use the Gestalt function
with the 'otvr' selector to determine the Open Transport version in NumVersion
format. For more information on AppleÕs version numbering scheme and the
NumVersion format, see Technote OV12: Version Territory.

Note
If your application uses Open Transport, it should
determine whether it is present using the
InitOpenTransport function. Do not use Gestalt for this.
The InitOpenTransport functionperforms all the right
checks for you. ◆

ConÞguring and Opening a Provider 2

After initializing Open Transport but before you can send or receive data, you
must conÞgure and open a provider. Providers supply data-oriented services,
and are implemented by modules that can be layered to provide the services in
which you are interested. To create a provider conÞguration, you call the
function OTCreateConfiguration, passing it a conÞguration string that describes
this layering. The following two sections explain this process in greater detail.
34 Configuring and Opening a Provider

C H A P T E R 2

Getting Started With Open Transport
Creating a Configuration Structure 2

The OTCreateConfiguration function creates a conÞguration structure and
returns a pointer to it. The conÞguration string can be the name of a single
protocol, such as “adsp”, “tcp”, or “dnr”, or it can be a comma-separated list of
protocol and port names. For instance, the string

"adsp,ddp,ltlkB"

describes an AppleTalk Data Stream Protocol (ADSP) endpoint provider using
the Datagram Delivery Protocol (DDP) with LocalTalk link access provided
through the LocalTalk B (Printer) port.

Open Transport has internally deÞned defaults for how protocols can be
layered upon each other. If you give Open Transport a single protocol name, it
checks its defaults to determine which lower layers are missing. Thus, the
shorter string

"adsp"

also describes an identical ADSP endpoint provider (if you have the Printer
port conÞgured in the AppleTalk control panel). Likewise, if you skip a
protocol layer in the string, Open Transport uses its defaults to try to complete
it. For instance, the speciÞcation "tcp,enet" is incomplete because the
Transmission Control Protocol (TCP) does not have direct access to Ethernet, so
Open Transport puts the default Internet Protocol (IP) between TCP and
Ethernet.

You can also specify options as part of the conÞguration string. To do this, you
need to know which protocols use which options and how to translate the
optionÕs constant name, given in the header Þles, into a string that the
conÞguration functions can parse. See the TCP/IP and AppleTalk chapters for
lists of their protocol-speciÞc options and their equivalent string values. But for
a simple example, the following conÞguration string

"adsp,ddp(Checksum=1)"

describes an ADSP endpoint provider with the DDP checksum option enabled.

If you want to identify a particular port in the conÞguration string, you use the
port name to do so. Port names are documented in the chapter ÒPortsÓ. More
typically, however, you leave this value blankÑfor example, using only “adsp”
Configuring and Opening a Provider 35

C H A P T E R 2

Getting Started With Open Transport
or "adsp, ddp", which conÞgures the provider with whatever port is speciÞed
in the AppleTalk control panel.

Most protocols have a literal string value that you can use to conÞgure
providers. For example, DDP uses "ddp" and ADSP uses "adsp". There are also
constants that identify each protocol, such as kDDPName and kADSPName. For a
complete list of the AppleTalk constant-string equivalents, see the chapter
ÒIntroduction to AppleTalkÓ in this book. For information on specifying TCP/
IP services, see the chapter ÒTCP/IP Services.Ó

You can use either a constant or a literal value to create a provider that does not
use options and that adheres to the default protocol layering. For example, to
conÞgure a DDP endpoint, you could use either of the following lines of code:

ep = OTOpenEndpoint(OTCreateConfiguration("ddp"), 0, NULL, &err);

ep = OTOpenEndpoint(OTCreateConfiguration(kDDPName), 0, NULL, &err);

To conÞgure more complex providers, it is easier to use the literal strings.
Using the constant can be confusing, shown by a comparison of the following
lines of code:

ep = OTOpenEndpoint(OTCreateConfiguration
("adsp(EnableEOM=1),ddp,ltlkB"), 0, NULL, &err)

ep = OTOpenEndpoint(OTCreateConfiguration
(kADSPName"(EnableEOM=1),"kDDPName",ltlkB"), 0, NULL, &err);

Some conÞgurations are not valid and the OTCreateConfiguration function will
return an error if you try to create one. For example, trying to layer ADSP on
top of IP will not work.

Opening a Provider 2

You can pass the pointer returned by the function OTCreateConfiguration to the
function that opens the provider, for example, the OTOpenEndpoint function.
Typically, you call the OTCreateConfiguration function inline while calling the
function that creates and opens a provider. Here is an example

ep = OTOpenEndpoint(OTCreateConfiguration("ddp"), 0, NULL, &err);
36 Configuring and Opening a Provider

C H A P T E R 2

Getting Started With Open Transport
The function you use to open a provider returns a provider reference. You must
specify that provider reference whenever you call a function for that provider.
For example, if you open an endpoint provider, you must specify its provider
reference when you call a function that sends or receives data.

Reusing Provider Configurations 2

The functions used to open providers take a pointer to the conÞguration
structure as input, but as part of their processing, they dispose of the original
conÞguration structure. Since typically you use the OTCreateConfiguration
function to create a single provider at a time, this does not present a problem.
Occasionally, however, you may want to reuse a conÞguration structure to
create a second identical provider, or you may want to reuse a conÞguration for
which you do not have the conÞguration string.

The only way to reuse a conÞguration structure is to clone it with the
OTCloneConfiguration function before opening your Þrst provider. Cloning
allows you to make multiple copies of the same conÞguration. For example,
you might have only a pointer to a conÞguration structure, but you want to
create ten endpoints, and so you need ten conÞguration structures. The
moment you use the original pointer to create an endpoint, the conÞguration
structure is gone. You canÕt call the OTCreateConfiguration function because
you donÕt have the original conÞguration string; you were only passed the
conÞguration structure. However, you can clone the original conÞguration
structure before opening each endpoint. For additional information, see
ÒStreamlining Endpoint CreationÓ (page 144).

Specifying an Address 2

This section explains the format of Open Transport addresses and the structure
used to specify an address. This section also introduces helper routines that can
do some of the work in creating these structures for you.

Addressing in Open Transport 2

Addresses in Open Transport all begin with a common structure that is
followed by protocol-speciÞc Þelds. The common structure is deÞned by the
OTAddress type:
Specifying an Address 37

C H A P T E R 2

Getting Started With Open Transport
struct OTAddress
{

OTAddressType fAddressType;
UInt8 fAddress[1];

};
typedef struct OTAddress OTaddress;

The OTAddress type itself is abstract. You would not declare a structure of this
type because it does not contain any address information. However, address
formats deÞned by Open Transport protocols all use the fAddressType Þeld to
describe the format of the Þelds to follow, which do contain address
information. For example, the DDPAddress type is an address format used by the
AppleTalk protocol:

struct DDPAddress
{

OTAddressType fAddressType; /* must be AF_ATALK_DDP */
UInt16 fNetwork;
UInt8 fNodeID;
UInt8 fSocket;
UInt8 fDDPType;
UInt8 fpad;

};

Open Transport recognizes this address as a DDP address because the Þrst Þeld
of the address is AF_ATALK_DDP.

Address formats are protocol-speciÞc. The protocol you choose determines the
address format that the endpoint you connect to or listen from will accept. For
example, if youÕre using an AppleTalk protocol, you have the choice of using a
DDP, an NBP, or a DDP/NBP address format. When you use TCP/IP, you have
the choice of the InetAddress format or the DNS address format.

Using TNetBuf Structures 2

Most provider functions that transfer data pass a parameter of type TNetbuf
that speciÞes the size and location of the data. Such data is usually an address,
option information, or the actual data that you want to transfer. You can think
of the TNetbuf structure as Open TransportÕs universal bucket, used to pass and
receive different kinds of information. Figure 2-1 shows how the TNetbuf
structure refers to data in memory.
38 Specifying an Address

C H A P T E R 2

Getting Started With Open Transport
Figure 2-1 The TNetbuf structure

The structure is composed of three Þelds: the buf Þeld, the len Þeld, and the
maxlen field. The buf field contains the beginning address of the data; the len
Þeld speciÞes the size of the data; and the maxlen Þeld speciÞes the maximum
amount of data that can be stored in the buffer. How you use this structure
depends on whether the structure speciÞes an input or output parameter:

■ If you are sending information (the structure is used to specify an input
parameter), you must allocate a buffer and initialize it to contain the data
you want to send. Then you must set the buf Þeld to point to the buffer and
set the len Þeld to specify the size of the data.

You may always allocate TNetbuf structures for input parameters on the
stack.

■ If you are receiving information (the structure is used to specify an output
parameter), you must allocate a buffer into which the function can place the
information when it returns. Then you must set the buf Þeld to point to the
buffer and set the maxlen Þeld to specify the maximum size of the data that
could be placed in the buffer. When the function returns, it sets the len Þeld
to the actual size of the data.

If you are making asynchronous calls that use TNetbuf structures as output
parameters, you should allocate the TNetBuf structures (and the buffers they
point to) such that they persist until the operation completes. Typically, this
means that TNetbuf structures for output parameters should only be
allocated on the stack if the call is synchronous.

There are two situations in which you would not use a TNetBuf structure to
store data: when sending noncontiguous data, or when doing a no-copy
receive. For additional information about how you should handle these
situations, see ÒAdvanced Topics(page 215).Ó

Data

Unused spacemaxlen

TNetbuf

maxlenlen

len

buf
Specifying an Address 39

C H A P T E R 2

Getting Started With Open Transport
Storing an Address in a TNetBuf Structure 2

When you pass an address to Open Transport, you use a TNetBuf structure.
Listing 2-1 shows how you might initialize that structure. The listing initializes
a DDP address, stores the address in a TNetBuf structure, and then passes that
address in the connectCall parameter to the OTConnect function to connect to a
remote peer. Note that the addr Þeld is also a TNetBuf structure.

Listing 2-1 Using a TNetBuf structure to store an address

void OSStatus MyConnectDDP (EndpointRef ep, UInt16 connectNetworkNumber,
UInt8 connectNodeID, UInt8 connectSockID)
{

OSStatus err;
TCall connectCall;
DDPAddress connectAddr;
/* initialize the DDP address to connect to */

connectAddr.fAddressType = AF_ATALK_DDP;
connectAddr.fNetwork = connectNetworkNumber;
connectAddr.fNodeID = connectNodeID;
connectAddr.fSocket = connectSockID;
connectAddr.fDDPType = 0;

/* initialize the TNetBuf that contains the address */
OTMemzero(connectCall, sizeof(TCall));
connectCall.addr.buf = (UInt8 *) &connectAddr;
connectCall.addr.len = sizeof(DDPAddress);

/* now pass the address to Open Transport */
 err = OTConnect(ep, &connectCall, nil);
return err;

}

Using Helper Routines to Initialize an Address 2

Some Open Transport protocols export routines that make the job of initializing
addresses simpler. For example, Listing 2-2 shows how you can use the
function OTInitDDPAddress to simplify some the work done in Listing 2-1.
40 Specifying an Address

C H A P T E R 2

Getting Started With Open Transport
Listing 2-2 Using Helper Routines to Initialize an Address

void OSStatus MyConnectDDP (EndpointRef ep, UInt16 connectNetworkNumber,
UInt8 connectNodeID, UInt8 connectSockID)
{

OSStatus err;
TCall connectCall;
DDPAddress connectAddr;

/* initialize the DDP address to connect to */
OTInitDDPAddress(&connectAddr, connectNetworkNumber, connectNodeID,

connectSockID, 0);

/* initialize the TNetBuf that contains the address */
OTMemzero(connectCall, sizeof(TCall));
connectCall.addr.buf = (UInt8 *) &connectAddr;
connectCall.addr.len = sizeof(DDPAddress);

/* now pass the address to Open Transport */
err = OTConnect(ep, &connectCall, nil);
return err;

}

These helper routines are especially important when an address has a variable
length. For example, a DNS address, used by the TCP/IP protocol, is deÞned as
follows:

struct DNSAddress
{

OTAddressTYpe fAddressType; /* always AF_DNS */
 InetDomainName fName;
};

typedef struct DNSAddress DNSAddress;

The fName Þeld of this structure can vary in length. You must pass a DNS
address in a TNetBuf structure that gives the correct length of the entire address.
The helper routine, OTInitDNSAddress, not only Þlls in the Þelds of the
DNSAddress structure but also returns the correct length for the TNetBuf.len
field. This technique is shown in Listing 2-4 (page 46).
Specifying an Address 41

C H A P T E R 2

Getting Started With Open Transport
Closing Open Transport 2

This section describes the steps you should take when you no longer need
Open Transport. Although the Mac OS provides an automatic clean-up
mechanism for applications that call Open Transport functions, it is intended
only as a safety net. ItÕs a good idea to do your own clean up, at least for
normal application termination. In addition non-application programs are
always required to close Open Transport.

System software cannot unload the Open Transport kernel until the last
program on the computer that called the InitOpenTransport or
InitOpenTransportUtilities function has also called the CloseOpenTransport
function. So, if your application only uses the network occasionally, it might be
wise to initialize Open Transport only when you need the network, and to close
Open Transport immediately after you stop using it.

Closing From Applications 2

When you are no longer using Open Transport, you can unload the Open
Transport software modules by calling the CloseOpenTransport function.

It is best if 68000 applications call the CloseOpenTransport function, but this will
be done automatically if they donÕt.

Note
If you are running PowerPC applications under version 1.1
(or earlier) of Open Transport, you must call the
CloseOpenTransport function when terminating. One way
to make sure that you do this is to use a CFM terminate
procedure in your main application fragment, as shown in
Listing 2-3. If you set the appropriate linker option, the
system will call the CFMTerminate procedure regardless of
how your application terminates.
42 Closing Open Transport

C H A P T E R 2

Getting Started With Open Transport
Listing 2-3 CFM terminate procedure

static Boolean gOTInited = false;

void CFMTerminate (void); /* do this if abnormal termination */
{

if (gOTInited)
{

gOTInited = false;
 (void) CloseOpenTransport();

}
}
void main (void)
{

OSStatus err;
err = InitOpenTransport();
gOTInited = (err ==noErr);

/* the rest of your application goes here */

if (gOTInited) /* do this for normal termination */
{
 gOTInited = false;
 (void) CloseOpenTransport();
}

}

Note
Open Transport only provides CFM support for 68000
code beginning with version 1.3 ◆

Closing From Stand-Alone Code 2

For stand-alone code segments, you must call the CloseOpenTransport function
before you unload from memory. Note that Open Transport only unloads if all
clients are done using Open Transport and have called the CloseOpenTransport
function.
Closing Open Transport 43

C H A P T E R 2

Getting Started With Open Transport
Open Transport Libraries 2

The libraries that you need to link with vary depending on whether you are
writing PowerPC code or 68000 code and on a variety of additional factors,
speciÞed in the tables that follow. Table 2-1 lists the libraries you need to link
with if you are writing PowerPC code.

Table 2-1 Open Transport libraries for PowerPC code

Note
If your code is meant to run on machines with and without
Open Transport, you should make sure to weak-link with
the libraries ending in Lib. Otherwise, the system cannot
launch your application when Open Transport is not
installed. For more information on weak linking, see Inside
Macintosh: PowerPC System Software. ◆

If you need... Link with...

to build an application OpenTransportLib

OpenTransportAppPPC.o

AppleTalk services OpenTptAppleTalkLib

OpenTptATalkPPC.o

Internet services OpenTptInternetLib

OpenTptInetPPC.o

to use ports or Open Transport
Utility functions only

OpenTransportUtilLib
(instead of OpenTransportLib)

OpenTptUtilsAppPPC.o
(instead of OpenTransportAppPPC.o)

to build a CFM fragment or ASLM
shared library

OpenTransportExtnPPC.o
(instead of OpenTransportAppPPC.o)

OpenTptUtilsExtnPPC.o
(instead of OpenTptUtilsAppPPC.o)
44 Open Transport Libraries

C H A P T E R 2

Getting Started With Open Transport
Table 2-2 lists the libraries you need to link with if you are writing 68000 code. Link with the
libraries in square brackets if you are building MPW model-near clients.

Table 2-2 Open Transport libraries for 68000 code

Downloading a URL With HTTP 2

The sample code shown in Listing 2-4 downloads a URL from a web server. It
includes two functions: a simple notiÞer, YieldingNotifier, and a function,
MyDownloadHTTPSimple, that downloads the URL. Because the function
MyDownloadHTTPSimple contains synchronous calls to Open Transport, the
notiÞer is used to call the function YieldToAnyThread, which cedes time to the
processor while a synchronous operation waits to complete. A detailed
discussion is contained in the sections following the listing.

The code shown in Listing 2-4 begins by initializing required debugging ßags
and including the appropriate header Þles. The OTDebugStr function is not

If you need... Link with...

to build an application OpenTransport.o [OpenTransport.n.o]

OpenTransportApp.o [OpenTransportApp.n.o]
AppleTalk services OpenTptATalk.o [OpenTptATalk.n.o]

Internet services OpenTptInet.o [OpenTptInet.n.o]

to use ports or Open
Transport utility
functions only

OpenTptUtils.o
(instead of OpenTransport.o)

[OpenTptUtils.n.o]
(instead of OpenTransport.n.o)

to build a stand-alone
code resource or ASLM
shared library

OpenTransportExtn.o
(instead of OpenTransportApp.o)

[OpenTransportExtn.n.o]
instead of OpenTransportApp.n.o.)
Downloading a URL With HTTP 45

C H A P T E R 2

Getting Started With Open Transport
deÞned in any of the Open Transport header Þles, but it is exported by the
libraries, so its prototype is included.

Listing 2-4 Downloading a URL With HTTP

#ifndef qDebug /* The OT debugging macros in <OTDebug.h> */
#define qDebug 1/* require this variable to be set.*/
#endif

#include <OpenTransport.h>
#include <OpenTptInternet.h> /* header for TCP/IP */
#include <OTDebug.h> /* header for OTDebugBreak, OTAssert macros */
#include <Threads.h> /* declaration for YieldToAnyThread */
#include "OTSimpleDownloadHTTP.h" /* header for our own protype */

extern pascal void OTDebugStr(const char* str);

enum
{ kTransferBufferSize = 4096 };/* define size of buffer */

/* define notifier */

static pascal void YieldingNotifier(void* contextPtr, OTEventCode code,
 OTResult result, void* cookie)

{
#pragma unused(contextPtr)
#pragma unused(result)
#pragma unused(cookie)
OSStatus junk;

switch (code)
{

case kOTSyncIdleEvent:
junk = YieldToAnyThread();
OTAssert("YieldingNotifier: YieldToAnyThread failed",

junk == noErr);
break;

default:
/* do nothing */
break;
46 Downloading a URL With HTTP

C H A P T E R 2

Getting Started With Open Transport
}
}

/* Define function that downloads a URL from a web server. */

OSStatus MyDownloadHTTPSimple(const char *hostName,
const char *httpCommand,
const short destFileRefNum)

{
OSStatus err;
OSStatus junk;
Ptr transferBuffer = nil;
EndpointRef ep = kOTInvalidEndpointRef;
TCall sndCall;
DNSAddress hostDNSAddress;
OTFlags junkFlags;
OTResult bytesSent;
OTResult bytesReceived;
OTResult lookResult;
Boolean bound = false;

/* Allocate a buffer for storing the data as we read it. */

err = noErr;
transferBuffer = OTAllocMem(kTransferBufferSize);
if (transferBuffer == nil)

 err = kENOMEMErr;

/* Open a TCP endpoint. */

if (err == noErr)
{

ep = OTOpenEndpoint(OTCreateConfiguration(kTCPName), 0, nil,
&err);

}

/* If the endpoint opens successfully... */

if (err == noErr)
{

Downloading a URL With HTTP 47

C H A P T E R 2

Getting Started With Open Transport
junk = OTSetSynchronous(ep);
OTAssert("MyDownloadHTTPSimple: OTSetSynchronous failed",

junk == noErr);

junk = OTSetBlocking(ep);

OTAssert("MyDownloadHTTPSimple: OTSetBlocking failed",
junk == noErr);

junk = OTInstallNotifier(ep, YieldingNotifier, nil);
OTAssert("MyDownloadHTTPSimple: OTInstallNotifier failed",

junk == noErr);

junk = OTUseSyncIdleEvents(ep, true);
OTAssert("MyDownloadHTTPSimple: OTUseSyncIdleEvents failed",

junk == noErr);

/* Bind the endpoint. */

err = OTBind(ep, nil, nil);
bound = (err == noErr);

}

/* Initialise the sndCall structure and call OTConnect. */
if (err == noErr)
{

OTMemzero(&sndCall, sizeof(TCall));
sndCall.addr.buf = (UInt8 *) &hostDNSAddress;
sndCall.addr.len = OTInitDNSAddress(&hostDNSAddress, (char *)

hostName);

err = OTConnect(ep, &sndCall, nil);
}

/* Send the HTTP command to the server. */

if (err == noErr)
{

bytesSent = OTSnd(ep, (void *) httpCommand,
OTStrLength(httpCommand), 0);

if (bytesSent > 0)
48 Downloading a URL With HTTP

C H A P T E R 2

Getting Started With Open Transport
err = noErr;
else err = bytesSent;
}

/* Now we receive the data coming back from the server. */
if (err == noErr)
{

do
{

bytesReceived = OTRcv(ep, (void *) transferBuffer,
kTransferBufferSize, &junkFlags);

if (bytesReceived > 0)
 err = FSWrite(destFileRefNum, &bytesReceived,

transferBuffer);
else err = bytesReceived;

} while (err == noErr); /* Loop until we get an error. */
}

/* Now handle the various forms of error that can occur. */
if (err == kOTLookErr)
{

lookResult = OTLook(ep);

switch (lookResult)
{

case T_DISCONNECT:

err = OTRcvDisconnect(ep, nil);
break;

case T_ORDREL:

err = OTRcvOrderlyDisconnect(ep);
if (err == noErr)

{err = OTSndOrderlyDisconnect(ep);}
break;

default:

break;
Downloading a URL With HTTP 49

C H A P T E R 2

Getting Started With Open Transport
}
}

if ((err == noErr) && bound)
{

junk = OTUnbind(ep);
OTAssert("MyDownloadHTTPSimple: OTUnbind failed.",

junk == noErr);
}

/* Clean up. */
if (ep != kOTInvalidEndpointRef)
{

junk = OTCloseProvider(ep);
OTAssert("MyDownloadHTTPSimple: OTCloseProvider failed",

junk == noErr);
}
if (transferBuffer != nil)
 OTFreeMem(transferBuffer);

return (err);
}

Using Threads for Easy Synchronous Processing 2

The notiÞer shown in Listing 2-4 (page 46) is used to yield time to the processor
whenever the endpoint receives a kOTSyncIdleEvent. Open Transport sends this
event whenever itÕs waiting for a synchronous operation to complete. In
response, your notiÞer should call the function YieldToAnyThread.

static pascal void YieldingNotifier(void* contextPtr, OTEventCode code,
 OTResult result, void* cookie)

{
#pragma unused(contextPtr)
#pragma unused(result)
#pragma unused(cookie)
OSStatus junk;

switch (code)
{

case kOTSyncIdleEvent:
50 Downloading a URL With HTTP

C H A P T E R 2

Getting Started With Open Transport
junk = YieldToAnyThread();
OTAssert("YieldingNotifier: YieldToAnyThread failed",

junk == noErr);
break;

default:
/* do nothing */
break;

}
}

Specifying the Host Names and HTTP Commands 2

The next section of code in Listing 2-4 (page 46) calls the function
MyDownloadHTTPSimple. This function accepts three parameters: the name of the
host to which you want to connect, the command to send to the host, and a
reference to the Þle to which you want to download the URL.

OSStatus MyDownloadHTTPSimple(const char *hostName,
const char *httpCommand,
const short destFileRefNum)

/* declarations go here */
The parameter hostName is a pointer to a string that contains the DNS
address of the web server. The DNS address must have the suffix :<port>,
where port is the port number the web server is operating on.

The parameter httpCommand is a pointer to the HTTP command to send.
Typically this command has the following form, where <x> is the URL path.

Get <X> HTTP/1.0\0x13\0x10\0x13\0x10

For example, if you were to download the URL

http://devworld.apple.com/dev/technotes.shtml

You would set hostName to devworld.apple.com:80. (The default port for HTTP
is 80.) And you would set httpCommand to

“GET /dev/technotes.shtml HTTP/1.0\0x13\0x10\0x13\0x10”

The parameter destFileRefNum is the reference number of the Þle to which the
results of the HTTP command are written. The function MyDownloadHTTPSimple
Downloading a URL With HTTP 51

C H A P T E R 2

Getting Started With Open Transport
does not parse the returned HTTP header. The entire incoming stream is
written to the Þle.

Opening an Endpoint and Setting the Mode of Operation 2

The Þrst section of the function MyDownloadHTTPSimple shown in Listing 2-4
(page 46) opens a TCP endpoint, sets the mode of operation, and installs the
notiÞer YieldingNotifier.

if (err == noErr)
ep = OTOpenEndpoint(OTCreateConfiguration(kTCPName), 0, nil,

&err);
/* If the endpoint opens successfully... */

if (err == noErr)
{

junk = OTSetSynchronous(ep);
OTAssert("MyDownloadHTTPSimple: OTSetSynchronous failed",

junk == noErr);

junk = OTSetBlocking(ep);

OTAssert("MyDownloadHTTPSimple: OTSetBlocking failed",
junk == noErr);

junk = OTInstallNotifier(ep, YieldingNotifier, nil);
OTAssert("MyDownloadHTTPSimple: OTInstallNotifier failed",

junk == noErr);

junk = OTUseSyncIdleEvents(ep, true);
OTAssert("MyDownloadHTTPSimple: OTUseSyncIdleEvents failed",

junk == noErr);

/* Bind the endpoint. */

err = OTBind(ep, nil, nil);
bound = (err == noErr);

}

52 Downloading a URL With HTTP

C H A P T E R 2

Getting Started With Open Transport
The OTOpenEndpoint function opens the endpoint and returns an endpoint
reference (ep). You need to specify this endpoint reference when you set the
mode of execution for the endpoint, when you bind the endpoint to an address,
and, later, when you establish a connection, receive data, and close the
endpoint. The mode of operation for the endpoint is set as synchronous
blocking with the call to the OTSetSynchronous function and the OTSetBlocking
function. The call to the function OTInstallNotifier installs the notiÞer
YieldingNotifier. The call to the function OTUseSyncIdleEvents tells Open
Transport to send kOTSyncIdleEvents to this endpoint; the notiÞer responds to
this event by yielding time to other processes, as noted in ÒUsing Threads for
Easy Synchronous ProcessingÓ (page 50).

Using a synchronous blocking mode of operation results in a simpler
programming model, and the use of the notiÞer function to yield time to other
processes prevents the machine from hanging when synchronous operations
are waiting to complete.

Finally, the call to the OTBind function binds the endpoint to a TCP address. (A
connection-oriented endpoint can initiate a connection only after the endpoint
is bound or queue incoming connection requests.) The second parameter
requests the address to which you want to bind the endpoint. In this case, a
value of nil is passed; because this is an outgoing connection, it does not
particularly matter what address the endpoint is bound to. The third parameter
to the OTBind function returns the address to which Open Transport has
actually bound the endpoint. The code passes nil because we donÕt need that
information.

Connecting to the Host and Sending Data 2

The next section of the function MyDownloadHTTPSimple, shown in Listing 2-4
(page 46), connects to the host and sends an HTTP command to the server. The
OTConnect function, which is used to connect the endpoint, passes three
parameters: in this case, ep (the endpoint reference), &sndCall (a pointer to the
address of the remote endpoint), and a pointer to a buffer in which OTConnect
can return information about the connection. Because no data or options were
speciÞed with the sndCall parameter, it is not necessary to examine any
information returned by the function, so the third parameter is set to nil.

if (err == noErr)
{

OTMemZero(&sndCall, sizeof(TCall));
sndCall.addr.buf = (UInt8 *) &hostDNSAddress;
Downloading a URL With HTTP 53

C H A P T E R 2

Getting Started With Open Transport
sndCall.addr.len = OTInitDNSAddress(&hostDNSAddress, (char *)
hostName);

err = OTConnect(ep, &sndCall, nil);
}

/* Send the HTTP command to the server. */

if (err == noErr)
{

 bytesSent = OTSnd(ep, (void *) httpCommand,
OTStrLength(httpCommand), 0);

if (bytesSent > 0)
err = noErr;

else err = bytesSent;
}

Before calling the OTConnect function, the sndCall structure is initialized. In this
case, only the address Þelds are speciÞed because we are neither sending data
with the connection request nor asking for speciÞc option values. The
speciÞcation of the address is described in detail in ÒStoring an Address in a
TNetBuf StructureÓ (page 40).

After connecting to the server, the OTSnd function is called to send the HTTP
command. The OTSnd function takes four parameters: in this case, ep (the
endpoint reference), httpCommand (a pointer to the data being sent),
OTStrLength(httpCommand) (the length of the data), and 0 (specifying that no
ßags are set). The OTSnd function returns the number of bytes sent or a negative
number representing an error code if an error occurred. Because the endpoint is
in synchronous mode, the function wonÕt return until it has sent all the bytes or
it returns an error. The code following the call to OTSnd tests to see whether the
return value of the function is greater than zero to determine whether or not an
error occurred.

Receiving Data From the Remote Endpoint 2

As shown in Listing 2-4 (page 46) after establishing the connection and sending
the data, the function MyDownloadHTTPSimple calls the function OTRcv, which
returns the number of bytes received or a negative (error code) number.
54 Downloading a URL With HTTP

C H A P T E R 2

Getting Started With Open Transport
if (err == noErr)
{

do
{

bytesReceived = OTRcv(ep, (void *) transferBuffer,
kTransferBufferSize, &junkFlags);

if (bytesReceived > 0)
 err = FSWrite(destFileRefNum, &bytesReceived,

transferBuffer);
else err = bytesReceived;

} while (err == noErr); /* Loop until we get an error. */
}

Because the endpoint is in synchronous blocking mode, the function wonÕt
return until it has received all the data you asked for, or it returns an error. The
OTRcv function is called repeatedly until it gets an error, which indicates that
there is no data left to receive. The function OTRcv takes four parameters: in this
case ep (the endpoint reference), transferBuffer (a pointer to the buffer in
which data is to be placed), kTransferBufferSize (which speciÞes the size of the
buffer), and &junkFlags (a pointer to a buffer for ßags information), which this
sample ignores.

As it receives data, the function MyDownloadHTTPSimple calls the FSWrite function
to write the data to a Þle.

Error Handling 2

The next section of the function MyDownloadHTTPSimple in Listing 2-4 (page 46)
handles errors that might be returned. The most common error is kOTLookErr.
This indicates that some event has happened that you need to look at. To do
this, the function MyDownloadHTTPSimple calls the function OTLook, which returns
an event code for the pending event.

if (err == kOTLookErr)
{

lookResult = OTLook(ep);

switch (lookResult)
{

Downloading a URL With HTTP 55

C H A P T E R 2

Getting Started With Open Transport
case T_DISCONNECT:

err = OTRcvDisconnect(ep, nil);
break;

case T_ORDREL:

err = OTRcvOrderlyDisconnect(ep);
if (err == noErr)

{err = OTSndOrderlyDisconnect(ep);}
break;

default:
break;

}
}

The switch statement includes cases for the most common types of events,
T_DISCONNECT and T_ORDREL, and handles them appropriately. The event
T_DISCONNECT signals that the remote peer has initiated a disorderly disconnect.
HTTP servers will often just disconnect to indicate the end of the data, so all
that is needed in response is to clear the event by calling the function
OTRcvDisconnect. The event T_ORDREL signals that the remote peer has initiated
an orderly disconnect. This means it has no more data to send. In response,
your function clears the T_ORDREL event by calling the OTRcvOrderlyDisconnect
function and then calls the OTSndOrderlyDisconnect to let the remote peer know
that it received and processed the event.

Unbinding the Endpoint and Final Clean-Up 2

As Listing 2-4 (page 46) shows, having received the data requested, the
function MyDownloadHTTPSimple unbinds the endpoint. The conditional call to
the OTCloseProvider function closes the endpoint. The following call to the
OTFreeMem function frees up memory for the buffer that was allocated to receive
data from the OTRcv function.

if ((err == noErr) && bound)
{

junk = OTUnbind(ep);
OTAssert("MyDownloadHTTPSimple: OTUnbind failed.",

junk == noErr);
56 Downloading a URL With HTTP

C H A P T E R 2

Getting Started With Open Transport
}

/* Clean up. */
if (ep != kOTInvalidEndpointRef)
{

junk = OTCloseProvider(ep);
OTAssert("MyDownloadHTTPSimple: OTCloseProvider failed.",

junk == noErr);
}

Downloading a URL With HTTP 57

C H A P T E R 2

Getting Started With Open Transport
58 Downloading a URL With HTTP

C H A P T E R 3

Contents

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Providers
About Providers 61
Provider Functions 63
Interrupt-Time Processing 64
Modes of Operation 65
Provider Events 67
Function Results 68

Using Providers 69
Controlling a ProviderÕs Modes of Operation 70

Which Mode To Use 70
Specifying How Provider Functions Execute 71
Setting a ProviderÕs Blocking Status 72
Setting a ProviderÕs Send-Acknowledgment Status 72

Using NotiÞer Functions to Handle Provider Events 73
Transferring a ProviderÕs Ownership 77
Closing a Provider 79
59

C H A P T E R 3
60 Contents

C H A P T E R 3
Providers 3

This chapter describes providers, software entities that offer data-oriented
services, and introduces the main types of providers. It also discusses the use of
general provider functions, which you can use with any provider regardless of
its type. You use these functions to

■ open and close providers

■ set a providerÕs mode of operation

■ cancel synchronous processing

■ issue a command directly to a STREAMS module underlying a provider

Later chapters in this book describe each type of provider in detail. This
chapter describes the function you use to close a provider because you use the
same function for all types of providers.

Before you read this chapter, you should read the chapter ÒIntroduction to
Open TransportÓ (page 5). After reading this chapter, you can read the chapter
describing the provider whose services you are interested in. To use the
functions described in this chapter, you must Þrst use the InitOpenTransport
function to initialize Open Transport. This function is described in the chapter
ÒGetting Started With Open TransportÓ (page 31).

For reference information about the functions and data structures introduced in
this chapter, see ÒProviders ReferenceÓ (page 383).

About Providers 3

A provider is a layered set of protocols, implemented by STREAMS modules,
that provides some kind of data-oriented service. That service might be
implementing a networking protocol, encrypting data, Þltering data, and so on.
When you conÞgure a provider, you can layer the modules that implement the
provider to create an arbitrarily complex service. For example, you can place an
encryption module above the AppleTalk Data Stream Protocol (ADSP) module.
This combination would provide a stream of network data that was secure
from snooping on the network.

Open Transport deÞnes three main types of providers:

■ endpoint providers

■ mapper providers
About Providers 61

C H A P T E R 3

Providers
■ service providers

An endpoint provider offers a service that creates connections and moves data
from one logical address to another. A mapper provider offers services that
you use to associate, or Òmap,Ó network entity names with network addresses.
A service provider lets you perform tasks that are speciÞc to a particular
protocol, such as AppleTalk or TCP/IP. Each protocol family has the option of
providing a service provider if one is needed.

In the normal course of events you do not communicate directly with the
STREAMS modules that make up a provider. For example, to use an endpoint
provider, you must open an endpoint and use the functions deÞned in the
Open Transport application programming interface (API) for endpoints. The
Open Transport API shields your application from the details of the provider
implementation, allowing your application to run with little or no change, even
when the implementation of the provider is changed, or updated.

To use a provider, you must initialize Open Transport and then call the
function that opens the provider. When that function returns, it passes back to
you a reference to the provider you have just created. A provider reference is
like a Þle handle or a driver reference number. It associates a function called
from your application with a speciÞc provider that must implement the
function; you pass the provider reference as a parameter to all provider
functions. The data type of a provider reference depends on the type of the
provider (endpoint reference, mapper reference, AppleTalk service reference,
and so on).

You can open one provider or many. For example, a server application might
open many providers and use them concurrently. The number of providers you
can create is limited mainly by the availability of memory. The memory used to
create a provider comes partly from your application heap but mostly from the
system heap.
62 About Providers

C H A P T E R 3

Providers
C++ note

The C++ API for Open Transport includes a class called
TProvider that is the superclass for all provider-related
member functions. Endpoint functions are in class
TEndpoint, mapper functions are in class TMapper, and
service provider functions are in classes corresponding to
speciÞc protocol stacks. For example, the classes
TAppleTalkServices and TInternetServices contain
AppleTalk-speciÞc and TCP/IP-speciÞc member functions.

In object-oriented programming parlance, endpoints,
mappers, and the data structures maintained by Open
Transport for service providers are all objects. An
endpoint, for example, is an object instantiating the class
TEndpoint. An endpoint contains all the data that Open
Transport needs to link together software modules,
drivers, and hardware for a speciÞc endpoint provider. All
of the Open Transport API functions except the functions
that open providers and some utility functions are
included in the class deÞnitions of the various classes of
providers.

You can call public member functions of the TProvider
class for provider objects of any type: these functions are
the general provider functions. Public member functions
deÞned in a subclass of the TProvider class (for example,
TEndpoint) can be called only for providers belonging to
that subclassÑin this example, only from the TEndpoint
subclass. These functions are the type-speciÞc provider
functions. Note that, as with endpoints and mappers, each
kind of service (for AppleTalk, TCP/IP, and so on) derives
directly from the TProvider class; there is no other class for
services-type providers. ◆

Provider Functions 3

Functions that manipulate providers are known as provider functions. Some
provider functions can manipulate providers of any type. These are called
general provider functions and they are documented in detail in ÒProviders
ReferenceÓ (page 383). You use general provider functions to
About Providers 63

C H A P T E R 3

Providers
■ get or set a providerÕs default mode of operation, which determines
whether provider functions execute synchronously or asynchronously,
whether a provider can wait to send or receive data, and whether functions
that send data make a copy of that data

■ install and remove a notiÞer callback function, which the provider uses to
pass information to your application

■ send a module-speciÞc command, which allows you to communicate
directly with the STREAMS modules that make up your provider

■ close a provider

In addition to the general provider functions, each type of provider has
type-speciÞc provider functions; these functions work with only that particular
type of provider. For example, endpoint functions work only with endpoint
providers, and mapper functions work only with mapper providers. Each type
of service provider (for AppleTalk, TCP/IP, and so on) has its own type-speciÞc
provider functions.

Provider functions that accept a provider reference of type ProviderRef are
general: they accept any other type of provider reference as well. But functions
that require a type of provider reference other than ProviderRef (for example,
EndpointRef) are type-specific: they accept only that type of provider reference.

Interrupt-Time Processing 3

The Open Transport functions that you can call and the means by which you
call them vary with the level of execution: system task time, deferred task time,
and hardware interrupt time.

In general you can call all Open Transport functions at system task time and
most Open Transport functions, asynchronously, at deferred task time. At
hardware interrupt time, you are much more limited: you cannot call any of the
provider functions and you can call only a small number of Open Transport
functions. Software executed at hardware interrupt level includes installable
interrupt handlers for NuBus and other devices, Time Manager tasks, VBL
tasks, and routines called from within a hardware interrupt handler.

Because it is possible to call many more Open Transport functions from
deferred-task level than from hardware-interrupt level, if you need to call an
Open Transport function from hardware-interrupt level, you can use the Open
Transport function OTScheduleDeferredTask or the system function DTInstall to
have those functions execute at deferred task time. Deferred tasks are
64 About Providers

C H A P T E R 3

Providers
scheduled to run when all other hardware interrupt processing is done but
before system task processing resumes.

For more information about execution levels and deferred tasks, see Inside
Macintosh: Processes. For a more detailed view of processing and Open
Transport, see Chapter 5, ÒProgramming With Open Transport.Ó For a list of
those functions you can call at hardware-interrupt level and deferred-task
level, see ÒSpecial FunctionsÓ (page 793).

Modes of Operation 3

For each provider, you can use general provider functions to specify how
providers execute, whether the provider can block when sending or receving
data, and whether endpoint providers acknowledge sends.

A provider can execute in synchronous mode or in asynchronous mode. In
synchronous mode, provider functions return only when they complete
execution. In asynchronous mode, they return as soon as they are queued for
execution.

A providerÕs blocking status affects how functions that send and receive data
behave when they must wait to complete an operation. If a provider is
blocking, it either waits for as long as it takes to send or receive data (for a
synchronous call) or it returns with a result indicating why the operation could
not be done immediately (asynchronous call). If a provider is nonblocking, the
provider attempts to send or receive data and, if it cannot do so immediately, it
returns with a result indicating why it could not complete the operation.

A providerÕs mode of execution and blocking status act together to control the
providerÕs behavior. There are four possible combinations; of these, though
only three offer a practical use:

■ synchronous blocking

In this mode, if ßow control or other conditions prevent data from being sent
or received, the function returns when it is actually able to send or receive
the data. Placing a provider in sychronous blocking mode can halt all
operations on a Mac OS computer until the operation can complete. For
information on how to manage this situation, see ÒSpecifying How Provider
Functions ExecuteÓ (page 71).

■ synchronous nonblocking
About Providers 65

C H A P T E R 3

Providers
In this mode, if ßow-control conditions prevent data from being sent or
received, the function returns with the result kOTFlowErr or a number
indicating only a partial send. Open Transport calls the providerÕs notiÞer
with a T_GODATA or T_GOEXDATA event when ßow control lifts. You must call
the function again to continue to send or receive data.

■ asynchronous blocking

In this mode, if ßow-control conditions prevent data from being sent or
received, the function returns with the result kOTFlowErr or a number
indicating only a partial send. Open Transport calls the providerÕs notiÞer
with a T_GODATA or T_GOEXDATA event when ßow control lifts. You must call
the function again to send or receive data. If the function cannot complete
due to contention for STREAMS resources, it will wait until the required
resources are available.

■ asynchronous nonblocking

In this mode, if ßow-control conditions prevent data from being sent or
received, the function returns with kOTFlowErr, It can also return kEAgainErr.
if the function cannot execute as a result of contention for STREAMS
resources. Since the point of using asynchronous functions is to be able to
continue processing undisturbed until the function returns, using
asynchronous nonblocking mode is not practical, as the function might
return with the kEAgainErr result a number of times before it actually
completes.

A providerÕs blocking status also governs what happens when you close a
provider. In non-blocking mode, closing the provider ßushes all outgoing
commands in the stream and immediately closes the provider. In blocking
mode, the stream is given up to 15 seconds per module to allow outgoing
commands to be processed before the stream is closed.

A providerÕs send-acknowledgment status determines whether endpoint
functions that send data make an internal copy of the data before sending it.
Open Transport ignores the send-acknowledgment status for mapper and
service providers.

For speciÞc recommendations about which mode to use and how to set that
mode, see ÒControlling a ProviderÕs Modes of OperationÓ (page 70).
66 About Providers

C H A P T E R 3

Providers
Provider Events 3

Open Transport deÞnes three kinds of events called provider events. These
events are unique to the Open Transport architecture and are not events in the
usual Macintosh sense: they are not processed by the Event Manager, and they
have no associated Event Record. Rather, Open Transport uses provider events
to inform your application that something has occurred which demands your
immediate attention or to signal the fact that a function executing in
asynchronous mode has completed. The Þrst kind of provider event is called an
asynchronous event, the second kind is called a completion event, and the third
kind is called a miscellaneous event. In this book, the term event refers to a
provider event, except where noted otherwise.

A provider uses asynchronous events to notify your application that data has
arrived or that a request for a connection or disconnection is pending. Most
asynchronous events deÞned for Open Transport have equivalents in the X/
Open Transport Interface (XTI), from which the Open Transport interface
derives.

XTI does not deÞne completion events. A provider uses completion events to
notify your application that an asynchronous function has Þnished executing.
Some functions are inherently synchronous and have no corresponding
completion event. For example, if an endpoint provider is in asynchronous
mode and you execute the OTGetEndpointState function, the function returns
information about the state of the endpoint immediately. The description of a
function indicates whether the function behaves differently in asynchronous
mode.

Miscellaneous events are used to notify you or warn you of a change of state
in the provider: for example, the provider is about to be closed.

A provider event is identiÞed by a provider event code. These are listed and
described in the event codes enumeration (page 383).

■ Completion events have a preÞx of T_ and the sufÞx COMPLETE; for example,
T_BINDCOMPLETE.

■ Asyncronous events have a preÞx of T_ and no uniform sufÞx; for example,
T_DATA or T_MEMORYRELEASED.

■ Miscellaneous events have a preÞx of kOT and no uniform sufÞx; for
example, kOTProviderWillClose.

In general, to receive notice of provider events, you must provide a notiÞer
function and install it for the provider. A notiÞer function is a function that
About Providers 67

C H A P T E R 3

Providers
you write and that the provider will call when an event occurs. When the
provider calls this function, it uses the functionÕs parameters to pass back
information about the event that occurred, and if this is a completion event, it
also passes back additional information about the result of the function that
completed and a pointer to any other information passed back by the function.
The section ÒUsing NotiÞer Functions to Handle Provider EventsÓ (page 73)
provides additional information about notiÞer functions and the issues
involved in asynchronous processing. You can also refer to ÒUsing NotiÞer
FunctionsÓ (page 405) for a description of the notiÞer functions.

Function Results 3

Most Open Transport functions return a result of type OSStatus or OTResult.
The main difference between these is that a result of type OSStatus is either 0
(kOTNoError) or a negative number indicating an error code; a result of type
OTResult can be either a positive value whose meaning varies with the function
called or a negative value indicating an error code. Appendix B (page 785) lists
all result codes returned by Open Transport.

■ For synchronous function calls, a result of kOTNoError indicates that the
function succeeded. A negative value indicates an error.

■ For asynchronous function calls, if the result code is kOTNoError, the
operation was successfully started. When the function completes execution,
the provider will call the notiÞcation function you installed with an event
code to indicate which operation completed and a result code indicating
whether it succeeded. If an asynchronous function returns any immediate
result other than kOTNoError, this means that the operation failed before it
was started; your notiÞer will not be called.

The discussion of functions in the reference section of this book describes the
meaning of the errors that are most likely to occur for each function. In
addition, every Open Transport function might return the result codes listed in
Table 3-1. For additional information, please look up the meaning of these
result codes in Appendix B (page 785).
68 About Providers

C H A P T E R 3

Providers
Table 3-1 Result codes that all Open Transport functions can return

Using Providers 3

This section explains how you obtain and change a providerÕs mode of
operation; it provides a more detailed discussion of asynchronous processing
and the use of notiÞer functions; and it explains how you close a provider.

Result code Meaning
kEBADFErr The provider reference you supplied is invalid.
kOTBadSyncErr You made a synchronous call at an inappropriate

level.
kENOMEMErr There is not enough memory to complete the

request.
kENOSRErr There are not enough system resources to complete

the request.
kEAGAINErr

kEWOULDBLOCKErr

A provider is in non-blocking mode and Open
Transport would have to block to complete the
request.

kOTProtocolErr An unspeciÞed protocol error occurred. This is
usually fatal. To recover, close the provider.

kOTClientNotInittedErr You have not initialized Open Transport or Open
Transport Utilities.

kOTOutStateErr The endpoint is not in an appropriate state for the
operation you wish to execute.

kOTStateChangeErr The endpoint is undergoing a transient state
change. This error is returned when you call a
function while an endpoint is in the process of
changing states. You should wait for an event
indicating the endpoint has Þnished changing state
and call the function again. The provider also
returns this error if you attempt to call an
ÒincompatibleÓ function while another operation is
still ongoing; for example if you call the function
OTSndUData while a call to the OTOptionManagement
function is still outstanding.
Using Providers 69

C H A P T E R 3

Providers
In addition to the functions used to set a providerÕs mode of operation and to
close a provider, general provider functions include the OTIoctl function,
which you can use to communicate directly with a STREAMS module
implementing a networking protocol. For more information, see the description
of that function in Providers Reference(page 383).

Controlling a Provider’s Modes of Operation 3

A providerÕs mode of operation determines how provider functions execute
and determines the behavior of provider functions that send and receive data.
You can control a providerÕs mode of operation by calling general provider
functions to specify whether provider functions execute synchronously or
asynchronously, whether provider functions can block, and whether they can
acknowledge sends. The following three sections provide additional
information about how you can obtain a providerÕs current mode of operation
and how you can change it.

Which Mode To Use 3

Use the following guidelines in determining which mode to use:

■ For easiest programming,

If you are using threads, use synchronous, blocking mode and call the
function OTUseSynchIdleEvents.
If you do not use threads, use synchronous, nonblocking and poll for events
using the function GetEndpointState.
Using providers in synchronous mode makes for very easy coding; however,
if they are also blocking, this could severely affect performance. One way to
manage this problem is to call the function OTUseSyncIdleEvents (page 410)
just after setting the providerÕs mode of operation. This function generates
events of the type kOTSyncIdleEvents and sends them to your notiÞer while
Open Transport is waiting to complete a synchronous call. On receipt of this
event, your notiÞer should call the system function YieldToAnyThread; this
transfers execution to another thread, thus allowing processing to continue
while your synchronous operation waits to complete. You should avoid
calling functions in synchronous mode at non-System-Task time.

■ For best performance, use asynchronous blocking mode.

Asynchronous processing requires some additional work: you must make
sure that memory you have allocated for a functionÕs output parameters is
70 Using Providers

C H A P T E R 3

Providers
persistent and you must use some sort of mechanism to determine when the
function has actually completed. These issues are taken up in the section
ÒUsing NotiÞer Functions to Handle Provider EventsÓ (page 73).

■ Never use asynchronous nonblocking mode.

Specifying How Provider Functions Execute 3

For each provider, you can control whether provider functions run
synchronously or asynchronously. When you open a provider, you set its
default mode of execution. For example, when you open an endpoint provider,
you can use either the function OTOpenEndpoint or OTAsyncOpenEndpoint. If you
open an endpoint provider using the OTAsyncOpenEndpoint function, Open
Transport creates the provider and sets the default execution mode for all the
providerÕs functions to asynchronous.

A providerÕs default mode of execution remains in effect until you change it by
calling either the OTSetSynchronous function or the OTSetAsynchronous function.
The new mode remains in effect until you change the mode again. A providerÕs
mode of execution affects only that provider. If you use two or more providers,
they need not operate in the same mode.

You should be aware that mixing synchronous and asynchronous calls can
cause critical problems. Take the following sequence as an example:

1. Set asynchronous mode.

2. Call a function.

3. Set synchronous mode; call a function.

4. The function called in step 2 completes, and the notiÞer installed for that
provider executes at deferred task time.

The problem is that the notiÞer function, called in step 4, now executes with the
provider in synchronous mode: the mode of execution is determined when a
function is called. Thus any Open Transport function called in the notiÞer will
execute synchronously. However, functions called from a notiÞer may not
execute synchronously; therefore your system will return an error. To avoid this
problem, make sure there are no outstanding asynchronous requests when
switching to synchronous mode.

The return behavior of certain provider functions is controlled not only by a
providerÕs mode of execution but also by the providerÕs blocking status,
Using Providers 71

C H A P T E R 3

Providers
described in the following section. Changing a providerÕs mode of execution
does not change its blocking status.

Setting a Provider’s Blocking Status 3

A newly created provider does not block, regardless of which Open Transport
function created it. After a provider is created, you can change its blocking
status as often as you like. A providerÕs blocking status affects only that
provider.

■ You use the OTSetBlocking function to set a providerÕs mode of operation
to blocking.

■ You use the OTSetNonBlocking function to set a providerÕs mode of operation
to nonblocking.

■ You use the OTIsNonBlocking function to determine whether a
provider blocks.

If a provider is blocking and you call a function synchronously, all processing
on the Macintosh is halted until the synchronous function completes. For
information on how to handle this situation, see ÒSpecifying How Provider
Functions ExecuteÓ (page 71).

If a provider is nonblocking, provider functions that cannot complete send or
receive operations return an error indicating the reason. The result returned
might be

■ kEAGAINErr or kEWOULDBLOCKErr, indicating that the function would have to be
queued before it could execute

■ kOTNoDataErr, indicating that data has not yet arrived

■ kOTFlowErr, indicating that the provider is flow controlled.

■ KENOMEMErr, indicating that there is not enough memory

In many of these cases, you should call the function again.

Setting a Provider’s Send-Acknowledgment Status 3

You can control the behavior of provider functions that send data by specifying
that the provider not make an internal copy of the data it is sending, but that it
relies entirely upon the data being in the buffer you provide. Asking the
provider not to make a copy is the same as asking it to acknowledge sends (the
Open Transport phrasing). In the current version, you can only specify that
72 Using Providers

C H A P T E R 3

Providers
endpoint providers acknowledge sends. For more detailed information about
this mode of operation, see ÒAcknowledging SendsÓ (page 215).

Using Notifier Functions to Handle Provider Events 3

When provider functions execute asynchronously, you can continue processing
without having to wait for a function to complete execution. In some cases, you
might need to know when the function has Þnished executing, either because
further processing depends on the results of that operation or because you
need to use memory you have allocated for that function. In order to meet this
need, the Open Transport architecture deÞnes completion events, which are
generated by a provider when an asynchronous function completes execution.
To pass the event to your application as well as other information about the
function that has completed, the provider calls a notiÞer function that you have
written and installed for that provider.

The provider uses the notiÞerÕs parameters to pass the following information
back to your application:

■ a context pointer for your use

You deÞne this pointer when you install the notiÞer function. When the
provider calls the notiÞer, it passes this pointer back to you. It is typically the
ProviderRef or a data structure that contains the ProviderRef.

■ an event code identifying the provider event

■ the function result if itÕs a completion event.

■ a pointer to additional information that the function is returning

This parameter is called the cookie parameter. For example, when you call a
function that assigns an address to an endpoint, you can request a particular
address. When the function returns, it passes back the address that is
actually assigned to the endpoint. If you call the function asynchronously,
this information is referenced by the cookie parameter.

If you open a provider in asynchronous mode, you install a notiÞer function by
passing a pointer to it in one of the parameters to the function used to open the
provider. If you open a provider in synchronous mode, you must install the
notiÞer by calling the OTInstallNotifier function (page 405). If you want to
change notiÞers, you must Þrst remove the old notiÞer by calling the
OTRemoveNotifier function (page 407) and then call the OTInstallNotifier
function to install the new notiÞer.
Using Providers 73

C H A P T E R 3

Providers
You are responsible for the contents of a notiÞer function. Typically, such a
function tests to see whether the function that just completed has returned an
error. If it has not, it uses a switch statement to transfer control to different
subroutines, depending on the event code passed to the notiÞer. In the notiÞer
shown Listing 3-1 fatal errors all break out of the switch to the default case. The
notiÞer sample is intended to give you a sense of how such code is structured.
In general, the notiÞer does not need to handle every completion event, just
those that you expect to happen and that have meaning for the provider you
are opening. You should ignore any events you are not expecting.

Listing 3-1 A notifier function

static pascal void Notifier(void* context, OTEventCode event, OTResult
result, void* cookie)
{

EPInfo* epi = (EPInfo*) context;

switch (event)
{

case T_LISTEN:
{

DoListenAccept();
return;

}

case T_ACCEPTCOMPLETE:
{

if (result != kOTNoError)
DBAlert1("Notifier: T_ACCEPTCOMPLETE - result %d",

result);
return;

}

case T_PASSCON:
{

if (result != kOTNoError)
{

DBAlert1("Notifier: T_PASSCON result %d", result);
return;

}

74 Using Providers

C H A P T E R 3

Providers
OTAtomicAdd32(1, &gCntrConnections);
OTAtomicAdd32(1, &gCntrTotalConnections);
OTAtomicAdd32(1, &gCntrIntervalConnects);
if (OTAtomicSetBit(&epi->stateFlags, kPassconBit) != 0)
{

ReadData(epi);
}
return;

}

case T_DATA:
{

if (OTAtomicSetBit(&epi->stateFlags, kPassconBit) != 0)
{

ReadData(epi);
}
return;

}

case T_GODATA:
{

SendData(epi);
return;

}

case T_DISCONNECT:
{

DoRcvDisconnect(epi);
return;

}

case T_DISCONNECTCOMPLETE:
{

if (result != kOTNoError)
DBAlert1("Notifier: T_DISCONNECT_COMPLETE result %d",

result);
return;

}

case T_MEMORYRELEASED:
{

Using Providers 75

C H A P T E R 3

Providers
OTAtomicAdd32(-1, &epi->outstandingSends);
return;

}

default:
{

DBAlert1("Notifier: unknown event <%x>", event);
return;

}
}

}

You can use a notiÞer function to handle asynchronous events as well as
completion events. A provider uses asynchronous events to inform your
application that data has arrived or that a connection or disconnection request
is pending.The method used is the same as for completion events. You must
include case statements in the notiÞer that are pertinent to the asynchronous
events you expect to receive.

The provider calls your notiÞer function at deferred task time or at system task
time. This means that the routines called from your notiÞer

■ might need to be reentrant

■ cannot move or purge memory

■ cannot depend on the validity of handles to unlocked blocks

■ should not perform time-consuming tasks

■ should not make synchronous calls to Open Transport

■ should not make synchronous Device Manager or File Manager calls

The only exception to these rules occurs when you are responding to the event
kOTProviderWillClose. See the event codes enumeration (page 383) for
additional information.

Open Transport might call a notiÞcation routine reentrantly. Open Transport
attempts to queue calls to a notiÞcation routine to prevent reentrancy and to
keep the processor stack from growing, but this behavior is not guaranteed.
You should be prepared and write your notiÞcation routine defensively. For
additional information, see ÒMyNotiÞerCallbackFunctionÓ (page 413).

If you execute provider functions asynchronously, you must also take special
care about the duration of the functionÕs variables. A function that is executed
76 Using Providers

C H A P T E R 3

Providers
asynchronously returns immediately, and the stack frame of the function that
called it might be torn down before you have had a chance to retrieve the
information returned in the parameters to the asynchronous function (using
the notiÞer functionÕs cookie parameter). If these parameters are local variables
in the calling function, the information passed back by the asynchronous
function is lost. To avoid this situation, you need to write the function that calls
the asynchronous function in such a way that the memory pointed to by
its return parameters is not overwritten. For example, you could make these
variables global or use the function OTAllocMem to allocate them.

Transferring a Provider’s Ownership 3

An Open Transport client is any task that calls the InitOpenTransport function.
Open Transport keeps track of the owner of each provider, and when a client
dies or quits without closing all of its outstanding providers, Open Transport
attempts to close them on behalf of the client. Every shared library, code
resource, or program that creates an endpoint, or uses one of the endpoint
functions that allocate memory on behalf of the client, is a client of Open
Transport. For ASLM shared libraries and applications, Open Transport can
clean up after the library or application easily. For CFM shared libraries and
code resources, however, the client must call CloseOpenTransport before
terminating (this can be done by making CloseOpenTransport the termination
procedure for the CFM library).

Although itÕs not a frequent occurrence, there may be times when it is not
convenient for you to lose access to a provider. For example, if you are still
using a provider created by a shared library when that shared library is
unloaded or you are still using a provider reference passed by another
application when that application quits, you will Þnd yourself using invalid
references unexpectedly.

In cases where you do not want Open Transport to close a given provider, you
can deÞne yourself as its new owner with the OTTransferProviderOwnership
function (page 390). You need to obtain the previous ownerÕs client ID before
the client terminates, and then pass it to Open Transport along with the
provider reference for the provider. Open Transport allocates a new provider
reference and returns the new reference to you. The old provider reference is
then invalid and should not be used. Listing 3-2 furnishes an example of
transferring a providerÕs ownership. In this example, an Open Transport client,
the ProviderFactory library, creates an endpoint. It then passes the endpoint
reference back to another Open Transport client, the TransferProvider
Using Providers 77

C H A P T E R 3

Providers
application. The application is responsible for transferring the ownership of the
endpoint from the library to itself before shutting down the library; it does so
using the GetProviderFromFactory function.

Listing 3-2 Transferring provider ownsership

static OSStatus GetProviderFromFactory(void)
{

OSStatus err;
EndpointRef originalEndpoint;
OTClient originalOwner;
EndpointRef newEndpoint;
TEndpointInfo newEndpointInfo;

/* Use the factory library to create an endpoint.*/

err = FactoryCreateEndpoint(&originalEndpoint, &originalOwner);

if (err == noErr) {

/* Transfer the ownership of endpoint, so that OT knows we now own it */

newEndpoint = OTTransferProviderOwnership(originalEndpoint,
originalOwner, &err);

if (err == noErr) {

/* We can now use newEndpoint as if we created it. */
/* We call OTGetEndpointInfo as an example of an operation */
/* on the endpoint.*/

err = OTGetEndpointInfo(newEndpoint, &newEndpointInfo);

if (err == noErr) {
printf("Maximum size of endpoint address = %ld.\n",

newEndpointInfo.addr);
}

OTCloseProvider(newEndpoint);
}

78 Using Providers

C H A P T E R 3

Providers
}

return err;
}

void main(void)
{/* initialize connection to Open Transport */

OSStatus err;

err = InitOpenTransport();
if (err == noErr) {

/* initialize the provider factory library. */
err = InitProviderFactory();

if (err == noErr) {
/* call GetProviderFromFactory to demonstrate */
/* use of OTTransferProviderOwnership */

err = GetProviderFromFactory();

CloseProviderFactory();
}

CloseOpenTransport();
}
if (err == noErr) {

printf("Success!\n");
} else {

printf("Failed with error %ld.\n", err);
}

}

Closing a Provider 3

There are two instances in which you need to close a provider:

■ when you are through using the services offered by a provider

You do this by calling the OTCloseProvider function and passing the provider
reference of the provider you wish to close.

■ in response to a kOTProviderWillClose event or a kOTProviderIsClosed event.
Using Providers 79

C H A P T E R 3

Providers
If you get a kOTProviderIsClosed event, the service underlying your provider
is already gone; closing the provider only frees up memory resources.

Closing a provider deletes all memory reserved for it in the system heap,
deletes its resources, and cancels any provider functions that are currently
executing.

If you have opened a provider asynchronously (for example, by calling the
AsyncOpenEndpoint function), it is not possible to close it before the call has
completed. This might happen if the user quits the application before the
provider has opened. For this reason, it is safer to open a provider
synchronously and then to use the OTSetAsynchronous function to set the
execution mode.

The blocking status of a provider governs what happens when the provider is
closed. In non-blocking mode, closing the provider ßushes all outgoing
commands in the stream and immediately closes the provider. In blocking
mode, the stream is given up to 15 seconds per module to allow outgoing
commands and data to be processed before the stream is closed.

If you are closing a provider in response to a kOTProviderWillClose event, note
that Open Transport issues this event only at system task time. Thus, you can
set the endpoint to synchronous mode (from within the notiÞer function) and
call functions synchronously to do whatever clean-up is necessary before you
return from the notiÞer.
80 Using Providers

C H A P T E R 4

Contents

Contents
Figure 4-0
Listing 4-0
Table 4-0
4 Endpoints
About Endpoints 83
Endpoint Types and Type of Service 85
Naming Conventions for Endpoint Functions 85
Endpoint Options 87
Modes of Operation 88
Endpoint States 89
Transport Service Data Units 98

Using Endpoints 99
Opening and Binding Endpoints 100
Obtaining Information About E ndpoints 101
Handling Events for Endpoints 102

Clearing Events and Synchronization Problems 104
NotiÞer Reentrancy 104
Polling for Events 105

Establishing and Terminating Connections 105
Establishing a Connection 107
Terminating a Connection 112

Sending and Receiving Data 118
Sending Data Using Multiple Sends 118
Receiving Data 119

Transferring Data Between Transactionless Endpoints 119
Using Connectionless Transactionless Service 119
 Using Connection-Oriented Transactionless Service 120

Transferring Data Between Transaction-Based Endpoints 121
Using Connectionless Transaction-Based Service 123
Using Connection-Oriented Transaction-Based Service 125
81

C H A P T E R 4
82 Contents

C H A P T E R 4
Endpoints 4

This chapter explains how your application can use endpoints to communicate
with endpoint providers, the layered set of protocol modules that provide data
transfer services. The chapter describes

■ the services offered by different types of endpoint providers

■ how you use endpoint functions to obtain information about endpoints, to
establish connections, and to transfer data

To understand this chapter, you must Þrst read the chapters ÒIntroduction to
Open TransportÓ (page 5) and ÒProvidersÓ (page 61), which introduce many of
the concepts discussed and further elaborated in this chapter.

This chapter offers minimal information about options, values you can specify
to control the behavior of providers; these values are set and sometimes
retrieved by clients. For information about options, you must read the chapter
ÒOption ManagementÓ (page 165).

After you are familiar with the concepts described in this chapter, you can get
additional information about transferring data and improving performance in
ÒProgramming With Open TransportÓ (page 129) and in ÒAdvanced TopicsÓ
(page 215).

About Endpoints 4

An endpoint is the communications path between your application and an
endpoint provider, which is a layered set of protocols that deÞne how data and
other information are exchanged between you and a remote client. The
endpoint consists of a set of data structures, maintained by Open Transport,
that specify the components of the endpoint provider and the manner in which
the provider is to operate. In the process of opening an endpoint, you conÞgure
the endpoint provider and specify the protocol or set of protocols you want to
use to transfer data and, if required, the hardware link. The section
ÒConÞguring and Opening a ProviderÓ (page 34) explains how you specify the
software and hardware support your application requires. Whether you specify
a single protocol or a layered set of protocols, the type of service provided by
the highest-level protocol deÞnes the type of the endpoint. For example, if you
specify the AppleTalk Transaction Protocol (ATP), which offers connectionless
transaction-based service, the endpoint is a connectionless transaction-based
endpoint.
About Endpoints 83

C H A P T E R 4

Endpoints
When you open an endpoint, Open Transport creates a data structure that
contains information about the services the endpoint provider offers, the limits
on the size of data it can send and receive, the size of internal buffers used to
hold data, the current state of the endpoint, and so on. Open Transport obtains
this information from the particular protocol implementations that you specify
when you conÞgure the endpoint provider. You can access information in some
Þelds of this structure by calling functions that return information about the
endpoint provider. Other Þelds of the structure are private and can be accessed
only by Open Transport.

Opening an endpoint also creates an endpoint reference, a number that
uniquely identiÞes this endpoint and that you must specify when calling any
function relating to this endpoint.

Before you can use the endpoint to transfer data, you must bind the endpointÑ
that is, you must associate the endpoint with a protocol address. Depending on
the protocol you use, you can specify this address as a symbolic name or as a
network address. SpeciÞc address binding rules and address formats also vary
with the protocol you use. In general, you cannot bind more than one
connectionless endpoint to an address, but you can bind several
connection-oriented endpoints to a single address.

Open Transport functions that you can use only with endpoints are called
endpoint functions. You use endpoint functions to create and bind an
endpoint, to obtain information about an endpoint, to establish and break
down connections, and to transfer data. What functions you can call for an
endpoint depend on the type of the endpoint and on its state. The behavior of a
function is determined by the endpointÕs mode of operation. In order to write
Open Transport applications that behave in a reliable and predictable manner,
it is important that you understand how these factors affect the behavior of an
endpoint provider. This section describes the different types of endpoints,
describes the effect of an endpointÕs mode of operation on the behavior of
endpoint functions, and explains how Open Transport uses information about
endpoint states to manage endpoints.
84 About Endpoints

C H A P T E R 4

Endpoints
Endpoint Types and Type of Service 4

There are four types of endpoints, each offering a different type of service:

■ connection-oriented transactionless service

This type of service allows for the transfer of very large amounts of data
with guaranteed data delivery and a reliable data stream. ADSP and TCP
provides this type of service.

■ connection-oriented transaction-based service

This type of service allows you to conclude an unlimited number of parallel
transactions. It guarantees delivery and can detect duplicate sends. ASP (not
currently implemented) provides this type of service.

■ connectionless transactionless service

This type of service provides best-effort delivery and allows the transfer of
relatively small amounts of data at one time.Some protcols can calculate
checksums for incoming packets; IP and DDP provide this type of service.

■ connectionless transaction-based service

This type of service allows for the transfer of larger amounts of data than
connectionless transactionless service. It also provides some error checking,
detects duplicate sends, and guarantees that response packets are delivered
in the order sent. ATP provides this type of service.

The chapter ÒIntroduction to Open TransportÓ (page 5) deÞnes and describes
the different services that each protocol offers and explains some of the criteria
you might use for selecting a speciÞc type. The documentation for the protocol
you are using provides information about how a type of service is
implemented for your endpoint and the options that you can use to Þne-tune
its behavior. The section ÒUsing EndpointsÓ (page 99) describes how you use
endpoint functions to implement these services. However, before you read that
section, you might Þnd it helpful to understand the naming conventions used
for endpoint functions because these are directly related to an endpointÕs type
of service. These conventions are described in the next section.

Naming Conventions for Endpoint Functions 4

You can use endpoint functions that return information about the endpointÕs
state, address, or modes of execution with all endpoint types. However, the
type of the endpoint determines which endpoint functions you can call to
About Endpoints 85

C H A P T E R 4

Endpoints
transfer data. There is no single function that you can use to send data or to
receive data. For example, when you send data using a connectionless
transactionless endpoint, you call the OTSndUData function; when you send data
using a connection-oriented transactionless endpoint, you call the OTSnd
function. Table 4-1 presents a summary of the function names for functions
used to transfer data. The functions are grouped together based on the
endpointÕs type of service.

The following bulleted items explain the5 conventions used to name the
different groups of functions:

■ Transaction-based endpoints send and receive requests and replies. If a
function name contains the string ÒRequestÓ or ÒReply,Ó you use the
function for a transaction-based endpoint; for example, OTSndURequest or
OTSndRequest.

■ Transactionless endpoints send and receive data, not requests or replies. If a
function name contains the string ÒSndÓ or ÒRcvÓ but does not contain
ÒRequestÓ or ÒReply,Ó you use the function for a transactionless endpoint;
for example, OTSnd or OTSndUData.

■ Connectionless endpoints must include the destination address as a
parameter to every send operation and the source address as a parameter to

Table 4-1 The names of functions used to transfer data

Connectionless Connection-oriented

Transactionless OTSndUData

OTRcvUData

OTRcvUDErr

OTSnd

OTRcv

Transaction-based OTSndURequest

OTRcvURequest

OTSndUReply

OTRcvUReply

OTCancelURequest

OTCancelUReply

OTSndRequest

OTRcvRequest

OTSndReply

OTRcvReply

OTCancelRequest

OTCancelReply
86 About Endpoints

C H A P T E R 4

Endpoints
every receive operation. This is signalled by the letter ÒUÓ in the name of a
function. Thus, you call the OTSndUData function for a connectionless
transactionless endpoint, but you call the OTSndURequest function for a
connectionless transaction-based endpoint.

■ Connection-oriented endpoints do not need to include addresses in send
and receive operations because establishing the connection also determines
the addresses, which do not change during a session. The names of
functions that can be called for connection-oriented endpoints are exactly
the same as for connectionless endpoints except that the ÒUÓ is omitted.
Thus, you call the OTSnd function for a connection-oriented transactionless
endpoint and the OTSndRequest function for a connection-oriented
transaction-based endpoint.

Of course, you can use the functions that establish and tear down connections
only with connection-oriented endpoints. These functions suggest their use in
their names: for example, OTConnect or OTSndDisconnect.

Connection-oriented endpoints support two kinds of disconnects: abortive
disconnects and orderly disconnects. An abortive disconnect breaks a
connection immediately, even if this were to result in loss of data; an orderly
disconnect (or Òorderly releaseÓ) allows an endpoint to send all data remaining
in its send buffer before it breaks a connection. These two kinds of disconnects
are reßected in the names of the functions used: OTSndDisconnect for an
abortive disconnect and OTSndOrderlyDisconnect for an orderly disconnect.

Endpoint Options 4

The goal of Open Transport is to abstract basic types of service offered by
network protocols. For example, ADSP and TCP both offer connection-oriented
transactionless service. As a result, changing the endpoint to a different
protocol (but one that provides the same type of service) would require
minimal changes to the application and consequently make your application
virtually independent of the underlying transport used to transfer data.
Achieving transport independence, however, also means being willing to
forego any special advantages or features that a protocol has to offer. If it is not
possible for you to do without these features, you can use options to take
advantage of protocol-speciÞc features.

An option is a value you can set for an endpoint, to link the behavior of the
provider more closely to a speciÞc protocol. By using options, you can take
advantage of a feature that is unique to a protocol.
About Endpoints 87

C H A P T E R 4

Endpoints
In general, the use of options decreases the transport independence of your
application. When you open an endpoint, the endpoint provider creates a
buffer containing default option values that it chooses to ensure maximum
portability across protocol families. It is recommended that you use these
values rather than setting different values. However, if you need to customize
transport services, you might need to specify different option values. Selecting
alternate option values begins a process called option negotiation. Besides
noting those instances in which you can specify option information when
calling endpoint functions, this chapter provides no information about options.
For detailed information about options and for a description of the
OTOptionManagement endpoint function, see ÒOption ManagementÓ (page 165).

Modes of Operation 4

An endpoint provider, like other Open Transport providers, can also be
characterized by its mode of operation, which determines

■ whether the functions used for that endpoint provider execute
synchronously or asynchronously

■ whether the provider blocks or waits when sending or receiving data

■ whether the provider copies data that you want to send before sending it

The chapter ÒProvidersÓ (page 61) explains these concepts and describes the
functions you use to get and set a providerÕs mode of operation.

One thing to keep in mind is that not all endpoint functions operate differently
in asynchronous mode. Those functions that do behave differently are listed in
Table 4-2. For each function, the table lists the corresponding completion event.

Table 4-2 Endpoint functions that behave differently in synchronous and
asynchronous modes

Function Completion event

OTOptionManageme
nt

T_OPTIONMANGEMENTCOMPLETE

OTBind T_BINDCOMPLETE

OTUnbind T_UNBINDCOMPLETE

OTAccept T_ACCEPTCOMPLETE
88 About Endpoints

C H A P T E R 4

Endpoints
Endpoint States 4

Each endpoint has an attribute known as its endpoint state. An endpoint state
governs which endpoint functions you can call for the endpoint. For example,
if you open an endpoint but do not bind it, it is in the T_UNBND state and the
only two functions you can call for the endpoint are OTCloseProvider or OTBind.

The endpointÕs type of service determines the possible states an endpoint can
be in while it is transferring data. For example, a connectionless endpoint can
only transfer data while it is in the T_IDLE state, and a connection-oriented
endpoint can only transfer data while it is in the T_DATAXFER state. Table 4-3
describes possible endpoint states for connectionless and connection-oriented
endpoints and suggests in parentheses an English equivalent for the name of
each constant.

OTSndRequest T_REQUESTCOMPLETE

OTSndReply T_REPLYCOMPLETE

OTSndURequest T_REQUESTCOMPLETE

OTSndUReply T_REPLYCOMPLETE

OTSndDisconnect T_DISCONNECTCOMPLETE

OTGetProtAddress T_GETPROTADDRCOMPLETE

OTResolveAddress T_RESOLVEADDRCOMPLETE

Table 4-2 Endpoint functions that behave differently in synchronous and
asynchronous modes (continued)

Function Completion event
About Endpoints 89

C H A P T E R 4

Endpoints
Table 4-3 Endpoint states

State Meaning

T_UNINIT Uninitialized. This endpoint has been closed and destroyed or
has not been created.

T_UNBND Unbound. This endpoint is initialized but has not yet been
bound to an address.

T_IDLE Idle. This endpoint has been bound to a local protocol address
and is ready for use. Connectionless endpoints can send or
receive data; connection-oriented endpoints can initiate or
listen for a connection.

T_OUTCON Outgoing connection request. This connection-oriented
endpoint has initiated a connection and is waiting for the
remote peer to accept the connection.

T_INCON Incoming connection request. This connection-oriented
endpoint has received a connection request but has not yet
accepted or rejected the request.

T_DATAXFER Data transfer. This connection-oriented endpoint can now
transfer data because the connection has been established.

T_OUTREL Outgoing release request. This connection-oriented endpoint
has issued an orderly disconnect that the remote peer has not
acknowledged. The endpoint can continue to read data but
must not send any more data.

T_INREL Incoming release request. This connection-oriented endpoint
has received a request for an orderly disconnect, which it has
not yet acknowledged. The endpoint can continue to send data
until it acknowledges the disconnection request, but it must not
read data.
90 About Endpoints

C H A P T E R 4

Endpoints
Figure 4-1 shows a diagram illustrating the possible endpoint states for a
connectionless endpoint.

Figure 4-1 Typical endpoint states for a connectionless endpoint

A connectionless endpoint can be in one of three states: T_UNINIT,T_UNBND, or
T_IDLE. Before you open the endpoint, it is in the T_UNINIT state. After you open
the endpoint but before you bind it, it is in the T_UNBND state. After you bind the
endpoint, it is in the T_IDLE state and is ready to transfer data. A connectionless
transactionless endpoint would use the OTSndUData or OTRcvUData functions to
transfer data; a connectionless transaction-based endpoint would use the
OTSndURequest, OTRcvURequest, OTSndUReply, and OTRcvUReply functions to
transfer data. When the endpoint Þnishes transferring data, you must Þrst
unbind the endpointÑthat is, dissociate the endpoint from its address. At this
stage, the endpoint returns to the T_UNBND state. Then you can close the
endpoint, at which time the endpoint returns to the T_UNINIT state.

T_UNBND

Close endpoint

OTUnbind

Open endpoint

OTBind

T_UNINIT

T_IDLE

Receive dataSend data
About Endpoints 91

C H A P T E R 4

Endpoints
Figure 4-2 shows a state diagram illustrating the possible endpoint states for a
connection-oriented endpoint.
92 About Endpoints

C H A P T E R 4

Endpoints
Figure 4-2 Possible endpoint states for a connection-oriented endpoint

T_UNINIT

T_UNBND

T_IDLE

T_INCON T_OUTCON

T_INREL T_OUTREL

T_DATAXFER

OTCloseProvider

OTUnbind

OTConnect

OTRcvConnect

OTSnd

OTOpenEndpoint

OTBind

OTListen

OTAccept

OTRcv

Key:
Active peer
Passive peer

OTRcvDisconnect

OTSndDisconnect

OT
Rc

vO
rd

er
ly

Di
sc

on
ne

ct

OTSndOrderlyDisconnectOTRcvOrderlyDisconnect
OTSndOrderlyDisconnect

OTSnd OTRcv
About Endpoints 93

C H A P T E R 4

Endpoints
Like a connectionless endpoint, a connection-oriented endpoint is in the
T_UNINIT state until you open it and then in the T_UNBND state until you bind it.
After you bind an endpoint but before you inititate a connection, an endpoint is
in the T_IDLE state.

During the connection process, the endpoint provider initiating the connection,
known as the active peer, calls the OTConnect function to request a connection.
At this point, the active peer is in the T_OUTCON state. The endpoint provider
listening for a connection request, known as the passive peer, calls the OTListen
function to read an incoming request. After it has read the request, the passive
peer changes to the T_INCON state. It can now either accept the connection using
the OTAccept function or reject the connection using the OTSndDisconnect
function (not shown in Figure 4-2). If the endpoint accepts the connection, it
changes to the T_DATAXFER state; if it rejects the connection it goes back to the
T_IDLE state.

The active peer must acknowledge the response using the OTRcvConnect
function (for a connection that has been accepted) or the OTRcvDisconnect
function (for a connection that has been rejected). Calling the OTRcvConnect
function establishes the connection and places the active peer in the T_DATAXFER
state. Calling the OTRcvDisconnect function rejects the connection and places the
active peer in the T_IDLE state (not shown in Figure 4-2). After they are
connected, endpoints can transfer data using simple send and receive
operations or using transaction requests and replies, depending on whether the
endpoint is transactionless or transaction-based.

When you have Þnished transferring data, you should tear down the
connection by using an orderly disconnect process if possible. That is, you
should check to see whether the protocol supports an orderly disconnect. If it
does, you initiate this process by calling the OTSndOrderlyDisconnect function.
This places the calling endpoint in the T_OUTREL state. It also creates a pending
T_ORDREL event for the other endpoint. The endpoint to which you have sent the
disconnection request can become aware of the event by means of a notiÞer
function or by calling the OTLook function. It must then acknowledge receiving
the disconnection request by calling the OTRcvOrderlyDisconnect function. Then
it must tear down its side of the connection by also calling the
OTSndOrderlyDisconnect function, which you must also acknowledge.
Disconnecting the endpoints places them in the T_IDLE state again, and you can
reconnect or close them.
94 About Endpoints

C H A P T E R 4

Endpoints
Note
It is not required that the active peer in the disconnect
phase be the same as the active peer in the connect
pahse ◆.

Open Transport uses endpoint state information to manage endpoints.
Consequently, it is crucial that you call functions in the right sequence and that
you call functions to acknowledge receipt of data as well as of connection and
disconnection requests. Sending these acknowledgments is necessary to leave
the endpoint in an appropriate state for further processing.

Table 4-4 lists the functions that can change an endpointÕs state and speciÞes
what the resulting state is depending on whether the function succeeds or fails.

Table 4-4 Functions that can change an endpoint’s state

Function Valid state before calls

State after call

if call
succeeds if call fails

OTOpenEndpoint T_UNINIT T_UNBND n/a

OTAsyncOpenEndpoint T_UNINIT T_UNBND n/a

OTBind T_UNBND T_IDLE T_UNBND

OTUnbind T_IDLE T_UNBND

OTGetEndpointInfo any but T_UNINIT

OTGetEndpointState any but T_UNINIT

OTLook any but T_UNINIT

OTGetProtAddress any but T_UNINIT

OTResolveAddress any but T_UNINIT

OTSync any but T_UNINIT

OTAlloc any but T_UNINIT

OTFree any but T_UNINIT

OTCountDataBytes T_IDLE

OTSndUData T_IDLE

OTRcvUDErr T_IDLE
About Endpoints 95

C H A P T E R 4

Endpoints
OTRcvUData T_IDLE

OTSndURequest T_IDLE

OTSndUReply T_IDLE

OTRcvUReply T_IDLE

OTCancelURequest T_IDLE

OTCancelUReply T_IDLE

OTConnect T_IDLE T_OUTCON T_IDLE

OTListen T_IDLE, T_INCON

OTAccept

--destination

--source

T_IDLE, T_UNBND

T_INCON

T_DATAXFER

T_INCON
T_IDLE

T_IDLE,
T_UNBND

T_INCON

OTSnd T_DATAXFER, T_INREL

OTRcv T_DATAXFER, T_OUTREL

OTSndRequest T_DATAXFER, T_INREL

OTRcvRequest T_DATAXFER, T_OUTREL

OTSndReply T_DATAXFER, T_OUTREL

OTRcvREply T_DATAXFER, T_INREL

OTCancelRequest T_DATAXFER

OTCancelReply T_DATAXFER

OTSndDisconnect T_DATAXFER, T_INREL,
T_OUTCON, T_OUTREL

T_INCON

T_IDLE

T_IDLE,
T_INCON

state
before
call

T_INCON

Table 4-4 Functions that can change an endpoint’s state (continued)

Function Valid state before calls

State after call

if call
succeeds if call fails
96 About Endpoints

C H A P T E R 4

Endpoints
The arrival of an asynchronous event can also change the state of an endpoint.
Table 4-5 shows the state of the endpoint before the event is received and the
state of the endpoint after the event is consumed. An event is consumed or
cleared when your application acknowledges receipt of the event. For example,
if you get a T_LISTEN event, you call the OTListen function; after you get a
T_DISCONNECT event, you call the OTRcvDisconnect function.

OTRcvDisconnect T_DATAXFER, T_INREL,
T_OUTCON, T_OUTREL

T_INCON

T_IDLE

T_IDLE,
T_INCON

state
before
call

T_INCON

OTSndOrderlyDisconn
ect

T_DATAXFER

T_INREL

T_OUTREL

T_IDLE

T_DATAXFER

T_INCON

OTRcvOrderlyDisconn
ect

T_DATAXFER

T_OUTREL

T_INREL

T_IDLE

T_DATAXFER

T_OUTREL

Table 4-5 Events that can change an endpoint’s state

Old state Event New state Consuming function

T_IDLE T_LISTEN T_INCON OTListen

T_IDLE T_CONNECT T_DATAXFER OTRcvConnect

T_IDLE
T_UNBND

T_PASSCON T_DATAXFER none

T_OUTCON
T_DATAXFER
 T_OUTREL
T_INREL

T_DISCONNECT T_IDLE OTRcvDisconnect

T_DATAXFER T_ORDREL T_INREL OTRcvOrderlyDisconnect

T_INCON T_DISCONNECT T_IDLE
T_INCON

OTRcvDisconnect

Table 4-4 Functions that can change an endpoint’s state (continued)

Function Valid state before calls

State after call

if call
succeeds if call fails
About Endpoints 97

C H A P T E R 4

Endpoints
The section ÒHandling Events for EndpointsÓ (page 102) lists the asynchronous
events that a provider can issue and the functions you must call to clear these
events.

Transport Service Data Units 4

The main purpose of endpoints is to transfer data. The terms transport service
data unit and expedited transport service data unit are used to describe the
size and kind of data that a particular endpoint can handle when it is
transferring data in discrete units known as datagrams. Not all protocols use
transport service data units to transfer data.

A transport service data unit (TSDU) refers to the largest piece of data that an
endpoint can transfer with boundaries and content preserved unchanged.
Different types of endpoints and different endpoint implementations support
different size TSDUs.

An expedited transport service data unit (ETSDU), refers to the largest piece
of expedited data than an endpoint can transfer. Expedited data is considered
to be urgent. Not all endpoint providers can transfer expedited data. Usually,
connection-oriented and transaction-based endpoints require the use of
expedited data for control or attention messages, and therefore the
implementation of these types of endpoints often supports the transfer of
expedited data.

Three special constants are used to specify information about TSDUs and
ETSDUs:

■ T_INFINITE speciÞes that there is no limit to the size of a TSDU

■ T_INVALID means that the endpoint does not support this type of data

■ 0 means that TSDUs are not supported

For additional information, see ÒThe TEndpointInfo StructureÓ (page 426).

When you open an endpoint, Open Transport creates an endpoint information
structure, a TEndpointInfo structure, that you can examine to Þnd out whether
the endpoint supports normal or expedited data and the maximum size of this
data. The section ÒObtaining Information About E ndpointsÓ (page 101)
explains how you examine this structure to Þnd out this information.
98 About Endpoints

C H A P T E R 4

Endpoints
Using Endpoints 4

This section begins by explaining how you create an endpoint and associate it
with an address. Next, it introduces the functions you can use to obtain
information about endpoints and discusses some issues relating to
asynchronous processing that speciÞcally affect endpoint providers. Then, it
explains some issues relating to data transfer that apply to all types of endpoint
providers. Finally, it describes how you can implement each type of service.

No matter what type of service you want to implement, you must read the
sections ÒOpening and Binding Endpoints,Ó ÒObtaining Information About E
ndpoints,Ó ÒHandling Events for Endpoints,Ó and ÒSending and Receiving
Data.Ó After you have read these sections, you can read the section describing
the type of service you are interested in implementing.

Table 4-6 shows how some of the Open Transport protocols Þt with an
endpointÕs type of service. For example, if you want to use ATP, you would
need to read the section ÒUsing Connectionless Transaction-Based ServiceÓ
(page 123). If you want to use ADSP, you would need to read the section
ÒEstablishing and Terminating ConnectionsÓ (page 105) and the section ÒUsing
Connection-Oriented Transactionless ServiceÓ (page 120).

Table 4-6 The Open Transport type-of-service matrix and some Open Transport
protocols

Connectionless Connection-oriented

Transactionless DDP
PPP
IP
UDP

Serial connection
ADSP
PAP
TCP

Transaction-based ATP
Using Endpoints 99

C H A P T E R 4

Endpoints
Note
The sections that follow present information in such a way
as to suggest that communication is always taking place
between two Open Transport clients. This does not have to
be true. For example, an Open Transport client using a
connectionless transactionless DDP endpoint can
communicate seamlessly with a client using classic
AppleTalkÕs DDP protocol and interface. However,
because this book is about Open Transport, we always
show how communication works between two Open
Transport clients. ◆

Opening and Binding Endpoints 4

After you have initialized Open Transport and determined what the endpoint
conÞguration is going to be then, you can open and bind the endpoint. You
open the endpoint with the OTOpenEndpoint or OTAsyncOpenEndpoint functions.
Opening an endpoint with the OTOpenEndpoint function sets the default mode of
execution to be synchronous; opening an endpoint with the
OTAsyncOpenEndpoint function sets the default mode of execution to be
asynchronous. You can change an endpointÕs mode of execution at any time by
calling the OTSetSynchronous or OTSetAsynchronous functions, which are
described in ÒProvidersÓ (page 61).

One of the parameters that you pass to the function used to open the endpoint
is a pointer to a conÞguration structure that Open Transport needs to deÞne the
protocol stack providing data transport services. The chapter ÒGetting Started
With Open TransportÓ (page 31), contains information about creating a
conÞguration structure for an endpoint provider.

If you use the OTAsyncOpenEndpoint function to open an endpoint, you also
specify a notiÞer function that the endpoint provider can
use to call your application when an asynchronous or completion event takes
place. If you use the OTOpenEndpoint function to open an endpoint, and you
want to handle asynchronous events using a notiÞer function, you must
use the OTInstallNotifier function (page 405) to install your notiÞer function.

When Open Transport creates an endpoint, it establishes important state
information for the endpoint, including information about

■ the endpointÕs modes and type of service
100 Using Endpoints

C H A P T E R 4

Endpoints
■ the size of normal transport service data units (TSDUs) and expedited
transport service data units (ETSDUs) or, in the case of transactions, the size
of replies and requests

■ the maximum size of buffers used to hold address and option information
for the endpoint

■ default option values for the endpoint

You can retrieve this information by calling functions that return information
about the endpoint. These functions are described in the next section,
ÒObtaining Information About E ndpointsÓ (page 101).

When the function you use to open the endpoint returns, it passes back to you
an endpoint reference. You can pass this reference as a parameter to any
endpoint provider function or any general provider function. For example, you
pass this reference as a parameter to the OTBind function, which you must use
to bind an endpoint after opening it.

Binding an endpoint associates the endpoint with a logical address. Depending
on the protocol you use and on your applicationÕs needs, you can select a
speciÞc address or you can have the protocol choose an address for you. For
information about valid address formats, consult the documentation for your
protocol. The general rule for binding endpoints is simple: you cannot bind
more than one connectionless endpoint to a single address. You can bind more
than one connection-oriented endpoint to the same address; for additional
information about this possibility, see the section ÒProcessing Multiple
Connection RequestsÓ (page 111).

No matter what type of service you need to implement, you must know how to
obtain information about the endpoints you have opened and how to handle
asynchronous and completion events for these endpoints. These issues are
addressed in the next two sections, ÒObtaining Information About E ndpointsÓ
(page 101), and ÒHandling Events for EndpointsÓ (page 102) After you read
these sections, you can proceed by reading about the type of service you want
to implement.

Obtaining Information About E ndpoints 4

While you can use general provider functions to determine an endpointÕs mode
of execution, you must use endpoint-speciÞc functions to obtain the endpointÕs
type of service, state, or address.
Using Endpoints 101

C H A P T E R 4

Endpoints
The TEndpointInfo structure contains most of the information you need to
determine how you can use an endpoint. You can obtain a copy of this
structure when you open the endpoint, or by calling the OTGetEndpointInfo
function. This structure speciÞes the maximum size of the buffers you need to
allocate when calling functions that return address and option information or
data, and it also contains more speciÞc details about the type of service the
endpoint provides. For example, if you have opened a connection-oriented
endpoint, the servtype Þeld of the TEndpointInfo structure speciÞes whether
the endpoint supports orderly release.

To obtain information about an endpointÕs state, you call the function
OTGetEndpointState. This function returns a positive integer indicating the
endpoint state or a negative integer corresponding to a result code. Table 4-3
(page 90) lists and describes endpoint states. If the endpoint is in asynchronous
mode and you are not using a notiÞer function, you can use the
OTGetEndpointState function to poll the endpoint and determine whether a
speciÞc function has Þnished executing. The completion of some functions
result in an endpointÕs changing state. For additional information, see Table 4-4
(page 95).

To obtain address information about an endpoint or its peer, you can use one of
the following two functions:

■ OTGetProtAddress, which returns the address to which the endpoint is
bound. If the endpoint is connection-oriented and currently connected, this
function also returns the address to which the endpoint is connected.

■ OTResolveAddress, which returns the lowest-layer protocol address
corresponding to a higher-level address for the endpointÕs protocol. If you
are looking up the address that corresponds to a single name, you can use
this function rather than having to open the mapper provider and use the
mapper function OTLookUpName.

For information about the address formats for the protocol you are using,
please consult the documentation supplied for the protocol. This manual
explains these formats for the TCP/IP and the AppleTalk protocols. For
information about obtaining the addresses that correspond to a name pattern,
see ÒMappersÓ (page 149).

Handling Events for Endpoints 4

Like other providers, endpoint providers can operate synchronously or
asynchronously. If you use an asynchronous endpoint, you need to create a
102 Using Endpoints

C H A P T E R 4

Endpoints
notiÞer function that the provider can call to inform you of provider events.
This section describes how you handle events for endpoint providers.

Event handling for endpoints is basically the same as that described for
providers in ÒProvider EventsÓ (page 67). One slight difference lies in the way
the endpoint provider generates T_DATA, T_EXDATA, and T_REQUEST asynchronous
events, which signal the arrival of incoming data or of an incoming transaction
request. For the sake of efÞciency, the provider notiÞes you just once that
incoming data has arrived. To read all the data, you must call the function that
clears the event until the function returns with the kOTNoDataErr result.

IMPORTANT

An endpoint does not receive any more T_DATA events until
its current T_DATA event is cleared. ▲

Table 4-7 lists the functions you use to clear pending asynchronous events.

This works as follows. A transport provider has a queue of data or commands
to deliver to the client. If the queue is empty when the data or command
arrives, the provider notiÞes the the client. If the queue is not empty, then no

Table 4-7 Pending asynchronous events and the functions that clear them

Pending
event

Open Transport function
that clears the event

T_LISTEN OTListen

T_CONNECT OTRcvConnect

T_DATA OTRcv, OTRcvUData

T_EXDATA OTRcv

T_DISCONNECT OTRcvDisconnect

T_UDERR OTRcvUDErr

T_ORDREL OTRcvOrderlyDisconnect

T_GODATA OTSnd, OTSndUData, OTLook

T_GOEXDATA OTSnd, OTLook

T_PASSCON none
Using Endpoints 103

C H A P T E R 4

Endpoints
notiÞcation is delivered at the time the data or command is queued. Instead,
whenever the client reads the data or command at the head of the queue, Open
Transport examines the next element of the queue, if it exists. If this next
element of the queue is of the same type as what was at the head of the queue,
no event is generated. If there is a difference, the provider delivers a new event
to the client. Typically, this new event is delivered to the client just before the
function returns which removed the head element of the queue.

Clearing Events and Synchronization Problems 4

You do not have to issue calls that clear events in the notiÞcation routine itself,
but until you make the consuming calls and receive a kOTNoDataErr error,
another T_DATA, T_EXDATA, or T_REQUEST event is not guaranteed to be issued.

One exception to this rule occurs when dealing with transaction-based
protocols. When the client gets a T_REPLY event, it should call the function
OTRcvUReply until the function returns the result kOTNoDataErr. If the client calls
OTRcvUReply from the foreground (rather than from a notification routine), the
following sequence can occur: While the client is busy reading replies in the
foreground, a request arrives. This will cause a T_REQUEST event to be
generated. If the foreground client was calling OTRcvUReply at this point in time,
a kOTLookErr will be generated rather than a kOTNoDataErr. In this case (and the
converse case for T_REQUEST events), another T_REPLY event will be generated
when a new reply arrives.

Notifier Reentrancy 4

Open Transport endpoints are handled independently. That means that you can
use the same code for the notiÞers of two different endpoints. A different
instance of the notÞer is invoked for each endpoint using the notiÞer.

Whatever events are pending on one endpoint have (for the most part) no
effect on any other endpoints. For example, assume that an endpoint is notiÞed
of a T_DATA event. Following this, a separate T_DATA event is sent to a second
endpoint. The notiÞer for the second endpoint is invoked, interrupting the Þrst
endpointÕs processing of its T_DATA event. For additional information, see
ÒUsing Asynchronous Processing With a NotiÞerÓ (page 134).
104 Using Endpoints

C H A P T E R 4

Endpoints
Polling for Events 4

Open Transport also includes the endpoint provider function OTLook. You can
use the OTLook function

■ to poll for asynchronous events, like incoming data or connection requests

■ to determine the cause of a kOTLookErr result

Asynchronous functions can return this result. In addition, asynchronous
events that require immediate attention can cause some synchronous
functions to fail with the kOTLookErr result. In this case, you can call the
OTLook function to determine the event that caused the function to fail. Table
4-8 lists the functions that can return the result kOTLookErr when the
corresponding event is pending.

Having used the OTLook function to determine what asynchronous event
caused your function to fail, you must call one of the functions listed in
Table 4-7 (page 103) to clear the event, and then you can retry the function
that failed.

Establishing and Terminating Connections 4

To implement a connection-oriented service, you must complete the
following steps:

Table 4-8 Pending asynchronous events and the synchronous functions they can
affect

Function that fails Pending events

OTAccept, OTConnect T_DISCONNECT, T_LISTEN

OTListen, OTRcvConnect,
OTRcvOrderlyDisconnect,
OTSndOrderlyDisconnect,OTSndDisconnect

T_DISCONNECT

OTRcv, OTRcvRequest, OTRcvReply,
OTSnd, OTSndRequest, OTSndReply

T_GODATA, T_DISCONNECT,
T_ORDREL

OTRcvUData, OTSndUData T_UDERR

OTUnbind T_LISTEN, T_DATA
Using Endpoints 105

C H A P T E R 4

Endpoints
■ establish a connection

■ process any data associated with establishing the connection if this is
permitted for the endpoint

■ transfer data

■ terminate the connection when you are Þnished transferring data

The following sections explain how you establish and terminate a connection.
The functions you use to establish and terminate a connection are the same for
transactionless as for transaction-based service, but the calls you use to transfer
data differ. The section ÒUsing Connection-Oriented Transactionless ServiceÓ
(page 120) explains how you transfer data once you have established a
connection.

Before you can use a connection-oriented endpoint to initiate or accept a
connection, you must open and bind the endpoint. For example, if you are
using AppleTalk, you might open an ADSP endpoint, which offers
connection-oriented transactionless service. You donÕt have to do anything
special to bind an endpoint that is intended to be the active peer of a
connection. However, when you bind an endpoint intended to be the passive
peer of a connection, you must specify a value for the qlen Þeld of the reqAddr
parameter for the OTBind function. The qlen Þeld indicates the number of
outstanding connection requests that can be queued for that endpoint.

Note
The value you specify for the qlen Þeld indicates your
desired value, but Open Transport may negotiate a lower
value, depending upon the number of internal buffers
available. The negotiated value of outstanding connection
indications is returned to you in the qlen Þeld of the
retAddr parameter for the OTBind function. After calling the
OTBind function, you might want to take a look at this field
to see whether the protocol has imposed a limit on the qlen
value. ◆

You are allowed to bind multiple connection-oriented endpoints to a single
address. However, only one of these endpoints can accept incoming connection
requests. That is, only one endpoint can specify a value for qlen that is greater
than 0. For more information, see the section ÒProcessing Multiple Connection
RequestsÓ (page 111).
106 Using Endpoints

C H A P T E R 4

Endpoints
Establishing a Connection 4

You use the following functions to establish a connection:

Figure 4-3 illustrates the process of establishing a connection in
synchronous mode.

Active peer calls Passive peer calls Meaning

OTConnect Requests a connection to the
passive peer.

OTListen Gets information about an
incoming connection request.

OTAccept Accepts the connection request
identiÞed by the OTListen function.
The connection can be accepted by
a different endpoint than the one
listening for incoming connection
requests.

OTRcvConnect Reads the status of a pending or
completed asynchronous call to the
OTConnect function.

OTSndDisconnect Rejects an incoming connection
request.

OTRcvDisconnec
t

IdentiÞes the cause of a rejected
connection and acknowledges the
corresponding disconnection event.
Using Endpoints 107

C H A P T E R 4

Endpoints
Figure 4-3 Establishing a connection with the active peer in synchronous mode

OTConnect

Active Passive

OTListen

OTConnect
returns with
kNoErr

OTAccept

OTRcvDisconnect

OTSndDisconnect

T_LISTEN

Accepted?
Yes

OTConnect
returns with
kOTLookErr

No

Endpoint is in
T_DATAXFER state

Endpoint is in
T_IDLE state

Notifier
108 Using Endpoints

C H A P T E R 4

Endpoints
As Figure 4-3 shows, if the active peer is in synchronous mode, the OTConnect
function does not return until the connection has been established or the
connection attempt has been rejected. If the passive peer has a notiÞer function
installed, the endpoint provider calls it, passing T_LISTEN for the code
parameter. The notiÞer calls the OTListen function, which reads the connection
request. The passive peer can now either accept the connection request using
the OTAccept function or reject the request by calling the OTSndDisconnect
function. The connection attempt might also fail if the request is never received
and the endpoint provider times out the call to the OTConnect function.

If the passive peer calls the OTAccept function to accept the connection, the
OTConnect function returns with kOTNoErr. If the passive peer rejects the
connection or the request times out, the OTConnect function returns with
kOTLookErr. When the OTConnect function returns, the active peer must examine
the result. If the call succeeded, it should begin to transfer data. If the call
failed, the active peer should call the OTRcvDisconnect function to restore the
endpoint to a valid state for subsequent operations.

If the active peer is in asynchronous mode, the OTConnect function returns right
away with the kOTNoDataErr result, and the active peer must rely on its notiÞer
function to determine whether the call succeeded. Figure 4-4 illustrates the
process of establishing a connection when the active peer is in asynchronous
mode.
Using Endpoints 109

C H A P T E R 4

Endpoints
Figure 4-4 Establishing a connection in asynchronous mode

OTConnect
returns kOTNoDataErr

Active Passive

OTListen

OTAccept

OTSndDisconnect

T_LISTEN

T_CONNECT

T_DISCONNECT

T_ACCEPTCOMPLETE

T_DISCONNECTCOMPLETE

OTRcvConnect

OTRcvDisconnect

Notifier

Notifier

Notifier

Accepted?
Yes

No

Endpoint is in
T_DATAXFER state
110 Using Endpoints

C H A P T E R 4

Endpoints
The active peer calls the OTConnect function, which returns right away with a
code of kOTNoDataErr. The endpoint provider calls the passive peerÕs notiÞer,
passing T_LISTEN for the code parameter. If the passive peer accepts the
connection, the endpoint provider calls the active peerÕs notiÞer, passing
T_CONNECT for the code parameter.

 If the passive peer rejects the connection or if the connection times out, the
endpoint provider calls the active peerÕs notiÞer, passing T_DISCONNECT for the
code parameter. The active peer must then call either the OTRcvConnect function
in response to a T_CONNECT event or the OTRcvDisconnect function in response to
a T_DISCONNECT event. The endpoint provider, in turn, passes the
T_ACCEPTCOMPLETE event back to the passive peer (for a successful connection) or
the T_DISCONNECTCOMPLETE event (for a rejected connection). The passive peer
requires the information provided by these two events to determine whether
the connection succeeded.

Sending User Data With Connection or Disconnection Requests 4

The OTConnect function and the OTSndDisconnect function both pass data
structures that include Þelds for data that you might want to send at the time
that you are setting up or tearing down a connection. However, you can only
send data when calling these two functions if the connect and discon Þelds of
the TEndpointInfo structure specify that the endpoint can send data with
connection or disconnection requests. The amount of data sent must not exceed
the limits speciÞed by these two Þelds. To determine whether the endpoint
provider for your endpoint supports data transfer during the establishment of
a connection, you must examine the connect and discon Þelds of the
TEndpointInfo structure for the endpoint.

Processing Multiple Connection Requests 4

If you process multiple connection requests for a single endpoint, you must
make sure that the number of outstanding connection requests does not exceed
the limit deÞned for the listening endpoint when you bound that endpoint. An
outstanding connection request is a request that you have read using the
OTListen function but that you have neither accepted nor rejected. You must
also decide whether to accept connections on the same endpoint that is
listening for the connections or on a different endpoint.

When you bind the passive endpoint, you must specify a value greater than 0
for the qlen Þeld of the reqAddr parameter to the OTBind function. This value
indicates the number of outstanding connections that the provider can queue
Using Endpoints 111

C H A P T E R 4

Endpoints
for this endpoint. As you process incoming connection requests, you must
check that the number of connections still waiting to be processed does not
exceed this negotiated value for the listening endpoint. How you do this
depends on the number of outstanding requests and on whether you are
accepting connection requests on the same endpoint as the endpoint listening
for requests or accepting them on a different endpoint. Connection acceptance
is governed by the following rules:

■ You can bind more than one connection-oriented endpoint to the same
address, but you can use only one of these endpoints to listen for connection
requests.

■ If you accept a connection on the same endpoint that is listening for
connection requests, you must have responded to all previous connection
requests received on the endpoint using OTAccept or OTSndDisconnect
functions. Otherwise, the OTAccept function fails. If you have not responded
to all previous connection requests, you should accept the connection on a
different endpoint.

■ If you accept a connection on an endpoint that is different from the endpoint
that received the connection request, you do not have to bind the endpoint
to which you are passing off the connection. If the endpoint is not bound,
the endpoint provider automatically binds it to the address of the endpoint
that listened for the connection request.

If you choose to explicitly bind the endpoint accepting the connection to the
address of the endpoint listening for the connection, you must set the qlen
Þeld of the reqAddr parameter to the OTBind function to 0.

■ The underlying implemention determines whether you must bind the
endpoint accepting a connection to the address of the endpoint listening for
the connection. In general, it is recommend that you do not bind it to the
same address.

What these rules add up to in practical terms is that if you anticipate managing
more than one connection at a time, you should open an endpoint to listen for
connections and then open additional endpoints as needed to accept incoming
connections.

Terminating a Connection 4

You can terminate a connection using either an abortive or orderly disconnect.
During an abortive disconnect, the connection is torn down without the
underlying protocol taking any steps to make sure that data being transferred
112 Using Endpoints

C H A P T E R 4

Endpoints
has been sent and received. When the client calls the OTSndDisconnect function,
the connection is immediately torn down, and the client cannot be sure that the
provider actually sent any locally buffered data. During an orderly disconnect,
the underlying protocol ensures at least that all outgoing data is actually sent.
Some protocols go further than this, using an over-the-wire handshake that
allows both peers to Þnish transferring data and agree to disconnect. The
following sections describe the steps required for abortive and orderly
disconnects. For additional information about handling an unexpected
disconnection from a remote client, see ÒHandling Dead ClientsÓ (page 145).

Using an Abortive Disconnect 4

You use the OTSndDisconnect and OTRcvDisconnect functions to perform an
abortive disconnect. Figure 4-5 illustrates the process for two asynchronous
endpoints. The Þgure shows the active peer initiating the disconnection; in fact,
either peer can initiate the disconnection.

Figure 4-5 An abortive disconnect

In asynchronous mode, the endpoint initiating the disconnection calls the
OTSndDisconnect function. Parameters to the function identify the endpoint and
point to a TCall structure that is only of interest if the endpoint provider
supports sending data with disconnection requests. To determine whether your
protocol does, you must examine the value of the discon Þeld of the
TEndpointInfo structure for your endpoint. If you do not want to send data or if
you cannot send data to the passive peer, you can set TCall to a NULL pointer.

OTSndDisconnect

Active Passive

OTRcvDisconnect

T_DISCONNECT

T_DISCONNECTCOMPLETE
NotifierNotifier

Notifier
Using Endpoints 113

C H A P T E R 4

Endpoints
The endpoint provider receiving the disconnect request calls the passive peerÕs
notiÞer function, passing T_DISCONNECT for the code parameter. The client must
acknowledge the disconnection event by calling the function OTRcvDisconnect.
This function clears the event and retrieves any data sent with the event.
Parameters to the OTRcvDisconnect function identify the endpoint sending the
disconnection and point to a TDiscon structure that is only of interest if the
endpoint provider supports sending data with disconnection requests or if the
passive peer is managing multiple connections and needs to know which of the
connections has been closed by using the sequence Þeld of the TDiscon
structure. Otherwise, you can set TDiscon to a NULL pointer.

When the connection has been closed, the endpoint provider calls the active
peerÕs notiÞer, passing T_DISCONNECTCOMPLETE for the event parameter. At this
time the endpoint is once more in the T_IDLE state.

Using Orderly Disconnects 4

There are two kinds of orderly disconnects: remote orderly disconnects and
local orderly disconnects. The Þrst kind, supported by TCP, provides an
over-the-wire (three-way) handshake that guarantees that all data has been
sent and that both peers have agreed to disconnect. The second kind,
supported by ADSP and most other connection-oriented transactionless
protocols, is a locally implemented orderly release mechanism ensuring that
data currently being transferred has been received by both peers before the
connection is torn down. To determine whether your protocol supports orderly
disconnects, you must examine the servtype Þeld of the TEndpointInfo
structure for the endpoint. A value of T_COTS_ORD or T_TRANS_ORD indicates that
the endpoint supports orderly disconnect. It is safest to assume, unless you
know for certain it to be otherwise, that the endpoint supports only local
orderly disconnects.
114 Using Endpoints

C H A P T E R 4

Endpoints
Figure 4-6 shows the steps required to complete a remote orderly disconnect.
The Þgure shows the active peer initiating the disconnection; in fact, either peer
can initiate the disconnection.

Figure 4-6 Remote orderly disconnect

OTSndOrderlyDisconnect

Active Passive

Receive/send
data

OTSndOrderlyDisconnect

OTRcvOrderlyDisconnect

OTRcvOrderlyDisconnect

T_ORDREL

T_ORDREL

Send data

Receive data

Notifier

Notifier
Using Endpoints 115

C H A P T E R 4

Endpoints
The active peer initiates the disconnection by calling the
OTSndOrderlyDisconnect function to begin the process and to let the remote
endpoint know that the active peer will not send any more data. (Once it calls
this function, the active peer can receive data but it cannot send any more
data.) The provider calls the passive peerÕs notiÞer function, passing T_ORDREL
for the code parameter. In response, the passive peer must read any unread
data and can send additional data. After it has Þnished reading the data, it
must call the OTRcvOrderlyDisconnect function to acknowledge receipt of the
orderly release indication. After calling this function, the passive peer cannot
read any more data; however, it can continue to send data. This is a half-closed
connection. When the passive peer is Þnished sending any additional data, it
calls the OTSndOrderlyDisconnect function to complete its part of the
disconnection. Following this call, it cannot send any data. The endpoint
provider calls the active peerÕs notiÞer, passing T_ORDREL for the code
parameter, and the active peer calls the OTRcvOrderlyDisconnect function to
acknowledge receipt of the disconnection event and to place the endpoint in
the T_IDLE state if this was the only outstanding connection.

Figure 4-7 shows the steps required to complete a local orderly disconnect.
116 Using Endpoints

C H A P T E R 4

Endpoints
Figure 4-7 A local orderly disconnect

As you can see, the sequence of steps is very similar to that shown in
Figure 4-6. The main difference is that the connection is broken as soon as the
active peer calls the OTSndOrderlyDisconnect function. As a result, either peer
can continue to read any unread data, but neither peer can send data after the
initial call to the OTSndOrderlyDisconnect function.

OTSndOrderlyDisconnect

Active Passive

Receive data

OTSndOrderlyDisconnect

OTRcvOrderlyDisconnect

OTRcvOrderlyDisconnect

T_ORDREL

T_ORDREL

Recieve data

Notifier

Notifier
Using Endpoints 117

C H A P T E R 4

Endpoints
Sending and Receiving Data 4

This section describes some of the issues that affect send and receive operations
for all types of endpoints. After you read this section, you should read
ÒTransferring Data Between Transactionless EndpointsÓ (page 119) or
ÒTransferring Data Between Transaction-Based EndpointsÓ (page 121) for
additional information about the type of endpoint you are using.

The chapter ÒAdvanced Topics(page 215)Ó presents additional material that
concerns the transfer of data and improving performance; this material includes

■ sending non-contiguous data

■ transferring data in raw mode

■ doing no-copy receives

Please consult that chapter for more information.

Sending Data Using Multiple Sends 4

If you are sending a single data unit using multiple sends, you must do the
following:

1. Set the T_MORE bit in the ßags Þeld each time you call the send function. This
lets the provider know that it has not yet received the entire data unit.

2. Clear the T_MORE bit the last time you call the send function. This lets the
provider know that the data unit is complete.

Even though you are using multiple sends to send the data, the total size of the
data sent cannot exceed the value speciÞed for the tsdu Þeld (for normal data
or replies) or etsdu Þeld (for expedited data or requests) of the TEndpointInfo
structure for the endpoint.

Sending data using multiple sends does not necessarily affect the way in which
the remote client receives the data. That is, just because you have used several
calls to a send function to send data does not mean that the remote client must
call a receiving function several times to read the data.

IMPORTANT

Connectionless transactionless protocols do not support
the T_MORE ßag. ▲
118 Using Endpoints

C H A P T E R 4

Endpoints
Receiving Data 4

If you are reading data and if the T_MORE bit in the ßags Þeld is set, this means
that the buffer you have allocated to hold the data is not big enough. You need
to call the receive function again and read more data until the T_MORE bit is
cleared, which indicates that you have read the entire data unit.

Transferring Data Between Transactionless Endpoints 4

Open Transport deÞnes two sets of functions that you can use to send and
receive data between transactionless endpoints. You use one set with
connectionless service and the other with connection-oriented service.

Using Connectionless Transactionless Service 4

You use connectionless transactionless service, as provided by DDP and UDP,
to send and receive discrete data packets.

After opening and binding a connectionless transactionless endpoint, you can
use three functions to send and receive data:

■ the OTSndUData function to send data

■ the OTRcvUData function to receive data

■ the OTRcvUDErr function to determine why a send operation did not succeed

Either endpoint can send or receive data. However, the endpoint sending data
cannot determine whether the other endpoint has actually received the data.

Endpoints are not able to determine that the speciÞed address or options are
invalid until after the data is sent. In this case, the senderÕs endpoint provider
might issue the T_UDERR event. You should include code in your notiÞer
function that calls the OTRcvUDErr function in response to this event to
determine what caused the send function to fail and to place the sending
endpoint in the correct state for further processing.

If the endpoint receiving data has allocated a buffer that is too small to hold the
data, the OTRcvUData function returns with the T_MORE bit set in the flags
parameter. In this case, you should call the OTRcvUData function repeatedly until
the T_MORE bit is cleared.
Using Endpoints 119

C H A P T E R 4

Endpoints
 Using Connection-Oriented Transactionless Service 4

You use connection-oriented transactionless service, such as provided by ADSP
and TCP, to exchange full-duplex streams of data across a network.
Connection-oriented transactionless endpoints use the OTSnd function to send
data and the OTRcv function to receive data. Either endpoint can call either of
these functions. Parameters to the OTSnd function identify the endpoint sending
the data, the buffer that holds the data, the size of the data, and a flags value
that speciÞes whether the data sent is normal or expedited and whether
multiple sends are being used to send the data. Parameters to the OTRcv
function identify the receiving endpoint, the buffer where the data should be
copied, the size of the buffer, and a flags value that Open Transport sets to tell
the client whether to call OTRcv more than once to retrieve the data being sent.

Some endpoints support the use of expedited data, and some support the use
of separators to break the data stream into logical units. You need to examine
the endpointÕs TEndpointInfo structure to determine if the endpoint supports
either of these features:

■ The etsdu Þeld of the TEndpointInfo structure speciÞes whether the endpoint
supports the use of expedited data and, if so, speciÞes its size. For example,
ADSP supports the use of expedited data to send attention messages. In
general, it is recommended that you do not use expedited data because
doing so results in code that is less transport independent.

■ The tsdu Þeld of the TEndpointInfo structure speciÞes the maximum size of
normal data that the endpoint can send or receive. In those cases where the
endpoint supports the breaking up of the data stream into logical units, the
TSDU size speciÞes what the maximum size of any such unit may be.

IMPORTANT

Values for the tsdu and etsdu Þelds of the TEndpointInfo
structure that are returned when you open an endpoint
might change after the endpoint is connected, because the
endpoint providers can negotiate different values when
establishing a connection. If the endpoint supports
variable maximum limits for TSDU and ETSDU size, you
should call the OTGetEndpointInfo function after the
connection has been established to determine what the
current limits are. ▲

To send expedited data, you must set the T_EXPEDITED bit in the flags
parameter. If the receiving client is in the middle of reading normal data and
120 Using Endpoints

C H A P T E R 4

Endpoints
the OTRcv function returns expedited data, the next OTRcv that returns without
T_EXPEDITED set in the flags field resumes the sending of normal data at the
point where it was interrupted. It is the responsibility of the client to remember
where that was.

There are two ways of breaking up a data stream into logical size units.

■ If the endpoint supports it, enable the use of the T_MORE ßag bit to the OTSnd
function. Then, when sending the last packet, do not set the T_MORE bit.
Because these packets are guaranteed to be delivered in the order sent, the
receiving endpoint can determine when the last packet has arrived by
examining this ßag bit.

■ Use the data transferred with your Þrst send to specify the name and size of
the data that you want to send. The receiving endpoint can save the size
value and decrement it as it receives bytes until the number equals 0. This
last method is the only one that is transport-independent.

Transferring Data Between Transaction-Based Endpoints 4

Open Transport deÞnes two sets of functions that you can use to perform a
transaction. One set is deÞned for connectionless transactions; the other set is
deÞned for connection-oriented transactions. A transaction is a process during
which one endpoint, the requester, sends a request for a service. The remote
endpoint, called the responder, reads the request, performs the service, and
sends a reply. When the requester receives the reply, the transaction is complete.

You can implement applications that use transactions in the following
two ways:

■ You can write a single application that handles both the requester and
responder actions of a transaction and run that application on two
networked nodes. This method allows each application to act as either the
requester or the responder. Either side can initiate a transaction, but only one
side can control the communication during a single transaction.

■ You can write two applications, one implementing the requester part of a
transaction and the other implementing the responder side. This model
lends itself well to a client-server relationship, in which many nodes on a
network run the requester application (client), while one or more nodes run
the responder application (server); one server can respond to transaction
requests from several clients.
Using Endpoints 121

C H A P T E R 4

Endpoints
Because one endpoint can conduct multiple transactions at any one time, it is
crucial that requesters and responders be able to distinguish one transaction
from another. This is done by means of a transaction ID, a number that
uniquely identiÞes a transaction. Because this is not the same number for the
requester as it is for the responder, some explanation is required. Figure 4-8
shows how the transaction ID is generated by the requesting application and
the provider during the course of a transaction.

Figure 4-8 How a transaction ID is generated

address

options

data

sequence = 1001

address

options

data

sequence = 5123

1001 : 5123

Send request Read request

address

options

data

sequence = 1001

address

options

data

sequence = 5123

Read reply Send reply

ResponderRequester

1001 : 5123
122 Using Endpoints

C H A P T E R 4

Endpoints
The requester initiates a transaction by sending a request. The requester passes
information about the request in a data structure that includes a seq Þeld,
which speciÞes the transaction ID of the request. The requester initializes this
Þeld to some arbitrary, unique number. Before sending the request, the
endpoint provider saves this number in an internal table and assigns another
number to the seq Þeld, which it guarantees to be unique for the requesterÕs
machine. The endpoint provider also saves the new number along with the
requester-generated sequence number. For example, in Figure 4-8, the requester
assigns the number 1001; the endpoint provider assigns the number 5123.

When the responder receives the request, it reads the request information,
including the provider-generated sequence number, into buffers it has reserved
for the request data. When the responder sends a reply, it speciÞes the sequence
number it read when it received the request.

Before the requesterÕs endpoint provider advises the requester that the reply
has arrived, it examines the sequence number of the reply and looks in its
internal table to determine which requester-generated sequence number it
matches. It then substitutes that number for the sequence number it received
from the responder. By using this method Open Transport guarantees that
transactions are uniquely identiÞed, and the requester is able to match
incoming replies with outgoing requests.

Using Connectionless Transaction-Based Service 4

You use connectionless transaction-based service to enable two connectionless
endpoints to complete a transaction.

The requester initiates the transaction by calling the OTSndURequest function.
Parameters to the OTSndURequest function specify the destination address, the
request data, any options, and a sequence number to identify this transaction.
The requester must supply a sequence number if it is sending multiple
requests, so that later on it can match replies to requests. The requester can
cancel an outgoing request by calling the OTCancelURequest function. A
requester can implement its own timeout mechanism (using the function
OTScheduleTimerTask) and calling the OTCancelURequest function after a specific
amount of time has elapsed without a response to the request.

If the responder is synchronous and blocking, the OTRcvURequest function
returns after it has read the request. If the responder is asynchronous or not
blocking and has a notiÞer installed, the endpoint provider calls the notiÞer,
passing T_REQUEST for the code parameter. When the responder receives this
event, it must call the OTRcvURequest function to read the request. On return,
Using Endpoints 123

C H A P T E R 4

Endpoints
parameters to the OTRcvURequest function specify the address of the requester,
option values, the request data, ßags information, and a sequence number to
identify the transaction. When the responder sends a reply to the request, it
must use the same sequence number for the reply. If the responderÕs buffer is
too small to contain the request, the endpoint provider sets the T_MORE bit in the
flags parameter. The responder must call the OTRcvURequest function until the
T_MORE bit is clear. This indicates that the entire request has been read.

Having read the request, the responder can reply to the request using the
OTSndUReply function or reject the request using the OTCancelUReply function.
Although the requester is not advised that the responder has rejected a request,
itÕs important that the responder explicitly cancel an incoming request in order
to free memory reserved by the OTRcvURequest function.

If the requester is in synchronous blocking mode, the OTRcvUReply function
waits until a reply comes in. Otherwise, if a notiÞer is installed, the endpoint
provider calls the notiÞer, passing T_REPLY for the code parameter. The notiÞer
must call the OTRcvUReply function. On return, parameters to the function
specify the address of the endpoint sending the reply, specify option values,
ßag values, reply data, and a sequence number that identiÞes the request
matching this reply. If the T_MORE bit is set in the flags parameter, the requester
has allocated a buffer that is too small to contain the reply data. The requester
must call the OTRcvUReply function until the T_MORE bit is clear; this indicates
that the complete reply has been read.

If the request is rejected or fails in some other way, the requester receives the
T_REPLY event. However, the OTRcvUReply function returns with the result
kETIMEDOUTErr. Otherwise, the only useful information returned by the function
is the sequence number of the request that has failed.

Figure 4-9 illustrates how connectionless transaction-based endpoints in
asynchronous mode exchange data.
124 Using Endpoints

C H A P T E R 4

Endpoints
Figure 4-9 Data transfer using connectionless transaction-based endpoints in
asynchronous mode

Using Connection-Oriented Transaction-Based Service 4

Connection-oriented transaction-based endpoints allow you to transfer data in
exactly the same way as connectionless transaction-based endpoints except
that, because the endpoints are connected, it is not necessary to specify an
address when using the functions to send and receive requests and replies. The
only other difference is that a connection-oriented transaction may be
interrupted by a connection or disconnection request.

The section ÒUsing Connectionless Transaction-Based ServiceÓ (page 123)
describes the sequence of functions used to transfer data using a transaction.
Figure 4-10 shows the sequence of functions called during a
connection-oriented transaction; both requester and responder are in
asynchronous mode. This sequence is the same as for connectionless
transaction-based service, as shown in Figure 4-9 (page 125). Of course, you use

OTSndURequest

Requester Responder

OTRcvURequest

OTSndUReply OTCancelUReply

OTRcvUReply
T_REPLYCOMPLETE

T_REPLY

T_REQUEST
Notifier

Notifier

Notifier
Using Endpoints 125

C H A P T E R 4

Endpoints
different functions to complete these two types of transactions: the names of
the functions shown in Figure 4-10 do not include a ÒUÓ in the function name.

Figure 4-10 Data transfer using connection-oriented transaction-based endpoints in
asynchronous mode

For information about how to handle disconnection requests that might occur
during a transaction, see ÒUsing Orderly DisconnectsÓ (page 114).

OTSndRequest

Requester Responder

OTRcvRequest

OTSndReply OTCancelReply

OTRcvReply
T_REPLYCOMPLETE

T_REPLY

T_REQUEST
Notifier

Notifier

Notifier
126 Using Endpoints

C H A P T E R 5

Contents

Contents
Figure 5-0
Listing 5-0
Table 5-0
5 Programming With Open
Transport
Open Transport Programming Models 129
Using Synchronous Processing With Threads 130
Polling for Events 132
Using Asynchronous Processing With a NotiÞer 133

Interrupt-Safe Functions 135
Memory Management From NotiÞers 135

Interrupt Levels and Open Transport Processing 136
Hardware Interrupt Level 136
Deferred Task Level 137
System Task Level 138
Using Timer Tasks 139
Using System and Deferred Tasks 139

Calling Open Transport Functions 139
Scheduling Tasks 140
Deallocating Resources 140

Handling Synchronization Problems 141
Handling Multiple Simultaneous Connections 142

Problems With Accepting Multiple Simultaneous Connections 142
Using "tilisten" to Accept Multiple Simultaneous Connections 143

Improving Performance 144
Streamlining Endpoint Creation 144
Handling Dead Clients 145
Shutting Down Servers 146
127

C H A P T E R 5
128 Contents

C H A P T E R 5
Programming With Open Transport 5

This chapter examines methods of structuring Open Transport programs and
discusses the relative merits of these methods in the context of the Mac OS
cooperative multitasking environment. The chapter also takes a closer look at
Mac OS interrupt levels and explains how Open Transport processing is
affected by interactions between code executing at these levels. You should
read this chapter if you are writing a server application, encountering
synchronization problems, or want to improve performance. The chapter
ÒProgramming With Open Transport ReferenceÓ includes detailed information
about the functions introduced in this chapter.

To use this chapter, you need to be familiar with system tasks, deferred tasks,
and interrupts in general. For additional information about system tasks, read
the information about the SystemTask function in the chapter ÒEvent ManagerÓ
in Inside Macintosh: Macintosh Toolbox Essentials, and for additional information
about interrupts and deferred tasks, read the chapters ÒIntroduction to
Processes and TasksÓ and ÒDeferred Task ManagerÓ in Inside Macintosh:
Processes.

Open Transport Programming Models 5

Designing a program that uses Open Transport involves Þnding an execution
path that is simple to code but that does not degrade user experience nor
endanger the robustness of your program. This section describes various
strategies that you can use to structure code that calls Open Transport, focusing
on the relative merits of the Open Transport notiÞcation mechanisms.

The Mac OS Open Transport API is a superset of the industry standard
X/Open Transport Interface (XTI) speciÞcation. Because the XTI standard
originated in a preemptive multitasking environment, a taskÕs blocking I/O
requests did not degrade the systemÕs overall responsiveness. In such an
environment all calls can be made synchronously, which eases the task of
coding and minimizes synchronization problems. The matter stands differently
in the current Mac OS cooperative multitasking environment, in which it is
each taskÕs responsibility to provide other, concurrent tasks with access to the
processor. In the Mac OS environment, calling a task synchronously, without
ceding time to other processes, is regarded as very poor programming practice
and can easily hang the machine or seriously degrade user experience. To solve
this problem, Open Transport extends the XTI API to support asynchronous
notiÞcation of I/O completion. Open Transport uses several types of events to
Open Transport Programming Models 129

C H A P T E R 5

Programming With Open Transport
notify your application that something has occurred that requires its immediate
attention. An event might signal the arrival of data, a connection or
disconnection request, or the completion of an asynchronous function. Your
program can either poll for these events or it can install a notiÞer function that
Open Transport will call when an event occurs.

There are three basic ways to structure Open Transport programs:

■ Synchronous processing with threads

Using this method, you can call Open Transport functions synchronously.
Open Transport sends your notiÞer the event kOTSyncIdleEvent whenever a
synchronous call is waiting to complete. In response, your notiÞer can call
the function YieldToAnyThread, which allows other concurrent processes to
obtain processing time. This method offers the simplest programming model
inasmuch as it avoids asynchronous processing. For more information, see
ÒUsing Synchronous Processing With ThreadsÓ (page 130).

■ Polling for events

Using this method, you can call the function OTLook from your main event
loop to poll for events such as the arrival of data, connection and
disconnection requests, etc. The problem with this method is that the OTLook
function does not return completion events. Thus, if you are calling a
function asynchronously, you need to Þnd some other way to determine
whether the function has completed. For more information, see ÒPolling for
EventsÓ (page 132).

■ Using a notiÞer function to handle events

Using this method, you install a notiÞer function and call Open Transport
functions asynchronously. Open Transport sends you any events that affect
the speciÞed endpoint, and you handle these from your notiÞer or from
your main event loop. This method offers the best performance, but it
increases program complexity and might give rise to synchronization
problems. For more information, see ÒUsing Asynchronous Processing With
a NotiÞerÓ (page 134).

Using Synchronous Processing With Threads 5

Figure 5-1 shows the key functions that your program must call to implement
synchronous processing with threads. From within your program you must
install a notiÞcation routine that handles the event kOTSyncIdleEvent by calling
the function YieldToAnyThread. The program must also call the function
130 Open Transport Programming Models

C H A P T E R 5

Programming With Open Transport
OTUseSyncIdleEvents to let Open Transport know that it wants to receive events
of the type kOTSyncIdleEvent.

Figure 5-1 Synchronous processing with threads

When Open Transport is waiting for a synchronous function to complete, it
sends the event kOTSyncIdleEvent to your notiÞer when it is safe for the notiÞer
to call the function YieldToAnyThread. This function eventually causes the
Thread Manager to switch to a thread that calls WaitNextEvent, thus yielding
time to other processes.

Note
You must be familiar with the Thread Manager in order to
use the YieldToAnyThread function. ◆

The only disadvantage of this method is that once you give time to other
processes, you have no control over how long it takes for these processes to call

Open Transport Program

Wait for
synchronous function
to return

Notifier
kOTSyncIdleEvent

OTInstallNotifier
OTUseSyncIdleEvents
OTSetSynchronous
/* do synchronous processing here */

YieldToAnyThread

Other threads get
processing time
Open Transport Programming Models 131

C H A P T E R 5

Programming With Open Transport
WaitNextEvent. So, while synchronous processing with threads might not be the
method of choice for high performance servers, if your needs are more modest,
you can enjoy the relative programming simplicity of this method. For a
detailed example of a sample program using this model, see Listing 1-4 in
ÒGetting Started With Open Transport(page 31).Ó

Note
To get out of a threaded synchronous routine, use the
function OTCancelSynchronousCall (page 397).

Polling for Events 5

Figure 5-2 shows the structure of a program that calls Open Transport functions
asynchronously and uses the OTLook function to poll for incoming events.
132 Open Transport Programming Models

C H A P T E R 5

Programming With Open Transport
Figure 5-2 Polling for events

By using the OTLook function within its main event loop, an application does
not need to idle while waiting for data to arrive. However, processing Open
Transport events in an applicationÕs event loop can result in unpredictable
packet processing delays. This is because the time between when your
application receives a packet and when it responds depends on factors external
to your application; it depends upon how other concurrent processes are using
(or abusing) their access to the processor. Moreover, the OTLook function was
written for the original XTI environment in which asynchronous processing
played a very minor part. For this reason, the function does not return
asynchronous completion events; as a result, if you are calling Open Transport
functions asynchronously, you must use some other means to determine
whether these have completed.

Network

Protocol
request

Protocol
response

Event Loop Processing

Other
event loops

WaitNextEvent

OTLook

OTRcv

OTSnd
Open Transport Programming Models 133

C H A P T E R 5

Programming With Open Transport
Using Asynchronous Processing With a Notifier 5

Figure 5-3 shows the structure of an application that calls Open Transport
functions asynchronously and uses a notiÞcation routine to process
asynchronous and completion events. The chapter ÒProviders(page 61)Ó gives
detailed information about the use of notiÞers.

Figure 5-3 Asynchronous processing with a notifier

As shown in the Þgure, the advantage of using the notiÞer is that it is called by
Open Transport whenever an event occurs, allowing you to respond
immediately. Because Open Transport often calls your notiÞer at deferred task
time, you can handle requests without the overhead of event loop processing.

Protocol request

Response

Process request

Return to
Open Transport

myNotifier(ContextPtr, T_DATA, 0, nil)

OTRcv

OTsnd

Network Notifier Routine
134 Open Transport Programming Models

C H A P T E R 5

Programming With Open Transport
To get the best performance and to minimize synchronization problems, you
should attempt to respond to most events directly in the notiÞer. You should be
able to perform the following tasks from your notiÞer:

■ accept and hand off connections

■ receive and process all incoming data

■ start asynchronous I/O operations; for example, call File Manager functions

■ send network data

■ tear down network connections

By the same token, because notiÞers do often execute at deferred task time,
they are somewhat limited in the functions they can call. For more information,
see ÒDeferred Task LevelÓ (page 137).

The following guidelines can help you use notiÞers safely and effectively:

■ Treat the notiÞer code path as a critical section. Assume you are locking the
operating system from other tasks.

■ Never call Open Transport at hardware interrupt time, except to schedule a
deferred task or to call one of the functions (listed in Appendix C) that are
safe to call at hardware interrupt time.

■ Never make a synchronous Open Transport call from inside a notiÞer. Doing
this will cause Open Transport to return the result kOTStateChangeErr in
order to prevent you from deadlocking.

■ Never make a synchronous File Manager or Device Manager call from inside
a notiÞer. It might cause deadlock.

■ Use completion events to gate endpoint action. For example, respond to a
T_OPENCOMPLETE event by initiating a bind; or respond to the event
T_DISCONNECTCOMPLETE by calling the OTUnbind function. Making such use of
completion events will prevent you from receiving the result
kOTStateChangeErr when you call a function before the endpoint is in a valid
state.

Note
Note that Open Transport 68000-based applications can
implement handler routines that use global variables
without having to set up an A5 world. ◆
Open Transport Programming Models 135

C H A P T E R 5

Programming With Open Transport
Interrupt-Safe Functions 5

One reason itÕs difÞcult to process packets in a notiÞer is that when you do, you
canÕt call the Mac OS Toolbox functions that move memory at deferred task
time. To remedy this, Open Transport makes available a number of fast and
interrupt-safe utility functions that you can use instead. These functions are
documented in the chapter ÒUtilities ReferenceÓ (page 621).Ó

Memory Management From Notifiers 5

You can safely call the functions OTAllocMem and OTFreeMem from your notiÞer.
However, keep in mind that the memory allocated by OTAllocMem comes from
the applicationÕs memory pool, which, due to Memory Manager constraints,
can only be replenished at system task time. Therefore, if you allocate memory
at hardware interrupt level or deferred task level, be prepared to handle a
failure as a result of a temporarily depleted memory pool.

Interrupt Levels and Open Transport Processing 5

The Open Transport API offers a set of functions that you can use to schedule
code to run at system task level, at deferred task level, and, in some cases, at
hardware interrupt level. This section brießy describes the Mac OS interrupt
levels, lists the restrictions on code executing at each level, and explains how
you should use the functions provided by Open Transport to schedule code to
run at these levels. This information is important in understanding the
synchronization problems that might arise during asynchronous processingÑ
where interaction between code executing at different levels might cause
unexpected behavior.

Hardware Interrupt Level 5

Hardware interrupt-level execution happens as a result of a hardware interrupt
request. Installable interrupt handlers for PCI bus, NuBus and other devices, as
well as interrupt handlers supplied by Apple all execute at this level.

In general, you should minimize the amount of time that your code spends
executing at hardware interrupt level. If you think you need to do extended
processing at this level, you should consider trying to defer such processing to
136 Interrupt Levels and Open Transport Processing

C H A P T E R 5

Programming With Open Transport
deferred task level. For information about how you do this, see ÒDeferred Task
LevelÓ (page 137).

If virtual memory is on, paging is not safe at hardware interrupt level unless
the interrupt has been postponed using the Memory Management function
DeferUserfn. Some system interrupt handlers (Device Manager completion
routines, VBLs, slot VBLs, Time Manager tasks) automatically defer their
operation to a safe time, but other hardware interrupt handlers must be sure
not to cause page faults.

Open Transport furnishes a number of utility functions that you are allowed to
call at hardware interrupt time. Appendix C(page 793) lists these functions. In
some cases, you must notify Open Transport that you are about to call an Open
Transport function at hardware interrupt time by Þrst calling the
OTEnterInterrupt function. You can then call one of the permitted functions.
When you are done with calling Open Transport functions at hardware
interrupt time, you must call the OTLeaveInterrupt function. For example, you
could execute these code statements in this sequence:

OTEnterInterrupt();
OTScheduleDeferredTask(dtCookie);
OTLeaveInterrupt();

▲ W A R N I N G

If you try to call an Open Transport function that is not
permitted at interrupt time or if you do not use the
OTEnterInterrupt and OTLeaveInterrupt functions when
these are required, you will either get the OTBadSyncErr
result code or crash your system, depending on the
function you call. ▲

Deferred Task Level 5

A deferred task is the means whereby you can schedule a routine to be
executed from hardware interrupt level code. Deferred task processing occurs
just before the operating system returns from hardware interrupt level to
system task time. Scheduling code to run at deferred task time minimizes the
time that code executes at hardware interrupt level and therefore minimizes
system interrupt latency. Deferred tasks are executed serially, offering a simple
mutual exclusion mechanism.
Interrupt Levels and Open Transport Processing 137

C H A P T E R 5

Programming With Open Transport
Programs using Open Transport can cause code to run at deferred task time by
creating a deferred task with the OTCreateDeferredTask function and by
scheduling it to run using the OTScheduleDeferredTask function. Using Open
Transport functions to create and schedule deferred tasks is preferable to using
the Deferred Task Manager function DTInstall, because by doing so you allow
Open Transport to adapt to changes in the underlying operating system
without having to change your code.

Code also executes at deferred task time if it is called by something that is
executing at deferred task level. For example, Open Transport often calls
notiÞer functions at deferred task level. You should assume, in writing your
notiÞer functions, that they are likely to run at deferred task level and observe
the restrictions on code running at this level.

If you are writing a system extension or a code resource, you probably need to
use Open TransportÕs deferred task functions to get processing time to handle
such tasks as allocating memory or accessing disk space. You must schedule a
deferred task if you want to call such code from code that executes at interrupt
time or from within an interrupt function such as a Time Manager function,
Vertical Retrace Manager function, File Manager completion routine, or Device
Manager completion routine.

Virtual Memory paging is safe at deferred task level. You can also call many
Open Transport functions at deferred task time; these functions are described
in Appendix C(page 793).

IMPORTANT

If you are writing a PCI device driver (ndrv), please note
that Open Transport treats secondary interrupt level as
hardware interrupt level. Therefore, your secondary
interrupt handler is subject to the same restrictions as code
running at hardware interrupt time, as described in the
previous section. ▲

System Task Level 5

System task level is the level at which most application code executes. An
applicationÕs main entry point is called at system task level. Cooperatively
scheduled Thread Manager threads also run at system task time.

Open Transport furnishes several functions that you can use to schedule code
to execute at system task level. Normally, you donÕt need to use these functions
138 Interrupt Levels and Open Transport Processing

C H A P T E R 5

Programming With Open Transport
because your application executes within a normal event loop that runs at
system task level. However, you might want to use Open TransportÕs system
task scheduling functions for some of your applicationÕs processing because
these functions provide an efÞcient way to streamline your main event loop.
For example, you can avoid handling some of your memory allocation during
your main event loop; instead, you can schedule a system task to obtain
memory at certain times or on a periodic basis.

System task level is not considered interrupt level by any part of the system.
Consequently, you can call anything at system task level. Virtual Memory
paging is also safe at this level unless your code accesses some resource that the
system needs to support paging. For example, if you get exclusive access to the
SCSI bus by calling the function SCSIGet, you must not cause a page fault even
at system task level.

Using Timer Tasks 5

Open Transport provides functions that you can use to create a timer task, to
schedule the task, to cancel it, and to dispose of it. These functions are
described in ÒWorking With Timer TasksÓ (page 529). Open Transport executes
timer tasks at deferred task time.

IMPORTANT

You cannot call these functions from 68000 code running
on a Power PC. ▲

Using System and Deferred Tasks 5

You can use Open Transport functions to schedule a callback function that will
be called at system task time or deferred task time. To do this, you use the
function OTCreateSystemTask or the function OTCreateDeferredTask to create the
task. Then you use the function OTScheduleSystemTask or the function
OTScheduleDeferredTask to schedule the task.

The OTCreateSystemTask and OTCreateDeferredTask functions allocate a
structure that deÞnes the task you want executed. Upon completion, these
functions return a reference by which you subsequently refer to the task when
scheduling, cancelling, or destroying the task. When you create the task, you
can also specify user-deÞned context information that Open Transport will pass
to your task when it calls it. For 680x0 code, Open Transport also restores the
A5 world to what it was when you created the task.
Interrupt Levels and Open Transport Processing 139

C H A P T E R 5

Programming With Open Transport
Calling Open Transport Functions 5

Appendix C(page 793) includes a table that lists all the Open Transport
functions you can call at deferred task time. In general, you can make all
endpoint calls from a deferred task as long as the endpoint is in asynchronous
mode. A select number of Open Transport calls can only be made at system
task time.

IMPORTANT

Because opening the Þrst endpoint for a conÞguration
requires that Open Transport load libraries, doing this
from a deferred task will only work if the foreground task
is calling the functions WaitNextEvent, GetNextEvent, or
SystemTask. Subsequent asynchronous open calls from a
deferred task will work regardless of what the foreground
task is doing because the libraries will have already been
loaded. ▲

Scheduling Tasks 5

Once you have created a task, you need to schedule it for execution. To do this,
you use the functions OTScheduleSystemTask, OTScheduleDeferredTask, or
OTScheduleInterruptTask. You pass the task reference (using the stCookie or the
dtCookie parameter) to the function, and Open Transport attempts to schedule
the task. If a system task is scheduled successfully, it executes when the
SystemTask function next executes. If a deferred task is scheduled successfully,
it executes as soon as possible after hardware interrupts have Þnished
executing.

Because a system task can happen relatively slowly, enough time can elapse
between scheduling and execution to let you cancel the task before it runs. If
you use the OTCancelSystemTask function, you notify Open Transport not to
execute the system task at the scheduled time. The reference remains valid, and
you can choose to reschedule the task by using the OTScheduleSystemTask
function again at any time. Deferred tasks, however, typically execute too
quickly to allow time for canceling them.

You can also choose to reschedule a system or deferred task after it has
executed successfully. You do this by using the OTScheduleSystemTask or the
OTScheduleDeferredTask function again at any time. If you choose to reschedule
a task, you reuse the same reference. This means that exactly the same task
executes, which is useful for repetitive periodic tasks.
140 Interrupt Levels and Open Transport Processing

C H A P T E R 5

Programming With Open Transport
Deallocating Resources 5

You can destroy a task with the OTDestroySystemTask or the
OTDestroyDeferredTask functions. These functions make the task reference
invalid and free any resources associated with the task. You can call these
functions whenever it is no longer necessary to schedule a task, such as when it
has been executed at its scheduled time and you have no plans to reschedule it
for later use.

You can call the OTDestroySystemTask function to destroy a system task that is
currently scheduled for execution. In this case, Open Transport cancels the
system task before proceeding with the taskÕs destruction.

If you want to use a task after you have destroyed it, you must begin again by
creating a new task with the OTCreateSystemTask or the OTCreateDeferredTask
functions.

Handling Synchronization Problems 5

If you call certain Open Transport functions from different interrupt levels,
synchronization problems can occur. For example,

1. You call the function OTRcv from your main thread.

2. There is no pending data; just as the function is about to return to the
application with the result kOTNoDataErr, an inbound data packet interrupts
Open Transport, and it steps up to deferred task time to process the data.

3. Open Transport calls your notiÞer with a T_DATA event, which you ignore
because you are not aware of the possibility that the execution of the OTRcv
function could be interrupted by the actual arrival of data (processed in a
different interrupt context).

4. The call to OTRcv in your main thread completes with the result kOTNoDataErr,
you have no way of knowing that you got the T_DATA event, and you wonÕt
get another one until you call the function again, for another kOTNoDataErr
result. Consequently, your application hangs.

The solution to this problem is to adopt a sensible synchronization modelÑthat
is, do everything in your notiÞer (using the OTEnterNotifier function when you
canÕt) or do everything at system task time. The key is not to mix and match
execution levels for the same endpoint.
Interrupt Levels and Open Transport Processing 141

C H A P T E R 5

Programming With Open Transport
Handling Multiple Simultaneous Connections 5

This section describes the problems of handling multiple simultaneous
connections and explains the use of the tilisten module as a means of
handling these problems.

Problems With Accepting Multiple Simultaneous Connections 5

One of the big challenges of programming Open Transport is accepting
multiple simultaneous incoming connections. The problem is that the obvious
code stream can produce unexpected results. Take, for example, the following
sequence:

1. You have a listening endpoint (one bound with a qlen greater than 0)in
asynchronous mode. (The problem is independent of the mode of the
listening endpoint but, for the sake of this example, we'll assume the
listening endpoint is in asynchronous mode.)

2. An incoming connection arrives, and the listening endpoint calls your
notiÞer with a T_LISTEN event.

3. Your notiÞer reads the details of the incoming connection using the OTListen
routine.

4. Your notiÞer decides to accept the incoming connection by calling the
function OTAccept.

5. However, the OTAccept call fails with a kOTLookErr because there is another
pending T_LISTEN event on the listening endpoint. (This behavior is
explicitly allowed in the XTI speciÞcation.)

There are a number of ways to solve this problem. The easiest approach is to
use a qlen of 1 when you bind the endpoint. If you do this, the provider will
reject connection attempts while you are in the process of accepting a
connection attempt. The drawback to this approach is that the remote peer will
receive unnecessary connection rejections.

A second approach is to program around the problem using the existing Open
Transport APIs. When you call OTAccept and get a look error, you turn around
and call OTLook. If the pending event is a T_LISTEN, put the Þrst connection on
hold and deal with this new connection. Of course, the attempt to accept the
142 Handling Multiple Simultaneous Connections

C H A P T E R 5

Programming With Open Transport
new connection can also fail because of a pending T_LISTEN, which means you
have to put this second connection attempt on hold, and so on. This requires
you to have a queue of pending incoming connection attempts. You must also
deal with T_DISCONNECT events on the listening endpoint, and delete the
corresponding connection attempts from the queue.

This second approach requires a lot of code, and is very hard to get right.

The third, and recommended, approach is to use the tilisten module to
serialize incoming connection requests. This approach is described in the next
section.

Using "tilisten" to Accept Multiple Simultaneous Connections 5

The tilisten module is provided to simplify the job of accepting multiple
simultaneous incoming connections. The module sits on top of the provider
associated with the listening endpoint and monitors connection requests being
sent up to the client. When a connection request arrives while the client is still
in the process of dealing with an earlier connection request, the tilisten
module holds on to the second connection request until the client is accepts or
rejects the Þrst one.

Thus, when the tilisten module is installed in the stream, the OTAccept
function will never fail because of a pending T_LISTEN event, and only fail with
a pending T_DISCONNECT event if that disconnection event is for the current
connection request.

You can use the tilisten module in your listening endpoint by specifying it in
the conÞguration you use to build the listening endpoint. For example, if you
want to create an TCP endpoint with the "tilisten" module, you would do so
with the following code:

ep = OTOpenEndpoint(OTCreateConfiguration("tilisten,tcp"), 0, nil, &err);

You should should only include the tilisten module in connection-oriented,
listening endpoints. The module is not appropriate for use in hand-off
endpoints, or endpoints used for outgoing connections.

Note
The tilisten module is not available in versions of Open
Transport prior to version 1.1.1. ◆
Handling Multiple Simultaneous Connections 143

C H A P T E R 5

Programming With Open Transport
Improving Performance 5

The following suggestions for improving performance were drawn up with
servers in mind; however, if your application needs to handle multiple
connection requests, you might Þnd the section ÒStreamlining Endpoint
CreationÓ useful. For additional information on handling throughput to
improve performance, see the chapter ÒAdvanced Topics.Ó

Streamlining Endpoint Creation 5

The time required to create and open an endpoint can delay connection set-up
time. This can adversely affect servers, especially HTTP servers, since they
must manage high connection turnover rates. To handle this problem, follow
these guidelines:

■ Preallocate endpoints

Preallocate a pool of open, unbound endpoints into an endpoint cache.
When a connection is requested (you receive a T_LISTEN event), you can
dequeue an endpoint from this cache and pass it to the function OTAccept.
Using this method, the only time you have to wait for an endpoint to be
created is if the queue is empty, when you must allocate an additional block
of endpoints.

■ Recycle endpoints

You can use an endpoint-cache to recycle endpoints when your connection is
closed. Rather than call the function OTCloseProvider each time a connection
terminates, cache the unbound endpoint. This keeps it available for a
subsequent open request.
To use this method, unbind the endpoint upon receipt of the T_DISCONNECT
event. Then, when the notiÞer receives the T_UNBINDCOMPLETE event, queue
that endpoint into your endpoint cache. Optionally, to save memory, you can
deallocate the endpoint when the endpoint cache reaches some
predetermined limit.

■ Create clone conÞgurations

Another way to speed up endpoint creation is to create a prototype
conÞguration structure with the function OTCreateConfiguration. Then, use
144 Improving Performance

C H A P T E R 5

Programming With Open Transport
the OTCloneConfiguration function to pass the conÞguration structure to the
function OTOpenEndpoint. The call to OTCloneConfiguration is about Þve times
faster than that to the OTCreateConfiguration function.

Handling Dead Clients 5

A properly designed server should be prepared to handle what happens when
a remote client unexpectedly disappears. This problem is further aggravated
when the link has been ßow-controlled. For example:

1. You are transmitting a large amount of data to a client.

2. Your transport provider enters a ßow-control state.

3. The client crashes or becomes unreachable.

4. After a timeout, your server decides to force a disconnect from that client
and issues a disconnect request.

5. However the T_DISCONNECT event is subject to ßow control, which causes
your link to hang.

You can solve this problem by ßushing the stream before requesting the
disconnection. The best way to do this is to send the I_FLUSH command to the
stream head using the OTIoctl function. For example:

#include <stropts.h>

/* check to see if you are already disconnected */

error = OTIoctl(ep, I_FLUSH, (void*) FLUSHRW);
if error OTUnbind(ep)

.....

MyNotifyProc (... void* the Param) {
case kStreamIoctlEvent /* flush is complete */

(void) OTSndDisconnect (ep, NULL); /* safe to disconnect */
break;

}

This will result in your notiÞer receiving all T_MEMORYRELEASED events for any
outstanding send calls that acknowledge sends. You should then attempt to
send the disconnection request.
Improving Performance 145

C H A P T E R 5

Programming With Open Transport
Shutting Down Servers 5

To shut down an Open Transport network server properly, you need to:

■ Make sure that all network and I/O operations have either completed or
aborted.

■ Flush any ßow-controlled data streams with the I_FLUSH command. See
ÒHandling Dead ClientsÓ (page 145) for detailed information.

■ Unbind and close all endpoints.

■ Cancel any outstanding deferred tasks with the function
OTDestroyDeferredTask.

■ Release any OTBuffer structures with the function OTReleaseBuffer.

■ Dispose of any unused conÞguration structures with the function
OTDestroyConfiguration.
146 Improving Performance

C H A P T E R 6

Contents

Contents
Figure 6-0
Listing 6-0
Table 6-0
6 Mappers
About Mappers 150
Using Mappers 150

Setting Modes of Operation for Mappers 151
Specifying Name and Address Information 152
Searching for Names 153

Retrieving Entries in Asynchronous Mode 154
Code Sample: Using OTLookupName 155
147

C H A P T E R 6
Mappers 6

This chapter describes mappers, a type of Open Transport provider that lets
your application map entity names to protocol addresses. You can use mapper
functions to register a name, to look up a name or name pattern, or to remove
a registered name. Which functions are supported depends on the name-
registration protocol underlying the mapper provider you create. For more
detailed information about how mapper functions are implemented for
the protocol you are interested in, consult the documentation provided for
that protocol.

You do not have to open a mapper provider if you are interested only in
registering a name or looking up an address corresponding to a name.

■ If the protocol you are using allows you to bind an endpoint by name and
you do so, the name is automatically registered on the network. This is a
more efÞcient way to register a name on the network than to create a
mapper to do it.

■ If you want to obtain the address that corresponds to an entity name, you
can use the endpoint function OTResolveAddress. Using this function also
saves you the trouble of opening a mapper. However, you cannot use this
function to look up a name pattern; that is, the name you look up cannot
include a wildcard character.

■ If you want to connect to a remote endpoint simply by specifying its name,
you can simply pass the name to the OTConnect function.

If you are using an endpoint that cannot be bound by name, if you want to look
up a name pattern, if you want to register a name that is not associated with an
endpoint, or if you want to use other mapper functions, you need to read this
chapter and learn how to create a mapper provider.

This chapter begins with a general description of mapper providers and
continues with a more detailed discussion of how you use mappers
asynchronously and how you use the mapper to look up names. The functions
used to register names and delete names are discussed in ÒMappers ReferenceÓ
(page 545).

Mapper providers, like all Open Transport providers, can operate
synchronously or asynchronously and can block. For general information about
Open Transport providers, see the chapter ÒProvidersÓ (page 61).
149

C H A P T E R 6

Mappers
About Mappers 6

A mapper is a communications path between your application and a mapper
provider, which is a protocol that allows you to map a name to a network
address, if the underlying protocol allows it, and to register that name-address
pair so that it becomes visible to all other entities on a network. Which mapper
functions you call depends on the name-registration protocol you select when
you create a mapper. For example, if you select the AppleTalk Name-Binding
Protocol (NBP), which supports dynamic name and address registration, you
can use all the mapper functions described in this chapter: you can register a
name, look up a name, and remove a registered name. If you select the TCP/IP
domain name resolver (DNR), you can only look up a name that has been
registered using other means.

When you create a mapper, you obtain a mapper reference. A mapper
reference, like an endpoint reference, identiÞes the instance of the provider you
have created. You must pass this reference as a parameter to all other mapper
functions. You can open multiple mappers. For example, if you are writing a
network administration application, you might want to create a mapper for
each protocol used over the network. If you do open multiple mappers, the
mapper reference tells Open Transport which mapper is invoked for any one
function call.

Like endpoint providers, mapper providers also have a state attribute, which
helps Open Transport manage these providers. Unlike endpoints, however,
mappers do not provide functions that allow you to determine their state.
A mapper can be either in an uninitialized (T_UNINIT) state if it was closed by
the system, or in the idle (T_IDLE) state after it has been opened.

Using Mappers 6

This section begins by describing how the general provider functions that
govern a providerÕs mode of operation apply to mapper providers. It goes on
to discuss information you need to know in order to use mapper functions:
how you format names and addresses speciÞed in parameters to mapper
functions and how you handle processing when calling mapper functions
150 About Mappers

C H A P T E R 6

Mappers
asynchronously. This section concludes with a discussion of different
techniques you can use when using the mapper to search for a name pattern.

Setting Modes of Operation for Mappers 6

Like all Open Transport providers, mappers can use different modes of
operation. A mapper can execute synchronously or asynchronously. You set the
mapperÕs default mode of execution by using the appropriate function to open
it; for example, you can create a mapper that executes asynchronously by
calling the OTAsyncOpenMapper function. After opening the mapper, you can
change its mode of execution by calling the OTSetSynchronous or
OTSetAsynchronous functions. To determine how mapper functions execute, you
call the OTIsSynchronous function.

Mappers use one asynchronous event and four completion events. Table 6-1
lists the event codes that the mapper provider can pass to your application and
explains the meaning of the cookie parameter to the notiÞer for each function.
For more detailed information, see the descriptions of the mapper functions in
ÒFunctionsÓ (page 550).

Table 6-1 Completion events for asynchronous mapper functions

Completion code Meaning

T_OPENCOMPLETE The OTAsyncOpenMapper function has completed. The
cookie parameter contains the mapper reference.

T_REGNAMECOMPLETE The OTRegisterName function has completed. The
cookie parameter contains the reply parameter, unless
it was NULL, in which case it contains the request
parameter.
Using Mappers 151

C H A P T E R 6

Mappers
The only way to cancel an asynchronous mapper function is to call the
OTCloseProvider function, passing the mapper reference for which the function
was executed. The OTCloseProvider function is described in the chapter
ÒProvidersÓ(page 61) in this book.

By default, mappers do not block and do not acknowledge sends. You can
change a mapperÕs blocking status by using the OTSetBlocking function.
Mapper providers are not affected by their send-acknowledgment status.
However, a mapper providerÕs blocking status might affect the behavior of
mapper functions. For example, if a mapper is blocking, heavy network trafÞc
might cause mapper functions to wait before sending or receiving data. If a
mapper is nonblocking and you are doing a lot of name lookups, the
OTLookupName function might return with the kOTFlowErr result. In this case, you
can try executing the function later.

Specifying Name and Address Information 6

Several mapper functions require that you specify a name or address. This
might be a name to register or to look up. Specifying a name or address means
that you have to create a buffer that contains the information and then create a
TNetbuf structure that specifies the size and location of this buffer. The format
that you use to store a name or an address is speciÞc to the name-registration
protocol that underlies the mapper and is exactly the same as the name and
address formats that you can use to bind an endpoint. For information about

T_DELNAMECOMPLETE The OTDeleteName or the OTDeleteNameByID functions
have completed. For the OTDeleteName function, the
cookie parameter holds a pointer to the name
parameter. For the OTDeleteNameByID function, the
cookie parameter contains the id parameter.

T_LKUPNAMERESULT The OTLookupName function has returned a name, but it
has not yet completed because there might be more
names to retrieve.

T_LKUPNAMECOMPLETE The OTLookupName function has completed. The cookie
parameter contains the reply parameter.

Table 6-1 Completion events for asynchronous mapper functions (continued)

Completion code Meaning
152 Using Mappers

C H A P T E R 6

Mappers
name and address formats, please consult the documentation provided for the
protocol you are using.

If the protocol supports it, you can specify a name pattern rather than a name
when calling the OTLookupName function. Different protocols might use different
wildcard characters to deÞne name patterns. Please consult the documentation
provided for your protocol to determine valid wildcard characters and how
you use these to specify name patterns.

Searching for Names 6

You use the OTLookupName function to search for a registered name or for a list of
names if your protocol supports name pattern matching. You use the req
parameter to specify the name or name pattern to search for. When the function
returns, it uses the reply parameter to pass back the matching name or names.

The req parameter is a pointer to a TLookupRequest structure containing the
name or name pattern to be found and additional information that the mapper
can use in conducting the search. You use the maxcnt Þeld to specify the
number of names you expect to be returned. If you are looking for a speciÞc
name, set this Þeld to 1. If you are looking for a name pattern, you can use this
Þeld to indicate the number of matches you expect the OTLookupName function to
return. You use the timeout Þeld to specify the amount of time (in milliseconds)
available for this search. If a match is not found within the speciÞed time, the
function returns with the kOTNoDataErr. If the number you specify for the
maxcnt field is larger than the number of names that match the given pattern,
the mapper provider uses the value given in the timeout Þeld to determine
when to stop the search.

The reply parameter is a pointer to a TLookupReply structure that contains two
Þelds. The names Þeld describes the size and location of the buffer in which the
replies are placed when the function returns; the rspcount Þeld speciÞes the
number of matching entries found. Figure 6-1 shows how the contents of a
reply buffer containing two entries are stored. The section ÒCode Sample:
Using OTLookupNameÓ (page 155) provides and describes a sample program
that uses the OTLookupName function. See especially, Listing 6-3.
Using Mappers 153

C H A P T E R 6

Mappers
Figure 6-1 Format of entries in OTLookupName reply buffer

The Þrst two bytes of each entry specify the length of the address; the second
two bytes specify the length of the name. The address is stored next and then
the name, padded to a four byte boundary.

Retrieving Entries in Asynchronous Mode 6

If you call the OTLookupName function asynchronously, you can use an alternate
method for retrieving matching entries. In asynchronous mode, this function
sends two event codes: it sends the T_LKUPNAMERESULT code each time it stores a
name in the reply buffer, and it sends the T_LKUPNAMECOMPLETE code when it has

Bytes

4

2

2

Length of address

Length of name

Address

Name

First
entry

4

Variable
length

Variable
length

2

2

Length of address

Length of name

Address

Name

Second
entry
154 Using Mappers

C H A P T E R 6

Mappers
stored the last name in the reply bufferÑthat is, when the function as a whole
completes execution. Each time the T_LKUPNAMERESULT event is passed to your
notiÞcation function, you can do the following:

1. Copy the name and address information from the reply buffer to some other
location.

2. From inside the notiÞer function, set the reply->names.len Þeld or the
reply->rspcount field to 0.

When you set either of these Þelds to 0, Open Transport automatically sets
the other Þeld to 0. ItÕs important, however, that you reset these values from
within the notiÞer or the results might be unpredictable. You can also do it
from code bracketed by the OTEnterNotifier and OTLeaveNotifier functions.
For more information, see ÒOTEnterNotiÞerÓ (page 408).

3. Repeat the Þrst two steps until the event passed to your notiÞer function is
T_LKUPNAMECOMPLETE.

This method saves you the trouble of guessing how large a reply buffer to
allocate. It might also save you some memory if you are expecting many
matches to be returned and are interested in only some of them.

Note
The T_LKUPNAMECOMPLETE event might have stored a name in
the buffer. Be sure to check for this possibility. ◆

Code Sample: Using OTLookupName 6

This section discusses the program OTLookupNameTest, which demonstrates
how you open an NBP mapper provider, issue an NBP lookup request, and
print out the resulting information. Listing 6-1 shows the preprocessor
directives and the main function of the program.
Using Mappers 155

C H A P T E R 6

Mappers
Listing 6-1 The main function to OTLookupNameTest

#ifndef qDebug /* variable set for OT debugging macros */
#define qDebug1
#endif

#include <OpenTransport.h>
#include <OpenTptAppleTalk.h>
#include <OTDebug.h> /* Need OTDebugBreak & OTAssert macros */
#include <stdio.h>

/* OTDebugStr is not defined in OT header files, but it is
exported by the libraries, so we define the prototype here. */
extern pascal void OTDebugStr(const char* str);

static UInt32 gLastPrinted = 0; /* Global var to track printing */

void main(void)
{ OSStatus err;

char requestAddress[] = "=:AFPServer@*";

printf("Hello World!\n");

err = InitOpenTransport();
if (err == noErr) {

err = LookupAndPrint(requestAddress);
CloseOpenTransport();

}
if (err == noErr) {

printf("Success.\n");
} else {

printf("Failed with error %d.\n", err);
}
printf("Done. Press command-Q to Quit.\n");

}

The main function initializes Open Transport, calls the user-deÞned function
LookupAndPrint (passing a value for the requested address), and then closes
Open Transport.
156 Using Mappers

C H A P T E R 6

Mappers
The LookupAndPrint function is the key function to the OTLookupNameTest
program. However, because it calls Open Transport functions synchronously, it
also uses a notiÞer to yield time to other processes. Listing 6-2 shows the
notiÞer, which calls printf periodically in response to a kOTSyncIdle event. (The
printf function calls WaitNextEvent, thus our synchronous calls to Open
Transport will yield time to other processes. A real world application would
probably use threads to do this.

Listing 6-2 Notifier that yields time to other processes

static pascal void YieldingNotifier(EndpointRef ep, OTEventCode code,
 OTResult result, void* cookie)

{
#pragma unused(ep)
#pragma unused(result)
#pragma unused(cookie)

switch (code) {
case kOTSyncIdleEvent:

if (TickCount() > gLastPrinted + 10) {
printf(".");
fflush(stdout);
gLastPrinted = TickCount();

}
break;

default:
/* do nothing */
break;

}
}

For more information on using threads to yield time, see ÒUsing Synchronous
Processing With ThreadsÓ (page 130).

Listing 6-3 shows the LookupAndPrint function. This function takes one
parameter, a pointer to an NBP address. This address must have the form

<name>:<type>@<zone>

The function begins by opening an NBP mapper provider and switching it into
synchronous/blocking mode. It uses kOTSyncIdle events (and the notiÞer
Using Mappers 157

C H A P T E R 6

Mappers
shown in Listing 6-2) to yield time to other processes. Then it issues an NBP
lookup request, using the OTLookUpName function (page 559). When the request
completes, the function calls the user-deÞned PrintAddress and PrintName
functions to display the results.

Listing 6-3 The LookupAndPrint function

static OSStatus LookupAndPrint(char *requestAddress)
{

OSStatus err;
OSStatus junk;
MapperRef nbpMapper;
TLookupRequest lookupRequest;
TLookupReply lookupReply;
UInt8 *responseBuffer;
TLookupBuffer *currentLookupReplyBuffer;
UInt32 nameIndex;

err = noErr;
nbpMapper = kOTInvalidMapperRef; /* for error checking */

/* Create the responseBuffer. */

responseBuffer = OTAllocMem(kResponseBufferSize);
if (responseBuffer == nil)

err = kENOMEMErr;

/* Create an NBP mapper and set it to up for threaded processing. */

if (err == noErr)
nbpMapper = OTOpenMapper(OTCreateConfiguration(kNBPName),

0, &err);
if (err == noErr) {

junk = OTSetSynchronous(nbpMapper);
OTAssert("LookupAndPrint: Could not set synchronous mode

on mapper", junk == noErr);
junk = OTSetBlocking(nbpMapper);
OTAssert("LookupAndPrint: Could not set blocking mode

on mapper", junk == noErr);
junk = OTUseSyncIdleEvents(nbpMapper, true);
158 Using Mappers

C H A P T E R 6

Mappers
OTAssert("LookupAndPrint: Could not enable sync idle events
on mapper", junk == noErr);

junk = OTInstallNotifier(nbpMapper, YieldingNotifier, nil);
OTAssert("LookupAndPrint: Could not install notifier

for mapper", junk == noErr);
}

/* Call OTLookupName synchronously. */

if (err == noErr) {

/* Set up the TLookupRequest structure. */

OTMemzero(&lookupRequest, sizeof(lookupRequest));
lookupRequest.name.buf = (UInt8 *) requestAddress;
lookupRequest.name.len = OTStrLength(requestAddress);
lookupRequest.timeout = 1000;// 1 second in milliseconds
lookupRequest.maxcnt = kResponseBufferSize /

kNBPEntityBufferSize;

/* Set up the TLookupReply structure. */

OTMemzero(&lookupReply, sizeof(lookupReply));
lookupReply.names.buf = responseBuffer;
lookupReply.names.maxlen = kResponseBufferSize;

/* Now do the lookup. */

err = OTLookupName(nbpMapper, &lookupRequest, &lookupReply);
}

/* Print out the contents of the responseBuffer. */

if (err == noErr) {
printf("\n");

/* Start by pointing to the beginning of the response buffer. */

currentLookupReplyBuffer = (TLookupBuffer *) responseBuffer;

/* For each response in the buffer... */
Using Mappers 159

C H A P T E R 6

Mappers
for (nameIndex = 0; nameIndex < lookupReply.rspcount;
nameIndex++) {

/* ... print the name and address and... */

printf("%3d ", nameIndex);
PrintAddress((DDPAddress *)

¤tLookupReplyBuffer->fAddressBuffer[0]);
PrintName((char *)¤tLookupReplyBuffer->

fAddressBuffer[currentLookupReplyBuffer->
fAddressLength],

currentLookupReplyBuffer->fNameLength);
printf("\n");

/* ... use OTNextLookupBuffer to get from the current
buffer to the next. */

currentLookupReplyBuffer =
OTNextLookupBuffer(currentLookupReplyBuffer);

}
}

/* Clean up. */

if (responseBuffer != nil) {
OTFreeMem(responseBuffer);

}
if (nbpMapper != kOTInvalidMapperRef) {

junk = OTCloseProvider(nbpMapper);
OTAssert("LookupAndPrint: Failed closing mapper", junk == noErr);

}

return err;
}

The function LookupAndPrint calls two functions, PrintName and PrintAddress,
to print names and addresses; Listing 6-4 shows the two functions.
160 Using Mappers

C H A P T E R 6

Mappers
Listing 6-4 Printing names and addresses

static void PrintName(const char *name, UInt32 length)
{

char nameForPrinting[256];

OTMemzero(nameForPrinting, 256);
OTMemcpy(nameForPrinting, name, length);

printf("“%s”", nameForPrinting);
}

static void PrintAddress(DDPAddress *addr)
{

OTAssert("PrintAddress: Expected a DDPNBPADdress",
addr->fAddressType == AF_ATALK_DDP);

printf("Net = $%04x, Node = $%02x, Socket = $%02x ",
addr->fNetwork,
addr->fNodeID,
addr->fSocket);

}

Using Mappers 161

C H A P T E R 6

Mappers
162 Using Mappers

C H A P T E R 7

Contents

Contents
Figure 7-0
Listing 7-0
Table 7-0
7 Option Management
About Options and Option Negotiation 166
Explicit Use of Options and Portability of Code 166
Types of Options 167
The Format of Option Information 167
XTI-Level Options and General Options 169

Using Options 171
Determining Which Function to Use to Negotiate Options 171
Obtaining the Maximum Size of an Options Buffer 172
Setting Option Values 172

Specifying Option Values 173
Setting Default Values 174

Retrieving Option Values 174
Obtaining Current and Default Values 175
Parsing an Options Buffer 175

Verifying Option Values 176
Sample Code: Getting and Setting Options 177
163

C H A P T E R 7
164 Contents

C H A P T E R 7
Option Management 7

This chapter explains the use of options, values associated with an endpoint
provider, which you can change to Þne-tune or customize the data-transfer
service offered by the endpoint. In general, the use of options degrades
transport independence. Therefore, it is important to note that default option
values are provided for every type of endpoint and that you can write
applications that never need to specify any options. You need to read this
chapter if

■ you need to use services that must be speciÞed using options

For example, you are using a transaction-based endpoint and need to be able
to send expedited data in order to forward an attention message.

■ it is critical to your application that you Þne-tune the data-transfer services
offered by a protocol and you can only do this by using options

For example, you need to manipulate the size of internal send and receive
buffers to eliminate data backlog or buffer overßow problems.

■ you need to create a debugging version of the application through the use of
options

This chapter describes general options that can be speciÞed by any protocol
that supports them, explains how you construct an options buffer, how you get
and set option values, and how you verify values. It also provides code
samples that show how you

■ construct option buffers

■ parse buffers containing option information

■ get, set, and display option values.

To understand this chapter, you should be familiar with endpoint providers
and the endpoint functions used to transfer data. These topics are discussed in
ÒEndpointsÓ(page 83). For speciÞc information about the options that are
supported for a protocol implementation, you need to consult the
documentation provided for that protocol.

In general, it is recommended that you set up your options using the
OTOptionManagement function after creating your endpoint and before using
it. The actual semantics of option negotiation are somewhat complicated and
are covered in ÒXTI Option SummaryÓ (page 807).
165

C H A P T E R 7

Option Management
About Options and Option Negotiation 7

For every endpoint, Open Transport maintains an options buffer. When you
create an endpoint provider, Open Transport Þlls this buffer with a default
value for each option supported for the endpoint. Option values have meaning
for and are deÞned by the protocol to which they apply. Typically, Open
Transport uses endpoint options to control aspects of the endpointÕs operation.
For example, if a protocol guarantees reliable delivery of data, the protocol
might deÞne an option that speciÞes the number of times a send operation is
retried before the send fails and an error message is generated. Protocol
implementations provide default values for options to ensure maximum
portability for your application across protocol families.

In writing a networking application, you can use an endpoint providerÕs
default option values or you can replace these with other values to control the
behavior of an endpoint. Option negotiation describes the process that results
when you decide to replace default values with option values that you choose.
A successful negotiation results in your obtaining exactly the option values you
requested, a partly successful negotiation results in your getting different
values for the options you requested, and a failed negotiation results in your
not being able to change existing values at all.

Depending on the option you want to modify, a negotiation might involve a
client and its endpoint provider, or it might involve both a local and remote
client and their endpoint providers. In either case, itÕs important to keep in
mind that the process is a negotiationÑthat is, before you can change the
characteristics of an endpoint or change the way in which it transfers data or
establishes a connection, an agreement has to be reached. If you cannot reach
this agreement, the operation you are attempting to complete could fail. In this
case, you might have to Þnd a way of implementing the service you need other
than through the use of options.

Explicit Use of Options and Portability of Code 7

The goal of the Open Transport architecture is to enable networking
applications to migrate across protocol families and system platforms with
little or no change to code. However, the price of transport independence or,
ideally, transport transparency is that an application must be ready to forego
166 About Options and Option Negotiation

C H A P T E R 7

Option Management
features that are unique to a speciÞc protocol in order to work equally well
with protocols offering a similar type of service, such as connection-oriented
transactionless service or connectionless transaction-based service. Because
options are often coupled with a particular protocol or protocol family, making
explicit use of options degrades portability across protocol families. Similarly,
different system platforms might offer different option support for the same
protocols due to different implementations. Thus, making use of options can
also endanger portability across different system platforms.

Note, however, that protocols are not necessarily interchangeable and that you
might very reasonably want to take advantage of a protocol feature that is only
available through the use of options. If this is the case, you need to become
familiar with the material presented in the following sections, which describe
the Open Transport rules for option management and negotiation.

Types of Options 7

The process of option negotiation is affected by the type of option involved.
Options can be association-related, privileged, read-only, or absolute. For more
information about these distinction and how they affect option negotiation, see
ÒXTI Option SummaryÓ (page 807).

The Format of Option Information 7

An option has a name and a value, it is deÞned for a speciÞc protocol, and it
takes up a certain amount of room in memory. The TOption structure used to
deÞne an option contains Þelds for each of these characteristics. As Figure 7-1
shows, an option is described by an option header and a value.
About Options and Option Negotiation 167

C H A P T E R 7

Option Management
Figure 7-1 The format of option information

The option header is the same for all options. It contains four Þelds that specify:

■ The length of the entire structure. The length includes the length of
the option header and the length of the value Þeld; it does not include
added padding.

■ The protocol (level) for which the option applies. It is possible to set an
option for any protocol that is part of an endpoint providerÕs conÞguration.
For example, if you open an AppleTalk Transaction Protocol (ATP) endpoint,
it is possible to set an option at the Datagram Delivery Protocol (DDP) level
by specifying DDP for the level Þeld.

■ The name of the option. Each protocol implementation deÞnes the names of
options it supports.

■ The status of the option. The endpoint provider Þlls in this Þeld to indicate
the outcome of the option negotiation.

The length and format of data in the value Þeld depend on the option
being deÞned.

4Length

4Level

4Name

4Status

Variable
length

Value

Option
header

BytesTOption structure
168 About Options and Option Negotiation

C H A P T E R 7

Option Management
You store option information for an endpoint in a buffer containing one or
more TOption structures. A TNetbuf structure describes the buffer. Figure 7-2
shows a TNetbuf structure, MyOptBuf, that describes an options buffer containing
three options. The Þeld MyOptBuf.buf points to the buffer; the Þeld MyOptBuf.len
speciÞes the actual length of the buffer.

Figure 7-2 An options buffer

You can concatenate several TOption structures in a buffer, as shown in
Figure 7-2, provided you observe the following rules:

■ TOption structures must be quad-byte aligned within the buffer.

■ If you are using the OTOptionManagement function to set or verify option
values, all options in the buffer must be for the same protocol. That is, the
value of the level Þeld must be the same. When used with any other
function, the options buffer can contain options set for different protocols.

XTI-Level Options and General Options 7

In addition to options deÞned for speciÞc protocols, Open Transport deÞnes
options called XTI-level options that are not speciÞc to a particular endpoint.
Some of these options are absolute requirements, which means that whatever
protocol you are using must support these options. You need to consult the

0 32 64 96 128

First option Third optionSecond option

Alignment bytes Alignment bytes

MyOptBuf.maxlen

MyOptBuf

MyOptBuf.len

MyOptBuf.buf
About Options and Option Negotiation 169

C H A P T E R 7

Option Management
documentation for your protocol to determine the meaning of the option for
your endpoint and for additional information about default values and ranges
or valid values supported for the option. Table 7-1 provides a brief summary of
XTI-level options. For more detailed information about these options, see
ÒXTI-Level OptionsÓ(page 565).

In addition to the XTI-level options, Open Transport deÞnes the set of generic
options listed in Table 7-2. None of these options are absolute requirements.
This means that if an Open Transport protocol supports the functionality of one

Table 7-1 XTI-level options

Option name Description

XTI_DEBUG Enables debugging.

XTI_LINGER SpeciÞes a linger period which delays the execution of the
OTCloseProvider function.

XTI_RCVBUF SpeciÞes the size of your endpointÕs internal receive buffer.

XTI_RCVLOWAT SpeciÞes the number of bytes that must accumulate in the
endpointÕs internal receive buffer before your application
receives a T_DATA event signalling the arrival
of data.

XTI_SNDBUF SpeciÞes the size of your endpointÕs internal send buffer.

XTI_SNDLOWAT SpeciÞes the minimum number of bytes that can accumulate
in the endpointÕs internal send buffer before the provider
actually sends the data.
170 About Options and Option Negotiation

C H A P T E R 7

Option Management
of these options, it should use this option to do it. For additional information
about generic options, see ÒGeneric OptionsÓ(page 567).

Using Options 7

This section explains how you use endpoint functions to set and retrieve option
values and how you use Open Transport utility functions to construct an
options buffer and parse through an options buffer.

Determining Which Function to Use to Negotiate Options 7

You can negotiate options using the OTOptionManagement function or using any
one of the endpoint functions used to transfer data or establish a connection.
The basic distinction between setting option values using the

Table 7-2 Open Transport generic options

Option name Description

OPT_CHECKSUM SpeciÞes whether packets have checksums calculated
on receipt.

OPT_RETRYCNT SpeciÞes the number of times a function can attempt
packet delivery.

OPT_INTERVAL SpeciÞes the amount of time to wait between attempts
to deliver a packet or request.

OPT_ENABLEEOM SpeciÞes whether the T_MORE ßag for the OTSnd function
can be used to signal the end of a logical unit.

OPT_SELFSEND SpeciÞes whether self-sending is enabled for broadcast
messages.

OPT_SERVERSTATUS SpeciÞes the status string that is used to answer a
SendStatus request from a client.

OPT_KEEPALIVE SpeciÞes the amount of time a connection should be
maintained in the absence of data transfer.
Using Options 171

C H A P T E R 7

Option Management
OTOptionManagement function and using any of the other endpoint functions is
that options negotiated with the OTOptionManagement function affect all
functions called by an endpoint, whereas options negotiated using any other
function affect only the connection, transaction, or datagram for which they are
set. For more detailed information about these differences, see ÒXTI Option
SummaryÓ (page 807).

Obtaining the Maximum Size of an Options Buffer 7

Different types of endpoints support different numbers of options. For
example, an ATP endpoint might support more options than a DDP endpoint
and might need a larger buffer to hold the options. When you call the
OTOptionManagement function to change option values, the function returns in
the ret parameter a pointer to the buffer containing the negotiated option
values. You must have allocated the buffer used to store these options before
calling the function. Likewise, when you call the OTListen, OTRcvUData,
OTRcvURequest, or OTRcvConnect functions, you can allocate a buffer in which
current option values are to be placed when these functions return. In either
case, you must specify the size of the buffer, and the buffer must be large
enough to hold all of the endpointÕs options. Otherwise, the function fails with
a kOTBufferOverflow result. You can obtain the maximum size of a buffer used
to store options for your endpoint by examining the options Þeld of the
TEndpointInfo structure for the endpoint. You can get a pointer to this structure
when you open the endpoint, when you bind the endpoint, or when you call
the OTGetEndpointInfo function.

Setting Option Values 7

You can use the OTOptionManagement, OTAccept, OTSndUData, OTSndURequest, and
OTConnect functions to set option values. Setting option values results in a
negotiation process between you (the client application) and the endpoint
provider or, in the case of association-related options, between local and remote
clients and their endpoint providers. Appendix D describes the rules that
govern an option negotiation that you have initiated using the
OTOptionManagement, OTConnect, OTSndUData, or OTSndURequest functions. The
section ÒRetrieving Values for Connection-Oriented EndpointsÓ (page 816)
describes the negotiation rules that hold when you use the OTOptionManagement
or OTAccept functions to respond to a negotiation. This section describes ways
in which you can build the options buffer used to specify the options you want
to change.
172 Using Options

C H A P T E R 7

Option Management
Specifying Option Values 7

No matter which function you use to set option values, you must allocate a
buffer that contains the option value or values you want to change. The options
in this buffer are described by TOption structures; the format of this structure is
illustrated in Figure 7-1 (page 168). You can concatenate several structures in
the buffer, as shown by Figure 7-2 (page 169), so long as each structure begins
on a long-word boundary. The buffer itself is described by a TNetbuf structure
that speciÞes the location of the buffer and its size.

You can create a buffer that contains the option values you want to set in one of
two ways: manually or by using the OTCreateOptions function. If you construct
the buffer manually, you must do the following:

1. Allocate the buffer.

2. Create a TOption structure for each option you want to change.

3. Initialize each Þeld of the TOption structure except for the status Þeld.

4. Place the TOption structures in the buffer, making sure that each begins on a
long-word boundary. This enables Open Transport to parse the buffer.

To have Open Transport create a buffer for you, you must call the
OTCreateOptions function and pass it a string containing one or more option
values. This method saves time and trouble, but you can only use it if all the
options in the buffer are for the same level and that level is the same as the
top-level protocol for the endpoint provider. That is to say, you could not use
this method to construct a buffer that contains DDP-level options for an ATP
endpoint. In addition, this method is only guaranteed to work if you are
building an options buffer for the OTOptionManagement function.

Listing 7-1 shows how you construct an options buffer by using the
OTCreateOptions function. The code initializes a string array, myStr, to hold
option values. It then creates a TOptMgmt structure, which would later be passed
to the OTOptionManagement function to request the option values speciÞed in the
string. Finally, it calls the OTCreateOptions function to create the options buffer.
The OTCreateOptions function creates the TOption structures and places them in
the buffer, making sure that the structures are properly aligned.
Using Options 173

C H A P T E R 7

Option Management
Listing 7-1 Constructing an options buffer using the OTCreateOptions function

char* myStr = "BaudRate = 9650 DataBits = 8 Parity = 0
StopBits = 10";

UInt8 buffer[512];
TOptMgmt cmd;
cmd.opt.len = 0;
cmd.opt.maxlen = sizeof(buffer);
cmd.opt.buf = buffer;
cmd.flags = T_NEGOTIATE
err = OTCreateOptions("SerialA", &myStr, &cmd.opt)

In this case, the initial value of cmd.opt.len, which is 0, tells the
OTCreateOptions function at what offset it should begin to append option
information in the buffer. When the function returns, this Þeld speciÞes the
actual length of the buffer.

Setting Default Values 7

To set all of an endpointÕs options to their default values, call the
OTOptionManagement function, specifying T_NEGOTIATE for the flags field and
allocating a buffer containing only one option named T_ALLOPT. Doing this
saves you the trouble of constructing a TOption structure for every option the
endpoint supports. However, there is no guarantee that the provider can honor
your request simply because you request default values. Therefore, you must
allocate a buffer that is large enough to hold the option values returned in the
ret parameter.

Retrieving Option Values 7

This section describes how you can retrieve information about options,
including obtaining current and default option values for an endpoint and
obtaining current option values related to a connection, transaction, or
datagram.

When retrieving option values, you must allocate a buffer that is large enough
to contain the options when the function returns. The section ÒObtaining the
Maximum Size of an Options BufferÓ (page 172) explains how you do this.
174 Using Options

C H A P T E R 7

Option Management
Obtaining Current and Default Values 7

To obtain some of an endpointÕs default or current option values, you call the
OTOptionManagement function. You specify T_DEFAULT or T_CURRENT for the flags
Þeld of the req parameter, and you use the option.buf Þeld to specify the
option names in which you are interested. When the function returns, it places
TOption structures, describing the default or current option values, in the buffer
referenced by the opt.buf Þeld of the ret parameter.

If you are interested in obtaining all of an endpointÕs default or current values,
you can use the following methods:

■ To obtain an endpointÕs default values, call the OTOptionManagement function,
specifying T_DEFAULT for the ßags Þeld and T_ALLOPT for the option name.

■ To obtain an endpointÕs current option values, call the OTOptionManagement
function, specifying T_CURRENT for the flags Þeld and T_ALLOPT for the option
name.

Using T_ALLOPT for the option name allows you to construct an input buffer that
contains only one option. Remember, however, that you must allocate an
output buffer that is large enough to hold all of an endpointÕs option values
when the function returns.

Parsing an Options Buffer 7

If you use the OTOptionManagement function to set, verify, or retrieve values, the
function returns in the ret parameter a pointer to a buffer containing option
information. You can use the OTCreateOptionString function to parse this buffer
and create a string that lists all options and their current values.

The code fragment shown in Listing 7-2 calls the OTOptionManagement function
to retrieve the option values currently effective for an endpoint. On return, the
OTOptionManagement function stores these in the cmd structure. Next, the code
calls the OTCreateOptionString function. The Þrst input parameter, "SerialA",
speciÞes the name of the protocol. The next input parameter, opts, is a pointer
to the buffer containing the option values returned by the OTOptionManagement
function. The expression cmd.opt.buf + cmd.opt.len, which provides the next
input parameter, speciÞes the length of the buffer. Using this information, the
OTCreateOptionString function returns a string containing each option name
and its respective value. The Þnal parameter to the OTCreateOptionString
function speciÞes the length of the string.
Using Options 175

C H A P T E R 7

Option Management
Listing 7-2 Using the OTCreateOptionString function to parse through a buffer

TOptMgmt cmd;
UINt8 myBuffer[512];
char myString[256];

cmd.opt.len = sizeof(TOption);
cmd.opt.maxlen = sizeof(myBuffer);
cmd.opt.buf = myBuffer;
((TOption*) buffer)->len = sizeof(TOption);
((TOption*) buffer)->level = COM_SERIAL;
((TOption*) buffer)->name = T_ALLOPT;
((TOption*) buffer)->status = 0;
cmd.flags = T_CURRENT;

OTOptionManagement(theEndpt, &cmd, &cmd);

TOption* opts = (TOption*)cmd.opt.buf;
err = OTCreateOptionString("SerialA", &opts,

cmd.opt.buf + cmd.opt.len, string, sizeof(string));
printf("Options = \"%s\"", string);

Note
The OTCreateOptionString function is supplied solely as a
debugging aid. You should not include the function in a
production version of your application because there is no
provision made for localizing string information. ◆

Verifying Option Values 7

In addition to obtaining default or current values and negotiating new values,
you can use the OTOptionManagement function to verify whether an endpoint
supports one or more options. To do this, you construct a buffer containing
TOption structures describing the options you are interested in and pass this
buffer in the req parameter to the OTOptionManagement function, specifying
T_CHECK for the action flag. When the function returns, you can examine the
status field of the TOption structures for the options passed back to you in the
ret parameter to determine whether the specified options are supported.
176 Using Options

C H A P T E R 7

Option Management
Sample Code: Getting and Setting Options 7

The code listings discussed in this section furnish examples of how you can use
the Open Transport API to get, set, and display the values of options.

Listing 7-3 shows a main function that calls a number of other functions
(deÞned in subsequent listings) to set, get, and display option values.

Listing 7-3 Calling functions that get, set, and display options

#ifndef qDebug / *OT debugging macros need this var */
#define qDebug 1
#endif
#include <OpenTransport.h>

#include <OpenTptInternet.h> /* for TCP/IP */

#include <OpenTptSerial.h> /* for serial endpoints */

#include <OTDebug.h> /* Need OTDebugBreak and OTAssert macros */
#include <stdio.h> /* Standard C prototypes */

/* OTDebugStr is not defined in any OT header files, but it is
exported by the libraries, so we define the prototype here. */

extern pascal void OTDebugStr(const char* str);

void main(void) {
OSStatus err;
OSStatus junk;
EndpointRef ep;
UInt32 value;

printf("HelloWorld!\n");

err = InitOpenTransport();

if (err == noErr) {
ep = OTOpenEndpoint(OTCreateConfiguration(kTCPName), 0, nil,

&err);
Using Options 177

C H A P T E R 7

Option Management
if (err == noErr) {
printf("\nGetting and Setting IP_REUSEADDR.\n");
err = GetFourByteOption(ep, INET_IP, IP_REUSEADDR, &value);
if (err == noErr)

printf("Default value = %d\n", value);
if (err == noErr)

err = SetFourByteOption(ep, INET_IP, IP_REUSEADDR, true);
if (err == noErr){

err = GetFourByteOption(ep, INET_IP, IP_REUSEADDR,
&value);

if (err == noErr)
printf("New value = %d\n", value)

}
if (err == noErr) {

printf("\nPrinting Options Piecemeal at Level
INET_IP.\n");

err = PrintAllOptionsAtLevel(ep, INET_IP);
}
if (err == noErr){

printf("\nPrinting Formatted Options at Level
COM_SERIAL.\n");

err = PrintOptionsForConfiguration(kSerialName,
COM_SERIAL);

}
if (err == noErr) {

printf("\nBuilding Options for COM_SERIAL.\n");
err = BuildAndPrintOptions(kSerialName, "BaudRate=9600,

DataBits=7, StopBits=15");
}
junk = OTCloseProvider(ep);
OTAssert("GetSetOptions: Closing the endpoint failed",

junk == noErr);
}
CloseOpenTransport();

}
if (err == noErr)

printf("Success.\n");
 else

printf("Failed with error %d.\n", err);
printf("Done. Press command-Q to Quit.\n");

}

178 Using Options

C H A P T E R 7

Option Management
This main function initializes Open Transport and then creates a TCP endpoint.
Then, it calls the function GetFourByteOption to obtain the value of the
IP_REUSEADDR option, which governs whether you can bind multiple endpoints
to addresses with the same port number. Listing 7-4 contains the deÞnition of
the GetFourByteOption function.

Listing 7-4 Getting an option value

static OTResult GetFourByteOption(EndpointRef ep,
OTXTILevel level,
OTXTIName name,
UInt32 *value)

{
OTResult err;
TOption option;
TOptMgmt request;
TOptMgmt result;

/* Set up the option buffer */
option.len = kOTFourByteOptionSize;
option.level = level;
option.name = name;
option.status = 0;
option.value[0] = 0;// Ignored because we're getting the value.

/* Set up the request parameter for OTOptionManagement to point
 to the option buffer we just filled out */

request.opt.buf = (UInt8 *) &option;
request.opt.len = sizeof(option);
request.flags = T_CURRENT;

/* Set up the reply parameter for OTOptionManagement. */
result.opt.buf = (UInt8 *) &option;
result.opt.maxlen = sizeof(option);

err = OTOptionManagement(ep, &request, &result);

if (err == noErr) {
switch (option.status)
Using Options 179

C H A P T E R 7

Option Management
{
case T_SUCCESS:
case T_READONLY:

*value = option.value[0];
break;

default:
err = option.status;
break;

}
}

return (err);
}

The function GetFourByteOption gets the current option setting and assigns it to
the location referenced by value. The endpoint is assumed to be in synchronous
mode. If an error occurs, the function returns a negative result. If the option
could not be read, a positive result (either T_FAILURE, T_PARTSUCCESS, or
T_NOTSUPPORT) is returned.

Within the body of the function, the Þelds of the option buffer are set up to
specify the option and value we want to get. The TOption structure is used to
represent the option buffer. This structure is deÞned to allow easy construction
of 4-byte options.

Next, the request parameter for the OTOptionManagement function is deÞned to
reference the option buffer that was just initialized. The request.flags Þeld is
initialized to T_CURRENT, specifying that we want to get the current value of the
option. The reply parameter for the OTOptionManagement function is then
initialized. This is where the function stores the result of the negotiation.
Finally, the OTOptionManagement function is called, and its result is checked to
see that the option value was read successfully. Any status other than T_SUCCESS
or T_READONLY is stored in the err variable.

The next function called by main is SetFourByteOption, shown in Listing 7-5.
This routine sets an option and assigns it to the location referenced by value.
The endpoint is assumed to be in synchronous mode. If an error occurs, the
function returns a negative result. If the option could not be read, a positive
result (T_FAILURE, T_PARTSUCCESS, TREADONLY, or T_NOTSUPPORT) is returned.
180 Using Options

C H A P T E R 7

Option Management
Listing 7-5 Setting an option value

static OTResult SetFourByteOption(EndpointRef ep,
OTXTILevel level,
OTXTIName name,
UInt32 value)

{
OTResult err;
TOption option;
TOptMgmt request;
TOptMgmt result;

/* Set up the option buffer to specify the option and value to
set. */

option.len = kOTFourByteOptionSize;
option.level = level;
option.name = name;
option.status = 0;
option.value[0] = value;

/* Set up request parameter for OTOptionManagement */
request.opt.buf = (UInt8 *) &option;
request.opt.len = sizeof(option);
request.flags = T_NEGOTIATE;

/* Set up reply parameter for OTOptionManagement. */
result.opt.buf = (UInt8 *) &option;
result.opt.maxlen = sizeof(option);

err = OTOptionManagement(ep, &request, &result);

if (err == noErr) {
if (option.status != T_SUCCESS)

err = option.status;
}

return (err);
}

Using Options 181

C H A P T E R 7

Option Management
The SetFourByteOption function is very similar in structure to the
GetFourByteOption function, shown in the previous listing. Once again, we use
a TOption structure to represent the option buffer and initialize its Þelds to
specify the option and value we want to set. Next, we initialize the request
parameter of the OTOptionManagement function to reference the option buffer we
just initialized. The length Þeld is set to the size of the option buffer and the
flags field is set to T_NEGOTIATE to specify that we want to set the option value
speciÞed in the option buffer.

The reply parameter for the OTOptionManagement function is then set up. This is
where the function will store the negotiated value of the option when it
returns. Finally, the OTOptionManagement function is invoked and its result is
checked to make sure the option was successfully negotiated.

After calling the SetFourByteOption function, main calls the GetFourByteOption
function again to check the newly set value. The next three functions,
PrintAllOptionsAtLevel, PrintOptionsForConfig, and BuildAndPrintOptions
demonstrate various ways of displaying option values for an endpoint. Two of
those functions call the function PrintOptionBuffer shown in Listing 7-6. This
function calls the Open Transport function OTNextOption to parse through an
options buffer and then uses printf statements to display the results.

Listing 7-6 Parsing an options buffer

static OSStatus PrintOptionBuffer(const TNetbuf *optionBuffer)
{

OSStatus err;
TOption *currentOption;

currentOption = nil;
do
{err = OTNextOption(optionBuffer->buf, optionBuffer->len,

¤tOption);
if (err == noErr && currentOption != nil)

 printf("Level = $%08x, Name = $%08x, Data Length = %d,
Status = $%08x\n",
currentOption->level,
currentOption->name,
currentOption->len - kOTOptionHeaderSize,
currentOption->status);
182 Using Options

C H A P T E R 7

Option Management
} while (err == noErr && currentOption != nil);
return (err);

}

The PrintOptionBuffer function displays the level, name, size, and status for
each option in the option buffer. The PrintAllOptionsAtLevel function, which
main calls next, uses this function to display all the options for an endpoint that
are set at a speciÞed level.

Listing 7-7 Obtaining options for a specific level

static OSStatus PrintAllOptionsAtLevel(EndpointRef ep, OTXTILevel level)
{

OSStatus err;
TEndpointInfo epInfo;
TOptionHeader requestOption;
void *resultOptionBuffer;
TOptMgmt request;
TOptMgmt result;

resultOptionBuffer = nil;

/* Find max size of options of endpoint and allocate buffer */

err = OTGetEndpointInfo(ep, &epInfo);
if (err == noErr) {

resultOptionBuffer = OTAllocMem(epInfo.options);
if (resultOptionBuffer == nil)

err = kENOMEMErr;
}

/* Call OTOptionManagement to get current option values */
if (err == noErr) {

requestOption.len = kOTOptionHeaderSize;
requestOption.level = level;
requestOption.name = T_ALLOPT;
requestOption.status = 0;

request.opt.buf = (UInt8 *) &requestOption;
request.opt.len = sizeof(requestOption);
Using Options 183

C H A P T E R 7

Option Management
request.flags = T_CURRENT;

result.opt.buf = resultOptionBuffer;
result.opt.maxlen = epInfo.options;

err = OTOptionManagement(ep, &request, &result);
}
/* Print options to stdout. */

if (err == noErr) {
err = PrintOptionBuffer(&result.opt);
printf("\n");

}
if (resultOptionBuffer != nil)

OTFreeMem(resultOptionBuffer);
return (err);

}

The function PrintAllOptionsAtLevel takes two parameters, an endpoint
reference and a level value. The function Þrst calls OTGetEndpointInfo to
determine the maximum size of options for the endpoint and then allocates a
buffer to hold the options after they are read. Next, the OTOptionManagement
function is called to get the current value (T_CURRENT) of all the options
(T_ALLOPT) set for the endpoint. The option values that are returned are stored
in the buffer referenced by the result parameter. A pointer to the result
parameter is passed to the function PrintOptionsBuffer (page 182), which
displays option values. After the values are displayed, the memory allocated
for the result options buffer is freed.

The next function called by main is PrintOptionsForConfiguration, shown in
Listing 7-8. This function gets all the options associated with a level of a
provider, converts those options to a formatted string, and then displays that
string. The function demonstrates one common use of the function
OTCreateOptionString.

Listing 7-8 Using the OTCreateOptionString function

static OSStatus PrintOptionsForConfiguration(const char *configStr,
OTXTILevel level)

{

184 Using Options

C H A P T E R 7

Option Management
OSStatus err;
OSStatus junk;
EndpointRef ep;
TEndpointInfo epInfo;
TOptionHeader requestOption;
void *resultOptionBuffer;
TOptMgmt request;
TOptMgmt result;
TOption *resultOption;
char optionsString[1024];

resultOptionBuffer = nil;
ep = kOTInvalidEndpointRef;

/* Create an endpoint using the specified configuration. */
ep = OTOpenEndpoint(OTCreateConfiguration(configStr), 0, &epInfo,

&err);

/* Allocate a buffer to store option info */

if (err == noErr) {
resultOptionBuffer = OTAllocMem(epInfo.options);
if (resultOptionBuffer == nil)

err = kENOMEMErr;
}

/* Get the current value of all options at the specified level. */
if (err == noErr) {

requestOption.len = kOTOptionHeaderSize;
requestOption.level = level;
requestOption.name = T_ALLOPT;
requestOption.status = 0;
request.opt.buf = (UInt8 *) &requestOption;
request.opt.len = sizeof(requestOption);
request.flags = T_CURRENT;

result.opt.buf = resultOptionBuffer;
result.opt.maxlen = epInfo.options;

err = OTOptionManagement(ep, &request, &result);
}

Using Options 185

C H A P T E R 7

Option Management
/* Convert the options bufferinto a formatted string, and display */
if (err == noErr)
{

resultOption = (TOption *) result.opt.buf;
err = OTCreateOptionString(configStr, &resultOption,

result.opt.buf + result.opt.len, optionsString, 1024);
if (err == noErr)

printf("Formatted Options = “%s”\n\n", optionsString);
}

/* Clean up. */

if (resultOptionBuffer != nil)
OTFreeMem(resultOptionBuffer);

if (ep != kOTInvalidEndpointRef) {
junk = OTCloseProvider(ep);
OTAssert("PrintOptionsForConfiguration: Closing the endpoint

failed", junk == noErr);
}
return (err);

}

The PrintOptionsForConfiguration function takes two parameters, a
conÞguration string that describes a speciÞc endpoint provider and a level for
which we are interested in getting option information. The function Þrst opens
an endpoint using the conÞguration information passed in. Note that the
address of a buffer to hold endpoint information (&epInfo) is also speciÞed in
the call. We need the endpoint information structure in order to determine the
maximum size of the options buffer for the endpoint.

Next, the function allocates a buffer to hold option values passed back by the
OTOptionManagement function. The value of T_ALLOPT for the name field and
T_CURRENT for the flags field specify that we are interested in getting currently
set values for all options set for the endpoint. After the buffer is allocated, the
OTOptionManagement function is invoked. Finally, the OTCreateOptionString
function is invoked; this function converts the option buffer passed back by the
OTOptionManagement function into a formatted string, which is then displayed
using a printf statement.

The last function called by main, BuildAndPrintOptions, accomplishes the
reverse of the PrintOptionsForConfiguration function: it takes a conÞguration
186 Using Options

C H A P T E R 7

Option Management
string and a set of formatted options, converts the options to their binary
format (that is, an options buffer), and then displays the contents of that buffer.
The BuildAndPrintOptions function is shown in Listing 7-9.

Listing 7-9 Building an options buffer from a configuration string

static OSStatus BuildAndPrintOptions(const char *configStr,
const char *optionsString)

{ OSStatus err;
OSStatus junk;
void *resultOptionBuffer;
EndpointRef ep;
TEndpointInfo epInfo;
TNetbuf optionsNetbuf;

resultOptionBuffer = nil;
ep = kOTInvalidEndpointRef;

/* Create an endpoint using the specified configuration. */

ep = OTOpenEndpoint(OTCreateConfiguration(configStr), 0,
&epInfo, &err);

/* Allocate a buffer of the maximum option buffer size. */
if (err == noErr) {

resultOptionBuffer = OTAllocMem(epInfo.options);
if (resultOptionBuffer == nil)

err = kENOMEMErr;
}

/* Parse formatted optionsString into the binary format */
if (err == noErr) {

optionsNetbuf.buf = resultOptionBuffer;
optionsNetbuf.len = 0;
optionsNetbuf.maxlen = epInfo.options;
err = OTCreateOptions(configStr, (char **) &optionsString,

&optionsNetbuf);
if (err == noErr) {

err = PrintOptionBuffer(&optionsNetbuf);
printf("\n");
Using Options 187

C H A P T E R 7

Option Management
}
}
/* Clean up. */
if (resultOptionBuffer != nil)

OTFreeMem(resultOptionBuffer);
if (ep != kOTInvalidEndpointRef) {

junk = OTCloseProvider(ep);
OTAssert("BuildAndPrintOptions: Closing the endpoint failed",

junk == noErr);
}
return (err);

}

The function BuildAndPrintOptions creates an endpoint using the speciÞed
conÞguration. When opening the endpoint, the address of an endpoint
information structure (&epInfo) is passed in; the endpoint provider Þlls in this
structure with information about the endpoint, including its maximum option
buffer size. The function then allocates a buffer that is large enough to contain
option information for the endpoint.

Next the function BuildAndPrintOptions calls the OTCreateOptions function to
parse the formatted optionsString into the binary format (optionsNetbuf). Then
the function calls PrintOptionBuffer (page 182) to display the contents of the
options buffer. Finally, the function frees memory allocated for the options
buffer and returns.
188 Using Options

C H A P T E R 8

Contents

Contents
Figure 8-0
Listing 8-0
Table 8-0
8 Ports
About Ports 191
Identifying Ports 192

Port Name 192
Port Reference 192

Multiport IdentiÞers 192
Pseudodevices 193
Port Structures 193

Using Ports 194
Obtaining Port Information 195
Requesting a Port to Yield Ownership 198
Registering as an Open Transport Client 198
189

C H A P T E R 8
190 Contents

C H A P T E R 8
Ports 8

This chapter discusses the concept of ports in Open Transport and introduces
the Open Transport functions that provide information about the ports
available on your computer.

You need to read this chapter if your application has the ability to use multiple
ports, and you need to be able to obtain port information.

This chapter discusses how your application can

■ browse available ports and get speciÞc port information

■ register as an Open Transport client

■ handle yield port requests

This chapter begins by introducing basic concepts about ports, then gives the
details of how to Þnd a speciÞc port and extract information about it, and
explains how to register your application as an Open Transport client. For
complete information about the data types and functions used to work with
ports, see ÒPorts ReferenceÓ (page 589).

About Ports 8

Central to Open TransportÕs architecture is the concept of a port. In Open
Transport, a port is a logical entity that combines a hardware device and the
software driver that acts as an interface to it. Ethernet, serial devices, and
LocalTalk ports are examples of ports commonly used in Open Transport.
When you initialize Open Transport, it scans the local machine for all available
ports and creates a data structure called a port registry in which it stores
information about these ports.

Typically, your application uses whichever port is deÞned in the appropriate
control panel (for example, AppleTalk or TCP/IP). If, however, your
application provides special port manipulation features, you need the
additional port information data structures, constants, and functions that Open
Transport provides for browsing among the ports available to your computer
and for Þnding speciÞc ports.
About Ports 191

C H A P T E R 8

Ports
Identifying Ports 8

Open Transport provides a standard naming scheme for describing the ports
available to a computer. There are two ways to identify each port uniquely: its
port name and its port reference.

Port Name 8

The port name is a unique name that designates the port. This name identiÞes
the port without using any location information. For instance, "ltlkA"
identiÞes LocalTalk on the serial port, and "ltlkB" identiÞes LocalTalk on the
modem port. This name must always be used in the path string for the
OTCreateConfiguration function to uniquely identify a port.

The port name is typically an abbreviation of the portÕs device type plus a
sufÞx, usually numeric, such as "enet0," "enet1," and "enet2." For historic
reasons, LocalTalk and serial ports use an alphabetic sufÞx instead. For
example, "ltlkA" is the modem port and "ltlkB" is the printer port. The port
name is a zero-terminated string that can have a maximum length of 36 bytes:
31 bytes for the name, up to 4 bytes of extra characters (called minor numbers in
XTI speciÞcations) that are currently not used, and a byte for the terminating
zero.

You can identify a port using only the device name, in which case Open
Transport uses the Þrst device of that type that has been registered and is
available. For most devices this means the built-in device, if one exists.
Otherwise, this refers to the Þrst slotted device that has been registered.

Port Reference 8

You can also uniquely identify a port with a port reference, which is a 32-bit
value that describes a portÕs hardware characteristics: its device and bus type,
its physical slot number, and, where applicable, its multiport identiÞer. For
details of the possible values you can use in a port reference, see ÒThe Port
ReferenceÓ(page 595).

Multiport Identifiers 8

The multiport identiÞer is a port function parameter that distinguishes
between multiple ports when a single slot supports more than one port of the
same device type. This parameter, called other, is part of the port reference
structure, which is described in ÒThe Port ReferenceÓ (page 595).
192 About Ports

C H A P T E R 8

Ports
Typically, the hardware device in a multiport slot is either a plug-in
multifunction card with multiple ports on it or a device with multiple uses, one
or more of which is a port. An example of a multifunction card is the SerialNB
card with its four ports; an example of a multi-use device on most Macintosh
computers is the SCC chip that can handle both LocalTalk and serial
communications. Typically, a multifunction card has multiple ports that use
different values for the other parameter and possibly different device
attributes. A multi-use device is registered with all attributes identical except
for the device type.

Pseudodevices 8

ThereÕs a special type of port, called a pseudodevice, that is a driver that
doesnÕt interface to a hardware device; instead, it interfaces to other device
drivers. Pseudodevices are provided as a convenience for the Open Transport
architecture. Open Transport deÞnes special device types for certain common
pseudodevices, such as modem, PPP, and SLIP. Because Open Transport canÕt
possibly accommodate all possible pseudodevices, there is a generic device
type, designated with the constant kOTPseudoDevice, that identiÞes unknown or
unusual pseudodevices. Each pseudodevice must have a unique port reference.
Typically, a pseudodevice is private, and a ßag indicating that the port is
private notiÞes applications browsing the port registry that the port is not
normally available for public use.

Port Structures 8

Every port on the computer is described in Open Transport by a port structure,
which contains its port reference, several sets of information ßags, its port
name, its STREAMS module name, and the slot ID (for ports on a PCI bus). For
details of the port structure, see ÒThe Port StructureÓ (page 592).

The port structure includes Þelds that allow you to identify a portÕs child port,
which allows you to identify which of several available hardware devices the
port uses. A port may have more than one child port, all of which can be active
simultaneously.

For example, in many implementations, a SLIP port is a pseudodevice that uses
a serial port as its hardware device. If more than one serial port is available, the
SLIP pseudodevice could use any of them. A SLIP port therefore always has a
serial port as its child port so that when multiple serial ports are available, you
can use the child port information to Þnd out which serial port the SLIP port is
About Ports 193

C H A P T E R 8

Ports
using. Other device types, such as Ethernet devices, do not have child ports
because they have a one-to-one relationship with their hardware deviceÑthat
is, they have only one possible choice for the hardware device they can use.

The slot ID is a user-visible identiÞer used for cards on PCI bus computers. To
derive this value, Open Transport accesses information in the Name Registery,
which is a register of hardware and software conÞguration information for
Power Macintosh computers that is maintained by Mac OS. For more
information about the Name Registry, see Designing PCI Cards and Drivers for
Power Macintosh Computers.

One set of ßags indicate a portÕs framing capabilitiesÑthat is, the different
packet headers and trailers (data frames) permitted by the protocol on that
port. The framing ßags are speciÞc to the device type being registered. See the
appropriate documentation for the device to determine how to interpret these
ßags.

For each hardware device type, Open Transport derives a default port name
based on the port name by stripping its numeric (or alphabetic, in the case of
LocalTalk and serial ports) sufÞx. All ports on a computer that are the same
hardware device type result in the same default port name. Thus, Ethernet
devices default to "enet." For all hardware device types, you can use the
default port name as part of the conÞguration string. If you use a default name
such as "enet," Open Transport uses whichever port is identiÞed as the default
port. If it canÕt Þnd that port, OpenTransport returns an error message.

In the case of LocalTalk, however, Open Transport uses a ßag to deÞne a
speciÞc port as a port alias, or a default port, for LocalTalk ports. This port is
called "ltlk" and uses the same Streams module name as the default LocalTalk
port. Normally, the LocalTalk default port is the printer port, "ltlkB," but if a
computer doesnÕt have an "ltlkB" port, then the LocalTalk default is the
modem port, "ltlkA". Because both the port alias and the default port have the
same STREAMS module name, when you use the port alias to conÞgure the
port, Open Transport can locate the default port even if a port doesnÕt use the
standard ÒItlkBÓ default.

Using Ports 8

This section describes how to obtain port information, and how to register
as an Open Transport client.
194 Using Ports

C H A P T E R 8

Ports
Obtaining Port Information 8

If your application manipulates ports, you may need port information to locate
a speciÞc port or to Þnd out how what ports are registered on your computer.
Open Transport registers all ports on your computer and creates a port
structure for each port. You can then use the various Open Transport port
functions to access these structures and get information from them. The port
structure is described in ÒThe Port StructureÓ (page 592).

If you want to Þnd out the port associated with a given provider, you can use
the OTGetProviderPortRef function. If you donÕt know which port structure you
want or if you want to provide a list of user-readable port names to your user,
you can use the OTGetIndexedPort function to iterate through all the ports
available on a computer, obtaining the port structure of each.

There are also two functions you can use to Þnd the port structure for a speciÞc
port: If you know its port name, you can use the OTFindPort function, or if you
know its port reference, you can use the OTFindPortByRef function.

If you want to use the OTFindPortByRef function, you need a port reference.
There are several ways you can get one: Another application might have
passed it to you, another application could have put it into a port structure that
you can access by using the OTGetIndexedPort function, or you can create one.

To create a port reference, you use the OTCreatePortRef function. You must
know all the portÕs hardware characteristics: its device and bus type, its slot
number, and its multiport identiÞer (if it has one). You cannot use wildcards to
Þll in any element you donÕt know. Possible device and bus types are described
in ÒThe Port ReferenceÓ (page 595).

For example, if you want to Þnd out the port name of the Ethernet port in
NuBus slot 13, you can use this line of code to create a port reference for this
port:

OTPortRef ref = OTCreatePortRef(kOTNuBus, kOTEthernetDevice, 13, 0);

If you then pass the result of this call to the OTFindPortByRef function,
OTFindPortByRef fills a buffer with the port structure that has this port reference
and returns a pointer to the buffer. You can examine the port structureÕs Þelds
for its port name.

Open Transport has predeÞned variants of the OTCreatePortRef function for the
most commonly used hardware devices such as the NuBus, PCI, and PCMCIA
Using Ports 195

C H A P T E R 8

Ports
devices. These are found in the section describing the function OTCreatePortRef
(page 608).

If you want to extract information from a port reference, you have to use
speciÞc Open Transport functions: OTGetDeviceTypeFromPortRef,
OTGetBusTypeFromPortRef, OTGetPortIConFromPortRef,
OTGetUserPortNameFromPortRef, and OTGetSlotFromPortRef.

Note
Listing 8-1 shows the user-deÞned function
OTFindSerialPorts. This function uses the
OTGetIndexedPort function to find all valid ports. For each
port, it gets and examines the device type and, if itÕs a
serial port and not an alias, it calls the user-deÞned
PrintSerialPort function to output information about the
port. (Note that you don't want to include aliases to the serial ports in the list,
otherwise a standard machine will have 3 serial ports, "serialA", "serialB"and
"serial". The PrintSerialPort function uses the OTGetUserPortNameFromPortRef
function to print the user name for each port.Note that the
slot numbers for NuBusª cards are physical; that is, they
are the slot numbers returned by the Slot Manager and not
the slots seen in various network conÞguration
applications. Physical slot numbers depend on the type of
card installed. For example, NuBus cards number their
slots 9 to 13, which appear in the AppleTalk or TCP control
panels as slots 1 to 5. For PCI cards, however, the slot
numbers are their logical slot IDs as deÞned in the port
structure. For cards in a PCI bus, it is not possible, a priori,
to create a port reference that corresponds to a known
card, so applications must iterate through the port registry
to Þnd appropriate PCI ports. ◆

Listing 8-1 Finding all serial ports

static OSStatus OTFindSerialPorts(void)
{

OSStatus err;
Boolean portValid;
SInt32 portIndex;
OTPortRecord portRecord;
196 Using Ports

C H A P T E R 8

Ports
UInt16 deviceType;
/* Start portIndex at 0 and call OTGetIndexedPort until */
/* there are no more ports. */

portIndex = 0;
err = kOTNoError;
do {

portValid = OTGetIndexedPort(&portRecord, portIndex);

/* Get the deviceType; and, if it's a serial port */
/* and not an alias, call PrintSerialPort */

if (portValid) {
deviceType = OTGetDeviceTypeFromPortRef(portRecord.fRef);
if (deviceType == kOTSerialDevice &&

(portRecord.fInfoFlags & kOTPortIsAlias) == 0) {
err = PrintSerialPortInfo(&portRecord);

}
}
portIndex += 1;

} while (portValid && err == kOTNoError);
return err;

}
static OSStatus PrintSerialPortInfo(const OTPortRecord *portRecord)
{

Str255 userVisibleName;

/* You must be running PPC codeto call OTGetUserPortNameFromPortRef */
/* on a PPC machine. */

OTGetUserPortNameFromPortRef(portRecord->fRef, userVisibleName);

printf("Found a serial port with port reference $%08lx:\n",
portRecord->fRef);

printf(" User visible name is “%#s”.\n",
userVisibleName);

printf(" String to pass to OTCreateConfiguration is “%s”.\n",
portRecord->fPortName);

printf(" Name of provider module is “%s”.\n",
portRecord->fModuleName);

printf("\n");
return kOTNoError;

}

Using Ports 197

C H A P T E R 8

Ports
Requesting a Port to Yield Ownership 8

There may be times when you need to use a particular port (normally, a serial
port or modem) that is owned by another application. You can use the
OTYieldPortRequest function to request the owner of a port to yield the use of
the port to you. (Check the kOTPortCanYield bit in the port recordÕs ßags Þeld to
determine whether the port supports yielding.) Open Transport then issues a
kOTYieldPortRequest event to each provider of any registered clients for that
port for acceptance or refusal. If the owner has not registered as a client of
Open Transport, compliance is assured.

If the current owner wants to deny the request, it puts a negative error code
into the fDenyReason Þeld in the port close structure indicating its reason for
refusal. The OTYieldPortRequest function then returns with this error code as its
result and with a buffer listing all the clients that have refused the request,
(normally only one).

If the OTYieldPortRequest function returns without an error, the port is
available for your use. You can then bind it with a queue length (qlen) greater
than 0 or establish a connection with it. If you donÕt use the port within a short
period of time (typically 10 seconds), the port automatically stops being
available for your use and reverts to its original owner.

You can force a passive client to yield by using a value of NULL in the
OTYieldPortRequest functionÕs buffer parameter. When the function returns
without an error, the port is available. Note that a port can only be yielded in
this manner if its current client is passively listening; it cannot be yielded if a
connection is in progress.

Providers owned by unregistered clients need to be prepared to receive
kOTProviderIsDisconnected and kOTProviderIsReconnected events when the
connection between the provider and port is unexpectedly disconnected and
reconnected due to a successful yield request.

Registering as an Open Transport Client 8

You can use the OTRegisterAsClient function to register your application as an
Open Transport client and provide Open Transport with a notiÞer function for
sending messages to you. Once you are registered as a client, Open Transport
can notify you of system events, such as the port transition events that occur
when a particular port is disabled or closed and when it is reenabled. By
registering, you also provide Open Transport with a user-readable name to use
when informing the user of port transition events.
198 Using Ports

C H A P T E R 8

Ports
If you use the OTRegisterAsClient function to register a notiÞer for client
events, you would receive the events such as kOTPortDisabled, kOTPortEnabled,
kOTPortOffline, kOTPortOnline, kOTClosePortRequest, kOTYieldPortRequest, and
kOTNewPortRegistered to keep you informed. For information about port
events, see ÒPort-Related EventsÓ (page 590).

The OTRegisterAsClient function is optional. If you do not want to receive
these events, you do not have to call this function.

Calling the CloseOpenTransport function automatically unregisters you as a
client. If you want to unregister prior to calling CloseOpenTransport, you can
call the OTUnregisterAsClient function.

Note
Client notiÞers are distinct from a provider notiÞer.
Provider notiÞers tell you about events related to that
speciÞc provider. Client notiÞers are sent events about the
Open Transport system as a whole. ◆
Using Ports 199

C H A P T E R 8

Ports
200 Using Ports

C H A P T E R 9

Contents

Contents
Figure 9-0
Listing 9-0
Table 9-0
9 Utilities
About Utility Functions 203
Using List Management Functions 204
201

C H A P T E R 9
202 Contents

C H A P T E R 9
Utilities 9

This chapter describes utility functions that you can use to implement time
stamps, manipulate lists and strings, manipulate memory, and perform atomic
operations.

Open Transport utility functions are described in detail in ÒUtilities ReferenceÓ
(page 621).

About Utility Functions 9

You can use Open Transport utility functions to measure time, manipulate
memory, strings, and lists, and to perform atomic operations. These functions
have proved useful in the implementation of Open Transport and they have
been exported for your use and convenience. In some instances, they can prove
more accurate or faster than equivalent functions provided by the operating
system.

This section summarizes the utility functions that are available to applications
using Open Transport and explains what relative advantages they offer over
their operating system equivalents, if any.

■ Timing functions

You can use these functions to obtain the current time, to measure elapsed
time, to Þnd the sum or difference between two timestamp values, and to
convert timestamp values into microseconds or milliseconds.
These functions are faster and more accurate than their Time Manager
equivalents; they are also more consistent with Open Transport internal
timing measurements.

■ Memory manipulation functions

You can use these functions to move memory, to compare two regions of
memory, and to initialize memory ranges to set values.
For 68000 code, these functions are dispatched more quickly than their
equivalent Toolbox functions. For PowerPC platforms, performance is
roughly equivalent to Toolbox functions. Note that hese functions should be
used for cached memory only. Using them for uncached memory will not
return an error, but will degrade performance.
About Utility Functions 203

C H A P T E R 9

Utilities
■ Manipulating lists

You can use these functions to manipulate entries in FIFO (Þrst-in Þrst-out)
and LIFO (last-in Þrst-out) lists.

■ Manipulating strings

You can use these functions to obtain the length of a string, to copy a string,
to concatenate strings, and to determine whether two strings are equal.
These functions are provided for those writing Open Transport modules and
drivers (because these cannot be linked with standard C libraries) but you
can also call these functions from application code.

■ Using atomic operations

You can use these functions to test and clear bits, to compare and swap
variously-sized values, and to add values. In addition, two atomic
operations are provided that allow you to set and clear locks. These are
described in ÒLocking FunctionsÓ (page 667).
The equivalent of these functions are already available on some machines as
part of the Driver Services Library. The advantage of using Open Transport
atomic operations is that they are available on all platforms and donÕt
depend on the avilability of the driver services library. For 68000 code, Open
Transport atomic operations are in-lined and are, therefore, very fast.

Using List Management Functions 9

The use of most of the utility functions introduced in this chapter and
described in ÒUtilities ReferenceÓ (page 621) is fairly straightforward. As
mentioned in the previous section, using these utilities can often result in better
performance. However, the group of functions used to manipulate linked lists
merits additional comment. This section focuses on the use of these functions
by way of a sample program, ÒListMania,Ó which is designed to illustrate the
use of the Open Transport linked-list routines in a simple producer-consumer
environment. The code includes two key routines, ProduceWidgets and
ConsumeWidgets.

The ListMania program uses Open Transport LIFO list routines throughout.
These routines are atomic with respect to interrupts and threads, and they are
faster than the standard Mac OS equivalent functions (Enqueue and Dequeue).
All code included in this sample program is running at system task time;
204 Using List Management Functions

C H A P T E R 9

Utilities
however, all the list management in the critical portions of the code is perfectly
safe to run at interrupt time. This program also demonstrates another
advantage of using Open Transport list management functions: they make it
easy for you to keep elements on multiple lists simultaneously. For example, in
the ListMania program any given widget is always on the gAllWidgetList
(linked through the fAllWidgets Þeld) and on either the gPendingWidgetList or
the gFreeWidgetList (linked through the fNext Þeld).

Before looking at the program itself, weÕll brießy discuss the data structures
used by the program. The objects being produced and consumed are widgets,
as deÞned by the Widget data type:

struct Widget {
OTLink fNext;
OTLink fAllWidgets;
UInt32 fSequenceNumber;
OTTimeStamp fCreationTime;
OTTimeStamp fLastProducedTime;

};
typedef struct Widget Widget, *WidgetPtr;

The Þrst two Þelds are link Þelds: The fNext Þeld is used to link all the
elements on either the pending or free widget list; the fAllWidgets Þeld is used
to link all the widgets in one long list, regardless of their status. The
fSequenceNumber field is a unique monotonically increasing sequence number
for each widget that is created. The fCreationTime Þeld speciÞes the time when
a widget is created, and the fLastProducedTime Þeld speciÞes the time when a
widget was last produced. The program also uses three LIFO lists:
gAllWidgetList (which contains all widgets), gPendingWidgetList, and
gFreeWidgetList.

Listing 9-1 shows the the global variable declarations for the ListMania
program.

Listing 9-1 ListMania: global declarations

struct Widget {
OTLink fNext;
OTLink fAllWidgets;
UInt32 fSequenceNumber;
OTTimeStamp fCreationTime;
Using List Management Functions 205

C H A P T E R 9

Utilities
OTTimeStamp fLastProducedTime;
};
typedef struct Widget Widget, *WidgetPtr;

static OTLIFO gAllWidgetList;
static OTLIFO gPendingWidgetList;
static OTLIFO gFreeWidgetList;

static UInt32 gLastWidgetSequenceNumber;

The function InitWidgetLists, shown in Listing 9-2 initializes all of the widget
lists to empty.

Listing 9-2 The InitWidgetLists function

static void InitWidgetLists(void)
/* Initializes all of the widget lists to empty.*/

{
gAllWidgetList.fHead = nil;
gPendingWidgetList.fHead = nil;
gFreeWidgetList.fHead = nil;
gLastWidgetSequenceNumber = 0;

}

The function shown in Listing 9-3creates a widget.

Listing 9-3 The CreateWidget function

static WidgetPtr CreateWidget(void)
{

WidgetPtr result;
/* Allocate the memory for the widget. */

result = OTAllocMem(sizeof(Widget));
OTAssert("CreateWidget: Could not create widget", result != nil);

OTMemzero(result, sizeof(Widget));
206 Using List Management Functions

C H A P T E R 9

Utilities
result->fSequenceNumber = OTAtomicAdd32(1, (long *)
&gLastWidgetSequenceNumber);

OTGetTimeStamp(&result->fCreationTime);

/* Add the widget to the list of all the widgets in the system.*/
OTLIFOEnqueue(&gAllWidgetList, (OTLink *) &result->fAllWidgets);
return (result);

}

The CreateWidget function allocates memory for a widget and then Þlls out the
information Þelds for the widget structure: fSequenceNumber and fCreationTime.
Note the use of the utility function OTAtomicAdd32 (page 664) to increment the
variable gLastWidgetSequenceNumber atomically. This guarantees that the
sequence number is unique, even it this routine is re-entered. After creating the
widget, the function adds it to the list of all the widgets in the system,
gAllWidgetList, using the Open Transport list routine OTLIFOEnqueue (page 641),
and then it returns a pointer to the newly created widget.

The ProduceWidgets function (shown in Listing 9-4) either calls CreateWidgets if
there are no free widgets or obtains a free widget from the free widget list and
then adds the widget to the pending widget list.

Listing 9-4 The ProduceWidgets function

static void ProduceWidgets(UInt32 howMany)
{

UInt32 i;
OTLink *freeLink;
WidgetPtr thisWidget;

for (i = 0; i < howMany; i++) {
freeLink = OTLIFODequeue(&gFreeWidgetList);
if (freeLink != nil) {

thisWidget = OTGetLinkObject(freeLink, Widget, fNext);
} else {

thisWidget = CreateWidget();
}
OTGetTimeStamp(&thisWidget->fLastProducedTime);

OTLIFOEnqueue(&gPendingWidgetList, (OTLink *)
Using List Management Functions 207

C H A P T E R 9

Utilities
&thisWidget->fNext);
}

}

The for loop used in the function ProduceWidgets takes a free element from the
front of the free widget list using the OTLIFODequeue function (page 642). If the
function returns nil, there is no free element and a new widget needs to be
created by calling the CreateWidget function (page 206). If the free widget list
does contain a free element, the OTGetLinkObject macro (page 623) is used to
derive the widget from freeLink. After this, the widget is no longer on the free
widget list and we can now produce the widget by calling the utility function
OTGetTimeStamp (page 635) to set the fLastProducedTime field. Once the widget is
produced, it is added to the list of pending widgets using the OTLIFOEnqueue
function.

The function ConsumeWidgets, shown in Listing 9-5 Þrst calls the
OTLIFOStealList function (page 643) to remove all of the widgets on the
pending list and then calls the OTReverseList function(page 644) so that the
widgets can be consumed in the same order they were produced. While there
are still widgets left on the pending list, the function then calls the PrintWidget
function, shown in Listing 9-6, and then adds the most recently consumed
widget to the free list by calling the OTLIFOEnque function.

Listing 9-5 The ConsumeWidgets function

static void ConsumeWidgets(void)
{

OTLink *listToConsume;
WidgetPtr thisWidget;

/* Remove widgets from pending list; put them in list to consume */
listToConsume = OTLIFOStealList(&gPendingWidgetList);
listToConsume = OTReverseList(listToConsume);

while (listToConsume != nil) {
/* Given the link element, derive the actual widget object.*/

thisWidget = OTGetLinkObject(listToConsume, Widget, fNext);

/* Consume the widget by printing to stdout */
PrintWidget(thisWidget);
208 Using List Management Functions

C H A P T E R 9

Utilities
printf("\n");

/* Get next list element... */
listToConsume = listToConsume->fNext;
/* add the most recently consumed widget to free list */
OTLIFOEnqueue(&gFreeWidgetList, (OTLink *) &thisWidget->fNext);

}
}

ItÕs important to note the order of the two operations used to consume (print)
the widget and to add the most recently consumed widget to the free list. This
is because the Þeld thisWidget->fNext occupies the same memory location as
the Þeld listToConsume->fNext, so we canÕt change thisWidget->fNext by
enqueuing it until we have extracted the linkage information from it.

Listing 9-6 The PrintWidget function

static void PrintWidget(WidgetPtr thisWidget)
{

printf(" %03d, Created @ %08x%08x, Produced @ %08x%08x",
thisWidget->fSequenceNumber,
thisWidget->fCreationTime.hi,
thisWidget->fCreationTime.lo,
thisWidget->fLastProducedTime.hi,
thisWidget->fLastProducedTime.lo
);

}

The DumpAllWidgetLists function, shown in Listing 9-7 dumps all of the
widgets on all of the lists. Because the widgets are linked in different ways on
the three lists, the DumpAllWidgetLists function must call an additional
function, DumpWidgetList, to dump the widgets that are linked using the fNext
ÞeldÑthat is, the widgets in the pending and free lists.
Using List Management Functions 209

C H A P T E R 9

Utilities
Listing 9-7 The DumpAllWidgetLists

static void DumpAllWidgetLists(void)
{

OTLink *link;
WidgetPtr thisWidget;

printf("gPendingWidgetList\n");
DumpWidgetList(&gPendingWidgetList);

printf("gFreeWidgetList\n");
DumpWidgetList(&gFreeWidgetList);

printf("gAllWidgetList\n");
link = gAllWidgetList.fHead;
while (link != nil) {

thisWidget = OTGetLinkObject(link, Widget, fAllWidgets);
PrintWidget(thisWidget);
printf("\n");
link = link->fNext;

}
}

The DumpWidgetList function is shown in Listing 9-8.

Listing 9-8 The DumpWidgetList function

static void DumpWidgetList(OTLIFO *list)
/* Dump a widget list that is linked using the fNext field. */
/* This is appropriate for the pending and free lists of widgets. */

{
OTLink *link;
WidgetPtr thisWidget;

link = list->fHead;
while (link != nil) {

thisWidget = OTGetLinkObject(link, Widget, fNext);
PrintWidget(thisWidget);
printf("\n");
210 Using List Management Functions

C H A P T E R 9

Utilities
link = link->fNext;
}

}

Using List Management Functions 211

C H A P T E R 9

Utilities
212 Using List Management Functions

C H A P T E R 1 0

Contents

Contents
Figure 10-0
Listing 10-0
Table 10-0
10 Advanced Topics
Acknowledging Sends 215
Sending Noncontiguous Data 216
No-Copy Receiving 218
Using Raw Mode 225

Using Option Management to Set Raw Mode 225
Testing for Raw Mode Support 227
Sending and Receiving in Raw Mode at the Protocol Level 227
213

C H A P T E R 1 0
214 Contents

C H A P T E R 1 0
Advanced Topics 10

This chapter examines several topics that might be of interest once you are
comfortable with the basic use of endpoints. These include

■ acknowledging sends

■ sending noncontiguous data

■ ccessing data from Open TransportÕs internal receive buffers

■ ending and receiving data without stripping header information

Before you read this chapter, you should be familiar with the material covered
in the chapters ÒProvidersÓ(page 61) and ÒEndpointsÓ(page 83).

The chapter ÒAdvanced Topics ReferenceÓ (page 673) describes the data
structures and functions introduced in this chapter.

Acknowledging Sends 10

By default, providers do not acknowledge sends. This means that when you
send data, the provider copies the data into an internal buffer and then sends
the data. Once the provider has copied the data into its own buffer, it no longer
uses the buffer you have allocated for the data. As soon as the function
completes, you can change the contents of your bufferÑeven if the provider
has not yet sent the data it copied.

If you use the OTAckSends function to specify that you want the endpoint
provider to acknowledge sends and you call a function that sends data, the
endpoint provider does not copy data from your buffer before sending it.
Instead it reads data directly from your buffer while sending. For this reason,
you must not change the contents of your buffer until the endpoint provider is
no longer using it. The advantage of acknowledging sends is that it improves
performance at the cost of some added complexity in your code.

Sometimes, due to ßow control, a send operation can be delayed. The provider
lets you know that it has Þnished using the buffer by calling your notiÞer
function and passing T_MEMORYRELEASED for the code parameter, a pointer to the
buffer that was sent in the cookie parameter, and the size of the buffer in the
result parameter.
Acknowledging Sends 215

C H A P T E R 1 0

Advanced Topics
▲ W A R N I N G

If you want Open Transport to acknowledge sends, you
must make sure that there are no outstanding sends when
you close Open Transport; otherwise, you crash. ▲

Because of the complexity of handling ßow control, Open Transport
performance suffers when the acknowledge sends option is used with
noncontiguous data, such as when you pass an OTData structure to the OTSnd
function. Therefore, it is best to avoid this option with non-contiguous data,
especially if the last element is a large element.

Only endpoint provider functions are affected by your calling the OTAckSends
and OTDontAckSends functions.

IMPORTANT

If the endpoint acknowledges sends and there are
outstanding buffers still in use, you must ßush the buffers
before closing the endpoint provider. To ßush the stream,
call the function OTIOCtl as follows:

OTIOCtl (MyEptref, FLUSHRW, 0);

Then, wait until you receive all of the T_MEMORYRELEASED
events. ▲

Sending Noncontiguous Data 10

When sending data, you specify the location and size of the buffer containing
the data to be sent (for all send functions except OTSnd) using the len and buf
Þelds of a TNetBuf type structure. Open Transport also allows you to send
noncontiguous dataÑ data stored in several locations, by using the OTData
structure to describe that data and passing it as the data buffer. You can send
noncontiguous data using the functions OTSnd, OTSndUData, OTSndURequest,
OTSndUReply, OTSndRequest, and OTSndReply.

Note
The OTData structure and its use in describing
noncontiguous data is an Apple extension to the XTI
API. ◆
216 Sending Noncontiguous Data

C H A P T E R 1 0

Advanced Topics
Figure 10-1 shows how you use OTData structures to describe noncontiguous
data.

Figure 10-1 Describing noncontiguous data

The Þrst structure, myOTD1, contains information about the Þrst data fragment:
the fData Þeld contains the starting address of the fragment, and the fLen Þeld
contains the length of the fragment. The Þeld fNext contains the address of the
OTData structure, myOTD2, which specifies the size and location of the second
fragment. In turn, the structure myOTD2 contains the address of the OTData
structure that speciÞes the location and size of the third fragment. You must set
the fNext Þeld of the last OTData structure to NULL.

myOTD1

fNext

fData

fLen

OTData structures

myOTD2

fNext

fData

fLen

myOTD3

fNext

fData

fLen

Noncontiguous data

First fragment

Second fragment

Third fragment

fLen
Sending Noncontiguous Data 217

C H A P T E R 1 0

Advanced Topics
When sending noncontiguous data (using the functions OTSnd, OTSndUData,
OTSndURequest, OTSndUReply, OTSndRequest, and OTSndReply), the buf field of the
TNetBuf structure (or the buf parameter to the function) must point to an OTData
structure that describes the Þrst data fragment. You must also set the len Þeld
of the TNetBuf structure (or the nbytes parameter to the function) to
kNetbufDataIsOTData.

No-Copy Receiving 10

Open Transport allows you to receive data without doing the extra copying
that is normally involved in receiving data, which can save time and resources.

Normally, when you call one of the receive functions to get data, you pass the
address of a buffer you have allocated, and Open Transport copies data from its
own internal buffers to the buffer you specify. Doing a no-copy receive means
that Open Transport does not copy data from its buffers into yours, but instead
allows you to access its internal buffers directly. For example, you might have
received some data that needs to be written to disk and you have four Þles,
each with a different buffer, that are expecting data. Normally what you would
do is store the data in a temporary buffer while you determined which of the
four Þles was the right destination. When you identiÞed the target, youÕd then
copy the data from the temporary buffer into that ÞleÕs buffer.

A no-copy receive allows you to peek at the data when you receive it and write
it out immediately. Open Transport does this by giving you access to a special
no-copy receive buffer, OTBuffer. To use this buffer correctly, you must

■ not write to it; if you do, you can crash the system

■ release it quickly

■ only release it once; donÕt release it multiple times

You need to release the no-copy receive buffer (with the OTReleaseBuffer
function) as soon as you are Þnished using it so that you are not tying up
system resources required elsewhere. One consequence of holding on to a
buffer too long is that your link layer driver starts allocating more buffers as it
receives more data and, if it isnÕt well designed, it may run out of space and
lose packets.

In many cases, for performance reasons, drivers pass their actual DMA buffers
when they return data. If this is the case, when you do a no-copy receive, you
218 No-Copy Receiving

C H A P T E R 1 0

Advanced Topics
are getting the actual DMA buffers from the driver. If you hold on to the buffer
for too long, you may begin to starve the driver for DMA buffers, which
adversely affects the performance of the system. It is very important that if you
are doing a no-copy receive, you hold onto the buffer for as short a time as
possible. If it seems necessary to hold on to the buffer for any length of time,
overall performance is better if you instead make a copy of the data and return
the buffer to the system.

▲ W A R N I N G

On PPC systems no-copy receives are only supported for
PPC Open Transport clients. Emulated 68000 clients may
not use no-copy receives on PPC systems. ▲

Figure 10-2 shows the structure of Open TransportÕs internal receive buffers.
You will be accessing data referenced in these buffers when you do a no-copy
receive. To do this, you allocate a variable that holds the address of the Þrst
OTBuffer structure and then access additional buffers using the fNext field of
each buffer.
No-Copy Receiving 219

C H A P T E R 1 0

Advanced Topics
Figure 10-2 OTBuffer structures

In Figure 10-2 the variable MyOTB holds the address of the Þrst OTBuffer
structure. The unused Þelds of the structure are shaded. The fData Þeld of the
structure points to the Þrst data packet; the fLen Þeld speciÞes the length of the
data packet, and the fNext Þeld holds the address of the second OTBuffer
structure, which provides the location and size of the second data packet.

The no-copy receive buffer is actually a linked chain of buffers, with the next
buffer pointed to by the fNext Þeld in each buffer. You can access all of the

OTBuffer structures

fType

fBand

Data

Data

fLen

fData

fNext

fType

fBand

fLen

fData

fNext

= ReservedMyOTB
220 No-Copy Receiving

C H A P T E R 1 0

Advanced Topics
received data by tracing the chain of fNext pointers. For your convenience,
Open Transport provides the OTBufferInfo structure and the utility functions,
OTReadBuffer and OTBufferDataSize, to read through the OTBuffer structure.

In order to do a no-copy receive, you must

1. Allocate a local variable into which Open Transport will store the address of
the Þrst OTBuffer structure. The OTBufferInfo type is especially useful for
this local variable.

2. Pass the constant kOTNetbufDataIsOTBufferStar for the nbytes parameter of
the OTRcv function or the udata.maxlen Þeld used with other receive
functions to indicate that you are doing a no-copy receive.

3. Use the utility function OTBufferDataSize to determine the size of the
no-copy receive buffer.

4. Use the utility function OTReadBuffer to read bytes from the data buffers. The
fOffset field of the OTBufferInfo structure specifies how much of the buffer
has been read.

5. Use the OTReleaseBuffer function to return the no-copy receive buffer to the
system when you are Þnished copying data from the buffer.

The following two listings show two different methods of doing nocopy
receives. Listing 10-1 shows the NoCopyReceiveUsingOTReadBuffer user-deÞned
function. This function reads data from the endpoint (ep) using a no-copy
receive. The data is then copied out of the OTBuffer chain using the
OTReadBuffer utility function. This method is useful if you need to look at a
small chunk of data, which you can copy using OTReadBUffer, to decide what to
do with the rest.

Listing 10-1 Doing a no-copy receive: method 1

enum {
kTransferBufferSize = 1024

};

static char gTransferBuffer[kTransferBufferSize];

static OSStatus NoCopyReceiveUsingOTReadBuffer(EndpointRef ep, SInt16
destFileRefNum)
{

No-Copy Receiving 221

C H A P T E R 1 0

Advanced Topics
OSStatus err;
OTResult result;
OTBufferInfo bufferInfo;
OTFlags junkFlags;
UInt32 bytesRemaining;
UInt32 bytesThisTime;
SInt32 count;

err = noErr;

/* Initialise the bufferInfo data structure. */

bufferInfo.fOffset = 0;
bufferInfo.fBuffer = nil;

/* Read the data. Use the constant kOTNetbufDataIsOTBufferStar */
/* to indicate that you want to do a no-copy receive. */

result = OTRcv(ep, &bufferInfo.fBuffer, kOTNetbufDataIsOTBufferStar,
&junkFlags);

if (result >= 0) {

/* Use OTBufferDataSize to calculate how much data is returned */
bytesRemaining = OTBufferDataSize(bufferInfo.fBuffer);

/* Write that data to the file. We do this in chunks, */
/* copying each chunk of data out of the OTBuffer chain */
/* and into our transfer buffer using OTReadBuffer, then */
/* writing each chunk of data, until there is no
/* more data left in the buffer chain. */
while (err == noErr && bytesRemaining > 0) {

if (bytesRemaining > kTransferBufferSize) {
bytesThisTime = kTransferBufferSize;

} else {
bytesThisTime = bytesRemaining;

}
(void) OTReadBuffer(&bufferInfo, gTransferBuffer,

&bytesThisTime);
count = bytesThisTime;
err = FSWrite(destFileRefNum, &count, gTransferBuffer);
bytesRemaining -= bytesThisTime;
222 No-Copy Receiving

C H A P T E R 1 0

Advanced Topics
}

err = noErr;
} else {

err = result;
}

/* Clean up. We MUST release the OTBuffer chain back to OT */
/* so that it can reuse it. OTReleaseBuffer does not tolerate */
/* the parameter being nil, so we check for that case first. */

if (bufferInfo.fBuffer != nil) {
OTReleaseBuffer(bufferInfo.fBuffer);

}

return err;
}

The method shown in the previous listing is not particularly efÞcient, but it
does demonstrate the use of the OTReadBuffer function. The second method,
shown in Listing 10-2 , uses the NoCopyReceiveWalkingBufferChain user-deÞned
function to read data from the endpoint (ep) using a no-copy receive. The code
walks through the resulting buffer chain, writing out chunks of data directly to
the Þle from the buffers returned to us by Open Transport.

Listing 10-2 Doing a no-copy receive: method 2

static OSStatus NoCopyReceiveWalkingBufferChain(EndpointRef ep,
SInt16 destFileRefNum)

{
OSStatus err;
OTResult result;
OTBufferInfo bufferInfo;
OTBuffer *thisBuffer;
OTFlags junkFlags;
SInt32 count;

err = noErr;

/* Initialise the bufferInfo data structure. */
No-Copy Receiving 223

C H A P T E R 1 0

Advanced Topics
bufferInfo.fOffset = 0;
bufferInfo.fBuffer = nil;

/* Read the data. Use the constant kOTNetbufDataIsOTBufferStar */
/* to indicate that you want to do a no-copy receive. */

result = OTRcv(ep, &bufferInfo.fBuffer, kOTNetbufDataIsOTBufferStar,
&junkFlags);

if (result >= 0) {

/* Walk the returned buffer chain, writing out each chunk to file */

thisBuffer = bufferInfo.fBuffer;
while (err == noErr && thisBuffer != nil) {

count = thisBuffer->fLen;
err = FSWrite(destFileRefNum, &count, thisBuffer->fData);

thisBuffer = thisBuffer->fNext;
}

} else {
err = result;

}

/* Clean up. We MUST release the OTBuffer chain to Open Transport */
/* so that it can reuse it. , OTReleaseBuffer does not tolerate */
/* the parameter being nil, so we check for that case first. */

if (bufferInfo.fBuffer != nil) {
OTReleaseBuffer(bufferInfo.fBuffer);

}

return err;
}

224 No-Copy Receiving

C H A P T E R 1 0

Advanced Topics
Using Raw Mode 10

Raw mode refers to the ability of some connectionless providers to pass packet
header information, which would normally be stripped at the appropriate
protocol level, up to a higher level. For example, if you open a DDP endpoint,
you can send and receive data in raw mode in order to determine how many
routers a packet had passed through before you receive it. Normally, hop count
information is stored in the DDP packet header; by using raw mode you can
access this information, which would otherwise be stripped off before you
received the packet.

There are two methods for anabling raw mode packet handling. At the link
layer (Ethernet and TokenRing), use the OTOptionManagement function to enable
raw mode packet processing. Above the link layer, the AppleTalk DDP protocol
supports raw mode in a different manner. For more information, see the
description of the OTSndUData function in ÒUsing General Open Transport
Functions With DDPÓ (page 310). Your protocol might support speciÞc options;
for example RawIP supports the IP header include option.

Using Option Management to Set Raw Mode 10

If you want to use raw mode at the link layer level, you should use the option
OPT_SETRAWMODE. Listing 10-3 shows the user function
DoNegotiateRawModeOption as an example of how you negotiate raw mode
using options.

Listing 10-3 Negotiating raw mode using options

#include <OpenTransport.h>
#include <OpenTptLinks.h>

OSStatus DoNegotiateRawModeOption(EndpointRef ep, UInt32 rawModeOption);

/* use the options as defined in the OpenTptLinks.h header
when setting the rawModeOption parameter. */

OSStatus DoNegotiateRawModeOption(EndpointRef ep, UInt32 rawModeOption)
Using Raw Mode 225

C H A P T E R 1 0

Advanced Topics
{
UInt8 buf[kOTFourByteOptionSize];

/* buffer for fourByte Option size */
TOption* opt; /* option ptr to make items easier to access */
TOptMgmt req;
TOptMgmt ret;
OSStatus err;

opt = (TOption*)buf; /* set option ptr to buffer */
req.opt.buf= buf;
req.opt.len= sizeof(buf);
req.flags= T_NEGOTIATE; /* negotiate for rawmode option */

ret.opt.buf = buf;
ret.opt.maxlen = kOTFourByteOptionSize;

opt->level= LNK_TPI; /* dealing with tpi */
opt->name= OPT_SETRAWMODE; /* specify raw mode */
opt->len= kOTFourByteOptionSize;
opt->status = 0;
(UInt32)opt->value = rawModeOption;

/* set the desired option level, true or false */

err = OTOptionManagement(ep, &req, &ret);

/* if no error then return the option status value */
if (err == kOTNoError)
{

if (opt->status != T_SUCCESS)
err = opt->status;

else
err = kOTNoError;

}

return err;
}

226 Using Raw Mode

C H A P T E R 1 0

Advanced Topics
The function assumes the endpoint is in synchronous mode. It deÞnes buffers
that contain option negotiation information and then calls the
OTOptionMangement function.

Testing for Raw Mode Support 10

To use raw mode you need to determine whether the provider you are using
supports it by examining the T_CAN_SUPPORT_MDATA bit of the endpoint
information structure for your endpoint. Listing 10-4 shows a function
CanDoRawMode that you can call to determine whether your endpoint provider
supports sending or receiving raw data. The function calls the
OTGetEndpointInfo function and examines the info.flags field to see if the
T_CAN_SUPPORT_MDATA bit is set. If it is, the function returns true.

Listing 10-4 Testing for raw data support

Boolean CanDoRawMode(EndpointRef ep)
{

TEndpointInfo info;
OSStatus err;
Boolean result;

err = OTGetEndpointInfo(ep, &info);
if (err != kOTNoError)

result = false;
else if (info.flags & T_CAN_SUPPORT_MDATA)

result = true;/* this also means that the src addr info is
in the info record */

else
result = false;

return result;
}

Sending and Receiving in Raw Mode at the Protocol Level 10

Currently raw mode is supported only for DDP endpoints. To enable or disable
raw mode packet processing of data under DDP, you modify the TNetBuf addr
Using Raw Mode 227

C H A P T E R 1 0

Advanced Topics
Þeld that is sent in the OTSendUdata function. Once raw mode processing is
enabled with the OTSndUData call, it stays in effect until you explicitly disable
it.

To enable raw mode, you must

1. Specify 0xffffffffUL for the unitdata.addr.len Þeld of the TNetBuf structure
containing the address information. Set the opt.len, opt.buf, and addr.buf
Þelds to 0.

2. Place DDP header information in the buffer referenced by the
udata.udata.buf field of the TNetBuf structure describing data being sent.
The DDP header begins with the hop count byte. With raw mode enabled,
the data in the unitdata.udata.buf Þeld must be the complete DDP packet.

Once you have sent a raw mode pocket, the protocol will deliver incoming
packets in raw mode as well. When using raw mode on receives, you should

1. Set the opt.len Þeld and the udata.addr.maxlen Þeld to 0. However it is set,
Open Transport does not Þll this Þeld with address information. Instead it
returns the complete DDP packet (including the header) in the data buffer
described in step 2.

2. Allocate a buffer (into which the data is stored when the function returns)
that is large enough to hold header information as well as the data being
received.

Be careful when using raw mode packets because you can no longer tell a full
incoming packet from a partial read without remembering that the T_MORE ßag
was set on the previous read.

To disable raw mode packet processing, send a normal DDP packet with the
unitdata.addr.len and the unitdata.addr.buf fields set for an AF_ATALK_DDP or
similar structure.

Listing 10-5 shows how you send an echo packet using a DDP endpoint. The
sample code includes a call to CanDoMDataMode, a function that looks at the ßags
associated with creating the endpoint to determine whether the endpoint
supports M_DATA mode. It is assumed that the endpoint is bound and that it is in
synchronous mode.
228 Using Raw Mode

C H A P T E R 1 0

Advanced Topics
Listing 10-5 Testing for raw mode support for a DDP endpoint

#include <OpenTransport.h>
#include <OpenTptAppleTalk.h>
#include <Types.h>
#include <Events.h>
#include <stdio.h>

void doOpenTptEcho(EndpointRef ep, UInt16 destNet, UInt8 destNode);
extern Boolean CanDoMDataMode(EndpointRef ep);

enum {
kddpMaxNormData = 586,
kddpMaxRawData= 599

};
enum {

kEchoSocketID= 4
};
enum {

kEchoRequest= 1,
kEchoType= 4

};

void doOpenTptEcho(EndpointRef ep, UInt16 destNet, UInt8 destNode)
{

TBind boundAddr;
DDPAddressd dpAddr, destAddr;
TUnitData unitdata;
OSStatus err = kOTNoError;
OTResult result;
OTFlags flags;

UInt8 buf[kddpMaxRawData];
UInt8 buf1[64] = "This is a sample string for the first part

of the buffer";
Boolean done = false;
Boolean useMDataMode;

if (!OTIsSynchronous(ep))
{

fprintf(stderr, "endpoint must be synchronous for this sample");
Using Raw Mode 229

C H A P T E R 1 0

Advanced Topics
return;
}

/* verify that the endpoint is bound first. */
result = OTGetEndpointState(ep);
if (result != T_IDLE)
{

fprintf(stderr, "endpoint must be bound for this sample");
return;

}

/* check for support of M_DATA mode so that we get the */
/* header info along with the datagram */

useMDataMode = CanDoMDataMode(ep);

if (useMDataMode == true)
{

/* set up data buffer to send Echo Request as a DDP M_DATA packet */
/* get our protocol address to fill into the M_DATA packet */

boundAddr.addr.buf = (UInt8*)&ddpAddr;
boundAddr.addr.maxlen = sizeof(ddpAddr);
err = OTGetProtAddress(ep, &boundAddr, nil);

if (err != kOTNoError)
{

fprintf(stderr, "error occurred calling OTGetProtAddress
- %ld\n", err);

return;
}
else
{

/* packet length */

/* clear hopcount, but set the upper 2 bits of the length */
buf[0] = (UInt8)(kddpMaxRawData >> 8) & 0x0003;
/* set the lower byte of the length field */
buf[1] = (UInt8)(kddpMaxRawData & 0x00FF);

/* packet checksum */
230 Using Raw Mode

C H A P T E R 1 0

Advanced Topics
buf[2] = 0;// no checksum
buf[3] = 0;// no checksum

/* dest network */

buf[4] = (UInt8)(destNet >> 8);
buf[5] = (UInt8)(destNet & 0x00FF);

/* src network */

buf[6] = (UInt8)(ddpAddr.fNetwork >> 8);
buf[7] = (UInt8)(ddpAddr.fNetwork & 0x00FF);

buf[8] = (UInt8)destNode; /* dest node */
buf[9] = (UInt8)ddpAddr.fNodeID; /* src node */

buf[10] = kEchoSocketID;/* set dest socket to echo socket */
buf[11] = (UInt8)ddpAddr.fSocket;/* src socket */

buf[12] = kEchoType;/* set packet type to echo packet */
buf[13] = kEchoRequest; /* packet is echo request packet */
BlockMove((Ptr)&buf1, (Ptr)&buf[14], sizeof(buf1));

/* set up the unitdata structure */
unitdata.udata.buf = (UInt8*)buf; /* data area */
unitdata.udata.len = kddpMaxRawData;
unitdata.addr.buf = nil; /* address area*/

/* by sending the packet with the addr.len field set to 0xFFFFFFFFUL,*/
/* one enables M_DATA mode with DDP. Once you send a packet in this */
/* manner, all packet deliveries will also be in M_DATA mode. This */
/* continues until a packet is sent with the addr.len field set to a */
/* value other than 0xFFFFFFFFUL. */

unitdata.addr.len = (size_t)0xffffffffUL;
unitdata.opt.buf = nil;
unitdata.opt.len = 0; /* no options being sent */

}
}
else
{

Using Raw Mode 231

C H A P T E R 1 0

Advanced Topics
/* Set up DDP Address field with the destination address */
/* for the Echo request */

destAddr.fAddressType = AF_ATALK_DDP;
destAddr.fNetwork = destNet;
destAddr.fNodeID = destNode;
destAddr.fSocket = kEchoSocketID;
destAddr.fDDPType = kEchoType;

/* Set up data buffer for the Echo Request */

/* indicate packet is an echo request packet */
buf[0] = kEchoRequest;

/* fill in the buffer with the string */
BlockMove((Ptr)&buf1, (Ptr)&buf[1], sizeof(buf1));

/* set up unitdata fields */
//
unitdata.udata.buf = (UInt8*)buf;// data area
unitdata.udata.len = kddpMaxNormData;
unitdata.addr.buf = (UInt8*)&destAddr;// address area
unitdata.addr.len = kDDPAddressLength;
unitdata.opt.len = 0; // no options being sent

}

/* Send the data */
err = OTSndUData(ep, &unitdata);

/* If no error occured sending the data, then process */
/* expected the Echo Response.*/
if (err == kOTNoError)
{

while (done == false)
{

result = OTLook(ep);
if (result == T_DATA)
{

while (done == false)
{

/* Set up the UnitData structure to recieve response packet */
232 Using Raw Mode

C H A P T E R 1 0

Advanced Topics
/* Set up the udata and address area to accomodate either an */
/* M_DATA response or the typical response where the data */
/* and addr fields are filled in. */

unitdata.udata.buf = (UInt8*)buf;/* data area */
unitdata.udata.len = 0;
unitdata.udata.maxlen = kddpMaxRawData;
unitdata.addr.buf = (UInt8*)&destAddr;/* address area
unitdata.addr.maxlen = kDDPAddressLength;
unitdata.opt.maxlen = 0; /* no options are expected */

/* note that we reuse the buffer we used to send the echo */
/* request packet with. After the OTSnd completes in */
/* synchronous mode successfully, the buffer has been released */
/* for use by the program. */

 result = OTRcvUData(ep, &unitdata, &flags);

 if (result == kOTNoDataErr)
 {
 done = true;

/* whenever there is a data indication, it's best to read the data */
/* until the kOTNoDataErr since this releases memory that OT has */
/* reserved for the data. In this case, we've consumed all */
/* available data and are ready to exit this function. */

 }
 else if (result < 0)
 {

fprintf(stderr, "unknown error occurred reading
data - %ld\n", result);

done = true;
 }
 else if (result == kOTNoError)
 {
 /* read echo reply successfully */
 /* continue to read until kOTNoDataErr occurs. */

fprintf(stderr, "%ld bytes read.\n",
unitdata.udata.len);

 }
}

}

Using Raw Mode 233

C H A P T E R 1 0

Advanced Topics
else
{
/* an event other than T_DATA occurred */

}
/* another way to escape this routine. */
if (Button())

done = true;
}

}
}

234 Using Raw Mode

C H A P T E R 1 1

Contents

Contents
Figure 11-0
Listing 11-0
Table 11-0
11 TCP/IP Services
About the TCP/IP Protocol Family 237
About TCP/IP Services 240
About the Open Transport DNR 243
About Single Link Multi-Homing 243

ConÞguring Your System to Use Multiple IP Addresses 244
Checking for Availability 245
Getting Information About Secondary Addresses 245

Using TCP/IP Services 245
Setting Options When ConÞguring a TCP/IP Provider 245
Using RawIP 247

Receiving RawIP Datagrams 248
Sending RawIP Datagrams 248
Manually Setting the IP Header 248
Limitations of the Header-Included Mode 249

Using IP Multicasting 250
Querying DNS Servers 251
Avoiding Delay When Rebinding to TCP Connections 251
Using General Open Transport Functions With TCP/IP 253

Obtaining Endpoint Data With TCP/IP 253
Using Endpoint Functions With TCP/IP 254
Using Mapper Functions With TCP/IP 258
235

C H A P T E R 1 1
236 Contents

C H A P T E R 1 1
TCP/IP Services 11

This chapter describes TCP/IP-speciÞc information about Open Transport
functions and gives possible values for options that you can use with the TCP/
IP protocols. You need this information only if you have a speciÞc need to use
the TCP/IP protocols or must bind explicitly to an IP address.

This chapter describes the progamming interface to Open TransportÕs
implementation of TCP/IP, including the use of Open Transport endpoint and
mapper functions with TCP/IP and the use of single linked multi-homing
(available only for Open Transport version 1.3). This chapter also describes the
TCP/IP service provider, which provides an interface to the TCP/IP Domain
Name Resolver (DNR) for clients of Open Transport. To get the most out of this
chapter, you should already be familiar with the concepts and application
interfaces described in the chapters ÒIntroduction to Open TransportÓ(page 5),
ÒGetting StartedÓ, ÒProvidersÓ(page 61), ÒEndpointsÓ(page 83),
ÒMappersÓ(page 149), and ÒOption ManagementÓ(page 165) in this book. For
complete reference information about the structures and functions introduced
in this chapter, see ÒTCP/IP Services ReferenceÓ (page 683).

This chapter gives only a very rudimentary introduction to the TCP/IP
protocol family. You will need to familiarize yourself with the operation and
use of the various TCP/IP protocols before you can make effective use of the
Open Transport implementation of TCP/IP. You should read ÒAbout the TCP/
IP Protocol FamilyÓ (page 237) for an introduction to the protocol family and
for pointers to more information.

In this chapter the term TCP/IP is used when the information presented applies
equally to all protocols of the TCP/IP family (such as RARP, BOOTP, DHCP, or
UDP, as well as TCP and IP). When the information is speciÞc to one protocol,
the name of that protocol is used.

This chapter starts with a brief introduction to the TCP/IP protocol family,
followed by an introduction to the TCP/IP services provided by Open
Transport. Then ÒUsing General Open Transport Functions With TCP/IPÓ
(page 253) describes TCP/IP-speciÞc information relating to functions
described in the chapters ÒEndpointsÓ and ÒMappersÓ in this book.

About the TCP/IP Protocol Family 11

The TCP/IP protocol family is a set of networking protocols in wide use
throughout the world for government and business applications. The TCP/IP
About the TCP/IP Protocol Family 237

C H A P T E R 1 1

TCP/IP Services
protocol family includes a basic datagram-delivery protocol, called Internet
Protocol (IP); a connectionless datagram protocol called User Datagram
Protocol (UDP) that performs checksums; and a connection-oriented data
stream protocol that provides highly reliable data delivery, called Transmission
Control Protocol (TCP). In addition to these three fundamental protocols, TCP/
IP includes a wide variety of protocols for speciÞc uses, mostly at the
application-protocol level.

Figure 11-1 shows the TCP/IP functional layers and examples of TCP/IP
protocols that run in each layer. For purposes of comparison, Figure 11-1 also
shows the OSI model functional layers. Note that reliability of data delivery
can depend on the reliability built into TCP, or can be added at the application
level by protocols using UDP. Similarly, a protocol based on UDP can
implement connection-oriented services at the application-protocol level.

Figure 11-1 TCP/IP protocols and functional layers

As discussed in the chapter ÒEndpointsÓ(page 83) in this book, the way you
use Open Transport functions to send data depends both on whether the
protocol you wish to use is connection-oriented and whether it is
transaction-based. Table 11-1 shows how the TCP/IP protocols provided with

Application

Presentation

Session

Transport

Network

Data-link

Physical

OSI layers

Application

Transport

Internet

Network interface
and hardware

TCP/IP layers

Telnet FTP

TCP UDP

DNSSMTP TFTP SNMP

IP

Ethernet, token ring, FDDI drivers and hardware

TCP/IP examples

ARP RARP
ICMP
238 About the TCP/IP Protocol Family

C H A P T E R 1 1

TCP/IP Services
Open Transport Þt into this matrix. Notice that Open Transport TCP/IP offers
no transaction-based protocols.

Open Transport provides an application interface to the IP protocol known as
RawIP, as shown in Table 11-1. For more information on this interface to the IP
protocol, see ÒUsing RawIPÓ (page 247).

Open Transport offers interfaces to the TCP, UDP, and IP protocols, and to the
domain name resolver (DNR). Only those protocols are discussed in the rest of
this chapter. Open Transport also provides implementations of the RARP,
BOOTP, and DHCP protocols, but those protocols are used by Open Transport
for automatic conÞguration of a host, and they have no application interfaces.

For general information about the other protocols shown in Figure 11-1, see any
good book on TCP/IP. Two such books for information on TCP/IP protocol
internals are TCP/IP Illustrated, Volume 1 by W. Richard Stevens and
Internetworking with TCP/IP, Volume 1 by Douglas E. Comer.

The Open Transport TCP/IP software modules are based on the UNIX
STREAMS architecture. For more information about STREAMS, see UNIX
System V Release 4: ProgrammerÕs Guide: STREAMS.

The Open Transport API is based on the XTI standard as documented in
X/Open CAE SpeciÞcation (1992): X/Open Transport Interface (XTI). Among other
topics, the XTI speciÞcation provides detailed descriptions of the sizes and
valid settings of the TCP, IP, and UDP options available under Open Transport.

The TCP/IP protocols are deÞned in a series of documents called Requests for
Comments (RFCs). RFCs are available over the Internet at <ttp://nic.ddn.mil>,

Table 11-1 The Open Transport protocol matrix and TCP/IP protocols

Connectionless Connection-oriented

Transactionless RawIP
UDP

TCP

Transaction-based none none
About the TCP/IP Protocol Family 239

C H A P T E R 1 1

TCP/IP Services
or from the Defense Data Network (DDN) Network Information Center (NIC)
at

DDN Network Information Center
14200 Park Meadow Drive, Suite 200
Chantilly, VA 22021

Telephone: 800-365-3642

You can get information on how to obtain RFCs via e-mail by sending an e-mail
message to Òrfc-info@isi.eduÓ. The message body must read Òhelp:
ways_to_get_rfcsÓ.

In addition, you can use a file transfer protocol (FTP) client to download copies
of the RFC list and the RFCs themselves from the Internet address
Ònic.ddn.mil.Ó

About TCP/IP Services 11

The TCP/IP services provided by Open Transport include implementations of
the TCP, UDP, RARP, BOOTP, DHCP, and IP protocols, an application interface
to the domain name resolver (DNR), and utility functions you can use when
creating and resolving Internet addresses. You can open TCP, UDP, and RawIP
endpoints and DNR mappers using the interfaces described in the chapters
ÒEndpointsÓ and ÒMappersÓ in this book .

A domain name resolver translates between the character-string names used
by people to identify nodes on the Internet and the 32-bit Internet addresses
used by the network itself. In that sense, its function is similar to AppleTalkÕs
Name-Binding Protocol (NBP). Unlike AppleTalk, however, TCP/IP protocols
do not specify a way for clients to register a name on the network. Instead, the
network administrator must maintain a server that stores the character-string
names and Internet addresses of the servers on the Internet, or each individual
host must keep a Þle of such names and addresses. The Open Transport
implementation of TCP/IP includes a DNS stub name resolver; that is, a
software module that can use the services of the domain name system (DNS) to
resolve a name to an address.

The nodes on a TCP/IP internet are known as hosts. A host that is addressable
by other hosts has a host name and one or more domain names that identify
the hierarchically arranged domains, or collections of hosts, to which it
240 About TCP/IP Services

C H A P T E R 1 1

TCP/IP Services
belongs. For example, the Open Transport team, part of the system software
group at Apple Computer, might have a server with a fully qualiÞed domain
name of Òotteam.ssw.apple.comÓ. In this case, ÒotteamÓ represents the host
belonging to the Open Transport team, ÒsswÓ represents the domain of hosts
belonging to the system software group (which includes the Open Transport
team plus several other teams), and so forth. A fully qualiÞed domain name
corresponds to an Internet address, also known as an IP address, which is a
32-bit number that uniquely identiÞes a host on a TCP/IP network. An Internet
address is commonly expressed in dotted-decimal notation (for example,
Ò12.13.14.15Ó) or hexadecimal notation (for example, Ò0x0c0d0e0fÓ).

To use the application interface to Open TransportÕs DNR, you must Þrst open
a TCP/IP service provider. Once you have done so, you can

■ resolve a domain name to one or more associated Internet addresses

■ look up the domain name associated with an Internet address

■ retrieve the character strings stored by the domain name server that describe
a hostÕs processor and operating system

■ retrieve DNS information associated with any query class and type

■ obtain a list of mail exchanges and mail preference values for a host to which
you wish to deliver mail

A mail exchange is any host that can accept mail for another host or for a
domain. A mail exchange can be a mail server, a router, or just a host
conÞgured to accept and pass on mail. A mail preference value is used by a
mail application to determine to which mail exchange to deliver a message
when there is more than one that can accept mail for a particular domain. The
mailer sends the mail to the mail exchange with the lowest preference value
Þrst and tries the others in turn until the mail is delivered or until the mailer
deems the mail undeliverable.

The subnet mask determines what portion of the IP address is dedicated to the
host identiÞer and what portion identiÞes the subnet. A subnet is a portion of a
network, which is in turn a portion of an Internet. Figure 11-2 illustrates the
subnet portion of an address. The top portion of the Þgure shows an Internet
address that does not include a subnet identiÞer. The center portion of the
Þgure shows an Internet address that includes a subnet. Notice that the subnet
identiÞer is formed by using a portion of the bits reserved for the host
identiÞer. The bottom portion of the Þgure shows the subnet mask, which you
can use to determine how many bits are used for the subnet and how many are
used for the host.
About TCP/IP Services 241

C H A P T E R 1 1

TCP/IP Services
Figure 11-2 Internet subnet address

Note
As used in this chapter, a TCP/IP interface is the point of
attachment of a host to a TCP/IP network. In the case of a
multihomed host, the user can conÞgure more than one
TCP/IP interface. At present, the architecture of Open
Transport TCP/IP supports multihoming, but it is not yet
possible to conÞgure a multihomed host. Therefore, all
functions designed to return information about all the
TCP/IP interfaces on a host return information about a
single interface. ◆

The Open Transport TCP/IP services also include several utility functions. You
can use these functions to

■ get Internet addresses and subnet masks for all the TCP/IP interfaces on the
local host

■ Þll in data structures used for Internet addresses

■ convert an IP address string from dotted-decimal notation or hexadecimal
notation to a 32-bit IP address

■ convert a 32-bit IP address into a character string in dotted-decimal notation

Network identifier

Internet address

Network identifier

Host identifier

Subnet
identifier Host identifier

Internet address with subnet identifier

1 0 0 0 0 0 0 0 0 0 0

Subnet mask
242 About TCP/IP Services

C H A P T E R 1 1

TCP/IP Services
About the Open Transport DNR 11

The functions described in ÒResolving Internet AddressesÓ (page 700) and
ÒGetting Information About an Internet HostÓ (page 705) are implemented by
the Open Transport domain name resolver (DNR). The DNR also implements
the OTLookupName function (page 259) when you create a DNR mapper. The
DNR can be invoked by a UDP endpointÕs call to the OTSndUData function, a
TCP endpointÕs call to the OTConnect function, or a call to the OTResolveAddress
function by either type of endpoint. This section describes how the Open
Transport DNR operates.

The Open Transport DNR implements only the following speciÞc DNS query
types.

In addition, the Open Transport DNR provides a generic interface, allowing the
userÕs application to send queries of any type. However, the application is then
responsible for parsing the response.

The DNR caches name-to-address and canonical name-to-alias mappings, but
not host information (CPU and operating-system types) or the results of mail
exchange (MX) queries.

About Single Link Multi-Homing 11

Open Transport version 1.3 introduces single link multi-homing, a mechanism
by which Open Transport can support multiple IP addresses on the same
hardware interface. This is useful for users that want to give each of their
clients a distinct IP address without requiring separate computers for each
address.

Type Description

A Resolve name to 32-bit IP host address.

HINFO Return type of processor (CPU) and operating system of host.

MX Return name of mail exchange for the domain.

PTR Resolve address to a fully qualiÞed domain name.
About the Open Transport DNR 243

C H A P T E R 1 1

TCP/IP Services
In order to use this feature, you must check to see that you are using version 1.3
or later. See ÒChecking for AvailabilityÓ (page 245).

Configuring Your System to Use Multiple IP Addresses 11

To conÞgure your system, you must do the following:

1. ConÞgure the TCP/IP control panel for manual addressing.

2. Create a text Þle with the name ÒIP Secondary AddressesÓ.

3. Place the Þle in the Preferences folder.

Each line of the Þle contains a secondary IP address to be used by the system,
and an optional subnet mask and router address for the secondary IP address.
If there is not subnet mask entry, then Open Transport will use a default subnet
mask for the IP address class. If there is not router entry, the default router
associated with the primary address will be used.

Listing 11-1 shows a sample IP Secondary Addresses Þle. Each secondary
address listed in the Þle must be preÞxed by ip=. Each subnet mask entry must
be preÞxed by sm=. Each router address entry must be preÞxed by rt. Note that
the order of the entries is important. The router entry must follow the
secondary name entry.

Listing 11-1 Sample IP Secondary Addresses file

ip=17.201.22.200 sm=255.255.255.0 rt=17.201.20.1
ip=17.201.22.201 rt=17.201.20.1
ip=17.201.22.202

When Open Transport activates TCP/IP, it obtains the primary address from
the TCP/IP Control Panel setting. Open Transport then looks for the IP
Secondary Addresses Þle in the Preferences folder, to determine what other IP
addresses the system must support. If it Þnds duplicate IP address entries in
the IP Secondary Addresses Þle, it ignores them. When Open Transport binds a
TCP/IP connection, if there is an address conßict of the primary or any
secondary addresses with another host system, Open Transport will raise an
Alert with an error message to this problem.
244 About Single Link Multi-Homing

C H A P T E R 1 1

TCP/IP Services
Checking for Availability 11

To check whether Open Transport version 1.3 is present, use the Gestalt
function with the gestaltOpenTptVersions ‘otvr’ selector. If the result is greater
than or equal to kOTIPSingleLinkMultihomingVersion, you can use this feature.

Getting Information About Secondary Addresses 11

You can use the function OTGetInterfaceInfo to return information about the
number of secondary addresses that are supported. The fIPSecondaryCount
Þeld of the structure returned by this function speciÞes that number. Then, you
can call the function OTInetGetSecondaryAddresses, passing this number for the
count parameter, to obtain all the addresses. For more information, see ÒSingle
Link Multi-HomingÓ (page 716).

Using TCP/IP Services 11

This section describes how to use the Open Transport RawIP interface, how to
implement IP multicasting, and how to use a variety of Open Transport
endpoint and mapper functions with the TCP/IP protocols. TCP/IP options
are described in ÒOptionsÓ (page 691).

Setting Options When Configuring a TCP/IP Provider 11

When you open a TCP/IP provider, you must pass a pointer to a conÞguration
string. If you want to set an option as part of the conÞguration string, you
should translate the optionÕs constant name, given in the header Þles, into a
string that the conÞguration functions can parse. For the TCP/IP options, Table
Using TCP/IP Services 245

C H A P T E R 1 1

TCP/IP Services
11-2 provides the constant name and the value to use in the conÞguration
string.

Table 11-2 Configuration strings for TCP/IP options

Constant name Configuration string value

IP_OPTIONS ÒOptionsÓ

IP_TOS ÒTOSÓ

IP_TTL ÒTTLÓ

IP_RCVDSTADDR ÒRcvDestAddrÓ

IP_RCVIFADDR ÒRcvIFAddrÓ

IP_RCVOPTS ÒRcvOptsÓ

IP_REUSEADDR ÒReuseAddrÓ

IP_DONTROUTE ÒDontRouteÓ

IP_BROADCAST ÒBroadcastÓ

IP_HDRINCL ÒHdrInclÓ

IP_MULTICAST_IP ÒMulticastIFÓ

IP_MULTICAST_TTL ÒMulticastTTLÓ

IP_MULTICAST_LOOP ÒMulticastLoopÓ

IP_ADD_MEMBERSHIP ÒAddMembershipÓ

IP_DROP_MEMBERSHIP ÒDropMembershipÓ

IP_BROADCAST_IF ÒBroadcastIFÓ

UDP_CHECKSUM ÒChecksumÓ

UDP_RX_ICMP ÒRxICMPÓ

TCP_NODELAY ÒNoDelayÓ

TCP_OOBINLINE ÒOOBInlineÓ

TCB_MAXSEG ÒMaxSegÓ

TCP_NOTIFY_THRESHOLD ÒNotifyThresholdÓ
246 Using TCP/IP Services

C H A P T E R 1 1

TCP/IP Services
The network conÞguration structure and OTCreateConfiguration function are
described in the chapter ÒGetting StartedÓ(page 31) in this book.

Using RawIP 11

The Open Transport TCP/IP software modules provide a RawIP interface to
the IP protocol. RawIP behaves for the most part identically to UDP, as a
connectionless transactionless interface, but there are a few unique differences.

You can receive RawIP datagrams using a RawIP endpoint. You can create a
RawIP endpoint by passing kRawIPName to OTCreateConfiguration and passing
that conÞguration to the OTOpenEndpoint or OTOpenEndpointAsync function.

The RawIP interface facilitates the implementation of new protocols that use IP
for datagram delivery. Therefore, in order to use a RawIP endpoint, you must
specify a value for the protocol Þeld in the IP datagram header. RawIP
endpoints default to receiving ICMP (protocol 1) packets. You can change this
by setting the generic XTI option XTI_PROTOTYPE, described in the chapter
ÒOption ManagementÓ(page 165) in this book. The option is a longword that is
the IP protocol number to be used by the RawIP endpoint.

The data delivered to a RawIP endpoint includes the full IP header, which is
20 bytes long if it includes no IP options.

▲ W A R N I N G

If you open a RawIP endpoint, you are responsible for
implementing the protocol that is a client of IP running
over that endpoint. Because an improperly implemented
protocol can cause the host to crash or cause the loss of
data on the network, you should exercise caution when
using Raw IP. ▲

TCP_ABORT_THRESHOLD ÒAbortThresholdÓ

TCP_CONN_NOTIFY_THRESHOLD ÒConnNotifyThresholdÓ

TCP_CONN_ABORT_THRESHOLD ÒConnAbortThresholdÓ

TCP_KEEPALIVE ÒKeepAliveÓ

Table 11-2 Configuration strings for TCP/IP options (continued)

Constant name Configuration string value
Using TCP/IP Services 247

C H A P T E R 1 1

TCP/IP Services
Receiving RawIP Datagrams 11

Normally, connectionless transactionless endpoints only support binding one
endpoint to any given protocol address. RawIP is different in that it allows
multiple endpoints to be bound to the same protocol address.

With one important exception, each RawIP endpoint bound to a speciÞc
protocol receives a copy of any inbound packets destined for that protocol. For
example, if several ÒpingÓ programs are using ICMP on the same host, each
would receive a copy of all inbound ICMP echo datagrams. The exception is
that RawIP endpoints do not receive copies of packets addressed to IP
protocols TCP (protocol 6) or UDP (protocol 17). This restriction optimizes the
delivery of such packets to their corresponding high-level protocols.

One unusual behavior of RawIP endpoints is that the delivered packets have
their Total Length Þeld modiÞed. The RawIP module subtracts the length of
the IP header from the Total Length Þeld. This behavior brings Open
TransportÕs STREAMS RawIP more in line with RawIP under BSD UNIX.
Therefore, you should not rely on the value of the Total Length Þeld. If you
need to know the total length of the packet, use the length as returned in the
TNetBuf structure returned by the OTRcvUData function.

Sending RawIP Datagrams 11

You can also send RawIP datagrams using a RawIP endpoint. For sending,
RawIP endpoints have two modes: a mode in which the RawIP interface
generates the header for you and a mode in which you set the header yourself.
The header-generated mode is the default, and it is useful if you are only
interested in the payload of the RawIP packets you send.

For applications such as ping (ICMP), you can let the RawIP interface generate
the headers using the RawIP endpoint default behavior, such as sending ICMP
packets (protocol 1). In this case, you can change the protocol and IP options
(such as IP_OPTIONS and IP_TTL) using option management functions, as
described in the chapter ÒOption ManagementÓ (page 165) in this book.

Manually Setting the IP Header 11

At times, however, the level of control provided by the IP level options is not
enough. If you need to set a Þeld in the IP header that is not handled by a
deÞned option, you can do this by switching the RawIP endpoint to what is
referred to as the header-included mode and setting up the IP header manually.
248 Using TCP/IP Services

C H A P T E R 1 1

TCP/IP Services
Internally, the RawIP module maintains a state that determines whether it
should add an IP header to any outgoing packets. If the state is false (0),
RawIP will automatically generate an IP header for any outgoing packets. If the
state is true (1), RawIP expects the data you provide it to contain the IP header.
(By default the state is false and RawIP generate headers for you automatically.)

You can change this bit explicitly using option management. Simply set the IP
option IP_HDRINCL to a 4-byte integer containing either 0 or 1. The IP options are
listed in ÒIP OptionsÓ (page 694).

You can also change this state by changing the IP protocol (using the generic
XTI option XTI_PROTOTYPE option) for the endpoint. If you set the IP protocol to
IPPROTO_RAW (255) or IPPROTO_IGMP (2), the IP optionIP_HDRINCL state will be set
to true. If you change the IP protocol to any other value, the IP option
IP_HDRINCL state defaults to false.

IP protocol information sources
The IP Protocol option values are deÞned in Internet
Standard 1 ÒAssigned Numbers,Ó which can be found at
<ftp://ds.internic.net//std/std1.txt>. The Þelds in the IP
header are those deÞned in Internet Standard 5, which can
be found at <ftp://ds.internic.net/std/std5.txt>. ◆

Limitations of the Header-Included Mode 11

If you use the header-included mode, you need to be aware of some of its
limitations. A number of the Þelds in the IP header are automatically modiÞed
by Open Transport, regardless of what values you set them to. These Þeld
names include:

■ Version. This Þeld is forced to a value of 4 to reßect the fact that youÕre using
IP version 4.

■ IHL. When OT sends a RawIP packet in Òheader includedÓ mode, it ignores
the IHL Þeld value you specify and instead attaches the IP options that were
last speciÞed using the IP option IP_OPTIONS. This prevents you from setting
your own IP options by placing them in the IP header and setting IHL
appropriately.

■ Total Length. This Þeld is not touched by RawIP, but it must be less than the
link MTU for the packet to be sent.

■ IdentiÞcation. This Þeld value is set to the next ID number in the Open
Transport internal sequence.
Using TCP/IP Services 249

C H A P T E R 1 1

TCP/IP Services
Flags. The More Fragments (MF) bit and the reserved bit are cleared. The Do
Not Fragment (DF) bit is set on all outgoing IP packets. OT uses the DF bit to
implement its dynamic path MTU discovery. Because this behavior is
implemented below the IP layer, you cannot change this behavior using the
RawIP endpoint

■ Fragment Offset. This Þeld is completely overwritten by RawIP.

■ Header Checksum . The Þeld is set to the correct checksum value.

You need to be careful when setting your own IP header. Even though some
Þelds are automatically ÒcorrectedÓ by Open Transport, it is still possible to
generate improperly formatted IP packets using a RawIP endpoint, which can
result in loss of network data.

Note

Path MTU is described in RFC1191 (ftp:ds.internic.net/rfcl/rfc1191.txt). ◆

Using IP Multicasting 11

Open Transport TCP/IP provides IP multicasting level 2, as described in RFC
1112. This feature is only relevant for RawIP and UDP endpoints.

To join a multicast group, use the IP_ADD_MEMBERSHIP option (page 694), passing
in a TIPAddMulticast structure to specify the address and network interface of
the group you wish to join. For a multihomed system, you can use the value
kOTAnyInetAddress for the interface address to use the default multicast
interface.

The time-to-live value for outbound multicast data defaults to 1; you can use
the IP_MULTICAST_TTL option to set a different value. The time-to-live value is a
hop count: each router that processes the datagram decrements the time-to-live
and discards the datagram if the value reaches 0. Because every router that
receives a multicast packet forwards it, a high time-to-live value for a multicast
packet can cause the packet to propagate widely throughout the Internet.
Therefore, keep this value as low as possible.

By default, Open Transport IP loops back multicast datagrams to any member
of the group on the sending machine. Pass a value of T_NO to the option
IP_MULTICAST_LOOP to turn off loopbacks.
250 Using TCP/IP Services

C H A P T E R 1 1

TCP/IP Services
Querying DNS Servers 11

In addition to the explicit simpliÞed functions that are provided for the most
commonly made queries such as name-to-address, address-to-name, system
CPU and OS, and mail exchange queries, there is a generic query function,
OTInetQuery, that you can use for any DNS query.

The OTInetQuery function allows you to use the Domain Name Resolver (DNR)
for generic domain name service (DNS) queries. You can ask for any query type
and class, and in response, Open Transport returns as many DNSQueryInfo
structures as it can Þt in the buffer you provide.

There are three types of responses: answers, authority responses, and
additional information, and there are typically several of each type. Each
response has its own DNSQueryInfo structure, with all the answers Þrst, then all
the authority records, then all the additional information. Authority responses
refer you to DNS servers and other sources that may have helpful information
for this answer and additional information responses provide address data for
the servers and sources referred to in the authority records.

If, for example, you use the OTInetQuery function to Þnd out the IP addresses
for a name, you might get back 13 DNSQueryInfo structures in your answer
buffer. Each DNS Query Information structure might then contain 2 IP address
structures, 4 authority responses, and 7 additional information responses.

To help you parse this huge answer buffer, Open Transport provides two
optional parameters for the OTInetQuery function, argv and argvlen, that create
an array of pointers to the individual responses.

Avoiding Delay When Rebinding to TCP Connections 11

When a connection closes, TCP imposes a two-minute timeout on binding
before the same port can be bound to again. This prevents stale data from
corrupting a new connection. This is in strict compliance with the TCP
standard.

You can work around this by using the IP_REUSEADDR option with the
OTOptionManagement function. If you set this option on all of your listening
endpoints before you bind, the limitation should disappear. The IP_REUSEADDR
option allows you to bind multiple connected or closing endpoints to addresses
with the same port number.
Using TCP/IP Services 251

C H A P T E R 1 1

TCP/IP Services
IMPORTANT

Note that even using the IP_REUSEADDR option, you can
only bind a single endpoint in a state less than connected
(that is, listening or unbound endpoints) to the same port
at a given time. You can, however, bind any number of
connected or closing endpoints. ▲

The sample code shown in Listing 11-2 sets an option and assigns it to the
location referenced by value. The endpoint is assumed to be in synchronous
mode. If an error occurs, the function returns a negative result. If the option
could not be read, a positive result (either T_FAILURE, T_PARTSUCCESS, or
TREADONLY, or T_NOTSUPPORT) is returned.

Listing 11-2 Setting an option value

static OTResult SetFourByteOption(EndpointRef ep,
OTXTILevel level,
OTXTIName name,
UInt32 value)

{
OTResult err;
TOption option;
TOptMgmt request;
TOptMgmt result;

/* Set up the option buffer to specify the option and value to
set. */

option.len = kOTFourByteOptionSize;
option.level = level;
option.name = name;
option.status = 0;
option.value[0] = value;

/* Set up request parameter for OTOptionManagement */
request.opt.buf = (UInt8 *) &option;
request.opt.len = sizeof(option);
request.flags = T_NEGOTIATE;

/* Set up reply parameter for OTOptionManagement. */
result.opt.buf = (UInt8 *) &option;
252 Using TCP/IP Services

C H A P T E R 1 1

TCP/IP Services
result.opt.maxlen = sizeof(option);

err = OTOptionManagement(ep, &request, &result);

if (err == noErr) {
if (option.status != T_SUCCESS)

err = option.status;
}

return (err);
}

In the body of the function, we use a TOption structure to represent the option
buffer and initialize its Þelds to specify the option and value we want to set.
Next, we initialize the request parameter of the OTOptionManagement function to
reference the option buffer we just initialized. The length Þeld is set to the size
of the option buffer and the flags Þeld is set to T_NEGOTIATE to specify that we
want to set the option value speciÞed in the option buffer.

You could invoke this function and set the IP_REUSEADDR option as follows:

err = SetFourByteOption(ep, INET_IP, IP_REUSEADDR, true);

Using General Open Transport Functions With TCP/IP 11

This section describes special considerations you must take into account for
Open Transport functions when you use them with the Open Transport TCP/
IP implementation. You should be familiar with the function descriptions in the
chapters ÒEndpoints ReferenceÓ(page 436) and ÒMappers ReferenceÓ
(page 550)in this book before reading this section.

Obtaining Endpoint Data With TCP/IP 11

The following values can be returned by the info parameter to the
OTOpenEndpoint, OTAsyncOpenEndpoint, and OTGetEndpointInfo functions when
used with TCP/IP protocols.
Using TCP/IP Services 253

C H A P T E R 1 1

TCP/IP Services
IMPORTANT

The preceding table shows only what values are possible
for each protocol. Be sure to to use the OTOpenEndpoint,
OTAsyncOpenEndpoint, or OTGetEndpointInfo functions to
obtain the current values for these parameters. ▲

These Þelds and the signiÞcance of their values are described in more detail in
ÒEndpoints ReferenceÓ(page 436).

Using Endpoint Functions With TCP/IP 11

This section describes protocol-speciÞc information about functions described
in the chapter ÒEndpoints ReferenceÓ (page 421). The functions are listed in the
same order that they appear in that chapter.

OTBind 11

The OTBind function associates a local protocol address with the endpoint you
specify. Use this function with the TCP and UDP protocols.

The addr Þeld of the TBind structure refers to the local endpoint and so must
speciÞcally include a port number. Use an InetAddress structure, described in
ÒInternet Address StructureÓ (page 685), to specify this address.

Because the architecture of Open Transport TCP/IP provides for multihoming
(although this feature has not yet been implemented), you can specify an IP
address of kOTAnyInetAddress for the addr Þeld to indicate that your application
or process will accept packets from any TCP/IP interface that the user has
conÞgured in the TCP/IP control panel.

If you bind to an address of kOTAnyInetAddress, then the OTGetProtAddress
function always returns an IP address of 0. In that case, you must use the
OTInetGetInterfaceInfo function (page 711) to determine the IP address of a
running IP interface. However, if you pass in a valid address with a port
number of kOTAnyInetAddress, the TCP/IP service provider assigns a port for
you and the OTGetProtAddress function returns the assigned port number and
the IP address.

You can use the OTInetGetInterfaceInfo function to get the IP addresses of all
currently conÞgured IP interfaces. Then, if you wish to receive packets from
only a single interface, you can bind the endpoint to the address for that
interface.
254 Using TCP/IP Services

C H A P T E R 1 1

TCP/IP Services
OTLook 11

The OTLook function checks for asynchronous events such as incoming data or
connection requests. Use this function with the TCP protocol.

As soon as a segment with the TCP urgent pointer set (that is, expedited data)
enters the TCP receive buffer, TCP posts the T_EXDATA event. The T_EXDATA event
remains posted until you have retrieved all data up to the byte pointed to by
the TCP urgent pointer.

OTGetProtAddress 11

You use this function with the TCP and UDP protocols.

If you bind an endpoint to an IP address of kOTAnyInetAddress in order to
accept packets from any valid TCP/IP interface, then the OTGetProtAddress
function always returns an IP address of 0. This is because in a multihomed
machine, there is a separate IP address for each interface, and thereÕs no way
for Open Transport to know which one you want. In that case, you must use
the OTInetGetInterfaceInfo function (page 711) to determine the IP address of
a running IP interface. On the other hand, if you bind an endpoint to a speciÞc
interface, the OTGetProtAddress function returns the address of that interface, as
expected.

OTConnect 11

The OTConnect function requests a connection to a speciÞed remote endpoint.
You can use this function with TCP.

The rcvcall->addr Þeld returns a copy of the TNetbuf structure you specify in
the sndcall->addr Þeld. The discon->reason Þeld contains a positive error code
that indicates why the connection was rejected.

Because TCP does not allow you to send any application-speciÞc data during
the connection establishment phase, you must set the sndcall->udata.len Þeld
to 0. TCP ignores the value of the sndcall->udata.buf Þeld.

Note that TCP, not the receiving application, conÞrms the connection.

As mentioned in the X/Open Transport Interface (XTI) speciÞcation, because
TCP cannot refuse a connection, t_listen() and t_accept() have a semantic
which is slightly different from that for ISO providers.Ó

As a result, an Open Transport TCP server will accept a TCP connection
request if the current number of pending connections is less than the queue
Using TCP/IP Services 255

C H A P T E R 1 1

TCP/IP Services
length (qlen) for the passive endpoint. Basically, what happens is that TCP
connects even before you accept a connection.

The client, whether in synchronous or asynchronous mode, will immediately
receive notice that the connection has been established. For synchronous
endpoints, TCP completes the 3-way connection handshake. For asynchronous
endpoints, the OTRcvConnect function must be called to complete the handshake.

This can result in situations like this: You send an OTConnect from a TCP client
to a TCP server that passively awaits incoming connections, but even before
the server responds with the OTListen and OTAccept calls, the OTConnect call
completes with no error. At this point, if you examine the client endpointÕs
state, you will Þnd that it is in the T_DATAXFER state, which is correct.

OTRcvConnect 11

The OTRcvConnect function reads the status of a previously issued connection
request. You can use this function with TCP.

Because TCP does not allow you to send any application-speciÞc data during
the connection establishment phase, you must set the call->udata.maxlen Þeld
to 0. TCP ignores the value of the call->udata.buf Þeld.

On return, the call->addr Þeld points to the Internet address of the endpoint
that accepted the connection.

OTListen 11

The OTListen function listens for an incoming connection request. You can use
this function with TCP.

When the OTListen function successfully completes execution (that is, when
you receive the T_LISTEN event), the call parameter describes a connection
that has already been completed at the TCP level. You use the OTAccept
function to complete a connection at the application level. If you wish to reject
a connection, you must call the OTSndDisconnect function after the OTListen
function successfully completes execution.

Because TCP does not allow you to send any application-speciÞc data during
the connection establishment phase, you must set the call->udata.maxlen Þeld
to 0. TCP ignores the value of the call->udata.buf Þeld.
256 Using TCP/IP Services

C H A P T E R 1 1

TCP/IP Services
OTAccept 11

The OTAccept function accepts an incoming connection request. You can use this
function with TCP.

Because TCP does not allow you to send any application-speciÞc data during
the connection establishment phase, you must set the call->udata.len Þeld to
0. TCP ignores the value of the call->udata.buf Þeld.

If you wish to send either of the association-related options (IP_OPTIONS or
IP_TOS) with the connection confirmation, you must use the OTOptionManagement
function to set the values of these options before you receive the T_LISTEN
event. TCP has already established a connection when you receive the T_LISTEN
event, and it is too late for the OTAccept function to negotiate these options.

OTSndUData 11

The OTSndUData function sends data through a connectionless transactionless
endpoint. You can use this function with UDP.

The current value for the maximum size of a RawIP or UDP datagram is
returned in the info->tsdu parameter of the OTOpenEndpoint,
OTAsyncOpenEndpoint, and OTGetEndpointInfo functions.

OTSnd 11

The OTSnd function sends data through a connection-oriented transactionless
endpoint. You can use this function with TCP.

Because it does not support TSDUÕs, TCP ignores the OTSnd functionÕs T_MORE
ßag.

If you set the T_EXPEDITED ßag, you must send at least 1 byte of data. If you call
the OTSnd function with more than 1 byte speciÞed and the T_EXPEDITED ßag set,
the TCP urgent pointer points to the last byte of the buffer.

OTRcv 11

The OTRcv function receives data through a connection-oriented endpoint. You
can use this function with TCP.

Because TCP ignores the T_MORE ßag when it is sending data and does not
transmit the ßag, you should ignore the T_MORE ßag when receiving normal
data. However, if a byte in the data stream is pointed to by the TCP urgent
pointer, TCP receives this byte and as many bytes as possible preceding the
Using TCP/IP Services 257

C H A P T E R 1 1

TCP/IP Services
marked byte with the T_EXPEDITED ßag set. If your buffer is too small to receive
all of the expedited data, TCP sets the T_MORE ßag as well. Note that this
situation might result in the number of bytes received as expedited data not
being equal to the number of bytes sent by the originator as expedited data.

OTSndDisconnect 11

The OTSndDisconnect function initiates an abortive disconnect or rejects a
connection request. You can use this function with TCP.

Because TCP does not allow you to send any application-speciÞc data during a
disconnect, you must set the call->udata.len Þeld to 0. TCP ignores any data
in the call->udata.buf Þeld.

OTRcvDisconnect 11

The OTRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated. You can use this
function with TCP.

Because TCP does not allow you to send any application-speciÞc data during a
disconnection, you must set the discon->udata.len Þeld to 0. TCP ignores the
value of the discon->udata.buf Þeld.

This function returns a positive error code. To obtain the negative error code,
subtract that positive value from -3199.

Using Mapper Functions With TCP/IP 11

This section describes protocol-speciÞc information about functions described
in the chapter ÒMappers ReferenceÓ(page 550) in this book. The functions are
listed in the same order that they appear in that chapter.

OTRegisterName 11

Because the TCP/IP domain name system does not include a method for
clients to register their names on the network, the Open Transport domain
name resolver (DNR) does not support the OTRegisterName function. If you
call this function for a TCP/IP mapper, it will return the kOTNotSupportedErr
result code.
258 Using TCP/IP Services

C H A P T E R 1 1

TCP/IP Services
OTDeleteName 11

This function is not supported by the TCP/IP domain name resolver (DNR).
If you call this function for a TCP/IP mapper, it will return the
kOTNotSupportedErr result code.

OTLookupName 11

You can use the OTLookupName function to resolve a domain name to an Internet
address. Specify the name as a character string pointed to by the
request->udata.buf parameter. The name can be just a host name (ÒotteamÓ), a
partially qualiÞed domain name (Òotteam.sswÓ), a fully qualiÞed domain name
(Òotteam.ssw.apple.com.Ó), or an Internet address in dotted-decimal format
(Ò17.202.99.99Ó), and can optionally include the port number
(Òotteam.ssw.apple.com:25Ó or Ò17.202.99.99:25Ó).

The function returns a pointer to the address in the reply->udata.buf
parameter. The address is in the format of an InetAddress structure (page 685),
which includes the address type, the port number, and the IP address. If you
donÕt specify a port number, the returned InetAddress structure contains a port
number of 0. You can use this address directly in all Open Transport functions
that require an Internet address, such as OTConnect, OTSndUData, and OTBind.

The OTLookupName function returns only a single address, regardless of how
many addresses are known for a single multihomed host. To obtain a list of up
to 10 addresses for a multihomed host, use the OTInetStringToAddress function
(page 700).
Using TCP/IP Services 259

C H A P T E R 1 1

TCP/IP Services
260 Using TCP/IP Services

C H A P T E R 1 2

Contents

Contents
Figure 12-0
Listing 12-0
Table 12-0
12 Introduction to AppleTalk
About AppleTalk 264
AppleTalk Networks and Addresses 266
Multinodes 268
Handling Miscellaneous Events 269
ConÞguring AppleTalk Protocol Providers 270

About AppleTalk Protocols Under Open Transport 271
AppleTalk Addressing and the Name Binding Protocol (NBP) 273
The AppleTalk Service Provider 274
Datagram Delivery Protocol (DDP) 274
AppleTalk Data Stream Protocol (ADSP) 275
AppleTalk Transaction Protocol (ATP) 275
Printer Access Protocol (PAP) 276
261

C H A P T E R 1 2
Introduction to AppleTalk 12

This chapter provides an overview of the Open Transport implementation of
AppleTalk, a communications network system that interconnects computer
workstations, printers, shared modems, and other computers acting as Þle
servers and print servers. AppleTalk allows these devices to exchange
information through communications hardware and software. Its chief features
are that

■ it is built into all Mac OS computers

■ it provides dynamic addressing, which allows for very easy setup and
conÞguration

■ it provides easy resource browsing

If you want to use AppleTalk, the speciÞc set of Open Transport functions you
call depends on the nature of the speciÞc protocol you useÑwhether it is
connectionless or connection-oriented, and transactionless or transaction-
based. For example, you use different functions to send and receive data with a
connection-oriented protocol such as AppleTalk Data Stream Protocol (ADSP)
or Printer Access Protocol (PAP) than with a connectionless protocol such as
Datagram Delivery Protocol (DDP) or AppleTalk Transaction Protocol (ATP).

Read this chapter if you want an overview of AppleTalk networks and
AppleTalk protocols. You can also read this chapter for help in deciding
which AppleTalk protocols to use for your applicationÕs requirements.

This chapter introduces

■ AppleTalk networking concepts

■ AppleTalk protocols implemented in Open Transport

■ AppleTalk service providers

■ AppleTalk mappers

This chapter and the other AppleTalk chapters in this book describe how to use
AppleTalk-speciÞc options with the Open Transport networking functions that
are appropriate for the AppleTalk protocol you wish to use.

Because an AppleTalk network includes both hardware and software, the
information in this book constitutes only a small part of the body of literature
documenting AppleTalk. An important resource for any AppleTalk network
developer is the book Inside AppleTalk, second edition, which has detailed
speciÞcations for each of the AppleTalk protocols.
263

C H A P T E R 1 2

Introduction to AppleTalk
About AppleTalk 12

Every Mac OS computer includes AppleTalk hardware and software, so if your
application needs to communicate with other Mac OS computers, you may
want to use an AppleTalk protocol. AppleTalk includes protocols that handle
Þle sharing, LaserWriter and ImageWriter printing, data exchange through data
streams or packets, and AppleTalk name lookups across a network.

Although AppleTalk includes protocols that provide connection-oriented
services, it is considered a connectionless network because all AppleTalk data is
ultimately delivered by the Datagram Delivery Protocol (DDP), which
implements connectionless packet delivery. Connection-oriented AppleTalk
protocols that establish sessions and provide reliable delivery of data, such as
the AppleTalk Data Stream Protocol (ADSP), are built on top of the
connectionless packet services that DDP provides. In the AppleTalk protocol
stack, each protocol in a speciÞc layer provides a set of functions and services
to one or more protocols in a higher-level layer.

The AppleTalk architecture is closely aligned with the industry-standard Open
Systems Interconnection (OSI) networking model. Figure 12-1 shows the
AppleTalk protocols supported by Open Transport and shows how they relate
to one another in the layers deÞned by the OSI model.
264 About AppleTalk

C H A P T E R 1 2

Introduction to AppleTalk
Figure 12-1 AppleTalk protocol stack and the OSI model

Here are some points worth noting about how AppleTalk under Open
Transport maps to the OSI model:

■ At the session layer, the AppleTalk Data Stream Protocol (ADSP) provides its
own stream-based transport layer services that allow for full-duplex dialogs,
while the Printer Access Protocol (PAP) uses the transaction-based services
of the AppleTalk Transaction Protocol (ATP) to transport workstation
commands to servers. The Zone Information Protocol (ZIP) is also at the
session layer; a subset of its functions are available through AppleTalk
service providers.

■ At the transport layer, there are the AppleTalk Transaction Protocol (ATP)
and Name-Binding Protocol (NBP), but NBP is accessible only through
mapper providers. In addition to these two protocols, ADSP includes
functions that span both the session and the transport layers.

■ At the network layer, the Datagram Delivery Protocol (DDP) is AppleTalkÕs
network delivery protocol.

■ At the data-link layer, various link-access protocols support the underlying
networking hardware. Open Transport provides standard Streams modules
for the LocalTalk, Ethernet, token ring, and FDDI drivers.

ADSP

NBPATP

ZIP PAP

Standard link-access Streams modules

Ethernet Token ring FDDILocalTalk

DDP

Session

Transport

Network

Data-link

Physical
About AppleTalk 265

C H A P T E R 1 2

Introduction to AppleTalk
AppleTalk Networks and Addresses 12

Applications can use AppleTalk protocols across a single AppleTalk network or
an AppleTalk internet, which is a number of interconnected AppleTalk
networks. An AppleTalk internet can include a mix of LocalTalk, TokenTalk,
EtherTalk, and FDDITalk networks, or it can consist of multiple networks of a
single type, such as several LocalTalk networks. An AppleTalk internet can
include both nonextended and extended networks.

An AppleTalk nonextended network is one in which

■ the network has one network number assigned to it

■ the network supports only one zone

■ all nodes on the network share the same network number and zone name

■ each node on the network has a unique node ID

LocalTalk is an example of a nonextended network. Each node on a
nonextended network, such as LocalTalk, has a unique 8-bit node ID. Since
there are 256 possible combinations of 8 bits, and three IDs are not available (ID
255 is reserved for broadcast messages and ID 0 and 254 are not allowed), a
nonextended network can support up to 253 active nodes at a time.

An AppleTalk extended network is one in which

■ the network has a range of network numbers assigned to it

■ the network supports multiple zones

■ each node on the network has a unique network number node ID
combination to identify it

Table 12-1 summarizes the identiÞers that you use for AppleTalk addressing.

Each network is assigned a network number so that an AppleTalk router can
determine the packetÕs destination network number and forward the packet
through an internet from one router to another until the packet arrives at its
correct destination network. An extended network uses a range of network
numbers. Nodes on an extended network can have different zone names and
different network numbers within the network number range.

A node is the data-link addressable entity on an AppleTalk network; all
physical devices on an AppleTalk network are nodes. When a node Þrst
connects to an AppleTalk network or is rebooted, AppleTalk dynamically
assigns it a unique 8-bit node ID. For a node on an extended network,
AppleTalk also assigns it a 16-bit network number within the range of numbers
266 About AppleTalk

C H A P T E R 1 2

Introduction to AppleTalk
assigned to the extended network that the device is connected to. Once a
packet arrives at its destination network, the packet is delivered to its
destination node within that network, based on the node ID.

Note
Open Transport allows system administrators to assign
static node IDs. ◆

Because AppleTalk assigns node IDs dynamically whenever a node joins the
network or is rebooted, a nodeÕs address on an AppleTalk network can change
from time to time, although a computer attempts to reuse the node ID it last
used. the NBP provides a mapping of logical names (like those in the Chooser)
to physical addresses in such a way that if the node ID changes, you can still
Þnd the remote service. This mapping is discussed further in ÒAbout
AppleTalk AddressingÓ (page 280) and ÒAbout AppleTalk Service ProvidersÓ
(page 294) in this book.

A zone is a logical grouping of nodes within an AppleTalk internet. The use of
zones allows a network administrator to set up departmental or other logical
sets of nodes in an internet. A single extended network can contain nodes
belonging to multiple zones; an individual node on an extended network can
belong to only one zone. Each zone is identiÞed by a unique zone name.

A socket is an addressable data-link entity on a network. Endpoints exchange
data with each other across an internet through sockets. Because each endpoint
has its own socket address, a node can have multiple concurrent open
connections, for example, one to a Þle server and one to a printer. A node can

Table 12-1 AppleTalk addressing identifiers

Identifier Description

Network number A 16-bit number that identiÞes the network to which a
node is connected. An extended network is deÞned by a
range of network numbers.

Node ID An 8-bit number that identiÞes a node.

Zone name A name assigned to a logical grouping of nodes in an
AppleTalk network or internet.

Socket number An 8-bit number that identiÞes a socket.

DDP type An 8-bit number that identiÞes an endpointÕs protocol.
About AppleTalk 267

C H A P T E R 1 2

Introduction to AppleTalk
have several sockets open at the same time, so each endpoint on an AppleTalk
network is associated with a unique 8-bit socket number.

AppleTalk sockets are divided into two groups: statically assigned sockets and
dynamically assigned sockets. Statically assigned sockets are those sockets
that are permanently reserved for a designated protocol or process. For
example, socket 4 is always reserved as the echo socket, used for echoing
packets across a network. Dynamically assigned sockets are those sockets
arbitrarily assigned by DDP if you do not specify a socket number when
binding an endpoint; DDP returns the socket number to you in the endpointÕs
address when the binding has completed. In certain situations, you can bind
multiple endpoints to a single socket.

Multinodes 12

AppleTalkÕs multinode architecture allows an application to acquire virtual
node IDs, called multinode IDs. These multinode IDs allow the computer
running your application to appear as multiple nodes on the network even
though it is only one physical entity. Each acquired multinode is in addition to
the standard node ID already assigned to the computer when it joined the
network as a node. The prime example of a multinode application is Apple
Remote Access Server (ARA), which uses multinodes to make the connected
remote client appear on the local network.

You can use a multinode to receive broadcast packets and any AppleTalk
packets addressed to it through its multinode ID. You must then process the
packets in a custom manner. A multinode ID is not connected to the AppleTalk
protocol stack above the network (DDP) layer, which means that an application
that uses a multinode cannot expect to be supported by the services of
higher-level protocols such as NBP, ATP, and ADSP, but instead must
implement its own higher-level protocols if it expects packets for such
protocols.

Handling Miscellaneous Events 12

In classic AppleTalk, you could use the AppleTalk Transition Queue (ATQ) to
inform your application of miscellaneous events that occurred unexpectedly
within AppleTalk. In Open Transport AppleTalk, this facility has been modiÞed
to allow your endpoint to receive only a few predeÞned events. An example of
such an event is an AppleTalk router coming online or a zone name changing.
When one of these events occurs, Open Transport sends a message to the
268 About AppleTalk

C H A P T E R 1 2

Introduction to AppleTalk
notiÞer functions of all endpoints that have registered for reception of
miscellaneous events. (Any applications that rely on the AppleTalk Transition
Queue must use AppleTalk backward compatibility to handle them as
described in Inside Macintosh: Networking.)

In Open Transport AppleTalk, there are Þve miscellaneous events that you
can receive on your AppleTalk endpoint, which does not need to be bound.
They are as follows:

To receive these events, your application must use the OTIoctl function with a
provider reference value, the constant kOTGetMiscellaneousEvents as its
command, and the value of 1 as its data. For more information on the OTIoctl
function, refer to ÒOTIoctlÓ (page 411) in this book.

Configuring AppleTalk Protocol Providers 12

When you want to use a particular AppleTalk protocol, you open an endpoint
conÞgured for that protocol. To do this, you use speciÞc constants as part of a
conÞguration string that you pass to the Open Transport function for opening
endpoints. This string speciÞes to Open Transport how to create the correct
endpoint for you. For more information on the functions that you use to open
endpoints, mappers, and AppleTalk service providers, refer to the chapters in
this book on the speciÞc type of provider; for more information about
conÞguring providers, see ÒConÞguring and Opening a ProviderÓ (page 34) in
this book.

Miscellaneous event Value Explanation

T_ATALKROUTERDOWNEVENT 0x23010051 The router on your applicationÕs
network is no longer available.

T_ATALKROUTERUPEVENT 0x23010052 A router has become available on your
applicationÕs network.

T_ATALKZONENAMECHANGEDEVENT 0x23010053 The router has changed the name for
your computerÕs zone.

T_ATALKCONNECTIVITYCHANGEDEVENT 0x23010054 A multinode connection was
established or disconnected on your
network.

T_ATALKCABLERANGECHANGEDEVENT 0x23010055 A router has become available on your
network, and your endpointÕs address
is no longer in the correct
local-network number range.
About AppleTalk 269

C H A P T E R 1 2

Introduction to AppleTalk
Table 12-2 lists the constants you use to conÞgure the AppleTalk providers. You
can use either the constant or the literal string when creating conÞgurations.

There is one exception to the typical method of conÞguring providers.
AppleTalk service providers do not have a string equivalent value. You
conÞgure an AppleTalk service provider with the constant
kDefaultAppleTalkServicesPath, which has a value of ((OTConfiguration*)-3).
The code for creating an AppleTalk service provider is as follows:

OTOpenEndpoint(kDefaultAppleTalkServicesPath, 0, &err)

If you want to set an option as part of the conÞguration string, you need to
know which protocols use which options and how to translate the optionÕs
constant name, given in the header Þles, into a string that the conÞguration
functions can parse. For the AppleTalk options, Table 12-3 provides the
constant name, the value used in the conÞguration string, and the protocols
that use that option.

To conÞgure a provider with an option string, you put the string and its
assigned value in parentheses after the protocol that uses it, as in the following
lines of code:

OTOpenEndpoint(OTCreateConfiguration
("adsp,ddp(Checksum=1),ltlkB"), 0, NULL, &err)

OTOpenEndpoint(OTCreateConfiguration
(kADSPName"(EnableEOM=1)"), 0, NULL, &err);

Table 12-2 Protocol identifiers for use in configuring AppleTalk providers

Constant
Configuration
string value Type of provider configured

kNBPName ÒnbpÓ NBP mapper provider

kDDPName ÒddpÓ DDP endpoint provider

kATPName ÒatpÓ ATP endpoint provider

kADSPName ÒadspÓ ADSP endpoint provider

kPAPName ÒpapÓ PAP endpoint provider
270 About AppleTalk

C H A P T E R 1 2

Introduction to AppleTalk
About AppleTalk Protocols Under Open Transport 12

Each of the AppleTalk protocols implements a different set of functions and
services, and your choice of which protocol to use depends primarily on your
applicationÕs needs. For example, if you need a connection-oriented
transactionless protocol to exchange data with another endpoint, ADSP is your
most likely choice. Open Transport supports most AppleTalk protocols and
provides protocol-speciÞc options for various Open Transport functions. Which
functions to use with which AppleTalk protocol, and which options are
permitted for each, are discussed in this book in the speciÞc chapter for each
AppleTalk protocol.

You use most AppleTalk protocols by specifying them explicitly when opening
an endpoint. ADSP, ATP, and PAP fall into this category. Because DDP is the
network delivery protocol for AppleTalk, you can specify it explicitly or, more
often, you use it implicitly when you choose other higher-level AppleTalk
protocols.

You donÕt use NBP and ZIP explicitly with endpoints: NBP-conÞgured mapper
providers access NBP to register and delete an applicationÕs name as a
network-visible entity and to look up other endpoint names on the network;
AppleTalk service providers use a subset of ZIP functions to provide

Table 12-3 Indicating AppleTalk options in the configuration string

Constant name
Configuration
string value Valid protocols

OPT_CHECKSUM ÒChecksumÓ DDP, ATP, ADSP, PAP

OPT_SELFSEND ÒSelfSendÓ DDP

OPT_ENABLEEOM ÒEnableEOMÓ ADSP, PAP

OPT_INTERVAL ÒRetryIntervalÓ ATP

OPT_RETRYCNT ÒRetryCountÓ ATP

ATP_OPT_RELTIMER ÒReleaseTimerÓ ATP

PAP_OPT_OPENRETRY ÒOpenRetryÓ PAP
About AppleTalk Protocols Under Open Transport 271

C H A P T E R 1 2

Introduction to AppleTalk
applications with information about zones and the current AppleTalk
environment.

Note
In order to exchange data and share resources, nodes must
be running the same protocol, but they do not all have to
be running Open Transport. For example, if one endpoint
is using ADSP to send data to an endpoint on another
computer, the other endpoint must also be running ADSP,
although it does not have to be the Open Transport ADSP
implementation. ◆

Open Transport implements two connection-oriented transactionless
AppleTalk protocols that you can use to send and receive data: ADSP and PAP.
As discussed in ÒIntroduction to Open TransportÓ (page 5) the decision of
which protocol to use is typically based on whether it maintains a connection
and uses discrete transactions or sends a stream of data.

Open Transport also implements two connectionless AppleTalk protocols that
you can use to send and receive data: ATP and DDP. ATP is a transaction-based
protocol and sends request transactions and receives replies; DDP does not
send transactions, instead it sends individual packets of data, called datagrams,
and expects no reply.

The AppleTalk protocols that Open Transport supports for endpoints are
shown in Table 12-4.

In general, applications use ADSP for symmetrical data exchange between two
peer endpoints and PAP for printing data. PAP is a client of ATP, so it takes
advantage of ATPÕs reliable data delivery services. Because DDP underlies
all AppleTalk data delivery, all AppleTalk protocols ultimately use DDP for
data transport.

Table 12-4 Open Transport support for AppleTalk endpoint protocols

Connectionless Connection-oriented

Transactionless DDP ADSP
PAP

Transaction-based ATP
272 About AppleTalk Protocols Under Open Transport

C H A P T E R 1 2

Introduction to AppleTalk
AppleTalk Addressing and the Name Binding Protocol (NBP)12

Because AppleTalk assigns node IDs dynamically whenever a node joins the
network or is rebooted, a nodeÕs address on an AppleTalk network can change
from time to time. Applications cannot assume that the physical address of an
AppleTalk endpoint is stable, and therefore a reliable mapping of user names to
physical addresses is very important for AppleTalk.

The Name-Binding Protocol (NBP) is an AppleTalk protocol that maintains
this mapping, and you can access this information through a mapper provider
conÞgured for NBP. Because AppleTalk supports dynamic name registration,
NBP mapper providers can use the Open Transport name registration and
deletion functions as well as the other mapper functions.

In order for you to make the name of your AppleTalk endpoint visible to other
applications on a network, you must register its name. There are various ways
of doing this: for example, using the OTBind function or opening a mapper
provider. In either case, Open Transport uses NBP to associate the endpointÕs
name with its physical address. Once your application is registered, it is a
network-visible entity that other applications can locate.

Through mapper library functions, AppleTalk applications can

■ register and delete endpoints as network-visible entities

■ look up other endpoint names, using wildcards as needed to match
partial names

■ initialize name and address structures

■ get and set endpoint name information

See ÒMappersÓ (page 149) for information about how to use Open Transport
mapper providers and ÒAppleTalk Service ProvidersÓ (page 293) for
information about how to use NBP mapper providers to identify and locate
endpoints on a network. The two methods of registering a name are discussed
in greater detail in ÒRegistering Your EndpointÕs NameÓ (page 286).

The AppleTalk Service Provider 12

An AppleTalk service provider is an Open Transport provider that gives
applications access to information and services that are speciÞc to the
AppleTalk protocol stack. Applications use an AppleTalk service provider to
obtain zone names and to get information about the current AppleTalk
environment for a given machine.
About AppleTalk Protocols Under Open Transport 273

C H A P T E R 1 2

Introduction to AppleTalk
The AppleTalk service provider is able to provide information about zones by
implementing a subset of the Zone Information Protocol (ZIP). AppleTalk
service provider functions allow applications to query routers for information
about

■ their own nodeÕs zone name

■ the names of all the zones on their local network

■ the names of all the zones throughout the AppleTalk internet

ZIP is implemented primarily in AppleTalk internet routers, each of which
maintains a zone information table that maps the relationships between zone
names and network numbers for AppleTalk networks.

See ÒAppleTalk Service ProvidersÓ (page 293) for information about how to use
AppleTalk service providers.

Datagram Delivery Protocol (DDP) 12

The Datagram Delivery Protocol (DDP) is a connectionless transactionless
protocol that transfers data between sockets as discrete packets, or datagrams,
with each packet carrying its destination socket address. DDP attempts to
deliver any packet with a valid address but does not inform the sender when it
cannot deliver a packet, and it cannot request the sender to retransmit lost or
damaged packets. This level of service is referred to as best-effort delivery.
DDP does not include support to ensure that all sent packets are received at the
destination or that those packets that are received are in the correct order.
Higher-level protocols that use the services of DDP provide for reliable
delivery of data. DDP uses whichever link-access protocol the user selects; that
is, DDP can send its datagrams through any type of data link and transport
media, provided the network hardware is compatible with Open Transport.

For real-time applications, or applications such as games that do not require
reliable delivery of data, or diagnostic tools that retransmit at regular intervals
to estimate averages, DDP sufÞces. DDP involves less overhead and provides
faster performance than higher-level protocols.

See ÒDatagram Delivery Protocol (DDP)Ó (page 303) for information about how
to use DDP under Open Transport.
274 About AppleTalk Protocols Under Open Transport

C H A P T E R 1 2

Introduction to AppleTalk
AppleTalk Data Stream Protocol (ADSP) 12

The AppleTalk Data Stream Protocol (ADSP) is a connection-oriented
transactionless protocol that supports sessions over which applications can
exchange full-duplex streams of data. In addition to ensuring reliable delivery
of data, ADSP provides a peer-to-peer connection; that is, both ends of the
connection can exert equal control over the exchange of data. ADSP also
provides an application with a means of sending expedited attention messages
to pass control information between the two communicating applications
without disrupting the main ßow of data.

ADSP appears to its clients to maintain an open pipeline between the two
entities at either end. Either entity can write a stream of bytes to the pipeline or
read data bytes from the pipeline. However, because ADSP, like all other
higher-level AppleTalk protocols, is a client of DDP, the data is actually sent as
packets. This allows ADSP to correct transmission errors in a way that would
not be possible for a true data stream connection. Thus, ADSP retains many of
the advantages of a transaction-based protocol while providing to its clients a
connection-oriented full-duplex data stream.

See ÒAppleTalk Data Stream Protocol (ADSP)Ó (page 313) for information
about how to use ADSP under Open Transport.

AppleTalk Transaction Protocol (ATP) 12

The AppleTalk Transaction Protocol (ATP) is a connectionless transaction-
based protocol that allows two endpoints to execute request-and-response
transactions. Either ATP endpoint can request another ATP endpoint to
perform an action; the other ATP endpoint then carries out the action and
transmits a response reporting the outcome. ATP provides reliable delivery of
data by ensuring that data packets are delivered in the correct sequence and by
retransmitting any packets that are lost.

ATP is useful if your application sends small amounts of data and can tolerate
a minor degree of performance degradation. Games that are based on
request-and-response dialogs can make efÞcient use of ATP.

See ÒAppleTalk Transaction Protocol (ATP)Ó (page 325) for information about
how to use ATP under Open Transport.
About AppleTalk Protocols Under Open Transport 275

C H A P T E R 1 2

Introduction to AppleTalk
Printer Access Protocol (PAP) 12

The Printer Access Protocol (PAP) is an asymmetrical connection-oriented
transactionless protocol that enables communication between client and server
endpoints, allowing multiple connections at both ends. PAP uses ATP packets
to transport the data once a connection is open to the server.

PAP is the protocol that ImageWriter and LaserWriter printers in the AppleTalk
environment use for direct printingÑthat is, when a workstation sends a print
job directly to a printer connected to the network instead of using a print
spooler. Open Transport PAP provides a single protocol implementation for all
AppleTalk printers that is integrated into the AppleTalk protocol stack.

See ÒPrinter Access Protocol (PAP)Ó (page 335) for information about how to
use PAP under Open Transport.
276 About AppleTalk Protocols Under Open Transport

C H A P T E R 1 3

Contents

Contents
Figure 13-0
Listing 13-0
Table 13-0
13 AppleTalk Addressing
About AppleTalk Addressing 281
Using AppleTalk Addressing 281

Specifying a DDP Address 282
Specifying an NBP Address 283
Specifying a Combined DDP-NBP Address 286
Specifying and Using a Multinode Address 286
Registering Your EndpointÕs Name 287
Looking Up Names and Addresses 288
Manipulating an NBP Name 290
277

C H A P T E R 1 3
278 Contents

C H A P T E R 1 3
AppleTalk Addressing 13

This chapter describes how to specify an AppleTalk address to bind an
endpoint, to connect to an AppleTalk service or to make your endpoint visible
to other endpoints across an Open Transport AppleTalk network. Whenever
you want to communicate across the network, you need to be able to identify
your own local endpoint and the remote endpoint with which you want to
communicate. You can use a name, a network address, or a combination of the
two to identify the endpoints. Open Transport provides a speciÞc address
format for each of these cases and several utility functions to initialize them.

In order for you to make the name of your AppleTalk endpoint visible to other
applications on a network, you must register its name. There are various ways
of doing this, but in either case, Open Transport uses the Name Binding
Protocol (NBP) to associate the endpointÕs name with its network address.
Open Transport provides several utility functions and a specialized data
structure, the NBP entity, for more convenient manipulation of NBP names.

This chapter introduces endpoint and mapper functions that you can use to
register a name, to look up name and address information, and to browse for
all protocol addresses associated with a name or name pattern. For complete
reference information, see ÒAppleTalk Addressing ReferenceÓ (page 721).

You should read this chapter if your application uses an AppleTalk networking
protocol and you need to

■ specify a local or remote address

■ register and delete endpoints as network-visible entities

■ look up other endpoint names, using wildcards as needed to match
partial names

■ initialize address structures

■ get and set other endpoint name information

Some of these tasks are available through endpoint and mapper functions,
which are described in the chapters ÒEndpointsÓ(page 99) and
ÒMappersÓ(page 150) in this book. You should be familiar with the material in
those chapters before you read this chapter.
279

C H A P T E R 1 3

AppleTalk Addressing
About AppleTalk Addressing 13

Because AppleTalk assigns node IDs dynamically, a nodeÕs address on an
AppleTalk network can change from time to time. The Name-Binding Protocol
(NBP) provides a mapping of names (like those in the Chooser) to network
addresses in such a way that if the node ID changes, you can continue to
reliably identify your application. An endpointÕs name is its NBP name, also
sometimes called its entity name. You can access information about an
endpointÕs address through an NBP mapper provider, which you can also use
to locate other endpoints on the network. Because AppleTalk supports dynamic
name registration, NBP mapper providers can use the Open Transport name
registration and deletion functions as well as the other mapper functions.

When you bind an AppleTalk endpoint, Open Transport associates the
endpoint with an address, which can be in one of these formats:

■ The DDP address supplies the network address of an endpoint.

■ The NBP address supplies the user-friendly NBP name.

■ The combined DDP-NBP address combines the endpointÕs network address
and its NBP name.

■ The multinode address supplies the physical network address of a
multinode endpoint.

The following several sections discuss each address format in more detail.

Using AppleTalk Addressing 13

This section explains how you use AppleTalk addressing formats to identify an
endpoint and how you use various Open Transport AppleTalk functions to

■ initialize an address

■ compare two DDP addresses

■ register the name of your endpoint

■ look up names and addresses to Þnd a speciÞc applicaiton or user name
280 About AppleTalk Addressing

C H A P T E R 1 3

AppleTalk Addressing
■ manipulate NBP names by using NBP entity structures

■ initialize NBP entities

■ set and extract the name, type, or zone parts of an NBP name

■ unregister an NBP name prior to closing an AppleTalk endpoint

Specifying a DDP Address 13

The primary address format is the DDP address format, which is the most
commonly used. It identiÞes the network address for your endpoint. Data
transmission is fastest for those functions that use this address format because
no lookup or conversion is necessary for Open Transport to Þnd the speciÞed
location. Functions that use the NBP address format, for example, have to look
up the mapping of the NBP name to its address, and this extra step slows down
communications.

Functions such as OTBind, OTGetProtAddress, and OTResolveAddress return an
address in this format. DDP addresses use the DDP address structure (deÞned
by the DDPAddress data type), which includes the following Þelds:

Permissible values for these Þelds are given in the section ÒThe DDP Address
StructureÓ (page 722). Since the DDP type Þeld is ignored by all protocols other
than DDP, set this Þeld to 0 unless you plan to use the DDP protocol. For more
information on DDP types, see the chapter ÒDatagram Delivery Protocol
(DDP)Ó (page 305) in this book.

The combination of the network number, the node ID, and the socket number
creates a unique identiÞer for any socket in the AppleTalk internet so that
AppleTalkÕs delivery protocol, DDP, can deliver packets to the correct
destination. When you bind an AppleTalk endpoint, you typically specify a
network number of 0 and a node ID of 0. This allows the network layer to
choose an appropriate address.

Field Meaning

Address type The type of address format, in this case AF_ATALK_DDP.

Network number The endpointÕs network.

Node ID The endpointÕs node.

Socket number The endpointÕs socket.

DDP type A DDP endpointÕs type of protocol.
Using AppleTalk Addressing 281

C H A P T E R 1 3

AppleTalk Addressing
In using Open Transport functions to send or receive data, you use a TNetbuf
structure to point to a buffer that holds data for a speciÞc Open Transport
function. Listing 13-1 shows how you set up the Þelds of a DDP address and
how you set up a TNetbuf structure for it.

Listing 13-1 Setting up a DDP Address

void DoCreateDDPAddress(TNetbuf *theNetBuf, long net, short node,
 short socket)

{
DDPAddress *ddpAddress;

/* Allocate memory for the DDPAddress structure. */
ddpAddress = (DDPAddress*) OTAllocMem(sizeof(DDPAddress));

/* Set up a DDPAddress structure. */
ddpAddress->fAddressType = AF_ATALK_DDP;
ddpAddress->fNetwork = net;
ddpAddress->fNode = node;
ddpAddress->fSocket = socket;
ddpAddress->fDDPType = 0;
ddpAddress->fPad = 0;

/* Set the TNetbuf to point to it. */
theNetbuf->len = sizeof(DDPAddress);
theNetbuf->maxlen = sizeof(DDPAddress);
theNetbuf->buf = (void*)ddpAddress;

}

Specifying an NBP Address 13

You can use the NBP address format to identify an endpoint when you know
the user-deÞned name of an endpoint but not its network address. Applications
that run on an Open Transport AppleTalk network can display these user-
friendly NBP names to users while using the DDP addresses internally to
locate and address entities. See the section ÒLooking Up Names and
AddressesÓ (page 287) for more information on how Open Transport translates
an NBP name into a network address.
282 Using AppleTalk Addressing

C H A P T E R 1 3

AppleTalk Addressing
The NBP address format is deÞned by the NBP address structure, which
includes the following Þelds:

The values for these Þelds are discussed more fully in the section ÒThe NBP
Address StructureÓ (page 723).

An NBP name consists of these three Þelds: name, type, and zone. The value
for each of these Þelds is an alphanumeric string of up to 32 characters. The
NBP name is not case sensitive. When you bind an endpoint with an NBP
address, you must specify a value for the name and type Þelds, but you donÕt
have to specify the zone. The NBP name string is neither a C nor a Pascal
string; its length is determined by the TNetBuf structure in which itÕs enclosed.
It has the form

name:type@zone

The name Þeld typically identiÞes the name of the entity on the network; for
example, the name of a Þle server or printer. Another example might be the use
of the name in personal Þle sharing, where the name Þeld is used to register the
computer name. Clients can use that name to identify the computer theyÕre
logging into.

The type Þeld generally identiÞes the type of service that the entity provides,
for example, ÒMailboxÓ for an electronic mailbox on a server. Applications
offering similar services can Þnd one another and identify potential partners by
looking up only those addresses with a speciÞc type. You could request the
mapper provider to return the names of all of the registered entities of a certain
type, for example, all Þle servers or laser printers.

The zone Þeld identiÞes the zone within the network to which the node
belongs. To indicate the current zone (or no zone, as in the case of a simple
network conÞguration not divided into zones), you can leave this Þeld blank
(the preferred method) or you can specify an asterisk (*). To Open Transport,
these two methods are equivalent; thus, the strings ÒMyName:MBOX@*Ó and
ÒMyName:MBOXÓ identify the same zone. There are several functions for
getting zone information; these are described in the chapter ÒAppleTalk Service
ProvidersÓ(page 295) in this book.

Field Meaning

Address type The type of address format, in this case AF_ATALK_NBP.

NBP name buffer A text string giving the endpointÕs NBP name.
Using AppleTalk Addressing 283

C H A P T E R 1 3

AppleTalk Addressing
You may not use the AppleTalk NBP wildcard characters as part of the NBP
name, type, or zone. When you use an NBP structure to deÞne an NBP address
format, you copy the string specifying the NBP name into the NBP name buffer.

You can use the backslash (\) character in an NBP name to include the colon (:),
at sign (@), and the backslash (\) characters in the name. For example, if you
wanted to use the name ÒMy\Machine,Ó the type ÒMy:ServerÓ and the zone
ÒMy@Zone,Ó you would express it in the following way:

My\\Machine:My\:Server@My\@Zone

The maximum size of the NBP name buffer is currently deÞned to be 105 bytes.
This permits a string whose name, type, and zone Þelds each contain the
maximum 32 characters, plus 2 bytes for the separator characters (: and @) and
7 bytes for escape charactersÑthat is, combinations of backslash-colon (\:),
backslash-at sign (\@), or backslash-backslash (\\).

If you specify an NBP address structure when binding an endpoint, Open
Transport assigns a dynamic socket number to the DDP address of the
endpoint (because the NBP address cannot supply any socket number) and
registers the NBP name you speciÞed for your application.

Listing 13-2 shows how you set up the Þelds of an NBP address. The
statements used to set the size of the len Þeld of the TNetbuf structure simply
add the size of the two Þelds of the NBP address structure: the size of the
constant name plus the length of the string equals the length of data stored in
the buffer.

Listing 13-2 Setting up an NBP address

void DoCreateNBPAddress(TNetbuf *theNetBuf, char* nbpName)
{

NBPAddress *nbpAddress;
short nbpSize;

/* Allocate memory for an NBP structure. */
nbpSize = sizeof(OTAddressType) + OTStrLength(nbpName);
nbpAddress = (NBPAddress*) OTAllocMem(nbpSize);

/* Set the TNetbuf to point to it. */
284 Using AppleTalk Addressing

C H A P T E R 1 3

AppleTalk Addressing
theNetbuf->len = OTInitNBPAddress(nbpAddress, nbpName);
theNetbuf->buf = (void*)nbpAddress;

}

Specifying a Combined DDP-NBP Address 13

You use the combined DDP-NBP address format (AF_ATALK_DDPNBP) when you
want to bind an endpoint with a speciÞc NBP name to a speciÞc socket. As the
name suggests, this format combines the DDP address and the NBP address. Its
data structure begins, as do all of the address structures, with a constant
deÞning which address format to use; then it includes all the standard DDP
address Þelds and ends with the standard NBP name buffer Þeld. See the
previous two subsections, ÒSpecifying a DDP AddressÓ and ÒSpecifying an
NBP Address,Ó and the section ÒThe Combined DDP-NBP Address StructureÓ
(page 724) for discussion of these Þelds, and also refer to Inside AppleTalk,
second edition.

Specifying and Using a Multinode Address 13

You use the multinode address format (AF_ATALK_MNODE) for multinode
applications that want to bind several multinode endpoints to the same socket
using different node IDs for each. The multinode address format is identical to
the DDP address format except that you use a different constant to identify it.
See the section ÒSpecifying a DDP AddressÓ (page 281) and the section ÒThe
Multinode Address StructureÓ (page 726) for discussion of these Þelds.

The signiÞcant Þelds for the multinode address format are the network number
and node ID. DDP ignores the other Þelds. You can request speciÞc values for
the network number and node ID when binding an endpoint, although the
address returned by the OTBind function contains the actual network and node
values that the endpoint has been bound to.

DDP delivers any packet addressed to the bound multinode address whether
or not a speciÞc socket or DDP type is speciÞed for the destination address of
the packet. Applications that have opened multinode endpoints must perform
their own Þltering if the socket or DDP type values are important.
Using AppleTalk Addressing 285

C H A P T E R 1 3

AppleTalk Addressing
Registering Your Endpoint’s Name 13

In order for you to make the name of your AppleTalk endpoint visible to other
applications on a network, you have to register its name. There are two ways to
do this. The easiest way is for you to simply use the OTBind function to bind
your endpoint with the NBP address format or the combined DDP-NBP
address format. If you use the NBP address format, during the binding process
Open Tranport registers your endpointÕs name and dynamically assigns a
physical socket to your endpoint. If you use the combined DDP-NBP address
format, you can specify the socket you want to bind the endpoint to. The
OTBind function is discussed in the chapter ÒEndpointsÓ (page 99) in this book.

The other way to register an endpointÕs name involves several additional steps.
You have to Þrst bind your endpoint to a DDP address, open an NBP mapper
provider, use the Open Transport name-registration function, OTRegisterName,
as a separate step, and then close the NBP mapper provider. You must use this
more complex method if you want to register more than one endpoint on the
same socket.

In either case, Open Transport uses NBP to associate the endpointÕs name with
its physical address. Once your endpoint is registered, it is a network-visible
entity that other applications can locate.

When you register a name with the OTRegisterName function, the function
returns a unique identiÞer for the registered name. If you later want to delete
the name, you can use this identiÞer to delete it with the OTDeleteNameByID
function. This method is sometimes more convenient than the alternative
OTDeleteName function. The OTRegisterName, OTDeleteName, and
OTDeleteNameByID functions are discussed in the chapter ÒEndpointsÓ in this
book. Table 13-1 provides a summary of the Open Transport name-registration
functions.
286 Using AppleTalk Addressing

C H A P T E R 1 3

AppleTalk Addressing
Table 13-1 Open Transport name-registration functions

Looking Up Names and Addresses 13

To communicate with an endpoint, Open Transport needs its DDP address.
There are endpoint and mapper functions you can use to obtain this address,
two of which allow you to specify the endpointÕs NBP name. In these instances,
Open Transport performs a name lookup that resolves the NBP name into a
DDP address that it can use to locate the endpoint you want. Table 13-2
provides a summary of the Open Transport functions that create or return
endpoint name and address information.

You can improve performance in certain circumstances if you use the endpoint
OTResolveAddress function instead of the mapper OTLookUpName function.
Calling OTResolveAddress resolves the name into a DDP address by using
information that is maintained in the current node whereas the OTLookUpName
function has to go out over the network to look up its information. For
example, if you are going to use an NBP address structure repeatedly to specify
a remote endpoint in a connectionless or transaction-based service, you can
speed up your processing if you Þrst use the OTResolveAddress function to
resolve the NBP address into a DDP address and then subsequently use only
that DDP address to specify the remote endpoint. Otherwise, an NBP lookup
could occur on the network for every packet and slow down communications.

Function Provider Use

OTBind Endpoint Registers the speciÞed NBP name when
you bind with the NBP address or the
combined DDP-NBP address formats.

OTRegisterName Mapper Registers the speciÞed name.

OTDeleteName Mapper Removes a name that was previously
registered with OTRegisterName.

OTDeleteNameByID Mapper Given ints identiÞer , removes a name
that was previously registered with
OTRegisterName.
Using AppleTalk Addressing 287

C H A P T E R 1 3

AppleTalk Addressing
Table 13-2 Open Transport name and address functions

When you call the OTLookUpName function to obtain the DDP address associated
with an NBP name, you can specify a name pattern rather than a complete
name, by using wildcard operators for the variable parts of the name. Table
13-3 shows the wildcard operators that you can use to specify a name pattern
for a name speciÞed as a partial name.

Depending on how you structure the name pattern with wildcards, the
OTLookUpName function can return a list of names if more than one name
matches the speciÞed pattern. For example, if you want to retrieve the names
and addresses of all the applications deÞned with a given type, such as
mailboxes, in the same zone as the one in which your process is running, you
can set the name Þeld to the equal sign (=), set the type Þeld to ÒMailbox,Ó and
leave the zone Þeld blank. The OTLookUpName function returns the NBP names
and DDP addresses of all mailboxes in that zone.

Function Provider Use

OTGetProtAddress Endpoint Obtains your endpointÕs DDP address.
For connection-oriented endpoints that
are connected to another endpoint, it
also obtains the remote endpointÕs DDP
address.

OTResolveAddress Endpoint Obtains the DDP address that
corresponds to the speciÞed NBP name.

OTLookUpName Mapper Obtains the DDP address for the
speciÞed name or a list of addresses for
the speciÞed NBP name pattern.

You can also use this function to verify
that a speciÞed name is still available on
the network and that it is associated
with a speciÞed address.

OTATalkGetInfo AppleTal
k service

Obtains addressing information
about the current environment of
an AppleTalk node.
288 Using AppleTalk Addressing

C H A P T E R 1 3

AppleTalk Addressing
Manipulating an NBP Name 13

If you need to store or manipulate the name, type, or zone part of an NBP
name separately, you need to use an NBP entity structure, which is a data
structure that Open Transport provides for this purpose. Open Transport also
provides several utility functions to transfer data between NBP entities and
NBP names.

The NBP entity structure holds an NBP name in the form name:type@zone, with
each part containing the maximum 32 characters plus a length byte, for a total
possible length of 99 bytes. The NBP entity itself does not contain escape
characters, but the NBP entity extraction functions insert a backslash (\) in
front of any backslash, colon (:), or at sign (@) they Þnd in an NBP name so that
mapper functions can use a correctly formatted NBP name.

You can initialize an NBP entity and then load it with the name, type, and zone
of an NBP name individually, by using OTSetNBPName, OTSetNBPType, and
OTSetNBPZone functions, or you can load an NBP entity with an entire NBP
address at one time with the OTSetNBPEntityFromAddress function. Once you
have loaded an NBP entity, you can Þnd out how much buffer space it actually
uses for the NBP name it holds with the OTGetNBPEntityLengthAsAddress
function. You can then extract each individual NBP name part one at a time by
using the OTExtractNBPName, OTExtractNBPType, and OTExtractNBPZone functions,

Table 13-3 Wildcard operators

Character Meaning

= All possible values. You can use the equal sign (=) alone in the
name or type Þeld.

≈ Any or no characters in this position. You can use the double
tilde (≈) to obtain matches for name or type Þelds. For example,
Òpa≈lÓ matches Òpal,Ó Òpaul,Ó and Òpaper ball.Ó You can use
only one double tilde in any string. If you use the double tilde
alone, it has the same meaning as the equal sign (=). Press
Option-X to type the double tilde character (≈) on a Macintosh
keyboard.

* Your local zone. You can leave this blank (preferred method)
or use the asterisk (*) to indicate the zone to which this
node belongs.
Using AppleTalk Addressing 289

C H A P T E R 1 3

AppleTalk Addressing
or you can copy the entire NBP entity into an NBP address structure wirhthe
OTSetAddressFromNBPEntity function.

When you no longer need a speciÞc NBP name to be associated with an
endpoint, you can use the OTDeleteName function or the OTDeleteNameByID
function to unregister the name.
290 Using AppleTalk Addressing

C H A P T E R 1 4

Contents

Contents
Figure 14-0
Listing 14-0
Table 14-0
14 AppleTalk Service Providers
About AppleTalk Service Providers 295
Using AppleTalk Service Providers 296

Creating AppleTalk Service Providers 297
Working With AppleTalk Zones 297
Getting the Name of an ApplicationÕs Zone 298
Getting a List of Zone Names 299
Getting Information About the Current AppleTalk Environment 300
291

C H A P T E R 1 4
AppleTalk Service Providers 14

The AppleTalk service provider is an Open Transport provider that gives you
access to zone and node information functions that are speciÞc to the
AppleTalk protocol family. AppleTalk networks use zones to deÞne logical
groups of users, and there are several Open Transport functions you can use to
determine your endpointÕs zone and the zone in your endpointÕs network.
Open Transport also provides a function that can supply information about
your endpointÕs AppleTalk environment. To use these functions, you must
create a specialized Open Transport provider: an AppleTalk service provider.

The AppleTalk service provider is able to provide information about zones by
implementing a subset of the Zone Information Protocol (ZIP), which maps
network numbers to zone names for all networks belonging to an AppleTalk
internet.

This chapter describes the AppleTalk service provider functions. You should
read this chapter if you want to obtain

■ the zone name for the node on which your application is running

■ the names of the zones for the local network to which your applicationÕs
node is connected

■ the names of all the zones that exist throughout the AppleTalk internet to
which your local network belongs

■ information about the AppleTalk environment for a given node, including
the address of a local router

For complete information about the functions and data structures introduced in
this chapter, see ÒAppleTalk Service Provider ReferenceÓ (page 745).

For an overview of the AppleTalk service provider and how it Þts within the
AppleTalk protocol stack, read the chapter ÒIntroduction to
AppleTalkÓ(page 264). Zones are part of the NBP name used in the NBP
address format; for more information on this format, read the chapter
ÒAppleTalk AddressingÓ (page 280). For a detailed description of the ZIP
speciÞcation, see Inside AppleTalk, second edition.
293

C H A P T E R 1 4

AppleTalk Service Providers
About AppleTalk Service Providers 14

The AppleTalk service provider gives applications access to information and
services that are speciÞc to the AppleTalk protocol family. For example, you can
obtain zone names and information about the AppleTalk environment for a
given machine. The portion of ZIP implemented by AppleTalk service provider
functions can query routers for information about a clientÕs own node, the
names of all the zones on the nodeÕs local network, or the names of all the
zones throughout the AppleTalk internet. An AppleTalk router implements the
full set of ZIP functions, maintaining a complete mapping of network numbers
and zone names in a zone information table that it periodically updates.

The mapping observes the following rules:

■ Every node on a network belongs to only one zone.

■ A nonextended LocalTalk network contains only one zone; all nodes in that
network belong to that zone.

■ A single zone can include nodes that belong to different networks.

■ Each AppleTalk extended network has associated with it a list of the zones
to which its nodes can belong.

Figure 14-1 shows how, in providing access to the Zone Information Protocol
(ZIP), AppleTalk service providers encompass underlying delivery protocols
and link-access STREAMS modules. Because some AppleTalk service provider
functions use AppleTalk Transaction Protocol (ATP) packets and DDP, an
AppleTalk service provider is considered a client of both ATP and the
Datagram Delivery Protocol (DDP).
294 About AppleTalk Service Providers

C H A P T E R 1 4

AppleTalk Service Providers
Figure 14-1 AppleTalk service providers and their underlying delivery mechanism

Using AppleTalk Service Providers 14

This section explains how you open an AppleTalk service provider and how
you use its functions to obtain

■ the name of the zone for your applicationÕs node

■ the names of the zones in your local network or AppleTalk internet

■ information about your current AppleTalk environment

You can use AppleTalk service provider functions to get the name of your
nodeÕs zone. If you are running on a node that belongs to an extended network,
you can call an AppleTalk service provider function to get a list of all the zone
names associated with that network. For example, the AppleTalk control panel
calls the OTATalkGetLocalZones function to provide the user with a list of local
zones.

You can also use AppleTalk service provider functions in conjunction with
mapper functions (described in the chapter ÒMappersÓ(page 150). For example,
you can use an AppleTalk service provider to look up all the zones on the

ATP

ZIP

Standard link-access Streams modules

DDP
Using AppleTalk Service Providers 295

C H A P T E R 1 4

AppleTalk Service Providers
network, then use the mapper function OTLookUpName to look up the names in
each zone.

Creating AppleTalk Service Providers 14

In order to use the zone and network information functions, you must open an
AppleTalk service provider. As with other Open Transport providers, you can
open these providers synchronously or asynchronously, and in many ways
they behave similarly to endpoint and mapper providers. For example, you
open an AppleTalk service provider by calling either the
OTOpenAppleTalkServices function or the OTAsyncOpenAppleTalkServices
function, both of which return an AppleTalk service provider reference to
identify the provider you just opened. You use this reference in AppleTalk
service provider functions just as you use an endpoint reference in most
endpoint provider functions. If you open more than one AppleTalk service
provider, the AppleTalk service provider reference lets you to distinguish one
provider from another.

If you open the AppleTalk service provider asynchronously, you need to
specify a notiÞer function that the provider can use to send you completion
events and other function-speciÞc information. This notiÞer API is the same as
the one you need to use for asynchronous endpoints.

When you are done using the functions provided by the AppleTalk service
provider, you must explicitly close the provider with the generic Open
Transport function, OTCloseProvider, to release the memory it uses. The
OTCloseProvider function is described in the chapter ÒProvidersÓ (page 61).

Working With AppleTalk Zones 14

The NBP name used in the NBP address format has three parts, one of which is
the zone name. A zone is a logical grouping of nodes within an AppleTalk
network. You do not specify the zone when you bind an endpoint; you obtain
this value from the system.

Note that the functions, OTATalkGetMyZone, OTATalkGetLocalZones, and
OTATalkGetZoneList, return data to you using the TNetbuf structure. This means
that you have to deÞne your buffer size in the maxlen Þeld of the TNetbuf
structure.

An AppleTalk zone name is stored as a Pascal string that contains a maximum
of 32 characters. When you add a length byte, you have a string that can have a
296 Using AppleTalk Service Providers

C H A P T E R 1 4

AppleTalk Service Providers
maximum of 33 bytes. You need to calculate the amount of buffer space you
need based on this maximum string size.

The OTATalkGetMyZone function only returns one zone name, so an appropriate
buffer size would be 33 bytes. The OTATalkGetLocalZones function, however,
returns all the zone names in an extended network, which can hold up to 254
zones, so a maximum buffer size for this function would be 8382 bytes. Because
zone names often use less than 32 characters and AppleTalk service providers
donÕt pad short names, 6 KB is likely to be a safe value for this bufferÕs size.

A much larger buffer would be needed for the OTATalkGetZoneList function,
which returns all the zones in all the networks in your AppleTalk internet. You
can end up with up to 64 KB of data. To keep the buffer as small and efÞcient as
possible, you can set up a large buffer, test for the kOTBufferOverflowErr error,
and then increase the size of the buffer and reissue the call if this error is
returned.

For more information about using zones in NBP names and addresses, see
the chapters ÒIntroduction to AppleTalkÓ(page 263) and ÒAppleTalk
AddressingÓ(page 279) .

Getting the Name of an Application’s Zone 14

You can get the name of your applicationÕs zone by calling the
OTATalkGetMyZone function. If you call this function asynchronously, the event
T_GETMYZONECOMPLETE signals the completion of the function, and your notiÞerÕs
cookie parameter points to the zone name with the zone parameter.

Listing 14-1 shows the synchronous application-deÞned DoGetMyZone function,
which opens an AppleTalk service provider and calls the OTATalkGetMyZone
function. Note that the length of the buffer, a TNetbuf structure, is set to 0. Open
Transport adjusts it to the actual length of the zone name when the function
returns. Note also that the function adds a NULL character to the zone name.
This is optional, but adding the NULL character turns the string into a C string
and makes it easier to handle if you have further use for this string.

Another item to note is that the listing uses the recommended conÞguration
string, the constant kDefaultAppleTalkServicesPath. Open Transport
recommends using this string, not the kZIPName constant.
Using AppleTalk Service Providers 297

C H A P T E R 1 4

AppleTalk Service Providers
Listing 14-1 Using the DoGetMyZone function synchronously

OSStatus DoGetMyZone (char* zoneName)
{

OSStatus result;
ATSvcRef svcRef;
TNetbuf zoneNetbuf;

svcRef = OTOpenAppleTalkServices
(kDefaultAppleTalkServicesPath, 0, &result);

if (result == noErr)
{

zoneNetbuf.maxlen = 33;
zoneNetbuf.len = 0;
zoneNetbuf.buf = zoneName;
result = OTATalkGetMyZone(svcRef, &zoneNetbuf);
zoneName[zoneNetBuf.len] = '\0';
OTCloseProvider(svcRef);

}
return result;

}

Getting a List of Zone Names 14

If you are on an AppleTalk extended network, you can get a list of the names of
all the zones in your local network by calling the OTATalkGetLocalZones
function. If you are on a nonextended network, your network is all on the same
zone, and this function returns the name of the zone, which is the same result
as you would get from using the OTATalkGetMyZone function.

If you call the OTATalkGetLocalZones function asynchronously, the event
T_GETLOCALZONESCOMPLETE signals the completion of the function, and your
notiÞerÕs cookie parameter points to a list of zone names with the zones
parameter.

If you are on a network that is part of an AppleTalk internet, you can also use
the OTATalkGetZoneList function to obtain a list of all the zones in the
AppleTalk internet to which your nodeÕs network belongs. As with the
OTATalkGetLocalZones function, if you call the OTATalkGetZoneList function
asynchronously, Open Transport sends your notiÞer a completion event, in this
case the T_GETZONELISTCOMPLETE event, to signal the completion of the function,
298 Using AppleTalk Service Providers

C H A P T E R 1 4

AppleTalk Service Providers
and your notiÞerÕs cookie parameter points to a list of zone names with the
zones parameter.

It is your responsibility to allocate a buffer that is large enough to hold the list
of zone names returned. See the section ÒWorking With AppleTalk ZonesÓ
(page 296) for more information about buffer sizes.

Getting Information About the Current AppleTalk Environment14

You can use the function OTATalkGetInfo to access an AppleTalk information
structure (of type AppleTalkInfo) that contains information about the
AppleTalk environment for the node on which your application is running.
This information can be useful if you are conÞguring a network or checking
that a network has been conÞgured correctly.

If your applicationÕs network is extended or nonextended, this function
provides your applicationÕs network address and the address of a local router.
If your applicationÕs network is extended, this function also sets a ßag
indicating that itÕs an extended network and provides the current network
range for the extended network to which your node belongs.

In either case, this function can also set two other ßags: one that indicates that
there is a router on the same network, and one that indicates that the network
only has one zone.

If you call this function synchronously, the AppleTalk service provider uses the
info parameter to provide information about your current network
environment. If you call this function asynchronously, the event
T_GETATALKINFOCOMPLETE signals the completion of the function, and your
notiÞerÕs cookie parameter points to the AppleTalk environment information
with the info parameter.

If the node is multihomingÑthat is, if multiple network numbers and node
numbers are associated with the same nodeÑthe OTATalkGetInfo function
returns information about the node whose network number and node ID are
selected in the AppleTalk control panel.
Using AppleTalk Service Providers 299

C H A P T E R 1 4

AppleTalk Service Providers
300 Using AppleTalk Service Providers

C H A P T E R 1 5

Contents

Contents
Figure 15-0
Listing 15-0
Table 15-0
15 Datagram Delivery Protocol
(DDP)
About DDP 305
Using DDP 306

Binding a DDP Endpoint 306
Using the DDP Type Field to Filter Packet Delivery 307
Using the Self-Send and Checksum Options 308
Using Echo Packets 309
Working With Multinodes 310
The DDP Source Address Option 311
Using General Open Transport Functions With DDP 311
301

C H A P T E R 1 5
Datagram Delivery Protocol (DDP) 15

This chapter describes the programming interface to Open TransportÕs
implementation of the Datagram Delivery Protocol (DDP). It explains how you
can use DDP to send and receive data across an AppleTalk internet. DDP is a
connectionless transactionless service that you use to transmit data in discrete
packets, each carrying its own addressing information. DDP is well suited to
applications that do not require reliable delivery of data and that do not want
to incur the additional processing associated with setting up and breaking
down a connection. Because DDP is connectionless and does not include
reliability services, itÕs faster than the higher-level protocols that add these
services. Applications such as games that can tolerate packet loss are good
candidates for the use of DDP.

A series of DDP packets transmitted over an AppleTalk internet from one node
to another might incur some packet loss, for example, as a result of collisions. If
your application requires a reliable service, and you do not want to implement
it yourself, you should consider using a higher-level protocol such as the
AppleTalk Data Stream Protocol (ADSP) or the AppleTalk Transaction Protocol
(ATP). These protocols protect against packet loss and ensure reliability by
using positive acknowledgment with mechanisms for retransmitting packets.

This chapter explains how you

■ open and bind a DDP endpoint

■ send and receive data using DDP

■ set checksum options to verify that a packet has not been corrupted during
transmission

■ use echo packets to measure network performance

■ use multinodes

This chapter begins with a description of DDP and the services that it provides
under Open Transport. The section ÒUsing General Open Transport Functions
With DDPÓ(page 310) then gives detailed information about how DDP client
applications use the endpoint functions that Open Transport provides for
connectionless transactionless protocols. For a more detailed explanation of
endpoints and their functions, read the chapter ÒEndpointÓ (page 83) in this
book.

For complete reference information about DDP options, see ÒDDP ReferenceÓ
(page 756). For an overview of DDP and how it Þts within the AppleTalk
protocol stack, read the chapter ÒIntroduction to AppleTalkÓ (page 263), which
also introduces and deÞnes some of the terminology used in this chapter. For
303

C H A P T E R 1 5

Datagram Delivery Protocol (DDP)
more information about the AppleTalk address formats, see the chapter
ÒAppleTalk AddressingÓ(page 279). For a complete explanation of the DDP
speciÞcation, see Inside AppleTalk, second edition.

About DDP 15

The protocol implementations at the physical and data-link layers of the
AppleTalk protocol stack provide node-to-node delivery of data on an
AppleTalk internet. DDP is a client of the link-access STREAMS modules, and
it extends the node-to-node delivery service provided at the data-link layer by
delivering data to a speciÞc socket on a node. A socket number speciÞes a
logical entity on a node and forms part of an AppleTalk endpoint address.

DDP is central to the process of sending and receiving data from endpoint to
endpoint across an AppleTalk internet. Regardless of which data link is being
used and which (if any) higher-level protocols are providing additional
processing, all AppleTalk data is carried in the form of DDP packets, datagrams.
A packet consists of a header followed by data. DDP delivers data from one
endpoint to another by forming the packet header, which contains the
destination address, and by passing the packet to the appropriate data link.

Figure 15-1 shows how the DDP endpoint provider encompasses its
underlying link-access STREAMS modules and its physical ports. For packets
obtained from the data-link layer, DDP provides a best-effort delivery service.

Figure 15-1 The DDP endpoint provider’s underlying delivery mechanism

Ethernet Token ring FDDILocalTalk

Standard link-access STREAMS modules

DDP
304 About DDP

C H A P T E R 1 5

Datagram Delivery Protocol (DDP)
Using DDP 15

To explicitly use DDP, you open and bind a DDP endpoint. You can then use
that endpoint to send or receive data in discrete packets. For outgoing packets,
DDP forms the packet header and hands the packet to the appropriate data
link. For incoming packets, DDP examines the packet header and attempts to
deliver any packet to the speciÞed endpoint as long as the packet meets the
following criteria:

■ The destination address is valid.

■ The default type of the packet matches that of the receiving endpoint.

■ The length of the packet matches the length speciÞed in the packet header
and does not exceed the maximum for a DDP packet.

■ The checksums match (if checksumming is enabled).

If any of these conditions is not satisÞed, DDP discards the packet without
notifying either the sender or the receiver of the packet. In addition, DDP has
no provision for requesting the sender to retransmit a lost or damaged packet.

Binding a DDP Endpoint 15

As with any endpoint, before you can use it to send or receive data, you must
bind it to a physical address. The OTBind function takes three parameters: one
that speciÞes the endpoint to be bound, one that requests a speciÞc address,
and one that returns the actual address to which Open Transport bound the
endpoint.

When binding a DDP endpoint, you can request a particular DDP address,
including a static socket address. You can also choose to only specify a DDP
type for the endpoint, in which case you set the other Þelds of the DDP address
structure to 0 and allow DDP to dynamically assign a socket. The chapter
ÒAppleTalk AddressingÓ(page 279) describes the different address formats you
can use to specify an endpoint address.

When you bind a DDP endpoint, there are a few considerations to bear in
mind. For example, you do not have to specify the endpointÕs socket and the
DDP type, but DDP behaves differently depending on whether you specify
them or not. Here are the points to remember:
Using DDP 305

C H A P T E R 1 5

Datagram Delivery Protocol (DDP)
■ If you bind without specifying a socket, DDP uses a dynamically assigned
one; if you specify a socket, DDP tries to use it (a statically assigned socket).

■ If you bind by specifying a DDP type of 0 to a speciÞc socket, Open
Transport sets the endpointÕs DDP type to a value of 11. This gives you
exclusive access to the socket, which means that no other endpoint can bind
to it.

■ If you bind using a speciÞc DDP type, Open Transport sets the endpointÕs
DDP type to that value. If you bind another DDP endpoint to that socket,
you must give it a different type.

■ If you bind with a combined DDP-NBP address, Open Transport uses the
DDP part of the address as described in the two preceding bullets. If the
bind succeeds, Open Transport registers the NBP name on the endpointÕs
socket.

■ If you bind with an NBP address only, there is no socket number in that
form of address, so DDP uses a dynamically assigned socket. If the bind
succeeds, DDP registers the endpointÕs NBP name on that socket. The
endpoint has no default DDP type, so Open Transport sets the DDP type to a
value of 11. This has the same effect as described in the earlier bullets.

Using the DDP Type Field to Filter Packet Delivery 15

You can choose to Þlter your packet delivery service by using the DDP type
Þeld in the endpointÕs DDP address structure. The DDP type Þeld is ignored by
all protocols other than DDP, so you do not specify the DDP type when passing
an address to an AppleTalk endpoint for all protocol layers above DDP.

If you specify a valid nonzero DDP type value when you bind an endpoint,
Open Transport uses that value as the default DDP type for that endpoint,
using it on all packets sent from that endpoint. If you do not specify a DDP
type value or use a value of 0, Open Transport uses a DDP type value of 11 as
the default DDP type for that endpoint. If you specify a different DDP type
value for any individual packet that you send, Open Transport overrides the
endpointÕs default DDP type and uses the packetÕs DDP type.

When receiving incoming packets, a speciÞed DDP type works as a Þlter: you
only receive packets of that one type. If, however, you bind an endpoint
without a DDP type or with a DDP type of 0, you receive all incoming packets.
306 Using DDP

C H A P T E R 1 5

Datagram Delivery Protocol (DDP)
Using the DDP type Þeld when you bind a DDP endpoint has special
signiÞcance for both sending and receiving packets, as shown in Table 15-1.

Using the Self-Send and Checksum Options 15

DDP has two options you can use to control the behavior of DDP endpoints:
the OPT_SELFSEND and the OPT_CHECKSUM options.

You can use the OPT_SELFSEND option with DDP to turn self-sending on, which
means that when you send a broadcast packet, the packet will also be passed to
the node itself for processing. To turn this on, you set this option with a value
of 1. By default this option is turned on.

You can use the OPT_CHECKSUM option when sending packets to enable the
calculation of checksums. A value is calculated when the packet is sent. When
the packet is received, DDP calculates a checksum for the packet. If the
calculated checksum does not match the packetÕs checksum, DDP assumes the
packet has been corrupted and discards the packet without notifying its sender
or receiver.

You can specify the OPT_CHECKSUM option on every call to OTSndUData and control
the use of checksums on a per packet basis, or you can use the
OTOptionManagement function to enable or disable checksums for all outgoing
packets. The checksum option OPT_CHECKSUM can have one of two values: T_NO,
which disables checksums, or T_YES, which enables it. By default this option is
turned off.

For more information about using options, refer to the chapter ÒOption
ManagementÓ (page 165).

Table 15-1 Effects of using the DDP type field

Task
A nonzero DDP type
specified at bind

No DDP type or a DDP type
of 0 specified at bind

Send Open Transport uses this DDP type
for outgoing packets unless you
specify a different DDP type on a per
packet basis.

Open Transport uses a DDP type of
11 for outgoing packets unless you
specify a different DDP type on a per
packet basis.

Receive You only receive incoming packets
for this DDP type.

You receive all incoming packets.
Using DDP 307

C H A P T E R 1 5

Datagram Delivery Protocol (DDP)
Using Echo Packets 15

You can use the AppleTalk Echo Protocol (AEP), a client of DDP, to measure the
performance of an AppleTalk network or to test for the presence of a given
node. Knowing the approximate speed at which an AppleTalk internet delivers
packets is helpful in tuning the behavior of an application that uses a
higher-level AppleTalk protocol, such as ATP and ADSP.

AEP is implemented in each node as a DDP client process referred to as the
AEP Echoer. To use the AEP Echoer, you use the OTSndUData function to send a
packet, called the echo request packet, to the target node, and you use the
OTRcvUData function to receive a packet in response, called the echo reply
packet.

AEP uses the statically assigned socket number 4, known as the echoer socket,
to listen for echo packets. Whenever the endpoint associated with this socket
receives a packet, AEP examines the packetÕs DDP type. A value of 4 identiÞes
it as an AEP packet, and AEP then examines the Þrst byte of the packetÕs data
portion. A value of 1 identiÞes the packet as an echo request packet (sent out
from your endpoint), and a value of 2 identiÞes the packet as an echo reply
packet (returned to your endpoint from the remote node).

If the packet is an echo request packet, AEP changes this Þrst byte to a value of
2 (an echo reply packet) before calling DDP to send the packet back to the
socket from which it originated.

To test for the presence of a given node, you can iterate through a series of
addressesÑsending each several packets. If a node exists, AEP sends a packet
back; if the node doesnÕt exist, no packet returns. Be sure to send each node
address several packets in case one or more are lost in transmission.

To measure network performance, you need to know the round-trip time of a
packet between two nodes on an AppleTalk internet. This is dependent on such
factors as the network conÞguration, the number of routers and bridges that a
packet must traverse, and the amount of trafÞc on the network. As these
change, so does the packet transmission time. ATP protocol options let you
specify retry-count and interval numbers whose optimum values you can
better assess if you know the average round-trip time of a packet on your
applicationÕs network.

Here are some general guidelines for using the AEP Echoer to measure
network performance:

■ Use the maximum packet size that you plan on using in your application.
308 Using DDP

C H A P T E R 1 5

Datagram Delivery Protocol (DDP)
■ Accept only echo reply packets from the target node. Set the DDP type Þeld
of your endpoint to 4 to Þlter out all packets except for AEP packets.

■ Send more than one packet and calculate the average round-trip time.

Typically, you should receive an echo reply packet within a few milliseconds
on a LAN and within a few seconds on a WAN. If you do not get a response
after about 10 seconds, you can assume that DDP dropped or lost your echo
request packet, and you can resend the packet.
The echo reply packet contains the same data that you sent in the echo
request packet. If you send multiple packets to determine an average
turnaround time and to compensate for the possibility of lost or dropped
packets, you should include different data in the data portion of each packet.
This allows you to distinguish between replies to different request packets in
the event that either some replies are not delivered in the same order that
you sent them or that some packets are dropped.

■ Bracket the code that sends and receives echo packets with a call to the
OTGetTimeStamp function. This function gives much better resolution than
the TickCount function.

Working With Multinodes 15

If you are using DDP, you can specify a multinode address for an endpoint.
This allows you to bind endpoints to multiple node addresses on the same
physical port, which can be useful for testing. Using only one physical
machine, you can use multinode addressing to simulate multiple machines.

If a multinode client sends a broadcast or self-send packet, Open Transport
makes copies of the packet for the other multinode clients on the same machine
internally, thus reducing trafÞc on the network.

The signiÞcant Þelds for the multinode address format are the network number
and node ID. You can request speciÞc values for these address elements when
you bind a multinode endpoint and the OTBind functionwill return the actual
network and node values for the address to which Open Transport bound the
endpoint. Multinode endpoints must use the DDP_OPT_SRCADDR option to specify
the source DDP address for outgoing packets on a per-packet basis.
Using DDP 309

C H A P T E R 1 5

Datagram Delivery Protocol (DDP)
The DDP Source Address Option 15

DDP deÞnes the option DDP_OPT_SRCADDR, which sets the source address for
outgoing packets. This option is required for multinode endpoints, such as
ARA, but can also be used with other types of endpoints.

The optionÕs value must be a DDP address structure using the AF_ATALK_DDP
address format. The source network number, node number, and source socket
are taken from the DDP address.

This option allows a multinode endpoint to tell Open Transport which of its
several sockets actually sent the packet.

Using General Open Transport Functions With DDP 15

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport
DDP implementation. DDP uses the following Open Transport functions:

■ OTBind

The OTBind function associates a local protocol address with the endpoint
you specify with the ref parameter. You can only bind one DDP or
multinode endpoint to a single protocol address.

■ OTSndUData

The OTSndUData function sends data through connectionless transactionless
protocols.
When you use this function with DDP, you can enable raw mode packet
processing both on send and receive by sending a TNetBuf structure with the
unitdata.addr.len field set to 0xffffffffUL. With raw mode enabled the
contents of the unitdata.udata.buf Þeld is the complete DDP packet that
will be sent out by the OTSndUData function.
To disable raw mode packet processing, send a standard DDP packet with
the unitdata.addr structure Þelds Þlled in normally.

■ OTRcvUData

The OTRcvUData function receives data through connectionless transactionless
protocols.

■ OTRcvUDErr

Clears an error condition arising in the course of data transmission and
returns the reason for the error.
310 Using DDP

C H A P T E R 1 6

Contents

Contents
Figure 16-0
Listing 16-0
Table 16-0
16 AppleTalk Data Stream Protocol
(ADSP)
About ADSP 314
Using ADSP 316

Binding ADSP Endpoints 317
Sending and Receiving ADSP Data 317

The End-of-Message Option 318
The Checksum Option 319

Sending Expedited Data 319
Disconnecting 319
Using General Open Transport Functions With ADSP 320

OTBind 320
OTConnect 320
OTRcvConnect 320
OTListen 321
OTAccept 321
OTSnd 321
OTRcv 321
OTSndDisconnect 321
OTRcvDisconnect 322
311

C H A P T E R 1 6
AppleTalk Data Stream Protocol (ADSP) 16

This chapter describes the programming interface to Open TransportÕs
implementation of the AppleTalk Data Stream Protocol (ADSP). It explains
how you can use ADSP to establish a session to exchange a stream of data
between two network processes or applications in which both parties have
equal control over the communication. ADSP offers a connection-oriented
transactionless service that is particularly well suited to the transfer of large
amounts of data.

You should read this chapter if you want to write an application that uses
ADSP to exchange a stream of data between two equal parties who can each
send and receive data. This chapter explains how you

■ create an endpoint that listens passively for incoming connection requests

■ send and receive data via ADSP

■ divide an ADSP data stream into discrete logical units

■ use expedited attention messages with ADSP

This chapter begins with a description of ADSP and the services that it
provides under Open Transport. The section ÒUsing General Open Transport
Functions With ADSPÓ (page 319) then gives detailed information about how
ADSP client applications use the endpoint functions that Open Transport
provides for connection-oriented transactionless protocols. For a more detailed
explanation of endpoints and their functions, read the chapter
ÒEndpointsÓ(page 83).

For reference information about ADSP options, see ÒADSP ReferenceÓ
(page 757). For an overview of ADSP and how it Þts within the AppleTalk
protocol stack, read the chapter ÒIntroduction to AppleTalkÓ (page 263), which
also introduces and deÞnes some of the terminology used in this chapter. ADSP
under Open Transport conforms to the detailed speciÞcations in Inside
AppleTalk, second edition. See that book for further information about the
features mentioned here.

About ADSP 16

The AppleTalk Data Stream Protocol (ADSP) includes both session and
transport services and is the most commonly used of the AppleTalk transport
protocols. ADSP allows you to establish and maintain a connection between
About ADSP 313

C H A P T E R 1 6

AppleTalk Data Stream Protocol (ADSP)
two AppleTalk network entities and transfer data as a continuous stream. The
two clients at either end of an ADSP connection are equal and can perform the
same operations.

ADSP, like all other high-level AppleTalk protocols, is a client of the Datagram
Delivery Protocol (DDP), which transmits data in packets. However, ADSP
builds a session connection on top of DDPÕs packet transfer services, so you can
exchange data as a continuous stream. Figure 16-1 shows how the ADSP
endpoint provider encompasses its underlying delivery protocol and
link-access Streams modules.

Figure 16-1 The ADSP endpoint provider’s underlying delivery mechanism

Communication between two client applications using ADSP occurs over a
connection between two endpoints that provides reliable data delivery. When
you bind an ADSP endpoint, the binding process associates a local protocol
address with your endpoint. An ADSP address is a DDP address (network
number and DDP socket) plus an ADSP session ID. ADSP can use the same
DDP address for multiple ADSP sessions. The session ID is used to direct data
to the proper ADSP session.

ADSP uses several internally maintained variables to track its progress as it
transmits a data stream across a connection. For example, ADSP associates an
internal sequence number with each byte that it sends. This allows ADSP to
determine out-of-sequence or duplicate data. ADSP uses the sequence numbers
to ensure that the other endpoint receives all of its intended data. If any data
does not arrive, ADSP can retransmit it.

ADSP

DDP

Standard link-access STREAMS modules
314 About ADSP

C H A P T E R 1 6

AppleTalk Data Stream Protocol (ADSP)
The data is available for retransmission because when an endpoint provider
sends data to a remote connection end, ADSP Þrst stores it in a buffer, called
the send queue, and holds the data there until the remote connection end
acknowledges receipt. Likewise, when data arrives from a remote endpoint,
ADSP stores it in a receiving buffer, called the receive queue, until the local
endpoint provider acknowledges reading it.

ADSP does not transmit data from the remote connection end until there is
space available in the local receive queue. This built-in ßow control keeps a
connection from being jammed with too much data.

Using ADSP 16

To use Open Transport ADSP, you Þrst open an endpoint as an ADSP endpoint.
This causes Open Transport to allocate the memory ADSP needs for data
buffers and for storing the variables ADSP uses to maintain the connection
between endpoints. After a connection is established, ADSP manages and
controls the data ßow between two endpoints throughout a session to ensure
that data is delivered and received in the order in which it was sent and that
duplicate data is not sent.

As with other connection-oriented protocols, Open Transport ADSP allows you
to create a passive endpoint that listens for incoming connection requests
rather than initiating such requests. In addition, the implementation of ADSP
under Open Transport includes some ADSP-speciÞc features that are speciÞc to
the two AppleTalk connection-oriented protocols:

■ an option to enable end-of-message (EOM) indicators that let you break
streams of data into logical units

■ locally implemented orderly disconnects rather than over-the-wire remote
disconnects

ADSP also implements a separate data channel for expedited data. This
provides an attention-message facility that lets ADSP endpoints signal each
other outside the normal exchange of data.
Using ADSP 315

C H A P T E R 1 6

AppleTalk Data Stream Protocol (ADSP)
Binding ADSP Endpoints 16

You have two choices when you bind an ADSP endpoint: You can create an
endpoint that can initiate and accept connections, or you can create an
endpoint that can only receive connection requests.

If the endpoint can initiate connections, you can bind it as a normal Open
Transport endpoint and use any of the three AppleTalk address formats for the
socket address: DDP, NBP, or the combined DDP-NBP format. If the bind is
successful, the endpoint is ready for use in establishing and using a connection.

The other choice when binding an ADSP endpoint is to establish it as a passive
peer that listens for incoming connection requests. The passive endpoint can
accept or deny a connection request based on criteria that you deÞne. The use
of a passive peer is typical of a server environment in which a server, such as a
Þle server, is registered with a single NBP name. Endpoints throughout the
network can contact the serverÕs passive peer with connection requests. The
server can accept or deny a request. It might deny a request, for example, when
its resources are exhausted.

To create a passive peer that listens, you specify a qlen Þeld value greater than
0 during the binding process. The number you use determines how many
outstanding connection requests the endpoint can support. Once you bind a
passive peer, it starts listening for incoming connection requests. When a
request arrives, the endpoint retrieves certain information about the request
and continues to process it by accepting or rejecting it.

You can bind multiple ADSP endpoints to the same DDP socket, and ADSP can
support as many connections on a socket as you have memory for, but you can
only have one passive peer that listens on a given socket.

Sending and Receiving ADSP Data 16

ADSP supports two separate data channels: one for normal data and one for
expedited data. You can send a stream of normal data that has no logical
boundaries that need to be preserved across the connection, or you can use
transport service data units (TSDUs) to separate the data stream into discrete
logical units when sending and receiving data across a connection. For
expedited data, you can use expedited transport service data units, or ETSDUs.

By default, ADSP does not support TSDUs. Instead, ADSP sends and receives a
continuous stream of data with no message delimiters. If you do not change
this through the use of options, ADSP endpoints act much like other
316 Using ADSP

C H A P T E R 1 6

AppleTalk Data Stream Protocol (ADSP)
connection-oriented transactionless endpoints, and the bulk of your code
would be reusable for other types of protocols (such as TCP).

Open Transport uses a ßag in the send and receive functions to indicate
multiple sends and receives. The use of this ßag, the T_MORE ßag, allows you to
break up a large data stream without losing its logical boundaries at the other
end of the connection. The ßag, however, indicates nothing about how the data
is packaged for transport on the lower-level protocols below the ADSP
endpoint provider.

The End-of-Message Option 16

If transport independence is not crucial for your application, you can use the
ADSP enable EOM (OPT_ENABLEEOM) option that allows inÞnite length TSDUs on
the normal data channel.

If you enable the EOM option, you can send any length TSDU by setting the
T_MORE flag on each send to indicate to the provider that another packet is
coming that is part of this same message. When you send data without the
T_MORE flag set, the provider knows this is the end of the message, and it sends
an EOM packet to the remote peer. It is possible for the EOM packet to contain
no data because ADSP supports the sending of zero-length packets. This is
useful when you send a packet with the T_MORE ßag set only to discover that
you have no more data to send. In this case, ADSP still expects another packet,
but you have no data to put into it. You can send a zero-length packet to set the
T_MORE flag correctly.

You can enable the EOM option for an endpoint in several ways. One way
is to deÞne the option as part of the conÞguration string you use to open
the endpoint. The following line of code enables the EOM option for an
ADSP endpoint:

 OTOpenEndpoint(OTCreateConfiguration("adsp(EnableEOM=1)"),0, NULL, &err);

Or you could call a function like that shown in Listing 7-5 (page 181) as follows:

err=SetFourByteOption(ep, ATK_ADSP, OPT_ENABLEEOM, 1);

to enable the EOM option for an ADSP endpoint.
Using ADSP 317

C H A P T E R 1 6

AppleTalk Data Stream Protocol (ADSP)
The Checksum Option 16

You can use the OPT_CHECKSUM option to force ADSP to send all outgoing packets
with the checksum option enabled. By default, outgoing ADSP packets do not
use this option, which directs DDP to compute a checksum and include it in
each packet that it sends to the remote endpoint provider, since using
checksums slows communications slightly. Normally, ADSP and DDP perform
enough error checking to ensure safe delivery of all data, so set this option only
if the network is highly unreliable.

Sending Expedited Data 16

In addition to the full-duplex data stream that an ADSP session maintains,
ADSP allows either end of a connection to send an expedited attention message
to the other end without interrupting the primary ßow of data. Processing
expedited data takes precedence over handling normal data, so when an
expedited data packet arrives at an endpoint, the endpoint reads this packet
before reading the next normal data packet. Both the send and receive
functions have a ßag, T_EXPEDITED, that indicates when a packet has expedited
data.

Expedited transport service data units, ETSDUs, can be up to 572 bytes long,
including a 2-byte attention code at the beginning of the user data portion. The
minimum ETSDU for ADSP is 2 bytes, so if you send less than that, the data is
padded to 2 bytes before being transmitted. If you use ETSDUs, you are
responsible for ensuring that the code has a value from $0000 to $EFFF and is
not in the reserved range of $F000 to $FFFF.

Note that not every connection-oriented transactionless protocol supports
attention messages or expedited data. Therefore, using this option
compromises the transport independence of your application.

Disconnecting 16

As with all connection-oriented Open Transport protocols, ADSP supports
abortive disconnects. In addition, ADSP supports orderly disconnects,
although it can only implement them locally.

An abortive disconnect directs the endpoint to abruptly tear down its
connection without making any accomodation for the data that may be in the
transmission pipeline at the time. You can deÞne your own handshake, perhaps
318 Using ADSP

C H A P T E R 1 6

AppleTalk Data Stream Protocol (ADSP)
using the expedited data channel, to prevent losing data during the
disconnection process.

ADSP implements orderly disconnects locally, not over the wire. This means
that immediately after you request the disconnect, ADSP sends all data
buffered at the local end and then tears down the connection, breaking
communication with the remote end. As a result, no data can be sent from
either the local or remote endpoint. The endpoints can continue to process data
already in their receive queues, but no new data can go out.

Using General Open Transport Functions With ADSP 16

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport
ADSP implementation.

OTBind 16

The OTBind function associates a local protocol address with the endpoint
provider speciÞed by the ref parameter.

You can bind multiple ADSP endpoints to a single protocol address, but you
can bind only one passive peer endpoint that listens on that socket.

With ADSP, as with other connection-oriented protocols, the req->qlen
parameter speciÞes the number of outstanding connection requests that an
endpoint can support. The endpoint can negotiate a lower Þnal value of qlen if
it cannot handle the requested number of outstanding connection requests.

OTConnect 16

The OTConnect function requests a connection to a speciÞed remote endpoint.

ADSP does not allow application-speciÞc data to be included when you
establish a connection, so you need to set the sndcall->udata.len Þeld to 0.
ADSP ignores the sndcall->udata.buf Þeld.

OTRcvConnect 16

The OTRcvConnect function reads the status of a previously issued connection
request.
Using ADSP 319

C H A P T E R 1 6

AppleTalk Data Stream Protocol (ADSP)
Because ADSP does not allow application-speciÞc data to be associated with a
connection request, you need to set the call->udata.maxlen Þeld to 0. ADSP
ignores the call->udata.buf Þeld.

OTListen 16

The OTListen function listens for an incoming connection request.

ADSP does not allow application-speciÞc data to be included when you
request a connection, so you need to set the call->udata.maxlen Þeld to 0.
ADSP ignores the call->udata.buf Þeld.

OTAccept 16

The OTAccept function accepts a connection request. You can accept a
connection either on the same endpoint that received the connection request or
on a different endpoint.

ADSP does not allow application-speciÞc data to be included when you accept
a connection, so you need to set the call->udata.len Þeld to 0. ADSP ignores
the call->udata.buf Þeld.

OTSnd 16

The OTSnd function sends normal and expedited data through a connection-
oriented transactionless endpoint.

ADSP supports TSDUs through the OPT_ENABLEEOM option. In ADSP, TSDUs can
be of inÞnite length and ETSDUs can be up to 572 bytes long. Zero-length
packets are supported in ADSP.

OTRcv 16

The OTRcv function receives normal and expedited data through a connection-
oriented transactionless endpoint.

ADSP supports TSDUs through the OPT_ENABLEEOM option.

OTSndDisconnect 16

The OTSndDisconnect function initiates an abortive disconnect or rejects a
connection request.
320 Using ADSP

C H A P T E R 1 6

AppleTalk Data Stream Protocol (ADSP)
When you call this function with ADSP, you receive a T_ORDREL asynchronous
event rather than a T_DISCONNECT asynchronous event so that you can continue
to read in the rest of the data in your receive queue. Otherwise, with a
T_DISCONNECT event, any remaining unread data is discarded.

In an abortive disconnect, the call parameter is ignored because ADSP does
not allow application-speciÞc data to be associated with a disconnect. You need
to set the call->udata.len Þeld to 0. ADSP ignores the call->udata.buf Þeld.

OTRcvDisconnect 16

The OTRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated.

Because ADSP does not allow application-speciÞc data to be associated with a
disconnect, you need to set the discon->udata.len Þeld to 0. ADSP ignores the
discon->udata.buf field. The discon->reason field contains a positive error code
indicating why the connection was rejected.
Using ADSP 321

C H A P T E R 1 6

AppleTalk Data Stream Protocol (ADSP)
322 Using ADSP

C H A P T E R 1 7

Contents

Contents
Figure 17-0
Listing 17-0
Table 17-0
17 AppleTalk Transaction Protocol
(ATP)
About ATP 327
Using ATP 328

At-Least-Once and Exactly-Once Transactions 328
Sending and Receiving ATP Data 329
Specifying ATP Options 330

The Retry Count and Interval Options 330
The Release Timer Option 331
Other ATP-SpeciÞc Options 331

Using the ATP Packet Header User Bytes 332
Using General Open Transport Functions With ATP 332

OTSndURequest 332
OTRcvURequest 333
OTSndUReply 333
OTRcvUReply 333
323

C H A P T E R 1 7
AppleTalk Transaction Protocol (ATP) 17

This chapter describes the programming interface to Open TransportÕs
implementation of the AppleTalk Transaction Protocol (ATP). It explains how
you can use ATP to send requests and responses between ATP endpoints, with
one endpoint initiating the request and the other responding to it. You can
create an endpoint that can both initiate and respond, or you can create one
endpoint that only makes requests and another that only makes responses.
Because ATP provides a connectionless transaction-based service, you do not
incur the overhead entailed in establishing, maintaining, and breaking a
connection that is associated with connection-oriented protocols, such as ADSP,
but you can transfer only a limited amount of data using ATP.

You should read this chapter if you want to write an application that requires
reliable delivery of data but does not require the transfer of large amounts of
data. This chapter explains how you

■ open and bind an ATP endpoint

■ get information about an ATP endpoint

■ use Open Transport functions to initiate and respond to a transaction

■ specify ATP options to control connectionless transaction-based services

This chapter begins with a description of ATP and the services that it provides
under Open Transport. The section ÒUsing General Open Transport Functions
With ATPÓ (page 331) then gives detailed information about how ATP client
applications use the endpoint functions that Open Transport provides for
connectionless transaction-based protocols. For a more detailed explanation of
endpoints and their functions, read the chapter ÒEndpointsÓ (page 83).

For reference information about ATP options, see ÒATP ReferenceÓ (page 757).
For an overview of ATP and how it Þts within the AppleTalk protocol stack,
read the chapter ÒIntroduction to AppleTalkÓ(page 263), which also introduces
and deÞnes some of the terminology used in this chapter. For a complete
explanation of the ATP speciÞcation, see Inside AppleTalk, second edition.
325

C H A P T E R 1 7

AppleTalk Transaction Protocol (ATP)
About ATP 17

The AppleTalk Transaction Protocol (ATP) offers a simple means of reliably
transferring small amounts of data across a network. Using this protocol, one
endpoint requests information from another endpoint that possesses the ability
to respond to the request. This means that ATP is well-suited to a client-server
relation.

ATP is based on the concept of a transaction. In a transaction, one endpoint,
called the requester, makes a request of another endpoint, called the responder,
to perform a service and return a response.

You can implement ATP client applications in the following two ways:

■ You can write a single application that handles both the requester and
responder actions of an ATP transaction and run that application on two
networked nodes. This method allows each application to act as either the
requester or the responder. However, while each side has the capacity to
initiate a transaction, only one side can control the communication during a
single transaction.

■ You can write two applications, one application that implements the
requester part of a transaction and another application that implements the
responder side. This model lends itself well to a client-server relation such as
PAP, in which many nodes on a network run the requester application
(client), while one or more nodes run the responder application (server). One
server can respond to transaction requests from various clients.

ATP is a direct client of DDP, and it adds reliable delivery of data to the
transport delivery services that DDP provides. ATP ensures that data is
delivered without error or packet loss. Figure 17-1 shows how the ATP
endpoint provider encompasses its underlying delivery protocol and
link-access Streams modules.
326 About ATP

C H A P T E R 1 7

AppleTalk Transaction Protocol (ATP)
Figure 17-1 The ATP endpoint provider’s underlying delivery mechanism

Using ATP 17

In order for two applications to use ATP, each application must have opened
and bound an ATP endpoint. The requester initiates a transaction by making a
request. When the responder receives the request, it accepts the request,
formulates a response that includes any data required by the requester, and
sends that response to the requester. When the requester receives the response,
the transaction is complete. You can deÞne how often ATP is to retry each
request and how long it is to wait between each retry attempt by using the
retry count and interval options, described in ÒSpecifying ATP OptionsÓ
(page 329).

At-Least-Once and Exactly-Once Transactions 17

In the course of a transmission, a request might be lost, a response might be
lost or delayed, or the responder might fail to acknowledge or accept a request.
In any of these situations, the transaction cannot complete. To complete the
transaction and assure reliable delivery of data, ATP is responsible for waiting
a predetermined amount of time and then retrying the request until it is able to
conclude the transaction. If it cannot conclude the transaction, ATP must let the

ATP

DDP

Standard link-access Streams modules
Using ATP 327

C H A P T E R 1 7

AppleTalk Transaction Protocol (ATP)
requester know that the attempt has failed. In order to perform these services,
ATP supports two types of transactions: at-least-once transactions and
exactly-once transactions.

■ An at-least-once transaction ensures that the responder receives every
request directed to it at least once, but this does not prevent the responder
from receiving a request more than once. These are also referred to as ALO
transactions.

■ An exactly-once transaction ensures that the responder receives a speciÞc
request only once. These are also referred to as XO transactions. PAP uses this
type of ATP transaction.

Open Transport ATP provides XO transaction support for a request transaction
when you set the T_ACKNOWLEDGED bit in the option ßags for the OTSndURequest
function. This kind of support is appropriate in those cases where harm could
be done if a request is satisÞed multiple times; for example, if you are
appending data to the end of a Þle.

In those cases where no harm is done if a request is satisÞed multiple times (for
example, when the requester asks the responding node to identify itself) you
can select ALO transactions by clearing the T_ACKNOWLEDGED bit in the option
ßags for the OTSndURequest function.

Sending and Receiving ATP Data 17

Typically, a requester sends a small amount of data requesting the remote
endpoint to take some action or to send back data in reply. The amount of data
that the responder can reply with can be quite large. A requester can send only
a single ATP packet of 578 bytes, but a responder can return up to eight packets
of 578 bytes each, totalling a maximum of 4624 bytes. ATP does not support
zero-length packets.

To accomodate the restrictions that a particular network may place on sending
that much data at a time, ATP uses the T_MORE ßag to communicate to the
awaiting requester endpoint when all of the reply data has been accumulated.
A single reply may have up to eight packets, and each packet in the reply
except for the very last has the T_MORE ßag set. The reply data is held at the
receiving requester endpoint until a packet arrives that does not have the
T_MORE flag set. When this happens, ATP knows that all the reply data has
arrived, and it releases the entire reply to the awaiting requester endpoint.
328 Using ATP

C H A P T E R 1 7

AppleTalk Transaction Protocol (ATP)
Specifying ATP Options 17

There are several ATP-speciÞc options and you can use the generic Open
Transport options, OPT_INTERVAL and OPT_RETRYCNT. Table 17-1 summarizes their
deÞnitions and default values. All of these options, except ATP_OPT_TRANID, can
be set both globally (for the endpoint setting the option) with the
OptionManagement function and locally by setting option flags for an individual
transaction. The ATP_OPT_TRANID option can only be set globally.

The Retry Count and Interval Options 17

After transmitting a transaction request, ATP waits for the interval of time
speciÞed by the requesterÕs deÞned OPT_INTERVAL option (default is
2 seconds). If the requester still hasnÕt received a response from the responder,
it retransmits the request. It repeats this process for the number of times
deÞned by the requesterÕs OPT_RETRYCNT option (default is 8 retries). Once these
maximums have been reached without any response, ATP informs the
requester that the responder is unavailable.

Table 17-1 ATP option definitions and default values

Option Default Description

OPT_RETRYCNT 8 retries Sets the number of times ATP retries a
request before returning an error to
the client.

OPT_INTERVAL 2 seconds Sets the interval for ATP to wait
between retries.

ATP_OPT_RELTIMER 30 seconds Sets the amount of time the responder
must wait for a transaction release
packet before it purges a request entry
from its transactions list. Acceptable
values are 0 (30 seconds), 1 (1 minute), 2
(2 minutes), 3 (4 minutes), 4 (8 minutes).

ATP_OPT_REPLYCNT 8 replies SpeciÞes the number of replies (1Ð8) to
expect in reply to a request.

ATP_OPT_DATALEN 578 bytes Sets maximum individual packet size.

ATP_OPT_TRANID true Requests a transaction ID.
Using ATP 329

C H A P T E R 1 7

AppleTalk Transaction Protocol (ATP)
The Release Timer Option 17

With ALO transactions, a responder can receive duplicate requests; with XO
transactions, ATP uses additional processing to ensure that a responder
receives a request only once. To handle XO transactions safely, the responder
maintains a transactions list of all recently received requests. When it receives a
request, the responder searches through this list to determine whether it is a
new request or a duplicate request. If the request is new, the responder inserts
it in the transactions list, time stamping the entry with its time of insertion.
If it is a duplicate request and a reply has gone out, ATP automatically
retransmits the reply without the intervention of the responder application. If
it is a duplicate request and a reply has not yet been sent out, ATP discards
the request.

When a requester receives a reply from the responder, it sends a transaction
release packet to the responder to signal that the transaction has successfully
completed, and the responder can now release the transaction from its
transactions list. If this transaction release packet is lost, however, the
responder would never be able to release the transaction from its list. Because
the responder time stamped each new request when it inserted the request into
its transactions list, the responder can check the list periodically and eliminate
all requests that are older than the time deÞned by the ATP_OPT_RELTIMER option
(default is 30 seconds), assuming that these requests remain in the list because
the transaction release packet has been lost.

Other ATP-Specific Options 17

When a reply starts to arrive, the requester needs to know how many packets
are in a given reply so that it knows when to stop waiting for more packets.
The ATP_OPT_REPLYCNT option allows you to deÞne a number between 0 and 8
(the default is 8 packets). You can set this globally for the endpoint, with the
OptionManagement function, or locally for an individual request.

The ATP_OPT_DATALEN option allows you to set the maximum length of an
individual packet up to a length of 578 bytes (the default). In most cases, you
can leave this at the default. PAP servers, which use a maximum packet size of
512 bytes, can use this option to restrict the ATP packet size. You can set this
globally for the endpoint, with the OptionManagement function, or locally for an
individual request.

The ATP_OPT_TRANID option is a Boolean value that, when set to true, requests
Open Transport to add an option to every request that contains the ATP
330 Using ATP

C H A P T E R 1 7

AppleTalk Transaction Protocol (ATP)
transaction ID. You can only set this option globally, with the OptionManagement
function; you cannot set it locally.

Using the ATP Packet Header User Bytes 17

The Þrst 4 bytes of the ATP packet header contain information that allows
Open Transport to identify whether an ATP packet is a request or a response, to
specify the sequential position of a response packet, and to identify the
transaction. The second 4 bytes of the header are called user bytes, and are
available for your use. Your application could use the user bytes, for example,
to create a simple header for a higher-level protocol.

ATP takes the Þrst 4 bytes of data that the requester speciÞes and places them
in the user bytes portion of the outgoing request. If you do not specify at least 4
bytes of data in the request, ATP pads the user bytes with zeros.

On the responder side, ATP takes the data in the Þrst reply packetÕs user bytes
and puts them into the Þrst 4 bytes of the reply packetÕs data. ATP ignores the
user bytes in all reply packets except for the Þrst packet.

For more information on ATP packets and their header Þeld deÞnitions, refer to
Inside AppleTalk, second edition.

Using General Open Transport Functions With ATP 17

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport ATP
implementation. You must be familiar with the descriptions of these functions
in the chapter ÒEndpointsÓ(page 83) in this book before reading this section.

OTSndURequest 17

A client of a connectionless transaction-based protocol such as ATP can use the
OTSndURequest function to send an ATP request packet to an ATP responder
endpoint.

To indicate XO transactions, set the T_ACKNOWLEDGED bit in the OTSndURequest
functionÕs reqFlags parameter. To indicate ALO transactions, clear this bit. ATP
request packets can have up to 578 bytes, and zero-length TSDUs are not
supported.
Using ATP 331

C H A P T E R 1 7

AppleTalk Transaction Protocol (ATP)
OTRcvURequest 17

A client of a connectionless transaction-based protocol such as ATP can use the
OTRcvURequest function to receive an incoming ATP request packet from an ATP
requester endpoint.

On XO transaction packets, the T_ACKNOWLEDGED bit in the OTRcvURequest
functionÕs reqFlags parameter is set. On ALO transactions, this bit is clear. ATP
request packets can have up to 578 bytes, and zero-length TSDUs are not
supported.

OTSndUReply 17

A client of a connectionless transaction-based protocol such as ATP can use the
OTSndUReply function to send an ATP reply packet to an ATP requester
endpoint. ATP reply packets can have up to eight packets (4624 bytes), and
zero-length TSDUs are not supported.

OTRcvUReply 17

A client of a connectionless transaction-based protocol such as ATP can use the
OTRcvUReply function to receive an incoming ATP reply packet from an ATP
requester endpoint. ATP reply packets can have up to eight packets (4624
bytes), and zero-length TSDUs are not supported.
332 Using ATP

C H A P T E R 1 8

Contents

Contents
Figure 18-0
Listing 18-0
Table 18-0
18 Printer Access Protocol (PAP)
About PAP 336
Using PAP 338

Binding PAP Endpoints 339
Specifying PAP Options 340

The End-of-Message Option 340
The Open Retry Option 341
The Server Status Option 341
The Reply Count Option 342

Disconnecting 344
Using General Open Transport Functions With PAP 344

OTBind 344
OTConnect 345
OTRcvConnect 345
OTListen 345
OTAccept 345
OTSnd 345
OTRcv 346
OTSndDisconnect 346
OTRcvDisconnect 346
333

C H A P T E R 1 8
Printer Access Protocol (PAP) 18

This chapter describes the programming interface to Open TransportÕs
implementation of the Printer Access Protocol (PAP) PAP offers a
connection-oriented transactionless service that has been traditionally
restricted to AppleTalk printing. This chapter explains how you can use PAP to
set up a printer server endpoint that awaits connection requests from active
PAP endpoints. It also also explains how to set up an active PAP client
endpoint, how to send data directly from it to the printer server, and how the
client endpoint receives messages back from the server.

You should read this chapter if you want to write an application that uses PAP
to print directly to AppleTalk printers or that implements a PAP server, such as
a print spooler. This chapter explains how you

■ create and use an active PAP client endpoint

■ create and use a passive PAP server endpoint

■ send and receive data with PAP

■ divide a PAP data stream into discrete logical units

■ set a PAP server to respond to a clientÕs SendStatus call

This chapter begins with a description of PAP and the services that it provides
under Open Transport. The section ÒUsing General Open Transport Functions
With PAPÓ (page 343) then gives detailed information about how PAP client
applications use the endpoint functions that Open Transport provides for
connection-oriented transactionless protocols. For a more detailed explanation
of endpoints and their functions, read the chapter ÒEndpointsÓ (page 83).

For reference information about PAP options, see ÒPAP ReferenceÓ (page 758).
For an overview of PAP and how it Þts within the AppleTalk protocol stack,
read the chapter ÒIntroduction to AppleTalkÓ(page 263), which also introduces
and deÞnes some of the terminology used in this chapter. PAP under Open
Transport conforms to the detailed speciÞcations in Inside AppleTalk, second
edition. See that book for further information about the features mentioned
here.

About PAP 18

The Printer Access Protocol (PAP) is an asymmetrical connection-oriented
transactionless protocol that enables communication between client and server
About PAP 335

C H A P T E R 1 8

Printer Access Protocol (PAP)
endpoints, allowing multiple connections at both ends. PAP uses ATP packets
to transport the data once a connection is open to the server.

PAP is the protocol that ImageWriter and LaserWriter printers in the AppleTalk
environment use for printing. You use PAP when the workstation sends a print
job directly to a printer connected to the network or when you send it to a print
spooler, which in turn uses PAP to send it to the printer. Open Transport PAP
provides a single protocol implementation that is integrated into the AppleTalk
protocol stack.

Figure 18-1 shows how a PAP endpoint provider encompasses its underlying
delivery protocol and link-access STREAMS modules.

Figure 18-1 The PAP endpoint provider’s underlying delivery mechanism

One of the unique features of PAP is its ability to determine which connection
request to honor when there are several requests outstanding at the same time.
At any time a PAP server endpoint can receive requests to open a connection
from different client endpoints. For example, a printer server is available on a
network to many workstations, several of which can send data to the printer at

ATP

PAP

Standard link-access Streams modules

DDP
336 About PAP

C H A P T E R 1 8

Printer Access Protocol (PAP)
any time. PAP uses an arbitration scheme to allow a server to accept a
connection with the workstation that has been waiting the longest for a
connection. The scheme works this way:

1. A PAP server receives a connection request but delays granting it for a
predeÞned length of time (nominally 2 seconds). This default time period is
implementation speciÞc and is deÞned in Inside AppleTalk, second edition.

2. The PAP server accumulates any additional connection requests that come in
from other endpoints during that time period.

3. At end of the time period, the PAP server obtains the wait time from each
workstation endpoint requesting a connection. The workstations track the
amount of elapsed time spent waiting for access to the server. For example,
if a workstation client has to try several times to connect to a busy
LaserWriter, the workstation continues to track the total time since the Þrst
connection attempt and reports that amount to the LaserWriter on every
subsequent connection attempt.

4. The PAP server then grants the request of the workstation that has waited
the longest.

For additional information, see ÒPrinter Access ProtocolÓ in Inside AppleTalk.

Using PAP 18

To use Open Transport PAP, you Þrst open an endpoint as a PAP endpoint,
which causes Open Transport to allocate the memory PAP needs for data
buffers and for storing the variables PAP uses to maintain the connection
between endpoints. After a connection is established, PAP manages and
controls the data ßow between the two endpoints throughout a session to
ensure that data is delivered and received in the order in which it was sent and
that duplicate data is not sent.

When you bind a PAP endpoint, the binding process associates a local protocol
address with the endpoint. In PAP, this identiÞes the socket address, and PAP
uses this as part of the address for sending and receiving packets of data. Each
socket can maintain concurrent PAP connections with several other sockets, but
only one PAP endpoint can bind with a qlen greater than 0.

As with other connection-oriented protocols, Open Transport PAP allows you
to create a passive endpoint that listens for incoming connection requests
Using PAP 337

C H A P T E R 1 8

Printer Access Protocol (PAP)
rather than initiating such requests. In addition, the implementation of PAP
under Open Transport includes some PAP-speciÞc features:

■ an end-of-message option that lets you divide streams of data into
logical units

■ locally implemented orderly disconnects rather than over-the-wire remote
disconnects

PAP is also able to arbitrate connections requests and to accept requests from
the workstations that have been waiting the longest to print.

Binding PAP Endpoints 18

You have two choices when binding a PAP endpoint: You can create an
endpoint that can initiate connections and receive connection requests, or you
can create a passive endpoint that can only receive connection requests.
Typically, a passive PAP endpoint is a printer server.

If your endpoint can initiate connections, you can bind it as a normal Open
Transport endpoint and use any of the three AppleTalk address formats for the
socket address: DDP, NBP, or the combined DDP-NBP format. If the bind is
successful, the endpoint is ready for use in establishing and using a connection.

The other choice when binding a PAP endpoint is to establish it as a passive
peer that listens for incoming connection requests. The passive peer can accept
or deny a connection request. The use of a passive peer is typical of a server
environment in which a server, such as a printer server, is registered with a
single name. Endpoints throughout the network can contact the printer server
with connection requests. The server can accept or deny a request. It might
deny a request, for example, when its resources are exhausted, based on criteria
that you deÞne.

To create a passive peer that listens, you specify a qlen Þeld value greater than
0 during the binding process. The number you use determines how many
connection requests the endpoint can support. Once the endpoint is bound, it
starts listening for incoming connection requests. When a request arrives, the
endpoint retrieves certain information about the request and continues to
process the connection request by accepting or rejecting it.

You can bind multiple PAP endpoints to the same socket, but you can have
only one passive peer that listens for a given socket. When a server accepts a
connection from a client workstation for processing its print request, it cannot
accept another connection request from the same workstation endpoint. As
338 Using PAP

C H A P T E R 1 8

Printer Access Protocol (PAP)
with other connection-oriented protocols, you can only have one concurrent
connection between the same pair of endpoints.

Specifying PAP Options 18

You can use one of two options with PAP endpoints:

■ The enable end-of-message options allows you to break up a data stream
into discrete logical units.

By default, PAP soes not support TSDUs.

■ The open retry option allows you to retry making connection requests.

The following two sections explain the use of these options.

The End-of-Message Option 18

You can send a PAP data stream that contains no logical boundaries which
need to be preserved across the connection, or you can use transport service
data units (TSDUs) to separate the data stream into discrete logical units when
sending and receiving it across a connection. By default, PAP does not support
TSDUs. Instead, PAP sends and receives a continuous stream of data with no
message delimiters.

If transport independence is not crucial for your application, you can use a
PAP-speciÞc option that allows TSDUs. The OPT_ENABLEEOM option enables the
PAP end-of-message feature, which permits dividing data streams into smaller
logical units. Open Transport uses a ßag in the send and receive functions to
indicate multiple sends and receives. The use of this ßag, the T_MORE ßag,
allows you to break up a large data stream without losing its logical boundaries
at the other end of the connection. The ßag, however, indicates nothing about
how the data is packaged for transport on the lower-level protocols below the
PAP endpoint provider.

To send a data stream that is broken up into TSDUs, set the T_MORE ßag on each
send after setting the OPT_ENABLEEOM option. This indicates to the provider that
there are more packets coming that are part of this same message. When you
send data without the T_MORE ßag set, the provider knows this is the last packet
for this message and sends an EOM packet to the remote peer. It is possible for
this last (EOM) packet to contain no data because PAP supports the sending of
zero-length packets. This is useful when you send a packet with the T_MORE ßag
set only to discover that you have no more data to send. In this case, PAP still
Using PAP 339

C H A P T E R 1 8

Printer Access Protocol (PAP)
expects another packet, but you have no data to put into it. You can send a
zero-length packet to set the T_MORE ßag correctly.

Because printers expect an EOM indicator on the last packet of a connection, if
you do not choose to use the OPT_ENABLEEOM option, PAP takes care of that for
you, guaranteeing that the EOM indicator is set on the last packet. If, however,
you do choose to use the OPT_ENABLEEOM option, you are responsible for setting
the EOM indicator, by using the T_MORE ßag on every packet but the last.

You can enable the EOM option for an endpoint in several ways. One way is to
deÞne the option as part of the conÞguration string you use to open the
endpoint. The following line of code enables the EOM option for a PAP
endpoint:

OTOpenEndpoint(OTCreateConfiguration("pap(EnableEOM=1)"),0, NULL, &err);

Or you could call a function like that shown in Listing 7-5 (page 181) as follows:

err=SetFourByteOption(ep, ATK_PAP, OPT_ENABLEEOM, 1);

to enable the EOM option for a PAP endpoint.

The Open Retry Option 18

By default, when a PAP endpoint provider calls the OTConnect function, which
creates a connection request, it only tries to establish the connection once. This
behavior is controlled by an option, PAP_OPT_OPENRETRY, whose default
value is 1. (The default value of 1 for this option differs from the default retry
count of 5 speciÞed in Inside AppleTalk, second edition. In other aspects of Open
Transport AppleTalk, AppleTalk protocols adhere to the speciÞcations detailed
in that book.)

To force PAP to try again to open the connection, you can set a value greater
than 1 for the PAP_OPT_OPENRETRY option. Workstation client applications that
want to print data, for example, will probably keep trying to get access to a
printer server, retrying printer connections until it succeeds or until the user
presses the cancel button.

The Server Status Option 18

In a client-server interaction, a client may sometimes need to know the status
of the server. In these cases, the client can request the serverÕs status. This
340 Using PAP

C H A P T E R 1 8

Printer Access Protocol (PAP)
request can occur outside a connection. If the OPT_SERVERSTATUS option has been
set, with a C string up to 255 bytes long, the server can return that string as the
server status.

The Reply Count Option 18

One-call speciÞc option which you might Þnd useful when trying to connect to
some printers is the ATP_OPTREPLYCNT option.

A PAP-compliant printer will respond to a PAP connection request with a
single connection reply packet in which the EOM ßag is set. Some printers do
not set this ßag in the response packet, so ATP (upon which PAP is layered)
expects additional packets to be sent. After the timeout, the endpoint resends
the connection request, and again the printer responds without setting the
EOM bit. The ATP_OPTREPLYCNT option tells PAP to expect only one reply packet.

Listing 18-1 demonstrates how to implement the ATP_OPTREPLYCNT option. By
default when you make a connection request, the response bitmap is set to
request 8 packets. By using the ATP_OPTREPLYCNT option set to 1 (with the
OTConnect call), the connection request can be satisfied when the response
packet is received even when the EOM bit is not set. In the sample, the
endpoint is assumed to be in synchronous mode.

Listing 18-1 Using the ATP_OPTREPLYCNT option

OSStatus DoPAPSpecialConnect(TEndpoint* ep, UInt8 *addr, UInt32 addrLen,
UInt32 openRetryVal,
UInt32 retryIntervalVal,
UInt32 replyCntVal)

{
TCall theCall;
static unsigned char optbuf[3 * kOTFourByteOptionSize];
OSStatus err;
short i = 0;

if (!OTIsSynchronous(ep))
{

/* this routines assumes that the endpoint is synchronous. */
return (-1);

}

Using PAP 341

C H A P T E R 1 8

Printer Access Protocol (PAP)
/* set the address field */
theCall.addr.buf = addr;
theCall.addr.len = addrLen;

if (openRetryVal != 0)
{

((TOption*)optbuf)->len= kOTFourByteOptionSize;
((TOption*)optbuf)->level= ATK_PAP;
((TOption*)optbuf)->name= PAP_OPT_OPENRETRY;
((TOption*)optbuf)->value[0]= openRetryVal;
(((TOption*)optbuf) + 1)->len= kOTFourByteOptionSize;
(((TOption*)optbuf) + 1)->level= ATK_PAP;
(((TOption*)optbuf) + 1)->name= OPT_INTERVAL;
(((TOption*)optbuf) + 1)->value[0]= retryIntervalVal;

i += 2; // increment the options counter index
}

if (replyCntVal != 0)
{

/* If the replyCntVal is non zero then make sure that it */
/* falls between 1 and 8 */

if (replyCntVal < 1)
replyCntVal = 1;

if (replyCntVal > 8)
replyCntVal = 8;

(((TOption*)optbuf) + i)->len= kOTFourByteOptionSize;
(((TOption*)optbuf) + i)->level= ATK_ATP;
(((TOption*)optbuf) + i)->name= ATP_OPT_REPLYCNT;
(((TOption*)optbuf) + i)->value[0]= replyCntVal;

i++;/* increment the options counter index */
}

/* go ahead and set the option buffer field */
theCall.opt.buf= (UInt8*)optbuf;

/* set the length field depending on number of options set. */
theCall.opt.len= i * kOTFourByteOptionSize;

theCall.udata.len= 0;
342 Using PAP

C H A P T E R 1 8

Printer Access Protocol (PAP)
err = ep->Connect(&theCall, NULL);

return err;
}

Disconnecting 18

As with all connection-oriented Open Transport protocols, PAP supports
abortive disconnects. In addition, PAP supports orderly disconnects, although
it can only implement them locally.

An abortive disconnect directs the remote endpoint to abruptly tear down its
connection without making any accomodation for the data that may be in the
transmission pipeline at the time. You can deÞne your own handshake to
prevent losing data during the disconnect process.

PAP implements orderly disconnects locally, not over the wire. This means that
immediately after you request the disconnect, PAP sends all data buffered at
the local end and then tears down the connection, breaking communication
with the remote end. As a result, no data can be sent from either the local or
remote endpoint. The endpoints can continue to process data already in their
receive queues, but no new data can go out.

Using General Open Transport Functions With PAP 18

This section describes any special considerations you must take into account
for Open Transport functions when you use them with the Open Transport PAP
implementation. You must be familiar with the function descriptions in the
chapter ÒEndpointsÓ(page 83) before reading this section.

OTBind 18

The OTBind function associates a local protocol address with the endpoint
speciÞed by the ref parameter.

You can bind multiple PAP endpoints to a single protocol address, but you can
bind only one passive endpoint that listens at that address.

With PAP, as with other connection-oriented protocols, the req->qlen
parameter speciÞes the number of outstanding connection requests that an
Using PAP 343

C H A P T E R 1 8

Printer Access Protocol (PAP)
endpoint can support. The endpoint can negotiate a lower Þnal value of qlen if
it cannot handle the requested number of outstanding connection requests.

OTConnect 18

The OTConnect function requests a connection to a speciÞed remote endpoint.

PAP does not allow application-speciÞc data to be included when you establish
a connection, so you need to set the sndcall->udata.len Þeld to 0. PAP ignores
the sndcall->udata.buf Þeld.

OTRcvConnect 18

The OTRcvConnect function reads the status of a previously issued connection
request.

Because PAP does not allow application-speciÞc data to be associated with a
connection request, you need to set the call->udata.maxlen Þeld to 0. PAP
ignores the call->udata.buf Þeld.

OTListen 18

The OTListen function listens for an incoming connection request.

PAP does not allow application-speciÞc data to be included when you request a
connection, so you need to set the call->udata.maxlen Þeld to 0. PAP ignores
any data in the call->udata.buf Þeld.

OTAccept 18

The OTAccept function accept a connection request either on the same endpoint
that received the connection request or on a different endpoint.

PAP does not allow application-speciÞc data to be included when you accept a
connection, so you need to set the call->udata.len Þeld to 0. PAP ignores the
call->udata.buf field.

OTSnd 18

The OTSnd function sends normal and expedited data through a connection-
oriented transactionless endpoint.
344 Using PAP

C H A P T E R 1 8

Printer Access Protocol (PAP)
PAP supports TSDUs through the OPT_ENABLEEOM option. In PAP, TSDUs sent
from the client endpoint can be of inÞnite length, but TSDUs sent from a server
endpoint can only be up to 512 bytes long. Zero-length packets are supported
by PAP.

OTRcv 18

The OTRcv function receives normal and expedited data through a
connection-oriented transactionless endpoint.

PAP supports TSDUs through the OPT_ENABLEEOM option.

OTSndDisconnect 18

The OTSndDisconnect function initiates an abortive disconnect or rejects a
connection request.

In an abortive disconnect, the call parameter is ignored because PAP does not
allow application-speciÞc data to be associated with a disconnect. You need to
set the call->udata.len Þeld to 0. PAP ignores the call->udata.buf Þeld.

OTRcvDisconnect 18

The OTRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated.

Because PAP does not allow application-speciÞc data to be associated with a
disconnect, you need to set the discon->udata.maxlen Þeld to 0. PAP ignores the
discon->udata.buf field.
Using PAP 345

C H A P T E R 1 8

Printer Access Protocol (PAP)
346 Using PAP

C H A P T E R 1 9

Contents

Contents
Figure 19-0
Listing 19-0
Table 19-0
19 Serial Endpoint Providers
About Serial Endpoint Providers 350
About Serial Communication 351
DTR and CTS Signals 353
Asynchronous and Synchronous Communication 353
Handshaking Methods for Flow Control 354

Using Serial Endpoints 355
Opening and Closing Serial Endpoints 355
Sending and Receiving Data 356
Using Serial-SpeciÞc Commands 357
Using Options to Change Serial Communications Settings 358

Controlling Serial Port I/O Handshaking 359
Obtaining Status Information About the Serial Port 360

Using General Open Transport Functions
With Serial Endpoints 361

Obtaining Endpoint Data With Serial Endpoints 361
Using Endpoint Functions With Serial Endpoints 362
347

C H A P T E R 1 9
348 Contents

C H A P T E R 1 9
Serial Endpoint Providers 19

This chapter describes how you can use serial endpoint providers to transfer
data between devices connected to a serial port. Open Transport supports
asynchronous serial data communication between client applications through
these ports. This chapter provides information about Open Transport functions
and options that are speciÞc to serial endpoint providers. You need this
information only if you have a speciÞc need to use serial communication.

To get the most out of this chapter, you should already be familiar with the
concepts and application interfaces described in the chapters ÒIntroduction to
Open Transport,Ó ÒProviders,Ó ÒEndpoints,Ó ÒOption Management,Ó and
ÒConÞguration ManagementÓ in this book. For information about the
Macintosh serial port hardware, including circuit diagrams and signal
descriptions, see Guide to the Macintosh Family Hardware, second edition. For
information about locating all the serial ports available through Open
Transport, see ÒPortsÓ (page 191).

This chapter begins with a brief summary of key concepts in serial data
communication, then describes how you can use serial endpoint providers to

■ conÞgure a serial port

■ send and receive data through a serial port

■ interpret serial communication status information

The section ÒUsing General Open Transport Functions With Serial EndpointsÓ
(page 360) describes serial-speciÞc information relating to functions described
in the ÒEndpointsÓ chapter of this book and the section ÒUsing Options to
Change Serial Communications SettingsÓ (page 357) describes the options you
can specify when you conÞgure a serial endpoint provider. The Serial
Reference Chapter (page 763)describes those constants, options, and OTIoctl
function commands available to users of Open Transport serial endpoint
providers.

About Serial Endpoint Providers 19

Open Transport serial endpoint providers provide full-duplex low-level
support for asynchronous serial data transfers through the built-in serial port
and any serial choice registered with the Communications Resource Map.
Serial endpoint providers use connection-oriented data streams. They do not
support the functions that provide connectionless or transaction-based service.
About Serial Endpoint Providers 349

C H A P T E R 1 9

Serial Endpoint Providers
Because of the point-to-point nature of serial communications, there are a few
differences between using a serial endpoint and using other
connection-oriented endpoints.

One of the key differences is that there are no addresses for serial endpoints
because serial communications is point-to-point. As such, no addressing
information is possible and all address parameters for serial endpoint functions
need to be set to zero.

The other important difference is that only one serial endpoint can own the
hardware at a given time. That is, only one serial endpoint provider can initiate
and accept a connection on a given port at a time, although there can be several
listening endpoints on a given port simultaneously.

About Serial Communication 19

Open Transport serial communication, like any data transfer between
endpoints, requires coordination between the sender and receiver; for example,
when to start the transmission and when to end it, when one particular bit or
byte ends and another begins, when the receiverÕs capacity has been exceeded,
and so on. The scope of serial data transmission protocols is large and complex,
encompassing everything from electrical connections to data encoding
methods. This section provides a brief overview of the protocol that governs the
lowest level of data transmissionÑhow serialized bits are sent over a
single electrical line.

When a sender is connected to a receiver over an electrical connecting line, the
line is initially in an idle state, called the mark state. Changing the state of the
line by shifting the voltage is called a space. The receiver interprets a space as a
0 bit, and a mark as a 1 bit. These transitions are shown in Figure 19-1.

The change from the mark state to a space is known as the start bit, and this
triggers the synchronization necessary for asynchronous serial transmission.
The start bit delineates the beginning of the transmission unit deÞned as a
character frame. The receiver then samples the state at periodic intervals,
known as the bit time, to determine whether a 0 bit or a 1 bit is present on the
line.
350 About Serial Endpoint Providers

C H A P T E R 1 9

Serial Endpoint Providers
Figure 19-1 The format of serialized bits

The bit time is expressed in samples per second, known as the baud rate. The
baud rate must be agreed upon by sender and receiver before transmitting data
in order for a successful transfer to occur. Common values are 1200 baud and
2400 baud. In the case where one sampling interval can signal a single bit, a
baud rate of 1200 results in a transfer rate of 1200 bits per second (bps). Note
that because modern protocols can express more than one bit value within the
sampling interval, the baud rate and the transfer rate may not be identical.

Before transmission, the sender and receiver also agree on a serial data format;
that is, how many bits of data constitute a character frame and what happens
after those bits are sent. Open Transport serial endpoints support frames of 5, 6,
7, or 8 bits in length. Character frames of 7 or 8 data bits are commonly used for
transmitting ASCII characters.

After the data bits in the frame are sent, the sender can optionally transmit a
parity bit for error-checking. There are various parity schemes, which the
sender and receiver must agree upon prior to transmission. In odd parity, a bit
is sent so that the entire frame always contains an odd number of 1 bits.
Conversely, in even parity, the parity bit results in an even number of 1 bits. No
parity means that no additional bit is sent.

To signify the end of the character frame, the sender places the line back to the
mark state for a minimum speciÞed time interval. This interval has one of
several possible values: 1 bit time, 2 bit times, or 1-1/2 bit times. This signal is
known as the stop bit, and returns the transmission line back to the mark state.

Mark

Space

Idle Idle

Character frame

Bit time

Parity
bit

5, 6, 7, or 8 data bitsStart
bit

Stop
bits
About Serial Endpoint Providers 351

C H A P T E R 1 9

Serial Endpoint Providers
Electrical lines are always subject to environmental perturbations known as
noise. This noise can cause errors in transmission by altering voltage levels so
that a bit is reversed, shortened, or lengthened. When this occurs, the ability of
the receiver to distinguish a character frame may be affected, resulting in a
framing error.

The break signal is a special signal that falls outside the character frame. The
break signal occurs when the line is switched from the mark state to a space
and held there for longer than a character frame. The break signal resembles an
ASCII NUL character (a string of 0-bits), but exists at a lower level than the
ASCII encoding scheme that commonly governs the encoding of information
within the character frame.

DTR and CTS Signals 19

The electrical characteristics of a serial communications connection are
speciÞed by various interfacing standards. The speciÞcations of these standards
are contained in documents available from the Electronic Industries
Association (EIA) that cover aspects of the connection, such as its electrical
signal characteristics and its interface circuits.

The principal signals used by Open Transport serial endpoint providers are the
Data Terminal Ready (DTR) and Clear To Send (CTS) signals. These two
signals are connected to each other. Note that in the deÞnitions of these signals
which follow, the term data terminal equipment (DTE) is used to describe the
initiator or controller of the serial connection, typically the computer. The term
data communication equipment (DCE) describes the device that is connected to
the DTE, such as a modem or printer. For speciÞc information about how these
signals are used in Macintosh computers, see Guide to the Macintosh Family
Hardware, second edition.

■ The Data Terminal Ready (DTR) signal indicates that the DTE (that is, your
computer) is ready to communicate. Deasserting this signal causes the DCE
(that is, your modem or printer) to suspend transmission.

■ The Clear To Send (CTS) signal indicates that the DCE (your modem or
printer) is ready to send data.

Asynchronous and Synchronous Communication 19

Serial data transfers depend on accurate timing in order to differentiate bits in
the data stream. This timing can be handled in one of two ways:
352 About Serial Endpoint Providers

C H A P T E R 1 9

Serial Endpoint Providers
asynchronously or synchronously. In asynchronous communication, the peers
agree on a clocking mechanism before data is transferred; in synchronous
communication, the signal carries the clocking information. The terms
asynchronous and synchronous are slightly misleading because both kinds of
communication require synchronization between the sender and receiver.

Asynchronous communication is the prevailing standard in the personal
computer industry.

IMPORTANT

Do not confuse asynchronous communication with
asynchronous execution. Asynchronous communication is a
protocol for coordinating serial data transfers.
Asynchronous execution refers to the capability of a device
driver to carry out background processing. Serial
endpoints support both asynchronous communication and
asynchronous execution. ▲

Open Transport serial endpoints do not support synchronous communications
protocols. However, they do support synchronous clocking supplied by an
external device.

Handshaking Methods for Flow Control 19

Because a sender and receiver canÕt always process data at the same rate, some
method of negotiating when to start and stop transmission is required. Open
Transport serial endpoint providers support two methods of controlling serial
data ßow, known as handshaking. One method relies on the serial port
hardware, the other is implemented in software.

Hardware handshaking uses two of the serial port signal lines to control data
transmission. When the serial endpoint provider is ready to accept data from
an external device, it asserts the Data Terminal Ready (DTR) signal on pin 1 of
the serial port, which the external device receives through its Clear To Send
(CTS) input. Likewise, the Macintosh receives the external deviceÕs DTR signal
through the CTS input on pin 2 of the serial port. When either the Macintosh or
the external device is unable to receive data, it deasserts its DTR signal, and the
sender suspends transmission until the signal is asserted again.

Software handshaking uses an agreed-upon set of characters for the start and
stop signals. Open Transport serial endpoints support XON/XOFF
handshaking, which typically assigns the ASCII DC1 character (Control-Q) as
About Serial Endpoint Providers 353

C H A P T E R 1 9

Serial Endpoint Providers
the start signal and the DC3 character (Control-S) as the stop signal, although
you can choose different characters.

Using Serial Endpoints 19

Serial endpoint providers use standard Open Transport functions for binding,
requesting and accepting connections, sending and receiving data, and
managing options. You can send and receive the desired data using the
standard Open Transport OTSnd and OTRcv functions. You can call these
functions either synchronously or asynchronously, as described in the chapter
ÒEndpointsÓ (page 83).

In addition, Open Transport provides specialized serial-speciÞc commands and
options that allow you to

■ set the ßow-control handshaking

■ use an external timing signal for synchronous clocking

■ set or clear a break signal

■ get status information about a port and any associated transmission errors

■ deÞne how characters with parity errors are handled

■ request burst mode operation

■ deÞne receive timeout options

■ set the framing type

Opening and Closing Serial Endpoints 19

To open serial endpoints, you need to supply a conÞguration string to the
OTOpenEndpoint function. The configuration string you supply depends on
which serial port you want to open. The following constants are deÞned for the
354 Using Serial Endpoints

C H A P T E R 1 9

Serial Endpoint Providers
built-in ports; you can Þnd other serial ports using the techniques descripted in
ÒPortsÓ (page 191).

For example, the following line of code opens a serial endpoint on serial port A:

OTOpenEndpoint(OTCreateConfiguration(kSerialPortAName));

There may be other serial ports available, such as those registered by the
Communications Toolbox.

To close a serial endpoint provider, you use the standard Open Transport
function OTCloseProvider, described in the chapter ÒProvidersÓ (page 61).

Sending and Receiving Data 19

As with all endpoints, you must call the OTBind function before you can use a
serial endpoint provider to send or receive data. For serial endpoint providers
that initiate outgoing data, you need to bind with a queue length (the qlen
parameter) of 0. When you wish to start transferring data, you must call the
OTConnect function to place the endpoint in the data transfer state and allow the
OTSnd and OTRcv functions to be called. Calling the OTSndDisconnect function
releases the connection.

For serial endpoint providers that listen for incoming data, you need to bind
with a queue length of 1. You cannot bind with a queue length greater than 1.
When an incoming character is detected on the serial port, you receive a
connect indication. You can accept the indication on the current endpoint, or

Constant name
String
value Description

kSerialName "serial" Default serial port

kSerialPortAName "serialA" Serial port A

(printer port)

kSerialPortBName "serialB" Serial port B

(modem port)

kSerialPortABName "serialAB" Serial port AB

(combined
printer/modem
port)
Using Serial Endpoints 355

C H A P T E R 1 9

Serial Endpoint Providers
you can accept it on another serial endpoint, that has a queue length of 0 or is
not yet bound. In either case, once the accepting endpoint returns to the T_IDLE
state, the original endpoint once again listens for incoming data and gets a
connect indication if another incoming character is detected. Calling the
OTSndDisconnect function on the accepting endpoint releases the connection
and allows your endpoint to continue listening on the port. Your endpoint can
continue to listen until you call the OTUnbind function.

You can create a number of serial endpoints on a given serial port, but only one
can have a connection at a time. The Þrst serial endpoint to connect owns the
hardware; other endpoints that subsequently attempt to connect receive a
kOTAddressBusyErr result code.

Using Serial-Specific Commands 19

You can control several aspects of serial communication by using the Open
Transport function OTIoctl with different serial-speciÞc commands. The
OTIoctl function, described in the chapter ÒProviders ReferenceÓ (page 383),
accesses the low-level serial driver control and status functions.

You can assert the DTR signal for the serial port by using a value of
kOTSerialSetDTROn with the I_SetSerialDTR command and you can negate it
with a value of kOTSerialSetDTROff. Likewise, you can use the
I_SetSerialBreak command to set or negate the break signal with values of
kOTSerialSetBreakOn and kOTSerialSetBreakOff or you can use a number
greater than 1 to indicate the number in milliseconds to assert a break signal
temporarily.

You can also use the OTIoctl function commands to set the XOFF state of the
serial port and to indicate whether the port is to send an XOFF or XON
character. Using a value of kOTSerialForceXOffTrue with the
I_SetSerialXOffState command sets the XOFF state of the serial port, which is
equivalent to receiving an XOFF character, and using a value of
kOTSerialForceXOffFalse with this command clears the XOFF state, which is
equivalent to receiving an XON character.

Using a value of 1 with the I_SetSerialXOn and I_SetSerialXOff commands
causes the serial port to unconditionally send an XON or XOFF character,
respectively. A value of 0 with these functions causes the character to be sent
only if the last input ßow-control character sent was the opposite kindÑthat is,
the XOFF or XON character, respectively.
356 Using Serial Endpoints

C H A P T E R 1 9

Serial Endpoint Providers
Using Options to Change Serial Communications Settings 19

Serial endpoints currently support eight options. These options are deÞned by
the XTI-level constant COM_SERIAL, which has a value of 'SERL'.

When you open a serial endpoint, Open Transport conÞgures the selected port
with the default settings of 19200 baud, 8 data bits per character, no parity bit, 1
stop bit, and no handshaking. You can change these settings using various
options, all of which use 4-byte unsigned integer values. There is also a serial
status option that provides current information about the serial port. Four of
the options are fairly straightforward and are described here; using the other
options is more complicated, and their use is described in the two subsequent
sections.

■ The baud rate option sets the serial baud rate.The serial module chooses the
closest baud rate supported that matches the requested rate. Possible values
range from 300 to 230.4K baud transmission rates (depending on the
hardware capability). The default value is 19200 baud.

■ The data bits option selects the number of data bits to be used. Legal values
are 5, 6, 7, and 8. The default value is 8 data bits.

■ The stop bits option selects the number of stop bits to be used. This value
corresponds to ten (10) times the actual number of stop bits. Legal values
are 10, 15, and 20, which correspond to stop bits of 1, 1.5, and 2. The default
value is 10, which is equivalent to 1 stop bit.

■ The parity option selects the parity to be used. Legal values are kOTNoParity
0), kOTOddParity(1), and kOTEvenParity(2). The default value is kOTNoParity.

■ The receive timeout option sets the number of milliseconds the receiver
should wait to receive more data before timing out and delivering the data is
already has . The default value is 10.

■ The error character option deÞnes how characters with parity errors are
handledÑthat is, if they are replaced and with which character. Open
Transport provides macros (and C++ inline functions),
OTSerialSetErrorCharacter and OTSerialSetErrorCharacterWithAlternate, to
help place the character bits correctly.

■ The external clock option requests an external clock. This option may not be
supported by all serial drivers.

■ The burst mode option requests that the serial driver continues looping,
reading incoming characters, rather than waiting for an interrupt for each
character. This option may not be supported by all serial drivers.
Using Serial Endpoints 357

C H A P T E R 1 9

Serial Endpoint Providers
Controlling Serial Port I/O Handshaking 19

You can use the SRL_OPT_HANDSHAKE option to customize serial port handshaking
in a variety of ways. For instance, you can request that an input handshake be
controlled by the CTS line, or by the XON/XOFF sequence. To control the
handshaking behavior, you pass in a 4-byte usigned integer value with the
SRL_OPT_HANDSHAKE option.

A schematic diagram of this 4-byte option value is shown in Figure 19-2

Figure 19-2 Serial port I/O handshaking

The high word (16 bits) of the integer is a bitmap with one or more of the
following bits set:

The third byte is the XON character value; the lowest byte is the XOFF
character. If these values are 0 and XON/OFF handshaking is requested, the
default values of control-S for XOFF and control-Q for XON are used. The
default value of this option is no handshaking.

Open Transport provides a macro and a C++ inline function
(OTSerialHandshakeData) that you can use to create the 4-byte option value.

Handshake Value Description

kOTSerialXOnOffInputHandshake 1 XON/XOFF set for input.

kOTSerialXOnOffOutputHandshake 2 XON/XOFF set for output.

kOTSerialCTSInputHandshake 4 CTS set on input.

kOTSerialDTROutputHandshake 8 DTR set on output.

C
T

S
 in

pu
t

X
O

N
/X

O
F

F
ou

tp
ut

D
T

R
 o

ut
pu

t

12 8 8

bit 0bit 31
Reserved

X
O

N
/X

O
F

F
in

pu
t

XON char XOFF char

set to 0
358 Using Serial Endpoints

C H A P T E R 1 9

Serial Endpoint Providers
For example, to enable XON/XOFF input handshaking, but to specify that the
XON character be control-T rather than control-Q, you can create an option
structure as follows:

opt.value = OTSerialHandshakeData(kOTSerialXOnOffInputHandshake |
kOTSerialXOnOffOutputHandshake,

'T' - 64, 'S' - 64);

Obtaining Status Information About the Serial Port 19

The serial status option is a read-only option that returns status information on
the serial port. It is a 4-byte unsigned integer containing a bitmap that can
provide the following information about errors or changes in status that may
have occurred:

■ A hardware overrun has occurred due to an overßow of the hardware
input buffer.

■ A software overrun has occurred due to an overßow of the software
input buffer.

■ A parity error has occurred due to the serial hardware detecting an incorrect
parity bit.

■ A framing error has occurred due to the serial hardware detecting a stop
bit error.

■ A break has occurred on the line.

■ The endpoint provider has sent an XOFF character, which initiates
ßow control.

■ The endpoint provider has negated the DTR signal, which initiates
ßow control.

■ The endpoint provider has negated the CTS signal, which initiates
ßow control.

■ The endpoint provider has received an XOFF character, and so all output is
on hold.

■ The endpoint provider has initiated a break that is still in progress.

Data received from the serial port passes through a hardware buffer and then
into a software buffer managed by the input driver for the port. Each input
driverÕs buffer can initially hold up to 1024 characters, but you can specify a
Using Serial Endpoints 359

C H A P T E R 1 9

Serial Endpoint Providers
larger buffer with standard Open Transport functions. This is normally not
necessary because Open Transport provides additional buffering as part of its
processing.

Open Transport serial services are layered on top of the serial hardware driver.
The capabilities of Open Transport endpoints depend on the driver. Consult the
hardware documentation to determine the limitations of Open Transport for
serial endpoints.

Because the serial hardware in some Macintosh computers relies on processor
interrupts during I/O operations, overrun errors are possible if interrupts are
disabled while data is being received on the serial port. To prevent such errors,
the Disk Driver and other system software components are designed to store
any data received by the modem port while they have interrupts disabled and
then pass this data to the portÕs input driver. Because the system software only
monitors the modem port, the printer port is not recommended for two-way
communication at data rates above 300 baud.

Overrun, parity, and framing errors are usually handled by requesting that the
sender retransmit the affected data. Break errors are typically initiated by the
client application, which handles them as appropriate.

Using General Open Transport Functions
With Serial Endpoints 19

This section describes any special considerations that you must take into
account for Open Transport functions when you use them with serial endpoint
providers. You should be familiar with the function descriptions in the chapter
ÒEndpointsÓ(page 83) before reading this section.

Obtaining Endpoint Data With Serial Endpoints 19

This section describes the possible values you can get for endpoint information
when using a serial endpoint.
360 Using Serial Endpoints

C H A P T E R 1 9

Serial Endpoint Providers
OTOpenEndpoint, OTAsyncOpenEndpoint, and OTGetEndpointInfo 19

The following values can be returned by the info parameter to the
OTOpenEndpoint, OTAsyncOpenEndpoint, and OTGetEndpointInfo functions when
used with serial endpoint providers:

IMPORTANT

The values shown in the preceding table are subject to
change. Be sure to use the OTOpenEndpoint,
OTAsyncOpenEndpoint, and OTGetEndpointInfo functions to
obtain the current values for these parameters. ▲

These Þelds and the signiÞcance of their values are described in more detail in
the chapter ÒEndpoints ReferenceÓ(page 421).

Using Endpoint Functions With Serial Endpoints 19

This section describes serial-speciÞc information about functions described in
the chapter ÒEndpointsÓ (page 83).

OTBind 19

The OTBind function associates a serial port with the endpoint you specify.
Because serial communication is point-to-point over a hardware connection,

Parameter Serial Meaning

info->addr 0 Addresses are not used.

info->options Greater than 0 Maximum number of bytes needed to
hold protocol-speciÞc options.

info->tsdu T_INVALID TSDUs are not supported.

info->etsdu T_INVALID Transfer of expedited data is not
supported.

info->connect T_INVALID Data cannot be sent with functions
that establish connections.

info->discon T_INVALID Data cannot be sent with abortive
disconnects.

info->servtype T_COTS Connection oriented transactionless
service. Orderly disconnects are not
supported.

info->flags - No ßags are set.
Using Serial Endpoints 361

C H A P T E R 1 9

Serial Endpoint Providers
you cannot specify an address. Therefore, you must specify 0 as the length of
the address in the reqaddr->TBind.addr.len parameter. You can bind multiple
serial endpoints to listen at a single port.

With serial endpoints, the req->qlen parameter, which speciÞes the number of
outstanding connection requests that an endpoint can support, can only have a
value of 0 or 1. To listen, a serial endpoint provider must have a queue length
value of 1; to make connections, the endpoint can have a value of 0 or 1. A
value greater than 1 results in an error code.

OTConnect 19

The OTConnect function requests a connection to a speciÞed remote endpoint.

Because serial endpoint providers do not allow you to send any application-
speciÞc data during the connection establishment phase, you must set the
sndcall->udata.len field to 0. Serial endpoints ignore the sndcall->udata.buf
Þeld.

OTListen 19

The OTListen function listens for an incoming connection request.

Serial endpoints do not allow application-speciÞc data to be included when
you request a connection, so you need to set the call->udata.maxlen Þeld to 0.
Serial endpoints ignore the call->udata.buf Þeld.

OTAccept 19

The OTAccept function accepts a connection request. You can accept a
connection either on the same endpoint that received the connection request or
on a different endpoint.

Serial endpoints do not allow application-speciÞc data to be included when
you accept a connection, so you need to set the call->udata.len Þeld to 0.
Serial endpoints ignore the call->udata.buf Þeld.

OTSnd 19

The OTSnd function sends data through a connection-oriented transactionless
endpoint. Serial endpoints do not support TSDUs.
362 Using Serial Endpoints

C H A P T E R 1 9

Serial Endpoint Providers
OTRcv 19

The OTRcv function receives data through a connection-oriented transactionless
endpoint. Serial endpoints do not support TSDUs.

OTSndDisconnect 19

The OTSndDisconnect function initiates an abortive disconnect or rejects a
connection request.

In an abortive disconnect, the call parameter is ignored because serial
endpoints do not allow application-speciÞc data to be associated with a
disconnect. You need to set the call->udata.len Þeld to 0. Serial endpoints
ignore the call->udata.buf Þeld.

OTRcvDisconnect 19

The OTRcvDisconnect function returns information about why a connection
attempt failed or an established connection was terminated.

Because serial endpoints do not allow application-speciÞc data to be associated
with a disconnect, you need to set the discon->udata.maxlen Þeld to 0. Serial
endpoints ignore the discon->udata.buf Þeld.
Using Serial Endpoints 363

C H A P T E R 1 9

Serial Endpoint Providers
364 Using Serial Endpoints

P A R T T W O
Open Transport Reference 2

P A R T O N E

C H A P T E R 2 0

Contents

Contents
Figure 20-0
Listing 20-0
Table 20-0
20 Initializing and Closing Open
Transport Reference
Error Constants 370
The Gestalt Selector and Response Bits 370
The OTConÞguration Structure 371
The OTAddress Structure 372
The TNetBuf Structure 372

Functions 373
Initializing and Closing Open Transport 373

InitOpenTransport 374
InitOpenTransportUtilities 375
CloseOpenTransport 376

Creating, Cloning, and Disposing of a ConÞguration Structure 377
OTCreateConfiguration 377
OTCloneConfiguration 379
OTDestroyConfiguration 380
367

C H A P T E R 2 0
368 Contents

C H A P T E R 2 0
Initializing and Closing Open Transport Reference 20

This chapter describes the contents, data types, and functions you use to
initialize and close Open Transport, to conÞgure a provider, and to specify an
address. The chapter ÒOpen TransportÓ(page 5) explains their use.

This section describes the basic conÞguration management constants, the
Gestalt function selector and response bits, and the configuration structure for
Open Transport.

Error Constants 20

If Open Transport is unable to create an OTConfiguration structure (page 398), it
returns one of the following values, depending on whether the speciÞed path
was invalid or whether there was insufÞcient memory to create the structure:

#define kOTInvalidConfigurationPtr ((OTConfiguration*)-1L)

#define kOTNoMemoryConfigurationPtr ((OTConfiguration*)0)

The Gestalt Selector and Response Bits 20

You can test whether Open Transport and its various parts are available by
using the Gestalt function with the 'ota kn' and 'otvr' selectors.

The 'otvr' selector determines the Open Transport version in NumVersion
format. For more information on AppleÕs version numbering scheme and the
NumVersion format, see Technote OV12:Version Territory. The 'otvr' selector was
not implemented until version 1.1 of Open Transport. The absence of this
selector does not mean that Open Transport is not present. You can also check
for the availability of Open Transport by calling the function InitOpenTransport
(page 373).

The 'otan' selector returns information by setting or clearing bits in the
response parameter. The bits currently used are defined by constants, shown
along with the Open Transport selector in the following enumeration:

enum {
gestaltOpenTptVersions = 'otvr',
gestaltOpenTpt = 'otan',
gestaltOpenTptPresentMask = 0x00000001,
gestaltOpenTptLoadedMask = 0x00000002,
369

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
gestaltOpenTptAppleTalkPresentMask = 0x00000004,
gestaltOpenTptAppleTalkLoadedMask = 0x00000008,
gestaltOpenTptTCPPresentMask = 0x00000010,
gestaltOpenTptTCPLoadedMask = 0x00000020,
gestaltOpenTptIPXSPXPresentMask = 0x00000040,
gestaltOpenTptIPXSPXLoadedMask = 0x00000080,
gestaltOpenTptPresentBit = 0,
gestaltOpenTptLoadedBit = 1,
gestaltOpenTptAppleTalkPresentBit = 2,
gestaltOpenTptAppleTalkLoadedBit = 3,
gestaltOpenTptTCPPresentBit = 4,
gestaltOpenTptTCPLoadedBit = 5,
gestaltOpenTptIPXSPXPresentBit = 6,
gestaltOpenTptIPXSPXLoadedBit = 7

};

For more information about the Gestalt function, see Inside Macintosh:
Operating System Utilities.

The OTConÞguration Structure 20

Open Transport functions that open a provider take as a parameter a pointer to
a conÞguration structure that speciÞes the conÞguration of that provider. For
example, the conÞguration structure of an endpoint speciÞes which protocol
modules the endpoint uses. To create a conÞguration structure and obtain a
pointer to it, you call the OTCreateConfiguration function (page 376). To make a
copy of a conÞguration structure, you call the OTCloneConfiguration function
(page 378).

The contents of the OTConfiguration structure are private and so is the
OTConfiguration data type that deÞnes it.

struct OTConfiguration;
typedef struct OTConfiguration OTConfiguration;

See ÒError ConstantsÓ (page 397) for values that can be returned if the
conÞguration was not successful.
370

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
The OTAddress Structure 20

Addresses in Open Transport all begin with a common structure, which is
followed by Þelds that are protocol-speciÞc. The common structure is deÞned
by the OTAddress type:

struct OTAddress
{

OTAddressType fAddressType;
UInt8 fAddress[1];

};
typedef struct OTAddress OTAddress;

The OTAddress type itself is abstract. You would not declare a structure of this
type because it does not contain any address information. However address
formats deÞned by Open Transport protocols all use the fAddressType Þeld to
describe the format of the Þelds to follow, which do contain address
information. For an example of how this data type is used in creating an
address, see the section ÒAddressing in Open TransportÓ (page 37).

The TNetBuf Structure 20

You use a TNetbuf structure to specify the location and size of a buffer that
contains an address, option information, or user data. Provider functions use
TNetbuf structures both as input parameters and output parameters. If you use
a TNetbuf structure as an input parameter, you specify the location and size of a
buffer containing information you want to send. If you use a TNetbuf structure
as an output parameter, you specify the location and the maximum size of the
buffer used to hold information when the function returns.

You use a TNetbuf structure to describe the location and size of contiguous data.
Open Transport allows you to describe noncontiguous data with the OTData
structure. For more information, see ÒAdvanced Topics ReferenceÓ(page 673)

The TNetbuf structure is deÞned by the TNetbuf data type.

struct TNetbuf {
UInt32 maxlen;
UInt32 len;
371

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
UInt8* buf;
};
typedef struct TNetbuf TNetbuf;

Field descriptions
maxlen The size (in bytes) of the buffer to which the buf Þeld

points. You must set the maxlen Þeld before passing a
TNetbuf structure to a provider function as an output
parameter. Open Transport ignores this Þeld if you pass
the TNetbuf structure as an input parameter.

len The actual length (in bytes) of the information in the buffer
to which the buf Þeld points. If you are using the TNetbuf
structure as an input parameter, you must set this Þeld.
If you pass the TNetbuf structure as an output parameter,
on return the provider function sets this Þeld to the
number of bytes the function has actually placed in the
buffer referenced by the buf Þeld.

buf A pointer to a buffer. You must make sure that the buf Þeld
points to a valid buffer and that the buffer is large enough
to store the information for which it is intended.

Functions 20

This section describes the functions you use to initialize and close Open
Transport and to create, clone, and delete a conÞguration structure.

Initializing and Closing Open Transport 20

Open Transport provides three functions that you can use to initialize and
close Open Transport.
372 Functions

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
InitOpenTransport 20

Initializes the parts of Open Transport for use by the application or code
resource.

C INTERFACE

OSStatus InitOpenTransport(void);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

function result An error code. See Appendix B.

DISCUSSION

Call this function before using other Open Transport functions.

If you need to know whether Open Transport is present at start-up time, but
you donÕt need to use it (e.g. an installer) ,you can use the Gestalt function and
its Open Transport selectors as described on (page 369). However, for normal
applications, your calling the InitOpenTransport function is sufÞcient to test for
the presence of Open Transport.

To initialize only the parts of Open Transport that handle ports and implement
the Open Transport utility functions call the InitOpenTransportUtilities
function (page 374).

SPECIAL CONSIDERATIONS

You must make sure that your A5 world is correctly initialized for 68000 code
resources.

If your program uses the Apple Shared Library Manager (ASLM), you must
call the InitLibraryManager function to initialize ASLM before calling the
InitOpenTransport function. To initialize ASLM, use the InitLibraryManager
function, described in the Apple Shared Library Manager DeveloperÕs Guide.
Functions 373

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
For applications, Open Transport patches the ExitToShell trap when you call
the function InitOpenTransport. The patch calls the function
CloseOpenTransport if Open Transport is still active when your application
quits.

SEE ALSO

ÒThe Gestalt Selector and Response BitsÓ (page 369).

ÒInitializing and Closing Open TransportÓ(page 31).

The CloseOpenTransport function (page 375).

InitOpenTransportUtilities 20

Initializes only that part of Open Transport that handles ports and implements
Open Transport utility functions.

C INTERFACE

OSStatus InitOpenTransportUtilities(void);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

function result A return value other than kOTNoError indicates that the Open
Transport is not installed.

DISCUSSION

If you have called the function InitOpenTransport, you do not need to call the
InitOpenTransportUtilities function.
374 Functions

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
Call the InitOpenTransportUtilities function before calling Open Transport
functions that manipulate ports or before calling Open Transport utility
functions.

SPECIAL CONSIDERATIONS

If your program uses the Apple Shared Library Manager (ASLM), you must
call the InitLibraryManager function to initialize ASLM before calling the
InitOpenTransportUtilities function.

SEE ALSO

The InitOpenTransport function (page 373).

The Gestalt function, described in Inside Macintosh: Operating System Utilities.
ÒThe Gestalt Selector and Response BitsÓ (page 369).

ÒInitializing and Closing Open Transport (page 31).

The CloseOpenTransport function (page 375).

CloseOpenTransport 20

Unregisters your application or code resource connection to Open Transport.

C INTERFACE

void CloseOpenTransport(void);

C++ INTERFACE

None. C++ applications use the C interface to this function.

DISCUSSION

The CloseOpenTransport function tells Open Transport that your application or
code resource has Þnished using it. You can call this function only at system
Functions 375

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
task time. You must not call this function if you have any outstanding network
I/O in progress, such as an outstanding asynchronous operation.

When your application Þnishes using Open Transport, you have the option of
using this function to unload Open Transport without stopping execution if
your application has other tasks to perform that do not require Open Transport.
If you are writing an application, you are not required to use this function, but
it is strongly recommended that you do so.

If you are writing a code resource, a CFM code fragment, or a shared library,
you must call the CloseOpenTransport function before unloading from memory.

System software cannot unload the Open Transport kernel until the last
software module on your computer that called the InitOpenTransport function
has also called the CloseOpenTransport function.

SPECIAL CONSIDERATIONS

If your client uses the Apple Shared Library Manager, be sure you call the
CleanupLibraryManager function after calling the CloseOpenTransport function.

SEE ALSO

The InitOpenTransport function (page 373).

The InitOpenTransportUtilities function (page 374).

ÒGetting Started With Open TransportÓ in Networking With Open Transport.

Creating, Cloning, and Disposing of a ConÞguration Structure 20

This section describes the Open Transport functions you can use to create,
clone, and destroy a provider conÞguration structure.

OTCreateConÞguration 20

Creates a structure deÞning a providerÕs conÞguration.
376 Functions

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
C INTERFACE

OTConfiguration* OTCreateConfiguration(const char* path);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

path A pointer to a character string describing the provider.

function result A pointer to a private OTConfiguration structure. If the value
speciÞed with the path parameter was invalid, the function
returns the result kOTInvalidConfigurationPtr. If there was not
enough memory to create the structure, the function returns the
result kOTNoMemoryConfigurationPtr.

DISCUSSION

The OTCreateConfiguration function creates a conÞguration structure that
deÞnes the software modules, hardware ports, and options that Open
Transport uses when you open a provider. This is a private structure, deÞned
by the OTConfiguration data type (page 370). To create a conÞguration
structure, use the path parameter to pass a string describing the provider
service desired to the OTCreateConfiguration function.

The simplest possible value of the path parameter is the name of the
highest-level protocol you want to use; for example, ÒtcpÓ . If you do not
specify a complete communications path, Open Transport uses default settings
to construct the rest of the path. For example, if you specify ÒadspÓ for the path
parameter, Open Transport defaults to using the AppleTalk Data Stream
Protocol (ADSP) protocol module layered above the Datagram Delivery
Protocol (DDP) protocol module, which is, in turn, layered on the default port
conÞgured in the AppleTalk control panel.

If you want to identify a particular port in the conÞguration string, you use the
port name to do so, described in the chapter ÒPortsÓ(page 191). More typically,
however, you leave this value blankÑfor example, using a string with only
ÒadspÓ , which conÞgures the provider with whatever port is speciÞed in the
AppleTalk control panel.
Functions 377

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
To specify more than one protocol module, separate the module names
with commas. You can also specify values for options by putting them in
parentheses after the protocol name; for example, “adsp, ddp(Checksum=1)”
speciÞes that ADSP is to run on top of DDP and that the DDP checksum option
is enabled. For a list of valid options for each protocol, see the corresponding
protocol reference chapter.

The OTCreateConfiguration function returns a pointer to the conÞguration
structure it creates. You pass this pointer as a parameter to the open-provider
functions such as the OTOpenEndpoint or OTOpenMapper functions. If the function
returns an error code, it is safe to pass the error code as the OTOpenEndpoint
OTConfiguration* parameter. OTOpenEndpoint will return the appropriate error.

SPECIAL CONSIDERATIONS

Functions that open providers dispose of the OTConfiguration structure that
they use, so you need to use the OTCloneConfiguration function to clone a
conÞguration structure if you want to open multiple providers with the
same conÞguration.

SEE ALSO

ÒReusing Provider ConÞgurationsÓ (page 37) .

The OTCloneConfiguration function(page 378).

The OTDestroyConfiguration function (page 379).

The OTOpenEndpoint function (page 437) . The OTAsyncOpenEndpoint
function(page 438).

OTCloneConÞguration 20

Copies an OTConfiguration structure.

C INTERFACE

OTConfiguration* OTCloneConfiguration(OTConfiguration* cfig);
378 Functions

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

cfig A pointer to the OTConfiguration structure that you want
to copy.

function result A pointer to a private OTConfiguration structure.

DISCUSSION

The OTCloneConfiguration function copies the OTConfiguration structure that
you specify in the cfig parameter and returns a pointer to the copy. Because the
format of an OTConfiguration structure is private, you must use the
OTCloneConfiguration function to obtain two identical structures. Creating
conÞgurations through cloning is much faster than recreating them using the
OTCreateConfiguration function.

SEE ALSO

ÒInitiating and Closing Open TransportÓ(page 31).

The OTCreateConfiguration function (page 376).

The OTDestroyConfiguration function (page 379).

OTDestroyConÞguration 20

Disposes of an OTConfiguration structure.

C INTERFACE

void OTDestroyConfiguration(OTConfiguration* cfig);

C++ INTERFACE

None. C++ applications use the C interface to this function.
Functions 379

C H A P T E R 2 0

Initializing and Closing Open Transport Reference
PARAMETERS

cfig A pointer to the OTConfiguration structure that you want to
dispose of.

DISCUSSION

The OTDestroyConfiguration function disposes of the OTConfiguration structure
that you specify in the cfig parameter and releases all associated memory.

Functions that open providers automatically disposes of the OTConfiguration
structure that they use. For this reason, most applications need not call the
OTDestroyConfiguration function. You should call the OTDestroyConfiguration
function only to dispose of an OTConfiguration structure that you have not
actually used to open a provider.

SEE ALSO

ÒInitiating and Closing Open TransportÓ(page 31).

The OTCreateConfiguration function (page 376).

The OTCloneConfiguration function (page 378).
380 Functions

C H A P T E R 2 1

Contents

Contents
Figure 21-0
Listing 21-0
Table 21-0
21 Providers Reference
Constants and Data Types 384
Error-Checking Constant 384
Event Codes 384

Functions 390
Opening and Closing Providers 390

OTTransferProviderOwnership 391
OTWhoAmI 392
OTCloseProvider 393

Controlling a ProviderÕs Modes of Operation 394
OTSetSynchronous 395
OTSetAsynchronous 396
OTIsSynchronous 397
OTCancelSynchronousCalls 398
OTSetBlocking 399
OTSetNonBlocking 400
OTIsNonBlocking 401
OTAckSends 402
OTDontAckSends 404
OTIsAckingSends 405

Using NotiÞer Functions 406
OTInstallNotifier 406
OTRemoveNotifier 408
OTEnterNotifier 409
OTLeaveNotifier 410
OTUseSyncIdleEvents 411

Sending Module-SpeciÞc Commands 412
OTIoctl 412
381

C H A P T E R 2 1
Application-DeÞned NotiÞer Functions 414
MyNotifierCallbackFunction 414
382 Contents

C H A P T E R 2 1
Providers Reference 21

This chapter describes general provider constants, data types, and functions
that you can use with providers of any type. For conceptual information about
providers, see ÒProvidersÓ (page 61).

Constants and Data Types 21

This section describes the constants and data types that you can use with
general provider functions.

Error-Checking Constant 21

Open Transport provides a constant that you can use to initialize a pointer to
the opaque provider reference structure. You can then check that the current
provider reference is valid before passing it to provider functions. The constant
is deÞned as follows:

#define kOTInvalidProviderRef((ProviderRef)(0)

Event Codes 21

Your application can include a notiÞer function that the provider calls to
inform you that some provider event has occurred. The provider passes an
event code for the functionÕs code parameter. The event code speciÞes which
provider event has occurred. The provider can also pass information using the
result and cookie parameters to the notifier function. Normally, if the provider
calls your notiÞer because an asynchronous function has completed, the result
parameter contains the result code for the function and the cookie parameter
contains additional information whose meaning varies with the function called.
For example, if you call the OTAsyncOpenEndpoint function, the cookie parameter
would contain the endpoint reference for the endpoint provider you just
opened.

Most of the codes speciÞed by the event codes enumeration are used by
endpoint providers and relate to the use of endpoint functions. See ÒHandling
Events for EndpointsÓ (page 102) for more information.
Constants and Data Types 383

C H A P T E R 2 1

Providers Reference
The constant names that the provider can use for the event code are given by
the following enumeration:

enum {
T_LISTEN = (OTEventCode)0x0001,
T_CONNECT = (OTEventCode)0x0002,
T_DATA = (OTEventCode)0x0004,
T_EXDATA = (OTEventCode)0x0008,
T_DISCONNECT = (OTEventCode)0x0010,
T_ERROR = (OTEventCode)0x0020,
T_UDERR = (OTEventCode)0x0040,
T_ORDREL = (OTEventCode)0x0080,
T_GODATA = (OTEventCode)0x0100,
T_GOEXDATA = (OTEventCode)0x0200,
T_REQUEST = (OTEventCode)0x0400,
T_REPLY = (OTEventCode)0x0800,
T_PASSCON = (OTEventCode)0x1000,
T_RESET = (OTEventCode)0x2000,
T_BINDCOMPLETE = (OTEventCode)0x20000001,
T_UNBINDCOMPLETE = (OTEventCode)0x20000002,
T_ACCEPTCOMPLETE = (OTEventCode)0x20000003,
T_REPLYCOMPLETE = (OTEventCode)0x20000004,
T_DISCONNECTCOMPLETE = (OTEventCode)0x20000005,
T_OPTMGMTCOMPLETE = (OTEventCode)0x20000006,
T_OPENCOMPLETE = (OTEventCode)0x20000007,
T_GETPROTADDRCOMPLETE = (OTEventCode)0x20000008,
T_RESOLVEADDRCOMPLETE = (OTEventCode)0x20000009,
T_GETINFOCOMPLETE = (OTEventCode)0x2000000A,
T_SYNCCOMPLETE = (OTEventCode)0x2000000B,
T_MEMORYRELEASED = (OTEventCode)0x2000000C,
T_REGNAMECOMPLETE = (OTEventCode)0x2000000D,
T_DELNAMECOMPLETE = (OTEventCode)0x2000000E,
T_LKUPNAMECOMPLETE = (OTEventCode)0x2000000F,
T_LKUPNAMERESULT = (OTEventCode)0x20000010,
kOTProviderIsDisconnected = (OTEventCode)0x23000001,
kOTSyncIdleEvent
kOTProviderIsReconnected = (OTEventCode)0x23000002.
kOTProviderWillClose = (OTEventCode)0x24000001,
kOTProviderIsClosed = (OTEventCode)0x24000002,

};
384 Constants and Data Types

C H A P T E R 2 1

Providers Reference
Constant descriptions

T_LISTEN A connection request has arrived. Call the OTListen
function to read the request.

T_CONNECT The passive peer has accepted a connection that you
requested using the OTConnect function. Call the
OTRcvConnect function to retrieve any data or option
information that the passive peer has speciÞed when
accepting the connection or to retrieve the address to
which you are actually connected. The cookie parameter to
the notiÞer function is the sndCall parameter that you
speciÞed when calling the OTConnect function.

T_DATA Normal data has arrived. Depending on the type of service
of the endpoint you are using, you can call the OTRcvUData
function or the OTRcv function to read it. Continue reading
data until the function returns with the kOTNoDataErr
result; you will not get another indication that data has
arrived until you have read all the data and got this error.

T_ERROR Obsolete.
T_EXDATA Expedited data has arrived. Use the OTRcv function to read

it. Continue reading data by calling the OTRcv function
until the function returns with the kOTNoDataErr result; you
will not get another indication that data has arrived until
you have read all the data and got this error.

T_DISCONNECT A connection has been torn down or rejected. Use the
OTRcvDisconnect function to clear the event.
If the event is used to signify that a connection has been
terminated, the cookie parameter to the notiÞer is NULL.
If the event indicates a rejected connection request, the
cookie parameter to the notification routine is the same as
the sndCall parameter that you passed to the OTConnect
function.

T_UDERR The provider was not able to send the data you speciÞed
using the OTSndUData function even though the function
returned successfully. You must call the OTRcvUDErr
function to clear this event and determine why the
function failed.

T_ORDREL The remote client has called the OTSndOrderlyDisconnect
function to initiate an orderly disconnect. You must call the
Constants and Data Types 385

C H A P T E R 2 1

Providers Reference
OTRcvOrderlyDisconnect function to acknowledge receiving
the event.

T_GODATA Flow-control restrictions have been lifted. You can now
send normal data.

T_GOEXDATA Flow-control restrictions have been lifted. You can now
send expedited data.

T_REQUEST A request has arrived. Depending on the type of service
for the endpoint you are using, you can call the
OTRcvRequest function or the OTRcvURequest function to
receive it. You must continue to call the function until it
returns with the kOTNoDataErr result.

T_REPLY A response to a request has arrived. Depending on the
type of service of the endpoint you are using, you can call
the OTRcvReply function or OTRcvUReply function to receive
it. You must continue to call the function until it returns
with the kOTNoDataErr result.

T_PASSCON When the OTAccept function completes, the endpoint
provider passes this event to the endpoint receiving the
connection (whether that endpoint is the same as or
different from the endpoint that calls the OTAccept
function). The cookie parameter contains the resRef
parameter to the OTAccept function.

T_RESET A connection-oriented endpoint has received a reset from
the remote end and has ßushed all unread and unsent
data. This only occurs for some types of endpoints, and it
generally leaves the endpoint in an unknown state.

T_BINDCOMPLETE The OTBind function has completed. The cookie parameter
contains the retAddr parameter of the bind call.

T_UNBINDCOMPLETE The OTUnbind function has completed. The cookie
parameter is meaningless.

T_ACCEPTCOMPLETE The OTAccept function has completed. The cookie
parameter contains the resRef parameter to the OTAccept
function.

T_REPLYCOMPLETE The OTSndUReply or OTSndReply functions have completed.
The cookie parameter contains the sequence number used
in the OTSndUReply or OTSndReply call.

T_DISCONNECTCOMPLETE
The OTSndDisconnect function has completed. The cookie
386 Constants and Data Types

C H A P T E R 2 1

Providers Reference
parameter contains the call parameter of the
OTSndDisconnect function.

T_OPTMGMTCOMPLETE The OTOptionManagement function has completed. The
cookie parameter contains the ret parameter that you
passed to the function.

T_OPENCOMPLETE An asynchronous call to open a provider has completed.
The cookie parameter contains the provider reference.

T_GETPROTADDRCOMPLETE
The OTGetProtAddress function has completed. The cookie
parameter contains the peerAddr parameter that you
passed to the OTGetProtocolAddress function. If you passed
NULL for that parameter, the cookie parameter contains the
address passed in the boundAddr parameter.

T_RESOLVEADDRCOMPLETE
The OTResolveAddress function has completed. The cookie
parameter contains the retAddr parameter of the
OTResolveAddress function.

T_GETINFOCOMPLETE The OTGetEndpointInfo function has completed. The cookie
parameter contains the info parameter of the
OTGetEndpointInfo function.

T_SYNCCOMPLETE The OTSync function has completed. The cookie parameter
is meaningless.

T_MEMORYRELEASED You are using an asynchronous endpoint that
acknowledges sends and Open Transport is done using the
buffers containing the data you are sending. If you called
the OTSnd function, the cookie parameter contains the buf
parameter. If you called the OTSndUData function, the cookie
parameter contains the udata parameter. The result
parameter contains the number of bytes that were sent.
This might be less than the number you meant to send due
to ßow-control or memory restrictions.
You should not wait for the T_MEMORYRELEASED event from a
previous send operation to trigger more sends. The exact
time this event occurs depends on how the underlying
provider is implemented. It might hold on to memory until
the next send occurs, or behave in some other way which
causes it to delay releasing memory.
Constants and Data Types 387

C H A P T E R 2 1

Providers Reference
Note that T_MEMORYRELEASED events can reenter your
notiÞer. See ÒOTAckSendsÓ (page 401) for more
information.

T_REGNAMECOMPLETE The OTRegisterName function has completed. The cookie
parameter is the reply parameter, unless it was NULL. In
this case, it is the req parameter.

T_DELNAMECOMPLETE The OTDeleteName function or the OTDeleteNameByID
function has completed. The cookie parameter contains the
name parameter or the nameId parameter of the function,
respectively.

T_LKUPNAMECOMPLETE
The OTLookupName function has completed. The cookie
parameter contains the reply parameter of the
OTLookUpName function.

T_LKUPNAMERESULT An OTLookupName function has found a name and is
returning it, but the lookup is not yet complete. The cookie
parameter contains the reply parameter passed to the
OTLookupName function.

kOTSyncIdleEvent A synchronous call is waiting to complete. Call the
function YieldToAnyThread from your notiÞer to allow
other concurrent processes to obtain processing time. See
ÒUsing Synchronous Processing With ThreadsÓ (page 130)
for more information.

kOTProviderIsDisconnected
Your provider was bound with a qlen parameter value
greater than 0 and it has been disconnected (is no longer
listening). You receive this event after a port has accepted a
request to temporarily yield ownership of a port to another
provider, which causes this provider to be disconnected
from the port in question. This currently only happens
with serial ports, but could also happen with other
connection-oriented drivers that have characteristics
similar to serial ports. You get a kOTProviderIsReconnected
message when the port reverts back to this providerÕs
ownership again.

kOTProviderIsReconnected
Your provider has been reconnected, that is, the cause for
its disconnection has been relieved.
388 Constants and Data Types

C H A P T E R 2 1

Providers Reference
kOTProviderWillClose
When you return from the notiÞer function, Open
Transport will close the provider whose reference is
contained in the cookie parameter. The result parameter
contains a result code specifying the reason why the
provider had to close. For example, the user decided to
switch links using the TCP/IP or AppleTalk control panel.
The result codes that can be returned are in the range
Ð3280 through Ð3285; these are documented in ÒResult
CodesÓ (page 785).
You can only get this event at system task time.
Consequently, you are allowed to set the endpoint to
synchronous mode (from within the notiÞer function) and
call functions synchronously before you return from the
notiÞer, at which point the provider is closed. After this,
any calls other than OTCloseProvider will fail with a
kOTOutStateErr.

kOTProviderIsClosed
The provider has closed. The reason for being closed can
be found in the OTResult value passed to your notiÞer. The
reasons typically are kOTPortHasDiedErr,
kOTPortWasEjectedErr, or kOTPortLostConnectionErr. At
this point, any calls other than OTCloseProvider will fail
with a kOTOutStateErr.

Functions 21

This section describes general provider functions. Before you can use these
functions, you must initialize the Open Transport software by calling the
InitOpenTransport function, which is described in ÒInitializing Open
TransportÓ (page 31).

Opening and Closing Providers 21

To create and open a provider, you use a type-speciÞc provider functionÑfor
example, the OTOpenEndpoint or OTAsyncOpenEndpoint function creates and
opens an endpoint. These functions are included in the chapters describing the
Functions 389

C H A P T E R 2 1

Providers Reference
various type of providers. When you Þnish using a provider of any type,
always call the OTCloseProvider function to close and delete the provider.

You can also transfer ownership of a provider using the
OTTransferProviderOwnership function, and the OTWhoAmI function, to obtain the
ID of the current client.

OTTransferProviderOwnership 21

Transfers a providerÕs ownership to a new client.

C INTERFACE

ProviderRef OTTransferProviderOwnership(
ProviderRef ref,
OTClient prevOwner,
OSStatus* errPtr);

C++ INTERFACE

ProviderRef TProvider::OTTransferProviderOwnership(
OSStatus* errPtr);

PARAMETERS

ref The provider reference for the provider to be transferred.

prevOwner The previous owner of the provider.

errPtr A pointer to a result code.

function result A new provider reference that replaces the original.

DISCUSSION

The OTTransferProviderOwnership function transfers the ownership of the
provider indicated by the ref parameter from whoever created the provider,
speciÞed by the prevOwner parameter, to the current Open Transport client. The
390 Functions

C H A P T E R 2 1

Providers Reference
new owner must obtain the client ID and the provider ref from the current
owner before calling this function. You must use this function whenever some
other entity (typically a shared library) opens an endpoint on behalf of the
client.

Under Open Transport, a provider allocates a small amount of memory from
the clientÕs heap. In addition, Open Transport automatically cleans up behind
clients that call the CloseOpenTransport function. If a shared library creates a
provider on your behalf and that shared library subsequently unloads while
you are still using the provider, two things will happen: The memory for the
provider is no longer valid, and the provider is closed. By using the
OTTransferProviderOwnership function, you can gain ownership of the provider.
Once you do, Open Transport allocates a new provider reference in your
memory pool and the provider is marked as belonging to the calling client. The
old provider reference is then invalid and should not be used.

SPECIAL CONSIDERATIONS

When installing a notiÞer for a provider, Open Transport assumes that the
OTNotifyProcPtr pointer is in the same architecture as the call being made.
After transferring ownership, remove any already installed notiÞers and install
your own, unless you are sure that the providerÕs existing notiÞer is of the
correct architecture and makes sense for you

▲ W A R N I N G

If you do not use the OTTransferProviderOwnership
function, it is vital that the provider be closed under the
same architecture that opened the provider. ▲

SEE ALSO

The OTWhoAmI function (page 391).

OTWhoAmI 21

Returns the current clientÕs ID.
Functions 391

C H A P T E R 2 1

Providers Reference
C INTERFACE

OTClient OTWhoAmI(void);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

function result A 32-bit value specifying the client ID.

DISCUSSION

In transferring provider ownership from an old client to a new client, the old
client must obtain its own current client ID (by calling the OTWhoAmI function)
and must use some means to communicate this value to the new client. The
new client then uses this value as the prevOwner parameter to the
OTTransferProviderOwnership function that it calls to gain ownership of the
provider.

SEE ALSO

The OTTransferProviderOwnership function (page 390).

OTCloseProvider 21

Closes a provider of any typeÑendpoint, mapper, or service provider.

C INTERFACE

OSStatus OTCloseProvider(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::Close()
392 Functions

C H A P T E R 2 1

Providers Reference
PARAMETERS

ref The provider reference of the provider to be closed.

function result An error code. See Appendix B for more information.

DISCUSSION

The OTCloseProvider function closes the provider that you specify in the ref
parameter. Closing the provider disposes of all memory reserved for it, deletes
its resources, and cancels any provider functions that are currently executing.

If there are outstanding asynchronous calls when you close the provider, these
calls will never complete. If there are outstanding synchronous calls, the calls
will complete with the result of kOTCanceledErr.

The blocking/nonblocking status of the provider governs what actually
happens when a provider is closed. In nonblocking mode, closing a provider
ßushes all outgoing commands in the stream before immediately closing the
provider. In blocking mode, the stream is given up to 15 seconds per module to
allow outgoing commands and data to be processed before closing the stream.
Insofar as the caller is concerned, the provider is closed immediately.

▲ W A R N I N G

You need to be sure that there are no outstanding
T_MEMORYRELEASED events for a provider before you close
the provider. Otherwise, Open Transport attempts to
deliver the event to a provider that no longer exists, with
unpredictable results, such as crashing the system. ▲

SEE ALSO

For information about opening different types of providers, please see the
appropriate reference chapter in this book.

Controlling a ProviderÕs Modes of Operation 21

A providerÕs mode of operation determines whether the provider runs
synchronously or asynchronously, whether the provider blocks, and whether
the provider acknowledges sends.
Functions 393

C H A P T E R 2 1

Providers Reference
By default, providers created synchronously operate in synchronous mode;
providers created asynchronously operate in asynchronous mode. You can use
the OTSetSynchronous or OTSetAsynchronous function to specify how provider
functions should execute. You can Þnd out the current setting by calling the
OTIsSynchronous function. If synchronous functions are in progress on a
provider, you can cancel all of them by calling the OTCancelSynchronousCalls
function.

A providerÕs blocking status affects how it interacts with a client. In servicing a
clientÕs request, a provider might be able to deal with the request immediately,
or it might have to queue the request and deal with it later. You can set a
providerÕs blocking status by calling the OTSetBlocking or OTSetNonBlocking
function. You can Þnd out a providerÕs current blocking status by calling the
OTIsNonBlocking function. By default, providers do not block. For more
information about blocking, see the section ÒSetting a ProviderÕs Blocking
StatusÓ (page 72).

You can use the OTAckSends and OTDontAckSends functions to specify whether a
provider acknowledges sends. This determines whether a provider copies data
that you send . To determine whether a provider acknowledges sends, you call
the OTIsAckingSends function. By default, providers do not acknowledge sends.
Mapper and individual service providers like AppleTalk and TCP/IP ignore
the setting of this attribute. However, the behavior of endpoint functions that
send data is affected by the endpoint providerÕs acknowledgment status.

OTSetSynchronous 21

Sets a provider to synchronous mode.

C INTERFACE

OSStatus OTSetSynchronous(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::SetSynchronous();
394 Functions

C H A P T E R 2 1

Providers Reference
PARAMETERS

ref The provider reference of the provider which you want to set to
synchronous mode.

function result An error code. See Appendix B for more information.

DISCUSSION

The OTSetSynchronous function causes all provider functions to run
synchronously when using the provider that you specify. Changing this does
not affect its notiÞer function, if any is installed for this provider; the notiÞer
function remains installed.

You can call this function at any time and it will always succeed; however, you
should take care changing this while outstanding asynchronous calls are in
progress. See ÒSpecifying How Provider Functions ExecuteÓ (page 71) for more
information.

To place a provider in asynchronous mode, call the OTSetAsynchronous
function, (page 394). To Þnd out a providerÕs mode of execution, call the
OTIsSynchronous function (page 396).

SEE ALSO

ÒSpecifying How Provider Functions ExecuteÓ (page 71).

OTSetAsynchronous 21

Sets a provider to asynchronous mode.

C INTERFACE

OSStatus OTSetAsynchronous(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::SetAsynchronous();
Functions 395

C H A P T E R 2 1

Providers Reference
PARAMETERS

ref The provider reference of the provider which you want to set to
asynchronous mode..

function result An error code. See Appendix B for more information.

DISCUSSION

The OTSetAsynchronous function causes all functions for the provider speciÞed
in the ref parameter to run asynchronously. You should install a notiÞer
function for the provider to receive completion and other events. You can
install a notiÞer function either before or after calling the OTSetAsynchronous
function.

You can call this function at any time and it will always succeed.

To set a provider to synchronous mode, call the OTSetSynchronous function
(page 394). To Þnd out a providerÕs current setting, call the OTIsSynchronous
function (page 396).

SEE ALSO

ÒSpecifying How Provider Functions ExecuteÓ (page 71).

ÒUsing NotiÞer FunctionsÓ (page 405).

OTIsSynchronous 21

Determines whether a provider is asynchronous.

C INTERFACE

Boolean OTIsSynchronous(ProviderRef ref);

C++ INTERFACE

Boolean TProvider::IsSynchronous();
396 Functions

C H A P T E R 2 1

Providers Reference
PARAMETERS

ref The provider reference for the provider whose mode you want
to obtain.

function result The OTIsSynchronous function returns true if a provider is in
synchronous mode or returns false if the provider is in
asynchronous mode.

DISCUSSION

To set a provider to synchronous mode, call the OTSetSynchronous function
(page 394). To set a provider to asynchronous mode, call the OTSetAsynchronous
function (page 395).

OTCancelSynchronousCalls 21

Cancels any currently executing synchronous function for a speciÞed provider.

C INTERFACE

OSStatus OTCancelSynchronousCalls(ProviderRef ref, OSStatus err);

C++ INTERFACE

void TProvider::CancelSynchronousCalls(OSStatus err);

PARAMETERS

ref The provider reference for the provider whose synchronous
functions you want to cancel.

err The error code value to be returned to the synchronous caller,
typically kOTCanceledErr.

function result For the C interface, kEBADFErr is returned if the reference is
invalid. The function can also return kOTOutStateErr if the
endpoint is closed.
Functions 397

C H A P T E R 2 1

Providers Reference
DISCUSSION

The OTCancelSynchronousCalls function cancels any currently executing
synchronous function for the provider that you specify. The provider need not
be in synchronous mode when you call this function.

Typically, you would call the OTCancelSynchronousCalls function to prevent a
synchronous function from hanging the system. You can make the call at
interrupt time by installing a Time Manager task that executes after a given
amount of time has passed. You can also call this function from the providerÕs
notiÞer after getting a kOTSyncIdleEvent after a timeout.

IMPORTANT

The OTCancelSynchronousCalls function may cause a
provider to be unusable. Typically, once this call is made,
the only thing you can do with the provider is close it. For
example, calling the OTCancelSynchronousCalls function on
a connection-oriented endpoint might break its connection
and render the endpoint unusable. ▲

SEE ALSO

Timer tasks are described in the chapter ÒUtitlities Reference.Ó

ÒSpecifying How Provider Functions ExecuteÓ (page 71).

OTSetBlocking 21

Sets a provider to wait or block until it can complete a function.

C INTERFACE

OSStatus OTSetBlocking(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::SetBlocking();
398 Functions

C H A P T E R 2 1

Providers Reference
PARAMETERS

ref The provider reference of the provider that is to block.

function result An error code. See Appendix B for more information.

DISCUSSION

For a full description of the effect of this call, see ÒSetting a ProviderÕs Blocking
StatusÓ (page 72).

If a provider is in blocking mode and you call the OTCloseProvider function
to close the provider, Open Transport gives each STREAMS module up to
15 seconds to process outgoing data.

To set a providerÕs blocking mode to nonblocking, call the OTSetNonBlocking
function (page 399). To Þnd out a providerÕs current blocking mode, call the
OTIsNonBlocking function (page 400).

OTSetNonBlocking 21

Sets a provider to return with an error if it cannot immediately complete a
function.

C INTERFACE

OSStatus OTSetNonBlocking(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::SetNonBlocking();

PARAMETERS

ref The provider reference of the provider whose blocking mode is
being set.

function result An error code. See Appendix B for more information.
Functions 399

C H A P T E R 2 1

Providers Reference
DISCUSSION

For a full description of the effect of this call, see ÒSetting a ProviderÕs Blocking
StatusÓ (page 72).

The OTSetNonBlocking function causes provider functions to return a result code
immediately, instead of waiting for a function to complete. When you open a
provider, its mode of operation is set to nonblocking by default.

If a provider is in nonblocking mode and you call the OTCloseProvider function,
the provider ßushes all outgoing commands in the stream and immediately
closes the provider. Conversely, in blocking mode, the provider would give
each STREAMS module up to 15 seconds to deal with outgoing data.

To set a providerÕs blocking status to blocking, call the OTSetBlocking function,
(page 398). To Þnd out a providerÕs current blocking mode, call the
OTIsNonBlocking function (page 400).

SEE ALSO

ÒSetting a ProviderÕs Blocking StatusÓ (page 72).

OTIsNonBlocking 21

Returns a providerÕs current blocking mode.

C INTERFACE

Boolean OTIsNonBlocking(ProviderRef ref);

C++ INTERFACE

Boolean TProvider::IsNonBlocking();

PARAMETERS

ref The provider reference of the provider whose blocking status
is sought.
400 Functions

C H A P T E R 2 1

Providers Reference
function result True if the provider is currently in nonblocking mode or false if
it is in blocking mode.

DISCUSSION

To set a providerÕs blocking status to blocking, call the OTSetBlocking function
(page 398). To set a providerÕs blocking status to nonblocking, call the
OTSetNonBlocking function (page 399).

SEE ALSO

ÒSetting a ProviderÕs Blocking StatusÓ (page 72).

OTAckSends 21

SpeciÞes that a provider not make an internal copy of data being sent.

C INTERFACE

OSStatus OTAckSends(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::AckSends();

PARAMETERS

ref The provider reference of the provider that is sending data.

function result An error code. See Appendix B for more information.

DISCUSSION

By default, providers make an internal copy of data before sending it and they
do not acknowledge sends. If you use the OTAckSends function to specify that
the provider acknowledge sends and you call a function that sends data, the
Functions 401

C H A P T E R 2 1

Providers Reference
provider does not copy the data before sending it. Instead, it reads data directly
from your buffer while sending. For this reason, you must not change the
contents of your buffer until the provider is no longer using it. The provider
lets you know that it has Þnished using the buffer by calling your notiÞer
function and passing the T_MEMORYRELEASED event code for the code parameter, a
pointer to the buffer that was sent in the cookie parameter, and the size of the
buffer in the result parameter. The T_MEMORYRELEASED event is not serialized
with other notiÞcation events and will re-enter your notiÞer function.

If you have not installed a notiÞer function for the provider, this function
returns the kOTAccessErr result. If a send is currently outstanding on the
provider, from a call to the OTSnd, OTSndUData, OTSndUReply, OTSndURequest,
OTSndReply, or OTSndRequest functions, the OTAckSends function returns a
kOTChangeStateErr message.

Although you must wait for a T_MEMORYRELEASED event before you touch the
buffer containing the data being sent, you do not have to wait for a
T_MEMORYRELEASED event to send more data. You can continue to process data
normally, sending data until you get a ßow error and then resuming sends
when you receive the T_GODATA event.

▲ W A R N I N G

You need to be sure there are no outstanding
T_MEMORYRELEASED events for a provider before you close
the provider. Otherwise, Open Transport attempts to
deliver the event to a provider that no longer exists, with
unpredictable results, such as crashing the system. ▲

To Þnd out a providerÕs current send-acknowledgment mode, call the
OTIsAckingSends function (page 404).

The send-acknowledgment mode of a provider is ignored by mapper
providers, AppleTalk service providers, and TCP/IP service providers.

COMPLETION EVENT CODES

T_MEMORYRELEASED

SPECIAL CONSIDERATIONS

Because of the complexity of handling ßow control, Open Transport
performance suffers when the acknowledge sends option is used with
noncontiguous data, such as when you pass an OTData structure to the OTSnd
402 Functions

C H A P T E R 2 1

Providers Reference
function. It is best to use this option with contiguous data or with OTData
structures whose last element is large.

SEE ALSO

The OTDontAckSends function(page 403).

ÒSetting a ProviderÕs Send-Acknowledgment StatusÓ (page 72).

See the chapter ÒAdvanced TopicsÓ for more information about acknowledging
sends.

OTDontAckSends 21

SpeciÞes that a provider copy data before sending it.

C INTERFACE

OSStatus OTDontAckSends(ProviderRef ref);

C++ INTERFACE

OSStatus TProvider::DontAckSends();

PARAMETERS

ref The provider reference of the provider that is sending data.

function result An error code. See Appendix B for more information.

DISCUSSION

By default, providers do not acknowledge sends. You need to call the
OTDontAckSends function only if you have used the OTAckSends function to turn
on send-acknowledgment for a provider.
Functions 403

C H A P T E R 2 1

Providers Reference
If a send is currently outstanding on the provider, from a call to the OTSnd,
OTSndUData, OTSndUReply, OTSndURequest, OTSndReply, or OTSndRequest functions,
the OTDontAckSends function returns a kOTChangeStateErr message.

To Þnd out whether a provider is acknowledging sends, call the
OTIsAckingSends function (page 404).

SEE ALSO

ÒSetting a ProviderÕs Send-Acknowledgment StatusÓ (page 72).

OTIsAckingSends 21

Determines whether a provider copies data when sending it.

C INTERFACE

Boolean OTIsAckingSends(ProviderRef ref);

C++ INTERFACE

Boolean TProvider::IsAckingSends();

PARAMETERS

ref The provider reference of the provider sending data.

function result True if the provider does not copy sent data and false if it does.

DISCUSSION

To specify that a provider not copy data on sends, call the OTAckSends function
(page 401). To specify that a provider copy data on sends, call the
OTDontAckSends function (page 403).
404 Functions

C H A P T E R 2 1

Providers Reference
SEE ALSO

ÒSetting a ProviderÕs Send-Acknowledgment StatusÓ (page 72)

Using NotiÞer Functions 21

To receive notice of provider events, you must install a notiÞer function. If the
provider was opened synchronously, you do this by calling the
OTInstallNotifier function. If the provider was opened asynchronously, you
install the notiÞer by passing a pointer to the notiÞer function as a parameter to
the function used to open the provider. To remove a notiÞer function, call the
OTRemoveNotifier function.

You can use the OTUseSyncIdleEvents function to send idle events to your
notiÞer.

OTInstallNotiÞer 21

Installs a notiÞer function.

C INTERFACE

OSStatus OTInstallNotifier(ProviderRef ref,
OTNotifyProcPtr proc,
void* contextPtr);

C++ INTERFACE

OSStatus TProvider::InstallNotifier(OTNotifyProcPtr proc,
void* contextPtr);

PARAMETERS

ref The provider reference of the provider for which you are
installing a notiÞer.
Functions 405

C H A P T E R 2 1

Providers Reference
proc A pointer to a notiÞer function that you provide. (This is a
function pointer not a universal proc pointer, consequently no
mixed mode glue is required. You must never pass a universal
procedure pointer for this parameter.)

For C++ applications, the proc parameter may point to either a
C function or, depending on your development environment, a
static member function.

contextPtr A context pointer for your use. The provider passes this value
unchanged to your notiÞer function when it calls the function.
If you donÕt need context information, pass NIL for this
parameter.

function result An error code. See Appendix B for more information.

DISCUSSION

The OTInstallNotifier function installs a notiÞer function for the provider that
you specify. The notiÞer function remains installed until you remove it using
the OTRemoveNotifier function or until you close the provider. (Setting a
provider to synchronous mode, does not remove the notiÞer.)

Before calling the OTInstallNotifier function, you must open the provider for
which you want to install the notiÞer. If you open a provider asynchronously
(for example, with the OTAsyncOpenEndpoint function), you must pass a pointer
to a notiÞer function as a parameter to the function used to open the provider.

Opening a provider synchronously (for example, with the OTOpenEndpoint
function) opens the provider but does not install a notiÞer function for it. If you
need a notiÞer function for a provider opened synchronously, you must call the
OTInstallNotifier function. This notifier would not return completion events,
but would return asynchronous events advising you of the arrival of data, of
changes in ßow-control restrictions, and so on.

You should not call the OTInstallNotifier function when provider functions
are executing for the provider that you specify. Otherwise, the
OTInstallNotifier function returns the result code kOTStateChangeErr.

If you try to install a notiÞer function for a provider that already has a notiÞer,
the OTInstallNotifier function returns with the kOTAccessErr result.
406 Functions

C H A P T E R 2 1

Providers Reference
IMPORTANT

For 68000-based code, the OTInstallNotifier function
saves the current value of the A5 register. Open Transport
restores the A5 register to this saved value when calling
the notiÞer function you install. If your environment stores
context information in a register other than A5, your
notiÞer function must save and restore the value of that
register. ▲

SEE ALSO

ÒApplication-DeÞned NotiÞer FunctionsÓ (page 413).

OTRemoveNotiÞer 21

Removes a providerÕs notiÞer function.

C INTERFACE

void OTRemoveNotifier(ProviderRef ref);

C++ INTERFACE

void TProvider::RemoveNotifier();

PARAMETERS

ref A provider reference for the provider whose notiÞer function is
to be removed.

DISCUSSION

The OTRemoveNotifier function removes the notiÞer (if any) currently installed
for the provider speciÞed by the ref parameter.
Functions 407

C H A P T E R 2 1

Providers Reference
SEE ALSO

ÒApplication-DeÞned NotiÞer FunctionsÓ (page 413).

The OTInstallNotifier function (page 405).

OTEnterNotiÞer 21

Limits the notiÞcations that can be sent to your notiÞer. (This function can only
be called for Open Transport version 1.1.1 or later.)

C INTERFACE

Boolean OTEnterNotifier (ProviderRef ref);

C++ INTERFACE

Boolean TProvider::EnterNotifier();

PARAMETERS

ref A provider reference for the provider that must not be
interrupted by asynchronous and completion events.

function result The function returns false if you have already called
OTEnterNotifier on this provider or if you make the call from
within your notiÞcation routine.

DISCUSSION

This function prevents Open Transport from sending the speciÞed provider an
asynchronous or completion event. After making this call, notiÞcation is subject
to the same rules as if you were already executing within your notiÞcation
routine. This allows you to determine whether or not you should call the
OTLeaveNotifier function.

You can use calls to OTEnterNotifier and OTLeaveNotifier to bracket critical
sections of your code and to minimize or eliminate synchronization problems.
408 Functions

C H A P T E R 2 1

Providers Reference
To have Open Transport resume sending primary and completion events, you
need to call the OTLeaveNotifier function (page 409).

SEE ALSO

ÒUsing Asynchronous Processing With a NotiÞerÓ (page 134).

OTLeaveNotiÞer 21

Allows Open Transport to resume sending primary and completion events.
(This function can only be called for Open Transport version 1.1.1 or later.)

C INTERFACE

void OTLeaveNotifier (ProviderRef ref);

C++ INTERFACE

void TProvider::LeaveNotifier();

PARAMETERS

ref A provider reference for the provider that can again be
interrupted by asynchronous and completion events.

DISCUSSION

This function allows Open Transport to send the speciÞed provider an
asynchronous or completion event. You should call this function after having
called the OTEnterNotifier function (page 408), to reenable processing of these
events.

SEE ALSO

ÒUsing Asynchronous Processing With a NotiÞerÓ (page 134).
Functions 409

C H A P T E R 2 1

Providers Reference
OTUseSyncIdleEvents 21

Allows synchronous idle events to be sent to your notiÞer. (This function can
only be called for Open Transport version 1.1.1 or later.)

C INTERFACE

OSStatus OTUseSyncIdleEvents (
ProviderRef ref,
Boolean onOff);

C++ INTERFACE

OSStatus TProvider::UseSyncIdleEvents(Boolean onOff);

PARAMETERS

ref A provider reference for the provider whose notiÞer function is
to receive synch idle events.

onOff A Boolean value indicating whether synchronous idle events
can be sent to your notiÞer.

function result An error code. See Appendix B for more information.

DISCUSSION

This function facilitates the interaction between a notiÞer and the Thread
Manager. Its primary purpose is to allow scheduling of other threads while
Open Transport is waiting for a synchronous call to complete. This is the only
time that scheduling of a thread from within a notiÞcation function is legal.

After you call this function with a value of true, Open Transport will generate
kOTSyncIdleEvent events and send them to your notifier whenever your
execution thread is blocked waiting for an operation to complete. At this point,
it is safe to use the YieldtoThread function. If performance is not an issue, this is
a handy method for handling threads. But because the YieldtoThread function
will eventually cause the Thread Manager to switch to a thread that calls
WaitNextEvent, this can impact your performance.
410 Functions

C H A P T E R 2 1

Providers Reference
SEE ALSO

The chapter ÒProgramming With Open Transport.Ó

Sending Module-SpeciÞc Commands 21

STREAMS modules can respond to module-speciÞc commands.You can send a
module-speciÞc command to an Open Transport protocol module by using the
OTIoctl function. Open Transport does not interpret these commands; it merely
relays them from your application to the module. .

▲ W A R N I N G

Sending module-speciÞc commands is for advanced users
only. It can give rise to conßicts for the provider and
confuse the endpoint library. ▲

OTIoctl 21

Sends a module-speciÞc command to an Open Transport protocol module.

C INTERFACE

SInt32 OTIoctl(ProviderRef ref, UInt32 cmd, void* data);

C++ INTERFACE

SInt32 TProvider::Ioctl(UInt32 cmd, void* data);

PARAMETERS

ref The provider reference of the provider affected by the speciÞed
command.

cmd A routine selector for the module-speciÞc command.
Functions 411

C H A P T E R 2 1

Providers Reference
data Data to be used by the module-speciÞc command or a pointer
to such data. The interpretation of the data parameter is
command speciÞc.

function result See Discussion.

DISCUSSION

The OTIoctl function sends a module-speciÞc command to an Open Transport
protocol module.

If the provider is in synchronous mode, the function waits until the command
completes. It then returns 0 or a positive integer. The positive integerÕs
meaning is deÞned by the Open Transport module that you are using. Refer to
the documentation for that module. If the OTIoctl function fails while
executing synchronously, its return value is a negative integer corresponding to
an Open Transport result code.

If the provider is in asynchronous mode, it returns immediately with a return
value kOTNoError or another Open Transport result code. When the function
completes execution, Open Transport calls the notiÞer function installed for the
provider, passing the event code kStreamIoctlEvent and a result parameter
indicating the result of the completed OTIoctl function. If the value of the
result parameter is greater than 0, the corresponding result code is defined by
the command; otherwise, the value of the result parameter corresponds to an
Open Transport result code.

IMPORTANT

You can have only one oustanding call to the OTIoctl
function at any one time. ▲

COMPLETION EVENT CODES

kStreamIoctlEvent

SPECIAL CONSIDERATIONS

Using the OTIoctl function makes your application module dependent; you
should not use the OTIoctl function if you want your application to be
transport independent.
412 Functions

C H A P T E R 2 1

Providers Reference
Application-DeÞned NotiÞer Functions 21

To receive notice of provider events, you must write and install a notiÞer
function. A notiÞer function is the callback function that a provider uses to
communicate information back to your application for all events affecting a
particular provider. A provider in asynchronous mode must have a notiÞer
function to receive completion events.

For most providers, you must also use a notiÞer function to retrieve
asynchronous events. If you have opened an endpoint provider, you can poll
for asynchronous events using the OTLook function, but for a mapper provider
or a service provider, you cannot poll for asynchronous events; you must use a
notiÞer function instead. In general, it is recommended that you use notiÞer
functions to handle both asynchronous and completion events for all providers.

MyNotiÞerCallbackFunction 21

After you install a notiÞer function on a provider, the provider calls the notiÞer
function each time a provider event occurs. The declaration for the procedure is

typedef pascal void (*OTNotifyProcPtr)(void *contextPtr,
OTEventCode code,
OTResult result,
void *cookie);

C INTERFACE

pascal void MyNotifierCallbackFunction(void* contextPtr,
OTEventCode code,
OTResult result,
void* cookie)

C++ INTERFACE

None. C++ appplications use the C interface to this function.
Application-Defined Notifier Functions 413

C H A P T E R 2 1

Providers Reference
PARAMETERS

contextPtr The value you speciÞed for the contextPtr parameter when
installing this notiÞer function. You can use this parameter in
any way that is useful to you.

code An event code indicating the event that occurred. Possible
values for event codes are given in the event code enumeration
(page 383).

result For completion events, the result code of the completed
provider function, identiÞed by the code parameter. For
asynchronous events, the meaning of the result parameter is
event speciÞc. (For most asynchronous events, the result
parameter has no meaning and can be ignored.) For additional
information, see the description of the individual event code.

cookie A pointer to data. The meaning and type of the data vary,
depending on the event code returned in the code parameter.
For additional information, see the event codes enumeration
(page 383).

DISCUSSION

Using a notiÞer function is the recommended way for your application to
handle provider events. After you install a notiÞer function for a provider, the
function is called by the provider each time a provider event occurs for that
provider. For a completion event, the provider passes the function result in the
result parameter, the event code in the code parameter, and any additional
information in the cookie parameter. For an asynchronous event, the provider
usually passes the event code in the code parameter and passes no other
information.

To install a notiÞer function for an existing provider, call the OTInstallNotifier
function (page 405). You can also install a notiÞer when you open a provider
asynchronously by passing a pointer to the notiÞer function as a parameter to
the function used to open the provider. For additional information, see the
reference section of the chapter describing the provider of interest.

You can install the same notiÞer function for two or more providers and use the
contextPtr parameter to distinguish among them. Typically the data structure
referenced by the contextPtr parameter includes a provider reference or some
other identiÞer that uniquely identiÞes the provider for which the notiÞer is
called.
414 Application-Defined Notifier Functions

C H A P T E R 2 1

Providers Reference
Open Transport attempts to minimize re-entrancy and stack overßow problems
by queueing calls to a notiÞcation routine, but this behavior is not guaranteed.
Open Transport does guarantee that the notiÞcation routine will not be
reentered if you are processing a completion event (the event code ends in
_COMPLETE) or an asynchronous event (T_LISTEN, T_CONNECT, T_DATA, T_EXDATA,
T_DISCONNECT, T_UDERR, T_ORDREL, T_REQUEST, T_REPLY, T_PASSCON). Other events,
principally kOTProviderWillClose and T_MEMORYRELEASED may cause your
notiÞer to be reentered. You can use the functions OTEnterNotifier (page 408)
and OTLeaveNotifier (page 409) to allow your foreground code to limit
interruption by notiÞcation events.

▲ W A R N I N G

For 68000 code it is vital you use the pascal keyword when
declaring your notiÞer function. ▲

SPECIAL CONSIDERATIONS

Open Transport can call your notiÞer function at deferred task time. For this
reason, your notiÞer function is subject to the same rules and restrictions as are
all Macintosh functions that can be called at deferred task time; these
restrictions are summarized in the section ÒUsing NotiÞer Functions to Handle
Provider EventsÓ (page 73). Because your notiÞer can be called at deferred task
time, you can only call a limited set of Open Transport functions from your
notiÞer; Table C-3 (page 798) lists the Open Transport functions that you can
call at deferred task time.

The following information applies to 68000-based codeÑwhether it runs in
emulated mode or on 680x0 machines. Before calling your notiÞer function,
Open Transport restores the A5 register to the value it had when you installed
the notiÞer function. Thus, for applications, your notiÞer function need not
restore its A5 world. But if youÕre developing a code resource and your
development environment references your globals from a register other than
A5, your notiÞer function must save and restore that register.

SPECIAL CONSIDERATIONS

You cannot call any Thread Manager function that will cause the current thread
to yield immediately (YieldToThread or YieldToAnyThread) from within your
notiÞcation function unless the event code to the notiÞer is the
kOTSyncIdleEvent code. Use the OTUseSyncIdleEvents function (page 410) to
allow synchronous idle events to be sent to your notiÞer.
Application-Defined Notifier Functions 415

C H A P T E R 2 1

Providers Reference
SEE ALSO

The OTRemoveNotifier function (page 407).

The event codes enumeration (page 383).

Listing 3-1 (page 74).
416 Application-Defined Notifier Functions

C H A P T E R 2 2

Contents

Contents
Figure 22-0
Listing 22-0
Table 22-0
22 Endpoints Reference
Constants and Data Types 420
Error-Checking Constant 420
Endpoint Service Types 421
Open Transport Flags 421
Open Flags 422
Endpoint Flags 423
Endpoint States 423
Structure Types 424
The TEndpointInfo Structure 425
The TBind Structure 428
The TUnitData Structure 429
The TUDErr Structure 429
The TUnitRequest Structure 430
The TUnitReply Structure 431
The TCall Structure 432
The TRequest Structure 433
The TReply Structure 433
The TDiscon Structure 434

Functions 435
Creating Endpoints 435

OTOpenEndpoint 436
OTAsyncOpenEndpoint 437

Binding and Unbinding Endpoints 440
OTBind 440
OTUnbind 444

Obtaining Information About an Endpoint 445
OTGetEndpointInfo 446
417

C H A P T E R 2 2
OTGetEndpointState 447
OTLook 448
OTGetProtAddress 450
OTResolveAddress 452
OTSync 454

Allocating Structures 455
OTAlloc 455
OTFree 458

Determining if Bytes Are Available 460
OTCountDataBytes 460

Functions for Connectionless Transactionless Endpoints 461
OTSndUData 461
OTRcvUDErr 464
OTRcvUData 466

Functions for Connectionless Transaction-Based Endpoints 468
OTSndURequest 468
OTRcvURequest 471
OTSndUReply 474
OTRcvUReply 477
OTCancelURequest 480
OTCancelUReply 482

Establishing Connection 483
OTConnect 483
OTRcvConnect 486
OTListen 488
OTAccept 490

Functions for Connection-Oriented Transactionless Endpoints 493
OTSnd 493
OTRcv 495

Functions for Connection-Oriented Transaction-Based Endpoints 498
OTSndRequest 498
OTRcvRequest 501
OTSndReply 503
OTRcvReply 506
OTCancelRequest 509
OTCancelReply 510

Tearing Down a Connection 511
OTSndDisconnect 512
418 Contents

C H A P T E R 2 2
OTRcvDisconnect 514
OTSndOrderlyDisconnect 515
OTRcvOrderlyDisconnect 516
Contents 419

C H A P T E R 2 2
420 Contents

C H A P T E R 2 2
Endpoints Reference 22

This chapter describes the constants, data types, and functions that you use
with endpoints. You can also use general provider data types and functions
with endpoints. General structures and functions are described in ÒProviders
ReferenceÓ (page 383).

Note
Some endpoint data types and functions correspond exactly to
those in the X/Open Transport Interface (XTI), from which
Open Transport derives its application programming interface.
Appendix A lists these data types and functions. You can refer
to these data types and functions by their Open Transport
names or their corresponding XTI names. For example, you
can refer to the Open Transport function OTBind by the XTI
name t_bind. This chapter refers to endpoint data types and
functions by their Open Transport names. ◆

Constants and Data Types 22

This section describes the constants and data types that you can use with
endpoints. The data types include general types that you can use with any type
of endpoint and speciÞc types that you can use only with one type of endpoint.
The general types, the TEndpointInfo structure and the TBind structure, are
described Þrst, followed by the speciÞc types.

Error-Checking Constant 22

Open Transport provides a constant that you can use to initialize pointers to
the opaque endpoint structure. You can then check that the current endpoint
reference is valid before passing it to endpoint functions. The constant is
deÞned as follows:

#define kOTInvalidEndpointRef ((EndpointRef)0)
Constants and Data Types 421

C H A P T E R 2 2

Endpoints Reference
Endpoint Service Types 22

Open Transport uses the servtype Þeld of the TEndpointInfo structure
(page 426) to indicate the kind of service the endpoint provides. The constant
names that Open Transport can return for this Þeld are given by the endpoint
service enumeration:

enum {
T_COTS = 1,
T_COTS_ORD = 2,
T_CLTS = 3,
T_TRANS = 5,
T_TRANS_ORD = 6,
T_TRANS_CLTS = 7

};

Constant descriptions

T_COTS Connection-oriented transactionless service without
orderly release.

T_COTS_ORD Connection-oriented transactionless service with optional
orderly release.

T_CLTS Connectionless transactionless service.
T_TRANS Connection-oriented transaction-based service without

orderly release.
T_TRANS_ORD Connection-oriented transaction-based service with

optional orderly release.
T_TRANS_CLTS Connectionless transaction-based service.

Open Transport Flags 22

Open Transport uses the OTFlags enumeration to specify additional information
about data that is being transmitted with the OTSnd or OTRcv functions. The
constant names that Open Transport can set or return for this parameter are
given by the Open Transport ßags enumeration.

typedef UInt32 OTFlags;
422 Constants and Data Types

C H A P T E R 2 2

Endpoints Reference
enum {
T_MORE = 0x001,
T_EXPEDITED = 0x002,
T_ACKNOWLEDGED = 0x004,
T_PARTIALDATA = 0x008,
T_NORECEIPT = 0x010/,
T_TIMEDOUT = 0x020

};

Constant descriptions

T_MORE There is more data for the current TSDU or ETSDU. The
next send or receive operation will handle additional data
for this TSDU or ETSDU.

T_EXPEDITED On sends, the data is sent as expedited data if the endpoint
supports expedited data. On receives, the ßag indicates
that expedited data was sent.

T_ACKNOWLEDGED The transaction must be acknowledged before the send or
receive function can complete.

T_PARTIALDATA There is more data for the current TSDU or ETSDU. Unlike
T_MORE, T_PARTIALDATA does not guarantee that the next
send or receive operation will handle additional data for
this TSDU or ETSDU.

T_NORECEIPT There is no need to send a T_REPLY_COMPLETE event to
complete the transaction. If you donÕt need to know when
the transaction is actually done, you can set this ßag to
improve performance.

T_TIMEDOUT The reply timed out. If a protocol such as ATP loses the
acknowledgment for a transaction that needs to be
acknowledged, the transaction will eventually time out.
Since the reply didnÕt really fail (it just timed out), Open
Transport can send a T_REPLY_COMPLETE event to complete
the transaction and set this ßag to explain what happened.

Open Flags 22

The following constant is currently reserved. Set to 0 always.

typedef UInt32 OTOpenFlags;
Constants and Data Types 423

C H A P T E R 2 2

Endpoints Reference
Endpoint Flags 22

Open Transport uses the flags Þeld of the TEndpointInfo structure (page 426) to
specify additional information about the endpoint. The constant names that
Open Transport can return for this Þeld are given by the endpoint ßags
enumeration:

enum {
T_SENDZERO = 0x001,
T_XPG4_1 = 0x002,
T_CAN_SUPPORT_MDATA = 0x10000000,
T_CAN_RESOLVE_ADDR = 0x40000000,
T_CAN_SUPPLY_MIB = 0x20000000

};

Constant descriptions

T_SENDZERO This endpoint lets you send and receive zero-length
TSDUs.

T_XPG4_1 This endpoint supports the OTGetProtAddress function (
conforms to XTI in XPG4).

T_CAN_SUPPORT_MDATA
This endpoint supports M_DATA, that is, it permits receiving
and returning raw packets. For additional information, see
ÒAdvanced Topics.Ó

T_CAN_RESOLVE_ADDR This endpoint supports the OTResolveAddress function.
T_CAN_SUPPLY_MIB This endpoint can supply the Management Information

Base (MIB) data used by the Simple Network Management
Protocol (SNMP).At this time you cannot access this data.

Endpoint States 22

The OTGetEndpointState function (page 448) returns an integer specifying the
current state of an endpoint. Integer values and their corresponding constant
names are given by the endpoint states enumeration. For information about
endpoint states, see the section ÒEndpoint StatesÓ (page 89).

enum {
T_UNINIT = 0,
T_UNBND = 1,
424 Constants and Data Types

C H A P T E R 2 2

Endpoints Reference
T_IDLE = 2,
T_OUTCON = 3,
T_INCON = 4,
T_DATAXFER = 5,
T_OUTREL = 6,
T_INREL = 7

};

Constant descriptions

T_UNINIT This endpoint has been closed and destroyed.
T_UNBND This endpoint is initialized but has not yet been bound to

an address.
T_IDLE This endpoint has been bound to an address and is ready

for use: connectionless endpoints can send or receive data;
connection-oriented endpoints can initiate or listen for a
connection.

T_OUTCON This endpoint has initiated a connection and is waiting for
the peer endpoint to accept the connection.

T_INCON This endpoint has received a connection request but has
not yet accepted or rejected the request.

T_DATAXFER This connection-oriented endpoint can now transfer data
because the connection has been established.

T_OUTREL This endpoint has issued an orderly disconnect that the
peer has not acknowledged. The endpoint can continue to
read data, but must not send any more data.

T_INREL This endpoint has received a request for an orderly
disconnect, which it has not yet acknowledged. The
endpoint can continue to send data until it acknowledges
the disconnection request, but it must not read data.

Structure Types 22

The OTAlloc function (page 456) allocates a data structure that you specify
using one of the constant names given by the structure types enumeration:

typedef UInt32 OTStructType

enum {
Constants and Data Types 425

C H A P T E R 2 2

Endpoints Reference
T_BIND = 1,
T_OPTMGMT = 2,
T_CALL = 3,
T_DIS = 4,
T_UNITDATA = 5,
T_UDERROR = 6,
T_INFO = 7,
T_REPLYDATA = 8,
T_REQUESTDATA = 9,
T_UNITREQUEST = 10,
T_UNITREPLY = 11

};

Constant descriptions

T_BIND SpeciÞes the TBind structure (page 429).
T_OPTMGMT SpeciÞes the TOptMgmt structure (page 574).
T_CALL SpeciÞes the TCall structure (page 433).
T_DIS SpeciÞes the TDiscon structure (page 515).
T_UNITDATA SpeciÞes the TUnitData structure (page 430).
T_UDERROR SpeciÞes the TUDError structure (page 430).
T_INFO SpeciÞes the TEndpointInfo structure (page 426).
T_REPLYDATA SpeciÞes the TReply structure (page 434).
T_REQUESTDATA SpeciÞes the TRequest structure (page 434).
T_UNITREQUEST SpeciÞes the TUnitRequest structure (page 431).
T_UNITREPLY SpeciÞes the TUnitReply structure (page 432).

The TEndpointInfo Structure 22

The TEndpointInfo structure, which is returned by the OTGetEndpointInfo
function, describes the initial characteristics of an endpoint that you opened by
calling the OTOpenEndpoint function (page 447) or the OTAsyncOpenEndpoint
function (page 441). These functions initialize the supplied TEndpointInfo
structure, if you have allocated space for one. You can also get a copy to the
TEndpointInfo structure by calling the OTGetEndpointInfo function (page 447).

You use the TEndpointInfo structure to Þnd out how large a buffer you must
allocate to send or receive information for the endpoint and what kind of
services the endpoint provides.
426 Constants and Data Types

C H A P T E R 2 2

Endpoints Reference
IMPORTANT

It is recommended that you do not hard-code values into
your application that you could otherwise get from the
endpointÕs TEndpointInfo Þeld. These values might
change. ▲

The TEndpointInfo structure is deÞned by the TEndpointInfo data type.

struct TEndpointInfo
{

SInt32 addr;
SInt32 options;
SInt32 tsdu;
SInt32 etsdu;
SInt32 connect;
SInt32 discon;
UInt32 servtype;
UInt32 flags;

};
typedef struct TEndpointInfo TEndpointInfo;

Field descriptions
addr A value greater than or equal to 0 indicates the maximum

size (in bytes) of a protocol address to which you can bind
this endpoint. A value of T_INVALID indicates that this
endpoint does not allow access to protocol addresses (e.g.
serial communication). However, it does not account for
protocols where the address is allowed to be a string, such
as a DNS name for TCP/IP or an NBP name for AppleTalk.
If you are using this feature, you have to be prepared to
allow for a larger address size.

options A value greater than or equal to 0 indicates the maximum
number of bytes needed to store the protocol-speciÞc
options that this endpoint supports, if any. A value of
T_INVALID (-2) indicates that this endpoint has no
protocol-speciÞc options that you can set; they are
read-only. A value of -3 speciÞes that the provider does not
support any options.

tsdu For a transactionless endpoint, a positive value indicates
the maximum number of bytes in a transport service data
unit (TSDU) for this endpoint. A value of T_INFINITE (-1)
Constants and Data Types 427

C H A P T E R 2 2

Endpoints Reference
indicates that there is no limit to the size of a TSDU. A
value of 0 indicates that the provider does not support the
concept of a TSDU. This means that you cannot send data
with logical boundaries preserved across a connection. A
value of T_INVALID indicates that this endpoint cannot
transfer normal data (as opposed to expedited data).
For a transaction-based endpoint, this Þeld indicates the
maximum number of bytes in a response.

etsdu For a transactionless endpoint, a positive value indicates
the maximum number of bytes in an expedited transport
service data unit (ETSDU) for this endpoint. A value of
T_INFINITE indicates that there is no limit to the size of a
ETSDU. A value of 0 indicates that this endpoint does not
support the concept of an ETSDU. This means that you
must not send expedited data with logical boundaries
preserved across a connection. A value of T_INVALID
indicates that this endpoint cannot transfer expedited data.
For a transaction-based endpoint, this Þeld indicates the
maximum number of bytes in a request.

connect For a connection-oriented endpoint, a value greater than or
equal to 0 indicates the maximum amount of data (in
bytes) that you can send with the OTConnect function
(page 484) or the OTAccept function (page 491). A value of
T_INVALID indicates that this endpoint does not let you
send data with these functions. This Þeld is meaningless
for other types of endpoints.

discon For a connection-oriented endpoint, a value greater than or
equal to 0 indicates the maximum amount of data (in
bytes) that you can send using the OTSndDisconnect
function (page 513). A value of T_INVALID indicates that
this endpoint does not let you send data with
disconnection requests. This Þeld is meaningless for other
types of endpoints.

servtype A constant that indicates what kind of service the endpoint
provides. Possible values are given by the endpoint service
enumeration (page 422).

flags A bit Þeld that provides additional information about the
endpoint. Possible values are given by the endpoint ßags
enumeration (page 424).
428 Constants and Data Types

C H A P T E R 2 2

Endpoints Reference
The TBind Structure 22

The TBind structure describes the protocol address to which an endpoint is
currently bound or connected, or speciÞes the protocol address to which you
wish to bind or connect the endpoint. For a connection-oriented endpoint, the
TBind structure also specifies the actual or desired number of connection
requests that can be concurrently outstanding for the endpoint.

You pass the TBind structure as a parameter to the OTBind function (page 441),
the OTGetProtAddress function (page 451), and the OTResolveAddress function
(page 453).

The TBind structure is deÞned by the TBind data type.

struct TBind
{

TNetbuf addr;
OTQLen qlen;

};
typedef struct TBind TBind;

Field descriptions
addr A TNetbuf structure that contains information about an

address. The addr.maxlen Þeld speciÞes the maximum size
of the address, the addr.len Þeld speciÞes the actual length
of the address, and the addr.buf Þeld points to the buffer
containing the address.

When specifying an address, you must allocate a buffer for
the address and initialize it; you must set the addr.buf Þeld
to point to this buffer; and you must set the addr.len Þeld
to the size of the address.
When requesting an address, you must allocate a buffer in
which the address is to be placed; you must set the
addr.buf field to point to this buffer; and you must set the
addr.maxlen field to the maximum size of the address that
is being returned. You determine this value by examining
the addr Þeld of the TEndpointInfo structure for the
endpoint.

qlen For a connection-oriented endpoint, the maximum number
of connection requests that can be concurrently
outstanding for this endpoint. For more information, see
Constants and Data Types 429

C H A P T E R 2 2

Endpoints Reference
the description of the OTBind function (page 441). For
connectionless endpoints, this Þeld has no meaning.

The TUnitData Structure 22

You use the TUnitData structure to describe the data being sent with the
OTSndUData function (page 462) and the data being read with the OTRcvUData
function (page 467); you pass this structure as a parameter to each of these
functions. When sending data you must initialize the buf and len Þelds of all
the TNetbufs. When receiving data, you must initialize the buf and maxlen Þelds
of all the TNetbufs.

The TUnitData structure is deÞned by the TUnitData type.

struct TUnitData
{ TNetbuf addr;

TNetbuf opt;
TNetbuf udata;

};
typedef struct TUnitData TUnitData;

Field descriptions
addr A TNetbuf structure for address information.

opt A TNetbuf structure for option information.
udata A TNetbuf structure for data.

The TUDErr Structure 22

The TUDErr structure points to information that explains why the OTSndUData
function (page 462) has failed. You pass this structure as a parameter to the
OTRcvUDErr function (page 465).

The TUDErr structure is deÞned by the TUDErr type.

struct TUDErr
{

TNetbuf addr;
TNetbuf opt;
430 Constants and Data Types

C H A P T E R 2 2

Endpoints Reference
SInt32 error;
};

typedef struct TUDErr TUDErr;

Field descriptions

addr A TNetbuf structure that contains information about the
destination address of the data sent using the OTSndUData
function. The OTRcvUDErr function Þlls in the buffer
referenced by this structure when the function returns. You
must allocate a buffer to contain the address, initialize the
addr.buf field to point to it, and set the addr.maxlen field to
specify its maximum size. If you are not interested in
address information, set addr.maxlen to 0.

opt A TNetbuf structure that contains information about the
options associated with the data sent using the OTSndUData
function. The OTRcvUDErr function Þlls in the buffer
referenced by this structure when the function returns. If
you want to know this information, you must allocate a
buffer to contain the option data, initialize the opt.buf Þeld
to point to it, and initialize the opt.maxlen Þeld to specify
the maximum size of the buffer. If you are not interested in
option information, set the opt.maxlen Þeld to 0.

error On return, this speciÞes a protocol-dependent error code
for the OTSndUData function that failed.

The TUnitRequest Structure 22

You use the TUnitRequest structure to specify information about the data being
sent with the OTSndURequest function (page 469) and the data being read with
the OTRcvURequest function (page 472); you pass a pointer to this structure as a
parameter to each of these functions. When sending data you must initialize
the buf and len Þelds of all the TNetbufs. When receiving data, you must
initialize the buf and maxlen Þelds of all the TNetbufs.

The TUnitRequest structure is deÞned by the TUnitRequest data type.

struct TUnitRequest
{

TNetbuf addr;
TNetbuf opt;
Constants and Data Types 431

C H A P T E R 2 2

Endpoints Reference
TNetbuf udata;
OTSequence sequence;

};
typedef struct TUnitRequest TUnitRequest;

Field descriptions
addr A TNetbuf structure for address information.

opt A TNetbuf structure for option information associated with
this request.

udata A TNetbuf structure for request data.
sequence A 32-bit value that speciÞes the transaction ID for this

transaction.

The TUnitReply Structure 22

You use the TUnitReply structure to specify the data being sent with the
OTSndUReply function (page 475) and the data being read with the OTRcvUReply
function (page 478). You pass a pointer to the TUnitReply structure as a
parameter to each of these functions. When sending data you must initialize
the buf and len Þelds of all the TNetbufs. When receiving data, you must
initialize the buf and maxlen Þelds of all the TNetbufs.

The TUnitReply structure is deÞned by the TUnitReply data type.

struct TUnitReply
{

TNetbuf addr;
TNetbuf opt;
TNetbuf udata;
OTSequence sequence;

};
typedef struct TUnitReply TUnitReply;

Field descriptions
addr A TNetbuf structure for address information.

opt A TNetbuf structure for option information associated with
this reply.

udata A TNetbuf structure for reply data.
432 Constants and Data Types

C H A P T E R 2 2

Endpoints Reference
sequence A 32-bit value that speciÞes the transaction ID for this
transaction.

The TCall Structure 22

You use the TCall structure to specify the options and data associated with
establishing a connection. You pass a pointer to this structure as a parameter to
the OTConnect function (page 484), the OTRcvConnect function (page 487), the
OTListen function (page 489), and the OTAccept function (page 491).

If you are using the TCall structure to send information, you must allocate a
buffer and initialize it to contain the information. Set the .buf Þeld of each
TNetbuf to point to the buffer, and then specify the size of the buffer using the
.len field. Set this field to 0 if you are not sending data.

If you are using the TCall structure to receive information, you must allocate a
buffer into which the function can place the information when it returns. Then
set the .buf Þeld of all the TNetbufs to point to this buffer, and set the .maxlen
Þeld to the maximum size of the information. Set this Þeld to 0 if you are not
interested in receiving information.

The TCall structure is deÞned by the TCall data type.

struct TCall
{

TNetbuf addr;
TNetbuf opt;
TNetbuf udata;
OTSequence sequence;

};
typedef struct TCall TCall;

Field descriptions
addr A TNetbuf structure that speciÞes the location and size of

an address buffer.

opt A TNetbuf structure that speciÞes the location and size of
an options buffer.

udata A TNetbuf structure that speciÞes the location and size of a
buffer for data associated with a connection or
disconnection request.
Constants and Data Types 433

C H A P T E R 2 2

Endpoints Reference
sequence A 32-bit value used by the OTListen and OTAccept functions
to specify the connection ID.

The TRequest Structure 22

You use the TRequest structure to specify the data being sent with the
OTSndRequest function (page 499) and the data being read with the OTRcvRequest
function (page 502). You pass a pointer to this structure as a parameter to each
of these functions. When sending data you must initialize the buf and len Þelds
of all the TNetbufs. When receiving data, you must initialize the buf and maxlen
Þelds of all the TNetbufs.

The TRequest structure is deÞned by the TRequest data type.

struct TRequest
{

TNetbuf data;
TNetbuf opt;
OTSequence sequence;

};
typedef struct TRequest TRequest;

Field descriptions
data A TNetbuf structure specifying the location and size of the

request data buffer.

opt A TNetbuf structure specifying the location and size of the
options buffer.

sequence A 32-bit value that speciÞes the transaction ID of the
current transaction.

The TReply Structure 22

You use the TReply structure to specify the data being sent with the OTSndReply
function (page 504) and the data being read with the OTRcvReply function
(page 507). You pass this structure as a parameter to each of these functions.
When sending data you must initialize the buf and len Þelds of all the
TNetbufs. When receiving data, you must initialize the buf and maxlen fields of
all the TNetbufs.
434 Constants and Data Types

C H A P T E R 2 2

Endpoints Reference
The TReply structure is deÞned by the TReply data type.

struct TReply
{

TNetbuf data;
TNetbuf opt;
OTSequence sequence;

};
typedef struct TReply TReply;

Field descriptions
data A TNetbuf structure specifying the location and size of the

reply buffer.

opt A TNetbuf structure describing the location and size of the
options buffer.

sequence A long that speciÞes the transaction ID of the current
transaction.

The TDiscon Structure 22

You use the TDiscon structure to specify data sent with OTSndDisconnect
(page 513) and retrieved by the OTRcvDisconnect function (page 515). You pass
this structure as a parameter to these functions.

The TDiscon structure is deÞned by the TDiscon data type.

struct TDiscon
{

TNetbuf udata;
OTReason reason;
OTSequence sequence;

};
typedef struct TDiscon TDiscon;

Field descriptions
udata A TNetbuf structure that references data sent with the

OTSndDisconnect function or received by the
OTRcvDisconnect function.
Constants and Data Types 435

C H A P T E R 2 2

Endpoints Reference
reason A 32-bit value specifying an error code that identiÞes the
reason for the disconnection. These codes are supplied by
the protocol. For additional information, consult the
documentation provided for the protocol you are using.

sequence A 32-bit value specifying an outstanding connection
request that has been rejected. This Þeld is meaningful
only when you have issued several connection requests to
the same endpoint and are awaiting the results.

Functions 22

This section describes functions that you use only with endpoints. The Þrst
four subsectionsÑÒCreating Endpoints,Ó ÒBinding and Unbinding Endpoints,Ó
ÒObtaining Information About an Endpoint,Ó and ÒAllocating StructuresÓ Ñ
describe functions that you can use with any endpoint. The remaining
subsections describe functions that you can use only with speciÞc types of
endpoints, as indicated by the subsection title; for example, ÒFunctions for
Connectionless Transactionless Endpoints.Ó Endpoint types are described in
ÒEndpoint Types and Type of ServiceÓ (page 85).

You can also use general provider functions with endpoints. General provider
functions and structures are described in ÒProviders ReferenceÓ (page 383).

Creating Endpoints 22

To transfer information, you need to create an endpoint and assign it an
address. To create an endpoint, you call the OTOpenEndpoint or
OTAsyncOpenEndpoint function. You must create an endpoint before calling any
endpoint functions. After creating an endpoint, you must bind it by assigning it
a protocol address. After binding, the endpoint is ready for use. When you
Þnish using an endpoint, always call the function OTCloseProvider to close the
endpoint.

For more information about binding an endpoint, see ÒBinding and Unbinding
EndpointsÓ (page 441). For a description of the OTCloseProvider function, see
ÒProviders ReferenceÓ (page 383).
436 Functions

C H A P T E R 2 2

Endpoints Reference
OTOpenEndpoint 22

Opens an endpoint. This function is synchronous, and creates an endpoint that
operates synchronously.

C INTERFACE

EndpointRef OTOpenEndpoint (OTConfiguration* config,
OTOpenFlags oflag,
TEndpointInfo* info,
OSStatus* err);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

config A pointer to an endpoint conÞguration structure that speciÞes
the endpointÕs characteristics. You obtain a value for the config
parameter by calling the OTCreateConfiguration
function(page 376). The OTOpenEndpoint function disposes of the
conÞguration structure before returning.

oflag Reserved; must be set to 0.

info A pointer to a TEndpointInfo structure (page 426) to be Þlled in
by the OTOpenEndpoint function. Specify NULL for this parameter
if you do not want the OTOpenEndpoint function to provide
endpoint information.

err A pointer to the result code for this function.

function result An endpoint reference for the endpoint that has been created or
NULL if the endpoint has not been created.

DISCUSSION

The OTOpenEndpoint function opens an endpoint having the conÞguration
speciÞed by the config parameter. The function returns an endpoint reference,
Functions 437

C H A P T E R 2 2

Endpoints Reference
by which you refer to the created endpoint when calling provider functions. If
the OTOpenEndpoint function fails, its return value is kOTInvalidEndpointRef.

The function creates an endpoint that is synchronous, does not block, and does
not acknowledge sends. To change these settings, you can call the
OTSetAsynchronous function (page 395), the OTSetBlocking function (page 398)
and the OTAckSends function (page 401).

The initial state of an endpoint is T_UNBND, meaning that the endpoint is not
bound to an address. Before using the endpoint to transfer data, you must bind
it to an address by calling the OTBind function (page 441).

To close and delete an endpoint, call the OTCloseProvider function (page 392).

SPECIAL CONSIDERATIONS

The OTOpenEndpoint function can only be called at system task time because it is
a synchronous function.

The OTOpenEndpoint function disposes of the conÞguration structure passed in
as a parameter. If you want to use the same conÞguration to open additional
endpoints, you must obtain a copy of the conÞguration structure before calling
the OTOpenEndpoint function, by calling the OTCloneConfiguration function
(page 378).

SEE ALSO

ÒCreating a ConÞguration StructureÓ (page 35).

ÒReusing Provider ConÞgurationsÓ (page 37).

The OTAsyncOpenEndpoint function (page 438).

ÒEndpoint StatesÓ (page 89).

OTAsyncOpenEndpoint 22

Opens an endpoint and installs a notiÞer callback function for the endpoint.
438 Functions

C H A P T E R 2 2

Endpoints Reference
C INTERFACE

OSStatus OTAsyncOpenEndpoint(OTConfiguration* config,
OTOpenFlags oflag,
TEndpointInfo* info,
OTNotifyProcPtr proc,
void* contextPtr);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

config A pointer to an endpoint conÞguration structure that speciÞes
the endpointÕs characteristics. You obtain a value for the config
parameter by calling the OTCreateConfiguration function. The
OTAsyncOpenEndpoint function disposes of the configuration
structure before returning.

oflag Reserved; must be set to 0.

info A pointer to a TEndpointInfo structure (page 426) to be Þlled in
by the OTAsyncOpenEndpoint function. Specify NULL for this
parameter if you do not want the OTAsyncOpenEndpoint function
to return endpoint information.

proc A pointer to a notiÞer callback function for this endpoint. If you
do not provide a notiÞer function, your application cannot
receive completion events, including the event advising you
that the endpoint has been created. Never pass a universal
procedure pointer as the proc parameter.

contextPtr A pointer for your use. The endpoint passes this pointer value
when calling the notiÞer function you specify in the proc
parameter. You might use the contextPtr parameter to pass
your notiÞer function information about the endpoint, for
example.

function result An error code. See Discussion.
Functions 439

C H A P T E R 2 2

Endpoints Reference
DISCUSSION

The OTAsyncOpenEndpoint function opens an endpoint having the characteristics
speciÞed by the config parameter. How processing proceeds depends on this
result code.

If the result code is any except kOTNoError, an error occurred and Open
Transport does not queue the function for execution. The OTAsyncOpenEndpoint
function creates no endpoint and does not call the notiÞer function that you
speciÞed in the proc parameter.

If the result code is kOTNoError, the OTAsyncOpenEndpoint function has queued
the operation for execution. When it completes it calls the notiÞer function that
you speciÞed in the proc parameter, passing the event T_OPENCOMPLETE for the
code parameter, a result code in the result parameter, and the endpoint
reference for the newly created endpoint in the cookie parameter. For
information about notiÞer functions, see ÒApplication-DeÞned NotiÞer
FunctionsÓ (page 413) and ÒEvent CodesÓ(page 451).

An endpoint created by the OTAsyncOpenEndpoint function operates in
asynchronous mode, does not block, and does not acknowledge sends. To
change these default settings, you can call the OTSetSynchronous function
(page 394), OTSetBlocking function(page 398) and the OTAckSends function
(page 401).

The initial state of an endpoint is T_UNBND, meaning that the endpoint is not
bound to a protocol address. Before using the endpoint to transfer data, you
must bind it to a protocol address by calling the OTBind function (page 441).

SPECIAL CONSIDERATIONS

The Þrst time you open a provider of any kind, Open Transport allocates
needed resources at system task time, calling the ScheduleSystemTask function
to do this. To allow this processing to take place, you need to call SystemTask or
WaitNextEvent from a foreground task while waiting for the endpoint to be
created.

The OTAsyncOpenEndpoint function disposes of the conÞguration structure
returned by the OTCreateConfiguration function(page 376). If you want to use
the same conÞguration to open additional endpoints, you must obtain a valid
copy of the conÞguration structure by calling the OTCloneConfiguration
function(page 378) before you call the OTAsyncOpenEndpoint function. For more
information, see ÒConÞguring and Opening a ProviderÓ (page 34).
440 Functions

C H A P T E R 2 2

Endpoints Reference
SEE ALSO

The OTOpenEndpoint function (page 437).

Table 4-4 (page 95).

Binding and Unbinding Endpoints 22

Binding an endpoint is the process of assigning an address to it. An address is
the value by which a providerÕs highest-layer protocol module identiÞes the
endpoint. For example, in AppleTalk, the protocol address of an ADSP
endpoint is its network ID, node ID, and DDP socket number; in TCP/IP, the
protocol address of a UDP endpoint is its port number and IP address. An
endpoint must have a protocol address to transfer information.

You assign an address to an endpoint by calling the OTBind function. After
binding, connectionless endpoints can send and receive data;
connection-oriented endpoints can send and receive connection requests.

An endpoint can be bound to only one address at a time. If you no longer need
to use an endpoint or if you want to change its address, you can unbind the
endpoint using the OTUnbind function. In this case, Open Transport dissociates
the endpoint from the address assigned to it. After the endpoint is unbound,
you can close the endpoint using the OTCloseProvider function, or you can bind
the endpoint to another address by using the OTBind function.

OTBind 22

Assigns an address to an endpoint.

C INTERFACE

OSStatus OTBind(EndpointRef ref,
TBind* reqAddr,
TBind* retAddr);
Functions 441

C H A P T E R 2 2

Endpoints Reference
C++ INTERFACE

OSStatus TEndpoint::Bind(TBind* reqAddr,
TBind* retAddr);

PARAMETERS

ref The endpoint reference of the endpoint that you are binding.

reqAddr A pointer to a TBind structure (page 429) that contains
information about the address to which you want to bind the
endpoint and the number of possible outstanding connection
requests if this is a connection-oriented endpoint.

If you specify NULL for the reqAddr parameter, Open Transport
chooses a protocol address for you and requests 0 as the
endpointÕs maximum number of outstanding connect
indications.

 If you want Open Transport to assign an address for you, while
still specifying a qlen value, set the addr.len Þeld of the TBind
structure to 0.

retAddr A pointer to a TBind structure (page 429) that, on return,
indicates the address to which the endpoint is actually bound
and, for connection-oriented endpoints, indicates the maximum
number of outstanding connect indications that this endpoint
actually allows. The TBind structure is described on (page 429).

You can set this parameter to NULL if you do not care to know
what address the endpoint is bound to or what the negotiated
value of qlen is. However, it is almost always a good idea to
check this Þeld to Þnd out whether the endpoint negotiated a
different queue length from the length you requested.

function result An error code. See Discussion.

DISCUSSION

You call the OTBind function to request that an endpoint be bound to an
address. You can either use the reqAddr parameter to request that the endpoint
be bound to a speciÞc address or allow the endpoint provider to assign an
address dynamically by passing NULL for this parameter. Consult the
442 Functions

C H A P T E R 2 2

Endpoints Reference
documentation for the top-level protocol you are using to determine whether it
is preferable to have the address assigned dynamically.

Before you call the function, you must allocate a buffer for the address and set
the retAddr->addr.buf Þeld to point to it. You must also specify the maximum
size of the address using the retAddr->addr.maxlen Þeld. The function returns
the address to which the endpoint is actually bound in the retAddr parameter.
This might be different from the address you requested. The Þeld
retAddr->addr.len contains the length of the address. If the ret->addr.maxlen
Þeld indicates a buffer size that is not large enough to contain the address, the
function returns with the result kOTBufferOverflowErr. If the requested address
is not available, the function returns the result kOTAddressBusyErr. If the
endpoint cannot allocate an address, the function returns with the
kOTNoAddressErr result.

If the endpoint is in synchronous mode, the function returns when the bind is
complete. If the endpoint is in asynchronous mode and you have installed a
notiÞcation routine, the OTBind function returns kOTNoError and sends the
T_BINDCOMPLETE event to your notifier when the bind completes. For more
information on notiÞer functions and event codes, see MyNotifierCallback
function(page 413) and ÒEvent CodesÓ (page 383). If you have not installed a
notiÞer function, the only way to determine when the function completes is to
poll the endpoint using the OTGetEndpointState function (page 448). This
function returns a kOTStateChangeErr until the bind completes. When the
endpoint is bound, the state is either T_UNBND if the bind failed, or T_IDLE if it
succeeded. You can cancel an asynchronous bind that is still in progress by
calling the OTUnbind function (page 445).

If you are binding a connection-oriented endpoint, you must use the
reqAddr->qlen field to specify the number of connection requests that may be
outstanding for this endpoint. You can set this Þeld to 0 if you are only going to
be initiating outgoing connections. The retAddr->qlen Þeld speciÞes, on return,
the actual number of connection requests allowed for the endpoint. This
number might be smaller than the number you requested. Note that when the
endpoint is actually connected, the number might be further decreased by
negotiations taking place at that time.

You must not bind more than one connectionless endpoint to a single address.
If you attempt to bind a second endpoint to the an address that is already
bound, the OTBind function will return the result kOTAddressBusyErr. Some
connection-oriented protocols let you bind two or more endpoints to the same
address. In such instances, you must use only one of the endpoints to listen for
connection requests for that address. When binding the endpoint listening for a
Functions 443

C H A P T E R 2 2

Endpoints Reference
connection, you must set the reqAddr->qlen Þeld of the OTBind function to a
value greater than or equal to 1. When binding the other endpoints, you must
set the reqAddr->qlen Þeld to 0.

If you accept a connection on an endpoint that is also listening for connection
requests, the address of that endpoint is deemed ÒbusyÓ for the duration of the
connection, and you must not bind another endpoint for listening to that same
address. This requirement prevents more than one endpoint bound to the same
address from accepting connection requests. If you have to bind another
listening endpoint to the same address, you must Þrst use the OTUnbind
function to unbind the Þrst endpoint or use the OTCloseProvider function to
close it.

SPECIAL CONSIDERATIONS

In asynchronous mode, the endpoint provider might call your notiÞer function
before the functionÕs initial return.

An endpoint may not allow an explicit binding of more than one endpoint to
the same protocol address, although it allows more than one connection to be
accepted for the same protocol address. To ensure portability, do not bind
endpoints that are used as responding endpoints in a call to the OTAccept
function if the responding address is to be the same as the called address.

SEE ALSO

The OTCloseProvider function (page 392).

Table 4-4 (page 95).

ÒProcessing Multiple Connection RequestsÓ (page 111).

The OTConnect function (page 484).

The OTAccept function (page 491).

ÒTCP/IP ServicesÓ (page 237).

ÒAppleTalk Data Stream Protocol (ADSP)Ó (page 319).

ÒDatagram Delivery Protocol (DDP)Ó (page 310).

ÒPrinter Access Protocol (PAP)Ó (page 343).
444 Functions

C H A P T E R 2 2

Endpoints Reference
OTUnbind 22

Dissociates an endpoint from its address or cancels an asynchronous call to the
OTBind function.

C INTERFACE

OSStatus OTUnbind(EndpointRef ref);

C++ INTERFACE

OSStatus TEndpoint::Unbind();

PARAMETERS

ref The endpoint reference of the endpoint that you are unbinding.

function result An error code. See Discussion.

DISCUSSION

If the endpoint is in synchronous mode, the function returns when the unbind
is completed.

If the endpoint is in asynchronous mode and you have installed a notiÞer, the
function returns kOTNoError and the provider sends the event code
T_UNBINDCOMPLETE to your notifier when the unbind is completed. For more
information on notiÞer functions and event codes, see MyNotifierCallback
function (page 413) and ÒEvent CodesÓ (page 383). If you have not installed a
notiÞer function, the only way to determine that the endpoint has been
unbound is to use the OTGetEndpointState function (page 448) to poll the state
of the endpoint. The function returns the kOTStateChangeErr result until the
unbind completes. If the function succeeds, the state of the endpoint is T_UNBND.
If it fails, its state is T_IDLE.

For connectionless endpoints, a common error code is kOTLookErr, usually
indicating that more data has arrived. Since XTI deÞnes that the OTUnbind
function can succeed only when there is no data available, the only recourse is
Functions 445

C H A P T E R 2 2

Endpoints Reference
to either read the data and call the OTUnbind function again or to close the
endpoint.

After you unbind an endpoint, you can no longer use it to send or receive
information. You can use the OTCloseProvider function to deallocate memory
reserved for the endpoint, or you can use the OTBind function to associate it
with another address and then resume transferring data or establishing a
connection.

SPECIAL CONSIDERATIONS

In asynchronous mode, the endpoint provider might call your notiÞer function
before the functionÕs initial return.

SEE ALSO

The OTBind function (page 441).

The OTCloseProvider function (page 392).

Table 4-4 (page 95).

Obtaining Information About an Endpoint 22

You use the functions described in this section to obtain information about an
endpoint. The OTGetEndpointInfo function returns information about the type
of service provided by the endpoint and the maximum size of the buffers used
to specify address and option information and to hold data. Two other
functions return information about an endpointÕs address: the
OTGetProtAddress function returns the endpointÕs address and, if the endpoint
is connected, the address of its peer. The OTResolveAddress function returns the
protocol address that corresponds to an endpoint name. To obtain the state of
the endpoint, you can call the OTGetEndpointState function. To determine
whether there are any asynchronous events pending for the endpoint, you can
call the OTLook function. Finally, the OTSync function is provided to
accommodate existing XTI applications that use this function.

In addition to the functions described in this section, you can use general
provider functions to determine an endpointÕs modes of execution
(OTIsSynchronous, OTIsAckingSends, OTIsNonBlocking). For more information
about these functions, see ÒProviders ReferenceÓ (page 383).
446 Functions

C H A P T E R 2 2

Endpoints Reference
OTGetEndpointInfo 22

Obtains information about an endpoint that has been opened.

C INTERFACE

OSStatus OTGetEndpointInfo(EndpointRef ref,
TEndpointInfo* info);

C++ INTERFACE

OSStatus TEndpoint::GetEndpointInfo(TEndpointInfo* info);

PARAMETERS

ref The endpoint reference of the endpoint whose characteristics
you want to determine.

info A pointer to a TEndpointInfo structure (page 426) that describes
the endpointÕs mode of service and the size of the buffers you
can use to specify address and option information and to hold
data.

function result An error code. See Appendix B(page 785).

DISCUSSION

The OTGetEndpointInfo function returns information about

■ the maximum size of buffers used to specify an endpointÕs address and
option values

■ the maximum size of normal and expedited data you can transfer using this
endpoint or, for transaction-based endpoints, the maximum size of requests
and replies

■ the size of data you can transfer when initiating or tearing down a
connection

■ the services supported by the endpoint
Functions 447

C H A P T E R 2 2

Endpoints Reference
■ any additional characteristics of this endpoint

If the endpoint is in synchronous mode, the function Þlls out the Þelds in the
TEndpointInfo structure and returns. If the endpoint is in asynchronous mode
and you have installed a notiÞer function, the OTGetEndpointInfo function
returns the result kOTNoError and sends the T_GETINFOCOMPLETE event to your
notiÞer when the operation completes. The result parameter is kOTNOError if
the function succeeded. Otherwise, it contains a result code describing the
reason why it failed. The cookie parameter passed to the notiÞcation routine
contains the value of the info parameter that you originally passed to the
OTGetEndpointInfo function. If you have not installed a notification routine, it is
not possible to determine when this command completed. For more
information on notiÞcation functions and event codes, see MyNotifierCallback
function (page 413) and ÒEvent CodesÓ(page 383).

SEE ALSO

The OTGetEndpointState function (page 448).

ÒThe TEndpointInfo StructureÓ (page 426)

Table 4-4 (page 95).

OTGetEndpointState 22

Obtains the current state of an endpoint.

C INTERFACE

OTResult OTGetEndpointState(EndpointRef ref);

C++ INTERFACE

OTResult TEndpoint::GetEndpointState();
448 Functions

C H A P T E R 2 2

Endpoints Reference
PARAMETERS

ref The endpoint reference of the endpoint whose state you want to
determine.

function result A non-negative number indicating the state of the endpoint. Or,
a negative number if ref is invalid.

DISCUSSION

The OTGetEndpointState function returns an integer greater than or equal to 0
indicating the state of the speciÞed endpoint. The endpoint state enumeration
(page 424) describes possible endpoint states and lists their decimal value.

This function returns endpoint state information immediately, whether the
endpoint is in synchronous or asynchronous mode.

You might need to know an endpointÕs state in order to determine whether a
function has completed or whether the endpoint is in an appropriate state for
the function that you want to call next.

The only time this function fails is if you have provided an invalid endpoint
reference.

SEE ALSO

The OTGetEndpointInfo function (page 447).

ÒEndpoint StatesÓ (page 89) and ÒEndpoint StatesÓ (page 424).

Table 4-4 (page 95).

OTLook 22

Determines the current asynchronous event pending for an endpoint.

C INTERFACE

OTResult OTLook(EndpointRef ref);
Functions 449

C H A P T E R 2 2

Endpoints Reference
C++ INTERFACE

OTResult TEndpoint::Look();

PARAMETERS

ref The endpoint reference of the endpoint.

function result A positive value specifying the pending asynchronous event, or
a negative number corresponding to an error result code. For a
list of result codes, see Appendix B(page 785).

DISCUSSION

This function returns the current pending asynchronous event on the endpoint.
The function returns immediately, regardless of whether the endpoint is in
synchronous or asynchronous mode.

You use the OTLook function in one of two cases. First, if the endpoint is in
synchronous mode, you can call the OTLook function to poll for incoming data
or connection requests. Second, certain asynchronous events might cause a
function to fail with the result kOTLookErr. For example, if you call OTAccept and
the endpoint gets a T_DISCONNECT event, the OTAccept function returns with
kOTLookErr. In this case, you need to call the OTLook function to determine what
event caused the original function to fail. Table 4-8 (page 105) lists the functions
that might return the kOTLookErr result and the events that can cause these
functions to fail.

IMPORTANT

The OTLook function can actually clear certain
asynchronous events, speciÞcally the T_GODATA and the
T_GOEXDATA events. If you consume one of these events by
calling OTLook, you will not be notiÞed of that type of event
until you are ßow controlled again. ▲

If there are multiple events pending, the OTLook function Þrst looks for one of
the following events: T_LISTEN, T_CONNECT, T_DISCONNECT, T_UDERR, or T_ORDREL. If
it Þnds more than one of these, it returns them to you in Þrst-in, Þrst-out order.
After processing these events, the OTLook function looks for the T_DATA,
T_REQUEST, and T_REPLY events. If it finds more than one of these, it returns
them to you in Þrst-in, Þrst-out order. You cannot use the OTLook function to
poll for completion events.
450 Functions

C H A P T E R 2 2

Endpoints Reference
Unless you are operating exclusively in synchronous mode, it is recommended
that you use notiÞer functions to get information about pending events for an
endpoint, rather than using the OTLook function.

SEE ALSO

ÒHandling Events for EndpointsÓ (page 102).

ÒEvent CodesÓ (page 383).

ÒApplication-DeÞned NotiÞer FunctionsÓ (page 413).

Table 4-4 (page 95).

OTGetProtAddress 22

Obtains the address to which an endpoint is bound and, if the endpoint is
currently connected, also obtains the address of its peer.

C INTERFACE

OSStatus OTGetProtAddress(EndpointRef ref,
TBind* boundAddr,
TBind* peerAddr)

C++ INTERFACE

OSStatus TEndpoint::GetProtAddress(TBind* boundAddr,
TBind* peerAddr);

PARAMETERS

ref The endpoint reference of the endpoint whose local and peer
address is sought.

boundAddr A pointer to a TBind structure (page 429). The boundAddr->addr
Þeld is a TNetBuf structure that returns the address of the
endpoint speciÞed by the ref parameter. You must allocate a
Functions 451

C H A P T E R 2 2

Endpoints Reference
buffer for the address information and initialize the
boundAddr.buf field to point to that buffer. You must also
initialize the boundAddr.maxlen Þeld to the size of the address
buffer.

If the endpoint is in the T_UNBND state, the Þeld
boundAddr->addr.len field is set to 0.

If you are calling this function only to determine the address of
the peer endpoint, you can set the boundAddr parameter to NIL.

The boundAddr->qlen Þeld is ignored.

peerAddr A pointer to a TBind structure (page 429). If the peer endpoint is
currently connected or is in the T_DATAXFER state, the
peerAddr->addr field (a TNetbuf structure) returns the address of
the endpointÕs peer.

If you are calling this function only to determine the address to
which the endpoint is bound, you can set the pperAddr
parameter to nil.

The peerAddr->qlen Þeld is ignored. If the endpoint is not
connected or in the T_DATAXFER state, the peerAddr->addr.len
Þeld is set to 0 and the peerAddr->addr.buf pointer may be set to
NULL.

function result An error code. See Discussion.

DISCUSSION

The OTGetProtAddress function returns the address to which an endpoint is
bound in the boundAddr parameter and, if the endpoint is currently connected, it
returns the address of its peer in the peerAddr parameter. Not all endpoints
support this function. If the T_XPG4_1 bit in the flags Þeld of the TEndpointInfo
structure (page 424) is not set, the endpoint does not support this function.

You are responsible for allocating the buffers required to hold the local and
peer addresses. The addr Þeld of the TEndpointInfo structure speciÞes the
maximum amount of memory needed to store the address of an endpoint. Use
this value as the size of the buffers.

If the endpoint is in synchronous mode, the function returns when the
operation is complete. If the endpoint is in asynchronous mode and a
notiÞcation routine is installed, the function returns kOTNoError and the
452 Functions

C H A P T E R 2 2

Endpoints Reference
provider sends the event code T_GETPROTADDRCOMPLETE, when the operation
completes. The result parameter is kOTNoError if the function succeeded or a
negative error code if it did not. The cookie parameter sent to the notiÞcation
routine contains the peerAddr value unless that is NULL. If the peerAddr value
was NULL, the cookie parameter contains the boundAddr value instead. If a
notiÞer is not installed, it is not possible to determine when the function
completes. For more information on notiÞer codes and event codes, see
MyNotifierCallback function (page 413) and ÒEvent CodesÓ(page 383).

SEE ALSO

The OTAccept function (page 491).

Table 4-4 (page 95).

OTResolveAddress 22

Returns the protocol address that corresponds to a high-level address on an
endpoint.

C INTERFACE

OSStatus OTResolveAddress(EndpointRef ref,
TBind* reqAddr,
TBind* retAddr
OTTimeout timeOut);

C++ INTERFACE

OSStatus TEndpoint::ResolveAddress(TBind* reqAddr, TBind* retAddr);

PARAMETERS

ref The endpoint reference whose provider should do the address
resolution.
Functions 453

C H A P T E R 2 2

Endpoints Reference
req A pointer to a TBind structure (page 429). The Þeld
reqAddr->addr.buf points to a buffer containing the high-level
address. This address must be in an appropriate format for the
protocol family. For example, for AppleTalk this must be an
NBPAddress.

ret A pointer to a TBind structure (page 429). The
retAddr->addr.buf field points to a buffer that you filled out
with the lowest-level address that corresponds to the address
referenced by the reqAddr->addr.buf Þeld of the reqAddr
parameter.

timeout The maximum time in milliseconds that you want to wait for
address resolution. Not all protocols honor this requirement.

function result An error code. See Discussion.

DISCUSSION

The OTResolveAddress function returns the lowest-level address for your
endpoint. Not all endpoints support this function. If the CAN_RESOLVE_ADDR bit
in the flags Þeld (page 424) of the TEndpointInfo structure is set, the endpoint
supports this function. Using this function saves you the trouble of opening
and closing a mapper if the only reason you have for opening the mapper is to
look up the address corresponding to a speciÞc endpoint name. This function is
also useful in that you donÕt need to know the underlying protocol to resolve
an address.

You are responsible for allocating the buffers described by the reqAddr and
retAddr parameters required to hold the addresses. To determine how large
these buffers should be, examine the addr Þeld of the TEndpointInfo structure
for the endpoint (page 426), which speciÞes the maximum amount of memory
needed to store an address for the endpoint speciÞed by the ref parameter.

If the endpoint is in synchronous mode, the funciton returns when the
operation is complete. If the endpoint is in asynchronous mode and you have
installed a notiÞcation routine, the OTResolveAddress function returns
immediately with the kOTNoError result and sends the T_RESOLVEADDRCOMPLETE
event code to your notiÞer when the operation completes. See Appendix
B(page 785). The result parameter is kOTNoError if the function succeeded or a
negative result code if it did not. The cookie parameter contains the ret
parameter. If a notiÞer is not installed, it is not possible to determine when the
OTResolveAddress function completes. For more information on notifier
454 Functions

C H A P T E R 2 2

Endpoints Reference
functions and event codes see MyNotifierCallback function(page 413) and
ÒEvent CodesÓ (page 383).

OTSync 22

Ensures that the endpoint provider and the Open Transport client libraries
have the same information about an endpointÕs state.

C INTERFACE

OTResult OTSync(EndpointRef ref);

C++ INTERFACE

OTResult TEndpoint::Sync();

PARAMETERS

ref The endpoint reference of the endpoint whose state information
is being synchronized.

function result See Discussion.

DISCUSSION

The providerÕs and the clientÕs libraries knowledge about an endpointÕs state
might get out of sync if the provider and the client libraries occupy different
memory spaces. The current run-time environment does not support separate
memory spaces; therefore, this function does nothing and is provided so that
existing XTI-based applications that make this call do not have to be modiÞed.

If the OTSync function succeeds, it returns an integer value of 0 or greater that
speciÞes the current state of the endpoint.

If the OTSync function fails, it returns a negative integer corresponding to a
result code. See Appendix C(page 793).
Functions 455

C H A P T E R 2 2

Endpoints Reference
If the endpoint is in synchronous mode, it returns as soon the operation is
complete. If the endpoint is in asynchronous mode and you have installed a
notiÞcation routine, the OTSync function returns the result kOTNoError and the
provider sends the T_SYNCCOMPLETE event code to the notiÞer when the
operation completes. The result parameter is either a negative error code or a
state code. The cookie parameter has no meaning. If a notiÞer is not installed, it
is not possible to determine when the OTSync function completes. For more
information on notiÞer functions and event codes see MyNotifierCallback
function(page 413) and ÒEvent CodesÓ (page 383).

SEE ALSO

The OTGetEndpointState function (page 448).

ÒEndpoint StatesÓ (page 424).

Table 4-4 (page 95).

Allocating Structures 22

You use the OTAlloc and OTFree functions to allocate and free memory. These
functions are mainly provided for XTI compatibility. In general, you should not
use these functions to allocate and free structures on every call because this
degrades performance. For a more detailed discussion of asynchronous
processing and memory allocation, see ÒProvidersÓ (page 61).

OTAlloc 22

Allocates an XTI data structure.

C INTERFACE

void* OTAlloc (EndpointRef ref,
OTStructType structType,
UInt32 fields,
OSStatus* err);
456 Functions

C H A P T E R 2 2

Endpoints Reference
C++ INTERFACE

void* TEndpoint::Alloc(OTStructType structType,
UInt32 fields,
OSStatus* err = NULL);

PARAMETERS

ref The endpoint reference of the endpoint for which the data
structure is allocated.

structType A 32-bit value specifying the constant name of the structure for
which memory is to be allocated. Possible values for the
structType parameter are given by the structure types
enumeration (page 425).

fields An integer specifying the structure Þelds for which buffers are
to be allocated.

Each structure that you can specify for structType, except for
T_INFO, contains at least one field of type TNetbuf. For each such
Þeld, you can use the fields parameter to specify that the
buffer described by TNetbuf also be allocated. The length of the
allocated buffer is at least as large as the size returned for the
endpoint by the OTGetEndpointInfo function. For each buffer
allocated, the OTAlloc function sets the maxlen Þeld to the length
of the buffer and sets the len Þeld to 0. See Discussion for more
information.

You can specify one or more constant names for the fields
parameter. See Discussion for the value and meaning of these
names. To specify more than one constant name, use the bitwise
OR operator to combine values.

err A result code. See Appendix B (page 785) for more information.

DISCUSSION

The OTAlloc function allocates a data structure for use in a subsequent endpoint
call. You use the structType parameter to specify the structure to be allocated
and the fields parameter to specify the substructures to be allocated. Possible
Þeld values are given by the following enumeration
Functions 457

C H A P T E R 2 2

Endpoints Reference
enum
{

T_ADDR = 0x01, /* for address information */
T_OPT = 0x02, /* for option information */
T_UDATA = 0x04, /* for data */
T_ALL = 0xffff /* for address, option, and data */

};

If the OTAlloc function succeeds, it returns a pointer to the desired structure.

It is easiest to understand what the OTAlloc function does by considering what
you would have to do if you did not use it. If you declared structType
structures as normal data structures, you would have to declare the data
structure and then initialize the maxlen and buf Þelds of every TNetbuf type
Þeld contained by the structure. To determine the appropriate size of each
buffer, you would have to call the OTGetEndpointInfo function.

For example, if you call the OTGetProtAddress function to get the protocol
address of an endpoint, you must pass a parameter of type TBind. The addr.buf
Þeld of the TBind structure points to a buffer that is large enough to hold the
endpointÕs protocol address. To determine how large the buffer has to be, you
call the OTGetEndpointInfo function; then you allocate the memory for the
buffer and initialize the addr.buf Þeld to point to the buffer and initialize the
addr.maxlen field to specify how large the bufferis. The OTAlloc function does
all this work for you. Given the previous example, if you make the call

TBind* boundAddr = OTAlloc(T_BIND, T_ADDR);

the OTAlloc function allocates the TBind structure, initializes the TNetbuf Þeld
that is used to describe the endpoint address, and allocates memory for the
buffer in which the address is to be stored. All buffers allocated are guaranteed
to be of the appropriate size for the kind of endpoint speciÞed by the ref
parameter.

If the requested structure contains TNetbuf Þelds and you do not specify these
Þelds using the fields parameter, the OTAlloc function sets the maxlen and len
Þelds to 0 and the buf Þeld to NIL.

Note
If you just want to allocate a block of memory, consider
using the OTAllocMem function (page 625). ◆
458 Functions

C H A P T E R 2 2

Endpoints Reference
SPECIAL CONSIDERATIONS

If you specify T_UDATA or T_ALL for the fields parameter and the endpoint
information structure deÞnes the tsdu or etsdu size for the endpoint to be of
inÞnite length, the OTAlloc function does not allocate a data buffer for the
endpoint.

The OTAlloc function is provided mainly for compatibility with XTI. Although
using this function along with the OTFree function can save you coding work,
this is at the price of slower performance. In general, you should not allocate
and free structures on every call. Instead, you should declare structures that are
to be passed as parameters to endpoint functions just as you would any other
variables or data structures.

You must not use the pointer returned by the OTAlloc function in calls to any
other endpoint as other endpoints mayhave different sizes.

SEE ALSO

The OTFree function (page 459).

The TBind structure (page 429).

The TEndpointInfo structure (page 426).

The OTAllocMem function (page 625) and the OTFreeMem function (page 625).

Table 4-4 (page 95).

OTFree 22

Frees memory allocated using the OTAlloc function.

C INTERFACE

OSResult OTFree(void* ptr, OTStructType structType);

C++ INTERFACE

OSResult TEndpoint::Free(void* ptr, OTStructType structType);
Functions 459

C H A P T E R 2 2

Endpoints Reference
PARAMETERS

ptr A pointer to the structure to be deallocated. This is the pointer
returned by the OTAlloc function.

structType The name of the structure for which you allocated memory
using the OTAlloc function. Possible constant names are given
by the structure types enumeration (page 425).

function result An error code. See Appendix B(page 785).

DISCUSSION

You are responsible for passing a structType parameter that exactly matches
the type of structure being freed.

The OTFree function, along with the OTAlloc function, is provided mainly for
compatibility with XTI. The OTAlloc function (page 456) allocates the memory
OTFree deallocates.

▲ W A R N I N G

In order to use the OTFree function, you must not have
changed the memory allocated by the OTAlloc function for
the structure speciÞed by the structType parameter. If you
have changed these, you must restore them to their
original value before calling OTFree. ▲

SPECIAL CONSIDERATIONS

Although this function is deÞned to return an OTResult, there are no
meaningful positive results. You either get kOTNoError, or a negative error code.

SEE ALSO

The OTAlloc function (page 456).

The OTAllocMem function (page 625) and the OTFreeMem function (page 625).

Table 4-4 (page 95).
460 Functions

C H A P T E R 2 2

Endpoints Reference
Determining if Bytes Are Available 22

Open Transport provides the function OTCountDataBytes to determine whether
bytes are available to be read from an endpoint (without actually reading them).

OTCountDataBytes 22

Returns the amount of data currently available to be read.

C INTERFACE

OTResult OTCountDataBytes(EndpointRef ref, size_t* countPtr);

C++ INTERFACE

OTResult TEndpoint::CountDataBytes(size_t* countPtr);

PARAMETERS

ref The endpoint reference of the endpoint whose pending data
you wish to count.

countPtr A pointer to a value that is set to the size (in bytes) of the data
in the Þrst packetwaiting to be read from the endpoint.

function result See Appendix B(page 785).

DISCUSSION

If the function returns successfully, the countPtr parameter points to a buffer
containing an approximation of the the number of bytes in the message buffer
at the top of the stream.

What the function counts depends on the type of endpoint. If it is
packet-oriented, the function counts the number of bytes in the Þrst packet. If
itÕs stream-oriented and if nonexpedited data was received in more than one
piece, the function provides a count of the sum of the pieces, but if expedited
Functions 461

C H A P T E R 2 2

Endpoints Reference
data was received in multiple parts, the function only provides a count of the
data in the Þrst part.

You can call this function upon receipt of a T_DATA event to get an
approximation of Þnd out how much data is currently available and to
determine whether you need to allocate larger buffers before calling a function
that reads the data. But, you should be careful not to assume that this is all the
data. You should always read data until you get the kOTNoDataErr result.

Because what this function counts depends on which event is the most current
outstanding event and because other events can occur before the function can
complete, never use this count as more than a hint.

Functions for Connectionless Transactionless Endpoints 22

You can use a connectionless transactionless endpoint to transfer data after
the endpoint is bound and while it is in the T_IDLE state. Connectionless
transactionless service used by protocols such as DDP, or IP is described at
greater length in the section ÒUsing Connectionless Transactionless ServiceÓ
(page 119). This section describes the functions used to send and receive data,
OTSndUData and OTRcvUData. You use the TUnitData structure (page 430) with
these functions to specify the data being transferred.

Due to the nature of connectionless transactionless service, you are not notiÞed
if the data fails to reach its destination. Some endpoint implementations do not
detect an error in the attempt to send a datagram until after the OTSndUData
function has returned successfully. In this case, Open Transport uses the
T_UDERR event to notify the client sending the data. You can receive the event
either by calling the OTLook function (page 449) or by including this case in your
notiÞer function. To determine why the OTSndUData function failed, you must
call the OTRcvUDErr function, which is also described in this section.

SEE ALSO

Table 4-4 (page 95).

OTSndUData 22

Sends data using a connectionless transactionless endpoint.
462 Functions

C H A P T E R 2 2

Endpoints Reference
C INTERFACE

OSStatus OTSndUData(EndpointRef ref,
TUnitData* udata);

C++ INTERFACE

OSStatus TEndpoint::SndUData(TUnitData* udata);

PARAMETERS

ref The endpoint reference of the endpoint sending the data.

udata A pointer to a TUnitData structure (page 430) that speciÞes the
data to be sent, its destination, and any options for this send.

The udata->addr.buf Þeld is a pointer to a buffer that contains
the address to which the data is sent. You must initialize the
buffer, and set the udata->addr.len Þeld to the size of the
address.

The udata->opt.buf Þeld is a pointer to a buffer that contains
option information. Store option information in the buffer and
set the udata->opt.len Þeld to the size of the options. If you do
not want to specify any options, set this Þeld to 0.

The udata->udata.buf Þeld is a pointer to a buffer that contains
data to be sent. Set the udata->udata.len Þeld to the size of the
data.

function result An error code. See Discussion.

DISCUSSION

The OTSndUData function sends data to the address speciÞed by the udata->addr
Þeld of the udata parameter. If the endpoint does not support sending 0 bytes
or if the amount of data exceeds the TSDU size for the endpoint, the function
returns with the result kOTBadDataErr.

If the endpoint is in synchronous blocking mode, the OTSndUData function
returns when the send is complete. If ßow-control restrictions prevent its
sending the data, it retries the operation until it is able to send it.
Functions 463

C H A P T E R 2 2

Endpoints Reference
If the endpoint is in nonblocking or asynchronous mode, the OTSndUData
function returns a kOTFlowErr result if ßow-control restrictions prevent the data
from being sent. When the endpoint provider is able to send the data, it sends
your notiÞer function, a T_GODATA event. You can then call the OTSndUData
function from your notiÞer to send the data. You can also retrieve this event by
polling the endpoint using the OTLook function (page 449).

The next table shows how the endpointÕs modes of operation and blocking
status affects the behavior of the OTSndUData function.

SPECIAL CONSIDERATIONS

Some endpoint providers are not able to detect immediately whether you
speciÞed incorrect address or option information. Because of this, the provider
calls your notiÞer function when it detects the error, passing the T_UDERR event
code for the code parameter to advise you that an error has occurred. You can
determine the cause of this event by calling the OTRcvUDErr function (page 465)
and examining the value of the uderr->error parameter. It is important that
you call the OTRcvUDErr function even if you are not interested in examining the
cause of the error. Failing to do this leaves the endpoint in a state where it
cannot do other sends, nor deallocate memory reserved for internal buffers
associated with the send.

The XTI_SNDLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpointÕs
internal send buffer before they are sent. See ÒOption ManagementÓ (page 165)
for information on setting this option.

Blocking Nonblocking

Synchronous The function returns when
the provider lifts ßow-
control restrictions.

The function returns
immediately.

The kOTFlowErr result is
never returned.

The kOTFlowErr result
might be returned.

Asynchronous The function returns
immediately.

The function returns
immediately.

The kOTFlowErr result
might be returned.

The kOTFlowErr result
might be returned.
464 Functions

C H A P T E R 2 2

Endpoints Reference
SEE ALSO

The OTRcvUData function (page 467).

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).

OTRcvUDErr 22

Clears an error condition indicated by a T_UDERR event and returns the reason
for the error.

C INTERFACE

OSStatus OTRcvUDErr(EndpointRef ref,
TUDErr* uderr);

C++ INTERFACE

OSStatus TEndpoint::RcvUDErr(TUDErr* uderr);

PARAMETERS

ref The endpoint reference of the endpoint that has attempted to
send the data.

uderr A pointer to a TUDErr structure (page 430) that speciÞes, on
return, the address of the endpoint to which data was sent, the
options speciÞed for the send, and the reason for the error.

The uderr->addr.buf Þeld is a pointer to a buffer that contains
the destination address of the data sent. You must allocate this
buffer and set the uderr->addr.maxlen Þeld to the maximum
size for the buffer.

The uderr->opt.buf Þeld is a pointer to a buffer that contains
the value of options you speciÞed for the send. You must
allocate a buffer for this data and set the uderr->opt.maxlen
Þeld to the maximum size of the buffer.
Functions 465

C H A P T E R 2 2

Endpoints Reference
The uderr->error Þeld is a 32-bit value that speciÞes a
protocol-dependent error code for the OTSndUData function that
failed.

function result An error code. See Discussion.

DISCUSSION

You use the OTRcvUDErr function if you have called the OTSndUData function
(page 462) and the endpoint provider has issued the T_UDERR event to indicate
that the send operation did not succeed. This usually happens when you have
speciÞed a bad address or option value. For example, assume that you are
using AppleTalk and you specify an NBP address. If Open Transport cannot
resolve the address, it sends a T_UDERR event to your notiÞer function. To clear
the error condition and determine the cause of the failure, you must call the
OTRcvUDErr function.

If the size of the option or error data returned exceeds the size of the allocated
buffers, the OTRcvUDErr function returns with the result kOTBufferOverflowErr,
but the error indication is cleared anyway.

If you do not need to identify the cause of the failure, you can set the uderr
pointer to NULL. In this case, the OTRcvUDErr function clears the error indication
without reporting any information to you. It is important, nevertheless, that
you actually call the OTRcvUDErr function to clear the error condition. If you
donÕt call this function, the endpoint remains in an invalid state for doing other
send operations, and all subsequent functions for this endpoint return the
result kOTLookErr.

SEE ALSO

Table 4-4 (page 95).
466 Functions

C H A P T E R 2 2

Endpoints Reference
OTRcvUData 22

Reads data sent to a connectionless transactionless protocol.

C INTERFACE

OSStatus OTRcvUData(EndpointRef ref,
TUnitData* udata,
OTFlags* flag);

C++ INTERFACE

OSStatus TEndpoint::RcvUData(TUnitData* udata,
OTFlags* flag);

PARAMETERS

ref The endpoint reference of the endpoint receiving the data.

udata A pointer to a TUnitData structure (page 430) that, on return,
contains information about the data that has been received.

The udata->addr.buf Þeld is a pointer to a buffer that is Þlled
with the address of the endpoint that has sent the data. You
must allocate this buffer and set the udata->addr.maxlen Þeld to
the size of the buffer.

The udata->opt.buf Þeld is a pointer to a buffer that is Þlled
with any association-related options speciÞed by the endpoint
sending data. To read these options, you must allocate a buffer
into which the provider can place the options and you must set
the opt.maxlen Þeld to the size of the buffer.

The udata->udata.buf Þeld is a pointer to a buffer in which the
function stores data when it returns. You must allocate a buffer
for the data and set the udata.maxlen Þeld to the size of the
buffer.
Functions 467

C H A P T E R 2 2

Endpoints Reference
flag A pointer to an unsigned long variable whose bit setting, on
return, indicates whether you need to retrieve more data. If the
T_MORE is set, there is more data; if it is clear, there is no more
data.

function result An error code. See Discussion.

DISCUSSION

The OTRcvUData function returns information about the data read into the
TUnitData structure.

The OTFlags variable, referenced by the flag parameter, indicates whether there
is more data to be retrieved in this packet. If the buffer referenced by the
udata->udata.buf field is not large enough to hold the current data unit, the
endpoint provider Þlls the buffer and sets the flag parameter to T_MORE to
indicate that you must call the OTRcvUData function again to receive additional
data. Subsequent calls to the OTRcvUData function return 0 for the length of the
address and option buffers until you receive the full data unit. The last part of
the unit received does not have the T_MORE ßag set.

If the endpoint is in asynchronous mode or is not blocking and data is not
available, the OTRcvUData function fails with the kOTNoDataErr result. The
endpoint provider uses the T_DATA event to notify the endpoint when data
becomes available. You can use a notiÞer function or the OTLook function
(page 449) to retrieve the event. Once you get the T_DATA event, you should
continue calling the OTRcvUData function until it returns the kOTNoDataErr result.

It is possible to receive a T_DATA event, but when you execute the OTRcvUData
function, it returns with a kOTNoDataErr result. If this happens, you should
continue as though you just Þnished reading all the data.

SPECIAL CONSIDERATIONS

The XTI_RCVLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpointÕs
internal receive buffer before the endpoint provider generates a T_DATA event.
See ÒOption ManagementÓ (page 165) for information on setting this option.

SEE ALSO

ÒAppleTalk ReferenceÓ (page 721).
468 Functions

C H A P T E R 2 2

Endpoints Reference
Table 4-4 (page 95).

Functions for Connectionless Transaction-Based Endpoints 22

You can use a connectionless transaction-based endpoint to transfer data after
the endpoint is bound and while it is in the T_IDLE state. Connectionless
transaction-based service used by protocols such as ATP is described at greater
length in the section ÒUsing Connectionless Transaction-Based ServiceÓ
(page 123).

This section describes the routines used to send and retrieve requests and
replies: OTSndURequest, OTRcvURequest, OTSndUReply, and OTRcvUReply. This
section also describes the OTCancelURequest function, which you use to cancel
an outgoing request, and the OTCancelUReply function, which you use to cancel
an incoming request.

OTSndURequest 22

Initiates a connectionless transaction by sending a request to the responder.

C INTERFACE

OSStatus OTSndURequest(EndpointRef ref,
TUnitRequest* req,
OTFlags reqFlags);

C++ INTERFACE

OSStatus TEndpoint::SndURequest(TUnitRequest* req,
OTFlags reqFlags);

PARAMETERS

ref The endpoint reference of the endpoint making the request.
Functions 469

C H A P T E R 2 2

Endpoints Reference
req A pointer to a TUnitRequest structure (page 431) that speciÞes
the address of the responder, the request data, and the ID of this
transaction.

The req->addr Þeld speciÞes the location and size of a buffer
containing the address of the responder. You must allocate a
buffer for the address and specify the address. You must set the
req->addr.buf field to point to this buffer and set the
req->addr.len field to the length of the address.

The req->opt Þeld speciÞes the location and size of a buffer
containing the options you want to negotiate. You must allocate
a buffer that contains the option information and set the
req->opt.buf field to point to it. You must set the req->opt.len
Þeld to the length of the option data or to 0 if you donÕt want to
specify any options.

The req->udata Þeld speciÞes the location and size of a buffer
containing the request data. You must allocate a buffer for the
request data, initialize the req->opudata.buf Þeld to point to it,
and set the req->opudata.len Þeld to the size of the request. The
request size must not exceed the value for the etsdu Þeld of the
TEndpointInfo structure for the endpoint.

You set the req->sequence Þeld to a unique, non -zero value
when you send the request. You only need to do this if the
endpoint issues multiple requests.

reqFlags A bitmapped 32-bit value specifying whether delivery is
guaranteed for both the requester and the responder
(T_ACKNOWLEDGED) and whether you are sending the request data
using additional calls to the OTSndURequest function (T_MORE).
Use the bitwise OR operator to set both values.

function result An error code. See Discussion.

DISCUSSION

You use the OTSndURequest function to initiate a transaction. When the
responder replies to your request, you use the OTRcvUReply function (page 478)
to read the reply. If the endpoint is issuing multiple requests, you should set
the sequence Þeld of the req parameter to a unique non-zero number so that
each request is distinguished from all other outstanding requests issued by the
endpoint.
470 Functions

C H A P T E R 2 2

Endpoints Reference
By default, the endpoint provider guarantees delivery for you, but not for the
responder. That is, you will always Þnd out whether your request was
received, but the responder only receives acknowledgment that you received
the reply if you have set the T_ACKNOWLEDGED ßag in the reqFlags parameter
when you send the request. Not all protocols honor this ßag.

The responderÕs provider generates a T_REPLYCOMPLETE event when you have
read the reply. This happens whether or not the T_ACKNOWLEDGED ßag is set, but if
it is set, this guarantees that the reply was delivered. If you donÕt set this ßag,
the responderÕs call to the OTSndUReply function (page 475) returns right away,
and the responding endpoint receives no additional information as to whether
the reply was received and the data was read.

Setting the T_MORE ßag tells the endpoint provider that you are using several
calls to the OTSndURequest function to send the request data. Note that even
though you are using several calls, the request data, all put together, must still
not exceed the value speciÞed for the etsdu Þeld in the endpointÕs
TEndpointInfo structure (page 426).

If the endpoint is in synchronous blocking mode and ßow-control restrictions
prevent the endpoint provider from accepting the OTSndURequest function, the
provider waits to send the request until ßow-control restrictions are lifted.

If the endpoint is in asynchronous or nonblocking mode and ßow-control
restrictions prevent the endpoint provider from accepting the OTSndURequest
function, the function returns the kOTFLowErr result. When ßow-control
restrictions are lifted, the endpoint provider issues a T_GODATA event, which you
can retrieve by polling the endpoint using the OTLook function (page 449) or by
using a notiÞer function. When you get this event, you can retry sending the
request.
Functions 471

C H A P T E R 2 2

Endpoints Reference
The following table shows how the endpointÕs mode of execution and blocking
status affects the behavior of the OTSndURequest function.

SEE ALSO

Table 4-4 (page 95).

ÒAppleTalk ReferenceÓ(page 721)

OTRcvURequest 22

Reads a request sent by a client using a connectionless transaction-based
protocol.

C INTERFACE

OSStatus OTRcvURequest(EndpointRef ref,
TUnitRequest* req,
OTFlags* reqFlags);

Blocking Nonblocking

Synchronous The function returns
when the provider lifts
ßow-control restrictions
and the request has been
sent to the protocol.

The function returns if
ßow-control restrictions are
in effect or the request data
has been accepted by the
provider .

The kOTFlowErr result is
never returned.

The kOTFlowErr result might
be returned.

Asynchronous The function returns
immediately

The function returns
immediately.

The kOTFlowErr result
might be returned.

The kOTFlowErr result might
be returned.
472 Functions

C H A P T E R 2 2

Endpoints Reference
C++ INTERFACE

OSStatus TEndpoint::RcvURequest(TUnitRequest* req,
OTFlags* reqFlags);

PARAMETERS

ref The endpoint reference of the endpoint accepting the request.

req A pointer to a TUnitRequest structure (page 431) that contains
information about the request being received.

The req->addr Þeld speciÞes the location and size of a buffer
containing the address of the endpoint that made the request;
the Þeld is Þlled in by the OTRcvURequest function when it
returns. You must allocate a buffer to hold address information
and set the req->addr.buf Þeld to point to it. You must also set
the req->addr.maxlen Þeld to the maximum size of the address.

The req->opt Þeld speciÞes the location and size of a buffer
containing the association-related options speciÞed by the
requester. Otherwise, this buffer is empty. When the
OTRcvURequest function returns, it places option information in
this buffer. You must allocate a buffer to contain the option
information and set the req->opt.buf Þeld to point to this
buffer. You must set the req->opt.maxlen Þeld to the maximum
size necessary to hold option information for the endpoint.

The req->udata Þeld speciÞes the location and size of a buffer
containing the request. You must allocate a buffer into which
the OTRcvURequest function can place the request and set the
req->udata.buf field to point to it. You must set the
req->udata.maxlen field to the maximum size of the request
data.

The value of the req->sequence Þeld is generated by the
endpoint provider when you read the request. You need to save
this value and use it for the req->sequence Þeld when sending a
reply or cancelling the transaction.

reqFlags A bitmapped 32-bit value set by the endpoint provider that
speciÞes whether the request is acknowledged (T_ACKNOWLEDGED)
and whether there is more request data coming (T_MORE) or
(T_PARTIALDATA). A value of T_MORE indicates that the buffer you
Functions 473

C H A P T E R 2 2

Endpoints Reference
have allocated is too small to contain the reply. A value of
T_PARTIALDATA indicates that the data unit being read does not
contain the complete request. It is possible that all ßags are set.

function result An error code. See Discussion.

DISCUSSION

You use the OTRcvURequest function to read an incoming request. When the
function returns, it Þlls in the TUnitRequest structure (referenced by the req
parameter) with the address of the sender, the request data, and any
association-related options pertaining to this request. If the buffer you allocated
for the address is not big enough, the function returns with the
kOTBufferOverflowErr result and the incoming request is dropped.

If the endpoint is in synchronous mode and is blocking, the OTRcvURequest
function waits for a request to arrive. If the endpoint is in asynchronous mode
or is not blocking, the OTRcvURequest function retrieves the next pending
unread request or returns the kOTNoDataErr result if there are no pending
requests.

If the endpoint is in asynchronous mode, the endpoint provider generates a
T_REQUEST event when a request arrives. You can poll the endpoint using the
OTLook function (page 449) or use a notifier function to retrieve this event. You
should then call the funtion to retrieve request data until the function returns
with the kOTNoDataErr result.

If the T_MORE bit is set in the flags parameter, this means your buffer is not large
enough to hold the entire request. You must call the OTRcvURequest function
again to retrieve more request data. Open Transport ignores the addr and opt
Þelds of the req parameter for subsequent calls to the OTRcvURequest function.
The T_MORE ßag is not set for the last request packet to let you know that this is
the last packet.

If the T_PARTIALDATA bit is set in the flags parameter, this means that the data
you are about to read with the OTRcvURequest function does not constitute the
entire request and that you must call the function again to read more of or the
rest of the request.

If the T_MORE and the T_PARTIALDATA bits are both set, this means that the data
you are about to read constitutes only part of the request and that your buffer
is too small to contain even this chunk. In this case, you must call the function
again until the T_MORE ßag is clear. The T_PARTIALDATA bit is set only on the Þrst
call to the function.
474 Functions

C H A P T E R 2 2

Endpoints Reference
If you are communicating with multiple requesters and the OTRcvURequest
function returns with the T_PARTIALDATA ßag set, it is possible that your next call
to the OTRcvURequest function might not read the rest of the request because the
next data unit coming in belongs to a different request. One way to handle this
situation is to use the next call to the OTRcvURequest function to determine the
sequence number of the incoming request (by setting req->udata.len to 0) and
then, having determined which request data is coming in, read the data into
the appropriate buffer.

The provider sets the T_ACKNOWLEDGED ßag if the requester has set this ßag when
calling the OTSndURequest function. When this ßag is set and you call the
OTSndUReply function, Open Transport guarantees that your reply is
acknowledged by the requester. This ßag is set only on the Þrst call to the
OTRcvURequest function for any given transaction.

SEE ALSO

The OTSndUReply function (page 475).

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).

OTSndUReply 22

Replies to a request sent by a client using a connectionless transaction-
based protocol.

C INTERFACE

OSStatus OTSndUReply(EndpointRef ref,
TUnitReply* reply,
OTFlags replyFlags);

C++ INTERFACE

OSStatus TEndpoint::SndUReply(TUnitReply* reply,
OTFlags replyFlags);
Functions 475

C H A P T E R 2 2

Endpoints Reference
PARAMETERS

ref The endpoint reference of the endpoint sending the reply.

reply A pointer to a TUnitReply structure (page 432) that speciÞes
information about the requester, options, the ID of this
transaction, and the reply data.

The reply->addr Þeld speciÞes the location and size of a buffer
containing the address of the requester. You are not required to
provide this information. If you do not want to provide address
information, set the reply->addr.len Þeld to 0. To specify an
address, you must allocate a buffer for the address and initialize
it to the destination address. Then you set the reply->addr.buf
Þeld to point to the buffer and set the reply->addr.len Þeld to
the length of the address.

The reply->opt Þeld speciÞes the location and size of a buffer
containing the options that you set for this reply. You must set
the reply->opt.len Þeld to the length of the options or to 0 if
you donÕt want to specify any options.

The reply->udata Þeld speciÞes the location and size of a
buffer containing the reply data sent to the requester. You
allocate a buffer that contains the reply data, set the
reply->udata.buf field to point to that buffer, and set the
reply->udata.len field to specify the size of the reply. The size
cannot exceed the value speciÞed for the tsdu Þeld of the
TEndpointInfo structure for the endpoint.

Set the reply->sequence Þeld to the value that you read for this
Þeld with the OTRcvURequest function (page 472).

replyFlags A bitmapped 32-bit value, which you can set to T_MORE to
indicate that you are sending more reply data with a
subsequent call to the OTSndUReply function.

function result An error code. See Discussion.

DISCUSSION

You use the OTSndUReply function to send a reply. The TUnitReply structure that
you pass in the reply parameter speciÞes the address of the requester, the reply
data, any options you want to specify for this reply, and a transaction ID. If you
do not specify the requesterÕs address, the endpoint provider uses the
476 Functions

C H A P T E R 2 2

Endpoints Reference
transaction ID value stored in the sequence Þeld of the reply parameter to
match the reply against a pending request and knows in this way where to
send the request.

If requests are acknowledged and you do not receive an acknowledgement
from the other side within a speciÞc amount of time (usually negotiated with
the ATP_OPT_RELTIMER option), the function returns with the kETIMEDOUTErr
result. If requests are not acknowledged, the function returns immediately, and
you have no way of knowing whether the reply was received and read.

If requests are not acknowledged, the provider generates a T_REPLYCOMPLETE
event code for asynchronous responders even if the requester has not
acknowledged receipt of the reply. Thus, the only way for you to know
whether this event actually means that the reply was received, is to examine
the reqFlags Þeld of the req parameter for the OTRcvURequest function
(page 472). If the T_ACKNOWLEDGED ßag is set, then the T_REPLYCOMPLETE event
indicates that your reply was received. The cookie parameter passed to the
notiÞer to indicate completion is set to the reply parameter.

The following table shows how the endpointÕs mode of execution and blocking
status affects the behavior of the OTSndUReply function.

Blocking Nonblocking

Synchronous The function returns
when the provider lifts
ßow-control restrictions
and the reply has been
acknowledged or timed
out (if the matching
request was an
acknowledged request).

The function returns
immediately.

The kOTFlowErr result is
never returned.

The kOTFlowErr result might
be returned.
Functions 477

C H A P T E R 2 2

Endpoints Reference
SEE ALSO

The OTCancelUReply function (page 483).

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).

OTRcvUReply 22

Reads a reply to a request sent by a client using a connectionless transaction-
based protocol.

C INTERFACE

OSStatus OTRcvUReply(EndpointRef ref, TUnitReply* reply,
OTFlags* replyFlags);

C++ INTERFACE

OSStatus TEndpoint::RcvUReply(TUnitReply* reply,
OTFlags* replyFlags);

Asynchronous The function returns
immediately.

The provider calls your
notiÞer, passing
T_REPLYCOMPLETE for the
code parameter when
the reply is acknow-
ledged or timed out.

The function returns
immediately.

The provider calls your
notiÞer, passing
T_REPLYCOMPLETE for the code
parameter when the reply is
acknowledged or timed out.

The kOTFlowErr result
might be returned.

The kOTFlowErr result might
be returned.

Blocking Nonblocking
478 Functions

C H A P T E R 2 2

Endpoints Reference
PARAMETERS

ref The endpoint reference of the endpoint accepting the reply.

reply A pointer to a TUnitReply structure (page 432) that speciÞes the
location to store the reply information.

The reply->addr Þeld speciÞes the location and size of a buffer
containing the address of the endpoint sending the reply. You
must allocate a buffer into which the address is placed when
the function returns, and you must set the reply->addr.buf Þeld
to point to this buffer. You must also set the reply->addr.maxlen
Þeld to the maximum size of the buffer.

The reply->opt Þeld speciÞes the location and size of a buffer
containing the association-related options that the responder
has sent using the OTSndUReply function. You must allocate a
buffer to hold option information and set the reply->opt Þeld to
point to it. When the OTRcvUReply function returns, it Þlls this
buffer with option information. You must set the
reply->opt.maxlen field to the maximum size necessary to hold
option information.

The reply->udata Þeld speciÞes the location and size of a buffer
into which the function places the reply data on return. You
must allocate a buffer to hold the data, set the reply->udata.buf
Þeld to point to it, and set the reply->udata.maxlen Þeld to the
maximum size of this buffer. The size must not exceed the value
speciÞed for the tsdu Þeld of the TEndpointInfo structure for
this endpoint.

If you have sent out multiple requests, you can use the
reply->sequence field to match incoming replies to outgoing
requests.

replyFlags A pointer to a bitmapped long that is Þlled in by the endpoint
provider to indicate whether there is more reply data to be
read, in which case you must call the OTRcvUReply function
again. A value of T_MORE indicates that the buffer pointed to
by udata.buf is too small to contain the reply. A value of
T_PARTIALDATA indicates that the data unit being read does not
contain the complete reply. It is possible that both ßags are set.

function result An error code. See Discussion.
Functions 479

C H A P T E R 2 2

Endpoints Reference
DISCUSSION

You use the OTRcvUReply function to read the reply to a request that you have
issued using the OTSndURequest function. The reply parameter points to buffers
in which the function stores the reply, the address of the responder, any options
connected with this transaction, and the transaction ID for this transaction.

If the endpoint is in asynchronous mode, the provider generates a T_REPLY
event to let you know that reply data has arrived. If it should happen that the
reply data is sent using multiple calls to the sending function, Open Transport
does not generate additional T_REPLY events. To guard against this possibility,
your notiÞer function should call the OTRcvUReply function until it returns the
kOTNoDataErr result.

If a transaction has timed out awaiting reply data, the OTRcvUReply function
returns a kETIMEDOUTErr result; the sequence Þeld of the reply parameter
speciÞes which request has timed out.

If you have issued multiple requests, it is not possible to know ahead of time
how incoming replies match your requests. If the OTRcvUReply function returns
withthe T_PARTIALDATA ßag set, you must be prepared to receive a reply to any
outstanding request. One way to manage this situation is to call the
OTRcvUReply function with the reply->udata.maxlen field set to 0. The rest of the
information returned by the function on this Þrst call lets you know the
sequence number of the reply as well as the flagPtr setting. Once you
determine the matching request and the appropriate reply buffer, you can call
the OTRcvUReply function a second time to read the actual reply data. On the
second and subsequent reads, Open Transport sets the reply->opt.len Þeld to
0. It is guaranteed that once a reply has been partially read, subsequent calls to
OTRcvUReply will read from that same reply until all the data has been read.

If the T_MORE bit is set in the flags parameter, this means your buffer is not large
enough to hold the entire reply. You must call the OTRcvURequest function again
to retrieve more request data. Open Transport ignores the addr and opt Þelds of
the reply parameter for subsequent calls to the function. The T_MORE ßag is not
set for the last reply packet to let you know that this is the last packet.

If the T_PARTIALDATA bit is set in the flags parameter, this means that the data
you read with the OTRcvUReply function does not constitute the entire reply;
more data is coming but it has not yet arrived. You must call the function again
to read more of, or the rest of, the reply.

If the T_MORE and the T_PARTIALDATA bits are both set, this means that the data
you read constitutes only part of the reply and that your buffer is too small to
contain even this chunk. In this case, you must call the function again until the
480 Functions

C H A P T E R 2 2

Endpoints Reference
T_MORE flag is clear. The T_PARTIALDATA bit is set only on the first call to the
function.

The following table shows how the endpointÕs mode of execution and blocking
status affects the behavior of the OTRcvUReply function.

SEE ALSO

The OTSndURequest function (page 469).

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).

OTCancelURequest 22

Cancels a request that was made using the OTSndURequest function.

C INTERFACE

OSStatus OTCancelURequest(EndpointRef ref, OTSequence seq);

Blocking Nonblocking

Synchronous The function returns
when the provider lifts
ßow-control restrictions
and the reply has
arrived.

The function returns
immediately.

The kOTFlowErr result is
never returned.

The kOTFlowErr result might
be returned.

Asynchronous The function returns
immediately.

The provider calls your
notiÞer, passing T_REPLY
for the code parameter.

The function returns
immediately.

The provider calls your
notiÞer, passing T_REPLY for
the code parameter.

The kOTFlowErr result
might be returned.

The kOTFlowErr result might
be returned.
Functions 481

C H A P T E R 2 2

Endpoints Reference
C++ INTERFACE

OSStatus TEndpoint::CancelURequest(OTSequence seq);

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being cancelled.

seq A 32-bit value specifying the transaction ID of the request you
want to cancel. This is the same value as the one you speciÞed
for the sequence Þeld of the req parameter when you called the
OTSndURequest function.

If you specify 0 for this parameter, Open Transport cancels all
outstanding requests for the endpoint. If you specify an invalid
sequence number, Open Transport does not do anything.

function result If the function completes successfully, it returns the kOTNoErr
result; it does not return any other kind of acknowledgment.

DISCUSSION

The OTCancelURequest function cancels the outgoing request whose transaction
ID is speciÞed by the seq parameter.

When you call the OTSndURequest function (page 469), the provider allocates
memory for internal buffers for the transaction. Calling the OTCancelURequest
function tells the endpoint provider that you are no longer interested in the
transaction and that it can free up any memory or internal buffers associated
with the transaction request identiÞed by the seq parameter.

It is your responsibility to deallocate memory that you have reserved for the
address, options, and data buffers associated with the cancelled OTSndURequest
function.

Use the OTCancelURequest function to cancel an outgoing request; use
OTCancelUReply (page 483) to cancel an incoming request.

SEE ALSO

Table 4-4 (page 95).
482 Functions

C H A P T E R 2 2

Endpoints Reference
OTCancelUReply 22

Cancels a request that you have read using the OTRcvURequest function.

C INTERFACE

OSStatus OTCancelUReply(EndpointRef ref, OTSequence seq);

C++ INTERFACE

OSStatus TEndpoint::CancelUReply(OTSequence seq);

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being canceled.

seq A long, specifying the transaction ID of the request being
cancelled. Specify the same value as that value passed in the req
parameter to the OTRcvURequest function that you used to read
this request.

If you specify 0 for this parameter, Open Transport cancels all
outstanding incoming requests for the endpoint. If you specify
an invalid sequence number, Open Transport does not do
anything.

function result If the function completes successfully, it returns the kOTNoErr
result; it does not return any other kind of acknowledgment.

DISCUSSION

The OTCancelUReply function cancels the incoming request whose transaction
ID is speciÞed by the seq parameter.

When you call the OTRcvURequest function (page 472), the endpoint provider
allocates memory for internal buffers and assigns a sequence value to identify
this transaction. Calling the OTCancelUReply function tells the provider that you
are no longer interested in the transaction and that it can free up the memory
and the sequence number associated with the cancelled transaction.
Functions 483

C H A P T E R 2 2

Endpoints Reference
It is your responsibility to deallocate memory that you have reserved for the
address, options, and data buffers associated with the cancelled OTRcvURequest
function.

Use the OTCancelUReply function to cancel an incoming request; use the
OTCancelURequest function (page 481) to cancel an outgoing request.

Establishing Connection 22

To use a connection-oriented endpoint you must Þrst bind the endpoint, then
you must use the functions described in this section to establish the connection.
The active peer uses the OTConnect and OTRcvConnect functions; the passive peer
uses the OTListen and OTAccept functions. You use the same functions to
establish a connection for both transactionless and transaction-based endpoints.

Once you have established a connection, you can send and receive data. How
you do this depends on whether you are using transactionless or
transaction-based service. After you are done transferring data and no longer
need to stay connected, you must explicitly tear down the connection by using
the functions described in the section ÒTearing Down a ConnectionÓ (page 512).

OTConnect 22

Requests a connection to a remote peer.

C INTERFACE

OSStatus OTConnect(EndpointRef ref,
TCall* sndCall,
TCall* rcvCall);

C++ INTERFACE

OSStatus TEndpoint::Connect(TCall* sndCall,
TCall* rcvCall);
484 Functions

C H A P T E R 2 2

Endpoints Reference
PARAMETERS

ref The endpoint reference of the endpoint initiating the connection.

sndCall A pointer to a TCall structure (page 433). You must allocate
buffers, store the appropriate address, option, and data in them,
and specify their length.

The sndCall->addr.buf Þeld points to a buffer that speciÞes the
address of the passive peer. The sndCall->addr.len Þeld
speciÞes the size of the address in bytes.

The sndCall->opt.buf Þeld points to a buffer that speciÞes the
options you want to negotiate. The sndCall->opt.len Þeld
speciÞes the size of the buffer in bytes.

The sndCall->udata.buf Þeld points to a buffer that contains
data you want to send with the connection request. The
sndCall->udata.len field specifies the size of the data in bytes.

rcvCall A pointer to a TCall structure (page 433) that stores information
about the connection when the function returns. You can set
this parameter to nil, inwhich case no information is returned to
you.

This parameter is only meaningful for synchronous calls to the
OTConnect function. In this case, you must allocate the buffers
for address, options, and data returned, and you must specify
their maximum length. You can set this to nil if youÕe not
interested in the result.

The rcvCall->addr.buf Þeld points to a buffer that is used to
store the address to which you are actually connected. Set the
rcvCall->addr.maxlen field to the size of the buffer in bytes.

The rcvCall->opt.buf Þeld points to a buffer in which the
options that have actually been negotiated are stored. Set the
rcvCall->opt.maxlen field to the size of the buffer in bytes.

The rcvCall->udata.buf Þeld points to a buffer that contains
data sent by the peer accepting the connection. Set the
rcvCall->udata.maxlen field to the size of the buffer in bytes.

function result An error code. See Discussion.
Functions 485

C H A P T E R 2 2

Endpoints Reference
DISCUSSION

If the endpoint is in synchronous mode, the OTConnect function returns after the
connection is established and Þlls in the Þelds of the rcvCall parameter with
the actual values associated with this connection. These might be different from
the values you speciÞed using the sndCall parameter.

If the OTConnect function returns with the kOTLookErr result, this might be either
because of a pending T_LISTEN or T_DISCONNECT event. That is, either a
connection request from another endpoint has interrupted execution of the
function, or the remote endpoint has rejected the connection. If you donÕt have
a notiÞer installed, you can call the OTLook function (page 449) to identify the
event that caused the kOTLookErr result. If the event is T_LISTEN, you must
accept or reject the incoming request and then continue processing the
OTConnect function by calling the function OTRcvConnect (page 487). If the event
is T_DISCONNECT, you must call the OTRcvDisconnect function (page 515) to clear
the error conditionÑthat is, to deallocate memory and place the endpoint in
the correct state.

If the endpoint is in asynchronous mode, the OTConnect function returns before
the connection is established with a kOTNoDataErr result to indicate that the
connection is in progress. When the connection is established, the endpoint
provider calls your notiÞer, passing T_CONNECT for the code parameter. In
response, you must call the OTRcvConnect function to read the connection
parameters that would have been returned in the rcvCall parameter if the
endpoint were in synchronous mode.

It is possible that the remote address returned in the addr.buf Þeld of the
rcvCall parameter is not the same as the address you requested using the
sndCall->addr field. This happens when the remote peer accepts the connection
on a different endpoint than the one receiving the connection request.

If the OTConnect function returns a result other than kOTNoDataErr, then the
connection attempt has not been initiated and no events will be received.

SPECIAL CONSIDERATIONS

Not all endpoints support the sending of data with a connection request.
Examine the connect Þeld of the TEndpointInfo structure (page 426) for the
endpoint to determine if the endpoint supports the sending of data and to
determine the maximum size of the data.
486 Functions

C H A P T E R 2 2

Endpoints Reference
SEE ALSO

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).

OTRcvConnect 22

Reads the status of an asynchronous call to the OTConnect function.

C INTERFACE

OSStatus OTRcvConnect(EndpointRef ref,
TCall* call);

C++ INTERFACE

OSStatus TEndpoint::RcvConnect(TCall* call);

PARAMETERS

ref The endpoint reference of the endpoint initiating the connection.

call A pointer to a TCall structure (page 433) that, on return,
contains information about the newly established connection.
You can set this parameter to nil, in which case no information
is returned to you. Otherwise, you must allocate buffers for the
address, option, and data returned, and you must specify the
maximum length for each buffer.

The call->addr.buf Þeld points to a buffer that speciÞes the
address to which you are actually connected. Set the
call->addr.maxlen field to the size of the address.

The call->opt.buf Þeld points to a buffer that contains the
option values that were negotiated for this connection. Set the
call->opt.maxlen field to the size of the buffer.
Functions 487

C H A P T E R 2 2

Endpoints Reference
The call->udata.buf Þeld points to a buffer that contains any
data sent as part of the conection request. Set the Þeld
call->udata.maxlen to the size of the buffer.

The call->sequence Þeld is not used by this function.

function result An error code. See Discussion.

DISCUSSION

You call the OTRcvConnect function to determine the status of a previously
issued OTConnect call. If you want to retrieve information about the connection,
you must allocate buffers for the addr Þeld and, if required, the opt and udata
Þelds before you make the call. You can examine the connect Þeld of the
TEndpointInfo structure (page 426) to determine whether your endpoint
supports the receiving of data with a connection request.

If the endpoint is synchronous and blocking, the OTRcvConnect function waits
for the connection to be accepted or rejected. If the connection is accepted, the
function returns with a kOTNoError result. If the connection is rejected, the
function returns with a kOTLookErr result. In this case, you should call the
OTLook function (page 449) to verify that a T_DISCONNECT event is the reason for
the kOTLookErr, and then you should call the OTRcvDisconnect function
(page 515) to clear the event.

If the endpoint is asynchronous or nonblocking, the OTRcvConnect function
returns with the kOTNoDataErr result if the connection has not yet been
established, or it returns the result kOTNoError and sets up the call structure
appropriately.

SPECIAL CONSIDERATIONS

Not all endpoints support the sending of data with a connection request.
Examine the connect Þeld of the TEndpointInfo structure for the endpoint to
determine if the endpoint supports the sending of data and to determine the
maximum size of the data.

SEE ALSO

The OTConnect function (page 484).

ÒAppleTalk ReferenceÓ (page 721).
488 Functions

C H A P T E R 2 2

Endpoints Reference
Table 4-4 (page 95).

OTListen 22

Listens for an incoming connection request.

C INTERFACE

OSStatus OTListen(EndpointRef ref,
TCall* call);

C++ INTERFACE

OSStatus TEndpoint::Listen(TCall* call);

PARAMETERS

ref The endpoint reference of the endpoint listening for the
connection request.

call A pointer to a TCall structure (page 433) that contains, on
return, information about the address of the peer requesting the
connection, option information, data associated with the
connection request, and the connection ID for this connection.
You must allocate buffers in which this information can be
stored and specify the maximum length for each buffer.

The call->addr.buf Þeld points to a buffer that will hold the
address of the endpoint that requested the connection. Set the
call->addr.maxlen field to the size of the buffer.

The call->opt.buf Þeld points to a buffer that will hold the
options that the peer has requested for this connection. Set the
call->opt.maxlen field to the size of the buffer.
Functions 489

C H A P T E R 2 2

Endpoints Reference
The call->udata.buf Þeld points to a buffer that stores any data
sent by the endpoint requesting the connection. Set the
call->udata.maxlen field to the maximum size of this buffer.

The call->sequence Þeld contains the connection ID of the
incoming request.

function result An error code. See Discussion.

DISCUSSION

You use the OTListen function to listen for incoming connection requests.

If the endpoint is in synchronous mode and is blocking, the OTListen function
returns when a connection request has arrived. On return, the function Þlls in
the TCall structure referenced by the call parameter with information about
the connection request. After retrieving the connection request using the
OTListen function, you can reject the request using the OTSndDisconnect
function (page 513), or you can accept the request using the OTAccept function
(page 491).

If the endpoint is in asynchronous mode or is not blocking, the OTListen
function returns any pending connection requests or returns the kOTNoDataErr
result if there are no pending connection requests. Typically, you would call the
OTListen function from within a notifier function in response to the T_LISTEN
event. .

SPECIAL CONSIDERATIONS

Not all endpoints support the sending of data with a connection request.
Examine the connect Þeld of the TEndpointInfo structure for the endpoint to
determine if the endpoint supports the sending of data and to determine the
maximum size of the data.

SEE ALSO

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).
490 Functions

C H A P T E R 2 2

Endpoints Reference
OTAccept 22

Accepts an incoming connection request.

C INTERFACE

OSStatus OTAccept(EndpointRef ref,
EndpointRef resRef,
TCall* call);

C++ INTERFACE

OSStatus TEndpoint::Accept(EndpointRef resRef,
TCall* call);

PARAMETERS

ref The endpoint reference of the listening endpoint.

resRef The endpoint reference of the endpoint accepting the
connection.

call A pointer to a TCall structure (page 433) that contains
information about the address of the peer requesting the
connection, option information, data associated with
the connection request, and the connection ID for this
connection.

The call->addr.buf Þeld points to a buffer that contains the
address of the peer that requested the connection. The provider
may optionally check this address to ensure youÕre accepting
the right connection. If you do not want to specify a value, set
the call->addr.len Þeld to 0.

The call->opt.buf Þeld points to a buffer that contains option
values for this connection. If you do not want to specify any
options set the call->opt.len Þeld to 0.

The call->udata.buf Þeld points to a buffer containing any
data to be returned to the endpoint requesting the connection.
The call->udata.len Þeld speciÞes the length of the data.
Functions 491

C H A P T E R 2 2

Endpoints Reference
The call->sequence Þeld speciÞes the connection ID of the
connection request that you are accepting. This must be the
same value that was passed to you by the OTListen function
when you received the connection request.

function result An error code. See Discussion.

DISCUSSION

You use the OTAccept function to accept a request that you retrieved using the
OTListen function (page 489). You can accept a connection on either the same or
a different endpoint than the one listening for connection request.

■ If you accept the connection on the same endpoint (the values of the ref and
resRef parameters are the same), there must be no other outstanding
connection requests on that endpoint. Otherwise, the call to OTAccept fails
and returns the kOTIndOutErr result.

■ If you accept the connection on a different endpoint (the values of the ref
and resRef parameters are different), you are not required to bind the
endpoint accepting the request Þrst. If the endpoint is not bound, the
provider binds it to the same address as that of the endpoint receiving the
connection request. If you want to bind it explicitly to that address, you
must set the reqAddr->qlen Þeld to 0.

If you do not wish to accept the connection request, you must call the
OTSndDisconnect function (page 513).

If the endpoint is in synchronous mode, the function does not return until the
operation is complete. If the endpoint is in asynchronous mode, the OTAccept
function returns immediately with a kOTNoError result, indicating that
processing has begun and that the client will be notiÞed when it is complete.

When processing is Þnished and the connection is opened, the provider for the
endpoint speciÞed by the ref parameter calls that endpointÕs notiÞer, passing
the event T_ACCEPTCOMPLETE for the code parameter and the endpoint reference
(ref) for the cookie parameter. The provider for the endpoint speciÞed by the
resRef parameter calls that endpointÕs notifier, passing T_PASSCON for the code
parameter and resRef for the cookie parameter. If you have accepted the
connection on the same endpoint (ref and resRef are the same), the provider
issues the T_ACCEPTCOMPLETE event Þrst, and then the T_PASSCON event.
492 Functions

C H A P T E R 2 2

Endpoints Reference
Note
It is possible, in the case where the listening and accepting
endpoints are different, that the accepting endpoint
receives a T_DATA event before receiving the T_PASSCON
event. If this happens, set a ßag to defer receiving the data
until later. When the T_PASSCON event is received, check the
ßag and issue the OTRcv call if the ßag is set. Note that after
deferring the handling of the T_DATA event, your handler
will not be notiÞed of this event again, until you read all of
the data presently available. ◆

If you have not installed a notiÞer, you can poll the endpoint accepting the
connection for a change of state to T_DATAXFER; the change of state happens
when the connection is opened.

SPECIAL CONSIDERATIONS

In asynchronous mode, it is possible for the endpoint to issue the
T_ACCEPTCOMPLETE event before the OTAccept function returns the result
kOTNoError.

Not all endpoints support the sending of data with a connection request.
Examine the connect Þeld of the TEndpointInfo structure for the endpoint to
determine if the endpoint supports the sending of data and the maximum size
of the data.

Calling the OTAccept function on an endpoint that was bound with a qlen
greater than 1 can result in the result kOTLookErr being returned because
another T_LISTEN event or T_DISCONNECT event has arrived. For information on
how to handle this situation, see ÒHandling Multiple Simultaneous
ConnectionsÓ (page 142).

SEE ALSO

The OTBind function (page 441).

ÒTCP/IP ServicesÓ (page 237)

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).
Functions 493

C H A P T E R 2 2

Endpoints Reference
Functions for Connection-Oriented Transactionless Endpoints 22

To use connection-oriented transactionless endpoints, you must Þrst establish a
connection, as described in the previous section, and then use the OTSnd and
OTRcv functions described in this section to transfer data.

The OTSnd and OTRcv functions do not use a special data structure to describe
the data being transferred. Rather, the buf parameter is used to point to the
buffer holding the data and the nbytes parameter is used to specify the size of
the data being sent. Because the endpoints are already connected, it is not
necessary to specify a destination address. Similarly, options are deÞned when
the connection is established; therefore, it is not necessary to specify options
when sending data.

OTSnd 22

Sends data to a remote peer using a connection-oriented, transactionless
endpoint.

C INTERFACE

OTResult OTSnd(EndpointRef ref,
void* buf,
size_t nbytes,
OTFlags flags);

C++ INTERFACE

OTResult TEndpoint::Snd(void* buf,
size_t nbytes,
OTFlags flags);

PARAMETERS

ref The endpoint reference of the endpoint sending data.

buf A pointer to the data being sent.
494 Functions

C H A P T E R 2 2

Endpoints Reference
nbytes A 32-bit value specifying the number of bytes being sent.

flags A 32-bit bitmapped value specifying whether the data to be
sent is expedited (T_EXPEDITED) and whether more data remains
to be sent (T_MORE). To set both Þelds, use the bitwise OR
operator.

function result A positive number indicating the actual number of bytes sent or
a negative number indicating an error code. See Discussion.

DISCUSSION

You use the OTSnd function to send data to a remote peer . Before you use this
function, you must establish a connection with the peer.

You specify the data to be sent by passing a pointer to the data (buf) and by
specifying the size of the data (nbytes). The maximum size of the data you can
send is speciÞed by the tsdu Þeld of the TEndpointInfo structure (page 426) for
the endpoint or by the etsdu Þeld for expedited data (T_EXPEDITED ßag set).

Some protocols use expedited data for control or attention messages. To
determine whether the endpoint supports this service, examine the etsdu Þeld
of the TEndpointInfo structure. A positive integer for the etsdu Þeld indicates
the maximum size in bytes of expedited data that you can send. To send
expedited data, you set the T_EXPEDITED bit of the flags parameter.

If you want to break up the data into logical units, you can set the T_MORE bit of
the flags parameter to indicate that you are using additional calls to the OTSnd
function to send more data that belongs to the same logical unit.
To indicate that the last data unit is being sent, turn off the T_MORE ßag. Only
some endpoints support the preservation of logical units; you should check the
tsdu field of the TEndpointInfo structure to find out if yours does.

If the endpoint is in synchronous blocking mode, the OTSnd function returns
after it actually sends the data. If ßow-control restrictions prevent its sending
the data, it retries the operation until it is able to send it.

If the endpoint is in non-blocking or asynchronous mode, the OTSnd function
returns with the kOTFlowErr result if ßow-control restrictions prevent the data
from being sent. When the endpoint provider is able to send the data, it sendsa
T_GODATA event to let you know that it is possible to send data. You should wait
for this event and then send the data again.

If the endpoint is in non-blocking or asynchronous mode, it is also possible that
only part of the data is actually accepted by the transport provider. In this case,
Functions 495

C H A P T E R 2 2

Endpoints Reference
the OTSnd function returns a value that is less than the value of the nbytes
parameter. In this case, you should call the function again to send the
remaining data.

If an asynchronous event, such as a disconnect, occurs and interrupts the OTSnd
function, OTSnd returns with the kOTLookErr result.

The following table shows how the endpointÕs modes of operation affects the
behavior of the OTSnd function.

SPECIAL CONSIDERATIONS

The XTI_SNDLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpointÕs
internal send buffer before data is sent. See ÒOption ManagementÓ(page 165).

SEE ALSO

Table 4-4 (page 95).

OTRcv 22

Reads data sent using a connection-oriented transactionless endpoint.

Blocking Nonblocking

Synchronous The function returns when
the provider lifts
ßow-control restrictions.

The function returns
immediately.

The kOTFlowErr result is
never returned.

The kOTFlowErr result
might be returned.

Asynchronous The function returns
immediately.

The function returns
immediately.

The kOTFlowErr result
might be returned.

The kOTFlowErr result
might be returned.
496 Functions

C H A P T E R 2 2

Endpoints Reference
C INTERFACE

OTResult OTRcv(EndpointRef ref,
void* buf,
size_t nbytes,
OTFlags* flags);

C++ INTERFACE

OTResult TEndpoint::Rcv(void* buf,
size_t nbytes,
OTFlags* flags);

PARAMETERS

ref The endpoint reference of the endpoint receiving data.

buf A pointer to a buffer where the incoming data is to be copied.
You must allocate this buffer before you call the function.

nbytes A 32-bit value specifying the size of the buffer in bytes.

flags A 32-bit bitmapped value specifying, on return, whether the
data being sent is expedited (T_EXPEDITED) and whether more
data remains to be received (T_MORE).

function result A positive integer specifying the number of bytes received or a
negative integer specifying an error code. See Appendix
B(page 785), and Discussion.

DISCUSSION

You call the OTRcv function to read data sent by the peer to which you are
connected. If the OTRcv function succeeds, it returns a positive integer
(OTResult) specifying the number of bytes received. The function places the
data read into the buffer referenced by the buf parameter. If the function fails, it
returns a negative integer corresponding to a result code that indicates the
reason for the failure. You can call this function to receive either normal or
expedited data. If the data is expedited, the T_EXPEDITED ßag is set in the flags
parameter.
Functions 497

C H A P T E R 2 2

Endpoints Reference
If the endpoint does not support the concept of a TSDU, the T_MORE ßag is not
meaningful and should be ignored. To determine whether the endpoint
supports TSDUs, examine the tsdu Þeld of the TEndpointInfo structure. If the
endpoint supports TSDUs and the T_MORE bit is set in the flags parameter when
the function returns, this means that the buffer you allocated is too small to
contain the entire TSDU and that you must call the OTRcv function again. If you
have read x bytes with the Þrst call, the next call to the OTRcv function begins to
read at the (x + 1) byte. Each call to this function that returns with the T_MORE
ßag set means that you must call the function again to get more of the TSDU.
When you have read the entire TSDU, the OTRcv function returns with the
T_MORE flag not set.

If the OTRcv function returns and the T_EXPEDITED bit is set in the flags
parameter, this means that you have read expedited data. If the number of
bytes in the ETSDU exceeds the number of bytes you speciÞed in the reqCount
parameter, both the T_EXPEDITED and the T_MORE bits are set. You must call the
OTRcv function until the T_MORE flag is not set to retrieve the rest of the ETSDU.

If you are calling the OTRcv function repeatedly to read normal data and a call
to the function returns T_EXPEDITED in the flags parameter, the next call to the
OTRcv function that returns without the T_EXPEDITED flag set returns normal
data at the place it was interrupted. It is your responsibility to remember where
that was and to continue processing normal data.

If the endpoint is in synchronous blocking mode, the endpoint waits for data if
none is currently available.If the endpoint is in asynchronous mode or is not
blocking, the function returns with the kOTNoDataErr result if no data is
available. For more information on notiÞer functions and event codes, see
MyNoÞerCallback function(page 413) and ÒEvent CodesÓ(page 383). If you
have installed a notiÞer, the endpoint provider calls your notiÞer and passes
T_DATA or T_EXDATA for the code parameter when there is data available. If you
have not installed a notiÞer, you may poll for these events using the OTLook
function (page 449). Once you receive a T_DATA or T_EXDATA event, you should
continue in a loop, calling the OTRcv function until it returns with the
kOTNoDataErr result.

SPECIAL CONSIDERATIONS

You should be prepared for a T_DATA event and then a kOTNoDataErr error when
you call the OTRcv function. This seems unusual, but it can occur if you were in
the process of calling OTRcv in the foreground when a T_DATA event comes in.
498 Functions

C H A P T E R 2 2

Endpoints Reference
Whenever the OTRcv function returns a kOTLookErr error, it is very important
that you call the OTLook function. If you are in a ßow-control situation on the
send side, and a T_GODATA or T_GOEXDATA event occurs that you do not clear in
your notiÞer (by calling OTLook or by actually sending some data), then you
will hang waiting. Until the T_GODATA or T_GOEXDATA events are cleared, Open
Transport cannot send you another T_DATA event (or any other event other than
a T_DISCONNECT event).

The XTI_RCVLOWAT option allows endpoints that support it to negotiate the
minimum number of bytes that must have accumulated in the endpointÕs
internal receive buffer before the endpoint provider generates a T_DATA event.
See ÒOption ManagementÓ (page 165) for information on setting this option.

Functions for Connection-Oriented Transaction-Based Endpoints 22

After you establish a connection, you can transfer data using connection-
oriented transaction-based endpoints by calling the OTSndRequest function to
send a request, the OTRcvRequest function to read a request, the OTSndReply
function to reply to the request, and the OTRcvReply function to read the reply.
This section also describes the OTCancelRequest function, which you use to
cancel an outgoing request, and the OTCancelReply function, which you use
to cancel an incoming request. Connection-oriented transaction-based service
used by protocols such as ASP is described at greater length in the section
ÒUsing Connection-Oriented Transaction-Based ServiceÓ (page 125).

SEE ALSO

Table 4-4 (page 95).

OTSndRequest 22

Sends a request to a connection-oriented transaction-based endpoint.
Functions 499

C H A P T E R 2 2

Endpoints Reference
C INTERFACE

OSStatus OTSndRequest(EndpointRef ref,
TRequest* req,
OTFlags reqFlags);

C++ INTERFACE

OSStatus TEndpoint::SndRequest(TRequest* req,
OTFlags reqFlags);

PARAMETERS

ref The endpoint reference of the endpoint making the request.

req A pointer to a TRequest structure (page 434) that contains
information about the request, options for this request, and the
transaction ID of the request. You must allocate buffers for this
information and specify their size.

The req->data.buf Þeld is apointer to a buffer that contains the
request. Set the req->data.len Þeld to the size of the request
data. The size of the request cannot exceed the value speciÞed
for the etsdu Þeld of the TEndpointInfo structure for the
endpoint.

The req->opt.buf Þeld is a pointer to a buffer that contains
option values you want to negotiate for this request. Set the
req->opt.len field to the size of the option data. Set the opt.len
Þeld to 0 if there are no options.

The req->sequence Þeld speciÞes a unique non-zero number of
your choice that identiÞes this request.

reqFlags A bitmapped 32-bit value specifying whether you are sending
request data using additional calls to this function (T_MORE) and
whether you plan to acknowledge replies (T_ACKNOWLEGED). Use
the bitwise OR operator to set both bits.

function result An error code. See Appendix B(page 785), and Discussion.
500 Functions

C H A P T E R 2 2

Endpoints Reference
DISCUSSION

You use the OTSndRequest function to initiate a transaction for a
connection-oriented transaction-based endpoint. Call the OTRcvReply function
(page 507) to read the reply to your request.

By default, delivery is guaranteed for you, but not for the responder. That is,
you will always Þnd out whether your request was received, but the responder
only receives acknowledgment that you received the reply if you set the
T_ACKNOWLEDGED bit in the reqFlags parameter when you send the request.

If the responder is an Open Transport endpoint, its provider generates a
T_REPLYCOMPLETE event when you have read the reply. This happens whether or
not the T_ACKNOWLEDGED bit is set; but if it is set, this guarantees that the reply
was delivered. If you donÕt set this ßag, the responderÕs call to the OTSndReply
function returns right away, and the responding endpoint receives no
additional information as to whether the reply was received and the data
was read.

Setting the T_MORE bit tells the endpoint provider that you are using several
calls to the OTSndRequest function to send the request data. Note that even
though you are using several calls, the request data, put all together, must still
not exceed the value speciÞed for the etsdu Þeld in the endpointÕs
TEndpointInfo structure.

If the endpoint is in synchronous blocking mode and ßow-control restrictions
prevent the endpoint provider from accepting the OTSndRequest function, Open
Transport retries the operation until ßow-control restrictions are lifted.

If the endpoint is in asynchronous or nonblocking mode and ßow-control
restrictions prevent the endpoint provider from accepting the OTSndRequest
function, Open Transport returns the kOTFlowErr result. When ßow-control
restrictions are lifted, the provider issues a T_GODATA event, which you can
retrieve using your notiÞer function or by polling the endpoint using the
OTLook function (page 449). When you get this event, you can try sending the
request again.
Functions 501

C H A P T E R 2 2

Endpoints Reference
The next table shows how the endpointÕs mode of execution and blocking
status affects the behavior of the OTSndRequest function.

SEE ALSO

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).

OTRcvRequest 22

You use the OTRcvRequest function to read a request from a connection-oriented
transaction-based requester.

C INTERFACE

OSStatus OTRcvRequest(EndpointRef ref,
TRequest* req,

OTFlags* reqFlags);

C++ INTERFACE

OSStatus TEndpoint::RcvRequest(TRequest* req,
OTFlags* flags);

Blocking Nonblocking

Synchronous The function returns when
the provider lifts ßow-
control restrictions and the
request has been sent to the
protocol.

The function returns if
ßow-control restrictions
are in effect or the request
data has been sent to the
protocol.

The kOTFlowErr result is
never returned.

The kOTFlowErr result
might be returned.

Asynchronous The function returns
immediately.

The function returns
immediately.

The kOTFlowErr result
might be returned.

The kOTFlowErr result
might be returned.
502 Functions

C H A P T E R 2 2

Endpoints Reference
PARAMETERS

ref The endpoint reference of the endpoint reading the request.

req A pointer to a TRequest structure (page 434) that contains
information, on return, about the incoming request. You must
allocate buffers in which this information can be stored and
specify the maximum size of each buffer.

The req->data.buf Þeld is a pointer to a buffer in which the
incoming request is stored. Set the req->data.maxlen Þeld to the
maximum size of the request.

The req->opt.buf Þeld is a pointer to a buffer in which the
options speciÞed by the requester are stored. Set the
req->opt.maxlen field to the maximum size of option data.

The value for the req->sequence Þeld is generated by the
endpoint provider. You need to save this value and use it for the
sequence field when sending a reply.

reqFlags A bitmapped 32-bit value specifying, on return, whether there
is more request data coming (T_MORE) and whether the provider
is going to acknowledge replies (T_ACKNOWLEDGED).

function result An error code. See Appendix B(page 785), and Discussion.

DISCUSSION

You use the OTRcvRequest function to read an incoming request. After reading
the request, you can use the OTSndReply function (page 504) to reply to that
request or the OTCancelRequest function (page 510) to reject the request.

When the OTRcvRequest function returns, the req->data.buf Þeld points to the
request data and the req->sequence Þeld speciÞes a transaction ID for this
transaction. You must use this same sequence value when calling the
OTSndReply function to reply to this request or the OTCancelRequest function to
reject it.

If the endpoint is in synchronous mode and is blocking, the OTRcvRequest
function returns only when a request arrives. The OTRcvRequest function
returns either the next unread request or the kOTNoDataErr result if there are no
pending requests.

When a request arrives, the provider generates a T_REQUEST event. You can poll
for this event using the OTLook function (page 449) or call the function for as
Functions 503

C H A P T E R 2 2

Endpoints Reference
long as the kOTNoDataErr result is returned. If you have a notiÞer installed for
this endpoint, the event is sent to the notiÞer. For more information on notiÞer
functions and event codes, see MyNotifierCallback function(page 413) and
ÒEvent CodesÓ(page 383).

If you have allocated a buffer that is too small to hold the request data, the
provider sets the T_MORE bit in the reqFlags Þeld to indicate that there is more
request data to be read. You must call the OTRcvRequest function until the
T_MORE flag is cleared in order to retrieve the rest of the request data. The
req->opt.buf field contains no information for these additional calls.

The ßags parameter can also have the T_PARTIALDATA bit set. In this case, the
request data being received is only partial; there is more data coming, but it has
not arrived. The difference between T_MORE and T_PARTIALDATA is that the Þrst
indicates that there is more data and the next call to OTRcvRequest will read that
data, while the second does not gurantee that the next read will get the data.
The T_PARTIALDATA bit is only set on the Þrst call to the function. All subsequent
calls to OTRcvRequest are guaranteed to continue reading the partial data in
question until the function returns with the T_MORE ßag clear.

SEE ALSO

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).

OTSndReply 22

Replies to a connection-oriented transaction-based request.

C INTERFACE

OSStatus OTSndReply(EndpointRef ref,
TReply* reply,
OTFlags replyFlags);
504 Functions

C H A P T E R 2 2

Endpoints Reference
C++ INTERFACE

OSStatus TEndpoint::SndReply(TReply* reply,
OTFlags replyFlags);

PARAMETERS

ref The endpoint reference of the endpoint reading the request.

reply A pointer to a TReply structure (page 434) that speciÞes the
reply data being sent, the transaction ID for this transaction,
and any options you want to set.

The reply->data.buf Þeld is a pointer to the buffer containing
the reply. Set the reply->data.len Þeld to the size of the reply.
The size of the reply must not exceed the value speciÞed for the
tsdu field of the TEndpointInfo structure for this endpoint.

The reply->opt.buf Þeld is a pointer to the buffer that contains
the options you want to set. Set the reply->opt.len Þeld to the
size of the option data or to 0 if you donÕt want to specify any
options.

The reply->sequence Þeld speciÞes the transaction ID of the
request to which you are replying. (This value was returned in
the req->sequence Þeld by the OTRcvRequest function.)

replyFlags A bitmapped 32-bit value specifying whether the rest of the
reply is being sent with a subsequent call to this function
(T_MORE) or whether this is the complete reply (T_MORE not set).

function result An error code. See Appendix B(page 785), and Discussion.

DISCUSSION

You use the OTSndReply function to reply to a request you have read using the
OTRcvRequest function (page 502). The reply parameter contains the reply to be
sent, and the replyFlags parameter speciÞes whether you are sending the
entire reply with this send (T_MORE bit clear) or sending just part of the reply
(T_MORE bit set). If you are using multiple sends , you must set the T_MORE bit on
each but the last send. The total size of the data you send using multiple sends
must not exceed the value of the tsdu Þeld of the TEndpointInfo structure for
this endpoint.
Functions 505

C H A P T E R 2 2

Endpoints Reference
If the endpoint is in synchronous blocking mode, the OTSndReply function
returns after it has sent the reply. If the endpoint is in synchronous nonblocking
mode, the OTSndReply function returns the kOTFlowErr result if the endpoint
provider is unable to send the reply because of ßow-control restrictions. The
provider issues the T_GODATA event when these restrictions are lifted. You can
use the OTLook function (page 449) to poll for this event, or you can use your
notiÞer to handle it.

If the endpoint is in asynchronous mode, the provider calls your notiÞer when
the OTSndReply function completes. The code parameter of the notiÞer function
contains the T_REPLYCOMPLETE event, the cookie parameter contains the reply
parameter passed with the OTSndReply function, and the result parameter
contains the function result. For more information on notiÞer functions and
event codes, see MyNotifierCallback function(page 413) and ÒEvent
CodesÓ(page 383).

If the reply was not sent successfully (that is, timed outÑfor acknowledged
requests), the kETIMEDOUTErr result code is returned. For unacknowledged
requests, the T_REPLYCOMPLETE event is still generated for asynchronous clients
so that the logic is the same for both acknowledged and unacknowledged
requests.

The cookie parameter passed to the notiÞer is set to the reply parameter of the
original request. In cases where the T_MORE ßag is used to send the reply in
muliple chunks, the Þrst TReply* is used.

The next table shows how the endpointÕs mode of execution and blocking
status affects the behavior of the OTSndReply function.

Blocking Nonblocking

Synchronous The function returns
when the provider lifts
ßow-control restrictions
and the reply has been
successfully sent or timed
out.

The function returns if ßow-
control restrictions are in
effect or when the reply has
been successfully sent or
timed out.

The kOTFlowErr result is
never returned.

The kOTFlowErr result might
be returned.
506 Functions

C H A P T E R 2 2

Endpoints Reference
SEE ALSO

The OTRcvReply function (page 507).

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).

OTRcvReply 22

Reads a transaction reply sent by a connection-oriented responder.

C INTERFACE

OSStatus OTRcvReply(EndpointRef ref,
TReply* reply,
OTFlags* replyFlags);

C++ INTERFACE

OSStatus TEndpoint::RcvReply(TReply* reply,
OTFlags* replyFlags);

Asynchronous The function returns
immediately.

The provider calls your
notiÞer, passing
T_REPLYCOMPLETE for the
code parameter when the
reply is successfully sent
or timed out.

The function returns
immediately.

The provider calls your
notiÞer, passing
T_REPLYCOMPLETE for the
code parameter when the
reply is successfully sent or
timed out.

The kOTFlowErr result
might be returned.

The kOTFlowErr result might
be returned.

Blocking Nonblocking
Functions 507

C H A P T E R 2 2

Endpoints Reference
PARAMETERS

ref The endpoint reference of the endpoint reading the reply.

reply A pointer to a TReply structure (page 434) that speciÞes where
to store the reply information. You must allocate buffers to
contain the reply data, option values, and the transaction ID of
the request to which the reply is being sent, and you must
specify the maximum size of this data.

The reply->data.buf Þeld points to a buffer in which the reply
data is to be stored. Set the reply->data.maxlen Þeld to the
maximum size of the reply data.

The reply->opt.buf Þeld points to a buffer in which option
values are stored. Set the reply->opt.maxlen Þeld to the
maximum size of this data.

The reply->sequence Þeld speciÞes the transaction ID of the
transaction to which the reply is sent. If you have sent out
multiple requests, you can examine this Þeld to match replies to
requests.

replyFlags A bitmapped 32-bit value specifying T_MORE or T_PARTIALDATA. A
value of T_MORE indicates that the buffer pointed to by
reply->data.buf is too small to contain the reply. A value of
T_PARTIALDATA indicates that the data unit being read does not
contain the complete reply and that the next data unit might
belong to a different transaction.

function result An error code. See Appendix B(page 785), and Discussion.

DISCUSSION

You use the OTRcvReply function to read the reply to a request that you sent
using the OTSndRequest function (page 499).

If the endpoint is in asynchronous mode, the endpoint provider issues the
T_REPLY event to let you know that incoming reply data is available. After you
retrieve this event, using the OTLook function (page 449) or your notiÞer
function, you must call the OTRcvReply function repeatedly to read the reply
data until it returns kOTNoDataErr. The endpoint provider does not generate
additional T_REPLY events until you have read the complete reply.
508 Functions

C H A P T E R 2 2

Endpoints Reference
If a transaction has timed out awaiting reply data, the OTRcvReply function
returns a kETIMEDOUTErr result; the sequence Þeld of the reply parameter
speciÞes which request has timed out.

If you have issued multiple requests, it is not possible to know ahead of time
how incoming replies match your requests. You must be prepared to receive a
reply to any outstanding request. One way to manage this situation is to call
the OTRcvReply function with the reply->udata.maxlen Þeld set to 0. The rest of
the information returned by the function on this Þrst call lets you know the
sequence number of the reply as well as the replyFlags setting. Once you
determine the matching request and the appropriate reply buffer, you can call
the OTRcvReply function a second time to read the actual reply data. On the
second and subsequent reads, Open Transport sets the reply->opt.len Þeld to
0. It is guaranteed that once a reply has been partially read, subsequent calls to
OTRcvReply read from that same reply until all the available data has been read.
The T_PARTIALDATA event might be returned if the entire reply is not available.

If the T_MORE bit is set in the replyFlags parameter, this means your buffer is not
large enough to hold the entire reply. You must call the OTRcvRequest function
again to retrieve more request data. Open Transport ignores the addr and opt
Þelds of the reply parameter for subsequent calls to the function. The T_MORE
ßag is not set for the last reply packet to let you know that this is the last packet.

If the T_PARTIALDATA bit is set in the replyFlags parameter, this means that the
data you are about to read with the OTRcvReply function does not constitute the
entire reply and that more data is coming, but it has not yet arrived. You must
call the function again to read more, or the rest, of the reply.

If the T_MORE and the T_PARTIALDATA bits are both set, this means that the data
you are about to read constitutes only part of the reply and that your buffer is
too small to contain even this chunk. In this case, you must call the function
again until the T_MORE ßag is clear. The T_PARTIALDATA bit is set only on the Þrst
call to the function.

If you are communicating with multiple responders and if the OTRcvUReply
function returns with the T_PARTIALDATA ßag set, it is possible that your next call
to the function might not read the rest of the reply because the next data unit
coming in belongs to a different reply. One way to handle this situation is to
use the next call to the OTRcvReply function to determine the sequence number
of the incoming reply (by setting req->udata.maxlen to 0) and then, having
determined which reply data is coming in, read the data into the appropriate
buffer.
Functions 509

C H A P T E R 2 2

Endpoints Reference
SEE ALSO

The OTSndRequest function (page 499).

Table 4-4 (page 95).

OTCancelRequest 22

Cancels an outstanding request as deÞned by a call to the OTSndRequest
function.

C INTERFACE

OSStatus OTCancelRequest(EndpointRef ref,
OTSequence sequence);

C++ INTERFACE

OSStatus TEndpoint::CancelRequest(OTSequence sequence);

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being cancelled.

sequence A 32-bit value, specifying the transaction ID of the request
being canceled. You must specify the same value that you used
for the sequence Þeld of the req parameter you passed to the
OTSndRequest function. If you specify 0 for this parameter, the
provider cancels all outstanding requests for the endpoint. If
you specify an invalid sequence number, the provider does
nothing .

function result An error code. See Appendix B(page 785).

DISCUSSION

When you make a call to the OTSndRequest function (page 499), the endpoint
provider allocates memory for internal buffers for this transaction. If you are no
510 Functions

C H A P T E R 2 2

Endpoints Reference
longer interested in the transaction, you must tell the endpoint provider by
calling the OTCancelRequest function. Explicitly canceling a request allows the
provider to free up the memory associated with a transaction request. If the
endpoint is acknowledging sends, the provider generates a T_MEMORYRELEASED
event for each freed buffer.

If the function completes successfully, it returns the kOTNoErr result; it does
not return any other kind of acknowledgment. It is your responsibility to
deallocate memory that you have reserved for the address, options, and data
buffers associated with the canceled function.

Use OTCancelRequest to cancel an outgoing request; use OTCancelReply
(page 511) to cancel an incoming request.

SEE ALSO

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).

OTCancelReply 22

Cancels an outstanding call to the OTRcvRequest function.

C INTERFACE

OSStatus OTCancelReply(EndpointRef ref,
OTSequence sequence);

C++ INTERFACE

OSStatus TEndpoint::CancelReply(OTSequence sequence);

PARAMETERS

ref The endpoint reference of the endpoint that has sent the request
being canceled.
Functions 511

C H A P T E R 2 2

Endpoints Reference
sequence A 32-bit value, specifying the transaction ID of the request
being canceled. You must specify the same value that was
passed to you in the seq Þeld of the req parameter to the
OTRcvRequest function. If you specify 0 for this parameter, the
provider cancels all outstanding incoming requests for the
endpoint. If you specify an invalid sequence number, the
provider does nothing.

function result An error code. See Appendix B(page 785).

DISCUSSION

When you make a call to the OTRcvRequest function, the provider allocates
memory for internal buffers and assigns a sequence value to identify this
transaction. If you are no longer interested in a transaction, you must explicitly
cancel the transaction by calling the OTCancelReply function. Calling this
function allows the provider to free up the memory it has reserved and to reuse
the sequence number associated with the canceled transaction. If the endpoint
is acknowledging sends, the provider generates a T_MEMORYRELEASED event for
each freed buffer.

If the function completes successfully, it returns the kOTNoErr result; it does not
return any other kind of acknowledgment. It is your responsibility to
deallocate memory that you have reserved for the address, options, and data
buffers associated with the cancelled OTRcvRequest function.

Use the OTCancelReply function to cancel an incoming request; use the
OTCancelRequest function (page 510) to cancel an outgoing request.

SEE ALSO

The OTSndRequest function (page 499).

ÒAppleTalk ReferenceÓ (page 721).

Table 4-4 (page 95).

Tearing Down a Connection 22

You use the functions described in this section to tear down a connection.
Depending on the circumstances, you might use the OTSndDisconnect function
to initiate an abortive disconnect or the OTSndOrderlyDisconnect function to
512 Functions

C H A P T E R 2 2

Endpoints Reference
initiate an orderly disconnect. If you are responding to a disconnection request,
you call the OTRcvDisconnect function to acknowledge an abortive disconnect
or the OTRcvOrderlyDisconnect function to acknowledge an orderly disconnect.
You can also use the OTSndDisconnect function to reject an incoming connection
request.

OTSndDisconnect 22

Tears down an open connection (abortive disconnect) or rejects an incoming
connection request.

C INTERFACE

OSStatus OTSndDisconnect(EndpointRef ref,
TCall* call);

C++ INTERFACE

OSStatus TEndpoint::SndDisconnect(TCall* call);

PARAMETERS

ref The endpoint reference for the endpoint tearing down the
connection or rejecting the connection request.

call A pointer to a TCall structure (page 433) that speciÞes the
connection to be torn down or rejected, and speciÞes data sent
with the disconnection request if the endpoint supports sending
such data.

The call->addr Þeld and the call->opt Þeld are reserved and
should be set to 0.

The call->udata.buf Þeld is a pointer to a buffer containing
data that you want to send with the disconnection request. Set
the call->udata.len Þeld to the size of the data. The amount of
Functions 513

C H A P T E R 2 2

Endpoints Reference
data should not exceed the limits supported by the endpoint, as
returned in the discon Þeld of the TEndpointInfo structure
(page 426).

The call->sequence Þeld should be set to a valid value to
identify the request if you are using this function to reject a
connection request. This Þeld is ignored if you are using this
function to tear down a connection.

function result An error code. See Appendix B(page 785).

DISCUSSION

You can use the OTSndDisconnect function to tear down a connection or to reject
incoming connection requests. Whenever possible, use the function
OTSndOrderlyDisconnect to tear down a connection.

If the endpoint is in synchronous mode, the function returns when the
operation is complete. If the endpoint is in asynchronous mode, the
OTSndDisconnect function returns immediately with a result of kOTNoError to
indicate that the disconnection process has begun and that your notiÞer
function will be sent a T_DISCONNECTCOMPLETE event when the process
completes. The cookie parameter contains the call parameter.

If you have not installed a notiÞer function, you cannot determine when this
function completes. For more information on notiÞer functions and event
codes, see MyNotifierCallback function(page 413) and ÒEvent
CodesÓ(page 383).

SEE ALSO

ÒTCP/IP ServicesÓ (page 237).

ÒAppleTalk ReferenceÓ (page 721).

ÒTerminating a ConnectionÓ (page 112).

Table 4-4 (page 95).
514 Functions

C H A P T E R 2 2

Endpoints Reference
OTRcvDisconnect 22

IdentiÞes the cause of a connection break or of a connection rejection and clears
the corresponding disconnection event.

C INTERFACE

OSStatus OTRcvDisconnect(EndpointRef ref,
TDiscon* discon);

C++ INTERFACE

OSStatus TEndpoint::RcvDisconnect(TDiscon* discon);

PARAMETERS

ref The endpoint reference of the endpoint receiving the
disconnection request.

discon A pointer to a TDiscon structure (page 435) that is Þlled ou;with
disconnection data, a reason for the disconnection, and a
connection request sequence number.

function result An error code. See Discussion.

DISCUSSION

Calling the OTRcvDisconnect function clears the corresponding disconnection
event and retrieves any user data sent with the disconnection.

If you do not care about data returned with the disconnection and do not need
to know the reason for the disconnection nor the sequence ID, you may specify
a NULL pointer for the discon parameter. In this case, the provider discards any
user data associated with the disconnection.

The OTRcvDisconnect function behaves in the same way for all modes of
operation. If there is no disconnection request pending, the function returns
with the kOTNoDisconnectErr result. If there is a disconnection request pending,
the function returns either the kOTNoError or kOTBufferOverflowErr result. In the
Functions 515

C H A P T E R 2 2

Endpoints Reference
latter instance, you did not supply a buffer that was large enough to hold the
disconnection data.

SEE ALSO

The OTSndDisconnect function (page 513).

ÒTCP/IP ServicesÓ (page 237).

ÒAppleTalk ReferenceÓ (page 721).

ÒTerminating a ConnectionÓ (page 112).

Table 4-4 (page 95).

OTSndOrderlyDisconnect 22

Initiates an orderly disconnection.

C INTERFACE

OSStatus OTSndOrderlyDisconnect(EndpointRef ref);

C++ INTERFACE

OSStatus TEndpoint::SndOrderlyDisconnect();

PARAMETERS

ref The endpoint reference of the endpoint initiating the orderly
disconnect.

function result An error code. See Appendix B(page 785).

DISCUSSION

You call the OTSndOrderlyDisconnect function to initiate an orderly disconnect
of a connection and to indicate to the peer endpoint that you have no more
516 Functions

C H A P T E R 2 2

Endpoints Reference
data to send. After calling this function, you must not send any more data over
the connection. However, you can still continue to receive data until the peer
calls the OTSndOrderlyDisconnect function.

This function is a service that is not supported by all protocols. If it is
supported, the servtype Þeld of the TEndpointInfo structure (page 426) has the
value T_COTS_ORD or T_TRANS_ORD.

The OTSndOrderlyDisconnect function behaves exactly the same in all modes
of operation.

SEE ALSO

The OTSndDisconnect function (page 513).

ÒTerminating a ConnectionÓ (page 112).

Table 4-4 (page 95).

OTRcvOrderlyDisconnect 22

Clears an incoming orderly disconnect event.

C INTERFACE

OSStatus OTRcvOrderlyDisconnect(EndpointREf ref);

C++ INTERFACE

OSStatus TEndpoint::RcvOrderlyDisconnect();

PARAMETERS

ref The endpoint reference of the endpoint acknowledging receipt
of the disconnect request.

function result An error code. See Appendix B(page 785).
Functions 517

C H A P T E R 2 2

Endpoints Reference
DISCUSSION

You call the OTRcvOrderlyDisconnect function to acknowledge the receipt of an
orderly disconnect event. After using the OTRcvOrderlyDisconnect function,
there will not be any more data to receive. Attempts to receive data will fail
with the kOTOutStateErr result. If the endpoint supports a remote orderly
disconnect, you can still send data over the connection if you have not yet
called the OTSndOrderlyDisconnect function (page 516).

The OTRcvOrderlyDisconnect function behaves in the same way in all modes of
operation. If there is no disconnection request pending, the function returns
with the kOTNoReleaseErr result. If there is a disconnection request pending, the
function returns the kOTNoError result.

The OTRcvOrderlyDisconnect function is only supported by those protocols that
have a servtype Þeld of the TEndpointInfo structure with a value T_COTS_ORD or
T_TRANS_ORD.

SEE ALSO

ÒTerminating a ConnectionÓ (page 112).

Table 4-4 (page 95).
518 Functions

C H A P T E R 2 3

Contents

Contents
Figure 23-0
Listing 23-0
Table 23-0
23 Programming With Open
Transport Reference
Data Types 520
Callback Function 520

Functions 520
Checking Synchronous Calls 521

OTCanMakeSyncCall 521
OTIsAtInterruptLevel 522
OTCanLoadLibraries 522

Working With System Tasks 523
OTCreateSystemTask 523
OTScheduleSystemTask 524
OTCancelSystemTask 526
OTDestroySystemTask 527

Working With Timer Tasks 528
OTCreateTimerTask 528
OTScheduleTimerTask 529
OTCancelTimerTask 530
OTDestroyTimerTask 531

Working With Deferred Tasks 532
OTCreateDeferredTask 532
OTScheduleDeferredTask 533
OTDestroyDeferredTask 535

Entering and Leaving Hardware Interrupt Time 536
OTEnterInterrupt 536
OTScheduleInterruptTask 537
OTLeaveInterrupt 539

Application-DeÞned Functions 540
MyOTProcessProc 540
519

C H A P T E R 2 3
520 Contents

C H A P T E R 2 3
Programming With Open Transport Reference 23

This chapter describes the Open Transport functions that enable you to
schedule system tasks, timer, and deferred tasks, and to enter and leave
interrupt level processing. This chapter also describes functions you can use to
idle or delay your computer; these functions are included for compatibility
with UNIX-based programs.

Data Types 23

Callback Function 23

You can use the OTProcessProcPtr prototype to declare a callback routine. You
can then pass this routine as a parameter to the Open Transport functions used
to create a system, timer, or a deferred task. 4The routine deÞnes the routine
that you want Open Transport to execute at that time. The routine takes one
argument, which contains user-deÞned context information.

typedef pascal void (*OTProcessProcPtr)(void* arg);

For information about creating your own callback routine, see the description
of the function MyOTProcessProc (page 541). An OTProcessProcPtr is never a
Universal Proc Pointer.

Functions 23

This section describes the functions you use when managing the special
processing needs of your applicationÑthat is, whether code runs at system
task time, at deferred task time, at interrupt time, or at some predeÞned
interval.
Data Types 521

C H A P T E R 2 3

Programming With Open Transport Reference
Checking Synchronous Calls 23

Open Transport provides the OTCanMakeSyncCall function so that you can check
whether you can call a synchronous function.

OTCanMakeSyncCall 23

Checks whether you can call a synchronous function.

C INTERFACE

Boolean OTCanMakeSyncCall();

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

function result The function returns true if you can call a synchronous function.

DISCUSSION

The OTCanMakeSyncCall function returns a value of true if you can make a
synchronous call to Open Transport. The function returns a value of false if
you cannot make a synchronous call.

SEE ALSO

See ÒProvidersÓ (page 61)for additional information about synchronous
execution.
522 Functions

C H A P T E R 2 3

Programming With Open Transport Reference
OTIsAtInterruptLevel 23

Checks whether Open transport is currently executing at interrupt level.

C INTERFACE

Boolean OTIsAtInterruptLevel(void);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

function result The function returns true if Open Transport is at interrupt level.

OTCanLoadLibraries 23

Checks whether Open Transport can load libraries.

C INTERFACE

Boolean OTCanLoadLibraries(void);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

function result The function returns true if you can load libraries.
Functions 523

C H A P T E R 2 3

Programming With Open Transport Reference
Working With System Tasks 23

Open Transport provides several functions that allow you to defer execution of
your code until system task time.

OTCreateSystemTask 23

Creates a reference to a task that can later be scheduled to run at system task
time.

C INTERFACE

long OTCreateSystemTask(OTProcessProcPtr proc,
void* arg)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

proc A pointer to the process callback function you want executed at
system task time.

arg A context pointer for your use. Open Transport simply passes
the value as the original to the procedure speciÞed by the proc
parameter. Pass NULL if you do not want any data passed. If you
are creating more than one of the same kind of task, you can use
different values for arg to distinguish between the tasks.

function result A reference that should be used when scheduling or destroying
the task. A value of 0 indicates that there is not enough memory
to allocate the necessary data.

DISCUSSION

The OTCreateSystemTask function creates a system task that you can schedule
for execution at system task time using the OTScheduleSystemTask function. The
524 Functions

C H A P T E R 2 3

Programming With Open Transport Reference
task gets a pointer to the callback function speciÞed by the proc parameter, and
its argument speciÞed by the arg parameter. (For 68000 code, when Open
Transport executes the callback function, it restores the A5 global world to
what it was when you originally called the OTCreateSystemTask function.)

It is important that you call the function OTDestroySystemTask when you are
done with processing your system tasks. Open Transport does not
automatically deallocate the memory and resources used to schedule system
tasks when you close Open Transportjuok.

IMPORTANT

Never pass a universal procedure pointer as the proc
parameter for this call. ▲

SEE ALSO

The OTScheduleSystemTask function (page 525).

The OTDestroySystemTask function (page 528).

The OTCancelSystemTask function (page 527).

OTScheduleSystemTask 23

Schedules a task for execution at system task time.

C INTERFACE

Boolean OTScheduleSystemTask(long stCookie)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

stCookie A reference that identiÞes the task to be scheduled.
Functions 525

C H A P T E R 2 3

Programming With Open Transport Reference
function result A result of true means that the system task is scheduled to run.
If the function returns false and the stCookie parameter has a
valid value (i.e. other than 0), then the task is already scheduled
to run. If stCookie is invalid (a value of 0), the function returns
false and does nothing.

DISCUSSION

The OTScheduleSystemTask function schedules for execution at system task time
the task associated with the stCookie parameter, which is a reference to a
system task created by the OTCreateSystemTask function.

You can call this function at any time. If you have not yet destroyed a task, you
can use this function to reschedule the same task again once it has executed. If
you have canceled a task, you can use this function to schedule it again.

If you make multiple calls to the OTScheduleSystemTask function before the task
is executed, additional tasks are not scheduled; only one instance of each
unique task is scheduled at a time.

▲ W A R N I N G

Open Transport does not keep track of outstanding system
task requests. It is the callerÕs responsibility to ensure that
all outstanding system task requests have either executed
or have been cancelled. If this is not done, and the calling
process terminates before the system task executes, the
processor will crash when it attempts to execute the task. ▲

SPECIAL CONSIDERATIONS

You can call this Open Transport function at hardware interrupt time, but you
must precede it by calling the OTEnterInterrupt function and you must follow
it by calling the OTLeaveInterrupt function.

SEE ALSO

The OTCreateSystemTask function (page 524).

The OTDestroySystemTask function (page 528).

The OTCancelSystemTask function (page 527).

The OTEnterInterrupt function (page 537).
526 Functions

C H A P T E R 2 3

Programming With Open Transport Reference
The OTLeaveInterrupt function (page 540).

OTCancelSystemTask 23

Cancels a system task that you have scheduled.

C INTERFACE

Boolean OTCancelSystemTask(long stCookie)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

stCookie A reference value that identiÞes the task to be canceled.

function result A result of true means that the scheduling was canceled. If the
function returns false, then either the function was not
scheduled, or it was too late to cancel it. If the stCookie
parameter value is invalid (a value of 0), the function returns
false and does nothing.

DISCUSSION

The OTCancelSystemTask function cancels a task that was scheduled with the
OTScheduleSystemTask function to run at system task time.

SPECIAL CONSIDERATIONS

You can call this Open Transport function a thardware interrupt time, but you
must precede it by calling the OTEnterInterrupt function, and you must follow
it by calling the OTLeaveInterrupt function.
Functions 527

C H A P T E R 2 3

Programming With Open Transport Reference
SEE ALSO

The OTCreateSystemTask function (page 524).

The OTScheduleSystemTask function (page 525).

The OTDestroySystemTask function (page 528).

The OTEnterInterrupt function (page 537).

The OTLeaveInterrupt function (page 540).

OTDestroySystemTask 23

Destroys a system task created with the OTCreateSystemTask function.

C INTERFACE

OSStatus OTDestroySystemTask(long stCookie)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

stCookie A reference value that identiÞes the system task to be destroyed.

function result The result kOTNoError.

DISCUSSION

The OTDestroySystemTask function makes the stCookie reference invalid and
frees any resources allocated to the task when it was created. You can call this
function when you no longer need to schedule the system task, such as when it
has executed and you have no plans to reschedule it for later use. If stCookie is
already invalid (a value of 0), the function returns kOTNoError and does nothing.

If you try to destroy a task that is still scheduled for execution, the
OTDestroySystemTask function cancels it first, so that it is no longer scheduled
528 Functions

C H A P T E R 2 3

Programming With Open Transport Reference
for system task execution, and then destroys it. If the task has already been
canceled, the OTDestroySystemTask function simply destroys it.

SEE ALSO

The OTCreateSystemTask function (page 524).

The OTScheduleSystemTask function (page 525).

The OTCancelSystemTask function (page 527).

Working With Timer Tasks 23

Use the following function to create, scedule, cancel, and destroy a timer task.
Open Transport executes these tasks at deferred task time.

IMPORTANT

You cannot call these functions from 68000 code running
on a Power PC. ▲

OTCreateTimerTask 23

Creates a task to be scheduled.

C INTERFACE

pascal long OTCreateTimerTask(OTProcessProcPtr proc, void* arg);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

proc A procedure pointer referencing the task to be created.
Functions 529

C H A P T E R 2 3

Programming With Open Transport Reference
arg A pointer to a user-deÞned value to be passed to the task when
it executes.

function result A 32-bit value identifying the task that was created. You must
pass this value for the timerTask parameter of the
OTScheduleTimerTask function.

DISCUSSION

The OTCreateTimerTask function creates a task that you can schedule later with
the function OTScheduleTimerTask.

SEE ALSO

The OTScheduleTimerTask function (page 530).

The OTCancelTimerTask function (page 531).

The OTDestroyTimerTask function(page 532).

OTScheduleTimerTask 23

Schedules a timer task to be executed at the speciÞed time.

C INTERFACE

pascal Boolean OTScheduleTimerTask(long timerTask,
OTTimeout milliSeconds);

C++ INTERFACES

None. C++ applications use the C interface to this function.

PARAMETERS

timerTask A 32-bit value identifying the task you want to schedule. This is
the value returned by the OTCreateTimerTask when you created
the task.
530 Functions

C H A P T E R 2 3

Programming With Open Transport Reference
OTTimeout The time, in milliseconds, that should elapse between when you
call OTScheduleTimerTask and when the function executes.

function result The result is true if the timer task is scheduled.

DISCUSSION

The OTScheduleTimerTask schedules the execution of a task created with the
OTCreateTimerTask function.

▲ W A R N I N G

Calling this function periodially to schedule a task will
cause drift. ▲

SEE ALSO

The OTCancelTimerTask function (page 531).

The OTDestroyTimerTask function(page 532).

OTCancelTimerTask 23

Cancels a task that was already scheduled for execution.

C INTERFACE

pascal Boolean OTCancelTimerTask(long timerTask);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

timerTask A 32-bit value identifying the task you want to cancel. This is
the value you passed to OTScheduleTimerTask when you
scheduled the task.
Functions 531

C H A P T E R 2 3

Programming With Open Transport Reference
function result The result is true if the timer task was cancelled.

DISCUSSION

The OTCancelTimerTask cancels the execution of a task scheduled with the
OTScheduleTimerTask function.

SEE ALSO

The OTScheduleTimerTask function (page 530).

The OTDestroyTimerTask function(page 532).

OTDestroyTimerTask 23

Disposes of a timer task.

C INTERFACE

pascal void OTDestroyTimerTask(long TimerTask);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

timerTask A 32-bit value identifying the timer task to be destroyed. This
value is returned by the OTCreateTimerTask function.

function result The result kOTNoError.

DISCUSSION

The OTDestroyTimerTask function deallocates memory and resources used to
store and schedule a timer task.
532 Functions

C H A P T E R 2 3

Programming With Open Transport Reference
SEE ALSO

The OTScheduleTimerTask function (page 530).

The OTCancelTimerTask function (page 531).

Working With Deferred Tasks 23

Open Transport provides several functions that allow you to handle deferred
tasks in your code. You should use these functions rather than the standard
Deferred Task Manager function DTInstall to create a deferred task that
includes calls to Open Transport functions.

OTCreateDeferredTask 23

Creates a reference to a task that can be scheduled to run at deferred task time.

C INTERFACE

long OTCreateDeferredTask(OTProcessProcPtr proc,
void* arg);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

proc A pointer to the process callback function you want executed at
deferred task time.

arg A context pointer for your use. Pass NULL if you do not want this
data passed. If you are creating more than one of the same kind
of task, you can use different values for arg to distinguish
between the tasks.
Functions 533

C H A P T E R 2 3

Programming With Open Transport Reference
function result A reference that you can use to identify a task when calling the
OTScheduleDeferredTask function or the OTDestroyDeferredTask
function. If the return value is 0, then there is not enough
memory to allocate the necessary data.

DISCUSSION

The OTCreateDeferredTask function creates a deferred task that you can
schedule for execution at deferred task time using the OTScheduleDeferredTask
function.

If you want to call Open Transport from an interrupt, you can use this function
(and OTScheduleDeferredTask) instead of the standard Deferred Task Manager
function DTInstall to create a deferred task that allows you to call Open
Transport functions.

SEE ALSO

The OTScheduleDeferredTask function (page 534).

The OTDestroyDeferredTask function (page 536).

OTScheduleDeferredTask 23

Schedules a task for execution at deferred task time.

C INTERFACE

Boolean OTScheduleDeferredTask(long dtCookie)

C++ INTERFACE

None. C++ applications use the C interface to this function.
534 Functions

C H A P T E R 2 3

Programming With Open Transport Reference
PARAMETERS

dtCookie A reference that identiÞes the task to be scheduled. This
reference is returned by the OTCreateDeferredTask function used
to create the task.

function result The result is true if the deferred task is scheduled successfully.
If the result is false and the dtCookie parameter has a valid
value (other than 0), then the task is already scheduled to run. If
dtCookie is invalid (a value of 0), the function returns false and
does nothing.

DISCUSSION

The OTScheduleDeferredTask function schedules the task (speciÞed by the
dtCookie parameter) for execution at the next deferred task time.

You can call the OTScheduleDeferredTask function at any time. If you have not
yet destroyed a task, you can use this function to reschedule the same task
more than once.

If you make multiple calls to the OTScheduleDeferredTask function before the
task is executed, additional tasks are not scheduled; only one instance of each
unique task is scheduled at a time.

▲ W A R N I N G

Open Transport does not keep track of outstanding
deferred task requests. It is the callerÕs responsibility to
ensure that all outstanding deferred task requests have
either executed or have been cancelled. If this is not done,
and the calling process terminates before the deferred task
executes, the processor will crash when it attempts to
execute the task. ▲

SPECIAL CONSIDERATIONS

You can call this Open Transport function at interrupt time, but you must
precede it by calling the OTEnterInterrupt function, and you must follow it by
calling the OTLeaveInterrupt function.
Functions 535

C H A P T E R 2 3

Programming With Open Transport Reference
SEE ALSO

The OTScheduleInterruptTask function (page 538).

The OTCreateDeferredTask function (page 533).

The OTDestroyDeferredTask function (page 536).

The OTEnterInterrupt function (page 537).

The OTLeaveInterrupt function (page 540).

OTDestroyDeferredTask 23

Destroys a deferred task created with the OTCreateDeferredTask function.

C INTERFACE

OSStatus OTDestroyDeferredTask(long dtCookie)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

dtCookie A reference that identiÞes the task to be destroyed.

function result The function returns the result kEAGAINErr when you try
to destroy the task from within an interrupt service routine or
within another deferred task. If dtCookie is invalid (a value of 0),
the function returns kOTNoError and does nothing.

DISCUSSION

The OTDestroyDeferredTask function makes the dtCookie reference invalid and
frees any resources allocated to the task when it was created. You can call this
function at any time when you no longer need to schedule the deferred task
object.
536 Functions

C H A P T E R 2 3

Programming With Open Transport Reference
SEE ALSO

The OTCreateDeferredTask function (page 533).

The OTScheduleDeferredTask function (page 534).

Entering and Leaving Hardware Interrupt Time 23

Open Transport provides functions that you use to inform Open Transport that
you are entering and leaving hardware interrupt time.

OTEnterInterrupt 23

NotiÞes Open Transport that you are about to call an Open Transport function
from a hardware interrupt.

C INTERFACE

void OTEnterInterrupt(void)

C++ INTERFACE

None. C++ applications use the C interface to this function.

DISCUSSION

The OTEnterInterrupt function informs Open Transport it is at hardware
interrupt time. This allows Open Transport to schedule network activity more
intelligently. You must use this function before calling many of the Open
Transport functions from hardware interrupt time, for example, from a VBL or
Time Manager task, or from a File Manager or Device Manager I/O completion
routine. There are only a limited number of Open Transport functions that you
can actually call at hardware interrupt time; these are listed in Appendix C.

You must call the OTLeaveInterrupt function before you leave interrupt time.
Functions 537

C H A P T E R 2 3

Programming With Open Transport Reference
Note
The OTEnterInterrupt function was provided to enable
callers of the OTScheduleDeferredTask function a means to
let Open Transport know that the scheduling was
occurring at interrupt time. With the addition of the
OTScheduleInterruptTask function (which calls
OTEnterInterrupt internally), it is no longer necessary to
call the OTEnterInterrupt function. There are cases,
however, when it might be advisable to call the
OTEnterInterrupt and OTScheduleDeferredTask functions in
sequence; for example, when you want to schedule two
deferred tasks consecutively, or when you are calling a
common function which uses OTScheduleDeferredTask and
which is sometimes called at interrupt time and sometimes
not. ◆

SPECIAL CONSIDERATIONS

If you are running 680x0-based code, you must be sure that your A5 world is
set correctly before making this call (that is, that it has the same value it had
when you called the InitOpenTransport or the InitOpenTransportUtilities
function).

SEE ALSO

The OTLeaveInterrupt function (page 540).

ÒHardware Interrupt LevelÓ (page 136) .

OTScheduleInterruptTask 23

Schedules a task for execution at hardware interrupt time.

C INTERFACE

Boolean OTScheduleInterruptTask(long dtCookie)
538 Functions

C H A P T E R 2 3

Programming With Open Transport Reference
C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

dtCookie A reference that identiÞes the task to be scheduled. This
reference is returned by the OTCreateDeferredTask function,
which you use to create the task.

function result The result is true if the deferred task is scheduled. If it returns
false and the dtCookie parameter has a valid value (other than
0), then the task is already scheduled to run. If dtCookie is
invalid (a value of 0), the function returns false and does
nothing.

DISCUSSION

The OTScheduleInterruptTask function schedules the task associated with the
dtCookie parameter for execution at deferred task time.This function calls the
OTEnterInterrupt and the OTLeaveInterrupt functions, so you do not need to
make separate calls to those functions when calling the
OTScheduleInterruptTask function.

The OTScheduleInterruptTask function behaves exactly like the function
OTScheduleDeferredTask. You should call it instead of calling the
OTScheduleDeferredTask function if you are calling from hardware interrupt
time.

When Open Transport calls your callback function, it passes it the arg
parameter you speciÞed when you created the task. (For 68000 code, Open
Transport also restores the A5 global world to what it was when you originally
called OTCreateDeferredTask.)

You can call this function any time. If you have not yet destroyed a task, you
can use this function to reschedule it multiple times.

If you make multiple calls to the OTScheduleInterruptTask function before the
task is executed, additional tasks are not scheduled; only one instance of each
unique task will be scheduled at a time.

If you want to call Open Transport from an interrupt, you can use this function
(and the OTCreateDeferredTask function) instead of the standard Deferred Task
Manager function DTInstall to create a deferred task that permits you to call
Functions 539

C H A P T E R 2 3

Programming With Open Transport Reference
Open Transport functions. This allows Open Transport to adapt to changes in
the underlying operating system without affecting your code.

▲ W A R N I N G

Open Transport does not keep track of outstanding
deferred task requests. It is the callerÕs responsibility to
ensure that all outstanding deferred task requests have
either executed or have been cancelled. If this is not done,
and the calling process terminates before the deferred task
executes, the processor will crash when it attempts to
execute the task. ▲

SPECIAL CONSIDERATIONS

You can call this Open Transport function at hardware interrupt time without
calling the OTEnterInterrupt function Þrst and the OTLeaveInterrupt function
afterward.

SEE ALSO

The OTCreateDeferredTask function (page 533).

The OTDestroyDeferredTask function (page 536).

OTLeaveInterrupt 23

NotiÞes Open Transport that you are done calling Open Transport functions
from a hardware interrupt.

C INTERFACE

void OTLeaveInterrupt(void)

C++ INTERFACE

None. C++ applications use the C interface to this function.
540 Functions

C H A P T E R 2 3

Programming With Open Transport Reference
DISCUSSION

The OTLeaveInterrupt function informs Open Transport that you are no longer
calling Open Transport from within a routine that runs at hardware interrupt
time. You call this function after you call the last Open Transport function you
want to call from within the interrupt, but before you return from your
interrupt handler.

Every call to the OTEnterInterrupt function must be matched by a call to the
OTLeaveInterrupt function.

SPECIAL CONSIDERATIONS

Do not make this call without having already called the OTEnterInterrupt
function.

For 680x0 based code, you must be sure that your A5 world is set correctly
before making this call (that is, you must set it to the same value it had when
you called the InitOpenTransport or the InitOpenTransportUtilities function).

SEE ALSO

The OTEnterInterrupt function (page 537).

ÒHardware Interrupt LevelÓ (page 136).

Application-DeÞned Functions 23

This section describes the user-deÞned callback function that you can schedule
to run as a system task, timer task, or deferred task.

MyOTProcessProc 23

DeÞnes a callback function.

pascal void MyOTProcessProc (void* arg);

arg A pointer to user-deÞned context information.
Functions 541

C H A P T E R 2 3

Programming With Open Transport Reference
DISCUSSION

The user-deÞned function MyOTProcessProc deÞnes a function that Open
Transport executes as a system task, deferred task, or timer task.

■ To have the function execute at system task time, you must Þrst call the
function OTCreateSystemTask (page 524), passing the address of the function
for the proc parameter and a pointer to any context information for the arg
parameter. The function OTCreateSystemTask returns a reference to the newly
created task which you then pass as the stCookie parameter to the
OTScheduleSystemTask function (page 525), which schedules the task to run.
When Open Transport executes the task, it passes it the value you speciÞed
for the arg parameter when you created the task.

■ To have the function execute at some speciÞed interval (timer task), you
must Þrst call the function OTCreateTimertask(page 529), passing the address
of the function for the proc paramter and a pointer to any context
information for the arg parameter. The OTCreateTimertask function returns a
reference to the newly created task which you can then pass as the timerTask
parameter to the OTScheduleTimerTask function (page 530), which you use to
schedule the task. Use the OTCancelTimerTask function (page 531) to cancel
the task and the OTDestroyTimerTask function (page 532) to dispose of it.

■ To have the function execute at deferred task time, you must Þrst call the
function OTCreateDeferredTask (page 533), passing the address of the
function for the proc parameter and a pointer to any context information for
the arg parameter. The function OTCreateDeferredTask returns a reference to
the newly created task which you then pass as the dtCookie parameter to the
OTScheduleDeferredTask function (page 534), which schedules the task to
run. When Open Transport executes the task, it passes it the value you
speciÞed for the arg parameter when you created the task.

SEE ALSO

See also ÒProgramming With Open TransportÓ (page 129) for additional
information about system tasks, timer tasks, and deferred tasks.
542 Functions

C H A P T E R 2 4

Contents

Contents
Figure 24-0
Listing 24-0
Table 24-0
24 Mappers Reference
Constants and Data Types 544
Error-Checking Constant 544
The TRegisterRequest Structure 544
The TRegisterReply Structure 545
The TLookupRequest Structure 546
The TLookupReply Structure 547
The TLookupBuffer Structure 548

Functions 549
Creating Mappers 549

OTOpenMapper 549
OTAsyncOpenMapper 551

Registering and Deleting Names 553
OTRegisterName 553
OTDeleteName 555
OTDeleteNameByID 556

Looking Up Names 557
OTLookupName 558
OTNextLookupBuffer Macro 560
543

C H A P T E R 2 4
544 Contents

C H A P T E R 2 4
Mappers Reference 24

This chapter describes the constants, data types and functions that you use
with mappers. You can also use general provider data types and functions with
mappers. General structures and functions are described in the chapter
ÒProviders ReferenceÓ (page 383).

Constants and Data Types 24

This section describes the constants and data types used by mapper functions.

Error-Checking Constant 24

Open Transport provides a constant that you can use to initialize the private
mapper reference structure. You can then check that the current mapper
reference is valid before passing it to mapper functions. The constant is deÞned
as follows:

#define kOTInvalidMapperRef ((MapperRef)0)

The TRegisterRequest Structure 24

You use the TRegisterRequest structure to specify the entity name you want to
register using the OTRegisterName function (page 554) and, optionally, to specify
its address.

The TRegisterRequest structure is deÞned by the TRegisterRequest data type.

struct TRegisterRequest
{

TNetbuf name;
TNetbuf addr;
OTFlags flags;

};
typedef struct TRegisterRequest TRegisterRequest;
Constants and Data Types 545

C H A P T E R 2 4

Mappers Reference
Field descriptions

name A TNetbuf structure that speciÞes the location and size of a
buffer containing the entity name you want to register. You
must allocate a buffer that contains the name, set the
name.buf field to point to that buffer, and set the name.len
Þeld to the length of the buffer.

addr A TNetbuf structure that speciÞes the location and size of a
buffer containing the address associated with the entity
whose name you want to register. You must allocate a
buffer that contains the address, set the addr.buf Þeld to
point to that buffer, and set the addr.len Þeld to the length
of the buffer. The actual address with which the entity is
associated is returned in the addr Þeld of the
TRegisterReply structure.
You can set the addr.len Þeld to 0, in which case the
underlying protocol Þnds an appropriate address to
associate with the newly registered entity name.

flags A Þeld used to control registration. Normally, this Þeld is
set to 0 for default registration behavior. See the
documentation for the naming service you are using for
more information.

The TRegisterReply Structure 24

You use the TRegisterReply structure to store information returned by the
OTRegisterName function (page 554).

The TRegisterReply structure is deÞned by the TRegisterReply data type.

struct TRegisterReply
{

TNetbuf addr;
OTNameID nameid;

};
typedef struct TRegisterReply TRegisterReply;

Field descriptions

addr A TNetbuf structure that speciÞes the location and size of a
buffer containing the actual address of the entity whose
546 Constants and Data Types

C H A P T E R 2 4

Mappers Reference
name you have just registered. This information is passed
back to you when the OTRegisterName function returns. You
must allocate a buffer, set the addr.buf Þeld to point to it,
and set the addr.maxlen Þeld to the size of the buffer.

nameid A unique identiÞer passed to you when the OTRegisterName
function returns. You can use this identiÞer when you call
the OTDeleteNameByID function to delete the name.

The TLookupRequest Structure 24

You use the TLookupRequest structure to specify the entity name to be looked up
by the OTLookupName function (page 559) and to set additional values that the
mapper provider uses to circumscribe the search.

The TLookupRequest structure is deÞned by the TLookupRequest data type.

struct TLookupRequest
{

TNetbuf name;
TNetbuf addr;
UInt32 maxcnt;
OTTimeout timeout;
OTFlags flags;

};
typedef struct TLookupRequest TLookupRequest;

Field descriptions

name A TNetbuf structure specifying the location and size of a
buffer that contains the name to be looked up. You must
allocate a buffer that contains the name, set the name.buf
Þeld to point to it, and set the name.len Þeld to the length
of the name.

addr A TNetbuf structure describing the address of the node
where you expect the names to be stored. You should
normally supply 0 for addr.len. This causes the provider to
use internal defaults for the starting point of the search.
For a protocol family such as AppleTalk, in which every
node has access to name and address information, this
parameter is meaningless.
Constants and Data Types 547

C H A P T E R 2 4

Mappers Reference
Specifying an address has meaning for those protocols that
use a dedicated server or other device to store name
information. In such a case, the name speciÞed would
override the protocolÕs default address. To specify an
address, you would need to allocate a buffer containing
the address, set the addr.buf Þeld to point to it, and set the
addr.len field to the length of the address. Consult the
documentation supplied with your protocol to determine
whether you can or should specify an address.

maxcnt A long specifying the number of names you expect to be
returned. Some protocols allow the use of wildcard
characters in specifying a name. As a result, the
OTLookupName function might find multiple names
matching the speciÞed name pattern. If you expect a
speciÞc number of replies for a particular name or do not
expect to exceed a speciÞc number, you should specify this
number to obtain faster execution. Otherwise, set this Þeld
to 0xffff ffff; in this case, the timeout value will control
the lookup.

timeout A long specifying the amount of time, in milliseconds, that
should elapse before Open Transport gives up searching
for a name. Specify 0 to leave the timeout value up to the
underlying naming system.

The TLookupReply Structure 24

You use the TLookupReply structure to store information passed back to you by
the OTLookupName function (page 559). The information includes both a pointer
to a buffer (containing registered entity names matching the criterion speciÞed
with the TLookupRequest structure) and the number of names found.

The TLookupReply structure is deÞned by the TLookupReply data type.

struct TLookupReply
{

TNetbuf names;
UInt32 rspcount;

};
typedef struct TLookupReply TLookupReply;
548 Constants and Data Types

C H A P T E R 2 4

Mappers Reference
Field descriptions

names A TNetbuf structure that speciÞes the size and location of a
buffer into which the OTLookupName function, on return,
places the names it has found. You must allocate the buffer
into which the replies are stored when the function
returns; you must set the names.buf Þeld to point to it; and
you must set the names.maxlen Þeld to the size of the buffer.

rspcount A long specifying, on return, the number of names found.

The TLookupBuffer Structure 24

The TLookupBuffer structure deÞnes the format of entries in the buffer passed
back in the reply parameter of the OTLookupName function (page 559). When you
parse the buffer in which the OTLookupName function places the names it has
found, you can cast it as a TLookupBuffer structure. Figure 6-1 (page 154) shows
the structure of the reply buffer.

The TLookupBuffer structure is deÞned by the TLookupBuffer data type.

struct TLookupBuffer
{

UInt16 fAddressLength;
UInt16 fNameLength;
UInt8 fAddressBuffer[1];

};
typedef struct TLookupBuffer TLookupBuffer;

Field descriptions

fAddressLength SpeciÞes the size of the address speciÞed by the
fAddressBuffer field.

fNameLength SpeciÞes the size of the name that is stored in the buffer
following the fAddressBuffer Þeld.

fAddressBuffer the Þrst byte of the address to which the entity whose
name follows (in the buffer) is bound.
Constants and Data Types 549

C H A P T E R 2 4

Mappers Reference
Functions 24

This section describes functions that you use only with mappers to manage the
mapping of names to protocol addresses for a network. These functions fall
into three categories: functions you use to create a mapper, functions you use to
register a name or delete a registered name, and functions you use to search for
a name or to validate a name-address pair.

As with other provider functions, you can execute mapper functions
synchronously or asynchronously. However, Open Transport provides no
function to cancel outstanding asynchronous mapper functions. The only way
to cancel such functions is to close the mapper by calling the OTCloseProvider
function, described in the chapter ÒProviders ReferenceÓ (page 383).

You can also use general provider functions with mappers. You use these
functions to change a functionÕs modes of operation (for example, to blocking).
General provider functions are described in the reference section of the chapter
ÒProvidersÓ(page 383).

Creating Mappers 24

Before you can call mapper functions to register a name or search for a name,
you must create a mapper provider by calling the OTAsyncOpenMapper or
OTOpenMapper functions. When you finish using a mapper, call the
OTCloseProvider function to close the mapper provider.

OTOpenMapper 24

Creates a synchronous mapper provider and returns a mapper reference.
550 Functions

C H A P T E R 2 4

Mappers Reference
C INTERFACE

MapperRef OTOpenMapper(OTConfiguration* config,
OTOpenFlags oflag,
OSErr* err);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

config A pointer to a conÞguration structure that speciÞes the
mapperÕs characteristics. You obtain a value for the config
parameter by calling the OTCreateConfiguration function. The
OTOpenMapper function disposes of the configuration structure
before returning.

oflag Reserved; must be set to 0.

err A pointer to the result code for this function.

function result A reference that you can use when calling other mapper
functions.

DISCUSSION

The OTOpenMapper function opens a mapper having the conÞguration speciÞed
by the config parameter. For additional informationon Mappers and
conÞgurations see ÒGetting Started With Open TransportÓ (page 31) and the
documentation provided for the mapper protocol you are using. The function
returns a mapper reference, by which you refer to the created mapper when
calling mapper functions. If the OTOpenMapper function fails, its return value is
kOTInvalidMapperRef.

A mapper created by the OTOpenMapper function operates in synchronous mode,
and does not block. To change the mapperÕs default modes of operation, you
can call the OTSetAsynchronous and the OTSetBlocking function.

You can open multiple mappers using identical or different conÞgurations. The
different mappers can be distinguished by the mapper reference.
Functions 551

C H A P T E R 2 4

Mappers Reference
To delete a mapper, call the OTCloseProvider function (page 392). For additional
information about a mapperÕs mode of operations, see ÒSetting Modes of
Operation for MappersÓ (page 151) .

SPECIAL CONSIDERATIONS

Because the OTOpenMapper function executes synchronously, you should only
call this function at system task time.

The OTOpenMapper function destroys the conÞguration structure passed in the
config parameter. If you want to use the same configuration to open additional
mappers, you must copy the conÞguration structure by calling the
OTCloneConfiguration function(page 378).

SEE ALSO

The OTAsyncOpenMapper function (page 550).

The OTSetAsynchronous function(page 395) .

The OTSetBlocking function (page 398).

OTAsyncOpenMapper 24

Creates an asynchronous mapper and installs a notiÞer function for the mapper
provider.

C INTERFACE

OSStatus OTAsyncOpenMapper (OTConfiguration* config,
OTOpenFlags oflag,
OTNotifyProcPtr proc,
void* contextPtr);

C++ INTERFACE

None. C++ applications use the C interface to this function.
552 Functions

C H A P T E R 2 4

Mappers Reference
PARAMETERS

config A pointer to an endpoint conÞguration structure that speciÞes
the mapperÕs characteristics. You obtain a value for the config
parameter by calling the OTCreateConfiguration function. The
OTAsyncOpenMapper function disposes of the configuration before
returning.

oflag Reserved; must be set to 0.

proc A pointer to a notiÞer function for this mapper.

contextPtr A context pointer for your use. The mapper provider passes
this pointer value when calling the notiÞer function you specify
in the proc parameter. You might use the contextPtr parametert
o pass to your notiÞer function information about your mapper.

function result An error code. See Appendix B(page 785) for more information.

DISCUSSION

The OTAsyncOpenMapper function opens a mapper having the conÞguration
speciÞed by the config parameter. For additional information on mappers and
conÞgurations see ÒGetting Started With Open TransportÓ (page 31) and the
documentation provided for the mapper protocol you are using. The
OTAsyncOpenMapper function runs asynchronously, returning as soon as the
function has been queued for execution.

The OTAsyncOpenMapper function attempts to create a mapper, and then calls the
notiÞer function that you speciÞed in the proc parameter, passing
T_OPENCOMPLETE for the code parameter, a result code in the result parameter,
and the mapper reference for the newly created mapper in the cookie
parameter. For more information on notiÞer functions and event codes see
ÒUsing NotiÞer FunctionsÓ(page 405) and ÒEvent CodesÓ(page 383).

A mapper created by the OTAsyncOpenMapper function operates in asynchronous
mode and does not block . For more information about a mapperÕs mode of
operations, see the section ÒSetting Modes of Operation for MappersÓ
(page 151) .

You can open multiple mappers using identical or different conÞgurations. The
different mappers can be distinguished by the mapper reference. You can set
the contextPtr parameter to point to the mapper reference or to a structure
containing the mapper reference; this allows your notiÞer function to
determine to which mapper a completion event belongs.
Functions 553

C H A P T E R 2 4

Mappers Reference
To close a mapper use the OTCloseProvider function(page 392).

SPECIAL CONSIDERATIONS

The OTAsyncOpenMapper function destroys the conÞguration value passed in the
conÞg parameter. You cannot use the same conÞguration to open multiple
mappers. To copy the conÞguration for use when opening another mapper, you
must call the OTCloneConfiguration function(page 378).

SEE ALSO

The OTOpenMapper function (page 550).

Registering and Deleting Names 24

You use the mapper functions described in this section to register a name on
the network and to delete a name from the network.

OTRegisterName 24

Registers a name on the network.

C INTERFACE

OSStatus OTRegisterName (MapperRef ref,
TRegisterRequest* req,
TRegisterReply* reply);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

ref A mapper reference.
554 Functions

C H A P T E R 2 4

Mappers Reference
req A pointer to a TRegisterRequest structure (page 545) that
speciÞes the entity name you want to register and the protocol
address it maps to.

reply A pointer to a TRegisterReply structure (page 546) that returns
the actual protocol address registered and an ID that can be
used to delete the name.

function result An error code. See Appendix B(page 785) and the discussion
below for more information.

DISCUSSION

If the mapper protocol deÞned using the config parameter to the OTOpenMapper
or OTAsyncOpenMapper functions supports dynamic name and address
registration, you can use the OTRegisterName function to make a name visible on
the network to other network devices.

Note
Some protocol implementations under Open Transport
allow a client to specify a name rather than an address
when binding the endpoint using the OTBind
function(page 441). Binding an endpoint by name causes
the protocol to automatically register the name on the
network if the protocol supports dynamic name
registration. This is the simpler technique for registering a
name and is preferred over creating a mapper provider
and then using the OTRegisterName function to register the
name. ◆

The format for the requested name and address is speciÞc to the protocol used.
Please consult the documentation for the protocol you are using for format
information.

If the mapper is in synchronous mode, the function does not return until the
operation is complete. If the mapper is in asynchronous mode, the
OTRegisterName function returns immediately. When the operation completes
execution, the mapper provider issues the T_REGNAMECOMPLETE code event. The
cookie parameter to the notification routine has the value of the reply
parameter passed to the OTRegisterName function. For more information on
notiÞer functions and event codes see ÒUsing NotiÞer FunctionsÓ(page 405)
and ÒEvent CodesÓ(page 383).
Functions 555

C H A P T E R 2 4

Mappers Reference
If the name was already registered, the function returns the result
kOTAddressBusyErr. If the reply->addr.maxlen field is set to 0, then the address is
not Þlled in and the result kOTNoError result is returned. If this Þeld is not set to
0, the result kOTBufferOverflowErr is returned if the allocated buffer is not large
enough to hold the address.

SEE ALSO

The OTLookupName function (page 559).

The OTDeleteName function (page 556).

The OTDeleteNameByID function (page 557) .

The OTOpenMapper(page 550).

The AsyncOpenMapper(page 552).

OTDeleteName 24

Removes a previously registered entity name.

C INTERFACE

OSStatus OTDeleteName (MapperRef ref,
TNetbuf* name);

C++ INTERFACE

TMapper::DeleteName(TNetbuf* name);

PARAMETERS

ref The mapper reference of the mapper you are using to delete
the name.
556 Functions

C H A P T E R 2 4

Mappers Reference
name A TNetbuf structure describing the name to be removed. You
must allocate a buffer that contains the name, set the name.buf
Þeld to point to the buffer, and set the name.len Þeld to the
length of the name.

function result If the name is not found, the function returns the result
kOTNoAddressErr.

DISCUSSION

If the mapper protocol deÞned using the config parameter to the OTOpenMapper
or OTAsyncOpenMapper functions supports dynamic name and address
registration, you can use the OTDeleteName function to delete a registered name.

If the mapper is in synchronous mode, the function does not return until the
operation is complete. If the mapper is in asynchronous mode, the
OTDeleteName function returns immediately. When the operation completes
execution, the provider issues the T_DELNAMECOMPLETE event code. The cookie
parameter to the notiÞcation routine has the value of the name parameter
passed to the function. For more information on notiÞer functions and event
codes see ÒUsing NotiÞer FunctionsÓ(page 405) and ÒEvent CodesÓ(page 383).

The OTRegisterName function (page 554) you used to register the name returns
an ID value for the registered name in its reply parameter. You might Þnd it
more convenient to use the OTDeleteNameByID function (page 557) to delete a
name using this ID value than to use the OTDeleteName function.

OTDeleteNameByID 24

Removes a previously registered name as speciÞed by its name ID.

C INTERFACE

OSStatus OTDeleteNameByID (MapperRef ref,
OTNameID nameID);
Functions 557

C H A P T E R 2 4

Mappers Reference
C++ INTERFACE

TMapper::DeleteName(OTNameID nameID);

PARAMETERS

ref A mapper reference.

id The name ID, a 32-bit value specifying a number that identiÞes
the registered name.

function result An error code. See Appendix B (page 785)for more information.

DISCUSSION

If the mapper protocol deÞned using the config parameter to the OTOpenMapper
or OTAsyncOpenMapper functions supports dynamic name and address
registration, you can use the OTDeleteNameByID function to delete a registered
name.

If the mapper is in synchronous mode, the function does not return until the
operation is complete. If the mapper is in asynchronous mode, the
OTDeleteNameByID function returns immediately. When the operation completes
execution, the mapper provider calls the notiÞer function, passing
T_DELNAMECOMPLETE for the code parameter, and the nameID parameter in the
cookie parameter. For more information on notifier functions and event codes
see ÒUsing NotiÞer FunctionsÓ(page 405) and ÒEvent CodesÓ(page 383).

The name ID that you delete using the OTDeleteNameByID function is returned in
the reply parameter to the OTRegisterName function (page 554).

Looking Up Names 24

You use the OTLookUpName function to look up an entity name, to search for all
names matching a speciÞed pattern, or to conÞrm that a name is registered.
558 Functions

C H A P T E R 2 4

Mappers Reference
OTLookupName 24

Finds and returns all addresses that correspond to a particular name or name
pattern, or conÞrms that a name is registered.

C INTERFACE

OSStatus OTLookupName(MapperRef ref,
TLookupRequest* req,
TLookupReply* reply);

C++ INTERFACE

OSStatus TMapper::LookupName(TLookupRequest* req,
TLookupReply* reply);

PARAMETERS

ref A mapper reference.

req A TLookupRequest structure (page 547) that speciÞes the name to
be looked up as well as some additional values that the mapper
provider can use to circumscribe the search.

reply A TLookupReply structure (page 548) that speciÞes the size and
location of a buffer to hold the names found, and returns the
number of names found.

function result An error code. See Appendix B(page 785) for more information.

DISCUSSION

You can use the OTLookupName function to Þnd out whether a name is registered
and what address is associated with that name. You use the req parameter to
supply the information needed for the search: what name should be looked up
and, optionally, what node contains that information, how many matches you
expect to Þnd, and how long the search should continue before the operation
completes. On completion, the reply parameterÕs names Þeld points to the
Functions 559

C H A P T E R 2 4

Mappers Reference
buffer where the matching entries are stored and the rspcount Þeld speciÞes the
number of matching entries.

For each registered name found, the OTLookupName function stores information
in the buffer referenced by the names Þeld of the reply parameter. See Figure 6-1
(page 154) for the format of this information.

If you are searching for names using a name pattern and you expect that more
than one name will be returned to you, you need to parse the reply buffer to
extract the matching names. A sample program that shows the use of mapper
function is Listing 6-1 (page 156).

If the mapper is in synchronous mode, the function does not return until the
operation is complete. If you call the OTLookupName function asynchronously, the
mapper provider calls your notiÞer function passing one of two completion
event codes for the code parameter (T_LKUPNAMERESULT or T_LKUPNAMECOMPLETE)
and passing the reply parameter in the cookie parameter. The mapper provider
sends the T_LKUPNAMERESULT event each time it stores a name in the reply buffer,
and it sends the T_LKUPNAMECOMPLETE event when it is done. When you receive
this event, examine the rspcount Þeld to determine whether there is a last name
to retrieve from the reply buffer. The use of both codes is a feature that gives
you a choice about how to process multiple names when searching for names
matching a pattern.

■ If you decide to allocate a buffer that is large enough to contain all the names
returned, you can ignore the T_LKUPNAMERESULT code and call a function that
parses the buffer once the OTLookupName operation has completedÑthat is,
once the provider calls your notiÞer function using the T_LKUPNAMECOMPLETE
event.

If you want to save memory or if you donÕt know how large a buffer to
allocate, you can use the following method to process the names returned. Each
time that the T_LKUPNAMERESULT event is passed, you must do something with
the reply from the reply buffer. You can copy it somewhere, or you can ignore it
if it isnÕt a name youÕre interested in. Then, from inside your notiÞer you set the
reply->names.len field or the reply->rspcount field back to 0 (thus allowing the
mapper provider to overwrite the original name). Accordingly, when the
mapper provider has inserted another name into your reply buffer, it calls your
notiÞer passing the T_LKUPNAMERESULT code, and you can process the new entry
as you have processed the Þrst entry. This method also saves you the trouble of
having to parse through the buffer to extract name and address information.
For more information on notiÞer functions and event codes see ÒUsing NotiÞer
FunctionsÓ(page 405) and ÒEvent CodesÓ(page 383).
560 Functions

C H A P T E R 2 4

Mappers Reference
The cookie parameter to the notiÞer contains the reply parameter to the
OTLookupName function.

The format of the names and protocol addresses are speciÞc to the underlying
protocol. Consult the documentation supplied for your protocol for more
information.

SEE ALSO

The OTDeleteName function (page 556).

The OTDeleteNameByID function, (page 557).

OTNextLookupBuffer Macro 24

Returns the address of the next lookup buffer.

#define OTNextLookupBuffer(buf)\
((TLookupBuffer*) \

((char*)buf + ((offsetof(TLookupBuffer, fAddressBuffer) +
buf->fAddressLength + buf->fNameLength + 3) & ~3)))

This macro takes the address of a TLookupBuffer and returns the address of the
next one.
Functions 561

C H A P T E R 2 4

Mappers Reference
562 Functions

C H A P T E R 2 5

Contents

Contents
Figure 25-0
Listing 25-0
Table 25-0
25 Option Management Reference
Constants and Data Types 564
XTI-Level Options 564
Generic Options 566
Status Codes 568
Action Flags 569
The Linger Structure 570
The Keepalive Structure 571
The TOption Structure 571
The TOption Header Structure 572
The Option Management Structure 573

Functions 574
Determining and Changing Function Values 574

OTOptionManagement 574
Finding Options 578

OTFindOption 578
OTNextOption 579

Manipulating the Format of Option Information 581
OTCreateOptions 581
OTCreateOptionString 584
563

C H A P T E R 2 5
564 Contents

C H A P T E R 2 5
Option Management Reference 25

This chapter describes the constants, data types and functions that you use to
manage options for endpoint providers and to manipulate option information.

Constants and Data Types 25

This section describes constants and data types that you use to set and
verify options.

XTI-Level Options 25

Open Transport deÞnes XTI-level options. These options are not association-
related. If the protocol you are using supports these options, you can negotiate
them while the endpoint is in any state. The protocol level for all of these
options is XTI_GENERIC. The constant names used to specify XTI-level options
are given by the following enumeration:

enum
{

XTI_DEBUG = (OTXTIName)0x0001,
XTI_LINGER = (OTXTIName)0x0080,
XTI_RCVBUF = (OTXTIName)0x1002,
XTI_RCVLOWAT = (OTXTIName)0x1004,
XTI_SNDBUF = (OTXTIName)0x1001,
XTI_SNDLOWAT = (OTXTIName)0x1003,
XTI_PROTOTYPE = (OTXTIName)0x1005

};

Constant descriptions

XTI_DEBUG A 32 bit constant specifying whether debugging is
enabled. Debugging is disabled if the option is speciÞed
with no value. This option is an absolute requirement.

XTI_LINGER A value deÞned by a linger structure (page 571) that
speciÞes whether the option is turned on (T_YES) or off
(T_NO) and speciÞes a linger period in seconds. This option
is an absolute requirement; however, you do not have to
Constants and Data Types 565

C H A P T E R 2 5

Option Management Reference
specify a value for the l_linger Þeld of the linger structure.
(page 571).
You use this option to extend the execution of the
OTCloseProvider function for some specified amount of
time. The delay allows data still queued in the endpointÕs
internal send buffer to be sent before the endpoint
provider is closed. If you call the OTCloseProvider function
and the send buffer is not empty, the endpoint provider
attempts to send the remaining data during the linger
period, before closing. Open Transport discards any data
remaining in the send buffer after the linger period has
elapsed.
Consult the documentation for your protocol to determine
the valid range of values for the linger period.

XTI_RCVBUF A 32-bit integer specifying the size of the endpointÕs
internal buffer allocated for receiving data. You can
increase the size of this buffer for high-volume connections
or decrease the buffer to limit the possible backlog of
incoming data.
This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the buffer size.

XTI_RCVLOWAT A 32-bit integer specifying the low-water mark for the
receive bufferÑthat is, the number of bytes that must
accumulate in the endpointÕs internal receive buffer before
you are advised that data has arrived via a T_DATA event.
Choosing a value that is too low might result in your
applicationÕs getting an excessive number of T_DATA events
and doing unnecessary reads. Choosing a value that is too
high might result in Open Transport running out of
memory and disabling incoming data packets.
This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the low-water mark.

XTI_SNDBUF A 32-bit integer specifying the size of the endpointÕs
internal buffer allocated for sending data. Specifying a
value that is too low might result in Open Transport doing
more sends than necessary and wasting processor time;
566 Constants and Data Types

C H A P T E R 2 5

Option Management Reference
specifying a value that is too high might cause ßow control
problems.
This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the buffer size.

XTI_SNDLOWAT A 32-bit integer specifying the low-water mark for the
send bufferÑthat is, the number of bytes that must
accumulate in the endpointÕs internal send buffer before
Open Transport actually sends the data. Choosing a value
that is too low might result in Open TransportÕs doing too
many sends and wasting processor time. Choosing a value
that is too high might result in ßow control problems. A
value that is slightly lower than
the largest packet size deÞned for the endpoint is a
good choice.
This option is not an absolute requirement. Consult the
documentation for your protocol to determine the valid
range of values for the low-water mark.

XTI_PROTOTYPE The protocol type used by the endpoint. The option is
supported by the RawIP endpoint. For additional
information, see ÒTCP/IP Services ReferenceÓ(page 683).

Generic Options 25

Open Transport deÞnes some generic options that you can use with any
protocol that supports them. The protocol level for each of these options is the
same as the name of the protocol that supports them. The constant names used
to specify generic options are given by the following enumeration:

enum
{

OPT_CHECKSUM = (OTXTIName)0x0600,
OPT_RETRYCNT = (OTXTIName)0x0601,
OPT_INTERVAL = (OTXTIName)0x0602,
OPT_ENABLEEOM = (OTXTIName)0x0603,
OPT_SELFSEND = (OTXTIName)0x0604,
OPT_SERVERSTATUS = (OTXTIName)0x0605,
Constants and Data Types 567

C H A P T E R 2 5

Option Management Reference
OPT_KEEPALIVE = (OTXTIName)0x0008
OPT_ALERTENABLE = (OTXTIName)0x0606,

};

Constant descriptions

OPT_CHECKSUM A 32-bit constant specifying whether checksums are
performed. Specify 1 to turn the option on and 0 to turn it
off. If you turn it on, a checksum is calculated when a
packet is sent and recalculated when the packet is
received. If the checksum values match, the client receiving
the packet can be fairly certain that data has not been
corrupted or lost during transmission. If the checksum
values donÕt match, the receiver discards the packet.
This option is usually implemented by the lowest-level
protocol, although you might be allowed to set it at a
higher level. For example, if you use an ATP endpoint, you
can set checksumming at the ATP level, even though it is
implemented by the underlying DDP protocol.

OPT_RETRYCNT A 32-bit integer specifying the number of times a function
can attempt packet delivery before returning with an error.
A value of 0 means that the function should attempt
packet delivery an inÞnite number of times.
This option is usually implemented by
connection-oriented endpoints or connectionless
transaction-based endpoints to enable reliable delivery of
data. Such protocols normally set a default value for this
option.

OPT_INTERVAL A 32-bit integer specifying the interval of time in
milliseconds that should elapse between attempts to
deliver a packet. The number of attempts is deÞned by the
OPT_RETRYCNT option.

OPT_ENABLEEOM An 32-bit integer specifying end-of-message capability. If
you set this option, you enable the use of the T_MORE ßag
with the OTSnd function to mark the end of a logical unit.
This option has meaning only for connection-oriented
protocols. A value of 0 clears the option; a value of 1 sets it.
This option is not association-related.

OPT_SELFSEND A 32-bit integer allowing you to send broadcast packets to
yourself. A value of 0 clears the option; a value of 1 sets it.
568 Constants and Data Types

C H A P T E R 2 5

Option Management Reference
OPT_SERVERSTATUS A string that sets the serverÕs status. The maximum length
is protocol dependent. For more information, consult the
documentation for the protocol you are using.

OPT_KEEPALIVE A keepalive structure (page 572) that speciÞes whether
Òkeep aliveÓ is turned on (T_YES) or off (T_NO) and speciÞes
the timeout period in minutes.
Connection-oriented protocols can use this option to check
that the connection is maintained. If a connection is
established but there is no data being transferred, you can
specify a time limit within which Open Transport checks to
see that the remote end of the connection is still alive. If it
is not, Open Transport tears down the connection.
This option is association-related.

OPT_ALERTENABLE Enables or disables protocol alerts.

Status Codes 25

Open Transport uses status codes to return information about the success of an
option negotiation. For individual options, Open Transport returns a status
code in the status Þeld of the TOption structure (page 572) describing the
option. For groups of options negotiated by a single call to the
OTOptionManagement function, the function also returns a status code that
speciÞes the single worst result of the negotiation in the flags Þeld of the ret
parameter.

The constant names that are used to specify information about the outcome of
option negotiation are given by the following enumeration:

enum
{

T_SUCCESS = 0x020,
T_FAILURE = 0x040,
T_PARTSUCCESS = 0x100,
T_READONLY = 0x200,
T_NOTSUPPORT = 0x400,
T_UNSPEC = (~0 - 2),
T_ALLOPT = 0

};
Constants and Data Types 569

C H A P T E R 2 5

Option Management Reference
Constant descriptions

T_SUCCESS The requested value was negotiated.
T_FAILURE The negotiation failed.
T_PARTSUCCESS A lower requested value was negotiated.
T_READONLY The option was read-only.
T_NOTSUPPORT The endpoint does not support the requested value.
T_UNSPEC The option does not have a fully speciÞed value at this

time. An endpoint provider might return this status code if
it cannot currently access the option value. This might
happen if the endpoint is in the state T_UNBND in systems
where the protocol stack resides on a separate host.

Action Flags 25

The req parameter to the OTOptionManagement function contains a flags Þeld
that you set to specify what action the function should take. The constant
names that you can specify for this Þeld are given by the following
enumeration:

enum
{

T_NEGOTIATE = 0x004,
T_CHECK = 0x008,
T_DEFAULT = 0x010,
T_CURRENT = 0x080,

};

Constant descriptions

T_NEGOTIATE Negotiate the option values speciÞed in the opt.buf Þeld of
the req parameter.
The overall result of the negotiation is speciÞed by the
flags field of the ret parameter. The opt.buf field of the
ret parameter points to a buffer where negotiated values
for each option are placed.

T_CHECK Verify whether the endpoint supports the options
referenced by the opt.buf Þeld of the req parameter.
The overall result of the veriÞcation is speciÞed by the
flags field of the ret parameter. Specific verification
570 Constants and Data Types

C H A P T E R 2 5

Option Management Reference
results are returned in the opt.buf Þeld of the ret
parameter.

T_DEFAULT Retrieve the default value for those options in the buffer
referenced by the req->opt.buf Þeld. To retrieve default
values for all the options supported by an endpoint,
include just the option T_ALLOPT in the options buffer.
Option values are returned in the opt.buf Þeld of the ret
parameter.

T_CURRENT Retrieve the current value for those options that the
endpoint supports and that are speciÞed in the buffer
referenced by the req->opt.buf Þeld. To retrieve current
values for all the options that an endpoint supports,
include just the option T_ALLOPT in the options buffer.
Option values are returned in the opt.buf Þeld of the ret
parameter.

The Linger Structure 25

The linger structure speciÞes the value of the XTI_LINGER option, described in
ÒXTI-Level OptionsÓ (page 565).

The linger structure is deÞned by the t_linger data type.

struct t_linger
{
long l_onoff;
long l_linger;
};
typedef struct t_linger t_linger;

Field descriptions
l_onoff A constant specifying whether the option is turned on

(T_ON) or off (T_OFF).

l_linger An integer specifying the linger time, the amount of time
in seconds that Open Transport should wait to allow data
in an endpointÕs internal buffer to be sent before the
OTCloseProvider function closes the endpoint.
Constants and Data Types 571

C H A P T E R 2 5

Option Management Reference
To request the default value for this option, set the
l_linger field to T_UNSPEC.

The Keepalive Structure 25

The keepalive structure speciÞes the value of the OPT_KEEPALIVE option,
described in ÒGeneric OptionsÓ (page 567).

The keepalive structure is deÞned by the t_kpalive data type.

struct t_kpalive
{

long kp_onoff;
long kp_timeout;

};
typedef struct t_keepalive t_keepalive;

Field descriptions
kp_onoff A constant specifying whether the option is turned on

(T_ON) or off (T_OFF).

kp_timeout A positive integer specifying how many minutes
Open Transport should maintain a connection in the
absence of trafÞc.

The TOption Structure 25

The TOption structure stores information about a single option in a buffer. All
functions that you use to change or verify option values use a buffer containing
TOption structures to store option information. For each option in the buffer, the
TOption structure specifies the total length occupied by the option, the protocol
level of the option, the option name, the status of a negotiated value, and the
value of the option.

You use the TOption structure with the OPT_NEXTHDR macro, the
OTCreateOptionString function, the OTNextOption function, and the
OTFindOption function.

The TOption structure is deÞned by the TOption data type.
572 Constants and Data Types

C H A P T E R 2 5

Option Management Reference
struct TOption
{

UInt32 len;
OTXTILevel level;
OTXTIName name;
UInt32 status;
UInt32 value[1];

};
typedef struct TOption TOption;

Field descriptions
len The size (in bytes) of the option information, including the

header.

level The protocol for which the option is deÞned.
name The name of the option.
status A status code specifying whether the negotiation has

succeeded or failed. Possible values are given by the status
codes enumeration (page 569).

value The option value. To have the endpoint select an
appropriate value, you can specify the constant T_UNSPEC.

The TOption Header Structure 25

The TOption header structure stores information about options in a buffer.

struct TOptionHeader
{

UInt32 len;
OTXTILevel level;
OTXTIName name;
UInt32 status;

};

typedef struct TOptionHeaderTOptionHeader;

typedef struct TOption TOption;
Constants and Data Types 573

C H A P T E R 2 5

Option Management Reference
Field descriptions
len The size (in bytes) of the option information, including the

header.

level The protocol affected.
name The option name.
status The status value. Possible values are given by the status

codes enumeration, (page 569)

The Option Management Structure 25

The option management structure is used for the req and ret parameters of the
OTOptionManagement function. The req parameter is used to verify or negotiate
option values. The ret parameter returns information about an endpointÕs
default, current, or negotiated values.

The option management structure is deÞned by the TOptMgmt data type.

struct TOptMgmt
{

TNetbuf opt;
OTFlags flags;

};

typedef struct TOptMgmt TOptMgmt

Field descriptions
opt A TNetbuf structure describing the buffer containing option

information. The opt.maxlen Þeld speciÞes the maximum
size of the buffer. The opt.len Þeld speciÞes the actual size
of the buffer, and the opt.buf Þeld contains the address of
the buffer.

On input, as part of the req parameter, the buffer contains
TOption structures describing the options to be negotiated
or veriÞed, or contains the names of options whose default
or current values you are interested in. You must allocate
this buffer, place in it the structures describing the options
of interest, and set the opt.len Þeld to the size of the buffer.
574 Constants and Data Types

C H A P T E R 2 5

Option Management Reference
On output, as part of the ret parameter, the buffer contains
the actual values of the options you described in the req
parameter. You must allocate a buffer to hold the option
information when the function returns and set the
opt.maxlen field to the maximum length of this buffer.
When the function returns, the opt.len Þeld is set to the
actual length of the buffer.

flags For the req parameter, the flags Þeld indicates the action
to be taken as deÞned by the action ßags enumeration
(page 570). For the ret parameter, the flags Þeld indicates
the overall success or failure of the operation performed by
the OTOptionManagement function, as deÞned by the status
codes enumeration (page 569).

Functions 25

This section describes the functions that you can use to determine an
endpointÕs current and default options or to change them. This section also
describes utility functions that you use to manipulate the format of option
information and to Þnd option information in a buffer.

Determining and Changing Function Values 25

This section describes the OTOptionManagement function, which you use to
obtain information about an endpointÕs default or current option values and to
change these values if needed.

OTOptionManagement 25

Determines an endpointÕs current or default option values or changes
these values.
Functions 575

C H A P T E R 2 5

Option Management Reference
C INTERFACE

OSStatus OTOptionManagement(EndpointRef ref, TOptMgmt* req,
TOptMgmt* ret);

C++ INTERFACE

OSStatus TEndpoint::OptionManagement(TOptMgmt* req, TOptMgmt* ret);

PARAMETERS

ref The endpoint reference of the endpoint for which you are
checking or setting option values.

req A pointer to an option management structure (page 574), which
describes the action to be taken by the function and the options
affected.

ret A pointer to an option management structure (page 574), which
describes the options that were changed or returned by the
function and how successful the negotiation process was.

function result See Discussion.

DISCUSSION

To use the OTOptionManagement function, you must have opened an endpoint
using the OTOpenEndpoint or OTAsyncOpenEndpoint functions.

You use the OTOptionManagement function to negotiate, retrieve, or verify an
endpointÕs protocol options. If the endpoint is in synchronous mode, the
endpoint will returns results of the option managment in the structure
referenced by the req parameter. If the endpoint is in asynchronous mode, the
function returns immediately with the kOTNoError result. When the operation
completes, the endpoint calls your notiÞer with the T_OPTNMGMTCOMPLETE event
code. The cookie parameter to the notiÞer will contain the value of the ret
parameter. If you have not installed a notiÞer function, it is not possible to
determine when the function completes. For more information on notiÞer
functions and event codes see ÒUsing NotiÞer FunctionsÓ(page 405) and ÒEvent
CodesÓ(page 383).
576 Functions

C H A P T E R 2 5

Option Management Reference
The action taken by the OTOptionManagement function is determined by the
setting of the req->flags Þeld. The following bulleted items describe the
different operations that you can perform and the ßag settings that you use to
specify these operations.

■ To negotiate values for the endpoint, you must call the OTOptionManagement
function, specifying T_NEGOTIATE for the req->flags Þeld. The endpoint
provider evaluates the requested options, negotiates the values, and returns
the resulting values in the option management structure pointed to by the
ret->opt.buf field. The status field of each returned option is set to a
constant that indicates the result of the negotiation. These constants are
described by the status codes enumeration (page 569).

For any protocol speciÞed, you can negotiate for the default values of all
options supported by the endpoint by specifying the value T_ALLOPT for the
name field of the TOption structure(page 572). This might be useful if you
want to change current settings or if negotiations for other values have
failed. The success of the negotiations depends partly on the state of the
endpointÑthat is, simply because these are default values does not
guarantee a completely successful negotiation. When the function returns,
the resulting values are returned, option by option, in the buffer pointed to
by the ret->opt.buf Þeld.

■ To retrieve an endpointÕs default option values, call the OTOptionManagement
function, specifying T_DEFAULT for the req->flags Þeld. You must also specify
the name of the option (but not its value) in the TOption structure that you
create for each of the options you are interested in. (The option buffer should
have an option header, but no value Þelds; the TOption.len Þeld should be
set to kOTOptionHeaderSize.)

When the function returns, it passes the default values for the options back
to you in the buffer pointed to by the ret->opt.buf Þeld. For each option, the
status field contains T_NOTSUPPORT if the protocol does not support the
option, T_READONLY if the option is read-only, and T_SUCCESS in all other cases.
When getting an endpointÕs default option values, you can specify T_ALLOPT
for the option name. This returns all supported options for the speciÞed
level with their default values. In this case, you must set the opt.maxlen Þeld
to the maximum size required to hold an endpointÕs option information,
which you can get from the info.opt Þeld of the TEndpointInfo(page 426)
structure.

■ To retrieve an endpointÕs current option values, call the OTOptionManagement
function, specifying T_CURRENT for the req->flags Þeld. For each option in the
Functions 577

C H A P T E R 2 5

Option Management Reference
buffer referenced by the req->opt.buf Þeld, specify the name of the option
you are interested in. The function ignores any option values
you specify.

When the function returns, it passes the current values for the options back
to you in the buffer referenced by the ret->opt.buf Þeld. For each option, the
status field contains T_NOTSUPPORT if the protocol does not support the
option, T_READONLY if the option is read-only, and T_SUCCESS in all other cases.
When retrieving an endpointÕs current option values, you can specify
T_ALLOPT for the option name. The function returns all supported options for
the speciÞed protocol, with their current values. In this case, you must set
the opt.maxlen Þeld to the maximum size required to hold an endpointÕs
option information, which you can get from the info.opt Þeld of the
TEndpointInfo structure.

■ To check whether an endpoint provider supports certain options or option
values, you must call the OTOptionManagement function, specifying T_CHECK
for the req->flags Þeld. Checking options or their values does not change
the current settings of an endpointÕs options.

■ To check whether an option is supported, set the name Þeld of the TOption
structure to the option name, but do not specify an option value. (The
option buffer should have an option header, but no value Þelds; the
TOption.len field should be set to kOTOptionHeaderSize.) When the
function returns, the status Þeld for the corresponding TOption structure
in the buffer pointed to by the ret->opt.buf Þeld is set to T_SUCCESS if the
option is supported, T_NOTSUPPORT if it is not supported or needs
additional client privileges, and T_READONLY if it is read-only.

■ To check whether an option value is supported, set the name Þeld of the
TOption structure to the option name, and set the value field to the value
you want to check. When the function returns, the status Þeld for the
corresponding TOption structure in the buffer pointed to by the
ret->opt.buf field is set as it would be if you had specified the
T_NEGOTIATE flag.

The overall result of the request for option negotiation is returned in the
ret->flags field. The meaning of this result is described by the status codes
enumeration (page 569).
578 Functions

C H A P T E R 2 5

Option Management Reference
SPECIAL CONSIDERATIONS

While an option management call is outstanding, any other functions that are
called for the same endpoint return with a kOTStateChangeErr result.

If the endpoint is in asynchronous mode, the provider might issue the
T_OPTMGMTCOMPLETE event before the function returns the first time.

SEE ALSO

The format of option buffers in ÒSpecifying Option ValuesÓ (page 173).

The OTCreateOptions function (page 582).

The OTCreateOptionString function (page 582).

Finding Options 25

You use the two functions described in this section to Þnd a speciÞc option in
an options buffer or to Þnd the next option in the buffer. You do not have to
create an endpoint to use these functions, but you do have to initialize Open
Transport as described in the chapter ÒConÞguration Management

OTFindOption 25

Finds a speciÞc option in an options buffer.

C INTERFACE

TOption* OTFindOption (UInt8* buffer, UInt32 buflen,
OTXTILevel level, OTXTIName name);

C++ INTERFACE

None. C++ applications use the C interface to this function.
Functions 579

C H A P T E R 2 5

Option Management Reference
PARAMETERS

buffer A pointer to the buffer containing the options.

buflen The size of the buffer containing the options.

level The protocol of the option to be found.

name The name of the option to be found.

function result The beginning address of the option found, or nil if it is not
found.

DISCUSSION

Given a buffer such as might be returned by the OTOptionManagement function,
you can use the OTFindOption function to Þnd a speciÞc option in the buffer.

SEE ALSO

The OTNextOption function (described next).

The OTCreateOptionString function (page 585).

OTNextOption 25

Locates the next TOption structure in a buffer.

C INTERFACE

OSStatus OTNextOption (UInt8* buffer, UInt32 buflen,
TOption** prevOptPtr;

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

buffer A pointer to the buffer containing the option to be found.
580 Functions

C H A P T E R 2 5

Option Management Reference
buflen A long specifying the size of the buffer containing the option to
be found.

prevOptPtr A pointer to a pointer to the Þrst or current TOption structure.
The Þrst time you call the function, set this parameter. On
return, this parameter references the beginning address of the
next option

function result The only error returned by this function is kOTBufferOverflow;
the option retrieved is larger than the buffer allocated to contain
it.

DISCUSSION

The OTNextOption function allows you to parse through a buffer containing
TOption structures(page 572) describing an endpointÕs option values. Within the
buffer, TOption structures are aligned to long-word boundaries. This function
takes into account this padding when it calculates the beginning address of the
next TOption structure and it returns that address in the prevOptPtr parameter.

The Þrst time you call the option, set the prevOptPtr parameter to nil. When
the function returns, the prevOptPtr parameter points to the Þrst option in the
buffer. You can continue this process, specifying the value returned for the
prevOptPtr parameter by the previous invocation of the function, each time you
call the function to obtain the beginning address of the next option in the
buffer. You know the function has returned all existing TOption structures when
nextOption is nil.

For an example of the use of this function, see ÒSample Code: Getting and
Setting OptionsÓ (page 177).

SPECIAL CONSIDERATIONS

Open Transport also deÞnes a macro, OPT_NEXTHDR, that works like
OTNExtOption, with less error checking.

SEE ALSO

The OTFindOption function (page 579).
Functions 581

C H A P T E R 2 5

Option Management Reference
Manipulating the Format of Option Information 25

You use the Open Transport utility functions described in this section to
construct a buffer from a string describing option values or to create a string
from a buffer containing option values. You do not have to create an endpoint
to use Open Transport utility functions, but you do have to initialize Open
Transport as described in ÒGetting Started With Open TransportÓ (page 31).

OTCreateOptions 25

Writes option information into a buffer, from a string specifying option values.

C INTERFACE

OSStatus OTCreateOptions (const char* endptName, char** strPtr,
TNetbuf* buf);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

endptName The name of the protocol for which the options are speciÞed.
For example, for an AppleTalk endpoint this might be ÒatpÓ
or Òddp.Ó

strPtr A pointer to a pointer to a string containing option information.
If an error occurs in writing the option information to the
buffer, strPtr points to the position in the string where the error
occurred.

buf A pointer to a TNetbuf structure that speciÞes the size and
location of the buffer into which the function writes option
information. You must allocate the buffer and set the buf->opt
Þeld to point to it.
582 Functions

C H A P T E R 2 5

Option Management Reference
You must set the buf->maxlen Þeld to the size of the buffer. To
handle all possible options, create a buffer whose size is equal
to the value speciÞed by the TEndpoint.options Þeld for an
endpoint conÞgured using the endptName string..

The function appends option information to the buffer
beginning at the offset speciÞed by the buf->len Þeld. Set this
Þeld to 0 to start at the beginning of the buffer. When the
function returns, the value of the buf->len Þeld is updated to
reßect the new length, including padding.

function result See Discussion.

DISCUSSION

The OTCreateOptions function automates the construction of a buffer that
describes endpoint option values for a particular protocol. Given a string, a
pointer to a buffer, and the protocol for which the options are set, the function
constructs TOption structures describing each option speciÞed and then places
these structures in the buffer referenced by the buf parameter. After using the
OTCreateOptions function to construct the buffer, you have most of the
information needed to create the req parameter to the OTOptionManagement
function (page 575).

The string containing option values has the format:

optionName1 = value optionName2 = value optionName3 = value [....]

where value can be a numeric value, a string value, or a byte array value. The
next table describes how each value is represented.

Possible values for option names are given in the documentation for the
protocol you are using. Generic option names are described in ÒXTI-Level
Options and General OptionsÓ (page 169).

Open Transport maintains an internal database relating to options and their
values. Open Transport might not be able to write option information to the
buffer because it cannot match a name or value you have speciÞed with a name
or value in its database. This is either because you misspelled a name or
speciÞed a value that is out of range or because the option you want to
conÞgure is not included in Open TransportÕs data base. The latter might be the
case for an option that is rarely used.
Functions 583

C H A P T E R 2 5

Option Management Reference
SPECIAL CONSIDERATIONS

The option names used by this function are not localised. Thus, you should
never present these option strings to users.

SEE ALSO

The OTCreateOptionString function (page 585).

Format of values Contents

Numeric A minus sign (Ð) preÞx for negative numbers, followed by
the digits comprising the number; for example, Ð6784.

A $ or 0x preÞx for hexadecimal numbers, followed by the
digits comprising the number; for example, $FFFE.

String The option string, which is composed of a delimiter
character, followed by the characters comprising the
string, followed by the delimiter character. A delimiter
character is the Þrst non- blank character after the equals
sign. For example,
SomeOptionName = *The String Option*,
or
SomeOtherOptionName = %Another String Option%.

Byte array A leading $ or 0x followed by a sequence of hex digits
with no intervening spaces or tabs. There must be an even
number of digits; for example, $FF12EE46.
584 Functions

C H A P T E R 2 5

Option Management Reference
OTCreateOptionString 25

Creates a string from a buffer containing TOption structures.

C INTERFACE

OSStatus OTCreateOptionString (const char* endptName, TOption** opt,
 void* bufEnd, char* string,
 size_t stringSize);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

endptName A constant specifying the name of the protocol for this option
or options.

opt A pointer to a pointer to a buffer containing one or more
TOption structures(page 572).

bufEnd A pointer to the Þrst byte of memory past the last option.

string A pointer to a buffer where the string is to be stored. You must
allocate this buffer.

stringSize The length of the buffer where the string is to be stored. You
must specify this value.

function result See Appendix B.

DISCUSSION

You can use the OTCreateOptionString function to parse through the options
buffer returned by the ret parameter to the OTOptionMangement function
(page 575) and create a string specifying option values that you can display.
Functions 585

C H A P T E R 2 5

Option Management Reference
SPECIAL CONSIDERATIONS

This function is supplied solely as a debugging aid. You should not include the
function in a production version of your application because there is no
provision made for localizing string information.

SEE ALSO

The OTCreateOptions function (page 582).
586 Functions

C H A P T E R 2 6

Contents

Contents
Figure 26-0
Listing 26-0
Table 26-0
26 Ports Reference
Constants and Data Types 588
Error-Checking Constant 588
Port-Related Constants 588
Bus Type Constants 589
Port-Related Events 589
The Port Structure 591
The Port Reference 594
The Client List Structure 596
The Port Close Structure 597

Functions 598
Getting Information About Ports 598

OTGetProviderPortRef 598
OTGetIndexedPort 599
OTFindPort 600
OTFindPortByRef 601
OTGetUserPortNameFromPortRef 602
OTGetPortIconFromPortRef 603
OTGetDeviceTypeFromPortRef 603
OTGetBusTypeFromPortRef 604
OTGetSlotFromPortRef 605

Registering New Ports 606
OTRegisterPort 607
OTCreatePortRef 607
OTUnregisterPort 609

Requesting a Port to Yield Ownership 610
OTYieldPortRequest 610

Registering as a Client 613
587

C H A P T E R 2 6
OTRegisterAsClient 613
OTUnregisterAsClient 614
588 Contents

C H A P T E R 2 6
Ports Reference 26

This chapter describes the data types, constants, and functions that you need to
obtain port information and register your application as a client. For
conceptual information and code samples showing the use of these functions,
see ÒPortsÓ (page 191).

Constants and Data Types 26

This section describes the constants and data types used in connection with
ports.

Error-Checking Constant 26

Open Transport provides a constant that you can use to initialize the port
reference structure. You can then check that the current port reference is valid
before passing it to functions. The constant is deÞned as follows:

enum kOTInvalidPortRef = ((OTPortRef)0)

Port-Related Constants 26

These constants provide length and size values for modules, provider names,
and slot IDs. These Þelds all end with a byte for the terminating zero. The
constant kMaxProviderNameSize permits a length of 36 bytes: 31 bytes for the
name, up to 4 bytes of extra characters (called minor numbers in STREAMS
speciÞcations, and currently not used), and a byte for the zero that terminates
the string.

enum {
kMaxModuleNameLength = 31,
kMaxModuleNameSize = kMaxModuleNameLength + 1,
kMaxProviderNameLength = kMaxModuleNameLength + 4,
kMaxProviderNameSize = kMaxProviderNameLength + 1,
kMaxSlotIDLength = 7,
kMaxSlotIDSize = 8,
kMaxResourceInfoLength = 31,
Constants and Data Types 589

C H A P T E R 2 6

Ports Reference
kMaxResourceInfoSize = 32
kMaxPortNameLength = kMaxModuleNameLength + 4,
kMaxPortNameSize = kMaxPortNameLength + 1,

};

Bus Type Constants 26

You use the following constants to specify the bus type of port:

enum{
kOTUnknownBusPort = 0,
kOTMotherboardBus = 1,
kOTNuBus = 2,
kOTPCIBus = 3,
kOTGeoPort = 4,
kOTPCCordBus = 5,
kOTFireWireBus = 6,
kOTLastBusIndex = 15

};

Constant descriptions

kOTUnknownBusPort
The portÕs bus type is not a known type.

kOTMotherboardBus
The port is on the motherboard.

kOTNuBus The port is on a NuBus.
kOTPCIBus The port is on a PCI bus.
kOTGeoPort The port is a GeoPort device.
kOTPCMCIABus The port is on a PCCard bus.
kOTFireWireBus The port is on a Firewire bus.
kOTLastBusIndex The maximum bus type that the port can support.

Port-Related Events 26

There are several port-related events that Open Transport can send to an
application that is registered as an Open Transport client. Note that if your
590 Constants and Data Types

C H A P T E R 2 6

Ports Reference
application is not registered as a client, Open Transport cannot send it these
events. See ÒOTRegisterAsClientÓ (page 614) for more information.

enum {
kOTPortDisabled = 0x25000001,
kOTPortEnabled = 0x25000002,
kOTPortoffLine = 0x25000003,
kOTPortoffLine = 0x25000004,
kOTClosePortRequest = 0x25000005,
kOTYieldPortRequest = 0x25000005,,
kOTNewPortRegistered = 0x25000006

};

Constant descriptions

kOTPortDisabled A port has gone off line, as when the user removes a
PCMCIA card while the computer is running. The
OTResult parameter specifies the reason, if known, and the
cookie parameter provides the port reference of the port
that went off line. A port going off line often results in
providers getting kOTProviderIsClosed events. There is no
guarantee in Open Transport as to which of these events
will be received Þrst.

kOTPortEnabled A port that had previously been disabled is now
reenabled, as when the user reinserts a previously
removed PCMCIA card while the computer is running.
The cookie parameter is the port reference of the port that
is now enabled.

kOTPortoffLine The port is now ofßine.
kOTClosePortRequestA request has been made to close or yield this port.
kOTYieldPortRequest

You currently are using a provider that is using a port that
some other application wants to use. The OTResult
parameter is the reason for the request (normally
kOTNoError or kOTUserRequestedErr), and the cookie
parameter is a pointer to an OTPortCloseStruct structure.

kOTNewPortRegistered
A new port has been registered with Open Transport, as
when the user inserts a new PCMCIA card. The cookie
parameter is the port reference of the new port. Your
Constants and Data Types 591

C H A P T E R 2 6

Ports Reference
provider receives this event the Þrst time a new port is
enabled. Subsequently, if a port is reenabled after being
disabled, you receive the kOTPortEnabled event instead.

The Port Structure 26

Open Transport uses a port structure to describe a portÕs characteristics, such as
its port name, its child ports, whether it is active or disabled, whether it is
private or shareable, and the kind of framing it can use.

The port structure is deÞned by the OTPortRecord data type.

struct OTPortRecord {
OTPortRef fRef;
UInt32 fPortFlags;
UInt32 fInfoFlags;
UInt32 fCapabilities;
size_t fNumChildPorts;
OTPortRef* fChildPorts;
char fPortName[kMaxProviderNameSize];
char fModuleName[kMaxModuleNameSize];
char fSlotID[kMaxSlotIDSize];
char fResourceInfo[kMaxResourceInfoSize];
char fReserved[164];

};
typedef struct OTPortRecord OTPortRecord;

Field descriptions
fRef The port reference; a 32-bit value encoding the portÕs

device type, bus type, slot number, and multiport
identiÞer. For more details, see .

fPortFlags Flags describing the portÕs status. If no bits are set, the port
is currently inactiveÑthat is, it is not in use at this time.

Flag Value Description

kOTPortIsActive 0x00000001 The port is in use.
592 Constants and Data Types

C H A P T E R 2 6

Ports Reference
fInfoFlags Flags providing additional information about the port.

fCapabilities Flags indicating the type of framing capability that a port
has. If the port can handle only one type of framing, this

kOTPortIsDisabled 0x00000002 The port may or may not be in use,
but no other client can use it.

kOTPortIsUnavailable 0x00000004 The port is not available for use.

kOTPortIsOffline 0x00000008 The port is off-line. This bit is
typically only set when the port is
active, the port autoconnects, and it
is currently not connected.

Flag Value Description

kOTPortIsDLPI 0x00000001 The port driver is a DLPI
STREAMS module.

kOTPortIsTPI 0x00000002 The port driver is a TPI
STREAMS module.

kOTPortCanYield 0x00000004 The port can yield when
requested.

kOTPortCanArbitrate 0x00000008 Reserved

kOTPortIsTransitory 0x00000010 The port has off-line/on-line
status.

kOTPortAutoConnects 0x00000020 The port auto connects. The
port goes on-line and off-line
on demand. ISDN is a typical
example.

kOTPortIsSystemRegistered 0x00004000 The port was registered by the
system from the Name
Registry.

kOTPortIsPrivate 0x00008000 The port is a private port.

kOTPortIsAlias 0x80000000 The port is an alias for
another port.

Flag Value Description
Constants and Data Types 593

C H A P T E R 2 6

Ports Reference
Þeld is 0. This Þeld is dependent on the ports device type.
For example, Ethernet framing uses the following values:

fNumChildPorts The number of child ports associated with this port.
fChildPorts An array of the port references for the child ports

associated with this port. When you get a Port Record, this
pointer typically points into the SReserved Þeld at the end
of the record.

fPortName A unique name for this port. The port name is a zero-
terminated string that can have a maximum length as
indicated by the constant kMaxProviderNameSize.

fModuleName The name of the actual STREAMS module that implements
the driver for this port. Open Transport uses this name
internally; applications rarely need to use this name.

fSlotID An 8-byte identiÞer for a portÕs slot that contains a 7-byte
character string plus a zero for termination. This identiÞer
is typically available only for PCI cards.

fResourceInfo A zero-terminated string that describes a shared library
that can handle conÞguration information for the device.
This Þeld contains an identiÞer that allows Open Transport
to access auxiliary information about the driver (Open
Transport creates shared library IDs from this string to be
able to Þnd these extra shared libraries). This string should
either be unique to the driver or should be set to a NULL
string.

fReserved Reserved.

Flag Value Description

kOTFramingEthernet 0x01 The port can use standard
Ethernet framing.

kOTFramingEthernetIPX 0x02 The port can use IPX
Ethernet framing.

kOTFraming8023 0x04 The port can use 802.3
Ethernet framing.

kOTFraming8022 0x08 The port can use 802.2
Ethernet framing.
594 Constants and Data Types

C H A P T E R 2 6

Ports Reference
The Port Reference 26

Several Open Transport port information functions take as a parameter a
pointer to a port reference, which is a 32-bit value that contains a portÕs device
and bus type, its slot number, and information to distinguish among several
devices on a single slot. The actual structure of the port reference is private.

The port reference is deÞned by the OTPortRef data type.

typedef UInt32 OTPortRef;

You can use the OTCreatePortRef function (page 608) to create a port reference
and obtain a pointer to it. The port reference is also a Þeld in the port structure
returned by the port information functions: OTGetIndexedPort (page 600),
OTFindPort (page 601), and OTFindPortByRef (page 602). To extract information
from the port reference, you need to use the functions
OTGetDeviceTypeFromPortRef (page 604), OTGetBusTypeFromPortRef (page 605),
and OTGetSlotFromPortRef (page 606).

This section lists the possible values for the device type and bus type.

IMPORTANT

Do not arbitrarily add new device types. Please contact
Developer Support at Apple Computer, Inc. to obtain a
new, unique device type. ◆

Possible hardware device types are given in the following enumeration:

enum {
kOTNoDeviceType = 0,
kOTADEVDevice = 1,
kOTMDEVDevice = 2,
kOTLocalTalkDevice = 3,
kOTIRTalkDevice = 4,
kOTTokenRingDevice = 5,
kOTISDNDevice = 6,
kOTATMDevice = 7,
kOTSMDSDevice = 8,
kOTSerialDevice = 9,
kOTEthernetDevice = 10,
kOTSLIPDevice = 11,
kOTPPPDevice = 12,
kOTModemDevice = 13,
Constants and Data Types 595

C H A P T E R 2 6

Ports Reference
kOTFastEthernetDevice = 14,
kOTFDDIDevice = 15,
kOTIrDADevice = 16,
kOTATMSNAPDevice = 17,
kOTFibreChannelDevice = 18,
kOTFireWireDevice = 19,
kOTPseudoDevice = 1023,
kOTLastDeviceIndex = 1022,
kOTLastSlotNumber = 255,
kOTLastOtherNumber = 255

};

Constant descriptions

kOTNoDeviceType The portÕs device type is not speciÞed. This value is illegal.
kOTADEVDevice The port is speciÞed as an ‘adev’ device, which is a

pseudodevice used by AppleTalk.
kOTMDEVDevice The port is speciÞed as an ‘mdev’ device, which is a

pseudodevice used by TCP.
kOTLocalTalkDevice

The port is speciÞed as a LocalTalk device.
kOTIRTalkDevice The port is speciÞed as an IRTalk device.
kOTTokenRingDevice

The port is speciÞed as a token ring device.
kOTISDNDevice The port is speciÞed as an ISDN device.
kOTATMDevice The port is speciÞed as an ATM device.
kOTSMDSDevice The port is speciÞed as a SMDS device.
kOTSerialDevice The port is speciÞed as a serial device.
kOTEthernetDevice

The port is speciÞed as an Ethernet device.
kOTSLIPDevice The port is speciÞed as a SLIP pseudodevice.
kOTPPPDevice The port is speciÞed as a PPP pseudodevice.
kOTModemDevice The port is speciÞed as a modem pseudodevice.
kOTFastEthernetDevice

The port is speciÞed as an 100 MB Ethernet device.
kOTFDDIDevice The port is speciÞed as a FDDI device.
kOTIrDADevice The port is speciÞed as an IrDA Infrared device.
596 Constants and Data Types

C H A P T E R 2 6

Ports Reference
kOTATMSNAPDevice The port is speciÞed as an ATM pseudodevice simulating a
SNAP device.

kOTFibreChannelDevice
The port is speciÞed as a Fibre Channel device.

kOTFireWireDevice The port is speciÞed as a Firewire device.
kOTPseudoDevice The port is designated as a pseudodevice.
kOTLastDeviceIndex

The maximum device types that a port can use.
kOTLastSlotNumber

The highest physical slot number a port can use. See
ÒOTCreatePortRefÓ (page 608) for more information.

kOTLastOtherNumber
The maximum number of ports a single slot can support.
See ÒOTCreatePortRefÓ (page 608) for more information.

Possible bus types are described inÒBus Type ConstantsÓ (page 590).

The Client List Structure 26

When you issue a yield port request with the OTYieldPortRequest
functionÒOTYieldPortRequestÓ (page 611), the buffer parameter points to a
client list structure that identiÞes the clients that denied the request.

The client list structure is deÞned by the OTClientList data type.

struct OTClientList
{

size_t fNumClients;
UInt8 fBuffer[4];

};
typedef struct OTClientList OTClientList;

Field descriptions
fNumClients The number of clients in the fBuffer array, normally 1.
fBuffer An array of packed Pascal strings enumerating the name

of each client that rejected the requestÑthat is, the names
under which the clients registered themselves as an Open
Transport clients.
Constants and Data Types 597

C H A P T E R 2 6

Ports Reference
The Port Close Structure 26

When you are using a port that another client wishes to use, the other client can
use the OTYieldPortRequest function(page 611) to ask you to yield the port. If
you are registered as a client of Open Transport, you receive a
kOTYieldPortRequest event, whose cookie parameter is a pointer to a port close
structure. You can use this structure to deny or accept the yield request.

The port close structure is deÞned by the OTPortCloseStruct data type.

struct OTPortCloseStruct
{
OTPortRef fPortRef;
ProviderRef fTheProvider;
OSStatus fDenyReason;
};
typedef struct OTPortCloseStruct OTPortCloseStruct;

Field descriptions
fPortRef The port requested to be closed.
fTheProvider The provider that is currently using the port.
fDenyReason A value that you can leave untouched to accept the yield

request. To deny the request, change this value to a
negative error code corresponding to the reason for your
denial (normally you use the kOTUserRequestedErr error).

Currently, this callback is only used for serial ports, but it is applicable to any
hardware device that cannot share a port with multiple clients. You should
check the kOTCanYieldPort bit in the port structureÕs fInfoFlags Þeld to see
whether the port supports yielding.

If the provider is passively listening (that is, bound with a queue length (qlen)
greater than 0) and you are willing to yield, you need do nothing. If, however,
you are actively connected and you are willing to yield the port, you must
issue a synchronous OTSndDisconnect callin order to let the port go.
598 Constants and Data Types

C H A P T E R 2 6

Ports Reference
Functions 26

This section describes the functions you use to get information about ports, to
obtain the use of ports from other owners, and to register as an Open Transport
client.

Getting Information About Ports 26

Open Transport provides several functions that obtain information about ports
available to your system.

OTGetProviderPortRef 26

IdentiÞes the port associated with a given provider.

C INTERFACE

OTPortRef OTGetProviderPortRef(ProviderRef ref);

C++ INTERFACE

OTPortRef TProvider::GetOTPortRef();

PARAMETERS

ref The provider for which you wish to obtain the port.

function result See Discussion.

DISCUSSION

The OTGetProviderPortRef function returns the port reference for the provider
identiÞed by the ref parameter. If the function returns kOTInvalidPortRef, then
Functions 599

C H A P T E R 2 6

Ports Reference
either no port was associated with this provider or there were multiple
associated ports and Open Transport did not know which to return.

OTGetIndexedPort 26

Iterates through the ports available on your computer.

C INTERFACE

Boolean OTGetIndexedPort(OTPortRecord* record,
size_t index);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

record A pointer to a port structure (page 592) that contains, on return,
information about a speciÞc port on your computer.

index An index number.

function result See Discussion.

DISCUSSION

The OTGetIndexedPort function returns information about the ports available on
your local system. To iterate through all the ports on your computer, call the
function repeatedly, incrementing the index parameter each time (starting with
0) until the function returns false. Each time the function returns true, it Þlls in
the port structure that you provide with information about a speciÞc port..

You must allocate the port structure; the function Þlls this structure with
information about the port indicated by the index parameter. If the function
returns false, the contents of the structure are not signiÞcant.
600 Functions

C H A P T E R 2 6

Ports Reference
SEE ALSO

.

OTFindPort 26

Obtains information about a port that corresponds to a given port name.

C INTERFACE

Boolean OTFindPort (OTPortRecord* record,
const char* portName);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

record A pointer to a port structure (page 592) that contains, on return,
information about the port you speciÞed with the portName
parameter.

portName The name of the port about which you want information.

function result See Discussion.

DISCUSSION

The OTFindPort function returns information about a port that corresponds to a
given port name. Each port in a system has a unique port name, which you can
obtain the OTFindPortByRef function or the OTGetIndexedPort function.

You must allocate the port structure; the function Þlls this structure with
information about the port indicated by the portName parameter. If the function
returns false, the named port does not exist and the contents of the structure
are not signiÞcant.
Functions 601

C H A P T E R 2 6

Ports Reference
You can use the OTGetIndexedPort function (page 600) to get port information
by iterating through all available ports.

SEE ALSO

ÒObtaining Port InformationÓ (page 195)

OTFindPortByRef 26

Obtains information about a port identiÞed by its port reference.

C INTERFACE

Boolean OTFindPortByRef(OTPortRecord* record,
OTPortRef ref);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

record A pointer to a port structure (page 592) that contains, on return,
information about the port you speciÞed with the ref parameter.

ref The port reference of the port about which you want
information.

function result See Discussion.

DISCUSSION

The OTFindPortByRef function returns information about a port identiÞed by its
port reference. A port reference is a 32-bit value that describes a portÕs
hardware characteristics: its bus and device type, its physical slot number, and,
where applicable, its multiport identiÞer.
602 Functions

C H A P T E R 2 6

Ports Reference
You must allocate the port structure; the function Þlls this structure with
information about the port indicated by the ref parameter.

If the function returns false, no port exists with the given port reference and
the contents of the structure are not signiÞcant.

SEE ALSO

ÒObtaining Port InformationÓ (page 195).

The OTCreatePortRef function (page 608).

OTGetUserPortNameFromPortRef 26

Returns a user-friendly name for a port.

C INTERFACE

void OTGetUserPortNameFromPortRef(OTPortRef ref,
Str255 friendlyName);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

ref A port reference

friendlyName A string specifying the portÕs name.

DISCUSSION

For sample code showing the use of this function, see

SEE ALSO

ÒObtaining Port InformationÓ (page 195)
Functions 603

C H A P T E R 2 6

Ports Reference
The OTCreatePortRef function (page 608).

OTGetPortIconFromPortRef 26

Returns the location for the icon family representing the port.

C INTERFACE

Boolean OTGetPortIconFromPortRef(OTPortRef ref,
OTResourceLocator* iconLocation);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

ref A port reference for the port whose icon you want to locate.

iconLocation The location of the portÕs icon if it has one

SEE ALSO

ÒObtaining Port InformationÓ (page 195)

The OTCreatePortRef function (page 608).

OTGetDeviceTypeFromPortRef 26

Extracts the value of the hardware device type from a port reference.

C INTERFACE

UInt16 OTGetDeviceTypeFromPortRef(OTPortRef ref);
604 Functions

C H A P T E R 2 6

Ports Reference
C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

ref The port reference from which you wish to extract the
device type.

function result Possible return values are listed in ÒThe Port ReferenceÓ
(page 595).

DISCUSSION

The OTGetDeviceTypeFromPortRef function extracts the device type value from a
port reference. You can obtain such a port reference using the OTGetIndexedPort
function (page 600) to access the port registry.

You can also use the OTGetBusTypeFromPortRef function (page 605) and the
OTGetSlotFromPortRef function (page 606) to get the bus type and slot number
information from the port reference.

SEE ALSO

ÒObtaining Port InformationÓ (page 195).

The OTCreatePortRef function (page 608).

OTGetBusTypeFromPortRef 26

Extracts the value of the bus type from a port reference.

C INTERFACE

UInt16 OTGetBusTypeFromPortRef(OTPortRef ref);

C++ INTERFACE

None. C++ applications use the C interface to this function.
Functions 605

C H A P T E R 2 6

Ports Reference
PARAMETERS

ref The port reference from which you wish to extract the bus type.

function result Possible return values are listed in ÒThe Port ReferenceÓ
(page 595)

DISCUSSION

The OTGetBusTypeFromPortRef function extracts the bus type value from a port
reference. You can obtain such a port reference using the OTGetIndexedPort
function (page 600) to access the port registry.

You can use the OTGetDeviceTypeFromPortRef function (page 604) and the
OTGetSlotFromPortRef function (page 606) to get device type and slot number
information from the port reference.

SEE ALSO

The OTCreatePortRef function (page 608).

ÒObtaining Port InformationÓ (page 195).

OTGetSlotFromPortRef 26

Extracts slot information from a port reference.

C INTERFACE

UInt16 OTGetSlotFromPortRef(OTPortRef ref,
UInt16* other);

C++ INTERFACE

None. C++ applications use the C interface to this function.
606 Functions

C H A P T E R 2 6

Ports Reference
PARAMETERS

ref The port reference (page 595) from which you wish to extract
the slot number.

other A pointer to a 16-bit integer you provide into which the
function places a value that distinguishes between ports when
more than one hardware port is connected to a given slot (also
called the multi-port identiÞer). Specify NULL for this parameter
if you do not want the function to return this information.

function result Possible return values are listed in ÒThe Port ReferenceÓ
(page 595).

DISCUSSION

The OTGetSlotFromPortRef function extracts slot information from a port
reference. You can obtain such a port reference using the OTGetIndexedPort
function (page 600) to access the port registry.

You can use the OTGetDeviceTypeFromPortRef function (page 604) and the
OTGetBusTypeFromPortRef function (page 605) to get device type and bus type
information from the port reference.

SPECIAL CONSIDERATIONS

In Open Transport port references, the slot numbers are physical slot numbers;
that is, they are the slot numbers returned by the Slot Manager and not the
slots seen in various network conÞguration applications. Physical slot numbers
depend on the type of card installed. For example, NuBus cards number their
slots 9Ð13, which appear in the AppleTalk or TCP control panels as slots 1Ð5.

SEE ALSO

ÒObtaining Port InformationÓ (page 195).

The OTCreatePortRef function (page 608).

Registering New Ports 26

This section describes the functions used to register ports, create a port
reference, and unregister ports.
Functions 607

C H A P T E R 2 6

Ports Reference
OTRegisterPort 26

Register a port.

C INTERFACE

OSStatus OTRegisterPort(OTPortRecord* portInfo,
void* ref);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

portInfo A pointer to the port record for the port you want to register.

ref A context pointer for your use.

function result See Appendix B.

DISCUSSION

The function registers the port and returns the name it is registered under in
the fPortName Þeld of the port record.

Use the OTUnregisterPort function to unregister the port.

OTCreatePortRef 26

Creates a port reference that describes a unique port.
608 Functions

C H A P T E R 2 6

Ports Reference
C INTERFACE

OTPortRef OTCreatePortRef(UInt8 busType,
 UInt16 devType,
 UInt16 slot,
 UInt16 other);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

busType The type of bus to which the hardware port is connected; for
example, a NuBus or PCI bus. See ÒThe Port
ReferenceÓ(page 589) for possible values for this parameter.

devType The type of hardware device connected to the port, such as
LocalTalk or Ethernet. See ÒThe Port ReferenceÓ(page 589) for
possible values for this parameter.

slot The number of the physical slot containing the device.

other The portÕs multiport identiÞerÑthat is, a numeric value that
distinguishes between ports when more than one hardware
port is connected to a given slot.

function result A 32-bit port reference value.

DISCUSSION

The OTCreatePortRef function creates a port reference structure, which is a
32-bit value that describes a port: its device and bus type, its physical slot
number, and, where applicable, its multiport identiÞer. Once you have created
a port reference, you can use the OTFindPortByRef function to Þnd a speciÞc
port with that particular set of characteristics.

To create a port reference, you use the OTCreatePortRef function. You must
know all the portÕs hardware characteristics: its device and bus type, its slot
number, and its multiport identiÞer (if it has one). You cannot use wildcards to
Þll in any element you donÕt know, although you can use a device type of 0 to
allow matches on every kind of device type.To create a port reference for a
Functions 609

C H A P T E R 2 6

Ports Reference
pseudodevice, use 0 as the value for the bus type, slot number, and multiport
identiÞer, and use the constant kOTPseudoDevice for the device type.

Open Transport has predeÞned variants of the OTCreatePortRef function for the
most commonly used hardware devices, such as the NuBus, PCI, and PCCard
devices. Three variants are listed here:

#define OTCreateNuBusPortRef(devType, slot, other)\
OTCreatePortRef(kOTNuBus, devType, slot, other)

#define OTCreatePCIPortRef(devType, slot, other)\
OTCreatePortRef(kOTPCIBus, devType, slot, other)

#define OTCreatePCCard PortRef(devType, slot, other)\
OTCreatePortRef(kOTPCCardBus, devType, slot, other)

Once you have identiÞed the port structure you want, you can access the
information in its port reference, by using the OTGetDeviceTypeFromPortRef
function (page 604),the OTGetBusTypeFromPortRef function (page 605), and the
OTGetSlotFromPortRef function (page 606).

SPECIAL CONSIDERATIONS

In Open Transport port references the slot numbers are physical slot numbers;
that is, they are the slot numbers returned by the Slot Manager and not the
slots seen in various network conÞguration applications. Physical slot numbers
depend on the type of card installed. For example, NuBus cards number their
slots 9Ð13, which appear in the AppleTalk or TCP control panels as slots 1Ð5.

SEE ALSO

ÒObtaining Port InformationÓ (page 195).

OTUnregisterPort 26

Unregisters a port.
610 Functions

C H A P T E R 2 6

Ports Reference
C INTERFACE

OSStatus OTUnregisterPort(const char* portName,
void**);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

portName The name of the port you want to unregister.

function result See Appendix B.

DISCUSSION

If you re-register the port, it might get a different name. Use OTChangePortState
function if that is not desirable. Because a single OTPortRef can be registered
with several names, Open Transport needs to use the portName rather than the
OTPortRef to disambiguate.

SEE ALSO

The OTRegisterPort function (page 608).

Requesting a Port to Yield Ownership 26

Open Transport allows you to request that the current owner of a port yield the
use of the port to you.

OTYieldPortRequest 26

Requests that a port be yielded.
Functions 611

C H A P T E R 2 6

Ports Reference
C INTERFACE

OSStatus OTYieldPortRequest(ProviderRef ref, OTPortRef port,
OTClientList* buffer, size_t bufferSize);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

ref The provider reference for the provider that wants to use the
port. This provider (normally an endpoint) must be open on the
requested port. You cannot use this provider while the yield
request is being processed.

port The port reference for the port you wish to use.

buffer If the request is denied, on output this contains a pointer to a
client list structure, giving the names of all clients that rejected
the request (normally only one). You can use a value of NULL to
force the client to yield the port; this only works if the provider
is passively listening on the port. Use a value of (void*)-1L to
cancel the yield request.

bufferSize The size of the buffer, including the fNumClients Þeld in the
client list structure (page 597).

function result See Discussion.

DISCUSSION

The OTYieldPortRequest function requests the current owner of a port
(normally a serial port or modem) to yield ownership of it.

Port yielding works in one of two ways. You get the Þrst mechanism by calling
OTYieldPortRequest, passing a value for buffer that points to a client list buffer.
Open Transport then looks through all the clients on the system. If the client
has any providers that use the port in question, Open Transport sends the
client a kOTClosePortRequest event. The client either handles that request (by
closing the provider), or returns an error that indicates why the request was
denied. Any client that doesnÕt have a notiÞer (as set by OTRegisterAsClient) is
assumed to allow the request.
612 Functions

C H A P T E R 2 6

Ports Reference
If any client denies the request, the OTYieldPortRequest function fails. The
function could also fail because there is not enough memory (kENOMEMErr), the
port does not support yielding (kOTNotSupportedErr), the provider does not use
the port, or the port does not exist (kOTBadReferenceErr), or because the client
currently using the port is already connected (kENOENTErr). Otherwise, Open
Transport attempts to get the port for you from the driver. If it succeeds, the
port is ready for you to use. The port remains available for a driver-speciÞed
amount of time (typically about 10 seconds). If you donÕt bind or connect the
port in that time, the port reverts back to its previous owner. If you do bind or
connect to the port before the timer expires, you now own the port. When you
unbind or disconnect, the port reverts back to its previous owner.

The second mechanism for port yielding comes into play when you set buffer
to nil. In that case, Open Transport bypasses the check described above, and
immediately attempts to grab the port. The call results depend solely on
whether that succeeds or fails.

After getting a port, you have a number of choices:

1. You can open it, as described above.

2. You can decide not to open it, and ignore it. After a while, the driver will
time out, and the port will revert back to the previous owner.

3. You can decide not to open it, and be a good citizen by switching the port
back to the previous owner immediately. You do this by calling the function
OTYieldPortRequest and passing -1 for the buffer parameter.

SPECIAL CONSIDERATIONS

On PowerPC computers, the OTYieldPortRequest function(page 611) is available
only to PowerPC-native clients; there is no mixed-mode glue for the function,
so you must build a fat application in order to use it.

You can only use this function at system task time.

SEE ALSO

The OTRegisterAsClient function (page 614).
Functions 613

C H A P T E R 2 6

Ports Reference
Registering as a Client 26

Open Transport provides functions that you can use to register or unregister
your application as a client of Open Transport.

OTRegisterAsClient 26

Registers your application as a client of Open Transport and gives Open
Transport a notiÞer function it can use to send you events.

C INTERFACE

OSStatus OTRegisterAsClient(OTClientName name,
 OTNotifyProcPtr proc)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

name A pointer to the user-readable name you want Open Transport
to use for your application.

proc A pointer to the notiÞer function you want Open Transport to
use for sending events to your application.

function result An error code. See Appendix B (page 785)for more information.

DISCUSSION

The OTRegisterAsClient function registers your application as an Open
Transport client. This function provides Open Transport with a pointer to your
notiÞer function that it can call when port transition events occur. It also
provides a user-readable name Open Transport can use when it delivers
messages about these events to the user. This function is optional; if you do not
want to receive these events, you do not have to call this function.
614 Functions

C H A P T E R 2 6

Ports Reference
To unregister yourself as an Open Transport client, use the
OTUnregisterAsClient function (page 615).

SEE ALSO

ÒRegistering as an Open Transport ClientÓ (page 198).

OTUnregisterAsClient 26

Removes your application as a client of Open Transport.

C INTERFACE

OSStatus OTUnregisterAsClient(void)

PARAMETERS

function result An error code. See Appendix B(page 785) for more information.

C++ INTERFACE

None. C++ applications use the C interface to this function.

SPECIAL CONSIDERATIONS

If you do not call the OTUnregisterAsClient function, the CloseOpenTransport
function calls it for you automatically when it executes.

SEE ALSO

ÒRegistering as an Open Transport ClientÓ (page 198).

The OTRegisterAsClient function (page 614).
Functions 615

C H A P T E R 2 6

Ports Reference
616 Functions

C H A P T E R 2 7

Contents

Contents
Figure 27-0
Listing 27-0
Table 27-0
27 Utilities Reference
Constants and Data Types 618
The Timestamp Data Type 618
The Lock Data Type 618
The Linked List Structure 619
The LIFO List Structure 619
The FIFO List Structure 619
The Get Link Object Macro 620
The Application-DeÞned List Search Function Prototype 621

Functions 621
Allocating and Freeing Memory 621

OTAllocMem 622
OTFreeMem 622

Memory Manipulation Utility Functions 623
OTMemcpy 623
OTMemmove 624
OTMemcmp 625
OTMemzero 626
OTMemset 627

Idling and Delaying Processing 627
OTIdle 628
OTDelay 629

String Manipulation Utility Functions 629
OTStrLength 630
OTStrCopy 630
OTStrCat 631
OTStrEqual 631

Timestamp Utility Functions 632
617

C H A P T E R 2 7
OTGetTimeStamp 632
OTSubtractTimeStamps 633
OTTimeStampInMilliseconds 634
OTTimeStampInMicroseconds 635
OTElapsedMilliseconds 636
OTElapsedMicroseconds 637
OTGetClockTimeInSecs 638

OTLIFO List Utility Functions 638
OTLIFOEnqueue 638
OTLIFODequeue 639
OTLIFOStealList 640
OTReverseList 641

OTFIFO List Utility Functions 642
OTAddFirst 642
OTAddLast 643
OTRemoveFirst 644
OTRemoveLast 644
OTGetFirst 645
OTGetLast 646
OTIsInList 647
OTRemoveLink 648
OTFindLink 649
OTFindAndRemoveLink 650
OTGetIndexedLink 651

Adding and Removing aList Element 652
OTEnqueue 652
OTDequeue 653

Atomic Operations 654
OTAtomicSetBit 654
OTAtomicClearBit 655
OTAtomicTestBit 656
OTCompareAndSwapPtr 656
OTCompareAndSwap32 658
OTCompareAndSwap16 659
OTCompareAndSwap8 660
OTAtomicAdd32 661
OTAtomicAdd16 662
OTAtomicAdd8 663
618 Contents

C H A P T E R 2 7
Locking Functions 664
OTAcquireLock 664
OTClearLock 665

Application-DeÞned Functions 666
MyProcessCallbackFunction 666
MyListSearchFunction 666
Contents 619

C H A P T E R 2 7
620 Contents

C H A P T E R 2 7
Utilities Reference 27

This chapter describes Open Transport utility functions and the data structures
used by these functions. For information about the use of these functions,
please see ÒUtilitiesÓ (page 203).

Constants and Data Types 27

This section describes the data types and macros you need to use Open
Transport utility functions.

The Timestamp Data Type 27

The timestamp data type is a 64-bit value that contains an Open Transport
timestamp. The timestamp has unspeciÞed units; you must use one of the
timestamp manipulation functions described in ÒTimestamp Utility FunctionsÓ
(page 635) to convert the timestamp to known quantities. The timestamp data
type is deÞned by the OTTimeStamp data type.

typedef UnsignedWide OTTimeStamp;

▲ W A R N I N G

The OTTimeStamp value is different in 68000-code and
PowerPC code, so you cannot mix timestamp values
obtained from emulated code with values obtained from
PowerPC native code. ▲

The Lock Data Type 27

The lock data type deÞnes a value that is used by the OTClearLock
function(page 668) and the OTAcquireLock function(page 667) to ensure that
Open Transport does not recursively reenter locked areas of code. The lock data
type is deÞned by the OTLock data type(page 621).

typedef UInt8 OTLock;
Constants and Data Types 621

C H A P T E R 2 7

Utilities Reference
The Linked List Structure 27

All of Open TransportÕs list utilities use the linked list structure, which may be
embedded in any data structure that you want to use in an Open Transport list.
A linked list structure is deÞned by the OTLink data type.

struct OTLink {
OTLink* fNext;

};
typedef struct OTLink OTLink;

Field descriptions
fNext A pointer to the next entry in the linked list.

The LIFO List Structure 27

Open Transport LIFO (last-in, Þrst-out) lists use the LIFO list structure. You
must initialize this structure by setting the structureÕs fHead Þeld to NULL before
using the LIFO list. Most Open Transport LIFO list operations are atomic.

The LIFO list structure is deÞned by the OTLIFO data type.

struct OTLIFO {
OTLink* fHead;

};
typedef struct OTLIFO OTLIFO;

Field descriptions
fHead A pointer to the Þrst entry in the linked list. Set this to nil

to initialize the structure before using it.

The FIFO List Structure 27

Open Transport FIFO (Þrst-in, Þrst-out) lists use the FIFO list structure. You
must initialize this structure by setting the structureÕs fHead Þeld to NULL before
using the LIFO list. The FIFO list structure is deÞned by the OTList data type.
622 Constants and Data Types

C H A P T E R 2 7

Utilities Reference
struct OTList {
OTLink* fHead;

};
typedef struct OTList OTList;

Field descriptions
fHead A pointer to the Þrst entry in the linked list. Set this to NULL

to initialize the structure before using it.

▲ W A R N I N G

None of the functions that handle a FIFO list structure are
atomic. ▲

The Get Link Object Macro 27

Open Transport deÞnes a macro (OTGetLinkObject) that you can use to easily
cast back to the original object from a pointer to
either a LIFO or a FIFO linked list structure.

DataType* OTGetLinkObject(OTLink* linkPtr,
DataType structName,
NameOfLinkPtrField fieldName)

#define OTGetLinkObject(link, struc, field)\
((struc*)((char*)(link) - offsetof(struc, field)))

PARAMETERS

linkPtr A pointer to the OTLink structure from which you wish to cast
back.

structName The name of the structure containing the OTLink structure.

fieldName The OTLink Þeld in the above structure.

function result The macro results in a pointer to the appropriate data type by
offsetting the linkPtr appropriately and casting the result.
Constants and Data Types 623

C H A P T E R 2 7

Utilities Reference
The Application-DeÞned List Search Function Prototype 27

In order to use the OTFindLink function(page 652) and the OTFindAndRemoveLink
function(page 653), you must provide a user-deÞned function that is used
when searching a list for a speciÞc entry. The prototype for this function is as
follows:

typedef Boolean (*OTListSearchProcPtr)
(const void* ref,
OTLink* linkToCheck);

For information about creating your own list search function, see
MyListSearchFunction(page 669).

DISCUSSION

For 68000 code, this routine uses MPW C calling conventions. You should
check your development environment documentation for information about
deÞning a function with MPW C calling conventions. This is not an issue for
PowerPC code.

Functions 27

This section describes the functions you use

■ to allocate, free, and manipulate memory

■ to manipulate strings

■ to measure time

■ to use lists

■ to use atomic operations

Allocating and Freeing Memory 27

Open Transport provides functions to allow you to allocate memory from
the Open Transport memory pool.
624 Functions

C H A P T E R 2 7

Utilities Reference
OTAllocMem 27

Allocates memory from the Open Transport memory pool.

C INTERFACE

void* OTAllocMem(size_t nbytes)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

nbytes The amount (in bytes) of memory to allocate.

DISCUSSION

The OTAllocMem function allocates raw memory from a pool that Open
Transport creates for your application. This function returns a pointer to the
allocated memory; pass the same pointer to the OTFreeMem function to deallocate
this memory.

SPECIAL CONSIDERATIONS

You can call this routine at both hardware interrupt level and from a deferred
task. You need to call the OTEnterInterrupt function before you make this call
from a hardware interrupt.

SEE ALSO

The OTFreeMem function (page 625).

OTFreeMem 27

Frees memory allocated from the Open Transport memory pool.
Functions 625

C H A P T E R 2 7

Utilities Reference
C INTERFACE

void OTFreeMem(void* arg)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

arg A pointer to the memory to free. It must have been allocated by
the OTAllocMem function.

DISCUSSION

The OTFreeMem function deallocates memory that you have allocated using the
OTAllocMem function.

SPECIAL CONSIDERATIONS

You can call this routine at both hardware interrupt level and from a deferred
task. You need to call the OTEnterInterrupt function before you make this call
from a hardware interrupt.

SEE ALSO

The OTAllocMem function (page 625).

Memory Manipulation Utility Functions 27

Open Transport provides the following routines to allow you to copy memory,
to compare the contents of memory, and to set memory.

OTMemcpy 27

Copies data from one memory location to another memory location.
626 Functions

C H A P T E R 2 7

Utilities Reference
C INTERFACE

void OTMemcpy (void* dest,
const void* src,
size_t nBytes)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

dest A pointer to the location into which you are copying memory.

src A pointer to the location from which you are copying memory.

nBytes The number of bytes of memory you want to copy.

DISCUSSION

You can use this function for all memory operations except where

■ the source or destination locations hold uncached memory. In these cases,
the Mac OS function BlockMoveDataUncached is much faster.

■ the source and destination areas overlap.

Use the OTMemmove function (page 627) to copy data where the source and
destination areas overlap. Otherwise use OTMemcpy because it is faster.

To compare the contents of two memory areas, use the OTMemcmp function
(page 628).

OTMemmove 27

Copies data from one memory location to another memory location.
Functions 627

C H A P T E R 2 7

Utilities Reference
C INTERFACE

void OTMemmove (void* dest,
const void* src,
size_t nBytes)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

dest A pointer to the location into which you are copying data.

src A pointer to the location from which you are copying data.

nBytes The number of bytes of data you want to copy.

DISCUSSION

You can use this function for all memory operations except where the source or
destination locations hold uncached memory. In these cases, the Mac OS
function BlockMoveDataUncached is much faster.

To move memory where the source and destination areas do not overlap, use
the OTMemcpy function (page 626).

OTMemcmp 27

Compares the contents of two memory locations.

C INTERFACE

Boolean OTMemcmp (constant void* mem1,
const void* mem2,
size_t nBytes)
628 Functions

C H A P T E R 2 7

Utilities Reference
C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

mem1 A pointer to a memory location whose contents you are
comparing with those at the location indicated by the mem2
parameter.

mem2 A pointer to the memory location whose contents you are
comparing with those at the location indicated by the mem1
parameter.

nBytes The number of bytes of memory you want to compare.

function result The function returns a value of true if the indicated amount of
memory at the two locations is the same.

OTMemzero 27

Initializes the speciÞed memory range to 0.

C INTERFACE

void OTMemzero (void* dest,
size_t nBytes)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

dest A pointer to a memory location whose contents you are zeroing
out.

nBytes The number of bytes of memory you want to zero out.
Functions 629

C H A P T E R 2 7

Utilities Reference
SEE ALSO

Use the OTMemset function (page 630) to set memory to a value other than 0.

OTMemset 27

Sets the speciÞed memory range to a speciÞc value.

C INTERFACE

void OTMemset (void* dest,
uchar_p toSet,
size_t nBytes)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

dest A pointer to the memory location whose value you are setting.

toSet The value you are setting the memory to.

nBytes The number of bytes of memory you want to set.

DISCUSSION

Use the OTMemzero function (page 629) to set a speciÞed memory range to 0.

Idling and Delaying Processing 27

Open Transport provides the following idle and delay processing functions.
630 Functions

C H A P T E R 2 7

Utilities Reference
OTIdle 27

Provides idle time to Open Transport.

C INTERFACE

void OTIdle(void)

C++ INTERFACE

None. C++ applications use the C interface to this function.

DISCUSSION

You can call the OTIdle function while you are waiting for asynchronous
provider operations to complete. It is not necessary for the correct operation of
Open Transport to call this function, it is provided for compatibility with
existing programs that use an idling function.

SPECIAL CONSIDERATIONS

You cannot call the OTIdle function at primary interrupt time or at deferred
task time. This function does not call the SystemTask, WaitNextEvent, or
GetNextEvent functions.

IMPORTANT

You should never call the OTIdle function in production
code on a Macintosh computer. ▲
Functions 631

C H A P T E R 2 7

Utilities Reference
OTDelay 27

Delays processing for a speciÞed number of seconds.

C INTERFACE

void OTDelay(UInt32 seconds)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

seconds The number of seconds to delay.

DISCUSSION

The OTDelay function delays processing for the number of seconds speciÞed in
the seconds parameter. While the delay is occurring, OTDelay continuously calls
the OTIdle function(page 631).

You can only call the OTDelay function from within an application at system
task time. This function is only provided for compatibility with the UNIX sleep
function to assist with portability of UNIX code.

IMPORTANT

You should never call the OTIdle function in production
code on a Macintosh computer. ▲

String Manipulation Utility Functions 27

Open Transport provides functions that you can use to Þnd out the length of a
string, to copy a string, to concatenate two strings, and to determine whether
two strings are the same.
632 Functions

C H A P T E R 2 7

Utilities Reference
OTStrLength 27

Returns the length of a C string.

C INTERFACE

size_t OTStrLength (const char* string)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

string A zero-terminated string whose length you want to obtain.

function result The length in bytes of the string.

OTStrCopy 27

Copies a C string.

C INTERFACE

void OTStrCopy (char* dest,
const char* src)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

dest The memory location to which you want to copy the string
indicated by the src parameter.
Functions 633

C H A P T E R 2 7

Utilities Reference
src A zero-terminated string that you want to copy.

SEE ALSO

The OTStrCat function (page 634).

OTStrCat 27

Concatenates two C strings.

C INTERFACE

void OTStrCat (char* dest,
const char* src)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

dest A zero-terminated string to which you want to concatenate the
string speciÞed by the src parameter.

src A zero-terminated string that you want to concatenate to the
string speciÞed by the dest parameter.

OTStrEqual 27

Determines whether two C strings are the same.
634 Functions

C H A P T E R 2 7

Utilities Reference
C INTERFACE

Boolean OTStrEqual (const char* str1,
const char* str2)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

str1 A zero-terminated string that you want to compare with the
string indicated by the str2 parameter.

str2 A zero-terminated string that you want to compare with the
string indicated by the str1 parameter.

function result The function returns a value of true when the two strings are
exactly the same.

Timestamp Utility Functions 27

Open Transport provides the following functions to allow you to manipulate
timestamp values.

▲ W A R N I N G

The OTTimeStamp value is different in 68000 code and
PowerPC code, so you cannot mix timestamp values
obtained from emulated code with values obtained from
PowerPC native code. ▲

OTGetTimeStamp 27

Obtains the current timestamp.
Functions 635

C H A P T E R 2 7

Utilities Reference
C INTERFACE

void OTGetTimeStamp (OTTimeStamp* stamp)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

stamp A pointer to the location where the function stores the current
timestamp.

DISCUSSION

Use the OTTimeStampInMilliseconds function (page 637) to convert a timestamp
value to milliseconds.

Use the OTTimeStampInMicroseconds function (page 638) to convert a timestamp
value to microseconds.

Use the OTSubtractTimeStamps function (page 636) to obtain the difference
between two timestamp values.

OTSubtractTimeStamps 27

Subtracts one timestamp value from another.

C INTERFACE

OTTimeStamp* OTSubtractTimeStamps(
OTTimeStamp* result,
OTTimeStamp* start,
OTTimeStamp* end)

C++ INTERFACE

None. C++ applications use the C interface to this function.
636 Functions

C H A P T E R 2 7

Utilities Reference
PARAMETERS

result On output, a pointer to the timestamp value that results from
subtracting the value speciÞed by the start parameter from the
value speciÞed by the end parameter.

start A pointer to the timestamp value that you want to subtract.

end A pointer to the timestamp value from which you want to
subtract the value referenced by the start parameter.

function result Returns the result parameter.

DISCUSSION

This function subtracts the timestamp referenced by the start parameter from
the timestamp referenced by the end parameter. The return value is the same as
the parameter result.

Use the OTElapsedMilliseconds function (page 639) to measure elapsed time in
milliseconds.

Use the OTElapsedMicroseconds function (page 640) to measure elapsed time in
microseconds.

OTTimeStampInMilliseconds 27

Converts the difference between two timestamp values into milliseconds.

C INTERFACE

UInt32 OTTimeStampInMilliseconds (OTTimeStamp* delta)

C++ INTERFACE

None. C++ applications use the C interface to this function.
Functions 637

C H A P T E R 2 7

Utilities Reference
PARAMETERS

delta A reference to the value that you want to convert into
milliseconds. You would normally get this value by calling
OTSubtractTimeStamps(page 636).

function result The value speciÞed by the delta parameter, converted into
milliseconds.

DISCUSSION

A delta value of 0xffff ffff indicates that the timestamp value has
overßowed 32 bits of milliseconds.

Use the OTGetTimeStamp function (page 635) to obtain the current timestamp.

Use the OTTimeStampInMicrosecondsFunction (page 638) to convert a timestamp
value to microseconds.

OTTimeStampInMicroseconds 27

Converts the difference between two timestamp values into microseconds.

C INTERFACE

UInt32 OTTimeStampInMicroseconds (OTTimeStamp* delta)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

delta A reference to the value that you want to convert into
microseconds. You would normally get this value by calling
OTSubtractTimeStamps.

function result The number of microseconds obtained after the timestamp
value has been converted.
638 Functions

C H A P T E R 2 7

Utilities Reference
DISCUSSION

A return value of 0xffff ffff indicates that the converted delta value has
overßowed 32 bits of microseconds.

Use the OTGetTimeStamp function (page 635) to obtain the current timestamp.

Use the OTTimeStampInMilliseconds (page 637) to convert a timestamp value to
milliseconds.

OTElapsedMilliseconds 27

Calculates the time elapsed in milliseconds since the time speciÞed by the
startTime parameter.

C INTERFACE

UInt32 OTElapsedMilliseconds (OTTimeStamp* startTime)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

startTime A reference to a timestamp value returned by the
OTGetTimeStamp function; this indicates the start of the elapsed
time interval.

function result The number of milliseconds that have elapsed since the
timestamp speciÞed by the startTime parameter.

DISCUSSION

Returns the number of milliseconds that have elapsed since the OTGetTimeStamp
function was called to get the startTime value.

A return value of 0xffff ffff indicates that the value has overßowed 32 bits of
milliseconds.
Functions 639

C H A P T E R 2 7

Utilities Reference
Use the OTElapsedMicroseconds function (page 640) to measure elapsed time in
microseconds.

Use the OTGetClockTimeInSecs function (page 641) to determine the number of
seconds that have elapsed since system boot time.

OTElapsedMicroseconds 27

Calculates the time elapsed in microseconds since since the time speciÞed by
the startTime parameter.

C INTERFACE

UInt32 OTElapsedMicroseconds (OTTimeStamp* startTime)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

startTime A reference to a timestamp value returned by the
OTGetTimeStamp function; this indicates the start of the elapsed
time interval.

function result The number of microseconds that have elapsed since the
timestamp speciÞed by the startTime parameter.

DISCUSSION

Returns the number of microseconds that have elapsed since the
OTGetTimeStamp function was called to get the startTime value.

A return value of 0xffff ffff indicates that the value has overßowed 32 bits of
microseconds.

Use the OTElapsedMilliseconds function (page 639) to measure elapsed time in
milliseconds.
640 Functions

C H A P T E R 2 7

Utilities Reference
Use the OTGetClockTimeInSecs function (page 641) to determine the number of
seconds that have elapsed since system boot time.

OTGetClockTimeInSecs 27

Returns the number of seconds that have elapsed since system boot time.

C INTERFACE

UInt32 OTGetClockTimeInSecs (void)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

function result Returns the number of seconds since the system was booted.

OTLIFO List Utility Functions 27

Open Transport provides several functions for dealing with an atomic LIFO
(last-in, Þrst-out) list. For code samples illustrating the use of these functions,
see ÒUsing List Management FunctionsÓ (page 204).

OTLIFOEnqueue 27

Places a link at the front of a LIFO list.

C INTERFACE

void OTLIFOEnqueue (OTLIFO* list,
OTLink* link)
Functions 641

C H A P T E R 2 7

Utilities Reference
C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the list structure (page 622) in which the entry
speciÞed by the link parameter is to be placed.

link A pointer to the link (page 622) being placed in the list.

DISCUSSION

This function atomically queues the entry referenced by the link parameter at
the front of the list referenced by the list parameter.

Use the OTLIFODequeue function (page 642) to remove a link from a LIFO list.

OTLIFODequeue 27

Removes the Þrst link in a LIFO list and returns a pointer to it.

C INTERFACE

OTLink* OTLIFODequeue (OTLIFO* list)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the LIFO list (page 622) from which you want to
remove the link.

function result A pointer to the link that has be removed.
642 Functions

C H A P T E R 2 7

Utilities Reference
DISCUSSION

This function atomically removes the Þrst link in the speciÞed LIFO list and
returns a pointer to it. If there are no elements in the list, it returns nil.

Use the OTLIFOStealList function (page 643) to remove all links from a LIFO
list.

OTLIFOStealList 27

Removes all links in a LIFO list and returns a pointer to the Þrst link in the list.

C INTERFACE

OTLink* OTLIFOStealList (OTLIFO* list)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the LIFO list (page 622) from which you want to
remove all linked entries.

function result A pointer to the Þrst link in the list.

DISCUSSION

This function atomically removes all of the elements from the specified LIFO list and re-
turns a pointer to the first link in the list. You can access the other elements in the list by
referring to the fNext field of the OTLink structures that make up the list.

If the list is empty, it returns nil.
Functions 643

C H A P T E R 2 7

Utilities Reference
OTReverseList 27

Reverses the order in which entries are linked in a list.

C INTERFACE

OTLink* OTReverseList (OTLink* link)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

link A link that points to the linked list (page 622) whose elements
you want to reverse; typically, this is the return value from the
function OTLIFOStealList.

function result A pointer to the Þrst entry in the list referenced by the link
parameter after the listÕs elements have been reordered.

DISCUSSION

This function does not reverse the list atomically. However, it is intended to be
used after using the OTLIFOStealList function, to convert the list produced by
that function into a usable FIFO list. A typical usage would be:

OTLink* link;
OTLink* next;
while ((link = OTLIFOStealList(&myLifo)) != NULL)
{

link = OTReverseList(link);
do
{

MyObject* temp = OTGetLinkObject(link, MyObject, fMyLink);
next = link->fNext;
/* Do some stuff with temp */

} while ((link = next) != NULL);
}
644 Functions

C H A P T E R 2 7

Utilities Reference
This allows a producing task to be placing elements into a LIFO list, while a
consuming task atomically processes them in FIFO order.

If link is nil, OTReverseList returns nil.

OTFIFO List Utility Functions 27

Open Transport provides several functions for dealing with an FIFO (Þrst-in,
Þrst-out) list. None of the FIFO functions are atomic.

OTAddFirst 27

Places a link at the front of a FIFO list.

C INTERFACE

void OTAddFirst (OTList* list,
OTLink* link)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the list structure (page 622) in which the entry
speciÞed by the link parameter is to be placed.

link A pointer to the link (page 622) being placed in the list.

DISCUSSION

This function adds the link referenced by the link parameter to the front of the
FIFO list referenced by the list parameter. Note that because itÕs a singly
linked list, the OTAddFirst function is a lot faster than the OTAddLast function,
expecially for long lists.
Functions 645

C H A P T E R 2 7

Utilities Reference
Use the OTAddLast function (page 646) to place a link at the end of a FIFO list.

Use the OTRemoveFirst function (page 647) to remove the Þrst link in a FIFO list.

Use the OTGetFirst function (page 648) to obtain a pointer to the Þrst link in a
FIFO list.

OTAddLast 27

Adds a link to the end of a FIFO list.

C INTERFACE

void OTAddLast (OTList* list,
OTLink* link)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the linked list (page 622) to which you want to add
the link.

link A pointer to the link (page 622) to be placed in the list.

DISCUSSION

This function adds the link referenced by the link parameter to the end of the
FIFO list referenced by the list parameter.

Use the OTAddFirst function (page 645) to place a link at the front of a FIFO list.

Use the OTRemoveLast function (page 647) to remove the last link in a FIFO list.

Use the OTGetLast function (page 649) to obtain a pointer to the last link in a
FIFO list.
646 Functions

C H A P T E R 2 7

Utilities Reference
OTRemoveFirst 27

Removes the Þrst link in a FIFO list.

C INTERFACE

OTLink* OTRemoveFirst (OTList* list)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the FIFO list (page 622) from which you want to
remove the link.

function result A pointer to the link (page 622) that has been removed.

DISCUSSION

This function removes the Þrst link in the FIFO list referenced by the list
parameter and returns a pointer to it. It returns nil if the list is empty.

Use the OTAddFirst function (page 645) to place a link at the front of a FIFO list.

Use the OTGetFirst function (page 648) to obtain a pointer to the Þrst link in a
FIFO list.

OTRemoveLast 27

Removes the last link in a FIFO list.

C INTERFACE

OTLink* OTRemoveLast(OTList* list)
Functions 647

C H A P T E R 2 7

Utilities Reference
C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the FIFO list (page 622) from which you want to
remove the link.

function result A pointer to the link (page 622) that has been removed.

DISCUSSION

This function removes the last link in the FIFO list referenced by the list
parameter and returns a pointer to it. If the list is empty, it returns nil.

Use the OTAddLast function (page 646) to place a link at the end of a FIFO list.

Use the OTGetLast function (page 649) to obtain a pointer to the last link in a
FIFO list.

OTGetFirst 27

Returns a pointer to the Þrst element in a FIFO list.

C INTERFACE

OTLink* OTGetFirst (OTList* list)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to a FIFO list (page 622).

function result A pointer to the Þrst element in the list.
648 Functions

C H A P T E R 2 7

Utilities Reference
DISCUSSION

This function returns a pointer to the Þrst element in the FIFO list referenced by
the list parameter. It does not remove the element from the list. If the list is
empty, it returns nil.

Use the OTAddFirst function (page 645) to place a link at the front of a FIFO list.

Use the OTRemoveFirst function (page 647) to remove the Þrst link in a FIFO list.

Use the OTGetLast function (page 649) to obtain a pointer to the last link in a
FIFO list.

OTGetLast 27

Returns the last element in a FIFO list.

C INTERFACE

OTLink* OTGetLast (OTList* list)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to a FIFO list (page 622).

function result A pointer to the last element in the list.

DISCUSSION

This function returns a pointer to the last element in the FIFO list referenced by
the list parameter. It does not remove the lement form the list. It returns nil if
the list is empty.

The OTAddLast function (page 646) places a link at the end of a FIFO list.

Use the OTRemoveLast function (page 647) to remove the last link in a FIFO list.
Functions 649

C H A P T E R 2 7

Utilities Reference
Use the OTGetFirst function (page 648) to obtain a pointer to the Þrst element
in a FIFO list.

OTIsInList 27

Determines whether the speciÞed link is in the speciÞed list.

C INTERFACE

Boolean OTIsInList (OTList* list,
OTLink* link)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to a FIFO list (page 622).

link A pointer to a link structure (page 622).

function result Returns true if the speciÞed link is in the FIFO list.

DISCUSSION

The OTIsInList function (page 650) determines whether a link is in a FIFO list.

Use the OTRemoveLink function (page 651) to remove a link from a FIFO list.

Use the OTFindLink function (page 652) or the OTGetIndexedLink function
(page 654) to Þnd a link in a FIFO list.

Use the OTFindAndRemoveLink function (page 653) to Þnd and remove a link in a
FIFO list.
650 Functions

C H A P T E R 2 7

Utilities Reference
OTRemoveLink 27

Removes a link from a FIFO list.

C INTERFACE

Boolean OTRemoveLink(OTList* list,
OTLink* link)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the FIFO list (page 622) from which you want to
remove a link.

link A pointer to the link (page 622) that you want to remove.

function result Returns true if the speciÞed link is in the speciÞed list.

DISCUSSION

This function returns true if the element referenced by the link parameter is in
the list referenced by the list parameter, and it removes the link from the list if
it is.

Use the OTRemoveFirst function (page 647) to remove the Þrst link in a FIFO list.

Use the OTRemoveLast function (page 647) to remove the last link in a FIFO list.

Use the OTIsInList function (page 650) to determine whether a link is in a FIFO
list.

Use the OTFindLink function (page 652) or the OTGetIndexedLink function
(page 654) to Þnd a link in a FIFO list.

Use the OTFindAndRemoveLink function (page 653) to Þnd and remove a link in a
FIFO list.
Functions 651

C H A P T E R 2 7

Utilities Reference
OTFindLink 27

Finds a link in a FIFO list and returns a pointer to it.

C INTERFACE

OTLink* OTFindLink (OTList* list,
OTListSearchProcPtr proc,
const void* refPtr)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the FIFO list (page 622) to be searched.

proc A pointer to the user-deÞned procedure to be used in searching
for the link. See MyListSearchFunction (page 669) for
information on deÞning your own list search function.

refPtr A pointer to a value that is passed to the user-deÞned search
procedure and that is useful to that procedure in Þnding a link.
This value might be the address of a Þeld, the value of a Þeld,
or any other kind of data that would help identify the link
being sought.

function result A pointer to the link being sought. The value of this pointer is
NULL if no link matching your search criteria is found.

DISCUSSION

This function walks the list (from head to tail) speciÞed by the list parameter,
repeatedly calling the search procedure speciÞed by the proc parameter. Each
time it calls the search procedure, it passes it the value speciÞed in the refPtr
parameter. The OTFindLink function returns a pointer to the Þrst OTLink value
for the your proc procedure returned true. A NULL is returned if your proc
procedure never returned true.
652 Functions

C H A P T E R 2 7

Utilities Reference
Use the OTIsInList function (page 650) to determine whether a link is in a FIFO
list.

Use the OTRemoveLink function (page 651) to remove a link from a FIFO list.

Use the OTFindAndRemoveLink function (page 653) to Þnd and remove a link in a
FIFO list.

Use the OTGetIndexedLink function (page 654) to Þnd a link in a FIFO list based
on its index in the list.

OTFindAndRemoveLink 27

Finds a link in a FIFO list and removes it.

C INTERFACE

OTLink* OTFindAndRemoveLink(
OTList* list,
OTListSearchProcPtr proc,
const void* refPtr)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the FIFO list (page 622) to be searched.

proc A pointer to the user-deÞned procedure to be used in searching
for the link. See MyListSearchFunction (page 669) for
information on deÞning your own link.

refPtr A pointer to a value that is passed to the user-deÞned search
procedure and that is useful to that procedure in Þnding a link.
This value might be the address of a Þeld, the value of a Þeld,
or any other kind of data that would help identify the link
being sought.
Functions 653

C H A P T E R 2 7

Utilities Reference
function result A pointer to the link that was found and removed. The value of
this pointer is NULL if no link matching your search criteria is
found.

DISCUSSION

This function behaves exactly the same as the OTFindLink function
(page 652)except that if a link value is found, it is removed from the list.

Use the OTIsInList function (page 650) to determine whether a link is in a FIFO
list.

Use the OTRemoveLink function (page 651) to remove a link from a FIFO list.

Use the OTFindLink function (page 652) to Þnd a link in a FIFO list.

Use the OTGetIndexedLink function (page 654) to Þnd a link in a FIFO list based
on its index in the list.

OTGetIndexedLink 27

Returns a pointer to the link at a speciÞed position in a FIFO list.

C INTERFACE

OTLink* OTGetIndexedLink(
OTList* list,
size_t index)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

list A pointer to the FIFO list (page 622) containing the link.

index The index of the link sought. The head of the list is at index 0.
654 Functions

C H A P T E R 2 7

Utilities Reference
function result A pointer to the link at the position speciÞed by the index
parameter, or NULL if index speciÞes a position that lies beyond
the end of the list.

DISCUSSION

Use the OTIsInList function (page 650) to determine whether a link is in a FIFO
list.

Use the OTFindLink function (page 652) to Þnd a link in a FIFO list.

Adding and Removing aList Element 27

Open Transport provides two functions you can use to add or remove and
element from a list.

OTEnqueue 27

Adds an element to a list.

C INTERFACE

void OTEnqueue(void** listHead,
void* object,
size_t linkOffset);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

listHead A pointer to the list head.

object The address of the object you want to insert in the list.
Functions 655

C H A P T E R 2 7

Utilities Reference
linkOffset The size of the object. That is, the distance in bytes from the
beginning of object to the fNext Þeld in its linked list entry.

DISCUSSION

This function puts the address you pass in the object parameter in the list head
and places the element that was previously referenced in the list head into the
pointer at object plust linkOffset.

OTDequeue 27

Adds an element to a list.

C INTERFACE

void OTDequeue(void** listHead,
size_t linkOffset);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

listHead A pointer to the list head.

linkOffset The size of the object. That is, the distance in bytes from the
beginning of object to the fNext Þeld in its linked list entry.

DISCUSSION

This functionreturns the address of the head object in the list and places the
address of the next element in the list at the list head.
656 Functions

C H A P T E R 2 7

Utilities Reference
Atomic Operations 27

Open Transport supplies a number of atomic functions that you can use in your
code. The primary reason for these routines is that atomic operations minimize
the need for turning interrupts on and off. A secondary reason is to make your
code multiprocessor safe.

OTAtomicSetBit 27

Sets a speciÞed bit in a byte.

C INTERFACE

Boolean OTAtomicSetBit(
UInt8* bytePtr,
size_t bitToSet)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

bytePtr A pointer to the byte containing the bit to be set

bitToSet A value ranging from 0 to 7 that speciÞes the bit to set.

function result Returns the previous state of the bit: true if the bit was set;
false, otherwise.

DISCUSSION

This function atomically sets the bit speciÞed by the bitToSet parameter, in the
byte referenced by the bytePtr parameter. This function returns the previous
state of the bit.

No error checking is done on the bitToSet value you specify, and results are
undeÞned if the value lies outside the range 0 through 7.
Functions 657

C H A P T E R 2 7

Utilities Reference
Use the OTAtomicClearBit function (page 658) to clear a bit value.

Use the OTAtomicTestBit function (page 659) to test a bit value.

OTAtomicClearBit 27

Clears a bit in a byte.

C INTERFACE

Boolean OTAtomicClearBit(
UInt8* bytePtr,
size_t bitToClear)

CC++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

bytePtr A pointer to the byte containing the bit to clear.

bitToClear A value ranging from 0 to 7 that speciÞes the bit to clear.

function result Returns the previous state of the bit: true if the bit was set;
false, otherwise.

DISCUSSION

This function atomically clears the bit speciÞed by the bitToClear parameter, in
the byte referenced by the bytePtr parameter. This function returns the
previous state of the bit.

No error checking is done on the bitToClear value you specify, and results are
undeÞned if the value lies outside the range 0 through 7.

Use the OTAtomicSetBit function (page 657) to set a bit value.

Use the OTAtomicTestBit function (page 659) to test a bit value.
658 Functions

C H A P T E R 2 7

Utilities Reference
OTAtomicTestBit 27

Tests a bit in a byte and returns its current state.

C INTERFACE

Boolean OTAtomicTestBit(
UInt8* bytePtr,
size_t bitToTest)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

bytePtr A pointer to the byte containing the bit to test.

bitToTest A value ranging from 0 to 7 that speciÞes the bit to test.

function result Returns the current state of the bit: true if the bit is set; false,
otherwise.

DISCUSSION

This function atomically tests the bit speciÞed by the bitToTest parameter, in
the byte referenced by the bytePtr parameter.

No error checking is done on the bitToTest value you specify, and results are
undeÞned if the value lies outside the range 0 through 7.

Use the OTAtomicSetBit function (page 657) to set a bit value.

Use the OTAtomicClearBit function (page 658) to clear a bit value.

OTCompareAndSwapPtr 27

Atomically compares the value of a pointer at a memory location and
atomically swaps it with a second pointer value if the compare is successful.
Functions 659

C H A P T E R 2 7

Utilities Reference
C INTERFACE

Boolean OTCompareAndSwapPtr(
void* oldVal,
void* newVal,
void** where)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

oldVal The pointer being compared to the pointer referenced by the
where parameter.

newVal The value to be assigned to the pointer referenced by the where
parameter.

where A reference to the pointer being compared to the pointer
speciÞed by the oldVal parameter.

function result Returns true if the swap is done.

DISCUSSION

This function compares the value speciÞed by the oldVal parameter with the
value referenced by the where parameter. If the two values are the same, the
function replaces the values referenced by the where parameter with the value
speciÞed by the newVal parameter and it returns true. If the two values are not
the same, no swap occurs and the function returns false.

The entire compare and swap operation is atomic.

▲ W A R N I N G

The pointer where must be on a 4-byte boundary, or calling
this function may hang the machine. ▲

Use the OTCompareAndSwap32 function (page 661) to compare two 32-bit values
and set one if they are the same.
660 Functions

C H A P T E R 2 7

Utilities Reference
OTCompareAndSwap32 27

Atomically compares two 32-bit values and changes one of these values if they
are the same.

C INTERFACE

Boolean OTCompareAndSwap32(
UInt32 oldVal,
UInt32 newVal,
UInt32* where)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

oldVal The 32-bit value being compared to the value referenced by the
where parameter.

newVal The value to be assigned to the long-word referenced by the
where parameter.

where A reference to the 32-bit value being compared to that speciÞed
by the oldVal parameter.

function result Returns true if the swap is done.

DISCUSSION

This function compares the value speciÞed by the oldVal parameter with the
value referenced by the where parameter. If the two values are the same, the
function replaces the long-word referenced by the where parameter with the
value speciÞed by the newVal parameter and it returns true. If the two values
are not the same, no swap occurs and the function returns false.

The entire compare and swap operation is atomic.
Functions 661

C H A P T E R 2 7

Utilities Reference
▲ W A R N I N G

The pointer where must be on a 4-byte boundary, or calling
this function may hang the machine. ▲

Use the OTCompareAndSwapPtr function (page 659) to compare two pointer
values and set one if they are the same.

Use the OTCompareAndSwap16 function (page 662) to compare two 16-bit values
and set one if they are the same.

Use the OTCompareAndSwap8 function (page 663) to compare two 8-bit values and
set one if they are the same.

OTCompareAndSwap16 27

Atomically compares two 16-bit values and changes one of these values if they
are the same.

C INTERFACE

Boolean OTCompareAndSwap16(
UInt32 oldVal,
UInt32 newVal,
UInt16* where)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

oldVal The 16-bit value being compared to the value referenced by the
where parameter.

newVal The value to be assigned to the 16-bit value referenced by the
where parameter.

where A reference to the 16-bit value being compared to that speciÞed
by the oldVal parameter.
662 Functions

C H A P T E R 2 7

Utilities Reference
function result Returns true if the swap is done.

DISCUSSION

This function compares the least signiÞcant 16 bits of oldVal with the value
referenced by the where parameter. If the two values are the same, the function
replaces the 16-bit value referenced by the where parameter with the value
speciÞed by the newVal parameter and it returns true. If the two values are not
the same, no swap occurs and the function returns false.

The entire compare and swap operation is atomic.

▲ W A R N I N G

The pointer where must be at an address where the second
byte of the 16 bit value is not in a different 4-byte cell than
the Þrst byte (i.e. (where % 4) != 3). ▲

Use the OTCompareAndSwap32 function (page 661) to compare two 32-bit values
and set one if they are the same.

Use the OTCompareAndSwap8 function (page 663) to compare two 8-bit values and
set one if they are the same.

OTCompareAndSwap8 27

Atomically compares two 8-bit values and changes one of these values if they
are the same.

C INTERFACE

Boolean OTCompareAndSwap8(
UInt32 oldVal,
UInt32 newVal,
UInt8* where)

C++ INTERFACE

None. C++ applications use the C interface to this function.
Functions 663

C H A P T E R 2 7

Utilities Reference
PARAMETERS

oldVal The 8-bit value being compared to the value referenced by the
where parameter.

newVal The value to be assigned to the 8-bit value referenced by the
where parameter.

where A reference to the 8-bit value being compared to that speciÞed
by the oldVal parameter.

function result Returns true if the swap is done.

DISCUSSION

This function compares the least signiÞcant 8 bits of oldVal with the value
referenced by the where parameter. If the two values are the same, the function
replaces the 8-bit value referenced by the where parameter with the value
speciÞed by the newVal parameter and it returns true. If the two values are not
the same, no swap occurs and the function returns false.

The entire compare and swap operation is atomic.

Use the OTCompareAndSwap32 function (page 661) to compare two 32-bit values
and set one if they are the same.

Use the OTCompareAndSwap16 function (page 662) to compare two 16-bit values
and set one if they are the same.

OTAtomicAdd32 27

Atomically adds a 32-bit value to a memory location.

C INTERFACE

SInt32 OTAtomicAdd32(SInt32 toAdd,
SInt32* where)

C++ INTERFACE

None. C++ applications use the C interface to this function.
664 Functions

C H A P T E R 2 7

Utilities Reference
PARAMETERS

toAdd A signed 32-bit value to add to the value referenced by the
where parameter.

where A pointer to a signed 32-bit value that is added to the value
speciÞed by the parameter toAdd.

function result The sum of the values speciÞed by the functionÕs parameters.

DISCUSSION

This function atomically adds the signed 32-bit value speciÞed by the
parameter toAdd to the value referenced by the where parameter and returns
the result. It also stores the result in the location referenced by the where
parameter.

You can use this function to subtract from the toAdd value referenced by the
where parameter by reversing the sign of toAdd.

▲ W A R N I N G

The pointer where must be on a 4-byte boundary, or calling
this function may hang the machine. ▲

Use the OTAtomicAdd16 function (page 665) to add two 16-bit values.

Use the OTAtomicAdd8 function (page 666) to add two 8-bit values.

OTAtomicAdd16 27

Atomically adds a 16-bit value to a memory location.

C INTERFACE

SInt16 OTAtomicAdd16(SInt32 toAdd,
SInt16* where)

C++ INTERFACE

None. C++ applications use the C interface to this function.
Functions 665

C H A P T E R 2 7

Utilities Reference
PARAMETERS

toAdd A signed 16-bit value to add to the value referenced by the
where parameter.

where A pointer to a signed 16-bit value that is added to the value
speciÞed by the parameter toAdd.

function result The sum of the values speciÞed by the functionÕs parameters.

DISCUSSION

This function atomically adds the least signiÞcat 16 bits of toAdd to the value
referenced by the where parameter and returns the result. It also stores the
result in the location referenced by the where parameter

You can use this function to subtract from the toAdd value from the value
referenced by the where parameter by reversing the sign of toAdd.

▲ W A R N I N G

The pointer where must be at an address where the second
byte of the 16 bit value is not in a different 4-byte cell than
the Þrst byte (i.e. (where % 4) != 3). ▲

Use the OTAtomicAdd32 function (page 664) to add two 32-bit values.

Use the OTAtomicAdd8 function (page 666) to add two 8-bit values.

OTAtomicAdd8 27

Atomically adds an 8-bit value to a memory location.

C INTERFACE

SInt8 OTAtomicAdd8 (SInt32 toAdd,
SInt8* where)

C++ INTERFACE

None. C++ applications use the C interface to this function.
666 Functions

C H A P T E R 2 7

Utilities Reference
PARAMETERS

toAdd A signed 8-bit value to add to the value referenced by the
where parameter.

where A pointer to a signed 8-bit value that is added to the value
speciÞed by the parameter toAdd.

function result The sum of the values speciÞed by the functionÕs parameters.

DISCUSSION

This function atomically adds the least signiÞcant 8 bits of toAdd to the value
referenced by the where parameter and returns the result. It also stores the
result in the location referenced by the where parameter.

You can use this function to subtract the toAdd value from the value referenced
by the where parameter by reversing the sign of toAdd.

Use the OTAtomicAdd32 function (page 664) to add two 32-bit values.

Use the OTAtomicAdd16 function (page 665) to add two 16-bit values.

Locking Functions 27

Open Transport provides the following locking functions so that you can
protect Òcritical sectionsÓ of your code. Protecting a critical section ensures that
this section is accessed by at most one caller. You might want to create such a
section if it can be accessed by more than one caller and you want to guarantee
each caller exclusive access to that section.

OTAcquireLock 27

Acquires a lock and marks the beginning of a critical section.

C INTERFACE

Boolean OTAcquireLock (OTLock* lockPtr)
Functions 667

C H A P T E R 2 7

Utilities Reference
C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

lockPtr A pointer to a lock (page 621) used to identify this section.

function result Returns true if the lock is acquired.

DISCUSSION

This function attempts to acquire the lock referenced by the lockPtr parameter.
If successful, true is returned. If not, then some other thread is holding the lock,
and false is returned.

Use the OTClearLock function (page 668) to clear a lock aquired with the
OTAcquireLock function and to mark the end of a critical section.

OTClearLock 27

Clears a lock and marks the end of a critical section.

C INTERFACE

void OTClearLock (OTLock* lockPtr)

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

lockPtr A pointer to a lock (page 621) that you want to release.
668 Functions

C H A P T E R 2 7

Utilities Reference
DISCUSSION

This function clears the lock speciÞed by the lockPtr parameter. You should
only attempt to clear the lock if OTAquireLock returned true.

Use the OTAcquireLock function (page 667) to acquire a lock to a critical section.

Application-DeÞned Functions 27

This section describes the user-deÞned function that you need to provide in
order to Þnd an entry in a linked list.

MyProcessCallbackFunction 27

For information about creating and using a callback function see
ÒMyOTProcessProcÓ (page 541).

MyListSearchFunction 27

Search through a list for a link that matches certain criteria.

Boolean (MyListSearchFunction)
(const void* ref,
OTLink* linkToCheck);

PARAMETERS

ref A value passed to your function by the OTFindLink or
OTFindAndRemoveLink functions. This is the value that your
function must match against each link in the list until it Þnds a
matching link. It is the same as the refPtr parameter passed to
OTFindLink and OTFindAndRemoveLink.

linkToCheck A pointer to the current link being evaluated.
Application-Defined Functions 669

C H A P T E R 2 7

Utilities Reference
function result The function should return true if the list element deÞned by
linkToCheck matches the information specified by the refPtr
parameter.

DISCUSSION

When the OTFindLink function(page 652) or the OTFindAndRemoveLink
function(page 653) execute, they call this user-deÞned function.

For 680x0 code, this routine uses MPW C calling conventions. You should
check your development environment documention for information about
deÞning a function with MPW C calling conventions. This is not an issue for
PowerPC code.
670 Application-Defined Functions

C H A P T E R 2 8

Contents

Contents
Figure 28-0
Listing 28-0
Table 28-0
28 Advanced Topics Reference
Constants and Data Types 670
OTData Constant 670
OTBuffer Constant 670
Raw Mode Constants 671
The OTData Structure 671
The No-Copy Receive Buffer Structure 672
Buffer Information Structure 673

Functions 674
OTReleaseBuffer 674
OTBufferDataSize 675
OTReadBuffer 676
671

C H A P T E R 2 8
672 Contents

C H A P T E R 2 8
Advanced Topics Reference 28

This chapter provides reference information for sending non-contiguous data,
doing no-copy receives, and using raw-data mode. For a discussion of how to
use these data structures and functions in your program, see ÒAdvanced
TopicsÓ (page 215).

Constants and Data Types 28

This section describes the constants and data types you use to specify
non-contiguous data and to do no-copy receives.

OTData Constant 28

When sending data that is noncontiguous, you need to use an OTData buffer.
Open Transport provides a constant, kNetbufDataIsOTData, that you can use for
the TNetbuf.len Þeld when you send data to indicate that the value in the
TNetbuf.buf structure is actually a pointer to an OTData buffer.

enum {
kNetbufDataIsOTData = 0xfffffffe

};

OTBuffer Constant 28

When receiving data without making a copy, you need to pass an OTBuffer
pointer as your data buffer pointer. Open Transport provides a constant that
you can use instead of the nbytes parameter of the OTRcv function or the
udata.maxlen field used with other receive functions to indicate that you are
doing this.

enum {
kNetbufDataIsOTBufferStar= 0xfffffffd

};
Constants and Data Types 673

C H A P T E R 2 8

Advanced Topics Reference
Raw Mode Constants 28

This ßag is used in the udata.addr.len Þeld for OTSndUData to indicate the use of
raw mode.

enum {
kNetbufIsRawMode = 0xffffffff

}

The OTData Structure 28

You use the OTData structure to specify the location and size of noncontiguous
data. You use a pointer to this structure in place of a pointer to continguous
data normally referenced in TNetbuf.buf Þeld. You can send discontiguous
data using the OTSndUData function (page 462), the OTSndURequest function
(page 469), the OTSndUReply function (page 475), the OTSnd function (page 494),
the OTSndRequest function (page 499), and the OTSndReply function (page 504).

Note
The OTData structure is an Apple extension. ▲

Each OTData structure speciÞes the location of a data fragment, the size of the
fragment, and the location of the OTData structure that speciÞes the location and
size of the next data fragment. The data information structure is deÞned by the
OTData type. For more information, see ÒSending Noncontiguous DataÓ
(page 216).

struct OTData {
void* fNext;
void* fData;
size_t fLen;

};
typedef struct OTData OTData;

Field descriptions
fNext A pointer to the OTData structure that describes the next

data fragment. Specify a NULL pointer for the last data
fragment.

fData A pointer to the data fragment.
fLen SpeciÞes the size of the fragment in bytes.
674 Constants and Data Types

C H A P T E R 2 8

Advanced Topics Reference
The No-Copy Receive Buffer Structure 28

You use the no-copy receive buffer structure when you wish to receive data
without copying it with the OTRcvUData function (page 467), the OTRcvURequest
function (page 472), the OTRcvUReply function (page 478), the OTRcv function
(page 496), the OTRcvRequest function (page 502), and the OTRcvReply function
(page 507).

Note
If you are familiar with STREAMS mblk_t data structures,
you can see that the no-copy receive buffer structure is just
a slight modiÞcation of the mblk_t structure. ◆

You can only use this buffer for data; you cannot use it for the address or
options that may be associated with the incoming data. For example, in the
case of an incoming TUnitData structure, you can only no-copy receive the
udata portion, not the addr or opt fields.

▲ W A R N I N G

Under no circumstance write to this data structure. It is
read-only. If you write to it, you can crash the system. ▲

The no-copy receive buffer structure is deÞned by the OTBuffer data type.

struct OTBuffer
{

void* fLink;
void* fLink2;
OTBuffer* fNext;
UInt8* fData;
size_t fLen;
void* fSave;
UInt8 fBand;
UInt8 fType;
UInt8 fPad1;
UInt8 fFlags;

};

typedef struct OTBuffer OTBuffer;

Field descriptions
fLink Reserved.
Constants and Data Types 675

C H A P T E R 2 8

Advanced Topics Reference
fLink2 Reserved.
fNext A pointer to the next OTBuffer structure in the linked

chain. By tracing the chain of fNext pointers, you can
access all of the data associated with the message.

fData A pointer to the data portion of this OTBuffer structure.
fLen The length of data pointed to by the fData Þeld.
fSave Reserved.
fBand The band used for the data transmission. It must be a

value between 0 and 255.
fType The type of the data (normally M_DATA, M_PROTO, or

M_PCPROTO).
fPad1 Reserved.
fFlags The ßags associated with the data (MSGMARK, MSGDELIM).

IMPORTANT

Once you have copied the data out of the no-copy receive
buffer, you need to call the OTReleaseBuffer function as
quickly as possible to return the buffer to Open
Transport. ▲

For more information, see ÒNo-Copy ReceivingÓ (page 218).

Buffer Information Structure 28

The buffer information structure is provided for your convenience in keeping
track of where you last left off in an OTBuffer structure. Because the no-copy
receive buffer structure(page 676) (OTBuffer) is read-only, you may need to
copy the data in sections as you progress through the no-copy receive buffer.
The utility function OTReadBuffer(page 679) is used with this structure to easily
copy the data out of an OTBuffer structure.

The buffer information structure is deÞned by the OTBufferInfo data type.

struct OTBufferInfo
{

OTBuffer* fBuffer;
size_t fOffset;
UInt8 fPad;
676 Constants and Data Types

C H A P T E R 2 8

Advanced Topics Reference
};

typedef struct OTBufferInfo OTBufferInfo;

Field descriptions
fBuffer A pointer to the no-copy receive buffer.

fOffset An offset indicating how far into the buffer you have read.
fPad Reserved.

Functions 28

Open Transport provides several functions for handling no-copy receives: the
OTReleaseBuffer, OTReadBuffer, and the OTBufferDataSize functions.

OTReleaseBuffer 28

Returns the no-copy receive buffer to the system.

C INTERFACE

void OTReleaseBuffer(OTBuffer* buf);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

buf A pointer to the no-copy receive buffer (page 675) to be released.
Functions 677

C H A P T E R 2 8

Advanced Topics Reference
DISCUSSION

Once a no-copy receive is completed, you need to release the OTBuffer structure
as quickly as possible by calling this function.

SPECIAL CONSIDERATIONS

This function is available only to PowerPC-native clients; there is no
mixed-mode glue for the function, so you must build a fat application in order
to use it.

OTBufferDataSize 28

Obtains the size of the no-copy receive buffer.

C INTERFACE

size_t OTBufferDataSize(OTBuffer* buf);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

buf A pointer to a no-copy receive buffer (page 675).

function result The number of bytes in the no-copy receive buffer.

DISCUSSION

Use the OTReadBuffer (page 679) function to copy from the buffer referenced by
the buf parameter.

Use the OTReleaseBuffer function (page 677)) to return the no-copy receive
buffer to the system. .
678 Functions

C H A P T E R 2 8

Advanced Topics Reference
SPECIAL CONSIDERATIONS

This function is available only to PowerPC-native clients; there is no
mixed-mode glue for the function, so you must build a fat application in order
to use it.

OTReadBuffer 28

Copies data out of a no-copy receive buffer.

C INTERFACE

Boolean OTReadBuffer(OTBufferInfo* info,
void* buf,
size_t* len);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

info A pointer to the buffer information structure to be read.

buf A pointer to a buffer (page 675) into which to copy the data.

len The number of bytes to copy.

function result See Discussion.

DISCUSSION

This function copies len bytes from offset info->fOffset of the no copy receive
buffer pointed to by info->fBuffer to the buffer speciÞed by buf. It returns
false if there is more data to be copied, or true if the data is exhausted.

This function returns true when it has read all of the bytes from the buffer
information structure pointed to by the info parameter. It returns false when
there are more bytes still to be read.
Functions 679

C H A P T E R 2 8

Advanced Topics Reference
Use the OTReleaseBuffer function (page 677) to return this structure to the
system.

SEE ALSO

The OTBufferDataSize function (page 678).
680 Functions

C H A P T E R 2 9

Contents

Contents
Figure 29-0
Listing 29-0
Table 29-0
29 TCP/IP Services Reference
Constants and Data Types 678
Basic Types and Constants 678
Internet Address Structure 680
DNS Address Structure 681
DNS Query Information Structure 682
Internet Interface Information Structure 683
Internet Host Information Structure 684
Internet System Information Structure 685
IP Multicast Address Structure 685
Internet Mail Exchange Structure 686

Options 686
Protocol Levels 686
TCP Options 687
UDP Options 689
IP Options 689

Functions 694
Resolving Internet Addresses 695

OTInetStringToAddress 695
OTInetAddressToName 696

Opening a TCP/IP Service Provider 698
OTAsyncOpenInternetServices 698
C INTERFACE 698
OTOpenInternetServices 699

Getting Information About an Internet Host 700
OTInetSysInfo 700
OTInetMailExchange 702

Retrieving DNS Query Information 703
681

C H A P T E R 2 9
OTInetQuery 704
Address Utilities 706

OTInetGetInterfaceInfo 706
OTInitInetAddress 708
OTInitDNSAddress 709
OTInetStringToHost 710
OTInetHostToString 710

Single Link Multi-Homing 711
OTInetGetSecondaryAddress 711
682 Contents

C H A P T E R 2 9
TCP/IP Services Reference 29

This chapter documents the constants, data structures and functions used by
the TCP/IP service provider. It also provides mapper and endpoint
ifnormation for TCP/IP. The chapter ÒTCP/IP ServicesÓ (page 237) describes
the use of these structures and functions in opening and using TCP/IP
endpoints and mappers.

Constants and Data Types 29

This section describes the constants and data types used by the TCP/IP service
interface.

Basic Types and Constants 29

You use the following 16 bit value to distinguish among ports.

typedef UInt16 InetPort;

You can use the protocol names kTCPName, kUDPName, and kRawIPName when
calling the OTCreateConfiguration function to conÞgure an endpoint. You can
use the protocol name kDNRName when calling the OTCreateConfiguration
function to conÞgure a mapper. The OTCreateConfiguration function is
described in the chapter ÒConÞguration ManagementÓ in this book.

#define kTCPName “tcp”
#define kUDPName “udp”
#define kRawIPName “rawip”
#define kDNRName “dnr”

You can use the constant kDefaultInternetServicesPath to create a TCP/IP
service provider. Its value is a pointer to a conÞguration structure, so you do
not use the OTCreateConfiguration function with this constant. Instead you use
this constant as a parameter when calling the OTAsyncOpenInternetServices and
the OTOpenInternetServices functions that create TCP/IP service providers.

#define kDefaultInternetServicesPath ((OTConfiguration*)-3)
Constants and Data Types 683

C H A P T E R 2 9

TCP/IP Services Reference
You use the AF_INET and AF_DNS values as address types when Þlling in address
structures. For details, see ÒInternet Address StructureÓ (page 685) and ÒDNS
Address StructureÓ (page 686)..

enum {
AF_INET = 2,
AF_DNS = 42

};

You can use the kOTAnyInetAddress value with the OTBind function when you
are not concerned with the speciÞc IP interface you are binding to.

enum {
kOTAnyInetAddress = 0

};

enum {
kMaxHostAddrs = 10,
kMaxSysStringLen = 32,
kMaxHostNameLen = 255

};
typedef char InetDomainName[kMaxHostNameLen];

kMaxHostAddrs The maximum number of hosts returned by the function
OTInetStringToAddress.

kMaxSysStringLen The maximum length of the strings returned by the
function OTInetSysInfo.

kMaxHostNameLen The maximum length of an Internet domain name.

Note
The maximum valid domain-name length for fully
qualiÞed domain names includes the trailing period (.).
Names not terminated with a period are limited to
254 bytes. ◆

The following completion event codes are sent by TCP/IP service
provider functions:

enum {
T_DNRSTRINGTOADDRCOMPLETE = 0x10000001,
T_DNRADDRTONAMECOMPLETE = 0x10000002,
684 Constants and Data Types

C H A P T E R 2 9

TCP/IP Services Reference
T_DNRSYSINFOCOMPLETE = 0x10000003,
T_DNRMAILEXCHANGECOMPLETE = 0x10000004,
T_DNRQUERYCOMPLETE = 0x10000005

};

enum {
kDefaultInetInterface = -1,
kInetInterfaceInfoVersion = 2

};

kDefaultInetInterface
Value passed to OTInetGetInterfaceInfo (page 711) to get
the interface conÞgured in the TCP/IP control panel.

kInetInterfaceInfoVersion
Version number of the correct InetInterfaceInfo structure.

The SET_TOS macro is used when negotiating IP_TOS option.

#define SET_TOS(prec,tos) (((0x7 & (prec)) << 5) | (0x1c & (tos)))

Internet Address Structure 29

You use the internet address structure when providing a TCP or UDP address
to the Open Transport functions OTConnect(page 484), OTSndURequest(page 469),
and OTBind(page 441).
You can use the OTInitInetAddress function (page 713) to Þll in an internet
address structure. The internet address structure is deÞned by the InetAddress
data type.

struct InetAddress {
OTAddressType fAddressType;
InetPort fPort;
InetHost fHost;
UInt8 fUnused[8];

};
typedef struct InetAddress InetAddress;

Field descriptions
fAddressType The address type. The Þeld should be AF_INET, which

identiÞes the structure as an InetAddress.
Constants and Data Types 685

C H A P T E R 2 9

TCP/IP Services Reference
fPort The port number.
fHost The 32-bit IP address of the host.
fUnused Reserved.

DNS Address Structure 29

You can use the DNS (domain name system) address structure with the
OTConnect function(page 484) (TCP), with the OTSndUData function
(UDP)(page 462), or with the OTResolveAddress function (either TCP or
UDP)(page 453). If you do so, TCP/IP will resolve the name for you
automatically. You can use the OTInitDNSAddress function (page 714) to Þll in a
DNS address structure. The DNS address structure is deÞned by the DNSAddress
data type.

struct DNSAddress {
OTAddressType fAddressType;
InetDomainName fName;

};
typedef struct DNSAddress DNSAddress;

Field descriptions
fAddressType The address type. For a DNSAddress structure, this should

be AF_DNS.
fName The name to be resolved by the DNR.
The address you specify can be just the host name (ÒotteamÓ), a partially
qualiÞed domain name (Òotteam.sswÓ), a fully qualiÞed domain name
(Òotteam.ssw.apple.com.Ó), or an internet address in dotted-decimal format
(Ò17.202.99.99Ó), and can optionally include a port number
(Òotteam.ssw.apple.com:25Ó or Ò17.202.99.99:25Ó).

Because the port number is not actually part of the domain name, it is possible
to have a domain nameÐport number combination that exceeds 255 bytes. If
you wish to specify such a string, you must provide a structure based on the
DNS address structure that has sufÞcient space to contain the full string. In any
case, the domain name itself cannot exceed 255 bytes.
686 Constants and Data Types

C H A P T E R 2 9

TCP/IP Services Reference
DNS Query Information Structure 29

The DNS query information structure is used by the TCP/IP service provider
to return answers to DNS queries made using the OTInetQuery function. The
DNS query information structure is deÞned by the DNSQueryInfo data type. For
additional information about the constant values for the DNSQueryInfo
(page 687) Þelds, see the DNS Requests for Comments (RFCs), available over
the World Wide Web.

struct DNSQueryInfo {
UInt16 qType;
UInt16 qClass;
UInt32 ttl;
InetDomainName name;
UInt16 responseType;
UInt16 resourceLen;
char resourceData[4];

};
typedef struct DNSQueryInfo DNSQueryInfo;

Field descriptions
qType The numerical value of the DNS resource record type, such

as MX and PTR, for which you wish to query.
qClass The numerical value of the DNS record class, such as Inet

and Hesio, for which you wish to query.
ttl An integer indicating the DNS resource recordÕs time to

live (in seconds).
name The fully qualiÞed domain name or address for which you

made the query.
responseType The type of response.
resourceLen The actual length of the resource data returned.
resourceData The resource data that is returned. This is at least 4 bytes

long, and is usually longer.
See the Internet Standard for a deÞnitive list of values for the qType, qClass, and
respnoseType fields, and for a definition of the format of the resource data.
Constants and Data Types 687

C H A P T E R 2 9

TCP/IP Services Reference
Internet Interface Information Structure 29

The OTInetGetInterfaceInfo function (page 711) returns information about an
interface on the local host in an internet interface information structure. The
internet interface information structure is deÞned by the InetInterfaceInfo
data type.

struct InetInterfaceInfo {
InetHost fAddress;
InetHost fNetmask;
InetHost fBroadcastAddr;
InetHost fDefaultGatewayAddr;
InetHost fDNSAddr
UInt16 fVersion;
UInt16 fHWAddrLen
UInt8* fHWAddr;
UInt32 fIfMTU
UInt8* fReservedPtrs[2];
InetDomainName fDomainName;
UInt32 fIPSecondaryCount;
UInt8 fReserved[256];

};
typedef struct InetInterfaceInfo InetInterfaceInfo;

Field descriptions
fAddress The IP address of the interface.
fNetMask The subnet mask of the local IP network.
fBroadcastAddr The broadcast address for the interface.
fDefaultGatewayAddr

The IP address of the default router. The default is a router
that can forward any packet destined outside the locally
connected subnet.

fDNSAddr The address of a domain name server. This value can be
returned by a server or typed in by the user during
conÞguration of the TCP/IP interface.

fDNSAddr The address of a domain name server. This value can be
returned by a server or typed in by the user during
conÞguration of the TCP/IP interface. If multiple DNS
servers are available, only the Þrst is returned.
688 Constants and Data Types

C H A P T E R 2 9

TCP/IP Services Reference
fVersion The version of the OTInetGetInterfaceInfo function;
currently equal to kInetInterfaceInfoVersion.

fHWAddrLen The length (in bytes) of the hardware address. This points
into the fReserved Þeld of this structure. It can be nil if the
interface has no hardware address or if it wonÕt Þt.

fHWAddr A pointer to the hardware address.
fIfMTU The maximum transmission unit size in bytes permitted

for this interfaceÕs hardware.
fReservedPtrs Reserved.
fDomainName The default domain name of the host as conÞgured in the

TCP/IP control panel. This name doesnÕt include the host
name.

fIPSecondaryCount The number of IP secondary address available.
fReserved Reserved.

Internet Host Information Structure 29

The OTInetStringToAddress function (page 700) returns IP addresses for a host
in an internet host information structure. The internet host information
structure is deÞned by the InetHostInfo data type.

struct InetHostInfo {
InetDomainName name;
InetHost addrs[kMaxHostAddrs];

};
typedef struct InetHostInfo Inet HostInfo;

Field descriptions
name The canonical name of the host. The canonical name is a

fully qualiÞed domain nam, never an alias.
addrs Up to ten IP addresses associated with this host name.

Only multihomed hosts have more than one IP address.
Constants and Data Types 689

C H A P T E R 2 9

TCP/IP Services Reference
Internet System Information Structure 29

The OTInetSysInfo function (page 705) returns information about a host in an
internet system information structure. The internet system information
structure is deÞned by the InetSysInfo data type.

struct InetSysInfo {
char cpuType[kMaxSysStringLen];
char osType[kMaxSysStringLen];

};
typedef struct InetSysInfo InetSysInfo;

Field descriptions
cpuType The CPU type of the speciÞed host. This is an ASCII string

maintained by the domain name server.
osType The operating system running on the speciÞed host. This is

an ASCII string maintained by the domain name server.

IP Multicast Address Structure 29

You use the IP multicast address structure with the IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP options (page 699) when you are adding or dropping
membership in an IP multicast address. The IP multicast address structure is
deÞned by the TIPAddMulticast data type.

struct TIPAddMulticast {
InetHost multicastGroupAddress;
InetHost interfaceAddress;

};
typedef struct TIPAddMulticast TIPAddMulticast;

Field descriptions
multicastGroupAddress

The IP address of the multicast group for which you want
to add or drop membership.

interfaceAddress The IP address of the network interface that you are using
for the multicast group.
690 Constants and Data Types

C H A P T E R 2 9

TCP/IP Services Reference
Internet Mail Exchange Structure 29

The OTInetMailExchange function (page 707) returns host names and mail
preference values in an array of internet mail exchange structures. The internet
mail exchange structure is deÞned by the InetMailExchange data type.

struct InetMailExchange {
UInt16 preference;
InetDomainName exchange;

};
typedef struct InetMailExchange InetMailExchange;

Field descriptions
preference The mail exchange preference value. The mail exchanger

with the lowest preference number is the Þrst one to which
mail should be sent.

exchange The fully qualiÞed domain name of a host that can accept
mail for your target host.

Options 29

This section describes the TCP, UDP, and IP options that you can use with
provider functions such as OTOptionManagement, OTConnect, OTSndUData, or
OTSndURequest. For more detailed descriptions of how to use these options and
what sizes they are, see X/Open CAE SpeciÞcation (1992): X/Open Transport
Interface (XTI). For additional information about generic options and option
use, see ÒOption ManagementÓ (page 165).

Protocol Levels 29

The protocol level speciÞes the protocol to which the option applies. You
specify the protocol level in the level Þeld of the TOption structure when you
specify an option.
Options 691

C H A P T E R 2 9

TCP/IP Services Reference
enum {
INET_IP = 0x0, /* IP */
INET_TCP = 0x06, /* TCP */
INET_UDP = 0x11 /* UDP */

};

TCP Options 29

You can use the options in this section with a protocol level of INET_TCP. These
TCP options are not association-related. They may be negotiated in all
endpoint states except T_UNBND and T_UNINIT. They are read-only in state
T_UNBND.

#define TCP_NODELAY 0x01
#define TCP_MAXSEG 0x02
#define TCP_NOTIFY_THRESHOLD 0x10
#define TCP_ABORT_THRESHOLD 0x11
#define TCP_CONN_NOTIFY_THRESHOLD 0x12
#define TCP_CONN_ABORT_THRESHOLD 0x13
#define TCP_OOBINLINE 0x14
#define TCP_URGENT_PTR_TYPE 0x15
#define TCP_KEEPALIVE OPT_KEEPALIVE

Option descriptions

TCP_NODELAY Sets the TCP delay mode. (UInt32)
By default, when TCP has a full segmentÕs worth of
outgoing data, it sends the segment immediately.
However, if it receives less than a segmentÕs worth of
outgoing data and has not yet received acknowledgment
for the last packet sent, it saves the data until it receives a
full segmentÕs worth, or it receives acknowledgment for
the last packet, or a timeout period has expired. (In this
context, a full segment is the maximum-sized unit of data
that can be sent by TCP at one time and a packet is data that
is transmitted as a single unit.)
Specify T_YES for this option to cause all data to be sent
immediately. Specify T_NO to return TCP to the default
delay mode. A request to set this option to no delay is an
692 Options

C H A P T E R 2 9

TCP/IP Services Reference
absolute requirement. This means that TCP must support
the option, not that the client must use it.

TCP_MAXSEG Read the maximum TCP segment size. (UInt32)
The maximum segment size is returned as an unsigned
long specifying the number of bytes. This option is
read-only.

TCP_KEEPALIVE Activates the keep-alive timer. (UInt32). The default setting
is off.
If this option is set on, TCP monitors idle connections and
sends a keep-alive packet to check a connection after a
preset time has expired. You use a t_kpalive structure,
described later in this section, to specify the value of this
option. The default state for the keep-alive timer is off. A
request to activate or deactivate the keep-alive timer is an
absolute requirement.

The TCP_KEEPALIVE option uses a t_kpalive structure, deÞned as follows:

struct t_kpalive {
long kp_onoff;
long kp_timeout; /

};

Field descriptions
kp_onoff Activate or deactivate the keep-alive timer. Set this Þeld to

T_YES to activate the timer or to T_NO to deactivate it. A
request to activate or deactivate the timer is an absolute
requirement. The default value of this Þeld is T_NO. The
Open Transport TCP implementation does not support the
value T_YES|T_GARBAGE for this Þeld.

kp_timeout Set the requested timeout value, in minutes. Specify a
value of T_UNSPEC to use the default value. You may specify
any positive value for this Þeld of 120 minutes or greater.
The timeout value is not an absolute requirement; if you
specify a value less than 120 minutes, TCP will renegotiate
a timeout of 120 minutes.
Options 693

C H A P T E R 2 9

TCP/IP Services Reference
UDP Options 29

You can use the options in this section with a protocol level of INET_UDP. The
UDP_CHECKSUM option is association-related. It may be negotiated in all endpoint
states except T_UNBND and T_UNINIT. It is read-only in state T_UNBND. The
UDP_RX_ICMP option is read-only in all states.

#define UDP_CHECKSUM OPT_CHECKSUM /
#define UDP_RX_ICMP 0x2

Option descriptions

UDP_CHECKSUM Activate or deactivate a checksum calculation. (UInt32)
Specify T_YES to activate the checksum calculation or T_NO
to deactivate it. The default value for this option is T_YES. If
this option is returned by the OTRcvUData function, its value
indicates whether a checksum was present in the received
datagram. UDP discards packets that do not have valid
checksums when this option is activated. UDP relies on
checksum calculations to provide reliable data delivery;
under normal circumstances, you should never deactivate
this option. A request to activate or deactivate checksums
is an absolute requirement.

UDP_RX_ICMP Determine whether the UDP STREAMS module has
received an ICMP message. This option returns a Boolean
value.

IP Options 29

You can use the options in this section with a protocol level of INET_IP. The
IP_OPTIONS and IP_TOS options are association-related; the other IP options are
not. The IP_REUSEADDR option may be negotiated in all endpoint states except
T_UNINIT. The other options may be negotiated in all endpoint states except
T_UNBND and T_UNINIT. They are read-only in state T_UNBND. A request for any of
these options is an absolute requirement.

#define IP_OPTIONS 0x01
#define IP_TOS 0x02
#define IP_TTL 0x03
#define IP_REUSEADDR 0x04
694 Options

C H A P T E R 2 9

TCP/IP Services Reference
#define IP_DONTROUTE 0x10
#define IP_BROADCAST 0x20
#define IP_HDRINCL 0x1002
#define IP_RCVOPTS 0x1005
#define IP_RCVDSTADDR 0x1007
#define IP_MULTICAST_IF 0x1010
#define IP_MULTICAST_TTL 0x1011
#define IP_MULTICAST_LOOP 0x1012
#define IP_ADD_MEMBERSHIP 0x1013
#define IP_DROP_MEMBERSHIP 0x1014 /
#define IP_BROADCAST_IF 0x1015
#define IP_RCVIFADDR 0x1016

Constants for use with the IP_TOS precedence level are as follows:

enum {
T_ROUTINE = 0,
T_PRIORITY = 1,
T_IMMEDIATE = 2,
T_FLASH = 3,
T_OVERRIDEFLASH = 4,
T_CRITIC_ECP = 5,
T_INETCONTROL = 6,
T_NETCONTROL = 7

};

Constants for use with the IP_TOS type of service are as follows:

/* IP_TOS type of service */
enum {

T_NOTOS = 0x0,
T_LDELAY = (1<<4),
T_HITHRPT = (1<<3),
T_HIREL = (1<<2)

};

Option descriptions

IP_OPTIONS Set the value of the Options Þeld in the header of each
outgoing IP datagram, or receive the Options Þeld of each
incoming IP datagram. (UInt8[])
Options 695

C H A P T E R 2 9

TCP/IP Services Reference
This option is intended for use by network debugging and
control programs; most applications do not need this
option.
The value for this option consists of a string of bytes whose
formats follow the deÞnitions of IP options in the current
RFCs with one exception: If you specify a source routing
option, the Þrst address in the list of routers (as returned
by OTInetGetInterfaceInfo) must be for the Þrst-hop
router. Open Transport extracts the Þrst-hop router address
from the option list and adjusts the size of the list before
transmitting the packet. The Options Þeld can contain up
to 40 bytes.
To disable this option, specify an option header only with
no option values. This option is enabled by default any
time you use an Open Transport option-management
function or a conÞguration string to set an IP option that
must be negotiated.
If you enable IP_OPTIONS, the function OTOptionManagement
with the T_CURRENT action ßag set returns the list of IP
options that are currently being sent with outgoing IP
datagrams.
The functions OTConnect (in synchronous mode only),
OTListen, OTRcvConnect, and OTRcvUData return this option
for the received IP datagram. The OTRcvUDErr function
returns this option for the previously sent datagram that
caused the error.

IP_TOS Set the Type of Service Þeld of each outgoing IP datagram,
or receive the Type of Service Þeld of each incoming IP
datagram. (UInt8)
Open Transport hosts and routers ignore the Type of
Service Þeld, but you can set this value for use with other
networks if you so desire. The data for this option is any
combination of a Precedence ßag and a Type of Service
ßag. Use the SET_TOS macro (page 685) to construct this
option. The possible values for these ßags are shown at the
beginning of this section.
If you enable IP_TOS, the function OTOptionManagement with
the T_CURRENT action ßag set returns the Type of Service
696 Options

C H A P T E R 2 9

TCP/IP Services Reference
ßags that are currently being sent with outgoing IP
datagrams.
The functions OTConnect (in synchronous mode only),
OTListen, OTRcvConnect, and OTRcvUData return this option
for the received IP datagram. The function OTRcvUDErr
returns the Type of Service Þeld of the previously sent
datagram that caused the error.

IP_TTL Set the Time to Live Þeld of each outgoing IP datagram.
Specify the number of hops as an unsigned char. (UInt8)
Each router that processes the datagram decrements the
Time to Live Þeld and discards the datagram if the value
reaches 0. The default value for this Þeld is 255. Because
this is not an association-related option, there is no way to
get the Time to Live Þeld of an incoming datagram.

IP_REUSEADDR Allow multiple addresses with the same port number.
(UInt32)
Set this option to T_YES to allow TCP to bind a transport
endpoint to a kOTAnyFreeAddress that includes a port
number plus bind one or more additional endpoints to
distinct fully speciÞed internet addresses that include the
same port number. If this option is set to T_NO (the default),
TCP cannot bind two or more transport endpoints to
addresses that include the same port number.

IP_DONTROUTE Use addresses on connected subnets only. (UInt32)
Set this option to T_YES to cause outgoing messages to be
delivered to the local network only and not to go through
any routers. (This options sets the time-to-live value to 1.)
This option is intended for testing and development
purposes. Specify T_NO to disable this option. This option is
disabled by default.

IP_BROADCAST Request permission to send broadcast datagrams. (UInt32)
Set this option to T_YES to request permission to send
broadcast datagrams. Specify T_NO to disable this option.
This option is disabled by default.

IP_HDRINCL Include the IP header with received data. (UInt32)
Set this option to T_YES to cause RawIP to include the IP
header when you read data. Set the option to T_NO (the
default) to receive only the data without the header. This
Options 697

C H A P T E R 2 9

TCP/IP Services Reference
option works with the RawIP interface only. See ÒUsing
RawIPÓ (page 247) for more information.

IP_RCVOPTS Include IP-level options when you call the OTRcvUData
function. (UInt32)
If you set this option to T_YES (the default), the OTRcvUData
function returns IP-level options along with the UDP
options when you are receiving UDP data. If you set this
option to T_NO, you receive only UDP options.

IP_RCVDSTADDR For multihomed systems, include with received data the
address of the interface on which a message was received.
(UInt32)
If you specify T_YES for this option, the OTRcvUData function
includes the address of the interface. If you specify T_NO
(the default) for this option, you receive only the data.

IP_MULTICAST_IF Specify the TCP/IP interface to use for outgoing multicast
IP datagrams, or retrieve the interface this option is set to.
(UInt32)
Specify the interface as an ÒInetHostÓ. This option and the
other multicast options can be used with UDP and RawIP
only. In the case that a host is multihomed, this option lets
you specify which network interface to use for multicasts.
Whereas only one network interface can be used at a time
for multicast transmissions, an application can join the
same multicast group address on more than one network
interface. If you joined the same multicast address on more
than one network, this option lets you determine over
which network the datagram arrived.

IP_MULTICAST_TTL Set the Time to Live Þeld or the number of hops permitted
for outgoing multicast IP datagrams, or retrieve the Time
to Live Þeld set for an interface. (UInt8)
Each router that processes the datagram decrements the
Time to Live Þeld and discards the datagram if the value
reaches 0. Specify the time to live as an unsigned char. To
avoid unneccessary network trafÞc, you should set this
value as low as possible. The default value is 1.

IP_MULTICAST_LOOP
Enable loopbacks for outgoing multicast IP datagrams.
(UInt32)
698 Options

C H A P T E R 2 9

TCP/IP Services Reference
Set this option to T_YES to cause an outgoing multicast
datagram to be delivered to yourself; set this option to T_NO
to disable loopbacks. Loopbacks are enabled by default.

IP_ADD_MEMBERSHIP
Add a membership in an IP multicast group.
(SizeOf(TIPAddMulticast)).
You use a TIPAddMulticast structure to specify the address
and network interface of the group you wish to join. The
TIPAddMulticast structure is described in ÒIP Multicast
Address StructureÓ (page 690).

IP_DROP_MEMBERSHIP
Drop membership in an IP multicast group.
(SizeOf(TIPAddMulticast)).
You use a TIPAddMulticast structure to specify the address
and network interface of the group you wish to leave.

IP_BROADCAST_IF Reserved.
IP_RCVIFADDR Reserved.
The following IP-level options are reserved for use by Apple Computer, Inc.

#define DVMRP_INIT 0x64
#define DVMRP_DONE 0x65
#define DVMRP_ADD_VIF 0x66
#define DVMRP_DEL_VIF 0x67
#define DVMRP_ADD_LGRP 0x68
#define DVMRP_DEL_LGRP 0x69
#define DVMRP_ADD_MRT 0x6A
#define DVMRP_DEL_MRT 0x6B

Functions 29

This section describes the functions provided by the TCP/IP service provider
and the TCP/IP utility functions. In addition to these functions, you need the
functions described in the chapter ÒEndpointsÓ (page 683), in order to
implement TCP/IP communications.
Functions 699

C H A P T E R 2 9

TCP/IP Services Reference
Resolving Internet Addresses 29

This section describes the functions that provide access to the services of the
domain name resolver (DNR).

OTInetStringToAddress 29

Resolves a domain name to its equivalent internet addresses.

C INTERFACE

OSStatus OTInetStringToAddress (InetSvcRef ref,
char *name,
InetHostInfo *hinfo);

C++ INTERFACE

OSStatus TInternetServices::StringToAddress (char *name,
InetHostInfo *hinfo);

PARAMETERS

ref The internet services reference you obtained when you opened
the TCP/IP service provider.

name A pointer to the domain name you want to resolve. This can be
a host name, a partially qualiÞed domain name, a fully
qualiÞed domain name, or an internet address in
dotted-decimal format. The name should be a null-terminated
string.

hinfo A pointer to an InetHostInfo structure (page 689) that you
provide. When the function completes, it places the canonical
name and up to ten associated IP addresses in this structure. If
the function Þnds less than ten IP addresses, it Þlls in the rest of
the address array with zeros.

function result A result code. See Appendix B for more information.
700 Functions

C H A P T E R 2 9

TCP/IP Services Reference
DISCUSSION

A single host can be associated with multiple internet addresses. You can use
the OTInetStringToAddress function to return multiple addresses for
multihomed hosts.

If you specify an internet address in dotted-decimal format for the name
parameter, the OTInetStringToAddress function places that address in the
InetHostInfo.name field instead of a canonical name.

If you call the OTInetStringToAddress function asynchronously, the TCP/IP
service provider calls your notiÞer function with the
T_DNRSTRINGTOADDRCOMPLETE completion event code when the function
completes. The cookie parameter to the notiÞer function contains the pointer
you speciÞed in the hinfo parameter. If you had more than one simultaneous
outstanding call to the OTInetStringToAddress function, you can use this
information to determine which call has completed execution.

The OTLookupName function (page 559) provides a mapper interface to the
domain name resolver (DNR) that maps a name to a single internet address.

You can use the DNSAddress structure (page 686) to provide a domain name
directly to the OTConnect, OTSndUData, and OTResolveAddress functions. The
OTConnect, OTSndUData, and OTResolveAddress functions are described in the
chapter ÒEndpointsÓ(page 421). SPECIAL CONSIDERATIONS

If you call the OTInetStringToAddress function asynchronously, do not modify
the InetHostInfo structure until the function completes.

SEE ALSO

The OTInetAddressToName function (page 701).

The OTInetHostToString function (page 715).

OTInetAddressToName 29

Determines the canonical name of the host associated with an IP address.
Functions 701

C H A P T E R 2 9

TCP/IP Services Reference
C INTERFACE

OSStatus OTInetAddressToName (InetSvcRef ref,
InetHost addr,
InetDomainName name);

C++ INTERFACE

TInternetServices::AddressToName (InetHost addr,
InetDomainName name);

PARAMETERS

ref The internet services reference you obtained when you opened
the TCP/IP service provider.

addr The IP address for which you want to determine the associated
domain name .

name A character array that you must allocate. On output, the
function places the canonical name in this array.

function result A result code. See Appendix B for more information.

DISCUSSION

If you call this function asynchronously, the TCP/IP service provider calls your
notiÞer function with the T_DNRADDRTONAMECOMPLETE completion event code
when the function completes. The cookie parameter to the notiÞer function
contains the name parameter to this call. If you had more than one simultaneous
outstanding call to the OTInetAddressToName function, you can use this
information to determine which call has completed execution.

SEE ALSO

The OTInetStringToAddress function (page 700).

The OTInetStringToHost function (page 715).
702 Functions

C H A P T E R 2 9

TCP/IP Services Reference
Opening a TCP/IP Service Provider 29

This section describes the two functions you can use to open the TCP/IP
service provider: OTAsyncOpenInternetServices and OTOpenInternetServices.

Use the OTCloseProvider function, described in the chapter ÒEndpointsÓ
(page 683), to close a TCP/IP service provider when you are Þnished using it.

OTAsyncOpenInternetServices 29

Opens the TCP/IP service provider and returns an Internet services reference.

C INTERFACE 29

OSStatus OTAsyncOpenInternetServices (OTConfiguration *cfig,
 OTOpenFlags oflag,
 OTNotifyProcPtr proc,
 void *contextPtr);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

cfig A pointer to a network conÞguration structure. You can obtain
the default conÞguration by using the constant
kDefaultInternetServicesPath for this parameter.

oflag Reserved. Must be set to 0.

proc A pointer to your notiÞer function. The TCP/IP service
provider passes the internet services reference to your notiÞer
function in the cookie parameter.

contextPtr A pointer for your use. The TCP/IP service provider passes this
value unchanged to your notiÞer function.
Functions 703

C H A P T E R 2 9

TCP/IP Services Reference
function result A result code. See Appendix B for additional information.

DISCUSSION

You must open a TCP/IP service provider before calling any TCP/IP services
functions other than the address utility functions. You must provide the
Internet services reference when calling any of these non-utility functions. The
OTAsyncOpenInternetServices function runs asynchronously and sets the mode
of the TCP/IP service provider as asynchronous.

For information on how to specify options using the cfig parameter, see Table
11-2 (page 246).

SEE ALSO

The OTOpenInternetServices function (page 704).

OTOpenInternetServices 29

Opens the TCP/IP service provider and returns an internet services reference.

C INTERFACE

InetSvcRef OTOpenInternetServices (OTConfiguration *cfig,
 OTOpenFlags oflag,
 OSStatus *err);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

cfig A pointer to a network conÞguration structure. You can obtain
the default conÞguration by using the constant
kDefaultInternetServicesPath for this parameter.
704 Functions

C H A P T E R 2 9

TCP/IP Services Reference
oflag Reserved. Must be set to 0.

err A pointer to the function result.

function result An internet services reference.

DISCUSSION

You must open a TCP/IP service provider before calling any TCP/IP service
functions other than the address utility functions. The return value of this
function is the internet services reference. You must provide the internet
services reference when calling any of these non-utility functions. The
OTOpenInternetServices function runs synchronously and also sets the mode of
the TCP/IP service provider as synchronous.

If you want to set an option as part of the conÞguration string, you should
translate the optionÕs constant name, given in the header Þles, into a string that
the conÞguration functions can parse. For the TCP/IP options, Table 11-2
(page 246) provides the constant name used in ÒOptionsÓ (page 691) and the
value to used in the conÞguration string

SEE ALSO

The OTAsyncOpenInternetServices function (page 703).

Getting Information About an Internet Host 29

This section describes the functions you can use to get information about an
internet host.

OTInetSysInfo 29

Returns details about a hostÕs processor and operating system.
Functions 705

C H A P T E R 2 9

TCP/IP Services Reference
C INTERFACE

OSStatus OTInetSysInfo (InetSvcRef ref,
char *name,
InetSysInfo *sysinfo);

C++ INTERFACE

OSStatus TInternetServices::SysInfo (char *name,
InetSysInfo *sysinfo);

PARAMETERS

ref The internet services reference you obtained when you opened
the TCP/IP service provider.

name The name of the host about which you want information. This
can be a host name (including the local host), a partially
qualiÞed domain name, or a fully qualiÞed domain name.

sysinfo A pointer to an InetSysInfo structure(page 690). You must
allocate this structure. The function Þlls it in with the processor
type and operating-system version of the host.

function result A result code. See Appendix B for more information.

DISCUSSION

The information returned by this function is maintained by the domain name
server. If you call this function asynchronously, the TCP/IP service provider
calls your notiÞer function with the T_DNRSYSINFOCOMPLETE completion event
code when the function completes. The cookie parameter to the notiÞer
function contains the sysinfo parameter. If you had more than one
simultaneous outstanding call to the OTInetSysInfo function, you can use this
information to determine which call has completed execution.

SPECIAL CONSIDERATIONS

If you call this function asynchronously, do not modify the InetSysInfo
structure until the function completes. The information is held in the domain
name serverÕs database and it is often incomplete and inaccurate.
706 Functions

C H A P T E R 2 9

TCP/IP Services Reference
OTInetMailExchange 29

Returns mail-exchange-host names and preference information for a domain
name you specify.

C INTERFACE

OSStatus OTInetMailExchange (InetSvcRef ref,
char *name,
UInt16 *num,
InetMailExchange *mx);

C++ INTERFACE

OSStatus TInternetServices::MailExchange (char *name,
UInt16 *num,
InetMailExchange *mx);

PARAMETERS

ref The internet services reference you obtained when you opened
the TCP/IP service provider.

name A pointer to a host name, partially qualiÞed domain name, or
fully qualiÞed domain name for which you want mail exchange
information.

num A pointer to the number of elements in the array pointed to by
the mx parameter. When the function completes, it sets the
number pointed to by the num parameter to the actual number
of elements Þlled in.

mx A pointer to the Þrst element in an array of InetMailExchange
structures(page 691). You must allocate the structures in this
array.

function result A result code. See Appendix B for more information.
Functions 707

C H A P T E R 2 9

TCP/IP Services Reference
DISCUSSION

In order to deliver mail, a mail application must determine the fully qualiÞed
domain name of the host to which the mail should be sent. That host might be
the Þnal destination of the mail, a mail server, or a mail gateway. The domain
name system servers maintain mail-exchange resource records that pair
domain names with the hosts that can accept mail for that domain. Each
domain name can be paired with any number of host names; each record
containing such a pair also contains a preference number. The mailer sends the
mail to the host with the lowest preference number Þrst and tries the others in
turn until the mail is delivered or until the mailer decides that the mail is
undeliverable.

The OTInetMailExchange function returns mail-exchange host and preference
information for the domain name you specify. You must then determine the
address of the host and how best to deliver the mail.

If you call this function asynchronously, the TCP/IP service provider calls your
notiÞer function with the T_DNRMAILEXCHANGECOMPLETE completion event code
when the function completes. The cookie parameter to the notiÞer function
contains the array pointer you speciÞed in the mx parameter. If you had more
than one simultaneous outstanding call to the OTInetMailExchange function,
you can use this information to determine which call has completed execution.

SPECIAL CONSIDERATIONS

If you call this function asynchronously, do not modify the InetMailExchange
array until the function completes.

SEE ALSO

The InetMailExchange structure (page 691).

Internet mail routing and mail-exchange resource records are described in RFC
974: Mail Routing and the Domain System.

Retrieving DNS Query Information 29

This section describes the function that permits generic domain name service
(DNS) queries.
708 Functions

C H A P T E R 2 9

TCP/IP Services Reference
OTInetQuery 29

Executes a generic DNS query.

C INTERFACE

OSStatus OTInetQuery(InetSvcRef ref,
char* name,
UInt16 qClass,
UInt16 qType,
char* buf,
size_t buflen,
void** argv,
size_t argvlen,
OTFlags flags);

C++ INTERFACE

OSStatus TInternetServices::Query(char* name,
UInt16 qClass,
UInt16 qType,
char* buf,
size_t buflen,
void** argv,
size_t argvlen,
OTFlags flags)

PARAMETERS

ref The internet services reference you obtained when you opened
the TCP/IP service provider.

name A pointer to the fully qualiÞed domain name or IP address for
which you are issuing the query.

qClass The numeric value for the DNS resource record class, such as
Inet or Hesiod. 255 is a wildcard.

qType The numeric value for the DNS resource record type, such as
CNAME and PTR,. 255 is a wildcard.
Functions 709

C H A P T E R 2 9

TCP/IP Services Reference
buf A pointer to the buffer in which to store one or more DNS
query information structures (DNSQueryInfo). Open Transport
Þts as many complete structures into the buffer as it can;
incomplete structures are not returned.

buflen The size (in bytes) of the buffer.

argv A pointer to an empty pointer array that Open Transport uses
to return a set of pointers to the individual DNS query
information structures returned. This parameter is optional,
specify nil if you donÕt want to use this array.

argvlen The length of the argv buffer.

flags Reserved. Set to 0.

function result A result code. See Appendix B for more information.

DISCUSSION

The OTInetQuery function allows you to use the Domain Name Resolver (DNR)
for generic domain name service (DNS) queries. You can ask query any type
and class, and Open Transport returns as many responses as it can Þt in the
buffer you provide.

The argv and argvlen parameters are optional. If provided, Open Transport
uses the argv buffer to return pointers to the locations of individual
DNSQueryInfo structures written into the buffer pointed to by the buf parameter.
For example, if you set argvlen to 5 and your query receives three answers, the
value of argv[0] would be a pointer to the Þrst answer in the answer buffer, the
value of argv[1] would be a pointer to the second answer, the value of argv[2]
would be a pointer to the third answer, and the rest of the argv array would
have null pointers.

If you call OTInetQuery asynchronously, Open Transport calls your notiÞer with
a T_DNRQUERYCOMPLETE event when the call completes. When using
asynchronous mode, you must not modify the buf or argv structures before the
function completes.

The OTInetQuery function works with both known and unknown query classes
and types. Open Transport expands compressed answers for the Inet query
class and known query types before returning them into the answer buffer.
Answers that are resource records of unknown class and type are put into the
answer buffer unparsed because Open Transport assumes that DNS
compression is not used.
710 Functions

C H A P T E R 2 9

TCP/IP Services Reference
Open Transport provides simpliÞed functions for the most commonly made
queries such as name-to-address (A), address-to-name (PTR), system CPU and
OS (HINFO), and mail exchange (MX) queries. These are the
OTInetStringToAddress(page 700), OTInetAddressToName(page 701),
OTInetSysInfo(page 705), and OTInetMailExchange (page 707)functions,
respectively. The information obtained is the same using either type of
function, although in some cases the simpliÞed functions limit the maximum
number of answers that can be returned.

Currently, only answers of type PTR, A, and CNAME are cached by
OpenTransport. OpenTransport does not use this cached information to
resolve address-to-name translations because doing so would defeat server
load balancing schemes.

Address Utilities 29

The functions described in this section Þll in address structures and manipulate
domain name strings. They do not involve calls to the domain name resolver
and cannot be executed asynchronously.

OTInetGetInterfaceInfo 29

Returns internet address information about internet interfaces on the local host.

C INTERFACE

OSStatus OTInetGetInterfaceInfo (InetInterfaceInfo *info,
SInt32 val);

C++ INTERFACE

None. C++ clients use the C interface to this function.
Functions 711

C H A P T E R 2 9

TCP/IP Services Reference
PARAMETERS

info A pointer to an InetInterfaceInfo structure (page 688). You
must allocate this structure. The function Þlls in the structure
for the internet interface indicated by the val parameter.

val An index into the local hostÕs array of conÞgured IP interfaces.
Specify 0 for information about the Þrst interface. Specify
kDefaultInetInterface to get information about the primary
interface.

function result A result code. See Appendix B for more information.

DISCUSSION

Because the architecture of Open Transport TCP/IP provides for multihoming,
in principle a given host can receive packets simultaneously through more than
one network interface. For each IP interface conÞgured for the local host, the
OTInetGetInterfaceInfo function provides the internet address and subnet
mask, a default router (that is, a router , if any exists, that can be used to route
any packet to all destinations outside the locally connected subnet), and a
domain name server, if any is known. The function also returns the version
number of the OTInetGetInterfaceInfo function and, if available, the broadcast
address for each interface.

SPECIAL CONSIDERATIONS

If Open Transport TCP/IP has not yet been loaded into memory, the
OTInetGetInterfaceInfo function returns no valid interfaces. Open Transport
TCP/IP is not loaded until a TCP/IP application is running unless the user has
deselected Òload only when neededÓ in the TCP/IP control panel.

The OTInetGetInterfaceInfo function always completes immediately.

Open Transport does not currently support more than one IP interface.

SEE ALSO

The OTBind function (page 441).
712 Functions

C H A P T E R 2 9

TCP/IP Services Reference
OTInitInetAddress 29

Fills in an InetAddress structure with the data you provide.

C INTERFACE

void OTInitInetAddress (InetAddress *addr,
InetPort port,
InetHost host);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

addr A pointer to an InetAddress structure (page 685) that you
allocate. The function Þlls in this structure.

port The port number of the address.

host The IP address of the host.

DISCUSSION

This function copies the host parameter to the fHost Þeld of the InetAddress,
and the port parameter to the fPort Þeld.

This function also fills in the fAddressType Þeld of the InetAddress structure
with the value AF_INET. You use the InetAddress structure when providing a
TCP or UDP address to the Open Transport functions OTConnect(page 484),
OTSndURequest(page 469), and OTBind(page 441). You are not required to use the
OTInitInetAddress function when creating an InetAddress structure; this
function is provided for your convenience only.

SPECIAL CONSIDERATIONS

The OTInetInitInetAddress function cannot block and always runs
synchronously. It does not use the services of the DNR.
Functions 713

C H A P T E R 2 9

TCP/IP Services Reference
SEE ALSO

The OTInetStringToHost function (page 715).

OTInitDNSAddress 29

Fills in a DNSAddress structure with your data.

C INTERFACE

size_t OTInitDNSAddress (DNSAddress *addr,
char *str);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

addr A pointer to a DNSAddress structure (page 686)that you allocate.
The function Þlls in the fAddressType Þeld of the DNSAddress
structure with the value AF_DNS and Þlls in the structureÕs fName
Þeld with the address string you specify.

str A pointer to a domain name string.

function result The function returns the size of the resulting DNSAddress
structure as an unsigned integer.

DISCUSSION

You can use the DNSAddress structure to provide an address when you use a
UDP or TCP endpoint. If you do so, the domain name resolver resolves the
address for you automatically.

SPECIAL CONSIDERATIONS

The OTInetDNSAddress function cannot block and always runs synchronously. It
does not use the services of the DNR.
714 Functions

C H A P T E R 2 9

TCP/IP Services Reference
OTInetStringToHost 29

Converts an IP address string from dotted-decimal notation or hexadecimal
notation to an InetHost data type.

C INTERFACE

OSStatus OTInetStringToHost (char *str,
InetHost *host);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

str A pointer to a character string containing an IP address in
either dotted-decimal notation (for example, Ò12.13.14.15Ó) or
hexadecimal notation (for example, Ò0x0C0D0E0FÓ).

host A pointer to the address as an InetHost data type (page 683).

function result A result code. See Appendix B for more information.

SPECIAL CONSIDERATIONS

The OTInetStringToHost function cannot block and always runs synchronously.
It does not use the services of the DNR.

SEE ALSO

The OTInetHostToString function (described next).

OTInetHostToString 29

Converts an an address in InetHost format into a character string in
dotted-decimal notation.
Functions 715

C H A P T E R 2 9

TCP/IP Services Reference
C INTERFACE

void OTInetHostToString (InetHost host,
char *str);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

host The address as an InetHost data type(page 689).

str A pointer to a C stringthat , on return, contains an IP address in
dotted-decimal notation (for example, Ò12.13.14.15Ó). You must
allocate storage for this string and provide the pointer to the
function.

SPECIAL CONSIDERATIONS

The OTInetHostToString function cannot block and always runs synchronously.
It does not use the services of the DNR.

SEE ALSO

The OTInetStringToHost function (page 715).

Single Link Multi-Homing 29

You can use the OTInetGetSecondaryAddress function to determine the
secondary IP addresses supported for your machine.

OTInetGetSecondaryAddress 29

Returns the active secondary IP addresses.
716 Functions

C H A P T E R 2 9

TCP/IP Services Reference
C INTERFACE

void OTInetGetSecondaryAddress (InetHost* addr,
UInt32* count,
SInt32 index);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

addr A pointer to a buffer into which the secondary IP addresses are
placed when the function returns.

count The number of secondary IP address that must Þt in the buffer
referenced by the address parameter. You obtain this number by
examining the fIPSecondaryCount Þeld of the InetInterfaceInfo
structure (page 688).

index SpeciÞes the IP interface for which to obtain secondary
addresses. For the primary IP interface,the index is 0.

DISCUSSION

This function copies the supported secondary addresses associated with an IP
interface. The count parameter speciÞes how many secondary address to return
in the buffer referenced by the addr parameter. This buffer must be of the size
count * sizeof(InetAddr) to return all of the available addresses. Use the value
stored in the fIPSecondaryCount Þeld of the InetInterfaceInfo structure for the
count parameter. The OTInetGetSecondaryAddress function modifies the count
value to indicate that the number of secondary addresses actually returned is
less than the speciÞed number of secondary addresses.
Functions 717

C H A P T E R 2 9

TCP/IP Services Reference
718 Functions

C H A P T E R 3 0

Contents

Contents
Figure 30-0
Listing 30-0
Table 30-0
30 AppleTalk Reference
AppleTalk Addressing Reference 716
Constants and Data Types 716

Basic Constants 716
Address Format Constants 717
The DDP Address Structure 717
The NBP Address Structure 718
The Combined DDP-NBP Address Structure 719
The Multinode Address Structure 721
The NBP Entity Structure 722

AppleTalk Utility Functions 723
OTInitDDPAddress 723
OTInitNBPAddress 724
OTInitDDPNBPAddress 725
OTCompareDDPAddresses 726
OTInitNBPEntity 727
OTGetNBPEntityLengthAsAddress 728
OTSetAddressFromNBPEntity 729
OTSetNBPEntityFromAddress 730
OTSetAddressFromNBPString 732
OTSetNBPName 733
OTSetNBPType 734
OTSetNBPZone 735
OTExtractNBPName 736
OTExtractNBPType 737
OTExtractNBPZone 739

AppleTalk Service Provider Reference 740
Constants and Data Types 740
719

C H A P T E R 3 0
Completion Event Constants 740
The AppleTalk Information Structure 741

AppleTalk Service Functions 742
Opening an AppleTalk Service Provider 742

OTAsyncOpenAppleTalkServices 742
OTOpenAppleTalkServices 744

Obtaining Information About Zones 745
OTATalkGetMyZone 746
OTATalkGetLocalZones 747
OTATalkGetZoneList 748

Obtaining Information About Your AppleTalk Environment 749
OTATalkGetInfo 750

DDP Reference 751
Options 751

ADSP Reference 752
Options 752

ATP Reference 752
Options 752

PAP Reference 753
Options 753
720 Contents

C H A P T E R 3 0
AppleTalk Reference 30

This chapter provides reference information for AppleTalk providers and for
options used with AppleTalk endpoints.

AppleTalk Addressing Reference 30

This section describes the constants, data structures, and functions used with
AppleTalk protocol addresses.

Constants and Data Types 30

This section describes the constants and data types used for the address
formats that are recognized by AppleTalk endpoints: the DDP address
structure, the NBP address structure, the combined DDP-NBP address
structure, and the multinode address structure.

Basic Constants 30

You use the constants in this section to deÞne the length of AppleTalk
addresses and NBP name strings and to identify wildcards used in NBP names.

The constant kNBPEntityBufferSize speciÞes the maximum size of the NBP
name buffer, currently deÞned to be 105 bytes. This permits an NBP name
string whose name, type, and zone Þelds each contain the maximum 32
characters, plus 2 bytes for the separator characters (: and @) and 7 bytes for an
optional pad byte and 6 escape characters, which are indicated by the
backslash (\) followed by a colon (:), at sign (@), or another backslash. See ÒThe
NBP Address StructureÓ (page 723) and ÒThe Combined DDP-NBP Address
StructureÓ (page 724) for examples of its use.

enum {
kNBPMaxNameLength = 32,
kNBPMaxTypeLength = 32,
kNBPMaxZoneLength = 32,
kNBPSlushLength = 9, /* Extra space for @,:,escape chars */
kNBPMaxEntityLength = (kNBPMaxNameLength + kNBPMaxTypeLength +

kNBPMaxZoneLength + 3),
kNBPEntityBufferSize = (kNBPMaxNameLength + kNBPMaxTypeLength +
AppleTalk Addressing Reference 721

C H A P T E R 3 0

AppleTalk Reference
kNBPMaxZoneLength + kNBPSlushLength),
kNBPWildCard = 0x3D, /* NBP name and type match anything '=' */
kNBPImbeddedWildCard = 0xC5, /* NBP name and type match some '≈' */
kNBPDefaultZone = 0x2A, /* NBP default zone '*' */

kZIPMaxZoneLength = kNBPMaxZoneLength,

kDDPAddressLength = sizeof(DDPAddress),
kNBPAddressLength = kNBPEntityBufferSize,
kAppleTalkAddressLength = kDDPAddressLength + kNBPEntityBufferSize

};

Address Format Constants 30

You use the following constants to identify each AppleTalk address structure.

enum {
AF_ATALK_DDP = 0x0100,
AF_ATALK_DDPNBP = 0x0101,
AF_ATALK_NBP = 0x0102,
AF_ATALK_MNODE = 0x0103

};

Field descriptions
AF_ATALK_DDP DDP address type.
AF_ATALK_DDPNBP DDPNBP address type.
AF_ATALK_NBP NBP address type.
AF_ATALK_NNODE Multinode address type.

The DDP Address Structure 30

You use the DDP address format, speciÞed by the DDP address structure, to
identify the socket address for your endpoint. The DDP address structure is
deÞned by the DDPAddress data type.

struct DDPAddress
{

OTAddressType fAddressType;
UInt16 fNetwork;
722 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference
UInt8 fNodeID;
UInt8 fSocket;
UInt8 fDDPType;
UInt8 fPad;

};
typedef struct DDPAddress DDPAddress;

FIELD DESCRIPTIONS

fAddressType
A number that speciÞes the format of the address. For a DDP
address this is always the constant AF_ATALK_DDP.

fNetwork A 16-bit number in the range 0 to 65,534 that speciÞes the
network number. The network number 65,535 (all bits set to 1)
is reserved by Apple Computer, Inc. The network number 0
speciÞes the nodeÕs local network.

fNodeID An 8-bit number in the range from 0 to 255 that speciÞes the
node ID. A node ID of 255 is the broadcast address; a node ID of
0 speciÞes your own local node and is illegal other than
at bind time. For other values, refer to Inside AppleTalk,
second edition.

fSocket An 8-bit number in the range of 1 through 254 that speciÞes a
logical entity on your node. A socket number of 0 at bind time
instructs Open Transport to dynamically assign a socket
number. For other values, refer to Inside AppleTalk, second
edition.

fDDPType A number identifying the DDP type Þeld. Unless you are using
the DDP protocol directly, set this Þeld to 0. For additional
information see the chapter ÒDatagram Delivery Protocol
(DDP)Ó (page 303)and Inside AppleTalk, second edition.

fPad Reserved. Set to 0.

The NBP Address Structure 30

You use the NBP address format, speciÞed by the NBP address structure, to
identify the NBP name associated with your endpoint. The NBP address
structure is deÞned by the NBPAddress data type.
AppleTalk Addressing Reference 723

C H A P T E R 3 0

AppleTalk Reference
struct NBPAddress
{

OTAddressType fAddressType
UInt8 fNBPNameBuffer[kNBPEntityBufferSize];

};
typedef struct NBPAddress NBPAddress;

FIELD DESCRIPTIONS

fAddressType
A number that speciÞes the format of the address. For an NBP
address this is the constant AF_ATALK_NBP.

fNBPNameBuffer
An array of chars that speciÞes the buffer that holds the NBP
name string. The string speciÞes an endpoint name in the
format name:type@zone and is not null terminated. You can
precede colons (:), at signs (@), and backslash (\) characters
with a backslash if you want to include them as part of
the name.

The constant kNBPEntityBufferSize speciÞes the maximum size
of the buffer, currently deÞned to be 105 bytes. This permits a
string whose name, type, and zone Þelds each contain the
maximum 32 characters, plus 2 bytes for the separator
characters (: and @) and 7 bytes for an optional pad byte and 6
escape characters, which are indicated by the backslash (\)
followed by a colon (:), at sign (@), or another backslash.

The Combined DDP-NBP Address Structure 30

When you bind an endpoint you use the combined DDP-NBP address format,
speciÞed by the combined DDP-NBP address structure, to identify the socket
address and the NBP name associated with your endpoint. The combined
DDP-NBP address structure is deÞned by the DDPNBPAddress data type.

struct DDPNBPAddress
{

OTAddressType fAddressType;
UInt16 fNetwork;
UInt8 fNodeID;
724 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference

UInt8 fSocket;
UInt8 fDDPType;
UInt8 fPad;
UInt8 fNBPNameBuffer[kNBPEntityBufferSize];

};
typedef struct DDPNBPAddress DDPNBPAddress;

FIELD DESCRIPTIONS

fAddressType A number that speciÞes the format of the address. For a
DDPNBPAddress, this is always the constant AF_ATALK_DDPNBP.

fNetwork A 16-bit number in the range 0 to 65,534 that speciÞes the
network number. The network number 65,535 (all bits set to 1)
is reserved by Apple Computer, Inc. The network number 0
speciÞes the nodeÕs local network.

fNodeID An 8-bit number in the range from 0 to 255 that speciÞes the
node ID. A node ID of 255 is the broadcast address; a node ID of
0 speciÞes your own local node and is illegal other than
at bind time. For other values, refer to Inside AppleTalk,
second edition.

fSocket An 8-bit number in the range of 1 through 254 that speciÞes a
logical entity on your node. A socket number of 0 at bind time
instructs Open Transport to dynamically assign a socket
number. For other values, refer to Inside AppleTalk, second
edition.

fDDPType A number identifying the DDP type Þeld. Unless you are using
the DDP protocol directly, set this Þeld to 0. For additional
information see the chapter ÒDatagram Delivery Protocol
(DDP)Ó(page 303), and Inside AppleTalk, second edition.

fPad Reserved. Set to 0.

fNBPNameBuffer
An array of chars that speciÞes the buffer that holds the NBP
name string. The string speciÞes an endpoint name in the
format name:type@zone and is not null terminated. You can
precede colons (:), at signs (@), and backslash (\) characters
with a backslash if you want to include them as part of the
name.
AppleTalk Addressing Reference 725

C H A P T E R 3 0

AppleTalk Reference

The constant kNBPEntityBufferSize speciÞes the maximum size
of the buffer, currently deÞned to be 105 bytes. This permits a
string whose name, type, and zone Þelds each contain the
maximum 32 characters, plus 2 bytes for the separator
characters (: and @) and 7 bytes for an optional pad bytes and 6
escape characters, which are indicated by the backslash (\)
followed by a colon (:), at sign (@), or another backslash.

The Multinode Address Structure 30

You use the multinode address format, which also uses the DDP address
structure, to identify the socket address for a multinode endpoint. The DDP
address structure is deÞned by the DDPAddress data type, described in the
section ÒThe DDP Address StructureÓ (page 722).

struct DDPAddress
{

OTAddressType fAddressType;
UInt16 fNetwork;
UInt8 fNodeID;
UInt8 fSocket;
UInt8 fDDPType;
UInt8 fPad;

};
typedef struct DDPAddress DDPAddress;

FIELD DESCRIPTIONS

fAddressType A number that speciÞes the format of the address. For a
multinode address, this is always the constant
AF_ATALK_MNODE.This is the only way to distinguish the
multinode format from a DDP address.

fNetwork A 16-bit number in the range 0 to 65,534 that speciÞes the
network number. The network number 65,535 (all bits set to 1)
is reserved by Apple Computer, Inc. The network number 0
speciÞes the nodeÕs local network.
726 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference

fNodeID An 8-bit number in the range from 0 to 255 that speciÞes the
node ID. A node ID of 255 is the broadcast address; a node ID of
0 speciÞes your own local node and is illegal other than at bind
time. For other values, refer to Inside AppleTalk, second edition.

fSocket Ignored for multinode addresses.

fDDPType Ignored for multinode addresses.

fPad Reserved. Set to 0.

The NBP Entity Structure 30

You use an NBP entity to more conveniently manipulate NBP names because it
allows you to extract and set the NBP nameÕs three parts (name, type, and
zone) separately. Its use is optional under Open Transport, but it provides an
easier way to port programs written for classic AppleTalk. There are many
AppleTalk utility functions that transfer data between NBP entity structures
and NBP names.

The NBP entity structure is deÞned by the NBPEntity data type.

struct NBPEntity
{

UInt8 fEntity[kNBPMaxEntityLength];
};
typdef struct NBPEntity NBPEntity;

FIELD DESCRIPTIONS

fEntity An array of chars that speciÞes the NBP entity you wish to use
to hold the NBP name.

The NBP entity holds an NBP name as three packed Pascal
strings, three closely packed Pascal strings. The constant
kNBPMaxEntityLength specifies the maximum size of the buffer,
currently deÞned to be 99 bytes. This permits an NBP name
whose name, type, and zone contain the maximum 32
characters each plus a length byte. The NBP entity itself does
not contain quoted escape characters, but the NBP entity
extraction functions add them as necessary when converting
NBP name strings from NBP entities.
AppleTalk Addressing Reference 727

C H A P T E R 3 0

AppleTalk Reference

AppleTalk Utility Functions 30

This section describes AppleTalk utility functions that initialize DDP and NBP
data structures, compare DDP addresses, and transfer data between NBP
entities and NBP names.

OTInitDDPAddress 30

Initializes a DDP address structure.

C INTERFACE

size_t OTInitDDPAddress(DDPAddress* address,
UInt16 net,
UInt8 node,
UInt8 socket,
UInt8 ddpType);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

address A pointer to the DDP address structure (page 722) you wish to
initialize.

net The network number you wish to specify. Set to 0 to default to
the local network.

node The node ID you wish to specify. Set to 0 to default to the
local node.

socket The socket number you wish to specify. Set to 0 to allow Open
Transport to assign a socket dynamically when you use this
address to bind an endpoint.

ddpType The DDP type you wish to specify. Set to 0 unless you are
using DDP.
728 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference

function result The size of the NBP address structure.

SEE ALSO

The OTInitNBPAddress function (page 729).

The OTInitDDPNBPAddress function (page 730).

ÒDatagram Delivery ProtocolÓ (page 303).

OTInitNBPAddress 30

Initializes an NBP address structure.

C INTERFACE

size_t OTInitNBPAddress(NBPAddress* address,
const char* name);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

address A pointer to the NBP address structure (page 723) you wish to
initialize.

name A pointer to the NBP string you wish to use for the NBP name.

function result The size of the NBP address structure.

DISCUSSION

The OTInitNBPAddress function can be used to initialize an NBP address
structure with the NBP name speciÞed in the name parameter, which is assumed
to already be in the correct string formatÑthat is, name:type@zone, with special
characters quoted.The function returns the size of the NBP address structure,
AppleTalk Addressing Reference 729

C H A P T E R 3 0

AppleTalk Reference

which is the size of the fAddressType Þeld plus the length of the string in the
name parameter.

SEE ALSO

The OTInitDDPAddress function (page 728).

The OTInitDDPNBPAddress function (page 730).

OTInitDDPNBPAddress 30

Initializes a combined DDP-NBP address structure.

C INTERFACE

size_t OTInitDDPNBPAddress(DDPNBPAddress* address,
const char* name,
UInt16 net, UInt8 node,
UInt8 socket, UInt8 ddpType);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

address A pointer to the combined DDP-NBP address structure
(page 724) you wish to initialize.

name A pointer to the NBP string you wish to use for the NBP name.

net The network number you wish to specify. Set to 0 to default to
the local network.

node The node ID you wish to specify. Set to 0 to default to the
local node.
730 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference

socket The socket number you wish to specify. Set to 0 to allow Open
Transport to assign a socket dynamically when you use this
address to bind an endpoint.

ddpType The DDP type you wish to specify. Set to 0 unless you are
using DDP.

function result The size of the combined DDP-NBP address structure.

DISCUSSION

The OTInitDDPNBPAddress function initializes a combined DDP-NBP address
structure with the data provided in the parameters: NBP name, network
number, node ID, socket number, and DDP type. The function returns the total
size of the address structure, which is the length of the name parameter plus the
size of a DDPAddress structure.

SEE ALSO

The OTInitNBPAddress function (page 729).

The OTInitDDPAddress function (page 728).

ÒDatagram Delivery Protocol (DDP)Ó (page 303).

OTCompareDDPAddresses 30

Compares two DDP address structures.

C INTERFACE

Boolean OTCompareDDPAddresses(const DDPAddress* addr1,
const DDPAddress* addr2);

C++ INTERFACE

None. C++ applications use the C interface to this function.
AppleTalk Addressing Reference 731

C H A P T E R 3 0

AppleTalk Reference
PARAMETERS

addr1 A pointer to one of the DDP address structures you wish
to compare.

addr2 A pointer to the second DDP address structure you wish
to compare.

function result A value of true means the two addresses match.

DISCUSSION

The OTCompareDDPAddresses function compares two DDP addresses for equality
and returns true if the two addresses match. It cannot compare NBP or
combined DDP-NBP addresses; using these address types always returns
false. This function uses the zero-matches-anything AppleTalk rule when
doing the matching, which means that a value of 0 in any Þeld results in an
acceptable match (except for the node Þeld, which must match exactly).

OTInitNBPEntity 30

Initializes an NBP entity structure.

C INTERFACE

void OTInitNBPEntity(NBPEntity* nbpEntity);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity structure (page 727) you wish to
initialize.
732 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference
DISCUSSION

The OTInitNBPEntity function initializes an NBP entity structure, setting the
name, type and zone parts of an NBP name to empty strings.

To store the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTSetNBPType function (page 739), the OTSetNBPType function
(page 739), and the OTSetNBPZone function (page 740), respectively.

OTGetNBPEntityLengthAsAddress 30

Obtains the size an NBP entity structure would be if it were formatted as a
string.

C INTERFACE

size_t OTGetNBPEntityLengthAsAddress(const NBPEntity* nbpEntity);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity structure (page 727) you wish to
determine the length of.

function result The size of an NBP entity structure.

DISCUSSION

The OTGetNBPEntityLengthAsAddress function obtains the number of bytes
needed to store an NBP entity structure into the name part of an NBP or
combined DDP-NBP address structure.

To store an NBP entity structure as an NBP address string, use the
OTSetAddressFromNBPEntity function (page 734).
AppleTalk Addressing Reference 733

C H A P T E R 3 0

AppleTalk Reference
SPECIAL CONSIDERATIONS

Use this function to determine the appropriate buffer size for an NBP entity
before using the OTSetAddressFromNBPEntity function.

SEE ALSO

ÒThe NBP Address StructureÓ (page 723).

ÒThe Combined DDP-NBP Address StructureÓ (page 724).

OTSetAddressFromNBPEntity 30

Stores an NBP entity structure as an NBP address string.

C INTERFACE

size_t OTSetAddressFromNBPEntity(UInt8* nameBuf,
const NBPEntity* entity);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

nameBuf A pointer to a stroing in which you wish to store the NBP
entity, formatted as a string.

entity A pointer to the NBP entity (page 727) you wish to store.

function result The number of bytes that were actually stored in the buffer
referenced by the nameBuf parameter.

DISCUSSION

The OTSetAddressFromNBPEntity function stores the information in the NBP
entity into the string speciÞed by the nameBuf parameter in the format required
for mapper callsÑthat is, if you have a backslash (\), a colon (:), or an at-sign
734 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference
(@) in your NBP name, this function inserts a backslash before each so that the
mapper functions can handle them correctly.

To determine the appropriate buffer size for this call, use the
OTGetNBPEntityLengthAsAddress function (page 733).

To parse and store all or part of an NBP name into an NBP entity, use the
OTSetNBPEntityFromAddress function (page 735).

SPECIAL CONSIDERATIONS

Use the OTGetNBPEntityLengthAsAddress function beforehand to determine the
appropriate buffer size.

SEE ALSO

ÒThe NBP Address StructureÓ (page 723).

OTSetNBPEntityFromAddress 30

Parses and stores an NBP address (ÒNBP AddressÓ or ÒDDPNBPAddressÓ) into
an NBP entity.

C INTERFACE

Boolean OTSetNBPEntityFromAddress(NBPEntity* entity,
const UInt8* addrBuf,
size_t len);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity (page 727) in which you wish to
store the address.
AppleTalk Addressing Reference 735

C H A P T E R 3 0

AppleTalk Reference
addrBuf A pointer to the address buffer from which to get the NBP
name string.

len The number of characters in the address buffer

function result A value of true means the function succeeded. See Discussion.

DISCUSSION

The OTSetNBPEntityFromAddress function parses the string part of an NBP
address or a combined DDP-NBP address into the NBP nameÕs constituent
parts (name, type, and zone) and stores the result in an NBP entity. The
function ignores the DDP address part of a combined DDP-NBP address. From
the NBP entity, each of the constituent parts of the name can later be retrieved
or changed.

This function returns true if it worked successfully; it returns false if it had to
truncate any dataÑthat is, if the address had data that was too long in one of
the Þelds, each of which only holds 32 characters of data. When this occurs, the
function still stores the data, but in a truncated form.

To copy the contents of an NBP entity into an NBP address structure, use the
OTSetAddressFromNBPEntity function (page 734).

To determine the appropriate buffer size for an NBP entity, use the
OTGetNBPEntityLengthAsAddress function (page 733).

To store the NBP name in an NBP entity, use the OTSetNBPName function
(page 738); to store the NBP type, use the OTSetNBPType function (page 739); and
to store the NBP zone, use the OTSetNBPZone function (page 740).

To extract the name portion of an NBP name from an NBP entity, use the
OTExtractNBPName function (page 741); to extract the type portion of an NBP
name, use the OTExtractNBPType function (page 742); and to extract the zone
portion, use the OTExtractNBPZone function (page 744).

SEE ALSO

ÒThe NBP Address StructureÓ (page 723).

ÒThe Combined DDP-NBP Address StructureÓ (page 724).
736 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference
OTSetAddressFromNBPString 30

Copies an NBP name string into an NBP address buffer.

C INTERFACE

size_t OTSetAddressFromNBPString(UInt8* addrBuf,
const char* nbpName,
SInt32 len);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

addrBuf A pointer to the NBP address buffer in which to store the NBP
name string.

nbpName A pointer to the NBP name string you wish to copy into the
buffer.

len The number of characters to copy. Specify -1 to copy all the
characters in the string up to a null terminator. Use -1 to copy
the entire string.

function result The number of bytes actually copied.

DISCUSSION

The OTSetAddressFromNBPString function copies the string indicated by the
nbpName parameter into the buffer indicated by the addrBuf parameter. The len
parameter indicates the number of characters to copy. A value of -1 copies the
entire nbpName string.

To copy the contents of an NBP entity into an NBP address structure, use the
OTSetAddressFromNBPEntity function (page 734).

The nbpName parameter must have a Ò\Ó in front of all the special characters.
AppleTalk Addressing Reference 737

C H A P T E R 3 0

AppleTalk Reference
SEE ALSO

ÒThe NBP Address StructureÓ (page 723).

OTSetNBPName 30

Set the name part of an NBP entity structure.

C INTERFACE

Boolean OTSetNBPName(NBPEntity* entity,
const char* name);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

nbpEntity A pointer to the NBP entity structure (page 727) in which you
wish to set the name .

name A pointer to the name portion of an NBP name string that you
wish to store. Special characters must be quoted.

function result See Discussion.

DISCUSSION

The OTSetNBPName function stores the NBP name speciÞed by the name
parameter into the NBP entity structure indicated by the entity parameter,
deleting any previous name stored there. This function returns false if the name
parameter is longer than the maximum allowed for a name part of an NBP
name (32 characters).

To store the type and zone parts of an NBP name in an NBP entity structure,
use the OTSetNBPType function (page 739) and the OTSetNBPZone function
(page 740), respectively.
738 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference
To extract the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTExtractNBPName function (page 741), the OTExtractNBPType
function (page 742), and the OTExtractNBPZone function (page 744), respectively.

SPECIAL CONSIDERATIONS

Backslashes in front of special characters will be removed. The function
OTSetAddressFromNBPEntity will automatically insert them for mapper calls.

SEE ALSO

ÒThe NBP Address StructureÓ (page 723).

OTSetNBPType 30

Set the type part of an NBP entity structure.

C INTERFACE

Boolean OTSetNBPType(NBPEntity* entity,
const char* typeVal);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

entity A pointer to the NBP entity structure (page 727) in which you
wish to set the type.

type A pointer to the type portion of an NBP name string that you
wish to store. Special characters must be quoted.

function result The function returns false if the type parameter is longer than
the maximum allowed for type part of an NBP name (32
characters).
AppleTalk Addressing Reference 739

C H A P T E R 3 0

AppleTalk Reference
DISCUSSION

The OTSetNBPType function stores the NBP type speciÞed by the typeVal
parameter into the NBP entity structure indicated by the entity parameter,
deleting any previous type stored there. To store the name and zone parts of an
NBP name in an NBP entity structure, use the OTSetNBPName function (page 738)
and the OTSetNBPZone function (page 740), respectively.

To extract the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTExtractNBPName function (page 741), the OTExtractNBPType
function (page 742), and the OTExtractNBPZone function (page 744), respectively.

SPECIAL CONSIDERATIONS

Backslashes in front of special characters will be removed. The function
OTSetAddressFromNBPEntity will automatically insert them for mapper calls.

SEE ALSO

ÒThe NBP Address StructureÓ (page 723).

OTSetNBPZone 30

Set the zone part of an NBP entity structure.

C INTERFACE

Boolean OTSetNBPZone(NBPEntity* entity,
const char* zone);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

entity A pointer to the NBP entity structure (page 727) in which you
wish to set the zone.
740 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference
zone A pointer to the zone portion of an NBP name string that you
wish to store. Special characters must be quoted.

function result This function returns false if the zone parameter is longer than
the maximum allowed for zone part of an NBP name (32
characters).

DISCUSSION

The OTSetNBPZone function stores the NBP zone speciÞed by the zone parameter
into the NBP entity structure indicated by the entity parameter, deleting any
previous zone stored there. To store the name and type parts of an NBP name
in an NBP entity structure, use the OTSetNBPName function (page 738) and the
OTSetNBPType function (page 739), respectively.

To extract the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTExtractNBPName function (page 741), the OTExtractNBPType
function (page 742), and the OTExtractNBPZone function (page 744), respectively.

SPECIAL CONSIDERATIONS

Backslashes in front of special characters will be removed. The function
OTSetAddressFromNBPEntity will automatically insert them for mapper calls.

SEE ALSO

ÒThe NBP Address StructureÓ (page 723).

OTExtractNBPName 30

Extracts the name part of an NBP name from an NBP entity structure.

C INTERFACE

void OTExtractNBPName(const NBPEntity* entity,
char* name);
AppleTalk Addressing Reference 741

C H A P T E R 3 0

AppleTalk Reference
C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

entity A pointer to the NBP entity structure (page 727) from which
you wish to extract the name.

name A pointer to the string buffer in which to store the name portion
of an NBP name string that you wish to extract from the
NBP entity.

DISCUSSION

The OTExtractNBPName function extracts the name part of an NBP name from the
speciÞed NBP entity structure and stores it into the string buffer speciÞed by
the name parameter.

To store the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTSetNBPName function (page 738), the OTSetNBPType function
(page 739), and the OTSetNBPZone function (page 740), respectively.

To extract the type and zone parts of an NBP name in an NBP entity structure,
use the OTExtractNBPType function (page 742) and the OTExtractNBPZone
function (page 744), respectively.

SEE ALSO

ÒThe NBP Address StructureÓ (page 723).

OTExtractNBPType 30

Extracts the type part of an NBP entity structure.

C INTERFACE

void OTExtractNBPType(const NBPEntity* entity,
char* typeVal);
742 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference
C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

entity A pointer to the NBP entity structure (page 727) from which
you wish to extract the type.

typeVal A pointer to the string buffer in which to store the type portion
of an NBP name string that you wish to extract from the
NBP entity.

DISCUSSION

The OTExtractNBPType function extracts the type part of an NBP name from the
speciÞed NBP entity structure and stores it into the string buffer speciÞed by
the type parameter.

To store the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTSetNBPName function (page 738), the OTSetNBPType function
(page 739), and the OTSetNBPZone function (page 740), respectively.

To extract the name and zone parts of an NBP name in an NBP entity structure,
use the OTExtractNBPName function (page 741) and the OTExtractNBPZone
function (page 744), respectively.

Note
If the name parameter passed to the function OTSetNBPName
contains a backslash, the result in the name parameter
passed to the function OTExtractNBPName will not be the
same, because the backslash is stripped by the function
OTSetNBPName and is not re-added by the function
OTExtractNBPName. ◆

SEE ALSO

ÒThe NBP Address StructureÓ (page 723).
AppleTalk Addressing Reference 743

C H A P T E R 3 0

AppleTalk Reference
OTExtractNBPZone 30

Extracts the zone part of an NBP name from an NBP entity structure.

C INTERFACE

void OTExtractNBPZone(const NBPEntity* entity,
char* zone);

C++ INTERFACE

None. C++ applications use the C interface to this function.

PARAMETERS

entity A pointer to the NBP entity structure (page 727) from which
you wish to extract the zone.

zone A pointer to the string buffer in which to store the zone portion
of an NBP name string that you wish to extract from the NBP
entity.

DISCUSSION

The OTExtractNBPZone function extracts the zone part of an NBP name from the
speciÞed NBP entity structure and stores it into the string buffer speciÞed by
the zone parameter.

To store the name, type, and zone parts of an NBP name in an NBP entity
structure, use the OTSetNBPName function (page 738), the OTSetNBPType function
(page 739), and the OTSetNBPZone function (page 740), respectively.

To extract the name and type parts of an NBP name in an NBP entity structure,
use the OTExtractNBPName function (page 741) and the OTExtractNBPType
function (page 742) , respectively.
744 AppleTalk Addressing Reference

C H A P T E R 3 0

AppleTalk Reference
Note
If the name parameter passed to the function OTSetNBPName
contains a backslash, the result in the name parameter
passed to the function OTExtractNBPName will not be the
same, because the backslash is stripped by the function
OTSetNBPName and is not re-added by the function
OTExtractNBPName. ◆

SEE ALSO

ÒThe NBP Address StructureÓ (page 723).

AppleTalk Service Provider Reference 30

This section describes the data structures and functions that are speciÞc to the
AppleTalk service provider.

Constants and Data Types 30

This section describes the events you can receive with the notiÞer function you
provide for your AppleTalk service provider. It also describes the
AppleTalkInfo data type, which is a structure used by the AppleTalk service
provider to return information about your current AppleTalk environment.

To open an AppleTalk service provider, you specify the constant
kDefaultAppleTalkServicesPath as the cfig parameter for the open provider
functions, OTAsyncOpenAppleTalkServices and OTOpenAppleTalkServices.

#define kDefaultAppleTalkServicesPath ((OTConfiguration*)-3)

Completion Event Constants 30

As with all Open Transport providers, when you call AppleTalk service
provider functions asynchronously, Open Transport signals the functionÕs
completion by calling the notiÞer function you installed for your provider with
a completion event. The prototype for the notiÞer function is the same as for
the notiÞer you use for your endpoint providers.
AppleTalk Service Provider Reference 745

C H A P T E R 3 0

AppleTalk Reference
This list gives the completion events that Open Transport returns for each of
the AppleTalk service provider functions:

The AppleTalk Information Structure 30

You use the AppleTalk information structure to obtain information about the
current AppleTalk environment for the node on which your application is
running. The AppleTalk information structure is deÞned by the AppleTalkInfo
data type.

struct AppleTalkInfo {
DDPAddress fOurAddress;
DDPAddress fRouterAddress;
UInt16 fCableRange[2];
UInt16 fFlags;

};

Field descriptions
fOurAddress The network number and node ID of your node.

fRouterAddress The network number and node ID of the closest router on
your network.

fCableRange A two-element array indicating the Þrst and last network
numbers for the current extended network to which the
machine is connected. For nonextended networks, this
returns the name of the zone.

Event constant Value Function completed

T_OPENCOMPLETE 0x20000007 OTAsyncOpenAppleTalkServices

T_GETMYZONECOMPLETE 0x23010001 OTATalkGetMyZone

T_GETLOCALZONESCOMPLETE 0x23010002 OTATalkGetLocalZones

T_GETZONELISTCOMPLETE 0x23010003 OTATalkGetZoneList

T_GETATALKINFOCOMPLETE 0x23010004 OTATalkGetInfo
746 AppleTalk Service Provider Reference

C H A P T E R 3 0

AppleTalk Reference
Flags A set of ßag bits that describe the network:

SEE ALSO

Use the OTATalkGetInfo function (page 755) to obtain the AppleTalkInfo data.

AppleTalk Service Functions 30

You use the AppleTalk service provider functions to open an AppleTalk service
provider, and to obtain information about zones and about the network to
which your node is connected.

Opening an AppleTalk Service Provider 30

Before you can call AppleTalk service provider functions, you must open an
AppleTalk service provider by calling the OTAsyncOpenAppleTalkServices
function or the OTOpenAppleTalkServices function.

OTAsyncOpenAppleTalkServices 30

Opens an asynchronous AppleTalk service provider.

Flag Value Description

kATalkInfoIsExtended 0x0001 The current network is an
extended network.

kATalkInfoHasRouter 0x0002 There is a router on the same
network as this machine.

kATalkInfoOneZone 0x0004 This network has only one zone.
AppleTalk Service Provider Reference 747

C H A P T E R 3 0

AppleTalk Reference
C INTERFACE

OSStatus OTAsyncOpenAppleTalkServices(OTConfiguration* cfig,
OTOpenFlags flags,
OTNotifyProcPtr proc,
void* contextPtr);

C++ INTERFACE

None. C++ clients use the C interface to this function.

PARAMETERS

cfig A pointer to a conÞguration structure that speciÞes the
AppleTalk service providerÕs characteristics. You can obtain this
pointer by using the constant kDefaultAppleTalkServicesPath
for this parameter. This directs Open Transport to create an
AppleTalk service provider on the default hardware port,
which is the one selected in the AppleTalk control panel.

flags Reserved. Set to 0.

proc A pointer to your notiÞer function. Open Transport returns an
AppleTalk service provider reference in your notiÞerÕs cookie
parameter.

contextPtr A pointer for your use. The AppleTalk service provider passes
this value unchanged to your notiÞer function.

function result See Discussion.

DISCUSSION

The OTAsyncOpenAppleTalkServices function opens an AppleTalk service
provider and gives you a unique AppleTalk service provider reference for it.
This function sets the mode of the AppleTalk service provider as asynchronous.

If you call this function, you must provide a pointer to a notiÞer function that
Open Transport can call to notify you that the function has completed and to
return other information that you might need.

When the OTAsyncOpenAppleTalkServices operation completes, Open Transport
calls the notiÞer function identiÞed in the proc parameter. Open Transport
748 AppleTalk Service Provider Reference

C H A P T E R 3 0

AppleTalk Reference
passes an AppleTalk service provider reference in your notiÞerÕs cookie
parameter and passes the T_OPENCOMPLETE completion event as the event code.
The reference value identiÞes the AppleTalk service provider that you have
opened, and you need to supply it as a parameter when you call any AppleTalk
service provider function.

To close the AppleTalk service provider, call the OTCloseProvider function,
described in the chapter ÒProviders ReferenceÓ in this book.

SPECIAL CONSIDERATIONS

When you no longer need to use AppleTalk service provider functions, you
must call the generic Open Transport function OTCloseProvider(page 392).

SEE ALSO

The OTOpenAppleTalkServices function (page 749).

OTOpenAppleTalkServices 30

Opens a synchronous AppleTalk service provider.

C INTERFACE

ATSvcRef OTOpenAppleTalkServices(OTConfiguration* cfig,
OTOpenFlags flags,
OSStatus* err);

C++ INTERFACE

None. C++ clients use the C interface to this function.
AppleTalk Service Provider Reference 749

C H A P T E R 3 0

AppleTalk Reference
PARAMETERS

cfig A pointer to a conÞguration structure that speciÞes the
AppleTalk service providerÕs characteristics. You can obtain this
pointer by using the constant kDefaultAppleTalkServicesPath
for this parameter. This directs Open Transport to create an
AppleTalk service provider on the default hardware port,
which is the one selected in the AppleTalk control panel.

flags Reserved. Set to 0.

err A pointer to a variable of type OSStatus that holds the result
code for this function. A value of 0 (kOTNoErr) indicates
successful completion.

function result See Discussion.

DISCUSSION

The OTOpenAppleTalkServices function opens an AppleTalk service provider
and gives you a unique AppleTalk service provider reference for it. This
function also sets the mode of all the AppleTalk service provider to
synchronous.

SPECIAL CONSIDERATIONS

When you no longer need to use AppleTalk service provider functions, you
must call the generic Open Transport function OTCloseProvider(page 392).

SEE ALSO

The OTAsyncOpenAppleTalkServices function (page 747).

Obtaining Information About Zones 30

You use the functions described in this section to obtain the name of one or
more zones. You can get the zone name of the node on which your application
is running, or if your application is running on a node that belongs to an
extended network, you can get the names of all zones in the nodeÕs local
network or the names of all zones on the AppleTalk internet.
750 AppleTalk Service Provider Reference

C H A P T E R 3 0

AppleTalk Reference
OTATalkGetMyZone 30

Obtains the AppleTalk zone name of the node on which your application
is running.

C INTERFACE

OSStatus OTATalkGetMyZone(ATSvcRef ref,
TNetbuf* zone);

C++ INTERFACE

TAppleTalkServices::GetMyZone(TNetbuf* zone)

PARAMETERS

ref The reference value of your AppleTalk service provider.

zone A TNetbuf structure that, on return, contains your applicationÕs
AppleTalk local zone name.

function result A result code. See Appendix B for more information.

DISCUSSION

The OTATalkGetMyZone function returns the name of your applicationÕs
AppleTalk zone (as a Pascal string) in the buffer referenced by the zone
parameter. The string can be up to 32 characters in length, so with the addition
of a length byte, the buffer can have a maximum size of 33 bytes.

If you call this function asynchronously, Open Transport calls your
applicationÕs notiÞer with a T_GETMYZONECOMPLETE completion event to signal the
functionÕs completion and uses your notiÞerÕs cookie parameter for the zone
name. More precisely, the cookie parameter points to a TNetbuf structure that in
turn points to a buffer containing the zone name.
AppleTalk Service Provider Reference 751

C H A P T E R 3 0

AppleTalk Reference
Note
Using a Pascal string for the zone name is redundant since
you can determine the length of the string from the len
Þeld of the TNetbuf structure, but the other zone-related
calls use Pascal strings, so this call also uses them for
consistency. ◆

SEE ALSO

The OTATalkGetLocalZones function (page 752).

The OTATalkGetZoneList function (page 753).

OTATalkGetLocalZones 30

Obtains a list of the zones available on your network.

C INTERFACE

OSStatus OTATalkGetLocalZones(ATSvcRef ref,
TNetbuf* zones);

C++ INTERFACE

TAppleTalkServices::GetLocalZones(TNetbuf* zones);

PARAMETERS

ref The reference value of your AppleTalk service provider.

zones A TNetbuf structure that, on return, contains a list of the local
zone names.

function result See Discussion.
752 AppleTalk Service Provider Reference

C H A P T E R 3 0

AppleTalk Reference
DISCUSSION

The OTATalkGetLocalZones function returns a list of the zone names in your
applicationÕs network if it is an extended network. These are all the zones to
which your node can belong. If your application is in a nonextended network,
this function returns only one zone name, the same one returned by the
OTATalkGetMyZone function.

If you execute this function asynchronously, Open Transport calls your notiÞer
function with a T_GETLOCALZONESCOMPLETE completion event to signal the
functionÕs completion and uses your notiÞerÕs cookie parameter for the list of
zones. The cookie parameter actually holds a pointer to a TNetbuf structure,
which points to a buffer containing a list of zone names, stored as packed
Pascal strings.

Each string can be up to 32 characters in length, and if you add a length byte,
each can have a maximum size of 33 bytes. As there can be a maximum of 254
zones on an extended network, the maximum size of the buffer is 8382 bytes.
Because zone names are often less than 32 characters long and are packed. 6 KB
bytes is likely to be a safe value for the bufferÕs size.

SEE ALSO

The OTATalkGetMyZone function (page 751).

The OTATalkGetZoneList function (page 753).

OTATalkGetZoneList 30

Obtains a list of all the zones available on the AppleTalk internet.

C INTERFACE

OSStatus OTATalkGetZoneList(ATSvcRef ref,
TNetbuf* zones);

C++ INTERFACE

TAppleTalkServices::GetZoneList(TNetbuf* zones);
AppleTalk Service Provider Reference 753

C H A P T E R 3 0

AppleTalk Reference
PARAMETERS

ref The reference value of your AppleTalk service provider.

zones A pointer to a TNetbuf structure that you use to get a list of all
the zones on your current AppleTalk internet.

function result A result code. See Appendix B for information.

DISCUSSION

The OTATalkGetZoneList function returns a list of all the zones on the AppleTalk
internet to which your network belongs.

If you execute this function asynchronously, Open Transport calls your notiÞer
function with a T_GETZONELISTCOMPLETE completion event to signal the
functionÕs completion and uses your notiÞerÕs cookie parameter for the list of
zones. The cookie parameter actually holds a pointer to a TNetbuf structure,
which points to a buffer containing a list of zone names, each of which is a
Pascal string.

Each string can be up to 32 characters in length, and if you add a length byte,
each can have a maximum size of 33 bytes. As AppleTalk internets can have a
number of extended networks, you need to allocate a buffer that holds as much
as 64 KB of memory. To keep the buffer size as small and efÞcient as possible,
you can set up a large buffer, test for the kOTBufferOverflowErr error, and then
increase the size of the buffer and reissue the call if this error is returned.

SEE ALSO

The OTATalkGetMyZone function (page 751).

The OTATalkGetLocalZones function (page 752).

Obtaining Information About Your AppleTalk Environment 30

The OTATalkGetInfo function provides information about the current AppleTalk
environment for your node. This information is very important if you conÞgure
a network and need to determine that each machine on that network is
appropriately incorporated and that trafÞc on the network is ßowing as
planned.
754 AppleTalk Service Provider Reference

C H A P T E R 3 0

AppleTalk Reference
OTATalkGetInfo 30

Obtains information about the AppleTalk environment for a given node.

C INTERFACE

OSStatus OTATalkGetInfo(ATSvcRef ref,
TNetbuf* info);

C++ INTERFACE

TAppleTalkServices::GetInfo(TNetbuf* info);

PARAMETERS

ref The reference value of your AppleTalk service provider.

info A pointer to a TNetbuf structure that, on return, contains
information about your current AppleTalk environment. You
should allocate the buffer referenced by this structure using the
AppleTalkInfo type, and you should set the buffer size using
sizeof(AppleTalkInfo).

function result A result code. See Appendix B for more information.

DISCUSSION

The OTATalkGetInfo function returns the information contained in the
AppleTalkInfo data structure that describes your current AppleTalk
environment. This includes your network number and node ID, the network
number and node ID of a local router, and the current network range for the
extended network to which the machine is connected.

If you execute this function asynchronously, Open Transport calls your notiÞer
with a T_GETATALKINFOCOMPLETE completion event to signal the functionÕs
completion and uses your notiÞerÕs cookie parameter for the AppleTalk
information. The cookie parameter actually holds a pointer to the info
parameter, which points in turn to a buffer containing the AppleTalkInfo
structure. The maximum size of this buffer is the size of the AppleTalk
information structure.
AppleTalk Service Provider Reference 755

C H A P T E R 3 0

AppleTalk Reference
If the machine is multihomedÑthat is, if multiple network numbers and node
numbers are associated with the same machineÑthe OTATalkGetInfo function
returns information about the node whose network number and node ID are
selected in the AppleTalk control panel.

The AppleTalkInfo data structure is described in the section ÒConstants and
Data TypesÓ (page 745).

DDP Reference 30

This section describes the options that are speciÞc to DDP, deÞnes the constant
you use to specify the DDP protocol for option management functions, and
indicates the generic Open Transport options you can use with DDP.

Options 30

In order to use any option with DDP, you must indicate which protocol the
option is intended for. To do this, you use a constant for the DDP protocol in
the level Þeld of the TOption structure(page 572) when you specify an option.

#define ATK_DDP 'DDP '

DDP has one DDP-speciÞc option, DDP_OPT_SRCADDR, that sets the source
address for outgoing packets.

#define DDP_OPT_SRCADDR 0x2101

A multinode endpoint must use the DDP_OPT_SRCADDR option to specify the
source address for outgoing packets on a per-packet basis. This option cannot
be used with the OTOptionManagement function(page 575). The optionÕs value
must be a DDP address structure using the AF_ATALK_DDP address format. The
source network number, node number, and source socket are taken from the
DDP address.

This option is most often used in conjuction with a multinode endpoint, but it
can also be used on normal endpoints.
756 DDP Reference

C H A P T E R 3 0

AppleTalk Reference
DDP also allows you to use the generic Open Transport options OPT_SELFSEND
and OPT_CHECKSUM, which are described in the chapter ÒOption ManagementÓ in
this book.

ADSP Reference 30

This section deÞnes the constant you use to specify the ADSP protocol for
option management functions and indicates the generic Open Transport
options you can use with ADSP.

Options 30

In order to use any option with ADSP, you must indicate which protocol the
option is intended for. To do this, you use a constant for the ADSP protocol in
the level Þeld of the TOption structure (page 572) when you specify an option.

#define ATK_ADSP 'ADSP '

ADSP also allows you to use the OPT_ENABLEEOM and the OPT_CHECKSUM options,
which are described in ÒThe End-of-Message OptionÓ (page 317) and in ÒThe
Checksum OptionÓ (page 318).

ATP Reference 30

This section describes the options that are speciÞc to ATP, deÞnes the constant
you use to specify the ATP protocol for option management functions, and
indicates the generic Open Transport options you can use with ATP.

Options 30

There are several ATP-speciÞc options, which are deÞned as the following:
ADSP Reference 757

C H A P T E R 3 0

AppleTalk Reference
#define ATP_OPT_REPLYCNT 0x2110
#define ATP_OPT_DATALEN 0x2111
#define ATP_OPT_RELTIMER 0x2112
#define ATP_OPT_TRANID 0x2113

The ATP_OPT_REPLYCNT option indicates the number of reply packets in the
current ATP reply being received. The ATP_OPT_DATALEN option indicates a
maximum data packet length if it is different from the ATP default of 578; only
the PAP server uses this option. The ATP_OPT_TRANID option sets the ATP
transaction ID added to every request packet.

The ATP_OPT_RELTIMER option indicates the amount of time the responder must
wait for a transaction release packet before it purges a request entry from its
transactions list. Acceptable values are 0 (30 seconds), 1 (1 minute), 2 (2
minutes), 3 (4 minutes), 4 (8 minutes).

In order to use any option with ATP, you must indicate which protocol the
option is intended for. To do this, you use a constant for the ATP protocol in the
level field of the TOption structure (page 572) when you specify an option.

#define ATK_ATP 'ATP '

ATP also allows you to use the generic Open Transport options OPT_RETRYCNT
and OPT_INTERVAL, which are described in ÒSpecifying ATP OptionsÓ (page 329).

PAP Reference 30

This section describes the option that is speciÞc to PAP, deÞnes the constant
you use to specify the PAP protocol for option management functions, and
indicates the generic Open Transport options that you can use with PAP.

Options 30

The only option that is speciÞc to PAP is the open retry option, which is
deÞned as following:

#define PAP_OPT_OPENRETRY 0x2120 /* PAP open retry count */
758 PAP Reference

C H A P T E R 3 0

AppleTalk Reference
This option, used with the OTConnect provider function (page 484), forces PAP
to retry opening a connection a speciÞc number of times before failing.

In order to use any option with PAP, you must indicate which protocol the
option is intended for. To do this, you use a constant for the PAP protocol in the
level field of the TOption structure when you specify an option.

#define ATK_PAP 'PAP '

With PAP, you can also use the generic OPT_ENABLEEOM, OPT_CHECKSUM and
OPT_SERVERSTATUS options, which are described in ÒSpecifying PAP OptionsÓ
(page 339).
PAP Reference 759

C H A P T E R 3 0

AppleTalk Reference
760 PAP Reference

C H A P T E R 3 1

Contents

Contents
Figure 31-0
Listing 31-0
Table 31-0
31 Serial Endpoint Reference
Constants 758
Options 760

Protocol Level 760
Serial Options 760

Serial-SpeciÞc Commands 764
I_SetSerialDTR 764
I_SetSerialBreak 765
I_SetSerialXOffState 765
I_SetSerialXOn 765
I_SetSerialXOff 766
I_SetFramingType 766
761

C H A P T E R 3 1
762 Contents

C H A P T E R 3 1
Serial Endpoint Reference 31

This chapter describes the constants, options, and serial-speciÞc commands
used by Open Transport serial endpoint providers.

Constants 31

This section describes the constants used by serial endpoints. You can use the
constant names kSerialName, kSerialPortAName, kSerialPortBName, and
kSerialABName when calling the OTCreateConfiguration function (page 376) to
conÞgure a serial endpoint.

#deÞne kSerialName'serial'
#deÞne kSerialPortAName'serialA'
#deÞne kSerialPortBName'serialB'
#deÞne kSerialPortABName'serialAB'

You use the values in the next enumeration to deÞne the type of framing your
serial port is using. These values are used in the fCapabilities Þeld in the
OTPortRecord structure (page 592), described in the chapter ÒPorts ReferenceÓ in
this book.

enum{
kOTSerialFramingAsync = 0x01, /* Supports asynchronous serial framing */
kOTSerialFramingHDLC = 0x02, /* Supports serial HDLC framing */
kOTSerialFramingSDLC = 0x04, /* Supports serial SDLC framing */
kOTSerialFramingAsyncPackets = 0x08, /* Supports async packet serial mode */};

}

The OTIoctl commands use the constants listed below.

Use these constants with I_SetSerialDTR:

kOTSerialSetDTROn = 1 /* Turn the DTR signal on */
kOTSerialSetDTROff = 0 /* Turn the DTR signal off */

Use these constants with I_SetSerialBreak:

kOTSerialSetBreakOn = 0xfffffff /* Turn the break signal on */
kOTSerialSetBreakOff = 0 /* Turn the break signal off */

Use these constants with I_SetSerial/XOFFState:
Constants 763

C H A P T E R 3 1

Serial Endpoint Reference
kOTSerialForceXOffTrue = 1 /* Unconditional set XOFF state */
kOTSerialForceXOffFalse = 0 /* Unconditional clear XOFF state */

Use these constants with I_SetSerial/XONState:

kOTSerialSendXOnAlways = 1 /* Always send XON character */
kOTSerialSendXOnIfXOffTrue = 0 /* Send XON char if XOFF state */

Use these constants with I_SetSerial/XOFFState:

kOTSerialSendXOffAlways = 1 /* Always send XOFF character */
kOTSerialSendXOffIfXOnTrue = 0 /* Send XOFF char if XON state */

This deÞne statement, which is identical to the C++ inline function Open
Transport provides for this task, creates the 4-byte option value you use for the
SERIAL_OPT_HANDSHAKE option:

#define SerialHandshakeData(type, onChar, offChar)\
((((UInt32)type) << 16) | (((UInt32)onChar) << 8) | offChar)

These deÞne statements, which are similar to the C++ inline functions Open
Transport provides for these tasks, set the correct placement for the characters
you use with the SERIAL_OPT_ERRORCHARACTER option:

#define OTSerialSetErrorCharacter(rep) \
((rep) & 0xff)

#define OTSerialSetErrorCharacterWithAlternate(rep, alternate) \
((((rep) & 0xff) | (((alternate) & 0xff) << 8)) | 0x80000000L)

This enumeration lists the default values for serial endpoint providers:

enum{
kOTSerialDefaultBaudRate = 19200, /* 19200 baud rate */
kOTSerialDefaultDataBits = 8, /* 8 data bits */
kOTSerialDefaultStopBits = 10, /* 1 stop bit */
kOTSerialDefaultParity = kOTSerialNoParity, /* no parity */
kOTSerialDefaultHandshake = 0, /* no handshaking */
kOTSerialDefaultOnChar = ('Q' & ~0x40), /* XON = Control-Q */
kOTSerialDefaultOffChar = ('S' & ~0x40), /* XOFF = Control-S */
kOTSerialDefaultSndBufSize = 1024, /* send buffer = 1024characters */
764 Constants

C H A P T E R 3 1

Serial Endpoint Reference
kOTSerialDefaultRcvBufSize = 1024, /* recv buffer = 1024characters */
kOTSerialDefaultSndLoWat = 96, /* send low-water mark */
kOTSerialDefaultRcvLoWat = 1, /* recv low-water mark */
kOTSerialDefaultRcvTimeout = 10 /* recv timeout, in seconds*/

};

Options 31

This section describes the serial-speciÞc options that you can use with provider
functions such as OTOptionManagement and OTConnect.

Protocol Level 31

You use this XTI constant when calling the OTOptionManagement function to
establish the protocol type for an option you are using. You specify this value
in the level Þeld of the TOption stucture. This function and structure are
described in the chapter ÒOption ManagementÓ (page 575).

enum {
COM_SERIAL = 'SERL'

};

Serial Options 31

You can use these options with a protocol level of COM_SERIAL. The
SERIAL_OPT_STATUS option is read only; none of these are association-related
options.

enum {
SERIAL_OPT_BAUDRATE 0x0100,
SERIAL_OPT_DATABITS 0x0101,
SERIAL_OPT_STOPBITS 0x0102,
SERIAL_OPT_PARITY 0x0103,
SERIAL_OPT_STATUS 0x0104,
SERIAL_OPT_HANDSHAKE 0x0105,
SERIAL_OPT_RCVTIMEOUT 0x0106,
Options 765

C H A P T E R 3 1

Serial Endpoint Reference
SERIAL_OPT_ERRORCHARACTER 0x0107,
SERIAL_OPT_EXTCLOCK 0x0108,
SERIAL_OPT_BURSTMODE 0x0109

};

Option descriptions

SERIAL_OPT_BAUDRATE
Sets the baud rate. Values can be 300 to 56700. (The default
is 19200.)

SERIAL_OPT_DATABITS
Sets the data bits. Values can be 5, 6, 7, and 8. (The default
is 8.)

SERIAL_OPT_STOPBITS
Sets the stop bits. Values can be 10, 15, or 20. These reßect a
number that is 10 times the bit time value: 1, 1.5, and 2.
(The default is 10.)

SERIAL_OPT_PARITY Sets the parity.

SERIAL_OPT_STATUS Returns the current status in this read-only option. One or
more bits can be set.

Parity Value Description

kOTSerialNoParity 0 No parity.
(default)

kOTSerialOddParity 1 Odd parity.
kOTSerialEvenParity 2 Even parity.

Status Value Description

kOTSerialSwOverRunErr 0x01 Software overrun.

kOTSerialBreakOn 0x08 A break on the line.

kOTSerialParityErr 0x10 Parity error.

kOTSerialOverrunErr 0x20 Hardware overrun.

kOTSerialFramingErr 0x40 Framing error.

kOTSerialXOffSent 0x0010000 The XOFF character has
been sent.

kOTSerialDTRNegated 0x0020000 The DTR signal is negated.
766 Options

C H A P T E R 3 1

Serial Endpoint Reference
SERIAL_OPT_HANDSHAKE
Sets the handshake to be used by the serial line. (The
default is no handshake.) The high word of the integer is a
bitmap with 1 or more of the following bits set:

The third byte in the option is the XON character. and the
lowest byte is the XOFF character. If these two values are 0
and if XON/XOFF handshaking was requested, Open
Transport uses the default values of Control-Q for XON
and Control-S for XOFF. Use the SerialHandShakeData
macro to construct this value.

SERIAL_OPT_RCVTIMEOUT
Sets the number of milliseconds the receiver should wait
before delivering less than the RcvLoWat number of
incoming serial characters. If RcvLoWat is 0, then the value
is the number of milliseconds of quiet time (no characters
being received) that must elapse before characters are
delivered to the client. In all cases, this option is advisory
and serial drivers are free to deliver data whenever they
deem it convenient. For instance, many serial drivers
deliver data whenever 64 bytes have been received
because 64 bytes is the smallest ÒStreamsÓ buffer size. Be
sure to look at the return value of the option to determine

kOTSerialCTLHold 0x0040000 The CTS signal is negated,
causing a hold.

kOTSerialXOffHold 0x0080000 The XOFF character has been
received, causing a hold.

kOTSerialOutputBreakOn 0x1000000 A break has been initiated.

Handshake Value Description

kOTSerialXOnOffInputHandshake 1 XON/XOFF set for input.

kOTSerialXOnOffOutputHandshake 2 XON/XOFF set for output.

kOTSerialCTSInputHandshake 4 CTS set on input.

kOTSerialDTROutputHandshake 8 DTR set on output.

Status Value Description
Options 767

C H A P T E R 3 1

Serial Endpoint Reference
what it was negotiated to. Here are some examples of its
use:

SERIAL_OPT_ERRORCHARACTER
Sets how characters with parity errors are handled. A 0
value disables their replacementÑthat is, error characters
are discarded. A single character value in the low byte
designates the replacement character. When characters are
received with a parity error, they are replaced by this
speciÞed character. If a valid incoming character matches
the replacement character, then the received characterÕs
most-signiÞcant-bit is cleared. For this situation, an
alternate replacement character may be speciÞed in bits 8
through 15 of the 32-bit value, with 0xff being placed in
bits 16 through 23. You can use the macros OTSrlSetPEChar
and OTSrlSetPECharWithAlternate to get the bit placement
correct. In this case, whenever a valid character is received
that matches the Þrst replacement character, it is replaced
with this alternate character (which may be 0).

SERIAL_OPT_EXTCLOCK
Requests an external clock. A 0 value turns off external
clocking (the default). Any other value is a requested
divisor for the external clock. Although Open Transport
serial endpoint providers do not support synchronous
communications protocols, you can use this option to
select an external timing signal for synchronous clocking
between the sender and receiver. Be aware that not all
serial implementations support an external clock and that
not all requested divisors will be supported if such an
implementation does support an external clock.

RcvTimeout RcvLoWat Action

0 0 Data is delivered immediately after it
arrives.

x 0 Data is delivered after x milliseconds of
no incoming characters on the line.

x y Data is delivered after y characters are
received, or x milliseconds after the first
character is received, whichever comes
first.
768 Options

C H A P T E R 3 1

Serial Endpoint Reference
SERIAL_OPT_BURSTMODE
Requests burst mode operation. A value of 0 turns off
burst mode (the default) and a value of 1 requests burst
mode to be turned on. In burst mode, the serial driver
continues looping, reading incoming characters, rather
than waiting for an interrupt for each character. This
option may not be supported by all serial drivers.

▲ W A R N I N G

Note that burst mode may adversely impact performance
of the Macintosh system, since interrupts may be held off
for long periods of time. ▲

Serial-SpeciÞc Commands 31

Serial endpoints support several serial-speciÞc commands that use the OTIoctl
function. The csCode value for each routine is listed in each commandÕs
description. For information about Device Manager functions for opening,
closing, and communicating with device drivers, see the book Inside Macintosh:
Devices.

I_SetSerialDTR 31

This command sets the DTR signal on the serial port. Use the constant
kOTSerialSetDTROff to turn the DTR signal off, and kOTSerialSetDTROn to turn
the DTR signal on. The following line of code turns DTR on:

OTIoctl(theSerialEndpoint, I_SetSerialDTR, kOTSerialSetDTROn);

Asserting the DTR signal is equivalent to using a serial driver control call with
a csCode value of 17 and negating the DTR signal is equivalent to using a
csCode value of 18.
Serial-Specific Commands 769

C H A P T E R 3 1

Serial Endpoint Reference
I_SetSerialBreak 31

This command controls a break signal on the serial connection. It is a 4-byte
unsigned integer. Its value is kOTSerialSetBreakOff to unconditionally turn the
break signal off, kOTSerialSetBreakOn to unconditionally turn the break signal
on, and any other value to turn the break signal on for a speciÞed number of
milliseconds. The following line of code turns the break on:

OTIoctl(theSerialEndpoint, I_SetSerialBreak, kOTSerialSetBreakOn);

Note
Note that the on value is 0 and the off value is 1. ◆

Asserting a break signal is equivalent to using a serial driver control call with a
csCode value of 12, and deasserting the break signal is equivalent to using a
csCode value of 11.

I_SetSerialXOffState 31

This command sets the XOFF state of the serial port. Setting XOFF is equivalent
to receiving an XOFF character, and clearing XOFF is equivalent to receiving an
XON character. A value of kOTSerialForceXOffFalse unconditionally clears the
XOFF state, while a value of kOTSerialForceXOffTrue unconditionally sets it.
The following line of code unconditionally sets the XOFF state:

OTIoctl(theSerialEndpoint, I_SetSerialXOffState, kOTSerialForceXOffTrue);

Setting the XOFF state is equivalent to using a serial driver control call with a
csCode value of 21, and clearing the XOFF state is equivalent to using a csCode
value of 22.

I_SetSerialXOn 31

This command causes the serial port to send an XON character. A value of
kOTSerialSendXOnIfXOffTrue causes it to be sent only if the endpoint is in the
XOFF state (that is, if the last input ßow-control character sent was XOFF),
770 Serial-Specific Commands

C H A P T E R 3 1

Serial Endpoint Reference
while a value of kOTSerialSendXOnAlways unconditionally sends the character.
The following line of code unconditionally sends an XON character:

OTIoctl(theSerialEndpoint, I_SetSerialXOn, kOTSerialSendXOnAlways);

Sending the XON character unconditionally is equivalent to using a serial
driver control call with a csCode value of 24, and sending the XON character
when an endpoint is in an XOFF state is equivalent to using a csCode value
of 23.

I_SetSerialXOff 31

This command causes the serial port to send an XOFF character. A value of
kOTSerialSendXOffIfXOnTrue causes it to be sent only if the endpoint is in the
XON state (that is, if the last input ßow control character sent was XON), while
a value of kOTSerialSendXOffAlways unconditionally sends the character. The
following line of code unconditionally sends an XOFF character:

OTIoctl(theSerialEndpoint, I_SetSerialXOff, kOTSerialSendXOffAlways);

Sending the XOFF character unconditionally is equivalent to using a serial
driver control call with a csCode value of 26, and sending the XOFF character
when an endpoint is in an XON state is equivalent to using a csCode value
of 25.

I_SetFramingType 31

This command sets the framing type for a serial port. Currently, serial ports can
support four different framing types, as enumerated in the fCapabilities Þeld
of the OTPortRecord. These are kOTSerialFramingAsync, kOTSerialFramingHDLC,
kOTSerialFramingSDLC, and kOTSerialFramingAsyncPackets. The normal mode of
operation is kOTSerialFramingAsync. You can change the mode of operation to
the asynchronous packet framing type by making this OTIoctl command:

OTIoctl(theSerialEndpoint, I_OTSetFramingType, kOTSerialFramingAsyncPackets);
Serial-Specific Commands 771

C H A P T E R 3 1

Serial Endpoint Reference
If you select the kOTSerialFramingAsyncPackets type, the underlying serial
provider assumes that each individual message that arrives is a separate
packet, and should be sent as such. It also means that the underlying provider
ensures that if data is ßushed, all data will be ßushed except any packet that is
being processed at the time of the ßush. This behavior is important to
technologies such as Apple Remote Access (ARA) or Point-to-Point Protocol
(PPP) implementations, which use the serial port for delivery of discrete
packets, because

■ stopping a packet in the middle of a transfer causes a performance
degradation while the upper protocols expend effort to resynchronize

■ both protocols want to ensure that if they have to ßush the queue of waiting
messages that all waiting messages are ßushed, even if they are queued up
in the protocol module.
772 Serial-Specific Commands

Appendixes

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
Open Transport and XTI A

This appendix describes the correspondence between the XTI and Open
Transport client programming interfaces. Open Transport is a superset of XTI
and therefore includes functions that are not deÞned in XTI. The XTI interface
is not the preferred interface to use in Open Transport applications; however, if
you are porting an existing XTI application, the XTI interface provides the
simplest migration path.

This appendix describes

■ how XTI functions correspond to Open Transport functions and vice versa

■ how XTI data structures correspond to Open Transport data structures

■ how XTI error codes correspond to Open Transport result codes

The Open Transport interface currently deÞnes functions and data structures
for four different kinds of providers. This appendix focuses on how general
provider functions and endpoint functions correspond to XTI functions.
Because mapper provider functions and service provider functions are an
extension to XTI, they are not included in this appendix.

You should read this appendix if you need a simple summary of the differences
between the XTI and Open Transport interfaces or if you plan to convert an
application using an XTI interface to the preferred C interface.

Open Transport Programming Interfaces A

The Open Transport library includes three related client programming
interfaces: XTI-style, preferred C, and preferred C++. The XTI-style interface
includes the C-language XTI functions, plus some Open Transport extensions.
XTI is not the preferred interface for the Macintosh because it handles errors
through the use of a global variable. Nevertheless, an XTI interface is provided
to ease porting of existing XTI client applications.
Open Transport Programming Interfaces 775

A P P E N D I X A

Open Transport and XTI
IMPORTANT

The preferred-C interface of Open Transport is based on
XTI but is not identical with it. As a result, some elements
have no XTI counterparts, and those that have
counterparts are not necessarily identical with them. For
deÞnitive information about XTI, refer to the X/Open
Transport Interface speciÞcation.

You must use 4 byte ints in your development
environment. ▲

Function Names A

Table A-1 shows the correspondence between XTI functions and Open
Transport functions.

Table A-1 XTI-to-Open Transport function cross-reference

XTI function Open Transport function

t_accept OTAccept

t_alloc OTAlloc

t_bind OTBind

t_close OTCloseProvider

t_connect OTConnect

t_error —

t_free OTFree

t_getprotaddr OTGetProtAddress

t_getinfo OTGetEndpointInfo

t_getstate OTGetEndpointState

t_listen OTListen

t_look OTLook
776 Function Names

A P P E N D I X A

Open Transport and XTI
Table A-2 shows the correspondence between Open Transport functions and
XTI functions. If the Open Transport function is not in the list, it is not
suppoerted by the XTI interface standard. It might be supported by an Apple
extension to XTI, listed in Table A-3.

t_open OTOpenEndpoint

t_optmgmt OTOptionManagement

t_rcv OTRcv

t_rcvconnect OTRcvConnect

t_rcvdis OTRcvDisconnect

t_rcvrel OTRcvOrderlyDisconnect

t_rcvudata OTRcvUData

t_rcvuderr OTRcvUDErr

t_snd OTSnd

t_snddis OTSndDisconnect

t_sndrel OTSndOrderlyDisconnect

t_sndudata OTSndUData

t_strerror —

t_sync OTSync

t_unbind OTUnbind

Table A-2 Open Transport-to-XTI function cross-reference

Open Transport function XTI function

OTAccept t_accept

OTAlloc t_alloc

OTBind t_bind

Table A-1 XTI-to-Open Transport function cross-reference (continued)

XTI function Open Transport function
Function Names 777

A P P E N D I X A

Open Transport and XTI
OTCloseProvider t_close

OTConnect t_connect

DontAckSends —

OTFree t_free

OTGetEndpointInfo t_getinfo

OTGetProtAddress t_getprotaddr

OTGetEndpointState t_getstate

OTListen t_listen

OTLook t_look

OTOpenEndpoint t_open

OTOptionManagement t_optmgmt

OTRcv t_rcv

OTRcvConnect t_rcvconnect

OTRcvDisconnect t_rcvdis

OTRcvOrderlyDisconnect t_rcvrel

OTRcvUData t_rcvudata

OTRcvUDErr t_rcvuderr

OTSnd t_snd

OTSndDisconnect t_snddis

OTSndOrderlyDisconnect t_sndrel

OTSndUData t_sndudata

OTSync t_sync

OTUnbind t_unbind

Table A-2 Open Transport-to-XTI function cross-reference (continued)

Open Transport function XTI function
778 Function Names

A P P E N D I X A

Open Transport and XTI
Extensions to XTI A

Table A-3 lists the Open Transport endpoint and general provider functions
that are not part of XTI. Although this document refers to these functions
by their Open Transport preferred-C names, you can also call these functions
by the XTI-style names listed in the table. If a function is not listed in this table
or in Table A-2, it is not available to XTI clients.

Table A-3 Open Transport Functions not found in XTI

Open Transport
preferred-C name XTI-style name

OTCancelRequest t_cancelrequest

OTCancelReply t_cancelreply

OTCancelSynchronousCalls t_cancelsynchronouscalls

OTCancelURequest t_cancelurequest

OTCancelUReply t_cancelureply

OTGetProtAddress t_getprotaddr

OTInstallNotifier t_installnotifier

OTIsNonBlocking t_isnonblocking

OTIsSynchronous t_issynchronous

OTRcvRequest t_rcvrequest

OTRcvReply t_rcvreply

OTRcvUReply t_rcvureply

OTRcvURequest t_rcvurequest

OTRemoveNotifier t_removenotifier

OTResolveAddress t_resolveaddr

OTSetAsynchronous t_asynchronous

OTSetBlocking t_blocking
Extensions to XTI 779

A P P E N D I X A

Open Transport and XTI
Data Structures A

Many of the Open Transport functions take pointers to data structures as
parameters. Table A-4 shows the standard XTI data structure names and the
corresponding preferred-C interface structure names.

OTSetNonBlocking t_nonblocking

OTSetSynchronous t_synchronous

OTSndReply t_sndreply

OTSndRequest t_sndrequest

OTSndUReply t_sndureply

OTSndURequest t_sndurequest

OTUseSyncIdleEvents t_usesynchidleevents

Table A-4 XTI-to-Open Transport data structure cross-reference

XTI name Open Transport name

int fd EndpointRef

t_info TEndpointInfo

t_netbuf TNetbuf

t_bind TBind

t_discon TDiscon

t_call TCall

Table A-3 Open Transport Functions not found in XTI (continued)

Open Transport
preferred-C name XTI-style name
780 Data Structures

A P P E N D I X A

Open Transport and XTI
Table A-5 lists the apple extensions to XTI data structures.

Table A-5 Apple extensions to XTI data structures

Result Codes A

When an XTI-style function fails, it returns Ð1 to indicate an error has occurred,
and the error is stored in the global variable t_errno. If the value of the error is
TSYSERR, then the actual error can be found in the global variable errno. The XTI
error numbers are small positive integers with deÞned constants for each; for
example, TBADADDR or TFLOW.

When an Open Transport preferred-C function fails, the error code is returned
as the result of the function. Open Transport does not use global variables to
store error results and, to remain consistent with the Macintosh Toolbox, it
speciÞes all errors as negative numbers. Open Transport result codes have
names like kOTBadAddressErr and kOTFlowErr. There is a corresponding Open

t_unitdata TUnitData

t_uderr TUDErr

t_optmgmt TOptMgmt

Open Transport
name XTI name

TOptionhdr t_opthdr

TRequest t_request

TReply t_reply

TUnitRequest t_unitrequest

TUnitReply t_unitreply

Table A-4 XTI-to-Open Transport data structure cross-reference (continued)

XTI name Open Transport name
Result Codes 781

A P P E N D I X A

Open Transport and XTI
Transport result code for every XTI result code, as shown in Table A-6. For an
explanation of Open Transport result codes, see Appendix B (page 785).

Table A-6 XTI-to-Open Transport result code cross-reference

XTI result
code Open Transport result code

TACCES kOTAccessErr

TADDRBUSY kOTAddressBusyErr

TBADADDR kOTBadAddressErr

TBADDATA kOTBadDataErr

TBADF kOTBadReferenceErr

TBADFLAG kOTBadFlagErr

TBADNAME kOTBadNameErr

TBADOPT kOTBadOptionErr

TBADQLEN kOTBadQLenErr

TBADSEQ kOTBadSequenceErr

TBADSYNC kOTBadSyncErr

TBUFOVFLW kOTBufferOverflowErr

TCANCELED kOTCanceledErr

TFLOW kOTFlowErr

TINDOUT kOTIndOutErr

TLOOK kOTLookErr

TNOADDR kOTNoAddressErr

TNODATA kOTNoDataErr

TNODIS kOTNoDisconnectErr

TNOREL kOTNoReleaseErr

TNOSTRUCTYPE kOTStructureTypeErr

TNOTSUPPORT kOTNotSupportedErr

TNOUDERR kOTNoUDErrErr
782 Result Codes

A P P E N D I X A

Open Transport and XTI
TOUTSTATE kOTOutStateErr

TPROTO kOTProtocolErr

TPROVMISMATCH kOTProviderMismatchErr

TQFULL kOTQFullErr

TRESADDR kOTResAddressErr

TRESQLEN kOTResQLenErr

TSTATECHNG kOTStateChangeErr

TSUCCESS kOTNoErr

TSYSERR kOTSysErrorErr

Table A-6 XTI-to-Open Transport result code cross-reference (continued)

XTI result
code Open Transport result code
Result Codes 783

A P P E N D I X B

Figure B-0
Listing B-0
Table B-0
Result Codes B

This appendix lists the result codes that Open Transport (preferred-C)
functions return, as shown in Table B-1. For information about XTI result codes,
refer to the X/Open Transport Interface speciÞcation.

Table B-1 Open Transport result codes

Result code Value Meaning

kOTNoError 0 The function completed execution without
error.

kOTBadAddressErr Ð3150 The speciÞed protocol address was in an
incorrect format or contained illegal
information. For TCP/IP this means that the
address does not exist in the speciÞed domain.

kOTBadOptionErr Ð3151 The speciÞed protocol options were in an
incorrect format or contained illegal
information.

kOTAccessErr Ð3152 You do not have permission to negotiate the
speciÞed address or options.

kOTBadReferenceErr Ð3153 The speciÞed provider reference does not
refer to a valid provider.

kOTNoAddressErr Ð3154 You failed to supply an address, or the
endpoint could not allocate an address.

kOTOutStateErr Ð3155 The endpoint was not in an appropriate state
when you called this function.

kOTBadSequenceErr Ð3156 You speciÞed an invalid sequence number or
a NULL pointer for the call parameter when
rejecting a connection request.
785

A P P E N D I X B

Result Codes
kOTLookErr Ð3158 An asynchronous event has occurred. If the
event has occurred for an endpoint, you can
use the OTLook function to Þnd out what event
it was; your notiÞer function will also get an
asynchronous event. If the event has occurred
for a provider other than an endpoint, the
notiÞer function installed for that provider
must handle the asynchronous event.

kOTBadDataErr Ð3159 The amount of data you speciÞed was not
within the bounds allowed by the endpoint.

kOTBufferOverflowErr Ð3160 The buffer you allocated to store information
when this function returns is not sufÞciently
large to store the incoming data.

kOTFlowErr Ð3161 The endpoint is in asynchronous mode, but
the ßow-control mechanism prevents the
endpoint from accepting or sending any data
at this time.

kOTNoDataErr Ð3162 For an endpoint or mapper, this result is
returned when you try to read data but the
endpoint is in asynchronous, or is in
nonblocking mode, and no data is currently
available.

For a mapper, this result is returned by the
OTLookupName function when no names are
found.

kOTNoDisconnectErr Ð3163 No disconnection indication is available.

kOTNoUDErrErr Ð3164 No unit data error indication currently exists
on
this endpoint.

kOTBadFlagErr Ð3165 You speciÞed an invalid ßag value.

kOTNoReleaseErr Ð3166 No orderly release indication currently exists
on
this endpoint.

Table B-1 Open Transport result codes (continued)

Result code Value Meaning
786

A P P E N D I X B

Result Codes
kOTNotSupportedErr Ð3167 This action is not supported by this endpoint.

kOTStateChangeErr Ð3168 The endpoint is undergoing a transient state
change. This error is returned when you call a
function while an endpoint is in the process of
changing states. You should wait for an event
indicating the endpoint has Þnished changing
state and call the function again. (Note that
the equivalent XTI state-change error code,
TSTATECHNG, is not described in the 1992 X/
Open XTI speciÞcation.) The provider also
returns this error if you attempt to call an
ÒincompatibleÓ function while another
operation is still ongoing; for example if you
call the function OTSndUData while a call to the
OTOptionManagement function is still
outstanding.

kOTStructureTypeErr Ð3169 You speciÞed an unsupported structure type
for the structType parameter of the OTAlloc or
OTFree function. This error is also returned
when the structType structure you specify is
inconsistent with the endpoint type.

kOTBadNameErr Ð3170 You speciÞed an invalid endpoint name. This
error is returned by the TCP/IP domain name
resolver (DNR) if you specify a bad host name.

kOTBadQLenErr Ð3171 You are using this endpoint to listen for
connection requests, but when you bound the
endpoint, you speciÞed 0 for the qlen Þeld. If
you want to use an endpoint to listen for
connection requests, the value of the qlen Þeld
must be greater than 0.

Table B-1 Open Transport result codes (continued)

Result code Value Meaning
787

A P P E N D I X B

Result Codes
kOTAddressBusyErr Ð3172 As a return value for a call to the OTBind
function, this error code indicates one of the
following conditions: 1) no dynamic
addresses are available for protocols or
conÞguration methods that allow dynamic
addressing, 2) you are attempting to bind two
connectionless endpoints to the same address,
or 3) you are attempting to bind two
connection-oriented endpoints to the same
address and with a qlen Þeld greater than 0.

kOTIndOutErr Ð3173 There are outstanding connection indications
on the endpoint, and you are accepting a
connection on this endpoint. When accepting
a connection on an endpoint that is listening
for connection requests, you must have
responded to all outstanding requests either
by rejecting them with the OTSndDisconnect
function or by accepting them with the
OTAccept function.

kOTProviderMismatchErr Ð3174 The endpoint that is to accept the connection
is not the same kind of endpoint as the
endpoint listening for the connection. The
listening and accepting endpoints must be the
same kind.

kOTResQLenErr Ð3175 When this endpoint was bound, the qlen Þeld
was set to a value greater than 0. But to accept
a connection on an alternate endpoint that is
bound to the same address, such as this one,
the endpoint must be bound with a qlen
parameter equal to 0.

kOTResAddressErr Ð3176 The address to which this endpoint is bound
differs from that of the endpoint that received
the connection request; thus, this endpoint
cannot accept this connection request.

Table B-1 Open Transport result codes (continued)

Result code Value Meaning
788

A P P E N D I X B

Result Codes
kOTQFullErr Ð3177 The maximum number of outstanding
indications, as speciÞed by the value of the
qlen field you used when you bound the
endpoint, has been reached for the endpoint.

kOTProtocolErr Ð3178 An unspeciÞed protocol error occurred. This
is usually fatal. Normal recovery is to close
the provider.

kOTBadSyncErr Ð3179 You attempted a synchronous call at hardware
or deferred task level, or you made an Open
Transport call at hardware interrupt time.
Note that Open Transport cannot always
detect this condition, so you cannot rely on
getting this error. If undetected, your system
could crash.

kOTCanceledErr Ð3180 A provider function never Þnished executing
because the provider was closed or because
the function was synchronous and
synchronous functions were cancelled.

kOTNotFoundErr

kENOENTErr

Ð3201 Requested information does not exist.

This error literally means no such Þle or
directory. In XTI (and Open Transport), a
function returns this result when you try to
open an endpoint or mapper that does not
exist in the system, or to operate on any other
entity that was not found.

kENIOErr Ð3204 An I/O error occurred.

kENXIOErr Ð3205 No such device or address.

kEBADFErr Ð3208 The provider reference or stream reference
supplied to the function was not valid.

kEAGAINErr Ð3210 A provider is in non-blocking mode and
cannot perform this operation now; Open
Transport would have to block to complete
the request. Try again later.

Table B-1 Open Transport result codes (continued)

Result code Value Meaning
789

kENOMEMErr

kOTOutOfMemoryErr

Ð3211 Open Transport cannot allocate enough
memory to meet your request.

Open Transport has run out of internal
memory. This might happen, for example, if
you are doing a lot of asynchronous sends
and not acknowledging sends, which means
that Open Transport has to copy the data
being sent into its own internal buffers.

kEBUSYErr Ð3215 The device you are trying to access is busy
and could not complete your request.

kOTDuplicateFoundErr Ð3216 You are attempting to register a port or other
entity that already exists.

kEINVALErr Ð3221 You attempted an invalid operation, or you
passed an invalid parameter.

kEWOULDBLOCKErr

kEDEADLKErr

Ð3234 In order to complete the requested operation,
the endpoint provider would have to block,
and the endpoint is in nonblocking mode.

kEADDRINUSEErr Ð3247 The address is in use and is not available for
the current function.

kEADDRNOTAVAILErr Ð3248 The address is not available or the requested
address is not appropriate for the current
function because the function requires a
multicast address.

kENETDOWNErr Ð3249 TCP/IP error. The path to a network number
is currently unavailable.

kENETUNREACHErr Ð3250 TCP/IP error. The path to a network number
does not exist.

kENETRESETErr Ð3251 Unknown.

kECONNABORTEDErr -3252 Unknown.

kECONNRESETErr Ð3253 The connection was reset, possibly due to a
problem with security and authentication.

Table B-1 Open Transport result codes (continued)

Result code Value Meaning

A P P E N D I X B

Result Codes
kENOBUFSErr Ð3254 The operation failed because no buffer space
was available.

kEISCONNErr Ð3255 Reserved.

kENOTCONNErr Ð3256 Reserved.

kESHUTDOWNERR Ð3257 An operation was aborted because the
machine is shutting down. This error code is
also used by sockets.

kETOOMANYREFSErr Ð3258 Unused error code.

kETIMEDOUTErr Ð3259 The requested operation timed out.

kECONNREFUSEDErr Ð3260 TCP/IP error code. The port is unreachable
(as opposed to the host being unreachable).

The positive version of this error code
(kECONNREFUSED) is returned by Open
Transport as a reason code in a disconnect
message, indicating that the other side refused
the connection.

kEHOSTDOWNErr Ð3263 TCP/IP error. A host address is currently
unavailable.

kEHOSTUNREACHErr Ð3264 TCP/IP error. A host address cannot be
reached.

kEPROTOErr Ð3269 A catastrophic error has occurred which
probably renders the underlying stream
unusable. This error is the same as the
kTPROTOErr, but is used where an XTI error
code is not appropriate.

kETIMEErr Ð3270 An Ioctlcommand has timed out instead of
completing normally.

kENOSRErr Ð3271 Open Transport cannot allocate enough
system resources (usually stream messages) to
meet
your request.

Table B-1 Open Transport result codes (continued)

Result code Value Meaning
791

A P P E N D I X B

Result Codes
kOTClientNotInittedErr Ð3279 The client has not called the
InitOpenTransport function or the
InitOpenTransportUtilities function.

kOTPortHasDiedErr Ð3280 Your notiÞer is sent the event
kOTProviderIsClosed and returns this result
code if a port that your provider is using is
disabled because it was unregistered.

kOTPortWasEjectedErr Ð3281 Your notiÞer is sent the event
kOTProviderIsClosed and returns this result
code if a port that your provider is using is
ejected.

kOTBadConfigurationErr Ð3282 Open Transport is attempting to bring up the
TCP/IP stack but canÕt because itÕs
improperly conÞgured in the TCP/IP control
panel.

kOTConfigurationChangedErr Ð3283 This is an event code thatÕs sent to the clientÕs
notiÞer (the one you register with the
OTRegisterAsClient function) when various
AppleTalk-related things (like the current
zone) change.

kOTUserRequestedErr Ð3284 Your notiÞer is sent the event
kOTProviderIsClosed and returns this result
code if a port that your provider is using is
disabled because the user switched
conÞgurations in the TCP/IP or AppleTalk
control panels.

kOTPortLostConnection Ð3285 Your notiÞer is sent the event
kOTProviderIsClosed and returns this result
code if a port that your provider is using is
disabled because it lost the connection.

Table B-1 Open Transport result codes (continued)

Result code Value Meaning
792

A P P E N D I X C

Figure C-0
Listing C-0
Table C-0
 Special Functions C

This appendix lists those Open Transport functions that are callable from a
hardware interrupt handler or a deferred task handler. This appendix also lists
those functions that allocate memory. Any functions not listed in these tables
can only be called at system task time.

Functions Callable at Hardware Interrupt Time C

Table C-1 lists client functions that you can safely call at hardware interrupt
time (from completion routines, VBL tasks, Time Manager tasks, and others),
and speciÞes whether you must call the OTEnterInterrupt function before
calling the function.

That these functions are safe to call, however, does not imply that they interact
predictably with non-interrupt code. For instance, while it is safe to call the
OTAddFirst function at interrupt time, the actual add operation is not atomic, so
calling it at interrupt time could adversely affect non-interrupt code processing
the same list. Thus, for each function listed in the table, information is also
provided as to whether the operation is atomic.

Table C-1 Functions callable at hardware interrupt time, all ISAs

Function
Needs
OTEnterInterrupt? Atomic

OTAcquireLock no yes

OTAddFirst no no

OTAddLast no no

OTAllocMem no n/a

OTAtomicAdd16 no yes

OTAtomicAdd32 no yes
Functions Callable at Hardware Interrupt Time 793

A P P E N D I X C

Special Functions
OTAtomicAdd8 no yes

OTAtomicClearBit no yes

OTAtomicSetBit no yes

OTAtomicTestBit no yes

OTCancelSystemTask no n/a

OTCanLoadLibraries yes no

OTCanMakeSyncCall yes no

OTClearLock no yes

OTCompareAndSwap16 no yes

OTCompareAndSwap32 no yes

OTCompareAndSwap8 no yes

OTCompareAndSwapPtr no yes

OTCreatePortRef no n/a

OTDequeue no yes

OTElapsedMicroseconds no n/a

OTElapsedMilliseconds no n/a

OTEnqueue no yes

OTFindAndRemoveLink no no

OTFindLink no no

OTFreeMem no n/a

OTGetBusTypeFromPortRef no n/a

OTGetClockTimeInSecs no n/a

OTGetDeviceTypeFromPortRef no n/a

OTGetFirst no no

OTGetIndexedLink no no

Table C-1 Functions callable at hardware interrupt time, all ISAs (continued)

Function
Needs
OTEnterInterrupt? Atomic
794 Functions Callable at Hardware Interrupt Time

A P P E N D I X C

Special Functions
OTGetLast no no

OTGetSlotFromPortRef no n/a

OTGetTimeStamp no n/a

OTIsAtInterruptLevel no n/a

OTIsInList no no

OTLIFODequeue no yes

OTLIFOEnqueue no yes

OTLIFOStealAndReverseList no yes

OTLIFOStealList no yes

OTMemcmp no n/a

OTMemcpy no n/a

OTMemmove no n/a

OTMemset no n/a

OTMemzero no n/a

OTRemoveFirst no no

OTRemoveLast noc no

OTRemoveLink no no

OTReverseList no no

OTScheduleDeferredTask yes n/a

OTScheduleInterruptTask no n/a

OTScheduleSystemTask yes n/a

OTSetBusTypeInPortRef no n/a

OTSetDeviceTypeInPortRef no n/a

OTStrCat no n/a

OTStrCopy no n/a

Table C-1 Functions callable at hardware interrupt time, all ISAs (continued)

Function
Needs
OTEnterInterrupt? Atomic
Functions Callable at Hardware Interrupt Time 795

A P P E N D I X C

Special Functions
Native Functions Callable at Hardware Interrupt Time C

Table C-2 lists the functions that are native (providing no mixed-mode glue)
and are callable at hardware interrupt time, and also speciÞes whether you
need to call the OTEnterInterrupt function before calling the given function. As
in Table C-1, information is added to specify whether the operation is atomic.

Note
Some functions listed in Table C-2 are not documented in
this manual because they are speciÞc to Open Transport
protocol and device drivers. They are listed here to
provide a complete reference.

OTStrEqual no n/a

OTStrLength no n/a

OTSubtractTimeStamps no n/a

OTTimeStampInMicroseconds no n/a

OTTimeStampInMilliseconds no n/a

OTWhoAmI no n/a

Table C-2 Functions callable at hardware interrupt time, native ISA only

Function Needs OTEnterInterrupt Atomic

OTAddToHashList no no

OTAllocSharedClientMem no n/a

OTBufferDataSize no n/a

Table C-1 Functions callable at hardware interrupt time, all ISAs (continued)

Function
Needs
OTEnterInterrupt? Atomic
796 Native Functions Callable at Hardware Interrupt Time

A P P E N D I X C

Special Functions
OTCalculateHashListMemoryNeeds no n/a

OTCancelTimerTask no n/a

OTCfigGetInstallFlags no n/a

OTCfigGetOptionNetbuf no n/a

OTCfigGetParent no n/a

OTCfigGetPortRef no n/a

OTCfigGetProviderName no n/a

OTCfigIsPort no n/a

OTCfigNumberOfChildren no n/a

OTClearBit no yes

OTEnterGate no yes

OTFindInHashList no no

OTFreeSharedClientMem no n/a

OTInitGate no n/a

OTIsInHashList no no

OTLeaveGate no yes

OTReadBuffer no, atomicity is not a
factor

n/s

OTRemoveFromHashList no no

OTRemoveLinkFromHashList no no

OTScheduleTimerTask no n/a

OTSetBit no yes

OTSetBitRange no yes

OTSetFirstClearBit no yes

OTSetLastClearBit no yes

Table C-2 Functions callable at hardware interrupt time, native ISA only (continued)

Function Needs OTEnterInterrupt Atomic
Native Functions Callable at Hardware Interrupt Time 797

A P P E N D I X C

Special Functions
Functions Callable From Deferred Tasks C

Table C-3 lists Open Transport functions that you can call from a deferred task
and speciÞes whether the call can only be made with a provider in
asynchronous mode.

Note
Some functions listed in Table C-3 are not documented in
this manual because they are speciÞc to Open Transport
protocol and device drivers. They are listed here to
provide a complete reference ◆

In general, all endpoint calls can be made asynchronously from a deferred task,
with the following limitation.

OTTestBit no yes

StoreIntoNetbuf no n/a

StoreMsgIntoNetbuf no n/a

Table C-3 Functions callable from deferred tasks

Function Calling restrictions

OTAccept asynchronous only

OTAckSends

OTAlloc

OTAsynchCreateStream

Table C-2 Functions callable at hardware interrupt time, native ISA only (continued)

Function Needs OTEnterInterrupt Atomic
798 Functions Callable From Deferred Tasks

A P P E N D I X C

Special Functions
OTAsyncOpenEndpoint If opening Þrst endpoint of a conÞguration,
foreground task must be calling SystemTask
or some other function that calls SystemTask
(for example, WaitNextEvent).

OTAsyncOpenMapper If opening Þrst endpoint of a conÞguration,
foreground task must be calling SystemTask
or some other function that calls SystemTask
(for example, WaitNextEvent).

OTAsyncOpenProvider If opening Þrst endpoint of a conÞguration,
foreground task must be calling SystemTask
or some other function that calls SystemTask
(for example, WaitNextEvent).

OTAsyncStreamOpen

OTAsyncStreamPoll

OTBind asynchronous only

OTCancelReply asynchronous only

OTCancelRequest asynchronous only

OTCancelSynchronousCalls

OTCancelUReply asynchronous only

OTCancelURequest asynchronous only

OTCfigAddChild

OTCfigChangeProviderName

OTCfigCloneConfiguration

OTCfigDeleteConfiguration

OTCfigGetChild

OTCfigNewChild

OTCfigNewConfiguration

OTCfigPopChild

OTCfigPushChild

Table C-3 Functions callable from deferred tasks (continued)

Function Calling restrictions
Functions Callable From Deferred Tasks 799

A P P E N D I X C

Special Functions
OTCfigPushNewSingleChild

OTCfigPushParent

OTCfigRemoveChild

OTCfigSetPath

OTCfigSetPortRef

OTCloneConfiguration

OTCloseMatchingProviders

OTCloseProvider

OTCloseProviderByStream

OTConfiguratorUnloaded

OTConfigureChildren

OTConnect asynchronous only

OTCountDataBytes

OTCreateConfiguration

OTCreateStateMachine

OTCreateTimerTask

OTDeleteConfigurator

OTDeleteName asynchronous only

OTDeleteNameByID asynchronous only

OTDestroyConfiguration

OTDestroyStateMachine

OTDestroyTimerTask

OTDontAckSends

OTEnterNotifier

OTFindOption

Table C-3 Functions callable from deferred tasks (continued)

Function Calling restrictions
800 Functions Callable From Deferred Tasks

A P P E N D I X C

Special Functions
OTFindPort

OTFindPortByRef

OTFree

OTGetConfiguratorUserData

OTGetEndpointInfo asynchronous only

OTGetEndpointState

OTGetIndexedPort

OTGetMessage asynchronous only

OTGetPriorityMessage asynchronous only

OTGetProtAddress asynchronous only

OTGetProviderPortRef

OTInitHashList

OTInstallNotifier

OTIoctl asynchronous only

OTIsBlocking

OTIsDependentPort

OTIsMasterConfigurator

OTIsSynchronous

OTLeaveNotifier

OTListen asynchronous only

OTLook

OTLookupName asynchronous only

OTNewControlMask

OTNextOption

OTNotifyAllClients

Table C-3 Functions callable from deferred tasks (continued)

Function Calling restrictions
Functions Callable From Deferred Tasks 801

A P P E N D I X C

Special Functions
OTNotifyUser

OTOptionManagement asynchronous only

OTPeekMessage

OTPutBackBuffer

OTPutBackPartialBuffer

OTPutMessage asynchronous only

OTPutPriorityMessage asynchronous only

OTRcv asynchronous only

OTRcvConnect asynchronous only

OTRcvDisconnect asynchronous only

OTRcvOrderlyDisconnect asynchronous only

OTRcvReply asynchronous only

OTRcvRequest asynchronous only

OTRcvUData asynchronous only

OTRcvUDErr asynchronous only

OTRcvUReply asynchronous only

OTRcvURequest asynchronous only

OTReadMessage

OTRegisterName asynchronous only

OTRegisterPort

OTRemoveNotifier

OTRemoveStreamFromProvider

OTResolveAddress asynchronous only

OTSetAsynchronous

OTSetBlocking

Table C-3 Functions callable from deferred tasks (continued)

Function Calling restrictions
802 Functions Callable From Deferred Tasks

A P P E N D I X C

Special Functions
OTSetNonBlocking

OTSetSynchronous

OTSMCallStateProc

OTSMComplete

OTSMCreateControlStream

OTSMCreateStream

OTSMGetClientData

OTSMGetMessage

OTSMGetState

OTSMIoctl

OTSMOpenStream

OTSMPopCallback

OTSMPutMessage

OTSMReturnToCaller

OTSMSetState

OTSMWaitForComplete

OTSnd asynchronous only

OTSndDisconnect asynchronous only

OTSndReply asynchronous only

OTSndRequest asynchronous only

OTSndUData asynchronous only

OTSndUReply asynchronous only

OTSndURequest asynchronous only

OTStreamClose

OTStreamGetMessage asynchronous only

Table C-3 Functions callable from deferred tasks (continued)

Function Calling restrictions
Functions Callable From Deferred Tasks 803

A P P E N D I X C

Special Functions
OTStreamGetPriorityMessage asynchronous only

OTStreamInstallNotifier

OTStreamIoctl asynchronous onl

OTStreamIsBlocking

OTStreamIsSynchronous

OTStreamPutMessage asynchronous only

OTStreamPutPriorityMessage asynchronous only

OTStreamRead asynchronous only

OTStreamRemoveNotifier

OTStreamSetAsynchronous

OTStreamSetBlocking

OTStreamSetControlMask

OTStreamSetNonBlocking

OTStreamSetSynchronous

OTStreamUseSyncIdleEvents

OTStreamWrite asynchronous only

OTSync asynchronous onl

OTUnbind asynchronous only

OTUnregisterPort

OTUseSyncIdleEvents

OTWhoAmI

Table C-3 Functions callable from deferred tasks (continued)

Function Calling restrictions
804 Functions Callable From Deferred Tasks

A P P E N D I X C

Special Functions
Functions That Allocate Memory C

Table C-4 lists all Open Transport functions that allocate memory on your
behalf and therefore require that you call either the InitOpenTransport function
or the InitOpenTransportUtilities function before calling them.

Note
Some functions listed in Table C-4 are not documented in
this manual because they are speciÞc to Open Transport
protocol and device drivers. They are listed here to
provide a complete reference.

Table C-4 Functions that allocate memory

Function Calling restrictions

OTAlloc needs InitOpenTransport

OTAllocMem needs InitOpenTransportUtilities

OTAsyncOpenEndpoint needs InitOpenTransport

OTAsyncOpenMapper needs InitOpenTransport

OTAsyncOpenProvider needs InitOpenTransport

OTAsyncStreamOpen needs InitOpenTransport

OTCreateDeferredTask needs InitOpenTransportUtilities

OTCreateSystemTask needs InitOpenTransportUtilities

OTOpenEndpoint needs InitOpenTransport

OTOpenEndpointOnStream needs InitOpenTransport

OTOpenMapper needs InitOpenTransport

OTOpenProvider needs InitOpenTransport

OTOpenProviderOnStream needs InitOpenTransport

OTRegisterAsClient needs InitOpenTransportUtilities
Functions That Allocate Memory 805

A P P E N D I X C

Special Functions
OTStreamOpen needs InitOpenTransport

OTStreamPipe needs InitOpenTransport

OTTransferProviderOwnership needs InitOpenTransport

OTUnregisterAsClient needs InitOpenTransportUtilities

OTWhoAmI needs InitOpenTransport

Table C-4 Functions that allocate memory (continued)

Function Calling restrictions
806 Functions That Allocate Memory

A P P E N D I X D

Figure D-0
Listing D-0
Table D-0
XTI Option Summary D

This appendix summarizes information about types of options and option
negotiation rules.

Types of Options D

Options can be association-related, privileged, read-only, or absolute.

Association-related options are speciÞed in relation to a particular connection,
data transmission, or transaction; such options include information that is
destined for the remote client. The client initiating the connection or
transaction, or sending the datagram, initially deÞnes the value of an
association-related option; but the endpoint providers and the remote client
can also negotiate this value (almost always to a less-desirable value). Figure
D-1 illustrates the extreme case, in which each agent involved in the process of
establishing a connection renegotiates an association-related option proposed
by the active peer. When the client application calls the OTConnect function, it
speciÞes some value X for an option. The endpoint provider, Endpoint1, lowers
this value before passing it to the remote endpoint, Endpoint2. The remote
endpoint lowers the value further before notifying its client of the incoming
connection. When the OTListen function returns, it speciÞes the option value
XÐ2. The remote client decides to accept the connection using the OTAccept
function but also to lower it further to XÐ3. When the client that initiated the
connection receives the remote clientÕs response via the OTRcvConnect function,
it can examine the option values to determine the Þnal negotiated value for the
option it requested. (By way of example, Figure D-1 shows that the negotiated
value is lowered at each stage of the negotiation. Depending on the option
being negotiated, however, a higher value could result from the degradation
resulting from a negotiation.)
Types of Options 807

A P P E N D I X D

XTI Option Summary
Figure D-1 Negotiating an association-related option

By contrast, options that are non-association-related are negotiated solely
between a client application and an endpoint provider. Such options do not
contain information that involve the remote client. For example, the client
application can specify an option that permits debugging or that increases the
size of an internal receive buffer.

Table D-1 shows which Open Transport functions used to specify options can
accept association-related options and which can accept both types of options
for input and output parameters.

Table D-1 Open Transport endpoint functions and the types of options they accept

Function
Input
parameter Output parameter

OTListen Not applicable Association-related

OTRcvUData Not applicable Association-related

OTRcvURequest Not applicable Association-related

OTConnect OTRcvConnect

Endpoint1

OTListen OTAccept

Endpoint2

Endpoint1 Client

Opt = X Opt = X–3 Opt = X–3Opt = X–2

Endpoint2 Client

Opt = X–1 Opt = X–1 Opt = X–3
808 Types of Options

A P P E N D I X D

XTI Option Summary
Privileged options are options or option values that you can only set or change
if you are a privileged client. In some cases, nonprivileged clients can read the
value of a privileged option. Currently, the Mac OS does not have a privileged
model, so this distinction is irrelevant.

Read-only options, as the name implies, are options whose values you can
read but not change. For example, a protocol implementation might determine
that a client cannot change the maximum length of a transport data unit;
nevertheless, it would be important that the client be able to Þnd out what
the maximum length is in order to set up sufÞciently large buffers for
incoming data.

Whether an option is read-only depends on the status of the client and on the
state of the endpoint. Depending on the implementation, an option might be

■ read-only for all clients or just for nonprivileged clients

■ negotiable in some endpoint states and read-only in other states

For example, for TCP/IP endpoints, the ISO quality-of-service options are
negotiable when the endpoint is in the T_IDLE and T_INCON states, and
read-only in all other states except T_UNINIT.

Options that are absolute requirements are options that a protocol must
implement. This means that a protocol can neither ignore such an option nor
negotiate it to a lower value. If the proposed option is an absolute requirement
and the negotiated value is not the same as the proposed value, the negotiation
fails, and any attempt to establish a connection or to send data also fails.

OTRcvConnect Not applicable Both

OTRcvUDErr Not applicable Both

OTAccept Both Not applicable

OTSndUData Both Not applicable

OTSndURequest Both Not applicable

OTConnect Both Not applicable

OTOptionManagement Both Not applicable

Table D-1 Open Transport endpoint functions and the types of options they accept
(continued)

Function
Input
parameter Output parameter
Types of Options 809

A P P E N D I X D

XTI Option Summary
Determining Which Function to Use to Negotiate Options D

You can negotiate options using the OTOptionManagement function or using any
one of the endpoint functions used to transfer data or establish a connection.
The following summarizes the major differences between using the
OTOptionManagement function or using other endpoint functions to set an option
value.

■ Options speciÞed using the OTOptionManagement function affect all functions
called by an endpoint. Options speciÞed using individual endpoint
functions affect only the connection, transaction, or datagram for which they
are set. For example, you can call the OTOptionManagement function to turn
the checksum option on; you could override that value by calling the
OTSndUData function and turning the checksum option off for the duration of
that function call. The next time you call the OTSndUData function, the default
value, set with the OTOptionManagement function would apply, so the
checksum option would be on.

■ The OTOptionManagement function is the only way that you can obtain default
option values or check for current values of all options supported by an
endpoint.

■ When attempting to set multiple options, if an option is illegal or rejected,
the OTOptionManagement function still returns successfully, indicating for each
option in the buffer whether it has been successfully negotiated. In the same
circumstances, any other function returns an error, and even though some of
the options might have been successfully negotiated, you have no way of
knowing which were and which were not.

■ If you are using the OTOptionManagement function to set or verify option
values, all options in the buffer must be for the same protocol. If you use any
other function to negotiate options or to check their value, the buffer can
contain options for different protocols.

■ If association-related options contain information that is transmitted across
the network or if they affect the transmission itself, they take effect when
Open Transport establishes the connection, sends the transaction, or
transmits the datagram. If you use the OTOptionManagement function to
change such an option, the endpoint provider checks whether the option is
supported and negotiates a value according to its current knowledge. Then
810 Determining Which Function to Use to Negotiate Options

A P P E N D I X D

XTI Option Summary
it writes the negotiated value to the endpointÕs internal options buffer.
However, more negotiations might take place when the connection is
established or the transaction or datagram is sent. This can result in a
degradation of the option value or even in a negotiation failure. If the
negotiation succeeds, the newly negotiated values are written to the internal
options buffer.

Options Negotiation Rules D

This section describes the rules governing option negotiation and the error
conditions that might occur during this process. Unless stated otherwise, these
rules apply to all functions that allow you to specify option values.

A basic rule to keep in mind is that options change only as the result of
successful negotiations or partly successful negotiations. If you use any
function except the OTOptionManagement function, the changes last for the
duration of that function invocation. Option values are not changed by a
change in the state of an endpoint. Once you change an option value
permanently, there is no function that you can call to restore an option to its
previous value, unless that previous value is the default value.

Negotiating Multiple Options D

You can use one function to negotiate several options by placing the options
in the options buffer passed to the function. If one of the options is ignored
or rejected for any reason, the outcome depends on the function you use to
set options.

■ If you use the OTOptionManagement function, the function returns the result of
negotiating each option in the status Þeld of each option. The failure of one
or more options does not cause the function to fail.

■ The OTConnect, OTAccept, OTSndUdata, or OTSndURequest functions might
succeed or fail, depending on the implementation and on the error
condition. Options that are not supported are generally ignored; they do not
cause a function to fail or a connection to abort. However, if the endpoint
provider is unable to negotiate options that are absolute requirements or
options that are read-only, these functions will fail.
Options Negotiation Rules 811

A P P E N D I X D

XTI Option Summary
If option negotiation causes one of these functions to fail, it is possible that
some options were successfully negotiated before the failure. However, it is
not possible to determine which of the options caused the failure. Those
options that were successfully negotiated retain their new values. There is
no undo mechanism.

If you specify the same option more than once, the endpoint provider does not
check for duplicate occurrences of the same option. It simply processes the
options one after another. However, the endpoint provider might negotiate
options in any order; therefore, it is not safe to make any assumptions that a
later occurrence of an option will override an earlier occurrence.

Initiating an Option Negotiation D

You initiate an option negotiation by calling the OTOptionManagement function
with the ßag T_NEGOTIATE set or by calling the OTConnect, OTSndUData, or
OTSndURequest function and specifying an options buffer length that is greater
than 0. You can specify values for some or all of the options supported by an
endpoint. The endpoint provider takes values for options that you do not
specify explicitly in the options buffer from the endpointÕs internal options
buffer. This buffer contains the endpointÕs current option values; these could be
default values, values that you speciÞed when you conÞgured the provider, or
values resulting from a previous negotiation.

If the endpoint supports an option, the possible outcome of option negotiation
depends on whether the option is an absolute requirement, as described in the
next two sections. If the endpoint does not support the option, the
OTOptionManagement function reports T_NOTSUPPORT in the status field. The
OTConnect, OTSndUData, or OTSndURequest functions ignore the option.

Options That Are Absolute Requirements D

If the option is an absolute requirement, the result of the negotiation depends
on whether the negotiated value is the same as the requested value. If it is, the
status field in the TOption structure describing the option is set to T_SUCCESS
when the function returns. If the negotiated value is not the same as the
requested value, the result depends on the function used to negotiate
the option:

■ The OTOptionManagement function returns successfully, but the returned
option has its status Þeld set to T_FAILURE.
812 Options Negotiation Rules

A P P E N D I X D

XTI Option Summary
■ A call to the OTConnect function fails. If the call is synchronous, the function
returns with the kOTLookErr result. If the call is asynchronous, the endpoint
provider issues a T_DISCONNECT event to let you know that the connection has
been rejected.

■ The OTSndUData function fails with the kOTLookErr result; or if it returns
successfully, the endpoint provider issues a T_UDERR event to indicate that the
datagram was not sent.

Options That Are Not Absolute Requirements D

If the requested option is not an absolute requirement, the result of the
negotiation depends on whether the negotiated value is the same as the
requested value. If it is, the endpoint provider sets the status Þeld of the
TOption structure describing the option to T_SUCCESS. If the negotiated value is
different than the proposed value, the endpoint provider sets the status Þeld of
the TOption structure describing the options to T_PARTSUCCESS. If the option is
not supported, the status Þeld is set to T_NOTSUPPORT.

Conflicting Option Values D

It is possible that a requested option value conßicts with the value of another
option that is proposed with the same call to the function or with a value that is
currently set. The endpoint provider might not detect these conßicts
immediately, and later they might lead to unpredictable results. If the endpoint
provider detects conßicts at negotiation time, the conßicts are resolved
according to the rules stated above.

An endpoint provider usually detects conßicts at the time it establishes a
connection or sends a datagram. Consequently, if you use the
OTOptionManagement function to set options, you might not become aware
that there is a problem due to conßicting options until the options are
actually exercised during connection establishment or data transmission.

Privileged or Read-Only Options D

A protocol implementation can deÞne options to be privileged or read-only.
These two categories are not necessarily separate. A privileged option might be
inaccessible or read-only for nonprivileged clients. An option might be
Options Negotiation Rules 813

A P P E N D I X D

XTI Option Summary
read-only for all clients or solely for nonprivileged clients. Here are two general
guidelines to keep in mind:

■ A client must be privileged to be able to change a privileged option.

In the Mac OS implementation of Open Transport, there are no
privileged options.

■ A client cannot usually change the value of a read-only option.

An option might be read-only in some endpoint states but not in others. For
example, the ISO quality-of-service options are negotiable in the T_IDLE and
T_INCON states, and read-only in all other states except T_UNINIT. Consult the
documentation provided for the protocol you are using to determine
whether an endpointÕs state affects the status of read-only options.

If you request negotiation of a privileged option using the OTOptionManagement
function, the function returns successfully with the status Þeld of the
privileged option set to T_NOTSUPPORT. If you use the OTConnect, OTAccept,
OTSndUData, or OTSndURequest functions, the option is ignoredÑthat is, the
function result is not affected by the fact that the options are not supported.

If you request negotiation of a read-only option using the OTOptionManagement
function, the function returns with the status Þeld of the read-only option set
to T_READONLY. If you use any other function to change a read-only option, the
results vary with the function used:

■ The OTAccept or OTConnect functions fail with the kOTAccessErr result, or the
connection establishment aborts and the endpoint provider issues a
T_DISCONNECT event. If the connection aborts, a synchronous call to OTConnect
fails with the KOTLookErr result. Timing and the protocol implementation
determine whether the OTAccept function succeeds or fails with the
kOTLookErr result.

■ The OTSndUData function might return the kOTLookErr result or return
successfully, but the endpoint provider issues a T_UDERR event to indicate
that it did not send the datagram.

Error Conditions D

Option negotiation might be affected if you try to negotiate an illegal option, a
privileged or read-only option, an unsupported option, or an option for an
unsupported protocol (level). The results of attempting to negotiate privileged
or read-only options are described in ÒPrivileged or Read-Only OptionsÓ
814 Options Negotiation Rules

A P P E N D I X D

XTI Option Summary
(page 813). This section explains the outcome of negotiating illegal options and
describes other problems that might arise during option negotiation.

An option is illegal in these cases:

■ It is the last option in an options buffer, and the length speciÞed in the
TOption.len field exceeds the remaining size of the options buffer. (The
length of the option includes the option header as well as the option value.
See Figure 7-2 (page 169) for information about the format of option
information in an options buffer.)

■ The option value does not fall within the range of legal values for the option.
The range of option values that are valid for a protocol implementation are
given in the documentation provided for the protocol.

If you specify an illegal option, the following error conditions result,
depending on the function you used:

■ The OTOptionManagement function returns with the kOTBadOptionErr result.

■ Either the OTAccept or OTConnect function fails with a kOTBadOptionErr result,
or the connection establishment aborts, depending upon the implementation
and the time the illegal option is detected. If the connection aborts, the
endpoint provider issues a T_DISCONNECT event. If OTConnect is executing
synchronously, it fails with the kOTLookErr result. The OTAccept function
either succeeds, or fails with the kOTLookErr result, depending on the
implementation.

■ The OTSndUData function fails with the kOTBadOptionErr result, or it returns
successfully, but the endpoint provider issues a T_UDERR event to indicate
that it did not sent the datagram.

If the options buffer you pass to a function contains multiple options and one
of them is illegal, the function fails as described. However, if you used the
OTOptionManagement function to set options, it is possible that some or all of the
legal options in the buffer were successfully negotiated. You can check the
current status for the endpoint by calling the OTOptionManagement function with
the T_CURRENT ßag set.

The OTOptionManagement function fails with the kOTBadOptionErr result if you
specify an unknown value for the option protocol level. Using any other
function to specify an unknown option level does not cause the function to fail,
but results in the option being ignored.

Specifying an option name that is unknown or unsupported by the endpoint
does not cause a function to fail. The OTOptionManagement function returns
Options Negotiation Rules 815

T_NOTSUPPORT in the status field for the option; the other endpoint functions
ignore the unknown options.

Allowing the Endpoint Provider to Select an Option Value D

You can specify that an endpoint provider selects an appropriate option value
by setting the endpointÕs value Þeld to the constant T_UNSPEC. This is especially
useful in complex options such as ISO throughput where the option value has
an internal structure.

Retrieving Option Values D

The following sections describe how you retrieve option values for different
kinds of endpoints.

Retrieving Values for Connection-Oriented Endpoints D

When you are establishing a connection, it is possible to negotiate association-
related option values at every point in the connection process, as illustrated in
Figure D-1 (page 808). Both the active and passive peers might want to retrieve
option values during this process.

The passive peer might want to know the proposed option values under
negotiation. It can retrieve these by calling the OTListen function. After
examining the option values returned by the OTListen function, the passive
peer can negotiate option values by specifying the desired option values
with the OTAccept call used to accept the connection. Using this method,
the passive peer can examine the requested option values before proposing
alternate values.

The passive peer can also negotiate alternate values by using the
OTOptionManagement function to preset option values for the endpoint accepting
the connection. This sets the current option values for the endpoint so that
when the passive peer calls the OTAccept function, these are the option values
that are negotiated with the requested values.

The passive peer can try to negotiate option values that are higher than the
proposed values. The outcome depends on the protocol. If the protocol rejects
the new option values, the connection fails, and the endpoint provider issues a

A P P E N D I X D

XTI Option Summary
T_DISCONNECT event. Depending on timing and the implementation, the
OTAccept function either succeeds or fails with the kOTLookErr result.

The association-related options retrieved by the passive peer are related to the
incoming connection, identiÞed by a sequence number, and are not related to
the listening endpoint. Option values currently effective for the listening
endpoint might affect the values retrieved by the OTListen function because the
endpoint is involved in the negotiation process, but these values are not the
same as the option values related to the connection request. That is to say,
calling the OTOptionManagement function to retrieve the option values that were
currently effective for the listening endpoint is likely to yield a different set of
values than you would Þnd by examining the values of options passed in the
call parameter to the OTListen function.

When you establish the connectionÑthat is, when a synchronous call to the
OTConnect function returns or when the active peer calls the OTRcvConnect
functionÑ all Þnal negotiated values effective for the connection are returned
in the buffer passed in the rcvCall or call parameter, respectively. These option
values include all association-related options that were received with the
connection response and the negotiated values of those non-association-
related options that had been speciÞed on input. Options speciÞed on input to
the OTConnect call that are not supported or that refer to an unknown protocol
are ignored and not returned by the OTConnect or OTRcvConnect function when it
returns.

Retrieving Values for Connectionless Transactionless
Endpoints D

You can retrieve association-related options set for connectionless
transactionless endpoints by examining the buffer passed in the udata
parameter to the OTRcvUData function. These options relate to the incoming
datagram, not to the endpoint receiving it.

Because the options you retrieve are related to the datagram and not to the
listening endpoint, their number and values can change with every
transmission.
Retrieving Option Values 817

A P P E N D I X D

XTI Option Summary
Retrieving Values for Connectionless Transaction-Based
Endpoints D

You can retrieve association-related options set for connectionless transaction-
based endpoints by examining the buffer passed in the req parameter to the
OTRcvURequest function. These options relate to the current transaction, not to
the endpoint receiving the request. Consequently, options and their values can
change with each transaction.
818 Retrieving Option Values

Glossary
abortive disconnect A type of
disconnection that breaks a connection
without the knowledge of the remote peer.
An abortive disconnect can result in loss of
data. See also orderly disconnect.

absolute requirement A type of option
that a protocol implementation can
neither ignore nor negotiate to a partly
successful value.

active peer An endpoint provider that
initiates connection requests. The use of
an active peer is typical of a client-server
environment in which an endpoint, the
active peer, attempts to establish a
connection with a passive peer, such as a
Þle server, that listens for connection
requests. See also passive peer.

address type Anattribute that identiÞes
the type of address format used for an
Open Transport endpoint.

ADSP AppleTalk Data Stream Protocol.

AEP Echoer A DDP client process that
implements the AppleTalk Echo Protocol
(AEP).

at-least-once transaction A type of
transaction that ensures that an ATP
responder receives every request directed to
it at least once. These transactions are also
referred to as ALO transactions. See also
exactly-once transaction.

AppleTalk Echo Protocol (AEP) An
AppleTalk protocol that is a client of DDP.
This protocol can measure the performance
of an AppleTalk network and test for the
presence of a given node.

AppleTalk internet A number of
interconnected AppleTalk networks. An
AppleTalk internet can include a mix of
LocalTalk, TokenTalk, EtherTalk, and
FDDITalk networks, or it can consist of
multiple networks of a single type, such as
several LocalTalk networks. An AppleTalk
internet can include both nonextended and
extended networks. See also internet.
Compare with Worldwide Internet.

AppleTalk Session Protocol (ASP) A
connection-oriented transaction-based
AppleTalk protocol that sets up and
maintains sessions between workstations
and servers.

AppleTalk service provider An Open
Transport provider that gives applications
access to information and services that are
speciÞc to the AppleTalk protocol stack.
Applications use an AppleTalk service
provider to obtain zone names and to get
information about the current AppleTalk
environment for a given machine.

AppleTalk Data Stream Protocol
(ADSP) A connection-oriented
transactionless AppleTalk protocol that
supports sessions over which applications
can exchange full-duplex streams of data. In
GL819

G L O S S A R Y
addition to ensuring reliable delivery of
data, ADSP provides a peer-to-peer
connection. ADSP also provides an
application with a means of sending
expedited attention messages.

AppleTalk Secure Data Stream Protocol
(ASDSP) An extension of ADSP to
provide authentication and encryption.

AppleTalk Transaction Protocol (ATP) A
connectionless transaction-based AppleTalk
protocol that allows two endpoints to
execute request-and-response transactions.
Either ATP endpoint can request another
ATP endpoint to perform an action; the
other ATP endpoint then carries out the
action and transmits a response reporting
the outcome.

AppleTalk Transition Queue (ATQ) In
classic AppleTalk, the AppleTalk Transition
Queue (ATQ) informs applications each
time certain network-related events occur,
such as opening or closing an AppleTalk
driver. Any applications that rely on the
ATQ events, other than the miscellaneous
events supported by Open Transport, must
use AppleTalk backward compatibility to
handle them in the classic AppleTalk
manner. See also miscellaneous event.

application layer The highest layer of the
OSI model. This layer allows for the
development of application software.
Software written at this layer beneÞts from
the services of all the underlying layers.

ASDSP AppleTalk Secure Data Stream
Protocol.

association-related options Options that
are tied to a particular connection,
transaction, or data transmission; some of

the information they contain is destined for
the remote client. Compare with
non-association-related options.

asymmetrical connection A networking
connection in which both ends do not have
equal control over the communication. A
transaction-based connection is an
asymmetrical connection. Compare with
symmetrical connection.

asynchronous communication A way of
coordinating serial data transfers that is the
prevailing standard in the personal
computer industry. This method requires
each peer to agree on a clock rate before
communicating.

asynchronous event An event used to
notify your application that something
requires immediate attention. For example,
expedited data has arrived or a
disconnection request is pending. See also
provider event, notiÞer function,
completion event.

asynchronous mode A mode of operation
in which provider functions return as soon
as they are queued for execution. When the
function actually Þnishes executing, the
provider issues a completion event.
Compare with synchronous mode.

ATP AppleTalk Transaction Protocol.

baud rate The rate, in samples per second,
at which a serial receiver samples a line.

best-effort delivery A message-delivery
paradigm in which the networking protocol
attempts to deliver any packets that meet
certain requirements, such as containing a
valid destination address, but the protocol
does not inform the sender when it is
GL820

G L O S S A R Y
unable to deliver the data, nor does it
attempt to recover from error conditions
and data loss. Compare with reliable
delivery.

binding The process of associating an
endpoint with a logical address before the
endpoint can be used to transfer data.
Depending on the protocol you use, you
can specify this address as a symbolic name
or as a network address. Address binding
rules and address formats also vary with
the protocol you use.

bit time The periodic interval at which a
serial receiver samples a linel.

blocking A mode of operation in which a
provider must wait for some action to
complete before continuing operation when
sending or receiving data. If a provider is
nonblocking, any function that might have
to wait, returns immediately with an error
result. See also asynchronous.

blocking status A providerÕs state that
determines whether it is blocking. See also
blocking, nonblocking.

break signal A special signal that falls
outside the character frame. The break
signal occurs when the line is switched
from the mark state to a space and held
there for longer than a character frame.

bridge A device that connects networking
cables without examining the addresses of
messages or making decisions as to the best
route for a message to take. Compare with
router, gateway.

canonical name A fully qualiÞed domain
name that is not an alias.

character frame The unit of serial
communication transmission. Character
frames of 7 or 8 data bits are commonly
used for transmitting ASCII characters.

child port An attribute of a port that
identiÞes which of multiple available ports
a pseudodevice uses as its transmission
hardware. A port may have more than one
child port, all of which can be active
simultaneously.

classic AppleTalk The Mac OS
implementation of AppleTalk available
before Open Transport.

Clear To Send (CTS) signal A signal that
indicates that the modem or printer is ready
to send data.

client A protocol that uses the services of
an underlying protocol. For example, ADSP
is a client of DDP. Also used to refer to
application level code, which is a client of
the network provider.

combined DDP-NBP address format An
AppleTalk address format that combines an
endpointÕs physical address and its NBP
name. See also DDP address format, NBP
address format.

completion event A provider event used
to notify your application that an
asynchronous function has completed
execution. See also provider event, notiÞer
function, asynchronous.

connection An association between two
endpoints that permits the establishment
and maintenance of an exclusive dialogue
between the endpoints.
GL821

G L O S S A R Y
connectionless protocol A networking
protocol in which a node that wants to
communicate with another simply sends a
message without Þrst establishing that the
receiving node is prepared to receive it.
Each message sent must include addressing
information so that it can be delivered to its
destination. Compare with connection-
oriented protocol.

connection-oriented protocol A
networking protocol in which two nodes on
the network that want to communicate Þrst
establish a connection. Once a connection is
established, the communicating
applications or processes on the nodes at
either end can send and receive data
without having to add addresses to the
messages or repeat the handshake process.
Compare with connectionless protocol. See
also connection, handshake, session.

datagram A small unit of data that
includes a header portion that holds the
destination address (and may contain other
information, such as a checksum value),
and a data portion that holds the message
text. Same as packet.

Datagram Delivery Protocol (DDP) A
connectionless transactionless AppleTalk
protocol that transfers data between sockets
as discrete datagrams, each carrying its
destination socket address. DDP provides
best-effort delivery of data.

data-link layer The layer of the OSI
model that, together with the physical layer,
provides for connectivity. The data-link
layer contains the software that
communicates directly with the physical
network devices and provides for switching
between physical devices.

DDP Datagram Delivery Protocol.

DDP address format An AppleTalk
address format that indicates the physical
address of an endpoint. See also combined
DDP-NBP address.

DDP type The type of protocol for DDP
packets. This is used by DDP endpoints to
Þlter incoming and outgoing data.

Data Terminal Ready (DTR) signal A
signal indicates that the computer is ready
to communicate. Deasserting this signal
causes the sender to suspend transmission.

default port The port that Open Transport
uses when a speciÞc port is not indicated.
The LocalTalk default port is speciÞed in
the AppleTalk control panel.

domain A collection of hosts on a TCP/IP
internet. Domains are hierarchically
arranged and each can be identiÞed by its
domain name or its IP address.

domain name A character-string name
that can be used to identify a TCP/IP
domain. See also fully qualiÞed domain
name.

domain name resolver A process running
on a TCP/IP network that translates
between the character-string names used by
people to identify nodes on the internet and
the 32-bit internet addresses used by the
network itself.

dynamically assigned socket An
AppleTalk socket arbitrarily assigned by
DDP if you do not specify a socket number
when binding an endpoint. Compare
statically assigned socket.
GL822

G L O S S A R Y
echo request packet A packet sent by the
AEP Echoer to the target node.

echo reply packet The packet sent in
response to an echo request packet sent by
the AEP Echoer.

echoer socket The statically assigned
DDP socket (socket number 4) that AEP
uses to listen for echo packets.

endpoint The communications path
between your application and an endpoint
provider. An endpoint consists of a set of
data structures that are maintained by Open
Transport and that specify the components
of the endpoint provider, the providerÕs
state, and the providerÕs mode of operation.

endpoint function An Open Transport
function that you can use only with
endpoints. Endpoint functions create and
bind endpoints, obtain information about
endpoints, establish and break down
connections, and transfer data. The
behavior of an endpoint function is
determined by the endpointÕs mode of
operation.

endpoint provider An Open Transport
provider that sends and receives
information over a data link. See also
endpoint, mapper provider, service
provider.

endpoint reference A number that Open
Transport returns to you when you open an
endpoint. This number identiÞes the
instance of the endpoint provider that you
have created.

endpoint state An endpoint attribute that
governs which endpoint functions you can
call for the endpoint. For example, a

connectionless endpoint can only transfer
data while it is in the T_IDLE state; a
connection-oriented endpoint can only
transfer data while it is in the T_DATAXFER
state.

ETSDU See expedited transport service
data unit.

event See provider event.

exactly-once transaction An ATP
transaction that ensures that the responder
receives a speciÞc request only once. These
are also referred to as XO transactions.

expedited transport service data unit
(ETSDU) A unit of expedited data that
you can use to deliver urgent data. An
ETSDU is the largest piece of expedited
data that an endpoint can transfer with
boundaries and content preserved.
Different types of endpoints permit
different size ETSDUs. See also transport
service data unit (TSDU).

extended network An AppleTalk
network that has a range of network
numbers assigned to it and that supports
multiple zones. Each node on the network
has a unique network number-node ID
combination to identify it.

full duplex A networking connection in
which both ends can transmit and receive
data simultaneously. Compare with half
duplex.

fully qualiÞed domain name A domain
name that corresponds to an internet
address. The name is not abbreviated, for
example www.apple.com as opposed to www.
GL823

G L O S S A R Y
gateway A device that connects
networking cables and that converts
addresses and protocols to connect
dissimilar networks. Compare with bridge,
router.

general provider function A function
that you can use to manipulate any type of
provider. For example, you can call the
OTCloseProvider function to close any type
of provider. See also provider function.

half duplex A networking connection in
which the two ends have to take turns
transmitting and receiving. Compare with
full duplex.

handshake A connection-establishment
process involving the exchange of
predetermined signals between nodes in
which each end identiÞes itself to the other.
Also, serial handshaking is used for ßow
control. See also connection-oriented
protocol, session.

header The portion of a datagram that
holds the destination address and may
contain other information, such as a
checksum value.

host A node on a TCP/IP internet. A host
that is addressable by other hosts has a host
address and one or more domain names.

interface function A function that Open
Transport passes through to the underlying
software modules that implement
networking protocols. See also utility
function.

internet A set of networks connected by
routers or gateways.

Internet See Worldwide Internet.

internet address A 32-bit number that
uniquely identiÞes a host on a TCP/IP
network. An internet address is commonly
expressed in dotted-decimal notation (for
example, Ò12.13.14.15Ó) . Also called IP
address.

Internet Protocol (IP) The basic
datagram-delivery protocol in the TCP/IP
protocol family.

IP Internet Protocol.

IP address An internet address.

mail exchange Any TCP/IP host that can
accept mail for another host or for a
domain. A mail exchange can be a mail
server, a gateway, or just a host conÞgured
to accept and pass on mail.

mail preference value A number used by
a mail application to determine to which
mail exchange to deliver a message when
there is more than one that can accept mail
for a particular domain. The mailer sends
the mail to the mail exchange with the
lowest preference value Þrst and tries the
others in turn until the mail is delivered or
until the mailer deems the mail
undeliverable.

mapper The communications path
between your application and a mapper
provider. A mapper consists of a set of data
structures, maintained by Open Transport,
that specify the components of the mapper
provider, the providerÕs state, and the
providerÕs mode of operation.

mapper provider An Open Transport
provider that relates network addresses to
network node names and can be used to
register and remove node names for
GL824

G L O S S A R Y
networks that support this ability. See also
endpoint provider, mapper, service
provider.

mapper reference A number that Open
Transport returns to you when you open a
mapper. This number identiÞes the instance
of the mapper provider that you have
created.

mark state An idle state in which a serial
communications line.

miscellaneous event A network-related
event that may affect the operation of an
Open Transport provider. In particular,
these apply to AppleTalk endpoints and can
include such events as opening or closing
an AppleTalk driver. See also AppleTalk
Transition Queue (ATQ).

mode of operation A providerÕs attribute
that determines whether provider functions
execute synchronously or asynchronously,
whether functions can wait to send or
receive data, and whether data is copied.

module name A port structure Þeld that
gives the name of the actual STREAMS
module that implements the driver for a
given port. Open Transport uses this name
internally.

multihoming The situation in which a
single host or node is connected to two or
more networks or network interface cards
(NICs) at the same time.

multinode A node ID that an application
can acquire that is in addition to the
standard node ID that is assigned when the
node joins an AppleTalk network.

multinode address format An AppleTalk
address format that indicates the physical
address of a multinode endpoint.

multinode architecture An AppleTalk
feature that allows an application to acquire
node IDs that are additional to the standard
node ID that is assigned to the system when
the node joins an AppleTalk network.

multinode ID An AppleTalk node ID that
allows the computer running your
application to appear as multiple nodes on
the network even though it is only one
physical entity. Each acquired multinode is
in addition to the standard node ID already
assigned to the computer when it joined the
network as a node. The prime example of a
multinode application is Apple Remote
Access (ARA).

multiport identiÞer A port reference
parameter that distinguishes between
multiple ports when a single slot supports
more than one port. Typically, the hardware
device in a multiport slot is either a plug-in
multifunction card with multiple ports on it.

Name-Binding Protocol (NBP) An
AppleTalk protocol that maintains a
mapping of logical names (like those in the
Chooser) to physical socket addresses in
such a way that if the node ID changes, you
can continue to reliably identify services.

name registry A register of hardware and
software conÞguration information for
Power Macintosh computers.

NBP Name-Binding Protocol.
GL825

G L O S S A R Y
name That part of an NBP name that
typically identiÞes the user of the system or,
in the case of a server, the system itself. See
also type and zone.

NBP address format An AppleTalk
address format that indicates the endpointÕs
NBP name.

NBP entity structure A structure that
Open Transport provides for convenient
manipulation of NBP names. The NBP
entity structure itself does not contain
escape characters, but the function
OTSetAddressFromNBPEntity inserts a
backslash (\) in front of any backslash,
colon (:), or at sign (@) they Þnd in an NBP
name so that mapper functions can use a
correctly formatted NBP name.

NBP mapper provider An Open
Transport mapper provider that is
conÞgured as an NBP mapper.

NBP name An endpointÕs logical name,
sometimes called its entity name, used in the
NBP address format. The NBP name
consists of three Þelds: name, type, and
zone. See also name, type, zone.

network A system of computers and other
devices (such as printers and modems) that
are connected in such a way that they can
exchange data.

network layer The layer of the OSI model
immediately above the data-link layer. The
network layer speciÞes the network routing
of data packets between nodes and the
communications between networks, which
is referred to as internetworking.

node An addressable physical device
connected to a network. See also node ID.

node ID An 8-bit number that identiÞes
a node on an AppleTalk network.

noise Environmental perturbations that
can affect an electrical line. Noise can cause
errors in transmission by altering voltage
levels so that a bit is reversed, shortened, or
lengthened.

non-associationÐrelated options Options
that are negotiated solely between the client
and its endpoint provider. Such options
contain no information for the remote
client. Compare with association-related
options.

nonblocking A mode of operation in
which a provider will wait when sending or
receiving data. If a provider is nonblocking,
any provider function used to send or
receive data returns with an error result if it
cannot complete the operation immediately.
Compare with blocking.

nonextended network An AppleTalk
network that has one network number
assigned to it and that supports only one
zone. On nonextended networks, all nodes
share the same network number and zone
name, and each node has a unique node ID.
Compare with extended network.

notiÞer function A callback function that
handles Open Transport provider events.
See also provider event.

option A value you can set for an
endpoint that is of interest to a speciÞc
protocol. For example, an option might
enable or disable checksums or specify the
priority of a datagram. The available
options and their signiÞcance are deÞned
by each implementation of each protocol.
Every option has a default value.
GL826

G L O S S A R Y
option negotiation The process of trying
to replace one or more default option values
with other values. A negotiation might
involve a client and its endpoint provider,
or both a local and remote client and their
endpoint providers. A successful
negotiation results in obtaining exactly the
option values requested, a partly successful
negotiation results in getting different
values for the options requested, and a
failed negotiation results in not being able
to change existing values at all. See also
absolute requirement.

orderly disconnect Breaking a connection
with the knowledge and cooperation of the
remote peer. This method of disconnection
prevents loss of data. Orderly disconnects
can be either remote (over-the-wire)
disconnects or local disconnects. See also
abortive disconnect.

OSI model A standard reference model
for network architectures. The OSI (Open
Standards Interconnection) model describes
a seven-layer structure for networking
protocols. See also application layer,
presentation layer, session layer, transport
layer, network layer, datalink layer,
physical layer.

packet A small unit of data that includes
a header portion that holds the destination
address (and may contain other
information, such as a checksum value),
and a data portion that holds the message
text. Same as datagram.

PAP Printer Access Protocol.

passive peer An endpoint provider that
listens for incoming connection requests.
The use of a passive peer is typical of a

server environment in which a server, such
as a Þle server, uses an endpoint to listen for
connection requests from multiple remote
endpoints. Endpoints throughout the
network can contact the serverÕs passive
endpoint with connection requests. See also
active peer.

peer-to-peer connection See symmetrical
connection.

physical layer The layer of the OSI model
that provides for physical connectivity. The
communication between networked
systems can be via a physical cable made of
wire or optical Þber, or it can be via infrared
or microwave transmission. In addition to
these, the hardware can include a network
interface controller (NIC), if one is used.

port A logical entity that combines a
hardware device and the software driver
that acts as an interface to it. Ethernet, serial
devices, and LocalTalk ports are examples
of ports commonly used in Open Transport.
See also child port, default port, multiport
identiÞer, pseudodevice.

port alias A port structure ßag that
identiÞes a default port. For example, for
LocalTalk, the port alias is a port name of
Òltlk.Ó Because it has the same STREAMS
module name as the default LocalTalk port,
if you use the port alias in the conÞguration
string, Open Transport can locate the
default port even in those cases where a
computer doesnÕt use the standard default
of ÒltlkB.Ó See also default port.

port name A unique name that
designates the port. It is typically an
abbreviation of the portÕs device type plus a
sufÞx, usually numeric, for example,
GL827

G L O S S A R Y
Òenet0,Ó Òenet1,Ó and Òenet2.Ó For historic
reasons, LocalTalk and serial ports use an
alphabetic sufÞx instead.

port reference A 32-bit value that
uniquely describes a port: its device and
bus type, its physical slot number, and,
where applicable, its multiport identiÞer.

port registry An Open Transport registry
of available ports.

port structure A structure that contains
information about a port on a system. A
port structure contains each portÕs port
reference, several sets of information ßags,
its port name, its STREAMS module name,
and the slot ID (for ports on a PCI bus).

presentation layer The layer of the OSI
model immediately below the application
layer. Protocols in this layer assume that an
end-to-end path or connection already
exists across the network between the two
communicating parties. Protocols in this
layer are concerned with the representation
of data values for transfer, or the transfer
syntax.

Printer Access Protocol (PAP) An
asymmetrical connection-oriented
transactionless AppleTalk protocol that
enables communication between client and
server endpoints, allowing multiple
connections at both ends. In particular,
PAP is used for direct printing to
AppleTalk printers.

privileged options Options whose values
can be changed only by privileged clients,
although it is sometimes possible for
nonprivileged clients to read the value of a
privileged option. The Mac OS does not

distinguish between priviledged and
nonpriviledged clients; so this distinction is
irrelevant to Open Transport.

protocol option See option.

protocol stack A set of protocols related in
a hierarchical fashion, where the
higher-level protocols are clients of the
lower-level protocols.

provider A layered set of STREAMS
modules and drivers that provides a service
to clients of Open Transport. See also
endpoint provider, mapper provider,
service provider.

provider event An event Open Transport
uses to notify your application that
something has occurred that demands
immediate attention or that an
asynchronous function has completed
execution. See also asynchronous event and
completion event.

provider function A function that you can
call to manipulate a speciÞc type of
provider. For example, you call the
OTOpenEndpoint function to open an
endpoint provider. See also general
provider function.

provider reference A value that is
returned to you when you open a provider
and that you must pass back when you call
a provider function. The data type of the
provider reference depends on the type of
the provider.

pseudodevice A special type of port that
is a driver that doesnÕt interface to a
hardware device; instead, it interfaces to
other device drivers. A pseudodevice uses a
special device type, designated with the
GL828

G L O S S A R Y
constant kOTPseudoDevice, and each must
have a unique port reference. See also
child port.

RawIP An application interface to the
IP protocol.

read-only options Options whose values
you can read but not change.

receive queue An ADSP receiving buffer
used to store incoming data until the local
endpoint provider acknowledges reading it.

reliable delivery A message-delivery
paradigm in which the networking protocol
includes error checking and recovery from
error or loss of data. Compare with
best-effort delivery.

requester An endpoint that as part of a
transaction sends a request for a service.
The responder endpoint reads the request,
performs the service, and sends a reply.
When the requester receives the reply, the
transaction is complete.

responder An endpoint that as part of a
transaction reads a requester endpointÕs
request, performs the service, and sends
a reply.

router A device that connects networking
cables and that contains addressing and
routing information that lets it determine
from a packetÕs address the most efÞcient
route for the packet. A packet can be passed
from router to router several times before
being delivered to its destination. Compare
with bridge, gateway.

send-acknowledgment status A
providerÕs attribute that determines
whether endpoint providers that send data

make an internal copy of the data before
sending it and whether they notify your
application when they have sent the data.

send queue An ADSP buffer used to store
outgoing data until the remote endpoint
provider acknowledges receiving it.

service provider An Open Transport
provider that handles features unique to a
speciÞc protocol stack. For example, to get
information about AppleTalk zones, you
must open an AppleTalk service provider.
See also endpoint provider, mapper
provider.

session A logical (as opposed to physical)
connection between two entities on a
network or internet. A session must be set
up at the beginning, maintained by the
periodic exchange of information, and
broken down at the end. See also
connection-oriented protocol.

session layer The layer of the OSI model
that serves as an interface to the transport
layer, which is below it. The session layer
allows for establishing a session, which is
the process of setting up a connection over
which a dialog between two applications or
processes can occur. Some of the functions
that the session layer provides for are ßow
control, establishment of synchronization
points for checks and recovery during Þle
transfer, full-duplex and half-duplex
dialogs between processes, and aborts
and restarts.

socket A piece of software that serves as
an addressable entity on a node. Endpoints
exchange data with each other across an
AppleTalk internet through sockets.
GL829

G L O S S A R Y
socket number An 8-bit number that
identiÞes an AppleTalk socket. Each
endpoint on an AppleTalk network is
associated with a unique 8-bit socket
number.

space The state into which a serial line is
placed to signal data. Compare with mark.

start bit A signal that delineates a serial
lineÕs change from the mark state to a space.
The start bit triggers the synchronization
necessary for asynchronous communication.

state dependence A condition of a
networking protocol or connection in which
the response to a request is dependent on a
previous request. For example, before a
workstation application connected to a Þle
server can read a Þle, it must have Þrst
issued a request to open the Þle.

statically assigned socket An AppleTalk
socket that is permanently reserved for a
designated protocol or process. For
example, socket 4 is always reserved as the
echo socket, used for echoing packets across
a network. Compare dynamically assigned
socket.

stop bit A signal that delineates the end of
the character frame and places the serial
line back into a mark state for a minimum
speciÞed time interval. This interval has one
of several possible values: 1, 1.5, and 2 stop
bits.

STREAMS module A module that
conforms to the STREAMS architecture.
This architecture is a UNIX¨ standard in
which protocols and other service providers
are implemented as software modules that
communicate between each other using

messages. Open Transport software
modules are implemented as STREAMS
modules.

subnet A portion of a network, which is
in turn a portion of an internet.

subnet mask A number that can be used
to determine what portion of an IP address
is dedicated to the host identiÞer and what
portion identiÞes the subnet.

symmetrical connection A networking
connection in which both ends have equal
control over the communication. Both ends
can send and receive data and initiate or
terminate the session. Compare with
asymmetrical connection.

synchronous mode A mode of operation
in which provider functions do not return
until they have Þnished executing. See also
asynchronous mode.

TCP Transmission Control Protocol.

TCP/IP protocol family A set of
networking protocols in wide use
throughout the world for government and
business applications. The TCP/IP protocol
family includes TCP, UDP, and IP, among
other protocols.

TCP/IP service provider An Open
Transport provider that provides an
interface to the TCP/IP Domain Name
Resolver (DNR).

transaction A process during which one
endpoint, the requester, sends a request for a
service. The remote endpoint, called the
responder, reads the request, performs the
service, and sends a reply. When the
requester receives the reply, the transaction
is complete.
GL830

G L O S S A R Y
transaction-based protocol A networking
protocol that divides data transmission into
transactions. Compare with transactionless
protocol.

transaction ID A number that uniquely
identiÞes a transaction.

transactionless protocol A networking
protocol that deÞnes how the data is to be
organized and delivered from one node to
another but does notdivide the data up into
transactions. Compare with
transaction-based protocol.

Transmission Control Protocol (TCP) A
connection-oriented data stream protocol
that provides highly reliable data delivery;
part of the TCP/IP protocol family.

transport independence The
independence of networking APIs from the
underlying networking or transport
technology.

transport layer The layer of the OSI
model that isolates some of the physical and
functional aspects of a network from the
upper three layers. It provides for
end-to-end accountability, ensuring that all
packets of data sent across the network are
received and in the correct order. This
process involves providing a means of
identifying packet loss and supplying a
retransmission mechanism. The transport
layer may also provide connection and
session management services.

transport service data unit (TSDU) A unit
of data that allows an endpoint to separate
a data stream into discrete logical units
when sending and receiving data across a
connection. A TSDU is the largest piece of
data that an endpoint can transfer with

boundaries and content preserved.
Different types of endpoints and different
endpoint implementations support different
size TSDUs. See also expedited transport
service data unit (ETSDU).

type That part of an NBP name that
identiÞes the type of service that the entity
provides, for example, ÒMailboxÓ for an
electronic mailbox on a server. See also
name and zone.

UDP User Datagram Protocol.

User Datagram Protocol (UDP) A
connectionless datagram protocol that
provides port demultiplexing and data
checksums.; part of the TCP/IP protocol
family.

utility function A function that is
implemented by Open Transport itself. See
also interface function.

ZIP Zone Information Protocol.

zone A logical grouping of nodes in an
AppleTalk network or internet or that part
of an NBP name that identiÞes the zone
within the network to which the node
belongs. See also name and type.

Zone Information Protocol (ZIP) An
AppleTalk protocol that maps network
numbers to zone names for all networks
belonging to an AppleTalk internet.
GL831

Index
A

A5 world 33, 139
abortive disconnects

ADSP and 318
deÞned 87
PAP and 343, 345
TCP and 258

absolute requirements 809
action ßags enumeration 570
active peers 94, 106Ð111
addressing 10
address registration 150
ADSP. See AppleTalk Data Stream Protocol
AEP Echoer

deÞned 308
guidelines for using 308Ð309
socket for 308

AF_ATALK_DDP constant 722
AF_ATALK_DDPNBP constant 722
AF_ATALK_MNODE constant 722
AF_ATALK_NBP constant 722
AF_DNS constant 684
AF_INET constant 684
allocating memory 456
ALO transactions. See at-least-once transactions
AppleTalk 263Ð276

conÞguring, constants for 270
network system architecture 264
protocols 269, 271Ð276

AppleTalk addressing 273, 279Ð290
addressing identiÞers 266
constants and data types for 721Ð727
functions for 728Ð745
NBP and 273

AppleTalk Data Stream Protocol (ADSP) 265,
275, 313Ð321

binding endpoints 316
data channels 316

disconnecting 318
options 318
passive peers 316
queue length, specifying 316, 319
receive queue 315
reliable data delivery and 314
sending expedited data 318
send queue 315
transferring data 316Ð318
using endpoint functions with 319Ð321

AppleTalk Echo Protocol (AEP) 308
AppleTalk environment, obtaining information

about 299
AppleTalk information structure 746
AppleTalkInfo type 299, 746
AppleTalk internet 266
AppleTalk networks, measuring performance

of 308
AppleTalk network system architecture 264
AppleTalk service provider reference 296
AppleTalk service providers 265, 293Ð299

constants and data types for 745Ð747
deÞned 273
functions for 747Ð756
obtaining 296
using 295Ð299

AppleTalk Transaction Protocol (ATP) 265, 275,
325Ð332

AppleTalk service providers and 294
options 329Ð331, 757Ð758
reliable delivery of data and 327
transactions 327
transferring data 328
user bytes in packet header 331
using endpoint functions with 331, 757

AppleTalk Transition Queue (ATQ) 269
AppleTalk zones

buffers for 297
deÞned 296
833

I N D E X
obtaining for an application 297Ð298
obtaining for a network 298
obtaining for an internet 298
obtaining names of 296Ð299

application layer 13
association-related options 807Ð808
asymmetrical connection 9
asynchronous communication 352
asynchronous events 76

ADSP and 321
deÞned 67
functions that can clear 103
functions that can fail because of 103
polling for 105, 449

asynchronous mode 65
asynchronous processing 103

notiÞer functions 68, 413Ð414
ATK_ADSP constant 757
ATK_ATP constant 758
ATK_DDP constant 756
ATK_PAP constant 759
at-least-once transactions 327
atomic operations 204
ATP_OPT_DATALEN constant 329, 758
ATP_OPT_RELTIMER constant 271, 329, 758
ATP_OPT_REPLYCNT constant 329, 758
ATP_OPT_TRANID constant 329, 758
ATP packets 294, 331
ATP. See AppleTalk Transaction Protocol
ATQ. See AppleTalk Transition Queue
attention codes 318
attention messages. See expedited data

B

baud rate 351, 357, 766
best-effort delivery of data 9, 274
binding

deÞned 84
binding endpoints

ADSP and 316
DDP and 305Ð306
establishing a connection and 106, 111

name registration and 149
PAP and 338Ð339
rules for 112

bit time, in serial communication 350
blocking 65
blocking providers 72
blocking status 65
break signal 352, 770
bridges 6
broadcast interface option 699
broadcast permission option 697
buffer information structure 221, 676
burst mode option 357, 769
bus types, list of 597

C

canceling system tasks 140
canonical name 689
CFM terminate procedure 42
character frame 350
checksum option 307, 318, 757
child ports 193
Clear To Send (CTS) signal 352, 353
client, of a protocol 7
client list structure 198, 597
CloseOpenTransport function 42, 43, 77, 375
closing providers 79
combined DDP-NBP addresses 280, 285
combined DDP-NBP address structure 724
completion events 67, 76
COM_SERIAL constant 765
conÞguration strings

AppleTalk protocols, constants for 270
options, constants for 271
serial endpoints, constants for 354

connectionless protocols 8, 25
connectionless transaction-based service

mode of service 85
using 123Ð125

connectionless transactionless service
mode of service 85
using 119
834

I N D E X
connection-oriented protocols 8, 25
connection-oriented service

connection requests 95
disconnection requests 95
establishing 107Ð112
multiple connection requests 111
options for 816
protocols for 8
terminating 113Ð117
transferring data 111

connection-oriented transaction-based service
mode of service 85
using 125Ð126

connection-oriented transactionless service
mode of service 85
using 120Ð121

connection requests
acknowledging 95
multiple 111
sending user data with 111

connections. See connection-oriented service
context pointer 73
CTS. See Clear To Send signal

D

data
expedited. See ETSDUs
receiving 119, 221
transferring ADSP data 316Ð318
transferring ATP data 328
transferring between transaction-based

endpoints 121Ð126
transferring between transactionless

endpoints 119Ð121
transferring noncontiguous 217
transferring normal 39
transferring with serial endpoints 355
using multiple sends 118

data bits 351, 357, 766
data communication equipment (DCE) 352
data delivery 10

best-effort 9

reliable 9, 13
Datagram Delivery Protocol (DDP) 274,

303Ð310, 757
AppleTalk service providers and 294
introduced 265
options for 756

datagrams 8, 272
datagrams. See DDP packets
data link 13
data-link layer 12
Data Link Provider Interface standard 17
data stream

breaking into logical units 120Ð121
data terminal equipment (DTE) 352
Data Terminal Ready (DTR) signal 352, 353, 356,

769
DDP addresses 281Ð282
DDP address structure 281, 722
DDPAddress type 281, 722, 726
DDP endpoints

binding 305Ð306
options used with 307

DDPNBPAddress type 724
DDP_OPT_SRCADDR constant 310, 756
DDP packets 272, 304
DDP. See Datagram Delivery Protocol
DDP source address option 310, 756
DDP type

DDP endpoints and 305
echo packets, for 308
effects of using 307
specifying a DDP address 281
using 306Ð307

deferred tasks
destroying 141
scheduling 140

deferred task time
functions callable at 798

delay mode option 692
destroying system and deferred tasks 141
device types, list of 595
disconnecting 318, 343
disconnection requests

acknowledging 95
sending user data with 111
835

I N D E X
DLPI standard 17
DNR. See domain name resolver
DNS address structure 686
DNSAddress type 686
DNS query information structure 251, 687
DNSQueryInfo type 251, 687
DNS query response types 251, 687
DNS. See domain name system
DoGetMyZone function 297
domain name resolver (DNR)

deÞned 240
functions for 700Ð708
operation of 243
OTLookup function and 259
query types 243

domain names
deÞned 241
fully qualiÞed 241
getting mail-exchange host names 707
resolving 259, 700Ð708

domain name system (DNS) 240
domain name system address structure 686
domains 240
donÕt route option 697
DTInstall function 138
DTR. See Data Terminal Ready signal
duplex 8
DVMRP_ADD_LGRP constant 699
DVMRP_ADD_MRT constant 699
DVMRP_ADD_VIF constant 699
DVMRP_DEL_LGRP constant 699
DVMRP_DEL_MRT constant 699
DVMRP_DEL_VIF constant 699
DVMRP_DONE constant 699
DVMRP_INIT constant 699
dynamically assigned sockets 268

E

echoer socket 308
echo packets 308Ð309
echo reply packets 308
echo request packets 308

enable EOM option 317, 320, 757
endpoint data

for TCP/IP 253
endpoint ßags enumeration 424
endpoint functions

asynchronous events, to clear 103
deÞned 84
mode of operation, affected by 103
naming conventions for 86
types of options used by 808

endpoint providers 18
creating 100
deÞned 83
modes of operation. See modes of operation

endpoint reference 84
endpoints 20

address of 451
binding 84, 100Ð101, 441
binding rules for 112
conÞguration 22
connectionless transaction-based 85
connectionless transactionless 85
connection-oriented transaction-based 85
connection-oriented transactionless 85
constants and data types for 421Ð436
deÞned 83
functions 84, 86
functions for 436Ð518
getting information about 101Ð102, 446
handling events for 102Ð103
name registration for 149
opening 100Ð101
options. See options
reference 84
resolving name of 453
states 89Ð98, 448
types of 85
using 99Ð126

endpoint service enumeration 422
endpoint states 89Ð98

for connectionless endpoints 91
for connection-oriented endpoints 92
deÞned 89
events that can change 97
functions that can change 95
836

I N D E X
getting information about 424, 448
list of 89, 424
synchronizing information about 455

endpoint states enumeration 424
entities. See endpoints
entity name. See NBP name
error character option 357
escape characters, in NBP names 284, 289
ETSDUs

ADSP and 316, 318, 320
deÞned 98
getting information about 100, 428
TCP and 257
transferring data with 120Ð121

exactly-once transactions 327
expedited data

TCP and 257
expedited data. See ETSDUs
expedited transport service data units. See

ETSDUs
extended network 266
external clock option 357, 768

F

ßow control. See handshaking
framing capabilities 194, 763
full duplex 8
fully qualiÞed domain name 241
Functions 599

G

gateways 7
general provider functions 63, 389Ð412
generic options enumeration 567
Gestalt function

determining Open Transport availability 34
selectors 34

H

half duplex 8
handshake 8
handshaking 353, 767
hardware, communications 13
hardware interrupt time

functions callable at 793
native functions callable at 796

header, packet 8
hosts

deÞned 240
getting information about 705
host name 240, 701

I,J

InetAddress type 685
InetHostInfo type 689
InetInterfaceInfo type 688
INET_IP constant 692
InetMailExchange type 691
InetSysInfo type 690
INET_TCP constant 692
INET_UDP constant 692
initializing

Open Transport 31Ð42
InitOpenTransport function 31, 32, 373
InitOpenTransportUtilities function 374
internet 7
internet addresses

deÞned 241
Þnding 251, 700, 709
Þnding host name for 701
getting from domain name 259
utility functions for 711Ð716

internet address structure 685
internet host information structure 689
internet hosts

getting information about 705
internet interface information structure 688
internet mail exchange structure 691
Internet Protocol (IP) 238
837

I N D E X
See also RawIP
internet system information structure 690
internetworking 13
interrupt processing

calling functions in 137
interrupt time

functions callable at 793
native functions callable at 796

IP_ADD_MEMBERSHIP constant 699
IP addresses. See internet addresses
IP_BROADCAST constant 697
IP_BROADCAST_IF constant 699
IP_DONTROUTE constant 697
IP_DROP_MEMBERSHIP constant 699
IP_HDRINCL constant 697
IP multicast address structure 690
IP_MULTICAST_IF constant 698
IP multicasting 250, 690
IP_MULTICAST_LOOP constant 698
IP_MULTICAST_TTL constant 698
IP_OPTIONS constant 695
IP_RCVDSTADDR constant 698
IP_RCVIFADDR constant 699
IP_RCVOPTS constant 698
IP_REUSEADDR constant 697
IP. See Internet Protocol
IP_TOS constant 696
IP_TTL constant 697
I_SetFramingType function 771
I_SetSerialBreak function 356, 770
I_SetSerialDTR function 356, 769
I_SetSerialXOff function 356, 771
I_SetSerialXOffState function 356, 770
I_SetSerialXOn function 356, 770

K

kADSPName constant 270
kAppleTalkAddressLength constant 722
kATalkInfoHasRouter constant 747
kATalkInfoIsExtended constant 747
kATalkInfoOneZone constant 747
kATPName constant 270

kDDPAddressLength constant 722
kDDPName constant 270
kDefaultAppleTalkServicesPath constant 297,

745
kDefaultInetInterface constant 685
kDefaultInternetServicesPath constant 683
kDNRName constant 683
KEADDRINUSEErr result code 790
KEADDRNOTAVAILErr result code 790
kEAGAINErr result code 69, 72, 789
kEBADFErr result code 69, 789
kEBUSYErr result code 790
kECONNABORTEDErr result code 790
kECONNREFUSEDErr result code 791
kECONNRESETErr result code 790
kEDEADLKErr result code 790
kEHOSTDOWNErr result code 791
kEHOSTUNREACHErr result code 791
kEINVALErr result code 790
kEISCONNErr result code 791
kENETDOWNErr result code 790
kENETRESETErr result code 790
kENETUNREACHErr result code 790
kENIOErr result code 789
kENOBUFSErr result code 791
kENOENTErr result code 789
KENomemErr result code 72
kENOMEMErr result code 69, 790
kENOSRErr result code 69, 791
kENOTCONNErr result code 791
kENXIOErr result code 789
kEPROTOErr result code 791
kESHUTDOWNERR result code 791
kETIMEDOUTErr result code 124, 791
kETIMEErr result code 791
kETOOMANYREFSErr result code 791
kEWOULDBLOCKErr result code 69, 72, 790
kInetInterfaceInfoVersion constant 685
kMaxHostAddrs constant 684
kMaxHostNameLen constant 684
kMaxSysStringLen constant 684
kNBPAddressLength constant 722
kNBPDefaultZone constant 722
kNBPEntityBufferSize constant 721
kNBPImbeddedWildCard constant 722
838

I N D E X
kNBPMaxEntityLength constant 721
kNBPMaxNameLength constant 721
kNBPMaxTypeLength constant 721
kNBPMaxZoneLength constant 721
kNBPName constant 270
kNBPSlushLength constant 721
kNBPWildCard constant 722
kNetbufDataIsOTBufferStar constant 673
kNetbufDataIsOTData constant 673
kOTAccessErr result code 785
kOTAddressBusyErr result code 788
kOTADEVDevice constant 596
kOTAnyInetAddress constant 684
kOTATMDevice constant 596
kOTATMSNAPDevice constant 597
kOTBadAddressErr result code 785
kOTBadDataErr result code 786
kOTBadFlagErr result code 786
kOTBadNameErr result code 787
kOTBadOptionErr result code 785
kOTBadQLenErr result code 787
kOTBadReferenceErr result code 785
kOTBadSequenceErr result code 785
kOTBadSyncErr result code 69, 789
kOTBufferOverflowErr result code 786
kOTCanceledErr result code 789
kOTClientNotInittedErr result code 69, 792
kOTClosePortRequest constant 591
kOTCTSInputHandshake constant 358, 767
kOTDTROutputHandshake constant 358, 767
kOTDuplicateFoundErr result code 790
kOTEthernetDevice constant 596
kOTEvenParity constant 766
kOTFastEthernetDevice constant 596
kOTFDDIDevice constant 596
kOTFibreChannelDevice constant 597
kOTFireWireBus constant 590
kOTFireWireDevice constant 597
kOTFlowErr result code 72, 786
kOTFraming8022 constant 594
kOTFraming8023 constant 594
kOTFramingAsync constant 763
kOTFramingEthernet constant 594
kOTFramingEthernetIPX constant 594
kOTFramingHDLC constant 763

kOTFramingSDLC constant 763
kOTGeoPort constant 590
kOTGetMiscellaneousEvents constant 269
kOTIndOutErr result code 788
kOTIrDADevice constant 596
kOTIRTalkDevice constant 596
kOTISDNDevice constant 596
kOTLastBusIndex constant 590
kOTLastDeviceIndex constant 597
kOTLastOtherNumber constant 597
kOTLastSlotNumber constant 597
kOTLocalTalkDevice constant 596
kOTLookErr result code 105, 786
kOTMDEVDevice constant 596
kOTModemDevice constant 596
kOTMotherboardBus constant 590
kOTNewPortRegistered constant 591
kOTNoAddressErr result code 785
kOTNoDataErr result code 72, 103, 153, 786
kOTNoDeviceType constant 596
kOTNoDisconnectErr result code 786
kOTNoError result code 785
kOTNoParity constant 766
kOTNoReleaseErr result code 786
kOTNotFoundErr result code 789
kOTNotSupportedErr result code 787
kOTNoUDErrErr result code 786
kOTNuBus constant 590
kOTOddParity constant 766
kOTOutOfMemoryErr result code 790
kOTOutStateErr result code 785
kOTPCIBus constant 590
kOTPCMCIABus constant 590
kOTPortAutoConnects constant 593
kOTPortCanYield constant 593
kOTPortDisabled constant 591
kOTPortEnabled constant 591
kOTPortIsActive constant 592
kOTPortIsAlias constant 593
kOTPortIsDisabled constant 593
kOTPortIsDLPI constant 593
kOTPortIsOffline constant 593
kOTPortIsPrivate constant 593
kOTPortIsSystemRegistered constant 593
kOTPortIsTPI constant 593
839

I N D E X
kOTPortIsTransitory constant 593
kOTPortIsUnavailable constant 593
kOTPortoffLine constant 591
kOTPPPDevice constant 596
kOTProtocolErr result code 69, 789
kOTProviderIsClosed constant 389, 591
kOTProviderIsDisconnected constant 198, 388
kOTProviderIsReconnected constant 198, 388
kOTProviderMismatchErr result code 788
kOTProviderWillClose constant 76, 389
kOTPseudoDevice constant 597
kOTQFullErr result code 789
kOTResAddressErr result code 788
kOTResQLenErr result code 788
kOTSerialBreakOn constant 766
kOTSerialCTLHold constant 767
kOTSerialDefaultBaudRate constant 764
kOTSerialDefaultDataBits constant 764
kOTSerialDefaultHandshake constant 764
kOTSerialDefaultOffChar constant 764
kOTSerialDefaultOnChar constant 764
kOTSerialDefaultParity constant 764
kOTSerialDefaultRcvBufSize constant 765
kOTSerialDefaultRcvLoWat constant 765
kOTSerialDefaultRcvTimeout constant 765
kOTSerialDefaultSndBufSize constant 764
kOTSerialDefaultSndLoWat constant 765
kOTSerialDefaultStopBits constant 764
kOTSerialDevice constant 596
kOTSerialDTRNegated constant 766
kOTSerialForceXOffFalse constant 764
kOTSerialForceXOffTrue constant 764
kOTSerialFramingErr constant 766
kOTSerialOutputBreakOn constant 767
kOTSerialOverrunErr constant 766
kOTSerialParityErr constant 766
kOTSerialSendXOffAlways constant 764
kOTSerialSendXOffIfXOnTrue constant 764
kOTSerialSendXOnAlways constant 764
kOTSerialSendXOnIfXOffTrue constant 764
kOTSerialSetBreakOff constant 763
kOTSerialSetBreakOn constant 763
kOTSerialSetDTROff constant 763
kOTSerialSetDTROn constant 763
kOTSerialSwOverRunErr constant 766

kOTSerialXOffHold constant 767
kOTSerialXOffSent constant 766
kOTSLIPDevice constant 596
kOTSMDSDevice constant 596
kOTStateChangeErr result code 69, 787
kOTStructureTypeErr result code 787
kOTTokenRingDevice constant 596
kOTUnknownBusPort constant 590
kOTXOnOffInputHandshake constant 358, 767
kOTXOnOffOutputHandshake constant 358, 767
kOTYieldPortRequest constant 198, 591, 598
kPAPName constant 270
kRawIPName constant 683
kSerialName constant 763
kSerialPortABName constant 763
kSerialPortAName constant 763
kSerialPortBName constant 763
kTCPName constant 683
kUDPName constant 683
kZIPMaxZoneLength constant 722

L

layered networking architecture 11
link-access protocols 13, 265
listener. See passive peers
lists

manipulating 204
LocalTalk 266
locking functions 204

M

mail exchange 241
mail-exchange host names 707
mail preference value 241
manipulating lists 204
manipulating memory 203
manipulating strings 204
mapper functions

AppleTalk service provider functions and 295
840

I N D E X
mapper providers 20
blocking status 152
deÞned 149
dynamic name resolution 150
modes of operation 151
NBP and 273
need for 149
send-acknowledgment status 152

mapper reference 150
mappers 149

constants and data types for 545Ð549
deÞned 20, 150
event codes for 151
functions for 550Ð560
mapper reference 150
searching for names 153
states of 150
using 150Ð155

mapper states 150
mark state, in serial communication 350
mblk_t structure 675
M_DATA flag 424
measuring AppleTalk network performance 308
memory

functions that allocate 805
manipulating 203

memory, allocating 456
MIB 424
minor numbers 192, 589
miscellaneous events 269
mode of service

functions used for different 86
getting information about 422
Open Transport protocols, and 99
types of 85

modes of operation
asynchronous mode 65
blocking 65, 72
changing 71, 216
deÞned 64
for endpoint providers 88
for mapper providers 151
nonblocking 65
send-acknowledgment status 66, 73
synchronous mode 65

multicast 690
add membership option 699
deÞned 250
drop membership option 699
interface option 698
loopback option 698
Time To Live Þeld option 698

multifunction cards 193
multihoming 6
multihoming environment, getting information

about 299
multinode addresses 280, 285
multinode address structure 726
multinode architecture 6, 268
multinode ID 268
multinodes 268, 309
multiple address option 697
multiport identiÞer 192
multi-use devices 193
MyNotifierCallbackFunction function 413
MyProcessCallbackFunction function 669

N

Name-Binding Protocol (NBP) 265, 273, 280
name registration 150, 557

AppleTalk and NBP 286Ð287
NBP addresses 280, 282Ð285
NBP address structure 723
NBPAddress type 723
NBP entities 289
NBP entity structure 727
NBPEntity type 727
NBP names

components 283
deÞned 280
looking up 287Ð288
manipulating 289Ð290
name 283
registering 286Ð287
type 283
utility functions for 289
zone 283
841

I N D E X
network 6
network layer 13
network number 266
no-copy receive buffer structure 218, 675
no-copy receiving 221
node ID 266
nodes 6, 266
noise, in serial communication 352
non-associationÐrelated options 808
nonblocking 65
nonblocking providers 72
nonextended network 266
notiÞer functions 17, 296

deÞned 68, 413Ð416
example of 74
installing 73
limitations 76
removing 73

O

open retry option 340
Open Systems Interconnection model. See OSI

model
Open Transport

architecture 14
determining availability 34
initializing 31Ð42, 62
interrupt processing and 137
provider functions 64
registering as a client of 198
result codes 785Ð791
XTI data structures and 780
XTI extensions and 779Ð780
XTI functions and 776Ð778
XTI result codes 781Ð783

Open Transport ßags enumeration 422
OPT_ALERTENABLE constant 569
OPT_CHECKSUM constant 271, 307, 318, 568, 757,

759
OPT_ENABLEEOM constant 271, 317, 320, 345, 568,

757, 759
OPT_INTERVAL constant 271, 329, 568, 758

option management
action ßags for 570

option negotiation
default values for 577
deÞned 88, 166
error conditions 815
initiating 812
multiple options, for 811
outcome of 570
rules governing 811

options 16
absolute requirements 809, 812
action ßags for 570
ADSP 317Ð318

checksum 318
enable EOM 317, 320, 757

association-related 807Ð808, 810
ATP 329Ð331

data length 758
release timer 758
reply packet count 758
transaction ID 758

buffer for storing 169, 172
code portability and 166
conßicting values for 813
constants and data types for 565Ð575
constructing buffer for 174, 583
current values for 175, 578
DDP

checksum 307
self send 307
source address 310, 756

default values 166, 174, 175, 577
deÞned 87
functions for 575Ð581
generic, list of 171, 567Ð569
illegal 815
internal buffer 166
IP 694Ð699

add multicast membership 699
broadcast interface 699
broadcast permission 697
conÞguration strings for 246
donÕt route option 697
drop multicast membership 699
842

I N D E X
multicast interface 698
multicast loopback 698
multicast Time to Live Þeld 698
multiple addresses 697
Options Þeld option 695
protocol level for 691
Time to Live Þeld option 697

list of constants for 271
need for 165
negotiating 166, 811
non-associationÐrelated 807, 808
option negotiation 88
PAP

enable EOM 345
open retry 340
server status 340

privileged 809, 814
read-only 809, 814
serial endpoints

baud rate 357
burst mode 357
data bits 357
error character 357
external clock 357
parity 357
receive timeout 357
serial status 359
stop bits 357

structure describing 167, 572
TCP 692Ð693

conÞguration strings for 246
delay mode 692
protocol level for 691
segment size 693

transport independence and 167
types of 807
UDP 694

conÞguration strings for 246
protocol level for 691

using 171Ð176
values, chosen by provider 816
values, retrieving 174Ð176
values, specifying 173Ð174
verifying values of 176, 578
XTI-level, list of 170, 565Ð567

options buffer
constructing 169, 174, 583
parsing 175

Options Þeld option 695
OPT_KEEPALIVE constant 569, 572
OPT_NEXTHDR macro 572
OPT_RETRYCNT constant 271, 329, 568, 758
OPT_SELFSEND constant 271, 307, 568, 757
OPT_SERVERSTATUS constant 341, 569, 759
orderly disconnects

ADSP and 318
deÞned 87
local 114Ð117
PAP and 343
remote 114Ð117

OSI model
AppleTalk protocol stack and 264
deÞned 11
TCP/IP and 238
TCP/IP functional layers and 238

OTAccept function 107Ð112, 491
ADSP and 320
PAP and 344
serial endpoints and 362
TCP/IP and 257

OTAckSends function 215, 401
OTAcquireLock function 667
OTAddFirst function 645
OTAddLast function 646
OTAddress type 371
OTAlloc function 456
OTAllocMem function 625
OTAsyncOpenAppleTalkServices function 296,

747
OTAsyncOpenEndpoint function 100, 361, 439

TCP/IP and 253
OTAsyncOpenInternetServices function 703
OTAsyncOpenMapper function 552
OTATalkGetInfo function 299, 755
OTATalkGetLocalZones function 298, 752
OTATalkGetMyZone function 297, 751
OTATalkGetZoneList function 298, 753
OTAtomicAdd32 function 664, 665
OTAtomicAdd8 function 666
OTAtomicClearBit function 658
843

I N D E X
OTAtomicSetBit function 657
OTAtomicTestBit function 659
OTBind function 101, 441

ADSP and 319
DDP and 310
multinodes and 285, 309
PAP and 343
registering endpoint names 286
serial endpoints and 361
specifying a DDP address 281
TCP/IP and 254

OTBufferDataSize function 221
OTBufferInfo type 221, 676
OTBuffer type 218, 675
OTCancelReply function 511
OTCancelRequest function 510
OTCancelSynchronousCalls function 397
OTCancelSystemTask function 140, 527
OTCancelTimerTask function 531
OTCancelUReply function 124, 483
OTCancelURequest function 123, 481
OTCanMakeSyncCall function 522
OTClearLock function 668
OTClientList type 597
OTCloneConfiguration function 37, 378
OTCloseProvider function 79, 296, 391
OTCompareAndSwap16 function 662
OTCompareAndSwap32 function 661
OTCompareAndSwap8 function 663
OTCompareAndSwapPtr function 659
OTCompareDDPAddresses function 731
OTConfiguration type 370, 377
OTConnect function 107Ð112, 484

ADSP and 319
PAP and 344
serial endpoints and 362
TCP/IP and 255

OTCountDataBytes function 461
OTCreateConfiguration function 34, 376
OTCreateDeferredTask function 139, 533
OTCreateOptions function 173, 582
OTCreateOptionString function 585
OTCreatePortRef function 195, 608
OTCreateSystemTask function 139, 524
OTCreateTimerTask function 529

OTData type 217, 674
OTDelay function 632
OTDeleteName function 556

TCP/IP and 259
AppleTalk addressing, and 286

OTDeleteNameByID function 557
AppleTalk addressing, and 286

OTDequeue function 656
OTDestroyConfiguration function 379
OTDestroyDeferredTask function 141, 536
OTDestroySystemTask function 141, 528
OTDestroyTimerTask function 532
OTDontAckSends function 216, 403
OTElapsedMilliseconds function 639
OTEnqueue function 655
OTEnterInterrupt function 537
OTEnterNotifier function 408
OTExtractNBPName function 741
OTExtractNBPType function 742
OTExtractNBPZone function 744
OTFindAndRemoveLink function 653
OTFindLink function 652
OTFindOption function 579
OTFindPort function 195, 601
OTFindPortByRef function 195, 602
OTFlags constant 422
OTFree function 459
OTFreeMem function 625
OTGetBusTypeFromPortRef function 605
OTGetClockTimeInSecs function 641
OTGetDeviceTypeFromPortRef function 604
OTGetEndpointInfo function 102, 361, 447

TCP/IP and 253
OTGetEndpointState function 102, 448
OTGetFirst function 648
OTGetIndexedLink function 654
OTGetIndexedPort function 195, 600
OTGetLast function 649
OTGetLinkObject type 623
OTGetNBPEntityLengthAsAddress function 733
OTGetPortIconFromPortRef function 604
OTGetProtAddress function 102, 424, 451

specifying a DDP address 281
TCP/IP and 255

OTGetProviderPortRef function 195, 599
844

I N D E X
OTGetSlotFromPortRef function 606
OTGetTimeStamp function 635
OTIdle function 631
OTInetAddressToName function 702
OTInetGetInterfaceInfo function 711
OTInetHostToString function 716
OTInetMailExchange function 707
OTInetQuery function 251, 709
OTInetStringToAddress function 700
OTInetStringToHost function 715
OTInetSysInfo function 706
OTInitDDPAddress function 728
OTInitDDPNBPAddress function 730
OTInitDNSAddress function 714
OTInitInetAddress function 713
OTInitNBPAddress function 729
OTInitNBPEntity function 732
OTInstallNotifier function 73, 405
OTIoctl function 269, 411
OTIsAckingSends function 404
OTIsInList function 650
OTIsNonBlocking function 72, 400
OTIsSynchronous function 396
OTLeaveInterrupt function 540
OTLeaveNotifier function 409
OTLIFODequeue function 642
OTLIFOEnqueue function 641
OTLIFOStealList function 643
OTLIFO type 622
OTLink type 622
OTListen function 107Ð112, 489

ADSP and 320
PAP and 344
serial endpoints and 362
TCP/IP and 256

OTListSearchProcPtr type 624
OTList type 623
OTLock type 621
OTLook function 105, 449

TCP/IP and 255
OTLookupName function 296, 559

name lookups and 152, 153
retrieving entries returned by 154
TCP/IP and 259

OTMemcmp function 628

OTMemcpy function 626
OTMemmove function 627
OTMemset function 630
OTMemzero function 629
OTNextOption function 580
OTOpenAppleTalkServices function 296, 749
OTOpenEndpoint function 100, 361, 437

TCP/IP and 253
OTOpenFlags constant 423
OTOpenInternetServices function 704
OTOpenMapper function 551
OTOptionManagement function 576, 810
OTOTGetUserPortNameFromPortRef function 603
OTPortCloseStruct type 598
OTPortRecord type 592
OTPortRef type 595
OTRcv function 120Ð121, 497

ADSP and 320
PAP and 345
serial endpoints and 363
TCP/IP and 257

OTRcvConnect function 107Ð112, 487
ADSP and 319
PAP and 344
TCP/IP and 256

OTRcvDisconnect function 107Ð112, 515
abortive disconnect and 113Ð114
ADSP and 321
PAP and 345
serial endpoints and 363
TCP/IP and 258

OTRcvOrderlyDisconnect function 114Ð117, 517
OTRcvReply function 507
OTRcvRequest function 502
OTRcvUData function 119, 467
OTRcvUDErr function 119, 465
OTRcvUReply function 124, 478

ATP and 332
OTRcvURequest function 472

ATP and 332
OTReadBuffer function 221, 679
OTRegisterAsClient function 198, 614
OTRegisterName function 554

AppleTalk addressing, and 286
TCP/IP and 258
845

I N D E X
OTRegisterPort function 608
OTReleaseBuffer function 218, 677
OTRemoveFirst function 647
OTRemoveLast function 647
OTRemoveLink function 651
OTRemoveNotifier function 407
OTResolveAddress function 102, 424, 453

specifying a DDP address 281
OTReverseList function 644
OTScheduleDeferredTask function 140, 534
OTScheduleInterruptTask function 140, 538
OTScheduleSystemTask function 140, 525
OTScheduleTimerTask function 530
OTSerialSetErrorCharacter constant 357
OTSerialSetErrorCharacterWithAlternate

constant 357
OTSetAddressFromNBPEntity function 734
OTSetAddressFromNBPString function 737
OTSetAsynchronous function 71, 395
OTSetBlocking function 72, 398
OTSetNBPEntityFromAddress function 735
OTSetNBPName function 738
OTSetNBPType function 739
OTSetNBPZone function 740
OTSetNonBlocking function 72, 399
OTSetSynchronous function 71, 394
OTSnd function 120Ð121, 494

ADSP and 320
PAP and 344
serial endpoints and 362
TCP/IP and 257

OTSndDisconnect function 107Ð112, 513, 598
abortive disconnect and 113Ð114
ADSP and 320
PAP and 345
serial endpoints and 363
TCP/IP and 258

OTSndOrderlyDisconnect function 114Ð117, 516
OTSndReply function 504
OTSndRequest function 500
OTSndUData function 119, 463

DDP and 308, 310
TCP/IP and 257

OTSndUReply function 475
ATP and 332

OTSndURequest function 469
ATP and 331

OTStrCat function 634
OTStrCopy function 633
OTStrEqual function 634
OTStrLength function 633
OTSubtractTimeStamps function 636
OTSync function 455
OTTimeStampInMicroseconds function 638, 640
OTTimeStampInMilliseconds function 637
OTTimeStamp type 621
OTTransferProviderOwnership function 77, 390
OTUnbind function 445
OTUnregisterAsClient function 199, 615
OTUseSyncIdleEvents function 410
OTYieldPortRequest function 198, 611

P

packets 8
PAP

options
enable EOM 345
open retry 340
server status 340

PAP_OPT_OPENRETRY constant 271, 340, 758
PAP. See Printer Access Protocol
parity 351, 357, 766
passive peers

ADSP and 316
and yielding ports 198, 612
PAP and 338
using 94, 106Ð111

PCI cards 196
PCMCIA cards 591
physical layer 12
Port 590
port alias 194
port close structure 198, 598
port names

default 194
deÞned 192

port reference
846

I N D E X
deÞned 192, 595
obtaining 195
predeÞned variants 195, 610

port registry 191
port-related events 590Ð592
ports

alias 194
child 193
deÞned 191
events for 590, 592
iterating through 195
LocalTalk default 194
naming 192
obtaining information 195Ð196
yielding 198, 611, 613

port structure 193, 592
port transition events 198
presentation layer 13
Printer Access Protocol (PAP) 265, 276, 335Ð345

binding endpoints 338Ð339
connection arbitration scheme 337
disconnecting 343
options 339Ð340, 758
passive peers 338
queue length, specifying 338, 343
using endpoint functions with 343Ð345

privileged options 809, 814
process management 129Ð145

functions for 145, 521Ð542
protocols

connection-oriented or connectionless 25
deciding which to use 23
deÞned 7
families 24
high-level or low-level 24
layering 22
options 16
transaction-based or transactionless 25
types 8

protocol stacks
AppleTalk 264
deÞned 7
OSI model and 11
TCP/IP 238

provider conÞgurations

cloning 37
creating 37
identiÞers for AppleTalk protocols 269Ð270

provider event codes, list of 383Ð389
provider events

asynchronous 67, 76
codes for 383Ð389
completion 67, 76
notiÞer functions 68

provider reference 64
providers 18

AppleTalk 269Ð270
blocking 65
blocking providers 72
changing mode of execution 71
closing 79
constants and data types for 383Ð389
deÞned 61
events. See provider events
functions for 63, 389Ð416
general provider functions 62, 63, 389Ð412
modes of operation 65
nonblocking 65
nonblocking providers 72
opening multiple 62
send-acknowledgment status 66, 73
setting blocking status 72
transferring ownership of 77
types of 61
using 69Ð80

pseudodevices 193

Q

qlen parameter 319, 343, 362
Query function 709
querying DNS servers 251
query responses 251
847

I N D E X
R

RawIP 239, 247
raw packets 424
read-only options 809, 814
receive queue 315
receive timeout option 357, 767
reliable delivery of data 9, 13
requesters 326
Requests for Comments (RFCs) 239, 687
rescheduling a system or deferred task 140
responders 326
restoring the A5 world 139
result codes 785Ð791
reuse address option 697
RFCs. See Requests for Comments
routers 7

S

scheduling system and deferred tasks 140
segment size option 693
self-send option 307
send-acknowledgment status 66, 73

endpoint functions affected by 394
send queue 315
serial communication

asynchronous 352
baud rate 351
deÞned 350Ð352
errors 359
ßow control methods 353
RS-422 interface 352
signals used 352
synchronous 352

serial endpoints
conÞguration strings for 354
constants for 763Ð765
default settings for 764
opening and closing 354
options for 357, 765Ð769
queue length, specifying 362
serial-speciÞc commands for 356, 769Ð772

using 354Ð363
using general Open Transport functions

with 360Ð363
SerialHandshakeData constant 358, 764
SERIAL_OPT_BAUDRATE constant 766
SERIAL_OPT_BURSTMODE constant 769
SERIAL_OPT_DATABITS constant 766
SERIAL_OPT_ERRORCHARACTER constant 768
SERIAL_OPT_EXTCLOCK constant 768
SERIAL_OPT_HANDSHAKE constant 767
SERIAL_OPT_PARITY constant 766
SERIAL_OPT_RCVTIMEOUT constant 767
SERIAL_OPT_STATUS constant 766
SERIAL_OPT_STOPBITS constant 766
serial status option 359, 766
server status option 340
service providers 20
session 8
session layer 13
slot numbers, physical 196
SNMP 424
socket number 268
sockets 10, 267
software modules, Open Transport 17
space, in serial communication 350
start bit, in serial communication 350
state dependence 26
statically assigned sockets 268
status codes enumeration 570
stop bits 351, 357, 766
Streams modules 17

communicating with 62
deÞning commands for 411

strings
manipulating 204

structure types enumeration 425
subnet 241
subnet mask 241
symmetrical connection 8
synchronous communication 352
synchronous mode 65
synchronous processing 103

canceling 397
limitations of 70

SystemTask function 129
848

I N D E X
system tasks
canceling 140
destroying 141
scheduling 140

T

T_ACCEPTCOMPLETE constant 386
T_ACKNOWLEDGED constant 328, 331, 332, 423
T_ALLOPT constant 174, 175, 571
task processing 129Ð145
T_ATALKCABLERANGECHANGEDEVENT constant 269
T_ATALKCONNECTIVITYCHANGEDEVENT

constant 269
T_ATALKROUTERDOWNEVENT constant 269
T_ATALKROUTERUPEVENT constant 269
T_ATALKZONENAMECHANGEDEVENT constant 269
T_BIND constant 426
TBind type 429
T_CALL constant 426
TCall type 113, 433
T_CAN_RESOLVE_ADDR constant 424
T_CAN_SUPPLY_MIB constant 424
T_CAN_SUPPORT_MDATA constant 424
T_CHECK constant 570
T_CLTS constant 422
T_CONNECT constant 385
T_COTS constant 422
T_COTS_ORD constant 422
TCP/IP interface 242
TCP/IP protocol family

additional information about 239
and OSI model 238
deÞned 237
functional layers of 238

TCP/IP service providers
opening asynchronously 703
opening synchronously 704

TCP/IP services 237
constants and data types 683Ð691
domain name resolver (DNR) 239, 243
functions for 699Ð716
options for 691Ð699

using 245Ð259
TCP_KEEPALIVE constant 693
TCP_MAXSEG constant 693
TCP_NODELAY constant 692
TCP_NOTIFY_THRESHOLD constant 693
TCP. See Transmission Control Protocol
T_CRITIC_ECP constant 695
T_CURRENT constant 175, 571
T_DATA constant 103, 385
T_DATAXFER constant 90, 425
T_DEFAULT constant 175, 571
T_DELNAMECOMPLETE constant 152, 388
T_DISCONNECTCOMPLETE constant 387
T_DISCONNECT constant 321, 385
T_DIS constant 426
TDiscon type 114, 435
T_DNRADDRTONAMECOMPLETE constant 684
T_DNRMAILEXCHANGECOMPLETE constant 685
T_DNRQUERYCOMPLETE constant 685
T_DNRSTRINGTOADDRCOMPLETE constant 684
T_DNRSYSINFOCOMPLETE constant 685
TEndpointInfo type 102, 120, 427
T_EXDATA constant 103, 385
T_EXPEDITED constant 120, 318, 423
T_FAILURE constant 570
T_FLASH constant 695
T_GETATALKINFOCOMPLETE constant 299, 746
T_GETINFOCOMPLETE constant 387
T_GETLOCALZONESCOMPLETE constant 298, 746
T_GETMYZONECOMPLETE constant 297, 746
T_GETPROTADDRCOMPLETE constant 387
T_GETZONELISTCOMPLETE constant 298, 746
T_GODATA constant 386
T_GOEXDATA constant 386
T_HIREL constant 695
This 61, 83, 165, 191, 349
T_HITHRPT constant 695
TickCount function 309
T_IDLE constant 90, 425
Time to Live Þeld option 250, 697
Timing functions 203
T_IMMEDIATE constant 695
T_INCON constant 90, 425
T_INETCONTROL constant 695
T_INFO constant 426
849

I N D E X
T_INREL constant 90, 425
TIPAddMulticast type 690
t_kpalive type 572, 693
T_LDELAY constant 695
t_linger type 571
T_LISTEN constant 385
T_LKUPNAMECOMPLETE constant 152, 154, 388
T_LKUPNAMERESULT constant 152, 154, 388
TLookupBuffer type 549
TLookupReply type 548
TLookupRequest type 547
T_MEMORYRELEASED constant 215, 387
T_MORE constant 118, 119, 317, 328, 339, 423
T_NEGOTIATE constant 570
TNetbuf type 38, 282, 371
T_NETCONTROL constant 695
T_NORECEIPT constant 423
T_NOTOS constant 695
T_NOTSUPPORT constant 570
T_OPENCOMPLETE constant 151, 387, 746
TOption type 167, 173, 572
T_OPTMGMTCOMPLETE constant 387
T_OPTMGMT constant 426
TOptMgmt type 574
T_ORDREL constant 321, 386
T_OUTCON constant 90, 425
T_OUTREL constant 90, 425
T_OVERRIDEFLASH constant 695
T_PARTIALDATA constant 423
T_PARTSUCCESS constant 570
T_PASSCON constant 386
TPI standard 17
T_PRIORITY constant 695
transaction

deÞned 121
transaction ID 122Ð123

transaction-based protocols 9, 25
transaction-based service

using 121Ð123
transactionless protocol 8
transactionless protocols 25
transactions

ATP and 326
transferring data. See data
transferring provider ownership 77

Transmission Control Protocol (TCP) 238
transport independence 6, 22, 167
transport layer 13
Transport Provider Interface standard 17
transport service data units. See TSDUs
T_READONLY constant 570
TRegisterReply type 546
TRegisterRequest type 545
T_REGNAMECOMPLETE constant 151, 388
T_REPLYCOMPLETE constant 386
T_REPLY constant 386
T_REPLYDATA constant 426
TReply type 435
T_REQUEST constant 103, 386
T_REQUESTDATA constant 426
TRequest type 434
T_RESET constant 386
T_RESOLVEADDRCOMPLETE constant 387
T_ROUTINE constant 695
TSDUs

ADSP and 316, 317, 320
deÞned 98
getting information about 100, 428
PAP and 339
transferring data with 120Ð121
zero-length 424

T_SENDZERO constant 424
T_SUCCESS constant 570
T_SYNCCOMPLETE constant 387
T_TIMEDOUT constant 423
T_TRANS_CLTS constant 422
T_TRANS constant 422
T_TRANS_ORD constant 422
T_UDERR constant 119, 385
T_UDERROR constant 426
TUDErr type 430
T_UNBINDCOMPLETE constant 386
T_UNBND constant 90, 425
T_UNINIT constant 90, 425
T_UNITDATA constant 426
TUnitData type 430
T_UNITREPLY constant 426
TUnitReply type 432
T_UNITREQUEST constant 426
TUnitRequest type 431
850

I N D E X
T_UNSPEC constant 570, 572, 573, 816
T_XPG4_1 constant 424

U,V

UDP_CHECKSUM constant 694
UDP_RX_ICMP constant 694
UDP. See User Datagram Protocol
user bytes in ATP packet header 331
User Datagram Protocol (UDP) 238

W

Worldwide Internet 7

X

XOFF state 356, 770
XON/XOFF characters

deÞned 353
handshaking and 767
sending 356, 770Ð771

XON/XOFF handshaking 353, 767
XO transactions. See exactly-once

transactions 328
XTI data structures 780
XTI_DEBUG constant 565
XTI extensions 779Ð780
XTI functions 776Ð778
XTI_GENERIC constant 565
XTI_LINGER constant 565, 571
XTI options enumeration 565
XTI_PROTOTYPE constant 567
XTI_RCVBUF constant 566
XTI_RCVLOWAT constant 566
XTI result codes 781Ð783
XTI_SNDBUF constant 566
XTI_SNDLOWAT constant 567
XTI standard 105

Y

yielding a port 198, 611Ð613

Z

zero-length packets 317, 339
Zone Information Protocol (ZIP) 265, 274, 293
zone information table 294
zones 267

. See also AppleTalk zones
851

852

I N D E X
853

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using
Adobe Illustratorª and
Adobe Photoshopª.

Text type is Palatino¨ and display type is
Helvetica¨. Bullets are ITC Zapf
Dingbats¨. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS
Joanna Bujes, Robin Joly

DEVELOPMENTAL EDITORS
Donna S. Lee

ILLUSTRATORS
Karin Stroud, Dave Arrigoni

PRODUCTION EDITORS
Glen Frank, Gerri Gray,

PROJECT MANAGER
Tony Francis

Special thanks to Quinn, Eric Ockholm,
Mike Quinn, Don Coolidge, Lauren
Sherman, Steve Ussery, Tony Wingo, Rich
Kubota, and Vinnie Moscaritolo.

Acknowledgments to Jose Carreon,
Michel Guittet, Garry Hornbuckle, Jeri
Sonnenberg, and the entire Open
Transport engineering team.

	Networking With Open Transport
	Contents
	Figures, Tables, and Listings
	About This Book
	For More Information
	Format of a Typical Chapter
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	The Development Environment

	Introduction to Open Transport
	Introduction to Open Transport
	Basic Networking Concepts
	Types of Protocols
	Addressing
	Protocol Stacks and the OSI Model
	About Networking With Open Transport
	Open Transport Architecture
	Open Transport API
	Software Modules
	Drivers and Hardware
	Open Transport and Interrupt-Time Processing
	Providers: Endpoints, Mappers, and Services
	Transport Independence
	Endpoints and Protocol Layering
	Deciding Which Protocol to Use
	General Purpose or Special Purpose
	Choice of Protocol Family
	High-Level or Low-Level Protocol
	Connection-Oriented or Connectionless
	Transaction-Based or Transactionless
	Summary

	Getting Started With Open Transport
	Initializing Open Transport
	Initializing From a Client Application
	Initializing From a Stand-Alone Code Resource
	Using ASLM and Open Transport
	Using the Gestalt Function to Determine Whether Op...
	Configuring and Opening a Provider
	Creating a Configuration Structure
	Opening a Provider
	Reusing Provider Configurations
	Specifying an Address
	Addressing in Open Transport
	Using TNetBuf Structures
	Storing an Address in a TNetBuf Structure
	Using Helper Routines to Initialize an Address
	Closing Open Transport
	Closing From Applications
	Closing From Stand-Alone Code
	Open Transport Libraries
	Downloading a URL With HTTP
	Using Threads for Easy Synchronous Processing
	Specifying the Host Names and HTTP Commands
	Opening an Endpoint and Setting the Mode of Operat...
	Connecting to the Host and Sending Data
	Receiving Data From the Remote Endpoint
	Error Handling
	Unbinding the Endpoint and Final Clean-Up

	Providers
	About Providers
	Provider Functions
	Interrupt-Time Processing
	Modes of Operation
	Provider Events
	Function Results
	Using Providers
	Controlling a Provider’s Modes of Operation
	Which Mode To Use
	Specifying How Provider Functions Execute
	Setting a Provider’s Blocking Status
	Setting a Provider’s Send-Acknowledgment Status
	Using Notifier Functions to Handle Provider Events...
	Transferring a Provider’s Ownership
	Closing a Provider

	Endpoints
	About Endpoints
	Endpoint Types and Type of Service
	Naming Conventions for Endpoint Functions
	Endpoint Options
	Modes of Operation
	Endpoint States
	Transport Service Data Units
	Using Endpoints
	Opening and Binding Endpoints
	Obtaining Information About E ndpoints
	Handling Events for Endpoints
	Clearing Events and Synchronization Problems
	Notifier Reentrancy
	Polling for Events
	Establishing and Terminating Connections
	Establishing a Connection
	Terminating a Connection
	Sending and Receiving Data
	Sending Data Using Multiple Sends
	Receiving Data
	Transferring Data Between Transactionless Endpoint...
	Using Connectionless Transactionless Service
	Using Connection-Oriented Transactionless Service
	Transferring Data Between Transaction-Based Endpoi...
	Using Connectionless Transaction-Based Service
	Using Connection-Oriented Transaction-Based Servic...

	Programming With Open Transport
	Open Transport Programming Models
	Using Synchronous Processing With Threads
	Polling for Events
	Using Asynchronous Processing With a Notifier
	Interrupt-Safe Functions
	Memory Management From Notifiers
	Interrupt Levels and Open Transport Processing
	Hardware Interrupt Level
	Deferred Task Level
	System Task Level
	Using Timer Tasks
	Using System and Deferred Tasks
	Calling Open Transport Functions
	Scheduling Tasks
	Deallocating Resources
	Handling Synchronization Problems
	Handling Multiple Simultaneous Connections
	Problems With Accepting Multiple Simultaneous Conn...
	Using "tilisten" to Accept Multiple Simultaneous C...
	Improving Performance
	Streamlining Endpoint Creation
	Handling Dead Clients
	Shutting Down Servers

	Mappers
	About Mappers
	Using Mappers
	Setting Modes of Operation for Mappers
	Specifying Name and Address Information
	Searching for Names
	Retrieving Entries in Asynchronous Mode
	Code Sample: Using OTLookupName

	Option Management
	About Options and Option Negotiation
	Explicit Use of Options and Portability of Code
	Types of Options
	The Format of Option Information
	XTI-Level Options and General Options
	Using Options
	Determining Which Function to Use to Negotiate Opt...
	Obtaining the Maximum Size of an Options Buffer
	Setting Option Values
	Specifying Option Values
	Setting Default Values
	Retrieving Option Values
	Obtaining Current and Default Values
	Parsing an Options Buffer
	Verifying Option Values
	Sample Code: Getting and Setting Options

	Ports
	About Ports
	Identifying Ports
	Port Name
	Port Reference
	Multiport Identifiers
	Pseudodevices
	Port Structures
	Using Ports
	Obtaining Port Information
	Requesting a Port to Yield Ownership
	Registering as an Open Transport Client

	Utilities
	About Utility Functions
	Using List Management Functions

	Advanced Topics
	Acknowledging Sends
	Sending Noncontiguous Data
	No-Copy Receiving
	Using Raw Mode
	Using Option Management to Set Raw Mode
	Testing for Raw Mode Support
	Sending and Receiving in Raw Mode at the Protocol ...

	TCP/IP Services
	About the TCP/IP Protocol Family
	About TCP/IP Services
	About the Open Transport DNR
	About Single Link Multi-Homing
	Configuring Your System to Use Multiple IP Address...
	Checking for Availability
	Getting Information About Secondary Addresses
	Using TCP/IP Services
	Setting Options When Configuring a TCP/IP Provider...
	Using RawIP
	Receiving RawIP Datagrams
	Sending RawIP Datagrams
	Manually Setting the IP Header
	Limitations of the Header-Included Mode
	Using IP Multicasting
	Querying DNS Servers
	Avoiding Delay When Rebinding to TCP Connections
	Using General Open Transport Functions With TCP/IP...
	Obtaining Endpoint Data With TCP/IP
	Using Endpoint Functions With TCP/IP
	Using Mapper Functions With TCP/IP

	Introduction to AppleTalk
	About AppleTalk
	AppleTalk Networks and Addresses
	Multinodes
	Handling Miscellaneous Events
	Configuring AppleTalk Protocol Providers
	About AppleTalk Protocols Under Open Transport
	AppleTalk Addressing and the Name Binding Protocol...
	The AppleTalk Service Provider
	Datagram Delivery Protocol (DDP)
	AppleTalk Data Stream Protocol (ADSP)
	AppleTalk Transaction Protocol (ATP)
	Printer Access Protocol (PAP)

	AppleTalk Addressing
	About AppleTalk Addressing
	Using AppleTalk Addressing
	Specifying a DDP Address
	Specifying an NBP Address
	Specifying a Combined DDP-NBP Address
	Specifying and Using a Multinode Address
	Registering Your Endpoint’s Name
	Looking Up Names and Addresses
	Manipulating an NBP Name

	AppleTalk Service Providers
	About AppleTalk Service Providers
	Using AppleTalk Service Providers
	Creating AppleTalk Service Providers
	Working With AppleTalk Zones
	Getting the Name of an Application’s Zone
	Getting a List of Zone Names
	Getting Information About the Current AppleTalk En...

	Datagram Delivery Protocol (DDP)
	About DDP
	Using DDP
	Binding a DDP Endpoint
	Using the DDP Type Field to Filter Packet Delivery...
	Using the Self-Send and Checksum Options
	Using Echo Packets
	Working With Multinodes
	The DDP Source Address Option
	Using General Open Transport Functions With DDP

	AppleTalk Data Stream Protocol (ADSP)
	About ADSP
	Using ADSP
	Binding ADSP Endpoints
	Sending and Receiving ADSP Data
	The End-of-Message Option
	The Checksum Option
	Sending Expedited Data
	Disconnecting
	Using General Open Transport Functions With ADSP
	OTBind
	OTConnect
	OTRcvConnect
	OTListen
	OTAccept
	OTSnd
	OTRcv
	OTSndDisconnect
	OTRcvDisconnect

	AppleTalk Transaction Protocol (ATP)
	About ATP
	Using ATP
	At-Least-Once and Exactly-Once Transactions
	Sending and Receiving ATP Data
	Specifying ATP Options
	The Retry Count and Interval Options
	The Release Timer Option
	Other ATP-Specific Options
	Using the ATP Packet Header User Bytes
	Using General Open Transport Functions With ATP
	OTSndURequest
	OTRcvURequest
	OTSndUReply
	OTRcvUReply

	Printer Access Protocol (PAP)
	About PAP
	Using PAP
	Binding PAP Endpoints
	Specifying PAP Options
	The End-of-Message Option
	The Open Retry Option
	The Server Status Option
	The Reply Count Option
	Disconnecting
	Using General Open Transport Functions With PAP
	OTBind
	OTConnect
	OTRcvConnect
	OTListen
	OTAccept
	OTSnd
	OTRcv
	OTSndDisconnect
	OTRcvDisconnect

	Serial Endpoint Providers
	About Serial Endpoint Providers
	About Serial Communication
	DTR and CTS Signals
	Asynchronous and Synchronous Communication
	Handshaking Methods for Flow Control
	Using Serial Endpoints
	Opening and Closing Serial Endpoints
	Sending and Receiving Data
	Using Serial-Specific Commands
	Using Options to Change Serial Communications Sett...
	Controlling Serial Port I/O Handshaking
	Obtaining Status Information About the Serial Port...
	Using General Open Transport Functions With Serial...
	Obtaining Endpoint Data With Serial Endpoints
	Using Endpoint Functions With Serial Endpoints

	Initializing and Closing Open Transport Reference
	Error Constants
	The Gestalt Selector and Response Bits
	The OTConfiguration Structure
	The OTAddress Structure
	The TNetBuf Structure
	Functions
	Initializing and Closing Open Transport
	Creating, Cloning, and Disposing of a Configuratio...

	Providers Reference
	Constants and Data Types
	Error-Checking Constant
	Event Codes
	Functions
	Opening and Closing Providers
	Controlling a Provider’s Modes of Operation
	Using Notifier Functions
	Sending Module-Specific Commands
	Application-Defined Notifier Functions

	Endpoints Reference
	Constants and Data Types
	Error-Checking Constant
	Endpoint Service Types
	Open Transport Flags
	Open Flags
	Endpoint Flags
	Endpoint States
	Structure Types
	The TEndpointInfo Structure
	The TBind Structure
	The TUnitData Structure
	The TUDErr Structure
	The TUnitRequest Structure
	The TUnitReply Structure
	The TCall Structure
	The TRequest Structure
	The TReply Structure
	The TDiscon Structure
	Functions
	Creating Endpoints
	Binding and Unbinding Endpoints
	Obtaining Information About an Endpoint
	Allocating Structures
	Determining if Bytes Are Available
	Functions for Connectionless Transactionless Endpo...
	Functions for Connectionless Transaction-Based End...
	Establishing Connection
	Functions for Connection-Oriented Transactionless ...
	Functions for Connection-Oriented Transaction-Base...
	Tearing Down a Connection

	Programming With Open Transport Reference
	Data Types
	Callback Function
	Functions
	Checking Synchronous Calls
	Working With System Tasks
	Working With Timer Tasks
	Working With Deferred Tasks
	Entering and Leaving Hardware Interrupt Time
	Application-Defined Functions

	Mappers Reference
	Constants and Data Types
	Error-Checking Constant
	The TRegisterRequest Structure
	The TRegisterReply Structure
	The TLookupRequest Structure
	The TLookupReply Structure
	The TLookupBuffer Structure
	Functions
	Creating Mappers
	Registering and Deleting Names
	Looking Up Names

	Option Management Reference
	Constants and Data Types
	XTI-Level Options
	Generic Options
	Status Codes
	Action Flags
	The Linger Structure
	The Keepalive Structure
	The TOption Structure
	The TOption Header Structure
	The Option Management Structure
	Functions
	Determining and Changing Function Values
	Finding Options
	Manipulating the Format of Option Information

	Ports Reference
	Constants and Data Types
	Error-Checking Constant
	Port-Related Constants
	Bus Type Constants
	Port-Related Events
	The Port Structure
	The Port Reference
	The Client List Structure
	The Port Close Structure
	Functions
	Getting Information About Ports
	Registering New Ports
	Requesting a Port to Yield Ownership
	Registering as a Client

	Utilities Reference
	Constants and Data Types
	The Timestamp Data Type
	The Lock Data Type
	The Linked List Structure
	The LIFO List Structure
	The FIFO List Structure
	The Get Link Object Macro
	The Application-Defined List Search Function Proto...
	Functions
	Allocating and Freeing Memory
	Memory Manipulation Utility Functions
	Idling and Delaying Processing
	String Manipulation Utility Functions
	Timestamp Utility Functions
	OTLIFO List Utility Functions
	OTFIFO List Utility Functions
	Adding and Removing aList Element
	Atomic Operations
	Locking Functions
	Application-Defined Functions

	Advanced Topics Reference
	Constants and Data Types
	OTData Constant
	OTBuffer Constant
	Raw Mode Constants
	The OTData Structure
	The No-Copy Receive Buffer Structure
	Buffer Information Structure
	Functions

	TCP/IP Services Reference
	Constants and Data Types
	Basic Types and Constants
	Internet Address Structure
	DNS Address Structure
	DNS Query Information Structure
	Internet Interface Information Structure
	Internet Host Information Structure
	Internet System Information Structure
	IP Multicast Address Structure
	Internet Mail Exchange Structure
	Options
	Protocol Levels
	TCP Options
	UDP Options
	IP Options
	Functions
	Resolving Internet Addresses
	Opening a TCP/IP Service Provider
	Getting Information About an Internet Host
	Retrieving DNS Query Information
	Address Utilities
	Single Link Multi-Homing

	AppleTalk Reference
	AppleTalk Addressing Reference
	Constants and Data Types
	Basic Constants
	Address Format Constants
	The DDP Address Structure
	The NBP Address Structure
	The Combined DDP-NBP Address Structure
	The Multinode Address Structure
	The NBP Entity Structure

	AppleTalk Utility Functions
	AppleTalk Service Provider Reference
	Constants and Data Types
	Completion Event Constants
	The AppleTalk Information Structure

	AppleTalk Service Functions
	Obtaining Information About Zones
	Obtaining Information About Your AppleTalk Environ...

	DDP Reference
	Options
	ADSP Reference
	Options
	ATP Reference
	Options
	PAP Reference
	Options

	Serial Endpoint Reference
	Constants
	Options
	Protocol Level
	Serial Options
	Serial-Specific Commands

	Open Transport and XTI
	Open Transport Programming Interfaces
	Function Names
	Extensions to XTI
	Data Structures
	Result Codes

	Result Codes
	Special Functions
	Functions Callable at Hardware Interrupt Time
	Native Functions Callable at Hardware Interrupt Ti...
	Functions Callable From Deferred Tasks
	Functions That Allocate Memory

	XTI Option Summary
	Types of Options
	Determining Which Function to Use to Negotiate Opt...
	Options Negotiation Rules
	Negotiating Multiple Options
	Initiating an Option Negotiation
	Options That Are Absolute Requirements
	Options That Are Not Absolute Requirements
	Conflicting Option Values
	Privileged or Read-Only Options
	Error Conditions
	Allowing the Endpoint Provider to Select an Option...
	Retrieving Option Values
	Retrieving Values for Connection-Oriented Endpoint...
	Retrieving Values for Connectionless Transactionle...
	Retrieving Values for Connectionless Transaction-B...

	Glossary
	Index

