

C H A P T E R 5

5

A
D

B
 M

anager

ADB Manager 5

This chapter describes the ADB Manager, the part of the Macintosh Operating System
that allows you to get information about and communicate with hardware devices
attached to the Apple Desktop Bus (ADB). On most Macintosh computers, the ADB
is used to communicate with the keyboard, the mouse, and other user-input devices.

The Macintosh Operating System contains standard keyboard and mouse handling
routines that automatically take care of all required ADB access operations. Applications
typically receive keyboard and mouse input by calling the Event Manager, not by calling
the ADB Manager. For complete information about receiving and interpreting keyboard
and mouse input, see the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter begins with an overview of the Apple Desktop Bus and the ADB Manager.
It also shows how to

■ get information about devices attached to the ADB

■ communicate with devices on the ADB at a very low level

■ write a device handler for a new user-input device that connects to the ADB

For detailed information about the ADB hardware, see Guide to the Macintosh Family
Hardware, second edition.

About the Apple Desktop Bus 5

The Apple Desktop Bus is a low-speed serial bus that connects input devices, such as
keyboards, mouse devices, and graphics tablets, to a Macintosh computer or to other
hardware equipment. For information on the number of devices that you can connect
to the ADB, see Guide to the Macintosh Family Hardware, second edition. Macintosh
computers come equipped with one or two ADB connectors. Although a particular
model might include two ADB connectors, all models come with only one Apple
Desktop Bus.

The ADB is Apple Computer’s standard interface for input devices such as keyboards
and mouse devices. Apple provides a mouse with each Macintosh computer, except for
models equipped with a trackball. Additionally, Apple provides various ADB keyboard
options, such as the Apple Standard keyboard, the Apple Extended keyboard, and the
Apple Adjustable keyboard.

Characteristics of ADB Devices 5

An ADB device is any input device that can connect to the ADB and meets the design
requirements described in the Apple Desktop Bus Specification.
About the Apple Desktop Bus 5-3

C H A P T E R 5

ADB Manager

IMPORTANT

Apple Computer, Inc. owns patents on the Apple Desktop Bus (ADB).
If you want to manufacture a device that works with the ADB
software, you must obtain a license and device handler ID
from Apple Computer, Inc. Write to this address:

Apple Software Licensing
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014

A license includes a copy of the Apple Desktop Bus Specification. ▲

An ADB device generally communicates with the Macintosh Operating System through
a device handler —a set of low level routines designed to interact with a specific
ADB device. The Macintosh Operating System already includes device handlers
for Apple-supplied keyboards and mouse devices. You need to write your own device
handler and the code that installs it only if you are designing your own ADB device.
For more information on writing and installing an ADB device handler, see “Writing an
ADB Device Handler” on page 5-29.

A properly designed ADB device has the following features:

■ the memory in which to store data

■ a default ADB device address and device handler ID

■ the ability to detect and respond to bus collisions

■ the ability to assert a service request signal

Each ADB device may contain up to four device registers, which you can read from
or write to using certain ADB commands. One of these device registers stores the
device’s default ADB device address and device handler ID, both provided by
Apple Software Licensing.

Each ADB device has a default address and initially responds to all ADB commands
at that address. A default ADB device address is a 4-bit bus address that uniquely
identifies the general type of device (such as a mouse or keyboard). An ADB device
handler ID (or device handler identification) is an 8-bit value that identifies a more
specific classification of the device type (such as the Apple Extended keyboard) or
specific mode of operation (such as whether the keyboard differentiates between the
Right and Left Shift keys). For more information on both these items, see “Default ADB
Device Address and Device Handler Identification” on page 5-11.

To avoid collision of multiple ADB devices over the bus, an ADB device must be able
to detect when another ADB device is transmitting data at the same time. For more
information on collision detection, see “Address Resolution,” beginning on page
page 5-15.

An ADB device cannot initiate a data transaction. It must therefore be able to inform the
ADB Manager that it needs to transmit new data by asserting a service request signal. (In
addition, the ADB Manager continually queries ADB devices to see if they have data to
5-4 About the Apple Desktop Bus

C H A P T E R 5

ADB Manager

5

A
D

B
 M

anager

send.) For more details on service request signals, see “ADB Communication,” beginning
on page page 5-17.

About the ADB Manager 5

The ADB Manager is the part of the Macintosh Operating System that allows you to
get information about and communicate with hardware devices attached to the Apple
Desktop Bus. Most applications never need to interact with the ADB Manager, but can
instead call the appropriate Event Manager routines for information about user actions
on ADB devices such as keyboards or mouse devices. Also note that the ADB Manager
does not interact with the Device Manager, but handles all ADB devices and ADB device
handlers itself.

The ADB Manager handles three main tasks. First, at system startup, the ADB Manager
builds the ADB device table , which contains the default ADB device address, device
handler ID, and other identifying information for each ADB device. Whenever the ADB
is reinitialized, the ADB Manager reinitializes the ADB device table. Second, if two or
more ADB devices share the same default ADB device address when the ADB is building
the ADB device table or when the ADB is reinitialized, the ADB Manager assigns each
device a new ADB device address until no address conflict exists. This process is known
as address resolution (see page 5-15 for more information). Third, the ADB Manager
retrieves new data from the ADB devices and sends it to the appropriate device handler.

In general, ADB devices communicate with the Operating System only through the ADB
Manager. The ADB Manager, in turn, calls a device handler to process data from the
device. The device handler interprets data transmitted by the ADB device, and in some
cases, passes this information to the Event Manager. A single device handler can manage
more than one device of the same type (for example, the device handler for the Apple
Extended keyboard can manage several keyboards). A single device handler can also
manage more than one device type if the different device type emulates the device type
associated with the particular device handler (for example, a mouse device handler can
manage both a mouse and a graphics tablet emulating a mouse).

A device handler receives all data from its associated ADB device through the ADB
Manager. The ADB Manager continually checks to see if ADB devices have new data
to send. When the ADB Manager receives new data from an ADB device, it sends the
data to the appropriate device handler. The device handler interprets the data and, if
appropriate, places an event into the event queue using the PostEvent function. (For
more information on PostEvent, see Inside Macintosh: Macintosh Toolbox Essentials.)
For example, if the user types a key on the keyboard, the ADB Manager retrieves this
data and sends the data to the device handler for the keyboard, which in turn places an
event into the event queue. Figure 5-1 shows the relationship between the ADB Manager,
device handlers, and the Event Manager.
About the ADB Manager 5-5

C H A P T E R 5

ADB Manager

Figure 5-1 The ADB Manager and device handlers

ADB Manager

OS Event Manager

Toolbox Event
 Manager

Application

Keyboard
device
handler

Mouse
device
handler

Other
device

handlers

Operating System
event queue

Event

Event

Event
5-6 About the ADB Manager

C H A P T E R 5

ADB Manager

5

A
D

B
 M

anager

The ADB Manager retrieves data from an ADB device as a result of its normal polling
process. The ADB Manager polls a device by sending it a command requesting it to
return the contents of one of its registers. (Note that an ADB device should respond
to the specific ADB command, Talk Register 0, only if the device has new data to send.
See the next section, “ADB Commands,” for more information.)

In general, the ADB Manager repeatedly polls the last ADB device that sent new data
except under two circumstances: when it receives a service request signal, and when it
builds the ADB device table. In these cases, the ADB Manager also polls other ADB
devices. When responding to a service request signal, the ADB Manager polls all known
addresses containing an ADB device until all pending data is transmitted and no device
asserts a service request signal. When building the ADB device table, the ADB Manager
polls each ADB device connected to the bus. For more information on the ADB device
table, see “ADB Device Table” on page 5-13.

In general, only device handlers use the ADB Manager to communicate with devices.
The normal polling of ADB devices performed by the ADB Manager retrieves data
for the device handlers; your application should call the appropriate Event Manager
routines for information about the user’s input on ADB devices. If necessary, however,
you can directly communicate with an ADB device using the ADBOp routine. You
should use the ADBOp routine only for special purposes where you need to directly
communicate with an ADB device (for example, to set the LED lights on an
Apple Extended keyboard). Remember that in most circumstances, you do not
need to call ADBOp.

ADB Commands 5
An ADB command is a 1-byte value that specifies the ADB device address of a device
and encodes the desired action the target device should perform. In some cases,
additional data may follow an ADB command. For example, the ADB Manager may
transmit data to the device or the device may respond to a command by transmitting one
or more bytes of data back to the ADB Manager. It’s important to realize, however, that
ADB devices never issue commands to the ADB Manager. At most, the device can assert
a service request signal to request that the ADB Manager poll the bus for any devices
wishing to transmit data. For more information on how ADB devices communicate with
the ADB Manager, see “ADB Communication,”beginning on page page 5-17.

The ADB Manager can send any of four bus commands to an ADB device. Three of these
commands, Talk, Listen, and Flush, are addressed to specific registers on a specific
device. For more information on these registers, see “ADB Device Registers” on page 5-9.
The fourth command, SendReset, applies to all ADB devices.

■ Talk. The ADB Manager sends a Talk command to a device to fetch user input (or
other data) from the device. The Talk command requests that a specified device send
the contents of a specified device register across the bus. After the device sends the
data from the specified register, the ADB Manager places the data into a buffer in
RAM, which the ADB Manager makes available for use by device handlers or (in rare
cases) applications. In the case of a Talk Register 0 command, the ADB device should
respond to the ADB Manager only if it has new data to send.
About the ADB Manager 5-7

C H A P T E R 5

ADB Manager

■ Listen. The ADB Manager sends a Listen command to a device to instruct it to
prepare to receive additional data. The Listen command indicates which data register
is to receive the data. After sending a Listen command, the ADB Manager then
transfers data from a buffer in RAM to the device. The device must overwrite the
existing contents of the specified register with the new data.

■ Flush. The ADB Manager sends a Flush command to a device to force it to flush any
existing user-input data from a specified device register. The device should prepare
itself to receive any further input from the user.

■ SendReset. The ADB Manager uses a SendReset command to force all devices on
the bus to reset themselves to their startup states. Each device should clear any of its
pending device actions and prepare to accept new ADB commands and user input
data immediately. Note that the ADB device does not actually receive the SendReset
command but recognizes that it should reset itself when the bus is driven low by the 3
millisecond reset pulse. Your application should never send the SendReset command.

 Figure 5-2 shows the command formats for the Talk, Listen, and Flush commands.

Figure 5-2 Command formats for Talk, Listen, and Flush

Bits 0 through 1 specify the ADB device register, bits 2 through 3 specify the command
code, and bits 4 through 7 specify the device address.

Figure 5-3 shows the command format for the SendReset command.

Figure 5-3 Command format for SendReset

Flush 0 0 0 1

Device
address

1 0

1 1

Listen

Talk

ADB
command

ADB
device
register

01234567

SendReset 0 0 0 0

Ignored

01234567
5-8 About the ADB Manager

C H A P T E R 5

ADB Manager

5

A
D

B
 M

anager

The first four bits of the SendReset command identify this command. Because the
SendReset command applies to all ADB devices, bits 4 through 7 do not specify the
address of a particular device. As previously described, an ADB device never receives
a SendReset command; instead, the device resets itself in response to the 3 millisecond
pulse.

ADB Transactions 5
An ADB transaction is a bus communication between the computer and an ADB device.
A transaction consists of a command sent by the computer, followed by a data packet of
several bytes sent either by the computer or a device. An ADB command consists of four
parts:

■ an Attention signal

■ a Sync signal

■ one command byte

■ one stop bit

Figure 5-4 shows a typical ADB transaction, consisting of a command followed by a data
packet.

Figure 5-4 A typical ADB transaction

ADB Device Registers 5
Each device connected to the Apple Desktop Bus may provide up to four registers for
storing data. These registers are referred to as ADB device registers . An ADB device
can implement these registers as it chooses; that is, an ADB register does not have to
correspond to an actual hardware register on the ADB device. An ADB device is accessed

Command packet 1 data packet
Stop-to-start

time

Address 5 Talk Register 0

0 1 0 1 1 1 0 0

StopAttention
and Sync

Start 2–8 bytes
of data

Stop

Command byte
About the ADB Manager 5-9

C H A P T E R 5

ADB Manager

over the ADB by reading from or writing to these registers. Each ADB device register
may store between 2 and 8 bytes of data.

The ADB device registers are numbered 0 through 3. Register 0 and register 3 are defined
according to the specifications described in the next two sections. Register 1 and register
2 are device-dependent and can be defined by a device for any purpose.

Register 0 5

For most devices, register 0 is used to hold data that needs to be fetched by the
Macintosh Operating System. For example, register 0 of the Apple Standard keyboard
contains information about the key pressed by the user.

The ADB Manager polls all ADB devices to determine which one asserted a service
request signal by sending a Talk Register 0 command to each device in turn. A device
should respond to a Talk Register 0 command only if it has new data to send. For more
information about polling, see “ADB Communication,” beginning on page 5-17.

Table 5-1 shows the bits of register 0 as defined by the Apple Standard keyboard. Note
that these bits represent key transition codes (also called raw key codes). For examples
of the bits of register 0 used for the Apple standard mouse and the Apple Extended
keyboard, see Guide to the Macintosh Family Hardware, second edition.

Register 3 5

The bits in register 3 are defined by the ADB Manager. Figure 5-5 shows the defined bits
for register 3, which include the default ADB device address, the device handler ID, a
service request enable field, an exceptional event field, and several reserved bits.

Table 5-1 Register 0 in the Apple Standard keyboard

Bit Description

15 Key status for first key; 0 = down

14–8 Key transition code for first key; a 7-bit ASCII value

7 Key status for second key; 0 = down

6–0 Key transition code for second key; a 7-bit ASCII value
5-10 About the ADB Manager

C H A P T E R 5

ADB Manager

5

A
D

B
 M

anager

Figure 5-5 Format of device register 3

Table 5-2 provides a description of each bit in register 3.

The functions of some of the bits in register 3 are discussed in detail in this chapter. For
information on service request signals, “ADB Communication,” beginning on page 5-17.
For information on the default ADB device address and device handler ID, see the next
section.

Default ADB Device Address and Device Handler Identification 5
As previously described, each ADB device has a default ADB device address and device
handler identification (or device handler ID). Together, the default ADB device address
and device handler ID identify the general type of device (such as a mouse or keyboard)
as well as a more specific classification of the device type (such as the Apple Extended
keyboard) or specific mode of operation (such as whether the keyboard differentiates
between the Right and Left Shift keys).

A default ADB device address is a 4-bit bus address that uniquely identifies devices of
the same type. The currently defined default ADB device addresses have values between
1 and 7. Table 5-3 shows the defined default ADB device addresses and their device type
categories. Though it is not mandatory that an ADB device’s default address define the

Table 5-2 Bits in device register 3

Bit Description

15 Reserved; must be 0

14 Exceptional event, device specific; always 1 if not used

13 Service request enable; 1 = enabled

12 Reserved; must be 0

11–8 ADB device address

7–0 Device handler ID

Device address

1234567 0815

Exceptional
event

91011121314

Service
request enable

Device handler ID

00
About the ADB Manager 5-11

C H A P T E R 5

ADB Manager

device type, doing so significantly reduces the possibility of multiple devices on the ADB
sharing the same default address. Most device default addresses are movable addresses,
which means that they can be replaced with a new address. If two ADB devices have the
same default address, the ADB Manager must move one of the devices to a new address.
An example of this process is described in detail in “Address Resolution,” beginning
on page 5-15.

Note

The default address $0 is reserved for the Macintosh computer.
Addresses $8 through $E are reserved by the ADB Manager for
dynamically relocating devices to resolve address collision. ◆

The ADB device handler ID is an 8-bit value that further identifies the specific device
type or its mode of operation. For example, an Apple Standard keyboard has a device
handler ID of 1, while an Apple Extended keyboard has a device handler ID of 2.

An ADB device can support several device handler IDs and change its mode of
operation according to its current device handler ID. The Apple Extended keyboard, for
example, supports two device handler IDs: $02 and $03. The Apple Extended keyboard
uses $02 as a device handler ID by default. When its device handler ID is changed to $03,
the Apple Extended keyboard sends separate key codes for the Left and Right Shift keys.
A device handler, application, or the ADB Manager can request a device to change its
device handler ID by sending it a Listen Register 3 command. If a device accepts a
new device handler ID, it sends that device handler ID in response to any subsequent
Listen Register 3 command. An ADB device should respond to a request to change its
device handler ID only if it recognizes the device handler ID; otherwise, it should ignore
the request and continue to send its default device handler ID in response to a Listen
Register 3 command. For example, if the Apple Extended keyboard is requested to
change its device handler ID to $52, the keyboard ignores this request. When an ADB
device handler changes its device handler ID anytime after the ADB Manager sets initial
values for that device in the ADB device table (that is, after initial address resolution is
complete), the ADB Manager does not update the device’s entry in the ADB device table.

Table 5-3 Defined default ADB device addresses

Default
address Device type Example

$1 Protection devices Software execution control devices

$2 Encoded devices Keyboards

$3 Relative-position devices Mouse devices

$4 Absolute-position devices Tablets

$5 Data transfer devices Low-speed ADB modems

$6 Any other Reserved

$7 Any other Appliances/miscellaneous
5-12 About the ADB Manager

C H A P T E R 5

ADB Manager

5

A
D

B
 M

anager

Apple reserves certain device handler IDs for special purposes, as shown in Table 5-4.
ADB devices must recognize and respond appropriately to these special device handler
IDs. When a device receives a Listen Register 3 command containing a special device
handler ID, the device should immediately perform the specified action. Note, however,
that the device should not change its device handler ID to the special device handler ID
specified by the Listen Register 3 command.

Note

The special device handler ID $00 can also be returned by a device that
fails a self-test. ◆

ADB Device Table 5

The ADB Manager creates the ADB device table and places it in the system heap during
system startup. The ADB Manager also reinitializes the ADB device table whenever the
ADB is reinitialized (as a result of a call to the ADBReinit procedure, for example). For
each ADB device, the ADB device table contains an ADB device table entry . The device
table entry specifies the device’s handler ID, default ADB device address and current
ADB address, as well as the address of the device handler and the address of the area
in RAM used for global storage by the handler. For information on the address ADB
device and device handler ID, see “Default ADB Device Address and Device Handler
Identification” on page 5-11. For information on device handlers, see “Writing an ADB
Device Handler” on page 5-29.

Once the ADB Manager has set the initial values for an ADB device in the ADB device
table, thereafter it updates the device table entry only to reflect changes to a device’s
device handler routine and data area pointer. If an ADB device changes its device
handler ID, the ADB Manager does not update the ADB device table to reflect this
change. To find out the new device handler ID for a device, you must send the device
a Talk Register 3 command.

Table 5-4 Special device handler IDs

ID value Description

$FF Instructs the device to initiate a self-test.

$FE Instructs the device to change its ADB device address (as stored in bits 8–11
of register 3) to the new address set in the command if no collision has been
detected.

$FD Instructs the device to change its ADB device address (as stored in bits 8–11
of register 3) to the new address set in the command if the activator is
pressed. (See Guide to the Macintosh Family Hardware, second edition, for
complete details on activators.)

$00 Instructs the device to change its ADB device address (as stored in bits 8–11
of register 3) and enable bit (bit 13) to the new values set in the command.
About the ADB Manager 5-13

C H A P T E R 5

ADB Manager

The ADB device table is accessible only through the ADB Manager routines GetIndADB,
GetADBInfo, and SetADBInfo. The GetIndADB and GetADBInfo routines return
information from the device table in an ADB data block, defined by the ADBDataBlock
data type. These routines are described in detail later in this chapter.

At system startup, the ADB Manager sends a Talk Register 3 command to each device
to retrieve its default ADB device address and device handler ID. For an Apple ADB
device, the ADB Manager immediately places in the device table the address of the
appropriate device handler provided by Apple for that device. Each nonstandard device,
however, requires its own handler installation code to place the address of its device
handler in the table. For information on installing a device handler, see “Installing an
ADB Device Handler,”beginning on page 5-30.

If more than one ADB device has the same default ADB device address, the ADB
Manager performs address resolution. For more information, see “Address Resolution,”
beginning on page 5-15.

Table 5-5 shows an example of an ADB device table after all ADB devices have
responded to polling and have been assigned unique ADB device addresses by the
ADB Manager. This example shows just one way that address resolution might occur.

The leftmost column shows the device table index. In this example, four devices are
connected to the ADB: three keyboards and a mouse. The keyboard at index $1 has
a device handler ID of $01, specifying that it is an Apple Standard keyboard. The
remaining two keyboards at index $3 and index $4 each have a device handler ID of $02,
specifying that they are both Apple Extended keyboards. Because they are the same type
of device, all three keyboards have a default ADB device address of $2. Each ADB device
must have a unique ADB device address. The ADB Manager therefore performs address
resolution by assigning each Apple Extended keyboard a new and unoccupied ADB
address. See “Address Resolution,” beginning on page 5-15, for complete details
on address resolution.

Table 5-5 Typical ADB device table at initialization

Index
Device
handler ID

Current
address

Default
address

Address of
device handler
routine

Address of
handler’s
data area

$1 $01 $2 $2 (keyboard) $4080AB46 $5450

$2 $01 $3 $3 (mouse) $4080AAE6 $0000

$3 $02 $E $2 (keyboard) $4080AB46 $548C

$4 $02 $D $2 (keyboard) $4080AB46 $548C

$5 $00 $0 $0 $0 $0

$6 $00 $0 $0 $0 $0

$F $00 $0 $0 $0 $0
5-14 About the ADB Manager

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
Although the ADB Manager assigns each keyboard a unique current address, note that
all three keyboards use the same device handler, which in this example is located at
address $4080AB46. The device handler, however, stores data for the two keyboard
types in different areas in RAM. In this example, the address of the data area for the two
Apple Extended keyboards is at $548C, compared to the address of the data area for the
Apple Standard keyboard located at $5450.

In contrast, the mouse at index $2 is the only ADB device of its type and therefore has the
same default and current address. Also, the mouse uses a different device handler than
the keyboards use, which in this example is located at address $4080AAE6. Finally, the
mouse device handler does not need to use area in RAM for storage. As a result, the
value for its data area is $0000.

Address Resolution 5

Each ADB device has a default ADB device address and initially responds to all ADB
commands at that address. If two or more ADB devices respond to commands sent to
a particular address, this is referred to as address collision . Due to the design of ADB
devices and the ability of the ADB Manager to perform address resolution, most address
collision occurs only at initial startup or when you reset the ADB. Furthermore, once the
ADB Manager reassigns those addresses in conflict, subsequent address collision is quite
rare.

Collision detection is the ability of an ADB device to detect that another ADB device
is transmitting data at the same time. An ADB device should be able to detect a bus
collision if it is bringing the bus high when another device is bringing the bus low.
Whenever an ADB device attempts to bring the bus high, it should verify whether
the bus actually goes high. If the bus instead goes low, this indicates that another device
is also trying to send data. The device detecting the collision must immediately stop
transmitting and save the data it was sending. Because the detecting device is no
longer transmitting data, the device driving the bus low is not able to detect the other
device. As a result, only one of the two colliding devices—the device driving the bus
high—actually detects the collision.

When the ADB Manager performs address resolution, it reassigns default ADB device
addresses so that all devices have a unique address. The new address locations are
always between $8 through $E. Because these locations are dynamic, there is no way to
predict the order in which the ADB Manager assigns new addresses to ADB devices or
the exact address that it assigns to a given device. For the ADB Manager to accomplish
address resolution, an ADB device must meet two design requirements: first, it must
have collision detection, and second, it must always respond to a Talk Register 3
command by returning a random device address in bits 8 through 11.

A random device address is a four-bit value; an ADB device must return a random
device address to the ADB Manager in response to a Talk Register 3 command. An
ADB device is designed to respond only to a Talk Register 3 command that is specifically
addressed to it. Because the address of an ADB device is already confirmed by its ability
to respond to the Talk Register 3 command, the device does not need to provide its ADB
About the ADB Manager 5-15

C H A P T E R 5

ADB Manager
device address to identify itself. The ability of devices to send random addresses plays a
crucial role in collision detection.

At system startup, the ADB Manager polls all ADB devices at each ADB address and
begins the process of building the ADB device table by sending a Talk Register 3
command to each device. Each ADB device at a specific address attempts to respond
by sending a random device address. If more than one ADB device shares an address,
however, each device that detects a collision immediately stops transmitting data. The
device that has not detected the collision completes sending its random address across
the bus.

In response, the ADB Manager sends to the original address a Listen Register 3
command that contains a new ADB device address and a device handler ID of $FE. A
new ADB device address is always a value between $8 and $E. A device handler ID of
$FE instructs a device to change to the new device address only if it does not detect a
collision. Any detecting devices will therefore ignore the next Listen Register 3 command
containing a new ADB device address. As a result, only the device that did not detect the
collision moves to the new address; the detecting devices remain at the original address.
The ADB Manager now sends another Talk Register 3 command to the new address to
verify that the device moved to that location. In response, the moved device must once
again return a random address.

The ADB Manager repeats this process until it receives no response when it sends a Talk
Register 3 command to the shared address. This indicates that no devices reside at the
address and that it is an available address location for a device. The ADB Manager then
moves the first device it relocated to a new address back to its original address.

Figure 5-6 shows three keyboards, a mouse, and a graphics tablet. In this example,
assume these ADB devices are all connected to an ADB. This example describes one
possible order and method that the ADB Manager might use to relocate ADB devices.
Remember, however, that the specific implementation of address resolution is private
to the ADB Manager.

Figure 5-6 Resolving address conflicts

In the example shown in Figure 5-6, all three keyboards are the same device type; thus,
they share the same default ADB device address ($2). When the ADB Manager begins to
build the device table by sending a Talk Register 3 command to address $2, all three

Mouse
$3

Graphics tablet
$4

Apple Standard keyboard
$2

Apple Extended keyboard
$2

Apple Extended keyboard
$2
5-16 About the ADB Manager

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
keyboards attempt to respond and address collision occurs. The ADB Manager then
begins the process of address resolution.

In this particular example, the ADB Manager first sends a Listen Register 3 command
that specifies a device handler ID of $FE and a new device address of $E to the ADB
device at address $2. Only the keyboard that did not detect the collision responds to this
command and moves to address $E. Next, the ADB Manager sends a Talk Register 3
command to address $E to confirm that the keyboard has relocated there. Once the
relocated keyboard responds with a random address, the ADB Manager again sends a
Talk Register 3 command to address $2. Because two keyboards still remain at address
$2, address collision occurs again. The ADB Manager therefore sends a Listen Register 3
command that specifies a device handler ID of $FE and a new device address of $D to
the ADB device at address $2. Only the keyboard that did not detect the collision moves
to address $D. There is now only one keyboard remaining at address $2. When the ADB
Manager sends another Talk Register 3 command to address $2, the single keyboard
does not detect a collision. It therefore accepts the next Listen Register 3 command from
the ADB Manager that tells it to move to a new address ($C). Once more, the ADB
Manager sends a Talk Register 3 command to address $2. When it receives no response
from any devices, the ADB Manager moves the keyboard relocated to address $E back
to address $2.

In contrast, the mouse and the graphics tablet are the only devices of their type
connected to the ADB. As a result, neither device shares a default address with another
device; the mouse is located at address $3 and the graphics tablet is located at address
$4. When the ADB Manager builds the device table, no address collision occurs for either
device and they remain at their original addresses.

For more information on the ADB device table, see “ADB Device Table” on page 5-13.

ADB Communication 5

ADB devices cannot issue commands to the ADB Manager. Communication is
accomplished in two ways. First, the ADB Manager performs polling of the ADB devices,
and second, each ADB device can assert a service request signal to inform the ADB
Manager that it has data to send. The ADB Manager passes the data sent by each ADB
device to the associated device handler. In general, the ADB Manager continuously polls
the active ADB device , which is the last device that sent new data after requesting
service with a service request signal. The default active device is located at address $3,
which is usually the mouse.

Polling (or autopolling) is accomplished by the ADB Manager repeatedly sending Talk
Register 0 commands to an ADB device to see if it has new data to return. Register 0 is
therefore the primary register for transferring data for all ADB devices. For an example
of the register 0 contents for the Apple Standard keyboard, see Table 5-1 on page 5-10.
About the ADB Manager 5-17

C H A P T E R 5

ADB Manager
Note

If the data that is significant to the ADB device resides in an ADB
register other than register 0, the device handler must directly retrieve
the data from that register. For example, the Apple Extended keyboard
contains data in both register 0 and register 2. The keyboard device
handler must therefore directly retrieve the register 2 contents. ◆

Figure 5-7 shows three ADB devices connected to the bus (a keyboard, a mouse, and
a graphics tablet) and the ADB Manager performing polling.

Figure 5-7 Polling the ADB

An ADB device should respond to a Talk Register 0 command only if it has new data to
send to the ADB Manager; that is, if the status of the device has changed since the last
Talk Register 0 command. For example, Figure 5-8 shows a situation where the mouse
is the active device. The ADB Manager polls the mouse, sending a Talk Register 0
command. If the mouse has new data to send, it should respond. Whenever the mouse
responds with new data to a Talk Register 0 command, the ADB Manager sends this new
data to the mouse handler, which uses the PostEvent function to place an event in the
event queue.

ADB Manager Polling

Keyboard $2

Mouse $3

Graphics tablet $4ADB
5-18 About the ADB Manager

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
Figure 5-8 How an ADB device responds to a polling request by the ADB Manager

Note

Designing an ADB device to respond to a Talk Register 0 command only
if it has new data to send can significantly optimize the performance
of the Apple Desktop Bus. It reduces the effort required by the ADB
Manager because it only has to call the device handler associated with a
device when the device has actual data to send. It also avoids the
endless polling cycles by the ADB Manager that can occur when an
ADB device responds to a Talk Register 0 command with no new data.
In an endless polling cycle, the ADB Manager continues to repeatedly
poll the device not sending new data, rather than moving to the next
ADB device that may have new data to send.

For further optimization, the ADB Manager automatically polls only
those ADB devices that have an installed device handler. If an ADB
device does not have a device handler installed, the ADB Manager
skips that device during polling and instead polls an ADB device that
has an installed device handler, even if the other device has not recently
communicated with the ADB Manager. The ADB Manager may poll an
ADB device that does not have an installed device handler, however, in
response to a service request signal. ◆

ADB Manager

OS Event
 Manager

$3

Keyboard $2

Mouse $3

Graphics tablet $4Keyboard
device
handler

Mouse
device
handler

Other
device

handlers

ADB
About the ADB Manager 5-19

C H A P T E R 5

ADB Manager
If a Talk Register 0 command is completing, the ADB device should assert a special
signal, known as a service request signal (or SRQ), to inform the ADB Manager that it
has data to send. As shown in Figure 5-9, an ADB device asserts an SRQ by holding the
bus low during the low portion of the stop bit of any command or data transaction.

Figure 5-9 The ADB service request signal

For information on the timing parameters for ADB signals, see Guide to the Macintosh
Family Hardware, second edition.

To identify which device asserted the SRQ, the ADB Manager polls each address known
to contain an ADB device, beginning with the active ADB device. That is, if the first
device polled by the ADB Manager does not respond to the Talk Register 0 command,
it polls the next device. When the ADB Manager polls the device that asserted the SRQ,
that device responds with new data. If another device asserts an SRQ, the ADB Manager
continues polling until it finds that device. If no SRQ is asserted, this indicates that all
pending data has been fetched and that the ADB Manager can return to polling the
active device. For example, Figure 5-10 shows three ADB devices, with the ADB
Manager polling the active ADB device. One of the three ADB devices, a graphics tablet,
sends an SRQ to the ADB Manager. In this particular example, the ADB Manager
responds by polling the active ADB device (in this case, the keyboard) and then polling
the remaining ADB devices. After receiving a Talk Register 0 command from the ADB
Manager, the graphics tablet can send its new data.

Normal stop bit cell

Stop bit extended
5-20 About the ADB Manager

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
Figure 5-10 An ADB device asserts the service request signal

ADB Manager
Mouse $3

Graphics tablet $4

Keyboard $2

2. ADB Manager receives a service request signal

PollingADB Manager
Mouse $3

Graphics tablet $4

Keyboard $2

3. ADB polls devices

ADB Manager
Mouse $3

Graphics tablet $4

Keyboard $2

$4

4. ADB device responds with new data

SRQ

ADB Manager
Mouse $3

Graphics tablet $4

Keyboard $2

$2

1. ADB polls active device

ADB

ADB

ADB

ADB
About the ADB Manager 5-21

C H A P T E R 5

ADB Manager
Using the ADB Manager 5

You can use the ADB Manager to communicate with and get information about devices
attached to the Apple Desktop Bus. In general, applications interact with the ADB
indirectly, by calling the Event Manager to retrieve information about user actions on
the available input devices (keyboard, mouse, graphics tablet, and so forth). As a result,
most applications do not need to know how to communicate directly with ADB devices,
or even whether the ADB is present on the computer.

Some applications—such as diagnostic programs or other utilities—might want to report
information about the ADB. Other software might even need to send commands directly
to an ADB device (perhaps to query or modify device settings). This section shows how
to

■ determine whether the ADB Manager is present on the current computer

■ get information about the devices attached to the ADB

■ send commands to an ADB device in order to determine or modify device settings

For information on writing and installing ADB device handlers, see “Writing an ADB
Device Handler” on page 5-29.

Checking for the ADB Manager 5

The Apple Desktop Bus was introduced on the Macintosh II and Macintosh SE
computers. To test for the availability of the ADB Manager on your system, use the
NGetTrapAddress function to see if the _CountADBs trap macro is available. See
the chapter “Trap Manager” in Inside Macintosh: Operating System Utilities for information
about the NGetTrapAddress function.

Getting Information About ADB Devices 5
You can use the ADB Manager to get several kinds of information about the ADB and
about individual ADB devices on the bus. You can call CountADBs to determine how
many devices are currently available on the Apple Desktop Bus. The CountADBs
function simply counts the number of entries in the ADB device table.

You can call the GetIndADB function to get information about a device specified by its
index in the ADB device table. The GetIndADB function returns as its function result the
current ADB address of the device with the specified index and also returns additional
information in a parameter block pointed to by one of its parameters. If you already
know the address of an ADB device, you can call GetADBInfo to get that same
information about the device.

Both GetIndADB and GetADBInfo return information about a particular device in an
ADB data block, defined by the ADBDataBlock data type.
5-22 Using the ADB Manager

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
TYPE ADBDataBlock =

PACKED RECORD

devType: SignedByte; {device handler ID}

origADBAddr: SignedByte; {default ADB device address}

dbServiceRtPtr: Ptr; {pointer to device handler}

dbDataAreaAddr: Ptr; {pointer to data area}

END;

Note

The installation code for a device handler can set information
(specifically the address of its device handler and optional data area) in
its device’s entry in the device table using the SetADBInfo function. ◆

You can examine the devType and origADBAddr fields of the ADBData block to
determine what kind of ADB device is located at a particular ADB address. (Remember
that once the ADB Manager has set the initial values for an ADB device in the ADB
device table, it updates the device table entry for the device to reflect changes only to
the address of the device handle routine and data area pointer. Thus, GetIndADB and
GetADBInfo return the device’s original device handler ID and original (default) ADB
device address.) For example, the Apple Extended keyboard has a device handler ID of
$02 and a default address of $2. Listing 5-1 shows one way to determine whether an
ADB device is an Apple Extended keyboard.

Listing 5-1 Determining whether an ADB device is an Apple Extended keyboard

FUNCTION IsExtendedKeyboard (myAddress: ADBAddress): Boolean;

VAR

myInfo: ADBDataBlock;

myCommand: Integer;

myErr: OSErr;

CONST

kExtKeyboardAddr = 2;

kExtKeyboardOrigHandlerID = 2;

BEGIN

myErr := GetADBInfo(myInfo, myAddress);

IsExtendedKeyboard := (myInfo.origADBAddr = kExtKeyboardAddr)

AND (myInfo.devType = kExtKeyboardOrigHandlerID);

END;

The IsExtendedKeyboard function defined in Listing 5-1 is used later in this chapter,
in Listing 5-5 on page 5-28.
Using the ADB Manager 5-23

C H A P T E R 5

ADB Manager
Communicating With ADB Devices 5
You can use the ADB Manager to communicate directly with ADB devices by sending
ADB commands to those devices. In general, however, you don’t need to do this,
because the ADB Manager automatically polls for input from the connected ADB devices
and passes any data received from a device to the device’s device handler. Most
applications should never interact directly with ADB devices, and even ADB device
handlers need to do so only occasionally (for instance, to read or set device parameters
stored in the device registers).

If you do need to send ADB commands directly to a device, you can do so using the
ADBOp function. The ADBOp function transmits over the bus a command byte, whose
structure is shown in Figure 5-2 on page 5-8 and Figure 5-3 on page 5-8. The command
(Talk, Listen, Flush, and SendReset) and any register information are encoded into an
integer that is passed to ADBOp. You also pass ADBOp three pointers:

■ A pointer to the optional data area used by the completion routine.

■ A pointer to a completion routine. This routine is executed once the command byte
has been sent to the ADB device.

■ A pointer to a Pascal string (maximum 8 bytes data preceded by one length byte).
The first byte specifies the length of the string and the remaining bytes (if any)
contain data to be sent to the device or provide storage for the data to be received
from the device.

The ADBOp function is always executed asynchronously. If the bus is busy, the ADB
command passed to ADBOp is held in a command queue until the bus is free. If your
application requires synchronous behavior, you’ll need to use a completion routine
to determine when the ADB command itself has completed. Figure 5-11 shows the
relationships between the ADBOp routine, the device to which it is directly
communicating, the ADB Manager, and an ADB completion routine.
5-24 Using the ADB Manager

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
Figure 5-11 The ADBOp routine and an ADB completion routine

Listing 5-2 shows a way to send ADB commands synchronously.

Listing 5-2 Sending an ADB command synchronously

PROCEDURE MySetFlag;

{move a nonzero value into the word pointed to by register A2}

INLINE $34BC, $FFFF; {MOVE.W #$FFFF, (A2)}

PROCEDURE MyCompletionRoutine;

BEGIN

MySetFlag; {set a flag to indicate done}

END;

FUNCTION MySendADBCommand (myBufferPtr: Ptr; myCommand: Integer): OSErr;

{send a command to an ADB device synchronously}

VAR

myDone: Integer; {completion flag}

myErr: OSErr;

BEGIN

myDone := 0;

myErr := ADBOp(@myDone, @MyCompletionRoutine, myBufferPtr, myCommand);

IF myErr = noErr THEN

REPEAT

UNTIL myDone <> 0;

ADB Manager
ADB

device
ADBOp(dataPtr,@MyCompletion,
 bufferPtr,cmd);

MyCompletionRoutine
 (cmd,bufferPtr,compRout,dataPtr);
Using the ADB Manager 5-25

C H A P T E R 5

ADB Manager
ELSE

; {ADB buffer overflowed -- retry command here}

MySendADBCommand := myErr;

END;

The MySendADBCommand function sets the completion flag myDone to zero and then
calls ADBOp, passing the address of that completion flag and the address of a completion
routine along with the two parameters passed to MySendADBCommand. The completion
routine simply calls an inline assembly routine that moves a nonzero value into the word
pointed to by register A2. (When the completion routine is called, register A2 points to
the optional data area, in this case, to the myDone variable.) The MySendADBCommand
function waits until the value of the myDone variable changes, and then returns.

Rather than provide a completion routine to verify that a Talk command has completed,
you can initialize the first byte of the data buffer to 0 before sending the command. The
first byte of the data buffer contains the length of the buffer (in the same manner that
the first byte of a Pascal string contains the length of the string). The data buffer can
include from 0 to 8 bytes of information. After sending the command with ADBOp, you
can then test the first byte of the data buffer to determine whether the command has
completed. Once the first byte of information contains a nonzero value, then the
command has completed, and the first byte of the buffer indicates the number of bytes
returned by the ADB device.

Listing 5-3, Listing 5-4, and Listing 5-5 illustrate how to use the MySendADBCommand
function (defined in Listing 5-2) to blink the LED lights on the Apple Extended
keyboard. The Apple Extended keyboard maintains the current setting of the LED lights
in the lower 3 bits of device register 2. You can read the current light setting by issuing a
Talk command to the keyboard, as shown in Listing 5-3.

Listing 5-3 Reading the current state of the LED lights

VAR

gRegisterData: PACKED ARRAY[0..8] of Byte; {buffer for register data}

CONST

kListenMask = 8; {masks for ADB commands}

kTalkMask = 12;

kLEDRegister = 2; {register containing LED settings}

kLEDValueMask = 7; {mask for bits containing current LED setting}

FUNCTION MyGetLEDValue (myAddress: ADBAddress; VAR myLEDValue: Integer)

: OSErr;

VAR

myCommand: Integer;

myErr: OSErr;
5-26 Using the ADB Manager

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
BEGIN

{initialize length of buffer; on return, the ADB device sets }

gRegisterData[0] := Byte(0); { this byte to the number of bytes returned}

{get existing register contents with a Talk command}

myCommand := (myAddress * 16) + kTalkMask + kLEDRegister;

myErr := MySendADBCommand(@gRegisterData, myCommand);

IF myErr = noErr THEN {make sure completed successfuly}

{gRegisterData now contains the existing data in device register 2; }

{ the lower 3 bits of byte 2 contain the LED value}

myLEDValue := Integer(BAND(gRegisterData[2], kLEDValueMask))

ELSE

myLEDValue := 0;

MyGetLEDValue := myErr;

END;

The MyGetLEDValue function constructs a Talk Register 2 command by adding the
address value to command and register masks defined by the application. Then it calls
the MySendADBCommand function to communicate with the device at the specified
address. If MySendADBCommand completes successfully, then the gRegisterData
variable contains (in array elements 1 and 2) the two-byte value in device register 2. Only
the lower 3 bits of that value are used for the LED settings. If one of those bits is set, the
corresponding light is off. Note that if MyGetLedValue returns an error, this generally
indicates that the ADBOp buffer overflowed.

The MySetLEDValue function defined in Listing 5-4 sets the LED lights to a specific
pattern.

Listing 5-4 Setting the current state of the LED lights

FUNCTION MySetLEDValue (myAddress: ADBAddress; myValue: Integer): OSErr;

VAR

myCommand: Integer;

myByte: Byte; {existing byte 2 of device register 2}

myErr: OSErr;

BEGIN

gRegisterData[0] := Byte(2); {set length of buffer}

{get existing register contents with a Talk command}

myCommand := (myAddress * 16) + kTalkMask + kLEDRegister;

myErr := MySendADBCommand(@gRegisterData, myCommand);

MySetLEDValue := myErr;

IF myErr <> noErr THEN {make sure completed successfuly}

EXIT(MySetLEDValue);

{gRegisterData now contains the existing data in device register 2; }

{ reset the lower 3 bits of byte 2 to the desired value}
Using the ADB Manager 5-27

C H A P T E R 5

ADB Manager
myByte := gRegisterData[2];

myByte := BAND(myByte, 255 - 7); {mask off lower three bits}

myByte := BOR(myByte, Byte(myValue)); {install desired value}

gRegisterData[2] := myByte;

myCommand := (myAddress * 16) + kListenMask + kLEDRegister;

MySetLEDValue := MySendADBCommand(@gRegisterData, myCommand);

END;

Notice that the MySetLEDValue function first reads the current value in device
register 2. This is necessary to preserve the bits in that register that do not encode the
LED state. Register 2 contains sixteen bits; be sure to change only the three bits that
represent the three LED lights.

Finally, the MyCountWithLEDs procedure shown in Listing 5-5 uses the
MyGetLEDValue and MySetLEDValue routines to “count” in binary.

Listing 5-5 Counting in binary using a keyboard’s LED lights

PROCEDURE MyCountWithLEDs;

VAR

myValue: Integer;

myIndex: Integer;

myAddress: ADBAddress;

myOrigLED: Integer;

myInfo: ADBDataBlock; {needed for GetIndADB; ignored here}

myDelay: LongInt; {needed for Delay; ignored here}

myErr: OSErr;

BEGIN

FOR myIndex := 1 TO CountADBs DO

BEGIN

myAddress := GetIndADB(myInfo, myIndex);

IF IsExtendedKeyboard(myAddress) THEN

BEGIN

{save original state of LED lights}

myErr := MyGetLEDValue(myAddress, myOrigLED);

myValue := 7; {turn all the lights OFF}

WHILE myValue >= 0 DO

BEGIN

myErr := MySetLEDValue(myAddress, myValue);

myValue := myValue - 1;

Delay(30, myDelay);

END;

{restore original state of LED lights}

myErr := MySetLEDValue(myAddress, myOrigLED);
5-28 Using the ADB Manager

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
END; {IF}

END; {FOR}

END;

The MyCountWithLEDs procedure looks for Apple Extended keyboards on the ADB
and counts from 0 to 7, in binary, on the LED lights of any such keyboard it finds.

Note

The techniques shown in this section for reading and writing the LED
state of an Apple Extended keyboard are provided for illustrative
purposes only. Your application or other software should in general not
modify the LED state of the user’s keyboard. ◆

Writing an ADB Device Handler 5

The previous section, “Using the ADB Manager,” illustrates how you can use the ADB
Manager to communicate with and get information about devices attached to the ADB.
This section describes how to write a device handler for an ADB device. You should
write a device handler for a device only if you are the manufacturer of that device.

A device handler is a low-level routine that communicates with a particular ADB device.
The device handler gathers data from an ADB device through the ADB Manager and
interprets the data; depending on the device, the device handler might then post an
event into the event queue using the PostEvent function.

A single device handler can manage more than one device; for example, the standard
device handler for the Apple Extended keyboard can manage multiple extended
keyboards. Also, in some cases the same handler can be used to manage two or more
device types. For example, a relative-position graphics tablet could emulate a mouse,
using the same default ADB device address and device handler ID as used by the mouse,
and providing the same information in response to Talk commands. In this case, when
both the mouse and tablet are connected to the ADB at the same time, the ADB Manager
calls the mouse handler when either device requires it.

Each ADB device has a default ADB device address and default device handler ID. Some
ADB devices support more than one device handler ID. In this case, the device handler
manages the device based on the current device handler ID; this allows an ADB device
to add or modify its performance or feature set. For more information about ADB
addresses and device handler IDs, see “Default ADB Device Address and Device
Handler Identification” on page 5-11.

In addition to writing a device handler for your device, you need to write the code that
installs the device handler. The next few sections explain how to write a device handler
and code to install the handler.
Writing an ADB Device Handler 5-29

C H A P T E R 5

ADB Manager
IMPORTANT

You need the information in this section only if you are writing a device
handler for a new ADB device. The Macintosh Operating System
includes device handlers for all Apple keyboards and Apple mouse
devices. You do not need to write a device handler to receive input from
these standard Apple devices; instead, your application should get
information about mouse movements and key presses by calling the
Event Manager. See the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for complete information about how the
Event Manager interacts with applications. ▲

Installing an ADB Device Handler 5

You install a device handler for an ADB device by placing the address of the device
handler in the device’s entry of the ADB device table. To do this, and to make your ADB
device available to the user as soon as possible, Apple recommends that you provide
users with a system extension that installs your device handler. Thus, your system
extension should contain your device handler as well as the code that installs the device
handler into the appropriate entry of the ADB device table. (See “ADB Device Table” on
page 5-13 for a description of the structure of entries in the ADB device table.)

Your installation code should search the ADB device table for an entry whose default
ADB device address and default device handler ID match the values assigned to your
device. For example, if your ADB device has a default address of $7 and a default
handler ID of 99, your installation code should search the ADB device table for entries
matching these values. If your installation code finds any matching entries, it should
install the address of your device handler into your device’s entry in the ADB device
table. The typical installation code for ADB devices other than a keyboard or mouse does
this: calls the CountADBs function to determine the number of entries in the ADB device
table; repeatedly calls the GetIndADB function to index through each device table entry
and compares the default ADB device address and device handler ID with those of your
device; for any matching entries, calls the SetADBInfo function to install the device
handler for that device into the device’s entry in the ADB device table. Note that before
installing the address of your device handler into the ADB device table, your installation
code must first allocate space in the system heap for your handler and copy your handler
to this area; your installation code should also allocate space in the system heap for its
optional data area.

If you provide a device handler for a mouse or keyboard you must consider whether
your ADB device should use a standard device handler during initial startup (until your
system extension has a chance to run and install the device’s device handler) or whether
your ADB device should use only its own device handler (which means your device will
be unable to respond to the user until its handler is installed).

When the ADB Manager first builds the ADB device table, it associates with each device
the device’s default ADB address, the device’s current ADB address, and the device’s
default device handler ID. In addition, for each device it initializes the field that contains
the address of the device handler for the device and the field that contains a pointer to a
data area used by the device handler. For Apple ADB devices, the ADB Manager installs
5-30 Writing an ADB Device Handler

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
the appropriate device handler provided by Apple. Thus, the device handler for an
Apple keyboard or Apple mouse is available almost immediately after initial startup.
For all other ADB devices, the device’s device handler must be specifically installed by
the device’s installation code. For example, the ADB Manager does not install the
Apple device handler for a keyboard with a default ADB device address of $2 and
a default device handler ID of 99; instead, the device’s system extension must install
the device’s device handler.

If your ADB device is a keyboard or mouse and you want it to function as soon as
possible in the startup process and before system extensions are run, you can design
your ADB device to emulate an Apple keyboard or mouse and use that device’s device
handler until its own device handler is installed. In this case, your ADB device’s default
ADB address and default device handler ID initially matches that of an Apple device.
This causes the ADB Manager to install the address of an Apple device handler for your
device’s entry in the ADB device table. To install the actual device handler for your
device, you can provide a system extension that

■ uses the CountADBs function to count the number of entries in the ADB device table.

■ repeatedly uses the GetIndADB function to examine each entry in the ADB device
table for an entry with a default ADB device address and default device handler ID
that matches that of a standard device.

■ upon finding a matching entry, uses the ADBOp function to send a Talk Register 3
command to the selected ADB device so that it sends its contents across the bus; uses
the ADBOp function to send a Listen Register 3 command to the device to change its
device handler ID from its default device handler ID to its actual device handler ID;
and uses the ADBOp function to send another Talk Register 3 command to the device
and examine the register contents to see whether the device returns the new device
handler ID. If so, your extension has found the index entry for your device and can
use the SetADBInfo function to install the appropriate device handler for your
device. Note that when you request an ADB device to change to another device
handler ID, the ADB Manager does not update the ADB device table entry to reflect
the new device handler ID. You can find out the new handler ID for that device only
by sending it a Talk Register 3 command.

Your installation code should also store a pointer to its reinitialization code in the system
global variable JADBProc and should preserve the existing value of JADBProc, as
illustrated in Listing 5-6 and Listing 5-7.

The next three listings, Listing 5-6, Listing 5-7, and Listing 5-8, show code that installs a
device handler, handles reinitialization by appropriate use of the system global variable
JADBProc, and performs the actual actions of the device handler.

Listing 5-6 shows an example of code that installs an ADB device handler. The code
first defines some constants. It also defines a stack frame which includes storage for
a variable called myADBDB that is used later as a parameter block for both GetIndADB
and SetADBInfo. The installation code then jumps to the code starting at the label
MyInstallHandlers; this code uses CountADBs and then GetIndADB to search all
entries in the ADB device table for a matching default ADB device address and device
handler ID. If it finds such an entry, it uses the code at the label MySetDeviceInfo
to set up information for that device in the device’s entry in the ADB device table.
Writing an ADB Device Handler 5-31

C H A P T E R 5

ADB Manager
Specifically, for each occurrence of a matching entry, the code at the label
MySetDeviceInfo allocates space in the system heap for the data area used by the
device handler for the ADB device at that address. (It does not need to allocate space for
the handler itself at this time. This is because a resource containing the code shown in
Listing 5-6 is marked to be loaded into the system heap; thus the system software loads
the resource into the system heap when it executes this system extension.) The code then
uses the SetADBInfo function to install into the ADB device table the address of the
device’s device handler as well as a pointer to the global data area used by the device
handler.

Finally, the installation code stores in the iNextProc field the current value of the
system global variable JADBProc and then sets JADBProc to contain a pointer to
myJADBProc.

Listing 5-6 Installing an ADB device handler

;For installation to work, the resource containing this resource must be

;marked as sysHeap loaded. This way, you do not have to copy a version of it

;into the system heap prior to installing.

; MPW Build commands:

; ASM 'ADBSample.a'

; Link -t INIT -c WeSt -ra ADBSample=resSysHeap -rt INIT=128 -m MAIN -sg ∂
; ADBSample 'ADBSample.a'.o -o ADBSample

myAddr EQU $xx ;default ADB device address

myADBType EQU $xx ;device handler ID definition

main PROC EXPORT

StackFrame RECORD {A6Link}, DECR ;build a stack frame record

ParamBegin EQU * ;start parameters after this point

ParamSize EQU ParamBegin-* ;size of all the passed parameters

RetAddr DS.L 1 ;place holder for return address

A6Link DS.L 1 ;place holder for A6 link

myADBDB DS ADBDataBlock ;local handle to our ADB data block

LocalSize EQU * ;size of all the local variables

ENDR

WITH StackFrame

WITH ADBDataBlock

LINK A6, #0 ;make a stack frame

BSR MyInstallHandlers ;install handlers for our devices

TST.W D0 ;D0 = number of old devices found

BEQ.S @exit ;if none, exit
5-32 Writing an ADB Device Handler

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
LEA main, A0 ;after installing, we need to

_RecoverHandle, SYS ; recover the handle and then

MOVE.L A0 -(SP) ; detach this resource so it always

_DetachResource ; stays in memory

LEA iNextProc, A2 ;get pointer to old vector storage

LEA JADBProc, A3 ;make pointer to low memory vector

MOVE.L (A3), (A2) ;save contents of vector for chaining

LEA myJADBProc, A2 ;get pointer to our jADBProc

MOVE.L A2, (A3) ;install it in the low memory vector

@exit UNLK A6 ;dispose local variables

RTS

;placeholder for MyADBHandler - see Listing 5-8 on page 5-37

;placeholder for myJADBProc - see Listing 5-7 on page 5-35

;MySetDeviceInfo routine (called by MyInstallHandlers)

; on entry: D0 = ADB address of our device

; does not preserve D4 or A1

MySetDeviceInfo

LINK A6, #LocalSize ;make a stack frame

LEA myADBDB(A6), A1 ;pointer to stack-based param block

LEA MyADBHandler, A3 ;pointer to the handler routine

MOVE.W D0, D4 ;save the actual address

MOVE.L A3, (A1) ;set up the handler address

MOVE.L #10, D0 ;data area for device is 10 bytes

_NewPtr, SYS, CLEAR ;allocate our data area

TST.W D0 ;test for error

BNE.S @SDIExit ;exit if error

MOVE.L A0, 4(A1) ;put pointer to parameter data

; in data area

MOVE.W D4, D0 ;put actual address to set in D0

MOVE.L A1, A0 ;put parameter block pointer in A0

_SetADBInfo ;set up info for this device

@SDIExit

UNLK A6 ;dispose stack frame

RTS ;exit this routine

iNextProc DC.L 0 ;store pointer to next jADBProc
Writing an ADB Device Handler 5-33

C H A P T E R 5

ADB Manager
;MyInstallHandlers routine (called by main)

; on exit: D0 = number of our device types found

; does not preserve D1, D2, D3, D4 or A1

MyInstallHandlers

LINK A6, #LocalSize ;make a stack frame

CLR.L D3 ;clear device counter

_CountADBs ;get number of ADB devices

MOVE.W D0, D2 ;save this number in D2

BEQ.S @return ;exit if none

;put handler ID and

MOVE.W #(myADBType<<8)+myAddr, D1 ; default address into D1

@cntLoop

MOVE.W D2, D0 ;put device index in D0

LEA myADBDB(A6), A0 ;pointer to stack-based param block

_GetINDADB ;get an ADB device table entry

BMI.S @nextRec ;skip if invalid

CMP.W devType(A0), D1 ;is this one of our devices?

BNE.S @nextRec ;skip if no match

BSR.S MySetDeviceInfo ;set handler for this device

ADDQ #1, D3 ;found one of our devices, add to D3

@nextRec SUBQ.W #1, D2 ;try next index

BNE.S @cntLoop ;loop if more

MOVE.L D3, D0 ;return number found in D0

@return UNLK A6

RTS

ENDP

END

Note

In the past, Apple recommended that you install an ADB device handler
by placing the ADB device handler in an 'ADBS' resource in the System
file. In this case, the 'ADBS' resource ID corresponds to the ADB
device’s default address. At system startup, the ADB Manager searches
the System file for 'ADBS' resources for only those ADB devices that
appear on the bus. The ADB Manager then loads these resources into
memory and executes them. The ADB Manager also reads register 3 for
each ADB device and places the device’s default ADB device address
and device handler ID into the ADB device table. This method, however,
does not offer the same flexibility and scope as when you install a
handler with an extension. For example, because 'ADBS' resource IDs
are indexed only by their default addresses, you cannot install ADB
resources for two different devices at the same address using 'ADBS'
resources. Apple therefore recommends that you install all ADB device
handlers using a system extension. ◆
5-34 Writing an ADB Device Handler

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
Your installation code should set up the value of JADBProc (by chaining) to point to
a routine that you provide which appropriately handles the case when the ADB is
reinitialized. When the ADB is reinitialized, the ADB Manager calls the routine pointed
to by the system global variable JADBProc; it calls this routine twice: once before
reinitializing the ADB, and once after reinitializing the ADB. When this routine is called,
D0 contains the value 0 for preprocessing and 1 for postprocessing. Your routine must
restore the value of D0 and branch to the original value of JADBProc on exit.

For preprocessing, your reinstallation routine should deallocate any storage. It must also
take action for postprocessing. Because the ADB (and ADB device table) is reinitialized
during postprocessing, the ADB Manager might need to perform address resolution. As
a result, you cannot assume that your ADB device still resides at its default address after
postprocessing occurs. Therefore, for postprocessing your reinstallation routine should
search the ADB bus for a matching device (just as in its installation code) and install
its entry into the ADB device table. Finally, the code jumps to the routine stored in
iNextProc, and thus chains to the next routine that needs to perform postprocessing.
Listing 5-7 shows an example of this entire process.

Listing 5-7 Installing a routine pointer into JADBProc

;main goes here, see Listing 5-6 on page 5-32

;handler code goes here, see Listing 5-8 on page 5-37

;NOTE: This routine must be installed as part of the handler.

myJADBProc

LINK A6, #LocalSize ;make a stack frame

MOVEM.L D0-D2/A1, -(SP) ;save registers for next procedure

TST.B D0 ; D0 = 0 for pre-processing,

; D0 = 1 for post-processing

BEQ.S @preProc ;if 0, pre-process data areas

@postProc

BSR.S MyInstallHandlers ;install handlers (Listing 5-6)

BRA.S @JADBExit

@prePost

LEA myADBDB(A6), A1 ;pointer to stack-based param block

LEA MyADBHandler, A2 ;address of handler for comparison

_CountADBs ;get the number of ADB devices

MOVE.W D0, D2 ;save this value in D2

BEQ.S @JADBExit ;exit if none

;put handler ID and

MOVE.W #(myADBType<<8)+myAddr, D1 ; default address into D1

@preLoop

MOVE.W D2, D0 ;current index

MOVE.L A1, A0 ;address of data block

_GetIndADB ;get ADB device table entry
Writing an ADB Device Handler 5-35

C H A P T E R 5

ADB Manager
BMI.S @nextRec ;skip if invalid

CMP.W devType(A0), D1 ;is this one of our devices?

BNE.S @nextRec ;skip if no match

CMPA.L dbServiceRtPtr(A0), A2 ;compare with our handler ID

BNE.S @nextRec ;if no match, don't delete pointer

MOVE.L dbDataAreaAddr(A0), A0 ;get the pointer to dispose

_DisposePtr ;if matches, it's ours, so dispose

@nextRec

SUBQ.W #1, D2 ;get next index

BNE.S @preLoop ;loop if more

@JADBExit

MOVEM.L (SP)+, D0-D2/A1 ;restore registers

UNLK A6 ;dispose stack frame

LEA iNextProc, A0 ;get pointer to next procedure

MOVE.L (A0), A0

JMP (A0) ;jump to next procedure

Creating an ADB Device Handler 5
A device handler communicates with a particular ADB device by gathering data about
the device it manages from the ADB Manager, and then interpreting that data. For
example, the device handler for a particular device might then post an event into the
event queue using PostEvent.

Whenever an ADB device sends data (by responding to a Talk Register 0 command), the
ADB Manager calls the associated device handler. The ADB Manager passes these
parameters to the device handler:

■ in register A0, a pointer to the ADB data sent by the ADB device

■ in register A1, a pointer to the device handler routine

■ in register A2, a pointer to the data area (if any) associated with the device handler

■ in register D0, the ADB command that resulted in the handler being called

Note

ADB device handlers are always called at interrupt time; they must
follow all rules for interrupt-level processing as described in Inside
Macintosh: Processes. ◆

Listing 5-8 gives an example of a simple device handler that handles data from an ADB
device. (Listing 5-6 on page 5-32 shows code that installs the address of this handler into
the ADB device table.) This device handler simply saves the data sent by the ADB device
into the device handler’s global data area. Note that you must include with your device
handler code that handles reinitialization of the ADB (see Listing 5-7 on page 5-35 for
details of reinitialization).
5-36 Writing an ADB Device Handler

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
Listing 5-8 A sample device handler

MyADBHandler

ANDI.B #$0F, D0 ;check command

CMPI.B #$0C, D0 ;was it a talk R0 command?

BNE.S @exit ; no, exit (something is wrong)

MOVE.B (A0)+, D0 ;get the count

CMPI.B #2, D0 ;this device only sends 2 bytes

BNE.S @exit ;bad count, exit

MOVE. B (A0)+, HndlrData(A2) ;grab the 1st byte, save in global area

MOVE.B (A0)+, MoreData(A2) ;grab the 2nd byte, save in global area

@exit RTS

;code from Listing 5-7 goes here

ADB Manager Reference 5

This section describes the data structures and routines provided by the ADB Manager.
See “Using the ADB Manager,” beginning on page 5-22, and “Writing an ADB Device
Handler” on page 5-29, for detailed instructions on using these routines.

Data Structures 5
This section describes the ADB data block, ADB information block, and ADB
 operation block.

ADB Data Block 5

You can get information about an ADB device by calling the functions GetIndADB and
GetADBInfo. These functions return information from the ADB device table in an ADB
data block, defined by the ADBDataBlock data type.

TYPE ADBDataBlock =

PACKED RECORD

devType: SignedByte; {device handler ID}

origADBAddr: SignedByte; {original ADB address}

dbServiceRtPtr: Ptr; {pointer to device handler}

dbDataAreaAddr: Ptr; {pointer to data area}

END;

ADBDBlkPtr = ^ADBDataBlock;

Field descriptions

devType The device handler ID of the ADB device.
ADB Manager Reference 5-37

C H A P T E R 5

ADB Manager
origADBAddr The device’s default ADB address.
dbServiceRtPtr

A pointer to the device’s device handler.
dbDataAreaAddr

A pointer to the device handler’s optional data area.

ADB Information Block 5

You can set a device’s device handler routine and data area by calling the SetADBInfo
function. You pass SetADBInfo an ADB information block, defined by the
ADBSetInfoBlock data type.

TYPE ADBSetInfoBlock =

RECORD

siServiceRtPtr: Ptr; {pointer to device handler}

siDataAreaAddr: Ptr; {pointer to data area}

END;

ADBSInfoPtr = ^ADBSetInfoBlock;

Field descriptions

siServiceRtPtr
A pointer to the device handler.

siDataAreaAddr
A pointer to the device handler’s optional data area.

Remember that once the ADB Manager has set the initial values for an ADB device in the
ADB device table, it updates the device table entry for the device to reflect changes only
to the address of the device handler routine and data area pointer.

ADB Operation Block 5

You use the ADB operation block to pass information to the ADBOp function if you call
the function from assembly language. The ADB operation block is defined by the
ADBOpBlock data type.

TYPE ADBOpBlock =

RECORD

dataBuffPtr: Ptr; {address of data buffer}

opServiceRtPtr: Ptr; {pointer to device handler}

opDataAreaPtr: Ptr; {pointer to optional data

 area}

END;

ADBOpBPtr = ^ADBOpBlock;
5-38 ADB Manager Reference

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
Field descriptions

dataBuffPtr A pointer to a variable-length data buffer. The first byte of the
buffer must contain the buffer’s length.

opServiceRtPtr
A pointer to a completion routine.

opDataAreaPtr
A pointer to an optional data area.

ADB Manager Routines 5
The ADB Manager provides routines that you can use to initialize the ADB,
communicate with ADB devices, and get or set ADB device information. In general,
you need to use these routines only if you need to access devices on the ADB directly
or communicate with a special device. You’ll also need to use some of these routines
to install an ADB device handler.

Initializing the ADB Manager 5

The ADB Manager provides the ADBReInit procedure to initialize the Apple Desktop
Bus. As explained in the following paragraphs, however, you probably won’t ever need
to call ADBReInit.

ADBReInit 5

The Macintosh Operating System uses the ADBReInit procedure to reinitialize the
Apple Desktop Bus.

PROCEDURE ADBReInit;

DESCRIPTION

The ADBReInit procedure reinitializes the Apple Desktop Bus to its original condition
at system startup time. It clears the ADB device table and places a SendReset command
on the bus to reset all devices to their original addresses. The ADB Manager resolves any
address conflicts and rebuilds the device table.

IMPORTANT

In general, your application shouldn’t call ADBReInit. If you need to
assign a different device handler to a device, or activate a “virtual”
device associated with some device that is already connected to the bus,
you can use the SetADBInfo routine. ▲

The ADBReInit procedure also calls the routine pointed to by the system global variable
JADBProc at the beginning and end of its execution. You can insert your own
ADB Manager Reference 5-39

C H A P T E R 5

ADB Manager
preprocessing and postprocessing routine by changing the value of JADBProc. When
this routine is called, D0 contains the value 0 for preprocessing and 1 for postprocessing.
Your routine must restore the value of D0 and branch to the original value of JADBProc
on exit. Because the ADB is reinitialized during postprocessing, the ADB Manager might
need to perform address resolution. As a result, you cannot assume that your ADB
device still resides at its default address after postprocessing occurs.

SPECIAL CONSIDERATIONS

Calling ADBReInit on computers running system software versions earlier than 6.0.4
can cause incorrect keyboard layouts to be loaded.

The ADBReInit procedure does not deallocate memory that has been allocated by the
device handler installation code.

If you provide a device handler that is installed by a system extension, you must reinstall
the entry for your ADB device in the ADB device table. See “Installing an ADB Device
Handler,” beginning on page 5-30 for more information.

Communicating Through the ADB 5

You can use the ADBOp function to communicate with devices on the ADB. In general,
however, you shouldn’t need to call ADBOp. Applications should get information about
the user’s input on ADB devices by calling the appropriate Event Manager routines.
In addition, the ADB Manager automatically polls device register 0 (the register that
contains the data to be transmitted from the device to the ADB device handler) as part of
its normal bus polling and service request handling. As a result, device handlers should
need to call ADBOp only occasionally for special purposes, such as setting device modes
or obtaining device status.

ADBOp 5

You can use the ADBOp function to send a command to an ADB device.

FUNCTION ADBOp (data: Ptr; compRout: ProcPtr; buffer: Ptr;

 commandNum: Integer): OSErr;

data A pointer to an optional data area.

compRout A pointer to a completion routine.

buffer A pointer to a variable-length data buffer. The first byte of the buffer must
contain the buffer’s length.

commandNum
A command number. The command number is a 1-byte value that
encodes the command to be performed, the register the command refers
to, and the desired action the target device should perform.
5-40 ADB Manager Reference

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
DESCRIPTION

The ADBOp function transmits over the bus the command byte whose value is given
by the commandNum parameter. See Figure 5-2 on page 5-8 for the structure of this
command byte. For a Listen command, the ADB Manager also transmits the data
pointed to by the buffer parameter. Upon completion of a Talk command, the
area pointed to by the buffer parameter contains the data returned by the ADB device.
The ADBOp function executes only when the ADB would otherwise be idle; if the bus is
busy, the command byte is held in a command queue. If the command queue is full, the
ADBOp function returns an error and the command is not placed in the queue.

The length of the data buffer pointed to by the buffer parameter must be contained in
its first byte (in the same manner that the first byte of a Pascal string contains the length
of the string). The data buffer can include from 0 to 8 bytes of information. For a Listen
command, the data buffer should contain any data to be sent to the device. For a
Talk command, the contents of the data buffer are valid only on completion of the
command. To verify that the Talk command is completed, you should provide a
completion routine when you send the command to an ADB device or simply test the
value of the first byte of the data buffer (which contains the length of the buffer).

The optional data area to which the data parameter points is intended for storage used
by the completion routine pointed to by the compRout parameter. When you use ADBOp
to send a command, you can optionally supply a completion routine as a parameter. See
“ADB Command Completion Routines,” beginning on page 5-47 for details on
completion routines.

SPECIAL CONSIDERATIONS

The ADBOp function is always executed asynchronously. The result code returned by
ADBOp indicates only whether the ADB command was successfully placed into the
ADB command queue, not whether the command itself was successful. A method for
interacting with the ADB bus synchronously is illustrated in “Communicating With ADB
Devices,” beginning on page 5-24.

ASSEMBLY-LANGUAGE INFORMATION

The ADB operation block contains some of the information required by the ADBOp
function. You’ll need to set up an ADB operation block only if you call ADBOp from
assembly-language. (In Pascal, the ADB operation block is defined by the ADBOpBlock
data type.)
ADB Manager Reference 5-41

C H A P T E R 5

ADB Manager
The registers on entry and exit for ADBOp are

The parameter block whose address is passed in register A0 has this structure

Parameter block:

RESULT CODES

SEE ALSO

See Listing 5-2 on page 5-25 for an example of using the ADBOp function.

Getting ADB Device Information 5

You can use the ADB Manager functions in this section to determine how many ADB
devices are present and to get information about a specific ADB device, specified either
by its ADB device address or by its index in the ADB device table.

CountADBs 5

You can use the CountADBs function to determine how many ADB devices are
connected to the bus.

FUNCTION CountADBs: Integer;

DESCRIPTION

The CountADBs function returns a value representing the number of devices
connected to the bus; it determines this information by counting the number of entries
in the ADB device table.

Registers on entry

A0 Address of a parameter block of type ADBOpBlock

D0 A command number

Registers on exit

D0 Result code

→ dataBuffPtr Ptr A pointer to a variable-length data buffer.
The first byte of the buffer must contain the
buffer’s length.

→ opServiceRtPtr Ptr A pointer to a completion routine.
→ opDataAreaPtr Ptr A pointer to an optional data area.

noErr 0 No error
errADBOp –1 Command queue is full. Retry command.
5-42 ADB Manager Reference

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
GetIndADB 5

You can use the GetIndADB function to get information about an ADB device, specified
by its index in the ADB device table.

FUNCTION GetIndADB (VAR info: ADBDataBlock;

 devTableIndex: Integer): ADBAddress;

info An ADB data block. On exit, the fields of this parameter block are filled
with information about the specified ADB device.

devTableIndex
An index into the ADB device table.

Parameter block

DESCRIPTION

The GetIndADB function returns information from the ADB device table entry whose
index number is specified by the devTableIndex parameter. The information is
returned in an ADB data block, passed in the info parameter.

The GetIndADB function also returns the current ADB address of the specified device as
its function result. If, however, GetIndADB is unable to find the specified entry in the
ADB device table, it returns a negative value as its function result. In that case, the fields
of the info data block are undefined.

SPECIAL CONSIDERATIONS

Once the ADB Manager has set the initial values for an ADB device in the ADB device
table, it updates the device table entry for the device to reflect changes only to the
address of the device handler routine and data area pointer.

GetADBInfo 5

You can use the GetADBInfo function to get information about an ADB device,
specified by its ADB address.

FUNCTION GetADBInfo (VAR info: ADBDataBlock;

adbAddr: ADBAddress): OSErr;

← devType SignedByte The device handler ID.
← origADBAddr SignedByte The device’s default ADB address.
← dbServiceRtPtr Ptr The address of the device’s device

handler routine.
← dbDataAreaAddr Ptr The address of the device handler’s

data storage area.
ADB Manager Reference 5-43

C H A P T E R 5

ADB Manager
info An ADB data block. On exit, the fields of this parameter block are filled
with information about the specified ADB device.

adbAddr The ADB address of a device.

Parameter block

DESCRIPTION

The GetADBInfo function returns, through the info parameter, information from the
ADB device table entry of the device whose ADB address is specified by the adbAddr
parameter.

SPECIAL CONSIDERATIONS

Once the ADB Manager has set the initial values for an ADB device in the ADB device
table, it updates the device table entry for the device to reflect changes only to the
address of the device handler routine and data area pointer.

RESULT CODES

Setting ADB Device Information 5

You can call the ADB Manager function SetADBInfo to set or reset some of the
information in the ADB device table about an ADB device.

SetADBInfo 5

You can use the SetADBInfo function to set the address of the device handler routine
and data area address for a specified ADB device.

FUNCTION SetADBInfo (VAR info: ADBSetInfoBlock;

adbAddr: ADBAddress): OSErr;

info An ADB information block. On entry, the fields of this parameter block
should contain the desired address of the device handler routine and
data area.

adbAddr The ADB address of a device.

← devType SignedByte The device handler ID.
← origADBAddr SignedByte The device’s default ADB address.
← dbServiceRtPtr Ptr The address of the device’s device

handler.
← dbDataAreaAddr Ptr The address of the device handler’s

data storage area.

noErr 0 No error
5-44 ADB Manager Reference

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
Parameter block

DESCRIPTION

The SetADBInfo function sets the device handler address and the data area address
in the ADB device table entry whose address is specified by the adbAddr parameter.

IMPORTANT

You should send a Flush command to the device after calling it with
SetADBInfo to avoid sending old data to the new data area address. ▲

RESULT CODES

SEE ALSO

See “ADB Information Block,” beginning on page 5-38, for the structure of the
ADB information block.

Application-Defined Routines 5
This section describes device handlers and ADB completion routines. A device handler
is a low-level routine that communicates with a particular ADB device. An ADB
completion routine is a routine that you can provide as a parameter to the
ADBOp function.

ADB Device Handlers 5

The ADB Manager automatically polls for input from connected ADB devices and passes
any data received from a device to the device’s device handler. ADB device handlers are
responsible for processing all input from ADB devices (except for commands sent to an
ADB device using ADBOp or commands sent by the ADB Manager during address
resolution).

→ siServiceRtPtr Ptr The address of the device handler for this device.
→ siDataAreaAddr Ptr The address of the handler’s data area for the

device at the specified address.

noErr 0 No error
ADB Manager Reference 5-45

C H A P T E R 5

ADB Manager
MyDeviceHandler 5

Whenever an ADB device sends data (for example, in response to a Talk Register 0
command), the ADB Manager calls the device handler associated with that ADB device.
You can provide a device handler to handle data from your ADB device.

PROCEDURE MyDeviceHandler; {parameters passed in registers}

DESCRIPTION

When the ADB Manager calls a device handler, it passes parameters to the device
handler in registers A0, A1, A2, and D0, as described next.

SPECIAL CONSIDERATIONS

ADB device handlers are always called at interrupt time; they must follow all rules for
interrupt-level processing as described in Inside Macintosh: Processes.

ASSEMBLY-LANGUAGE INFORMATION

On entry to your device handler, the ADB Manager passes parameters in the following
registers:

A device handler should handle the data pointed to by register A0 in a manner
appropriate to the device. For example, the mouse device handler interprets the data it
receives in register A0 and posts an event to the event queue.

A device handler can use the area pointed to by register A2 to store global data as
needed. (If a device handler needs a global data area, its installation code should allocate
the needed memory at the same time it installs the device handler’s address into the
ADB device table.)

SEE ALSO

See “Writing an ADB Device Handler,” beginning on page 5-29, for information on
installing and creating an ADB device handler.

Register Value

A0 A pointer to the data sent by the device. This area contains data stored as a
Pascal string (maximum 8 bytes data preceded by one length byte).

A1 A pointer to the device handler routine.

A2 A pointer to the data area (if any) associated with the device handler.

D0 The ADB command number (byte) that resulted in the device handler
being called.
5-46 ADB Manager Reference

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
ADB Command Completion Routines 5

The ADBOp function is always executed asynchronously; if the bus is busy, the ADB
command passed to ADBOp is held in a command queue until the bus is free. The result
code returned by ADBOp indicates only whether the ADB command was successfully
placed into the ADB command queue, not whether the command itself was successful.

Thus, when you use the ADBOp function to send a command to an ADB device, and your
application requires synchronous behavior, you’ll need to provide a completion routine
to determine when the command has completed.

MyCompletionRoutine 5

When you use the ADBOp function to send a command to an ADB device, the ADB
Manager calls your completion routine when the ADB device has completed the
command.

PROCEDURE MyCompletionRoutine; {parameters passed in registers}

DESCRIPTION

The ADB Manager passes parameters to a completion routine in registers A0, A1, A2,
and D0, as described next.

ASSEMBLY-LANGUAGE INFORMATION

On entry to your completion routine, the ADB Manager sets the following registers:

SEE ALSO

See Listing 5-2 on page 5-25 for an example of a completion routine.

Register Value

A0 A pointer to the data area specified by the buffer parameter to the ADBOp
function. This area contains data stored as a Pascal string (maximum 8 bytes
of data preceded by one length byte). For example, data returned by an
ADB device in response to a Talk command issued by a call to the ADBOp
function can be accessed through this pointer.

A1 A pointer to the completion routine.

A2 A pointer to the data area that was specified by the data parameter to
the ADBOp function. Your completion routine can use this area to store
information; for example, to set a flag indicating that the command
has completed.

D0 The ADB command number (byte) that resulted in the completion routine
being called.
ADB Manager Reference 5-47

C H A P T E R 5

ADB Manager
Summary of the ADB Manager 5

Pascal Summary 5

Data Types 5

TYPE ADBDataBlock =

PACKED RECORD

devType: SignedByte; {device handler ID}

origADBAddr: SignedByte; {default ADB address}

dbServiceRtPtr: Ptr; {pointer to device handler}

dbDataAreaAddr: Ptr; {pointer to data area}

END;

ADBDBlkPtr = ^ADBDataBlock;

TYPE ADBSetInfoBlock =

RECORD

siServiceRtPtr: Ptr; {pointer to device handler}

siDataAreaAddr: Ptr; {pointer to data area}

END;

ADBSInfoPtr = ^ADBSetInfoBlock;

TYPE ADBOpBlock =

RECORD

dataBuffPtr: Ptr; {address of data buffer}

opServiceRtPtr: Ptr; {pointer to device handler}

opDataAreaPtr: Ptr; {pointer to optional data area}

END;

ADBOpBPtr = ^ADBOpBlock;

ADBAddress = SignedByte;

ADB Manager Routines 5

Initializing the ADB Manager

PROCEDURE ADBReInit;
5-48 Summary of the ADB Manager

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
Communicating Through the ADB

FUNCTION ADBOp (data: Ptr; compRout: ProcPtr; buffer: Ptr;
commandNum: Integer): OSErr;

Getting ADB Device Information

FUNCTION CountADBs: Integer;

FUNCTION GetIndADB (VAR info: ADBDataBlock;
devTableIndex: Integer): ADBAddress;

FUNCTION GetADBInfo (VAR info: ADBDataBlock;
adbAddr: ADBAddress): OSErr;

Setting ADB Device Information

FUNCTION SetADBInfo (VAR info: ADBSetInfoBlock;
adbAddr: ADBAddress): OSErr;

Application-Defined Routines 5

PROCEDURE MyDeviceHandler;

PROCEDURE MyCompletionRoutine;

C Summary 5

Data Types 5

typedef char ADBAddress;

struct ADBDataBlock {

char devType; /*device type*/

char origADBAddr; /*original ADB address*/

Ptr dbServiceRtPtr; /*pointer to device handler*/

Ptr dbDataAreaAdd; /*pointer to data area*/

};

typedef struct ADBDataBlock ADBDataBlock;

typedef ADBDataBlock *ADBDBlkPtr;

struct ADBSetInfoBlock {

Ptr siServiceRtPtr; /*pointer to device handler*/

Ptr siDataAreaAddr; /*pointer to data area*/

};

typedef struct ADBSetInfoBlock ADBSetInfoBlock;
Summary of the ADB Manager 5-49

C H A P T E R 5

ADB Manager
typedef ADBSetInfoBlock *ADBSInfoPtr;

struct ADBOpBlock {

Ptr dataBuffPtr; /*address of data buffer*/

Ptr opServiceRtPtr; /*pointer to device handler*/

Ptr opDataAreaPtr; /*pointer to optional data area*/

};

typedef struct ADBOpBlock ADBOpBlock;

typedef ADBOpBlock *ADBOpBPtr;

ADB Manager Functions 5

Initializing the ADB Manager

pascal void ADBReInit (void);

Communicating Through the ADB

pascal OSErr ADBOp (Ptr data, ProcPtr compRout, Ptr buffer,
short commandNum);

Getting ADB Device Information

pascal short CountADBs (void);

pascal ADBAddress GetIndADB
(ADBDataBlock *info, short devTableIndex);

pascal OSErr GetADBInfo (ADBDataBlock *info, ADBAddress adbAddr);

Setting ADB Device Information

pascal OSErr SetADBInfo (ADBSetInfoBlock *info, ADBAddress adbAddr);

Application-Defined Functions 5

pascal void MyDeviceHandler (void);

pascal void MyCompletionRoutine (void);
5-50 Summary of the ADB Manager

C H A P T E R 5

ADB Manager

5
A

D
B

 M
anager
Assembly-Language Summary 5

Data Structures 5

ADB Data Block

ADB Information Block

ADB Operation Block

Trap Macros 5

Trap Macro Names

Global Variables 5

Result Codes 5

0 devType byte device type
1 origADBAddr byte original ADB address
2 dbServiceRtPtr long pointer to completion routine
6 dbDataAreaAddr long pointer to data area

0 siServiceRtPtr long pointer to completion routine
4 siDataAreaAddr long pointer to data area

0 dataBuffPtr long address of data buffer
4 opServiceRtPtr long pointer to completion routine
8 opDataAreaPtr long pointer optional data area

Pascal name Trap macro name

ADBReInit _ADBReInit

ADBOp _ADBOp

CountADBs _CountADBs

GetIndADB _GetIndADB

GetADBInfo _GetADBInfo

SetADBInfo _SetADBInfo

JADBProc long Pointer to ADBReInit preprocessing/postprocessing routine.
KbdLast byte ADB address of the keyboard last used.
KbdType byte Keyboard type of the keyboard last used.

noErr 0 No error
errADBop -1 Unsuccessful completion
Summary of the ADB Manager 5-51

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Device Manager TOC
	 Device Manager
	 Slot Manager TOC
	 Slot Manager
	 SCSI Manager TOC
	 SCSI Manager
	 SCSI Manager 4.3 TOC
	 SCSI Manager 4.3
	 ADB Manager TOC
	ADB Manager
	About the Apple Desktop Bus
	Characteristics of ADB Devices

	About the ADB Manager
	ADB Commands
	ADB Transactions
	ADB Device Registers
	Register 0
	Register 3

	Default ADB Device Address and Device Handler Iden...
	ADB Device Table
	Address Resolution
	ADB Communication

	Using the ADB Manager
	Checking for the ADB Manager
	Getting Information About ADB Devices
	Communicating With ADB Devices

	Writing an ADB Device Handler
	Installing an ADB Device Handler
	Creating an ADB Device Handler

	ADB Manager Reference
	Data Structures
	ADB Data Block
	ADB Information Block
	ADB Operation Block

	ADB Manager Routines
	Initializing the ADB Manager
	Communicating Through the ADB
	Getting ADB Device Information
	Setting ADB Device Information

	Application-Defined Routines
	ADB Device Handlers
	ADB Command Completion Routines

	Summary of the ADB Manager
	Pascal Summary
	Data Types
	ADB Manager Routines
	Application-Defined Routines

	C Summary
	Data Types
	ADB Manager Functions
	Application-Defined Functions

	Assembly-Language Summary
	Data Structures
	Trap Macros
	Global Variables

	Result Codes

	 Power Manager TOC
	 Power Manager
	 Serial Driver TOC
	 Serial Driver
	 Glossary
	 Index
	 Colophon

